WorldWideScience

Sample records for arbuscular mycorrhiza development

  1. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    Directory of Open Access Journals (Sweden)

    Lucas Carvalho Basilio de Azevedo

    2014-09-01

    Full Text Available Sugarcane (Saccharum spp. is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning. Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.

  2. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza11[OPEN

    Science.gov (United States)

    Park, Hee-Jin; Floss, Daniela S.; Levesque-Tremblay, Veronique; Bravo, Armando

    2015-01-01

    During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1. PMID:26511916

  3. [Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: a review of basic and applied aspects

    DEFF Research Database (Denmark)

    Borisov, A Iu; Vasil'chikov, A G; Voroshilova, V A; Danilova, T N; Zhernakov, A I; Zhukov, V A; Koroleva, T A; Kuznetsova, E V; Madsen, Lene Heegaard; Mofett, M; Naumkina, T S; Nemankin, T A; Ovchinnikova, E S; Pavlova, Z B; Petrova, N E; Pinaev, A G; Radutoiu, S; Rozov, S M; Rychagova, T S; Solovov, I I; Stougaard, J; Topunov, A F; Weeden, N F; Tsyganov, V E; Shtark, O Iu; Tikhonovich, I A

    2007-01-01

    The review sums up the long experience of the authors and other researchers in studying the genetic system of garden pea (Pisum sativum L.), which controls sthe development of nitrogen-fixing symbiosis and arbuscular mycorrhiza. A justified phenotypic classification of pea mutants is presented....... Progress in identifying and cloning symbiotic genes is adequately reflected. The feasibility of using double inoculation as a means of increasing the plant productivity is demonstrated, in which the potential of a tripartite symbiotic system (pea plants-root nodule bacteria-arbuscular mycorrhiza) is...

  4. [Development of Arbuscular Mycorrhiza in Highly Responsive and Mycotrophic Host Plant-Black Medick (Medicago lupulina L.)].

    Science.gov (United States)

    Yurkova, A P; Jacobi, L M; Gapeeva, N E; Stepanova, G V; Shishova, M F

    2015-01-01

    The main phases of arbuscular mycorrhiza (AM) development were analyzed in black medick (Medicago lupulina) with Glomus intraradices. Methods of light and transmission electron microscopy were used to investigate AM. The first mycorrhization was identified on the seventh day after sowing. M. lupulina with AM-fungus Glomus intraradices formed Arum type of AM. Roots of black medick at fruiting stage (on the 88th day) were characterized by the development of forceful mycelium. The thickness of mycelium was comparable with the vascular system of root central cylinder. The development of vesicules into intraradical spores was shown. Micelium, arbuscules, and vesicules developed in close vicinity to the division zone of root tip. This might be evidence of an active symbiotic interaction between partners. All stages of fungal development and breeding, including intraradical spores (in inter-cellular matrix of root cortex), were identified in the roots of black medick, which indicated an active utilization of host plant nutrient substrates by the mycosymbiont. Plant cell cytoplasm extension was identified around young arbuscular branches but not for intracellular hyphae. The presence of active symbiosis was confirmed by increased accumulation of phosphorus in M. lupulina root tissues under conditions of G. intraradices inoculation and low phosphorus level in the soil. Thus, black medick cultivar-population can be characterized as an ecologically obligate mycotrophic plant under conditions of low level of available phosphorus in the soil. Specific features of AM development in intensively mycotrophic black medick, starting from the stage of the first true leaf until host plant fruiting, were evaluated. The obtained plant-microbe system is a perspective model object for further ultracytological and molecular genetic studies of the mechanisms controlling arbuscular mycorrhiza symbiotic efficiency, including selection and investigation of new symbiotic plant mutants. PMID

  5. A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes

    NARCIS (Netherlands)

    Boddington, C.L.; Dodd, J.C.

    1998-01-01

    Two glasshouse experiments were done to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on either Pueraria phaseoloides L. or Desmodium ovalifolium L. plants. The seco

  6. Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems

    OpenAIRE

    Lucas Carvalho Basilio Azevedo; Sidney Luiz Stürmer; Marcio Rodrigues Lambais

    2014-01-01

    Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcan...

  7. Effect of arbuscular mycorrhiza fungi on growth and development of onion and wild relatives

    OpenAIRE

    Scholten, O.M.; Galvan-Vivero, G.; Burger-Meijer, K.; Baar, J.; Kik, C.

    2006-01-01

    Arbuscular mycorrhizal fungi play an important role in the uptake of nutrients and water from soil. Onions, Allium cepa L., are plants with a shallow root system. As a result, onion plants need a lot of fertiziler for their growth. Furthermore, onion plants are sensitive to drought. The aim of the current research project is to study the beneficial effect of mycorrhizal fungi on the growth and development of Allium species and to determine whether it is possible to improve onions for mycorrhi...

  8. Field inoculation procedures with vesicular-arbuscular mycorrhiza

    International Nuclear Information System (INIS)

    The goal of field studies with vesicular-arbuscular mycorrhiza (VAM) is to improve crop yield by establishing vigorous VAM infections that will substantially enhance the uptake of phosphate. This objective is usually approached by introducing efficient inoculum into a field crop early enough and at a high enough rate to affect plant growth. Some consideration should also be given to ways of manipulating the native mycorrhizas because satisfactory field inoculation procedures for large-scale application are not yet well developed and the indigenous soil populations of VAM fungi are sometimes symbiotically efficient but too sparse to be effective. Thus mixed cropping systems and crop rotations that include strongly mycorrhizal plant species may well prove to be useful for building up the native VAM population. However, in this article, we are concerned primarily with the methodology of field inoculation, using VAM endophytes that have already been cultured on stock plants and tested for their symbiotic potential and soil/plant preferences

  9. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    The importance of vesicular-arbuscular mycorrhiza (VAM) and P fertilizer for P nutrition and dry matter production in field peas (Pisum sativum L.) was studied in moderately P-deficient soil. Half of the experimental plots were fumigated to reduce the level of VAM infection. Shoots and 0 to 30 cm...

  10. Arbuscular mycorrhizas reduce nitrogen loss via leaching.

    Directory of Open Access Journals (Sweden)

    Hamid R Asghari

    Full Text Available The capacity of mycorrhizal and non-mycorrhizal root systems to reduce nitrate (NO₃⁻ and ammonium (NH₄⁺ loss from soils via leaching was investigated in a microcosm-based study. A mycorrhiza defective tomato mutant and its mycorrhizal wildtype progenitor were used in this experiment in order to avoid the indirect effects of establishing non-mycorrhizal control treatments on soil nitrogen cycling and the wider soil biota. Mycorrhizal root systems dramatically reduced nitrate loss (almost 40 times less via leaching, compared to their non-mycorrhizal counterparts, following a pulse application of ammonium nitrate to experimental microcosms. The capacity of AM to reduce nutrient loss via leaching has received relatively little attention, but as demonstrated here, can be significant. Taken together, these data highlight the need to consider the potential benefits of AM beyond improvements in plant nutrition alone.

  11. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    This review discusses the role arbuscular mycorrhizal fungi play in the regulation of plant nutrient transporter genes. Many plant nutrient transporter genes appear to be transcriptionally regulated by a feed-back mechanism that reduces their expression when the plant reaches an optimal level of...... nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression of the...... high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  12. Influence of Arbuscular Mycorrhiza on Some Physiological Growth Parameters of Pepper

    OpenAIRE

    DEMİR, Semra

    2004-01-01

    Arbuscular Mycorrhiza (AM) is a symbiotic association between plant roots and certain soil fungi. Mycorrhiza establishment is known to modify several aspects of plant physiology such as mineral nutrient composition, hormonal balance, and C allocation patterns. In this study, the effect of the Arbuscular Mycorrhizal fungus Glomus intraradices Schenck & Smith on the physiological growth parameters of pepper (Capsicum annuum L. cv Cetinel-150) plants was investigated. To explain the physiolo...

  13. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. PMID:25840500

  14. Arbuscular mycorrhiza of plants spontaneously colonizing the soda heap in Jaworzno (southern Poland

    Directory of Open Access Journals (Sweden)

    Ewa Gucwa-Przepióra

    2011-04-01

    Full Text Available The results of studies of the mycorrhizal status of plant species spontaneously established on the soda heap located in Jaworzno (Upper Silesia, Poland are presented. Additionally, the species of arbuscular fungi of the phylum Glomeromycota extracted from field-collected rhizosphere substrate samples of the heap are showed. Arbuscular mycorrhizae were described in 17 plant species. Five Glomus spp. were recognized in the spore populations of arbuscular fungi isolated. The investigation presented in this paper for the first time revealed Centaurea stoebe and Trifolium montanum to be hosts of arbuscular fungi.

  15. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Per [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Jakobsen, Iver [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: iver.jakobsen@risoe.dk

    2008-05-15

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock.

  16. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    International Nuclear Information System (INIS)

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock

  17. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    DEFF Research Database (Denmark)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non......-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock. (c) 2007 Elsevier Ltd. All rights...

  18. Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Up take of Mineral Nutrition in Ipomoea Aquatica.

    Directory of Open Access Journals (Sweden)

    Milton Halder

    2015-04-01

    Full Text Available A green house experiment was conducted to investigate the effect of arbuscular mycorrhiza inoculation on plant growth and uptake of mineral nutrition in Ipomoea aquatica considering the objective of using environmental friendly biofertilizer instead of chemical fertilizer. A common leafy vegetable plant Ipomoea aquatica was grown with mycorrhiza and without mycorrhiza for 42 days. After harvest the plants were analyzed for mineral nutrition concentration. Plant fresh weight, dry weight, macronutrient (P, K, Mg, Na, micronutrient (Fe, Mn, Zn concentration was higher in arbuscular mycorrhiza inoculated plant than non-mycorrhiza inoculated plant. For sustainable agriculture, introducing biofertilizer by using arbuscular mycorrhiza inoculation would be one of the most efficient techniques for replacing chemical fertilizer to meet the nutrient deficiency in nutrient deficient soils of Bangladesh.

  19. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition

    DEFF Research Database (Denmark)

    Smith, S.E.; Jakobsen, Iver; Grønlund, Mette;

    2011-01-01

    In this Update, we review new findings about the roles of the arbuscular mycorrhizas (mycorrhiza = fungus plus root) in plant growth and phosphorus (P) nutrition. We focus particularly on the function of arbuscular mycorrhizal (AM) symbioses with different outcomes for plant growth (from positive...... regulation of P acquisition to the roles of AM fungi in determining the composition of natural plant assemblages in ecological settings and their changes with time....

  20. The role of arbuscular mycorrhizae in primary succession: differences and similarities across habitats

    Directory of Open Access Journals (Sweden)

    Z. Kikvidze

    2010-12-01

    Full Text Available Primary succession is an ecological process of fundamental importance referring to the development of vegetation on areas not previously occupied by a plant community. The bulk of knowledge on primary succession comes from areas affected by relatively recent volcanic eruptions, and highlights the importance of symbiosis between host plants and fungi for the initial stages of succession. Arbuscular mycorrhizas (AM are of particular interest as they are often present from the very beginning of primary succession and because they show different relationships with pioneer and late-successional species, which suggests they may be involved in important, yet unknown, ecological mechanisms of succession. We review existing knowledge based on case studies from the volcanic desert of Mount Fuji, Japan, where primary succession was examined intensively and which represents one of the best-known cases on the role of AM in primary succession. We also assess the potential of sand dunes and semi-arid, erosion-prone systems for addressing the role of mycorrhizas in primary succession. Analyzing primary succession under different ecological systems is critical to understand the role of AM in this basic process. While volcanoes and glaciers are restricted to particular mountainous areas, naturally eroded areas and sand dunes are more common and easily accessible, making them attractive models to study primary succession.

  1. Effect of Arbuscular Mycorrhiza Fungi Inoculation on Growth and Up take of Mineral Nutrition in Ipomoea Aquatica.

    OpenAIRE

    Milton Halder; A. S. M Mujib; Muhammad Shahjalal Khan; Jagadish Chandra Joardar; Samina Akhter; P. P. Dhar

    2015-01-01

    A green house experiment was conducted to investigate the effect of arbuscular mycorrhiza inoculation on plant growth and uptake of mineral nutrition in Ipomoea aquatica considering the objective of using environmental friendly biofertilizer instead of chemical fertilizer. A common leafy vegetable plant Ipomoea aquatica was grown with mycorrhiza and without mycorrhiza for 42 days. After harvest the plants were analyzed for mineral nutrition concentration. Plant fresh weight, dry weight, macro...

  2. The management of VA (vesicular-arbuscular) mycorrhizae in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.M.

    1987-01-01

    The need for management of vesicular-arbuscular mycorrhizae in semi-arid ecosystems represent an important challenge to belowground researchers especially as we increase our utilization of these stressed habitats. Within the laser couple of years several reviews have been prepared on the effects of disturbance to shrub and grasslands and their mycorrhizae. The purpose of this presentation is to discuss some research findings and management needs using examples from a high elevation cold desert, and from research in mid-grass and tallgrass prairies.

  3. SOME PRELIMINARY DATA ABOUT VESICULAR – ARBUSCULAR MYCORRHIZAS AT DIFFERENT SPECIES OF PLANTAGO

    Directory of Open Access Journals (Sweden)

    Nicoleta IANOVICI

    2010-01-01

    Full Text Available Vesicular – arbuscular mycorrhizas are though widely distributed. Root colonization of VAM fungi was studied in seven different species of Plantago. Colonization was high among all species. The highest intensity of root cortex colonization (M%, relative arbuscular richness (A% and arbuscule richness in root fragments were found in the Plantago schwarzenbergiana. Comparison of the VAM colonization in roots from different ecosystems suggested that plants grown in the saline habitats might be more dependence on VAM. There is a suggestion that AM fungi were able to detect variations in land. There is also an indication that VAM abundance was a response to stress.

  4. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp.

    OpenAIRE

    Santos Vera Lúcia dos; Muchovej Rosa Maria; Borges Arnaldo Chaer; Neves Júlio César L.; Kasuya Maria Catarina M.

    2001-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per.) Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonizatio...

  5. [Signal exchange between plants and Arbuscular Mycorrhizae fungi during the early stage of symbiosis - A review].

    Science.gov (United States)

    Duan, Qianqian; Yang, Xiaohong; Huang, Xianzhi

    2015-07-01

    Much is known about Arbuscular Mycorrhizae (AM), an important component of the ecosystem, whereas little is known about the signal exchange that allows mutual recognition and reprograming for the anticipated physical interaction. This review addresses the latest advances of signal exchange between plants and AM, including signal substances and their function, related genes and regulation function in the early stage of plant-fungal symbiosis. PMID:26710600

  6. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    The effect of inoculation with vesicular–arbuscular mycorrhizal fungi on the growth of barley in the field was studied at two levels of soil P on plots fumigated with methyl bromide. During the vegetative phase, growth and P uptake was influenced only by soil P; P uptake in the period from earing...

  7. Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review.

    Science.gov (United States)

    Watts-Williams, Stephanie J; Cavagnaro, Timothy R

    2015-11-01

    A significant challenge facing the study of arbuscular mycorrhiza is the establishment of suitable non-mycorrhizal treatments that can be compared with mycorrhizal treatments. A number of options are available, including soil disinfection or sterilisation, comparison of constitutively mycorrhizal and non-mycorrhizal plant species, comparison of plants grown in soils with different inoculum potential and the comparison of mycorrhiza-defective mutant genotypes with their mycorrhizal wild-type progenitors. Each option has its inherent advantages and limitations. Here, the potential to use mycorrhiza-defective mutant and wild-type genotype plant pairs as tools to study the functioning of mycorrhiza is reviewed. The emphasis of this review is placed on non-legume plant species, as mycorrhiza-defective plant genotypes in legumes have recently been extensively reviewed. It is concluded that non-legume mycorrhiza-defective mutant and wild-type pairs are useful tools in the study of mycorrhiza. However, the mutant genotypes should be well characterised and, ideally, meet a number of key criteria. The generation of more mycorrhiza-defective mutant genotypes in agronomically important plant species would be of benefit, as would be more research using these genotype pairs, especially under field conditions. PMID:25862569

  8. NUTRIENT TRANSFER IN VESICULAR-ARBUSCULAR MYCORRHIZAS: A NEW MODEL BASED ON THE DISTRIBUTION OF ATPases ON FUNGAL AND PLANT MEMBRANES

    Directory of Open Access Journals (Sweden)

    S.E. SMITH

    1995-01-01

    Full Text Available In this paper we review the membrane transport processes that are involved in the transfer of mineral nutrients and organic carbon between the symbiotic partners in mycorrhizas. In particular, we reassess the prevailing hypothesis that transfer in vesicular-arbuscular (VA mycorrhizas occurs simultaneously and bidirectionally across the same interface and that arbuscules are the main sites of transfer. Using cytochemical techniques, we and our collaborators have reexamined the distribution of ATPases in the arbuscular and intercellular hyphal interfaces in VA mycorrhizas formed between roots ofAllium cepa (onion and the fungus Glomus intraradices. The results showed that H +-ATPases have different localisation on plant and fungal membranes in arbuscular and hyphal interfaces (Gianinazzi-Pearson et al. 1991. While some arbuscular interfaces had H+-ATPase activity on both fungal and plant membranes, in most cases the fungal membrane lacked this activity. In contrast, the plasma membranes of intercellular hyphae always had H + -ATPase and the adjacent root cells did not. This suggests that the different interfaces in a VA mycorrhiza may have different functions. We propose that passive loss of P from the arbuscules is associated with active uptake by the energised (ATPase-bearing plant membrane and that passive loss of carbohydrate from the root cells is followed by active uptake by the intercellular hyphae. If this model is correct, then variations in "mycorrhizal efficiency" (i.e. the extent to which mycorrhizal plants grow better than non-mycorrhizal controls might be determined by differences in the numbers of active arbuscules as a proportion of the total fungal biomass within the root. As a first step towards investigating this possibility, we have developed methods for measuring the surface areas of arbuscular and hyphal interfaces in different fungus-host combinations, Glomus spp./ Allium porrum (leek. We have also measured fluxes of P from

  9. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza.

    Science.gov (United States)

    Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier

    2015-07-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  10. Vescicular-arbuscular mycorrhiza and Azospirillum brasilense rhizocoenosis in pearlmillet in a semi-arid soil

    International Nuclear Information System (INIS)

    A field experiment was conducted in an alluvial sandy loam soil using Pearlmillet as the test crop to study the effect of Vescicular-Arbuscular Mycorrhiza (VAM) and Azospirillum with phosphorus on yield and other parameters. Dual inoculation gave a significant increase in Azospirillum and VAM infection in root over the control plants, and resulted in significant increase in grain yield. Combined inoculation alongwith N and P application showed maximum P uptake. Nitrogen fixation increased with plant growth with dually inoculated N and P treatment, The effect was more pronounced in the presence of phosphrous indicating that P is required for nitrogen fixation. (author)

  11. Arbuscular mycorrhizae of dominant plant species in Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta; Zak, Marcelo R; Bartoloni, Norberto

    2009-01-01

    In Argentina the Yungas forests are among the ecosystems most affected by human activity, with loss of biodiversity. To assess the arbuscular mycorrhizal (AM) colonization and the arbuscular mycorrhizal fungi (AMF) spore numbers in these ecosystems, the roots of the most dominant native plants (one tree, Alnus acuminata; three herbaceous, Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub, Sambucus peruviana) were studied throughout the year from two sites of Yungas forests. Assessments of mycorrhizal colonization (percent root length, intraradical structures) were made by washing and staining the roots. Soil samples of each plant species were pooled and subsamples were obtained to determine AM spore numbers. The herbaceous species formed both Arum- and Paris-type morphologies, whereas the tree and the shrub species formed respectively single structural types of Arum- and Paris-type. AM colonization, intraradical fungi structures and AMF spore numbers displayed variation in species, seasons and sites. D. indica showed the highest AM colonization, whereas the highest spore numbers was observed in the rhizosphere of A. acuminata. No correlation was observed between spore numbers and root length percentage colonized by AM fungi. Results of this study showed that Alnus acuminata is facultatively AM. The AM colonization, intraradical fungi structures and AMF spore numbers varied in species depending on phenological, climatic and edaphic conditions. PMID:19750940

  12. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services.

    Science.gov (United States)

    Gianinazzi, Silvio; Gollotte, Armelle; Binet, Marie-Noëlle; van Tuinen, Diederik; Redecker, Dirk; Wipf, Daniel

    2010-11-01

    The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the 'first green revolution', less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society's balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society. PMID:20697748

  13. The beneficial effect of dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover

    Directory of Open Access Journals (Sweden)

    Lin, XG.

    1993-01-01

    Full Text Available Investigation on the effect of phosphorus on vesicular-arbuscular mycorrhizal infection, and dual inoculation of vesicular-arbuscular mycorrhizae + rhizobium on growth of white clover under field microplots and pot experiments was conducted on fluvo-aquic soils of semi-arid region in north China. The results showed that 60 kg P205 ha in form of superphosphate was the most favorable phosphorus level for vesicular-arbuscular mycorrhizal infection ; mycorrhizal infection, nodulation, dry weight of shoots and roots, total uptake of nitrogen, phosphorus and other elements, the final yields and recovery of phosphorus of white clover were significantly increased by vesicular-arbuscular mycorrhizal inoculation and dual inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobium. The highest response of inoculation was obtained by adding fertilizer phosphorus at the level of 60 kg P205 ha in form of superphosphate.

  14. Micorrizas arbusculares en plantines de Alnus acuminata (Betulaceae inoculados con Glomus intraradices (Glomaceae Arbuscular mycorrhizas in Alnus acuminata (Betulaceae seedlings inoculated with Glomus intraradices (Glomaceae

    Directory of Open Access Journals (Sweden)

    Alejandra Becerra

    Full Text Available En este trabajo se cita y describe por primera vez la asociación de Alnus acuminata Kunth «aliso del cerro» con el hongo formador de micorrizas arbusculares (MA Glomus intraradices Schenk & Smith. En un bioensayo en invernadero, se inocularon plantines de A. acuminata con fragmentos radicales de Medicago sativa L. colonizados por G. intraradices . Se describe la colonización MA y el tipo anatómico Arum . Se establece la funcionalidad de la simbiosis por la presencia de arbúsculos en las células corticales de la raíz.This work described for the first time the arbuscular mycorrhiza (AM development in A. acuminata Kunth «andean alder» with G. intraradices Schenk & Smith. Seedlings of A. acuminata were inoculated with root fragments of Medicago sativa L. colonized by G. intraradices in a greenhouse. The Arum -type and AM colonization are described in A. acuminata seedlings. The presence of arbuscules in A. acuminata cortical cells define a functional symbiosis.

  15. Biochemical contents of pepper seedlings inoculated with phytophthora infestans and arbuscular mycorrhiza

    Directory of Open Access Journals (Sweden)

    Odebode A.C.

    2004-01-01

    Full Text Available The effect of interactions between Arbuscular Glomus etunicatum and fungus Phytophthora infestans on biochemical contents of pepper plants was investigated in a greenhouse experiment. The sugar contents (i.e. Glucose fructose and sucrose were higher in the control and mycorrhizal inoculated pepper seedlings and the lowest in pathogen inoculated seedlings. Free amino acids were the highest in the simultaneously inoculated pepper seedlings while total phenol was found to be the highest in pepper seedlings inoculated with P. infestans. The levels of nitrogen, phosphorus and potassium varied in the inoculated pepper seedlings without any significant difference in the treatment. The results obtained suggest protective influence of mycorrhiza by enhancing the nutritional status of the inoculated pepper seedlings.

  16. The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia.

    Science.gov (United States)

    Rydlová, Jana; Sýkorová, Zuzana; Slavíková, Renata; Turis, Peter

    2015-11-01

    At present, there is no relevant information on arbuscular mycorrhiza and the effect of the symbiosis on the growth of wild populations of cyclamens. To fill this gap, two populations of Cyclamen purpurascens subsp. immaculatum, endemic in Nízke Tatry (NT) mountains and Veľká Fatra (VF) mountains, Slovakia, were studied in situ as well as in a greenhouse pot experiment. For both populations, mycorrhizal root colonization of native plants was assessed, and mycorrhizal inoculation potential (MIP) of the soils at the two sites was determined in 3 consecutive years. In the greenhouse experiment, the growth response of cyclamens to cross-inoculation with arbuscular mycorrhizal fungi (AMF) was tested: plants from both sites were grown in their native soils and inoculated with a Septoglomus constrictum isolate originating either from the same or from the other plant locality. Although the MIP of soil at the NT site was significantly higher than at the VF site, the level of AMF root colonization of C. purpurascens subsp. immaculatum plants in the field did not significantly differ between the two localities. In the greenhouse experiment, inoculation with AMF generally accelerated cyclamen growth and significantly increased all growth parameters (shoot dry weight, leaf number and area, number of flowers, tuber, and root dry weight) and P uptake. The two populations of C. purpurascens subsp. immaculatum grown in their native soils, however, differed in their response to inoculation. The mycorrhizal growth response of NT plants was one-order higher compared to VF plants, and all their measured growth parameters were stimulated regardless of the fungal isolates' origin. In the VF plants, only the non-native (NT originating) isolate showed a significant positive effect on several growth traits. It can be concluded that mycorrhiza significantly increased fitness of C. purpurascens subsp. immaculatum, despite the differences between plant populations, implying that AMF

  17. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp. Sucessão de micorrizas vesicular-arbuscular e ectomicorrizas em mudas de Eucalyptus spp.

    OpenAIRE

    Vera Lúcia dos Santos; Rosa Maria Muchovej; Arnaldo Chaer Borges; Júlio César L. Neves; Maria Catarina M. Kasuya

    2001-01-01

    The occurrence of vesicular-arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per.) Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonizatio...

  18. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops. I. Mycorrhizal Infection in Cereals and Peas at Various Times and Soil Depths

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Nielsen, N.E.

    1983-01-01

    Development of infection by vesicular-arbuscular mycorrhiza (VAM) was studied in some field-grown crops. An infection plateau was reached within the first month after seedling emergence of spring barley, oats and peas. During the rest of the growth period the proportion of root length infected by...... VAM remained at about 50% in the cereals and 75% in the peas. In the spring, infection levels were low in winter wheat, winter rye and winter barley, and development of infection was slower in them than in the spring-sown crops. VAM infection was also studied in relation to soil depth and root density...

  19. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1986-01-01

    considerably, and correspondingly the mean rates of P inflow per unit root length were 60% lower in fumigated than in untreated soil during flowering. These effects of fumigation were ascribed to the low levels of VAM infection in fumigated soil. The production of dry matter was not decreased accordingly in...... fumigated plots, although both it and P uptake were increased by adding P fertilizer. The possible reasons for this discrepancy are discussed. A supplementary survey on infection development at five other field sites showed that peas are extensively colonized by VAM fungi, even in soils where a standard...

  20. A systems approach to the management of arbuscular mycorrhiza: Bioassay and study of the impact of phosphorus supply

    OpenAIRE

    Kahiluoto, Helena

    2000-01-01

    The aim of this study was to find out whether utilization of arbuscular mycorrhiza (AM), in crop production in Nordic conditions, can be promoted through management of the cropping system. P fertilization was chosen as the pilot system to manage because it has a major effect on AM and because it is problematic from the viewpoint of sustainability. Our scant knowledge of AM functioning and its effects in the field is mainly due to the methodological problems of research. Therefore, a bioassay ...

  1. Vesicular-Arbuscular Mycorrhiza and Growth in Barley - Effects of Irradiation and Heating of Soil

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Andersen, A. J.

    1982-01-01

    propagules. Mycorrhiza developed more slowly after inoculation in irradiated soils than in untreated soils. This could have been due to the small amounts of inoculum used, but the high concentrations of nutrients released by irradiation of the soil were probably of greater significance particularly the...

  2. Changes in mycorrhiza development in maize induced by crop management practices

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    with maize (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the...... mays L.) or a non-host (canola, Brassica napus L.) crop, and all of them with maize for the second year. Tillage and P fertilization treatments were applied to the plots in the second year. Mycorrhiza development in maize was measured in pot culture bioassays conducted before planting and after harvest......We selected three crop production practices; crop rotation, tillage and phosphorus fertilization, all known to affect arbuscular mycorrhiza (AM) development, to study early AM intraradical colonization in maize. Half of the plots were planted during the first year with either a host (maize, Zea...

  3. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family

    Science.gov (United States)

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  4. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    Science.gov (United States)

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  5. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.

    Science.gov (United States)

    Rivera-Becerril, Facundo; Juárez-Vázquez, Lucía V; Hernández-Cervantes, Saúl C; Acevedo-Sandoval, Otilio A; Vela-Correa, Gilberto; Cruz-Chávez, Enrique; Moreno-Espíndola, Iván P; Esquivel-Herrera, Alfonso; de León-González, Fernando

    2013-02-01

    The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues. PMID:23124167

  6. Effect of Arbuscular Mycorrhiza on the Drought Tolerance of Poncirus trifoliata Seedlings

    Institute of Scientific and Technical Information of China (English)

    Wu Qiangsheng; Xia Renxue; Hu Zhengjia

    2006-01-01

    The effects of Glomus mosseae colonization on the plant growth and drought tolerance of 1-year-old trifoliate Poncirus trifoliata seedlings in potted culture were studied in natural water stress and rewatering conditions.Results showed that arbuscular mycorrhizal (AM)inoculation significantly improved the height,stem diameter,and fresh weight of P.trifoliata seedlings before natural water stress.By the end of the experiment,the survival percentage of AM-transplanted seedlings was 8%higher than those of non-AM ones.During water stress and rewatering,AM significantly increased the contents of soluble sugars and proteins in leaves,and enhanced the activities of superoxide dismutase (SOD),guaiacol peroxidase (G-POD),and catalase (CAT) in either seedling leaves or roots,which indicated that AM colonization could improve the osmotic adjustment response of P.trifoliata,enhance its defense system,and alleviate oxidative damages to membrane lipids and proteins.These results demonstrated that the drought tolerance of P.trifoliata seedlings was increased by inoculation with AM fungi.The functional mechanism underlying the observation that mycorrhizas increased the host's drought tolerance was closely related to enzymatic and nonenzymatic antioxidant defense systems such as SOD,GPOD,CAT,and soluble protein.

  7. The Arbuscular Mycorrhiza Rhizophagus intraradices Reduces the Negative Effects of Arsenic on Soybean Plants

    Directory of Open Access Journals (Sweden)

    Federico Spagnoletti

    2015-05-01

    Full Text Available Arsenic (As in soils causes several detrimental effects, including death. Arsenic toxicity in soybean plants (Glycine max L. has been little studied. Arbuscular mycorrhiza (AM increase the tolerance of host plants to abiotic stress, like As. We investigated the effects of AM fungi on soybean grown in As-contaminated soils. A pot experiment was carried out in a glasshouse, at random with five replications. We applied three levels of As (0, 25, and 50 mg As kg−1, inoculated and non-inoculated with the AM fungus Rhizophagus intraradices (N.C. Schenck & G.S. Sm. C. Walker & A. Schüßler. Plant parameters and mycorrhizal colonization were measured. Arsenic in the substrate, roots, and leaves was quantified. Arsenic negatively affected the AM percentage of spore germination and hyphal length. As also affected soybean plants negatively: an extreme treatment caused a reduction of more than 77.47% in aerial biomass, 68.19% in plant height, 78.35% in number of leaves, and 44.96% reduction in root length, and delayed the phenological evolution. Mycorrhizal inoculation improved all of these parameters, and decreased plant As accumulation (from 7.8 mg As kg−1 to 6.0 mg As kg−1. AM inoculation showed potential to reduce As toxicity in contaminated areas. The AM fungi decreased As concentration in plants following different ways: dilution effect, less As intake by roots, and improving soybean tolerance to As.

  8. The effect of vesicular-arbuscular mycorrhiza isolated from Syrian soil on alfalfa growth and nitrogen fixation in saline soil

    International Nuclear Information System (INIS)

    The influence of vesicular - arbuscular Mycorrhiza fungi (VAM) on symbiotic fixation of N2 n alfalfa plants has been observed. Beneficial effects of study the effect of VAM or phosphorous fertilization on alfalfa (Medicago sativa L,) yields, umber of nodules and N2 fixation by N15 isotope dilution at different salinity levels. This experiment was realized in green house conditions, using soil of 2.3 dsm-1 conductivity mixed with sand (5: 2V) for alfalfa plants growing at various levels of phosphorus, or infected by Mycorrhiza fungi. Different conductivities (13.18, 22.2, 28.8, 43.5 dsm-1) were applied on these treatment by increasing concentrations of Nacl, CaCl2 and MgCl2 and MgCl2 by salinity soil irrigation. Ten days after planting, soil was enriched with 2 ppm of (NH415)2 SO4. Plant were grown under greenhouse condition for ten weeks. Our results confirmed that increased salinity reduced nitrogen - fixation and the number of nodules. The negative effect with increasing salinity was less in Mycorrhiza plants than in plants fertilized with various levels of phosphorus, and only the higher levels of salinity reduced significantly, the percentage of Mycorrhiza colonization, However, at all levels of salinity, VAM stimulated plant growth and nutrient uptake. (author)

  9. VA菌根在植物生态学研究中的意义%Importance of Vesicular Arbuscular Mycorrhiza in Plant Ecological Research.

    Institute of Scientific and Technical Information of China (English)

    赵之伟

    2001-01-01

    Vesicular arbuscular mycorrhiza is the symbiont of plant and Glomales fungus.This symbiont is a very popular biological phenomenon in the terrestrial ecosystem.Based on the popularity and the non-specificity between the symbiotic partners,the potential determinant roles of VA mycorrhizal fungi in the occur rence,succession and the structure of plant community,and the mechanisms of VA mycorrhiza in the maintenance of plant biodiversity,the stability and the pro ductivity of the ecosystem were discussed in this paper.The functional roles of VA mycorrhiza in the plant biodiversity conservation was also discussed.

  10. Occurrence of Arbuscular Mycorrhizas and Dark Septate Endophytes in Hydrophytes from Lakes and Streams in Southwest China

    Science.gov (United States)

    Kai, Wang; Zhiwei, Zhao

    2006-02-01

    In this study, the colonization of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) in 140 specimens of 32 hydrophytes collected from four lakes and four streams in southwest China were investigated. The arbuscular mycorrhizal fungi (AMF) and DSE colonization in these hydrophytes were rare. Typical AM structures were observed in one of the 25 hydrophytic species collected in lakes and six of the 17 species collected in streams.Spores of 10 identified AMF species and an unidentified Acaulospora sp. were isolated from the sediments. The identified AMF came from the four genera, Acaulospora, Gigaspora, Glomus and Scutellospora . Glomus and G. mosseae were the dominant genus and species respectively in these aquatic environments.The presence of DSE in hydrophytes was recorded for the first time. DSE occurred in one of the 25 hydrophyte species collected in lakes and three of the 17 species collected in streams.

  11. Effects of vesicular-arbuscular mycorrhizae on survival and growth of perennial grasses in lignite overburden in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Call, C.A.; Davies, F.T.

    1988-12-01

    Seedlings of sideoats grama (Bouteloua curtipendula), Indiangrass (Sorghastrum nutans), and kleingrass (Panicum coloratum) were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus fasciculatum and Gigaspora margarita) in a containerized system and transplanted into lignite overburden in the Post Oak Savannah region of Texas, U.S.A. After three growing seasons without cultural inputs, plants inoculated with VAM fungi had greater survival percentages, basal diameters, and above-ground biomass than noninoculated plants. Inoculated plants had higher levels of nitrogen and phosphorus in above-ground biomass than noninoculated plants. Root colonization percentages of inoculated plants remained fairly stable while noninoculated plants showed low levels of colonization over the 3-year study period. Vesicular-arbuscular mycorrhizae enhanced the survival and growth of the 3 grass species by making effective use of limited resources in the lignite overburden. 31 refs., 3 tabs.

  12. Influence of Arbuscular Mycorrhiza on Membrane Lipid Peroxidation and Soluble Sugar Content of Soybean under Salt Stress

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2015-01-01

    Full Text Available The influence of the arbuscular mycorrhizal (AM fungus, Glomus mosseae, on characteristics of growth, membrane lipid peroxidation and soluble sugar content in the shoots and roots of soybean (Glycine max plants was studied in pot culture under salt stress. The experiment was arranged as a factorial in Randomized Complete Block Design (RCBD with four replications in greenhouse of College of Agriculture, Tehran University, Iran. The plants inoculated with mycorrhiza had significantly greater shoot and root biomass than the nonmycorrhizal plants at all salinity levels. AM symbiosis decreased membrane relative permeability and malondialdehyde content in shoots and roots. The soluble sugar content in roots was higher in mycorrhizal than nonmycorrhizal plants, but there was no significant difference in soluble sugar content in shoots between mycorrhizal and nonmycorrhizal plants. The results indicate that the AM fungus is capable of alleviating the damage caused by salt stress on soybean plants by reducing membrane lipid peroxidation and increasing the accumulation of soluble sugar content. Consequently, arbuscular mycorrhiza formation highly enhanced the salinity tolerance of soybean plant, which increased host biomass and promoted plant growth.

  13. Micorrizas arbusculares y endófitos septados oscuros en Gentianaceae nativas de la Argentina Arbuscular mycorrhizas and dark septates endophytes in native Gentianaceae from Argentina

    Directory of Open Access Journals (Sweden)

    Leonardo A. Salvarredi

    2010-12-01

    Full Text Available Se estudió la colonización de raíces por simbiontes fúngicos en cinco especies de Gentianaceae nativas distribuidas en distintos ambientes de la Argentina, cuatro pertenecientes a Gentianella y una a Gentiana. Se observaron estructuras micorrícicas arbusculares pertenecientes al tipo Paris (hifas y circunvoluciones intracelulares y endófitos septados oscuros (SO (hifas y microesclerocios. Tres de las especies estudiadas se asociaron a micorrizas arbusculares (MA y SO, una sólo a SO y otra sólo a MA. La colonización radical por SO (hifas y microesclerocios y la colonización hifal MA difirieron con el hospedante. Este es el primer reporte de colonización por MA y SO en Gentianella helianthemoides, G. magellanica, G. parviflora y Gentiana prostrata. Se discute la influencia del hospedante y del ambiente en la colonización por MA y SO.The roots of five native species of Gentianaceae distributed in different environments of Argentina, four belonging to Gentianella and one to Gentiana, were studied for fungal symbionts colonization. Arbuscular mycorrhizal structures belonging to Paris type (intracellular hyphae and coils and dark septates endophytes (DS (hyphae microesclerotia were observed. Three of the species studied were associated to both arbuscular mycorrhizas (AM and DS, only one to DS and the other only to AM. Root colonization by DS (hyphae and microesclerotia and AM hyphal colonization were host dependent. This is the first report of AM and DS colonization for Gentianella helianthemoides, G. magellanica, G. parviflora and Gentiana prostrata. Host and environmental influence on AM and DS colonization is discussed.

  14. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India

    Directory of Open Access Journals (Sweden)

    RAJA RISHI

    2013-10-01

    Full Text Available Kumar R, Tapwal A, Pandey S, Rishi R, Borah D. 2013. Observations on arbuscular mycorrhiza associated with important edible tuberous plants grown in wet evergreen forest in Assam, India. Biodiversitas 14: 67-72. Non-timber forest products constitute an important source of livelihood for rural households from forest fringe communities across the world. Utilization of wild edible tuber plants is an integral component of their culture. Mycorrhizal associations influence the establishment and production of tuber plants under field conditions.The aim of present study is to explore the diversity and arbuscular mycorrhizal (AMF colonization of wild edible tuber plants grown in wet evergreen forest of Assam, India. A survey was conducted in 2009-10 in Sunaikuchi, Khulahat, and Bura Mayong reserved forest of Morigaon district of Assam to determine the AMF spore population in rhizosphere soils and root colonization of 14 tuberous edible plants belonging to five families. The results revealed AMF colonization of all selected species in all seasons. The percent colonization and spore count was less in summer, moderate in winter and highest in rainy season. Seventeen species of arbuscular mycorrhizal fungi were recorded in four genera viz. Acaulospora (7 species, Glomus (5 species, Sclerocystis (3 species and Gigaspora (2 species.

  15. Vesicular-Arbuscular Mycorrhiza and Growth in Barley - Effects of Irradiation and Heating of Soil

    DEFF Research Database (Denmark)

    Jakobsen, Iver; Andersen, A. J.

    1982-01-01

    The influence of soil irradiation (0.25–4.0 Mrad) and soil heating on mycorrhizal survival, establishment and development after reinoculation, and on plant growth, was investigated. The lowest radiation dose applied, completely eliminated the infectivity of a soil with a high number of mycorrhizal...... propagules. Mycorrhiza developed more slowly after inoculation in irradiated soils than in untreated soils. This could have been due to the small amounts of inoculum used, but the high concentrations of nutrients released by irradiation of the soil were probably of greater significance particularly the...... increased amounts of plant-available N as indicated by incubation experiments. Inorganic N was increased to similar levels by the various treatments. Available soil P increased with increasing irradiation dose. Incubation of inoculum in soil for 40 days before sowing increased mycorrhizal infection....

  16. Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus Hu) seedlings

    Institute of Scientific and Technical Information of China (English)

    LU Jinying; LIU Min; MAO Yongmin; SHEN Lianying

    2007-01-01

    The current study explored the effects of vesicular-arbuscular mycorrhizae (VAM) inoculation on the growth and water requirement of pot-grown wild jujube (Zizyphs spinosus Hu).Three water regimes (20%,40% and 60% of soil water content) were conducted.The VAM inoculation could significantly increase plant growth (including plant height,leaf area,and fresh and dry mass),enhance relative leaf water content,photosynthetic rates,transpiration rates and stomatal conductance,and improve plant drought tolerance.The water consumption of the mycorrhizal plants producing 1 g of dry matter was 18.7%-26.6% lower than the consumption of non-mycorrhizal plants grown under the same soil water content conditions.

  17. Arbuscular mycorrhizae of the palm Astrocaryum mexicanum in disturbed and undisturbed stands of a Mexican tropical forest.

    Science.gov (United States)

    Núñez-Castillo, O; Alvarez-Sánchez, F J

    2003-10-01

    Tropical forests are dynamic systems with extensive natural disturbance, gaps in the canopy being one of the most important types. Tree and branch fall are often the principal cause of natural disturbance. This research was done on adult individuals of a very abundant palm ( Astrocaryum mexicanum Liebm, Arecaceae), which is found in the understorey of the forest at Los Tuxtlas, Mexico. Percentages of colonization by arbuscular mycorrhizae were determined for individuals selected randomly from plots located both in gaps and under closed canopy. The highest percentages of total colonization, as well as those of hyphae and vesicles, were recorded for gaps. In forest with closed canopy, arbuscules had the highest percentages of colonization; on these sites the palm has been observed to grow less. The higher production of arbuscules may favour nutrient capture in this microenvironment, which is characterized by strong competition. PMID:12687446

  18. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Warynski at different soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Gucwa-Przepiora, E.; Malkowski, E.; Sas-Nowosielska, A.; Kucharski, R.; Krzyzak, J.; Kita, A.; Romkens, P.F.A.M. [University of Silesia, Katowice (Poland)

    2007-12-15

    The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously, growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.

  19. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil.

    Science.gov (United States)

    Qiao, Yuhui; Crowley, David; Wang, Kun; Zhang, Huiqi; Li, Huafen

    2015-11-01

    Biochar pyrolyzed from corn stalks at 300°C/500°C and arbuscular mycorrhizae (AMF) were examined independently and in combination as possible treatments for soil remediation contaminated with Cd, Cr, Ni, Cu, Pb, Zn after 35 years following land application of sewage sludge in the 1970s. The results showed that biochar significantly decreased the heavy metal concentrations and their bioavailability for plants, and both biochars had similar such effects. AMF inoculation of corn plants had little effect on heavy metal bioavailability in either control or biochar amended soil, and no interaction between biochar and AMF was observed. Changes in DTPA extractable metals following biochar addition to soil were correlated with metal uptake by plants, whereas pore water metal concentrations were not predictive indicators. This research demonstrates positive benefits from biochar application for contaminated soil remediation, but remain ambiguous with regard to the benefits of simultaneous AMF inoculation on reduction of heavy metal bioavailability. PMID:26319508

  20. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi

    Directory of Open Access Journals (Sweden)

    NOVRI YOULA KANDOWANGKO

    2009-03-01

    Full Text Available Plants that undergo drought stress perform a physiological response such as accumulation of proline in the leaves and increased content abscisic acid. A research was conducted to study proline and abscisic acid (ABA content on drought-stressed corn plant with Azospirillum sp. and arbuscular mycorrhizae fungi (AMF inoculated at inceptisol soil from Bogor, West Java. The experiments were carried out in a green house from June up to September 2003, using a factorial randomized block design. In pot experiments, two factors were assigned, i.e. inoculation with Azospirillum (0, 0.50, 1.00, 1.50 ml/pot and inoculation with AMF Glomus manihotis (0, 12.50, 25.00, 37.50 g/pot. The plants were observed during tasseling up to seed filling periods. Results of experiments showed that the interaction between Azospirillum sp. and AMF was synergistically increased proline, however it decreased ABA.

  1. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcorms

    NARCIS (Netherlands)

    Boddington, C.L.; Dodd, J.C.

    2000-01-01

    Two glasshouse experiments were performed to assess the development and metabolic activity of mycorrhizas formed by isolates of arbuscular mycorrhizal fungi (AMF) from three different genera, Acaulospora, Gigaspora and Glomus on Desmodium ovalifolium L. plants. In the first experiment the effect of

  2. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  3. Studies on arbuscular mycorrhiza (AM) in the Alentejo (Portugal) using pea mutants resistant to AM fungi as a control tool for field conditions

    OpenAIRE

    Kleikamp, Bernd

    2002-01-01

    The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at...

  4. Arbuscular mycorrhiza in species of Commelinidae (Liliopsida in the state of Pernambuco (Brazil Micorrizas arbusculares em espécies de Commelinidae (Liliopsida no Estado de Pernambuco (Brasil

    Directory of Open Access Journals (Sweden)

    Gladstone Alves da Silva

    2001-08-01

    Full Text Available Mycorrhiza are a mutualistic symbiosis between fungi and plant roots, the main benefit to the plant being increased nutrient uptake. The arbuscular is the most important kind of mycorrhiza for agriculture and it is widespread in occurrence and distribution in most ecosystems. The aim of this work was to study the mycorrhizal status of the species of Commelinidae that occur in the State of Pernambuco. Plant roots, collected in ten municipalities, were washed, cleared in KOH, stained with Trypan blue in lactoglycerol and observed under a light microscope in order to assess presence and identification of the mycorrhizal type. Percentage of root colonization was evaluated by the gridline intersect method. Forty specimens representing 30 species were observed. From these specimens, 70% were colonized by arbuscular mycorrhizal fungi (AMF. In one family (Typhaceae, mycorrhizal structures were not observed, in two of them (Eriocaulaceae and Juncaceae all specimens showed the association, and three families (Commelinaceae, Cyperaceae and Poaceae presented specimens with or without AMF. In some of the roots, other fungi were observed together with the AMF. The results indicate that AMF are widely distributed among species of Commelinidae in Pernambuco, being probably important for their establishment in the areas visited.Micorrizas são associações simbióticas mutualísticas formadas entre fungos e raízes de plantas, sendo o principal benefício para a planta o aumento do aporte de nutrientes. Agronomicamente, a micorriza arbuscular (MA é o tipo mais importante de micorrizas e apresenta-se distribuído na maioria dos ecossistemas. O objetivo deste trabalho foi estudar a condição micorrízica de espécies de Commelinidae que ocorrem no Estado de Pernambuco. Raízes dessas plantas, coletadas em 10 municípios, foram lavadas, clareadas em KOH, coradas com azul de Tripano em lactoglicerol e observadas em microscópio para determinação da presença e

  5. Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile

    Directory of Open Access Journals (Sweden)

    C. G Castillo

    2012-09-01

    Full Text Available In cereals cultivated in Southern Chilean Andosols, arbuscular mycorrhizal (AM fungi may play a main role for phosphorus (P uptake. Because P acquisition at early growth stages is crucial for cereals, we investigated the development of indigenous AM during the first 45 days after planting of two wheat, barley and oats varieties in two typical Andosols of the region, under plastic house. Minimum temperatures were between - 5°C and + 5°C at night and maximum between 18°C and 30°C during day. The results showed that root biomass of all species increased in both soils until 30 days and remained constant thereafter until 45 days. The intensity of AM infection (root area and root biomass infected was low at 15 days, increased slightly from 15 to 30 days and increased sharply and significantly from 30 to 45 days. Plant species and varieties differed in root biomass formation but not in frequency and intensity of infection with AM structures. Thus, those cereals species and varieties with more root production had higher total mycorrhizal root biomass, and those may potentially benefit more from AM. It is also concluded that during early growth stages cereals invest first into root development and then into AM fungal biomass.

  6. The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phyto pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lioussanne, L.

    2010-07-01

    The mutualistic symbiosis of most land plants with arbuscular mycorrhizal (AM) fungi has been shown to favor mineral and water nutrition and to increase resistance to abiotic and biotic stresses. This review reports the main mechanisms involved in the control of the disease symptoms and of the intraradical proliferation of soilborne phytopathogens by root colonization with AM fungi, with a special emphasis on the role of the rhizobacteria shown to be specifically associated with the AM extraradical network and the mycorrhizosphere (the soil zone with particular characteristics under the influence of the root/AM association). The mycorrhizosphere would constitute an environment conducive to microorganisms antagonistic to pathogen proliferation. Moreover, attempts to identify rhizobacteria from AM structures and/or the mycorrhizosphere often lead to the isolation of organisms showing strong properties of antagonism on various soilborne pathogens. The ability of AM fungi to control soilborne diseases would be strongly related to their capacity to specifically stimulate the establishment of rhizobacteria unfavorable to pathogen development within the mycorrhizosphere before root infection. Current knowledge concerning the mechanisms involved in AM/rhizobacteria interactions are also described in this review. (Author) 101 refs.

  7. Influence of Arbuscular Mycorrhiza on Membrane Lipid Peroxidation and Soluble Sugar Content of Soybean under Salt Stress

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2015-03-01

    Full Text Available The influence of the arbuscular mycorrhizal (AM fungus, Glomus mosseae, on characteristics of growth, membrane lipid peroxidation and soluble sugar content in the shoots and roots of soybean (Glycine max plants was studied in pot culture under salt stress. The experiment was arranged as a factorial in Randomized Complete Block Design (RCBD with four replications in greenhouse of College of Agriculture, Tehran University, Iran. The plants inoculated with mycorrhiza had significantly greater shoot and root biomass than the nonmycorrhizal plants at all salinity levels. AM symbiosis decreased membrane relative permeability and malondialdehyde content in shoots and roots. The soluble sugar content in roots was higher in mycorrhizal than nonmycorrhizal plants, but there was no significant difference in soluble sugar content in shoots between mycorrhizal and nonmycorrhizal plants. The results indicate that the AM fungus is capable of alleviating the damage caused by salt stress on soybean plants by reducing membrane lipid peroxidation and increasing the accumulation of soluble sugar content. Consequently, arbuscular mycorrhiza formation highly enhanced the salinity tolerance of soybean plant, which increased host biomass and promoted plant growth. Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;}

  8. Dose-response relationships between four pesticides and phosphorus uptake by hyphae of arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Jakobsen, I.

    The effect of the fungicides carbendazim, fenpropimorph and propiconazole and of the insecticide dimethoate on plant P uptake via external hyphae of arbuscular mycorrhizal (AM) fungi was examined. Mycorrhizal plants were grown in a two-compartment system where a root-free hyphal compartment was...

  9. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    The influence of arbuscular mycorrhizal fungi (AMF) on the expression of plant nutrient transporters was studied using a relative. quantitative reverse-transcription polymerase chain-reaction (RQRT-PCR) technique. Reverse-transcribed 18S rRNA was used to standardize the treatments. The technique...

  10. Vesicular-arbuscular mycorrhiza response to crossed carbon and phosphorus resource gradients

    Energy Technology Data Exchange (ETDEWEB)

    Whitbeck, J.L. (Pennyslvania State Univ., University Park, PA (United States))

    1994-06-01

    Employing the annual herb Hemizonia luzulaefolia, native to nutrient limited grassland ecosystem in California, and a community of indigenous vesicular-arbuscular mycorrhizal (VAM) fungi, this study examined mycorrhizal response to interacting plant- and fungus-acquired resources. Plant carbon supply was manipulated through atmospheric carbon dioxide (CO[sub 2]) concentration, and substrate phosphorus (P) supply was varied in the nutrient solution. H. luzulaefolia responded strongly to VAM association, showing increased root and shoot biomass, greater leaf area, higher shoot P content and lower specific root length relative to non-mycorrhizal plants. Elevated (700 ppm) CO[sub 2] plants had lower mass, lower root:shoot ratios and slightly greater specific root length than ambient pCO[sub 2]-grown plants. VAM colonization of roots was stimulated by elevated CO[sub 2] early in the experiment. Low P plants showed greater leaf mass per area and lower shoot P concentration than plus-P plants. P effects on measures of VAM changed over time. While ambient pCO[sub 2]-grown plants responsed to added P with increased biomass, plants grown at elevated CO[sub 2] showed equivalent or lower biomass in plus-P treatments than in those with no added P. At the same time, ambient pCO[sub 2]-grown plants developed greater VAM colonization of roots in low P treatments, while at 700 ppm CO[sub 2]. VAM colonization was higher in plus-P treatments. It appears that atmospheric pCO[sub 2] affects the patterns of belowground allocation in H. luzulaefolia: ambient pCO[sub 2] plants direct carbon resources to VAM when P is low and to roots when P is available, while elevated CO[sub 2] plants maintain VAM colonization regardless of P environment and allocate to roots when P is low.

  11. Biology of vesicular-arbuscular mycorrhizas with special reference to their role in nutrient transfer between plants

    Energy Technology Data Exchange (ETDEWEB)

    Francis, R.

    1985-01-01

    The roots of most herbaceous plant species of grassland swards are infected with vesicular-arbuscular mycorrhizas. This study consists of an analysis of the biological significance of the infection. It is shown that infection spreads readily from mature donor plants to receiver seedlings and that, as a consequence of this pattern of infection, plants become interconnected by an anastomosing mycelial network which provides channels for the inter-plant transfer of nutrients. Using the isotope {sup 32}P, transfer of phosphorus from plant to plant is demonstrated in intra and interspecific combinations of mycorrhizal plants. Quantities of transfer between plants are greatest under conditions conducive to high transpiration in the receiver plants. Analysis of {sup 14}C movement between plants revealed that the transfer of carbon between mycorrhizal plants is significantly higher than that between their non-mycorrhizal counterparts at both intra and interspecific levels. Shading of mycorrhizal receiver plants leads to enhancement of carbon transfer to receivers, indicating that the transfer is governed by a source-sink relationship. Using stripping film autoradiography it was shown that carbon transfer between infected plants is by the direct hyphal pathway.

  12. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  13. Influences of agricultural management practices on Arbuscular Mycorrhiza Fungal symbioses in Kenyan agro-ecosystems

    OpenAIRE

    Muriithi-Muchane, M.N.

    2013-01-01

    Conservation agriculture (CA) and integrated soil fertility management (ISFM) practices are receiving increased attention as pathways to sustainable high-production agriculture in sub-Saharan Africa. However, little is known about the effects of these practices on arbuscular mycorrhizal fungi (AMF). The study aimed at understanding the long-term effects of (i) ISFM and CA on AMF communities and functioning, and on glomalin concentrations. The study also aimed at understanding the (ii) role of...

  14. Biochemical contents of pepper seedlings inoculated with phytophthora infestans and arbuscular mycorrhiza

    OpenAIRE

    Odebode A.C.; Salami A.O.

    2004-01-01

    The effect of interactions between Arbuscular Glomus etunicatum and fungus Phytophthora infestans on biochemical contents of pepper plants was investigated in a greenhouse experiment. The sugar contents (i.e. Glucose fructose and sucrose) were higher in the control and mycorrhizal inoculated pepper seedlings and the lowest in pathogen inoculated seedlings. Free amino acids were the highest in the simultaneously inoculated pepper seedlings while total phenol was found to be the highest in pepp...

  15. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family

    OpenAIRE

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sug...

  16. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis

    OpenAIRE

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; SAITO, KATSUHARU

    2015-01-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in ...

  17. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    Science.gov (United States)

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. PMID:26141895

  18. Summer survival of arbuscular mycorrhiza extraradical mycelium and the potential for its management through tillage options in Mediterranean cropping systems

    OpenAIRE

    Brito, Isabel; Carvalho, Mário; Goss, Michael J.

    2011-01-01

    The potential to manage arbuscular mycorrhizal (AM) colonisation within Mediterranean agricultural systems likely depends on the summer survival of the extraradical mycelium. To investigate this further a three-stage experiment was undertaken. The first stage was the creation of two contrasting levels of extraradical mycelium development, achieved by two contrasting levels of soil disturbance (typifying full tillage or no-till).. In the second stage this differential mycelial inoculum was sub...

  19. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa).

    Science.gov (United States)

    Rozpądek, Piotr; Rąpała-Kozik, Maria; Wężowicz, Katarzyna; Grandin, Anna; Karlsson, Stefan; Ważny, Rafał; Anielska, Teresa; Turnau, Katarzyna

    2016-10-01

    Improving the nutritional value of commonly cultivated crops is one of the most pending problems for modern agriculture. In natural environments plants associate with a multitude of fungal microorganisms that improve plant fitness. The best described group are arbuscular mycorrhizal fungi (AMF). These fungi have been previously shown to improve the quality and yield of several common crops. In this study we tested the potential utilization of Rhizophagus irregularis in accelerating growth and increasing the content of important dietary phytochemicals in onion (Allium cepa). Our results clearly indicate that biomass production, the abundance of vitamin B1 and its analogues and organic acid concentration can be improved by inoculating the plant with AM fungi. We have shown that improved growth is accompanied with up-regulated electron transport in PSII and antioxidant enzyme activity. PMID:27318800

  20. Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges

    DEFF Research Database (Denmark)

    Fitter, A.H.; Heinemeyer, A.; Husband, R.;

    2004-01-01

    atmospohere; we need, therefore, to measure the impact of soil temperature on hyphal turnover. There is also an urgent need to discover the extent to which AM fungal species are differentially adapted to abiotic environmental factors, as they apparently are to plant hosts. If they do show such an adaptation......Our ability to make predictions about the impact of global environmental change on arbuscular mycorrhizal (AM) fungi and on their role in regulating biotic response to such change is seriously hampered by our lack of knowledge of the basic biology of these ubiquitous organisms. Current information......, and if the number of species is much greater than the number currently described (150), as seems almost certain, then there is the potential for several new fields of study, including community ecology and biogeography of AM fungi, and these will give us new insights into the impacts of global...

  1. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Roos, Per [Radiation Research Department, Technical University of Denmark, Riso National Laboratory, DK-4000 Roskilde (Denmark); Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Jakobsen, Iver [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark)], E-mail: iver.jakobsen@risoe.dk

    2008-05-15

    Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending with uncontaminated soil for supporting plant survival was also examined by mixing soil with U tailing at different mixing ratios. Soil amendment increased plant growth and P uptake. Ryegrass produced a more extensive root system and a greater biomass than medic plants at all mixing ratios. Medic roots were extensively colonized by G. intraradices whereas ryegrass were more sparsely colonized. Plant growth was not improved by mycorrhizas, which, however, improved P nutrition of medic plants. Medic plants contained higher U concentrations and showed higher specific U uptake efficiency compared to ryegrass. In the presence of U tailing, most U had been retained in plant roots, and this distribution pattern was further enhanced by mycorrhizal colonization. The results suggest a role for AM fungi in phytostabilization of U tailings.

  2. Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings

    International Nuclear Information System (INIS)

    Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending with uncontaminated soil for supporting plant survival was also examined by mixing soil with U tailing at different mixing ratios. Soil amendment increased plant growth and P uptake. Ryegrass produced a more extensive root system and a greater biomass than medic plants at all mixing ratios. Medic roots were extensively colonized by G. intraradices whereas ryegrass were more sparsely colonized. Plant growth was not improved by mycorrhizas, which, however, improved P nutrition of medic plants. Medic plants contained higher U concentrations and showed higher specific U uptake efficiency compared to ryegrass. In the presence of U tailing, most U had been retained in plant roots, and this distribution pattern was further enhanced by mycorrhizal colonization. The results suggest a role for AM fungi in phytostabilization of U tailings

  3. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato.

    Science.gov (United States)

    Kumar, Pradeep; Lucini, Luigi; Rouphael, Youssef; Cardarelli, Mariateresa; Kalunke, Raviraj M; Colla, Giuseppe

    2015-01-01

    Physiological, biochemical, metabolite changes, and gene expression analysis of greenhouse tomato (Solanum lycopersicum L.) were investigated in two grafting combinations (self-grafted 'Ikram' and 'Ikram' grafted onto interspecific hybrid rootstock `Maxifort'), with and without arbuscular mycorrhizal (AM), exposed to 0 and 25 μM Cd. Tomato plants responded to moderate Cadmium (Cd) concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2) generation, ion leakage, and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn) and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2, fructans, and inulins). The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn). PMID:26167168

  4. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato

    Directory of Open Access Journals (Sweden)

    Pradeep eKumar

    2015-06-01

    Full Text Available Physiological, biochemical, metabolite changes and gene expression analysis of greenhouse tomato (Solanum lycopersicumL. were investigated in two grafting combinations (self-grafted ‘Ikram’ and ‘Ikram’ grafted onto interspecific hybrid rootstock ‘Maxifort’, with and without arbuscular mycorrhizal (AM, exposed to 0 and 25 µM Cd. Tomato plants responded to moderate Cd concentration by decreasing yield and crop growth parameters due to the accumulation of Cd in leaf tissue, inhibition of the PS II activity, reduced nutrients translocation, and also to the oxidative stress as evidenced by enhanced hydrogen peroxide (H2O2 generation, ion leakage and lipid peroxidation. AM inoculation significantly enhanced the metal concentration in shoots and reduced growth and yield. The Ikram/Maxifort combination induced higher antioxidant enzymes, higher accumulation of proline and reduction of lipid peroxidation products. This suggests that the use of Maxifort rootstock in tomato has a high reactive oxygen species scavenging activity since lower H2O2 concentrations were observed in the presence of Cd. The higher crop performance of Ikram/Maxifort in comparison to Ikram/Ikram combination was also due to the improved nutritional status (higher P, K, Ca, Fe, Mn, and Zn and increased availability of metabolites involved in cadmium tolerance (phytochelatin PC2 and fructans inulins. The up-regulation of LeNRAMP3 gene in leaf of Ikram/Maxifort could explain the better nutritional status of interspecific grafting combination (higher Fe, Mn, and Zn.

  5. Arbuscular mycorrhizas in coastal sand dunes of the Paraguaná Peninsula, Venezuela.

    Science.gov (United States)

    Alarcón, C; Cuenca, G

    2005-12-01

    Arbuscular mycorrhizal colonization was measured in the most abundant plant species of the Paraguaná Peninsula, northwestern Venezuela. These plant species included: Acacia tortuosa, Argusia gnaphalodes, Croton punctatus, Croton rhamnifolius, Egletes prostrata, Melochia tomentosa, Panicum vaginatum, Scaevola plumieri, Sporobolus virginicus, Suriana maritima, Leptothrium rigidum, and Fimbristylis cymosa. Mycorrhizal colonization was assessed using the Trouvelot et al. (1986) method that allows for simultaneous evaluation of frequency of colonization (%F), intensity of colonization (%M), and the proportion of arbuscules (%A) and vesicles (%V) present in the roots. Average frequency of colonization was 69%. The highest frequency of colonization was around 92% in C. rhamnifolius and A. tortuosa; in the other species, it varied from 49 to 86%. L. rigidum and F. cymosa were considered nonmycorrhizal because its colonization was very scarce and at all times appeared without arbuscules. Average intensity of colonization was 7%. The highest intensity of colonization was 18% in C. rhamnifolius. In the other species, it varied from 3 to 15%. Paspalum vaginatum, A. gnaphalodes, M. tomentosa, and S. maritima had their fungal structures tightly packed in modified little ovoid roots. In general, frequency of AM colonization was high and similar to those reported for other tropical ecosystems, whereas the intensity of AM colonization was low and similar to values obtained in analogous studies in disturbed ecosystems. PMID:16007471

  6. Arbuscular Mycorrhiza Prevents Suppression of Actual Nitrification Rates in the (Myco-)Rhizosphere of Plantago lanceolata

    Institute of Scientific and Technical Information of China (English)

    S.D.VERESOGLOU

    2012-01-01

    The vast majority of herbaceous plants engage into arbuscular mycorrhizal (AM) symbioses and consideration of their mycorrhizal status should be embodied in studies of plant-microbe interactions.To establish reliable AM contrasts,however,a sterilized re-inoculation procedure is commonly adopted.It was questioned whether the specific approach is sufficient for the studies targeting the bacterial domain,specifically nitrifiers,a group of autotrophic,slow growing microbes.In a controlled experiment mycorrhizal and non-mycorrhizal Plantago lanceolata were grown up in compartmentalized pots to study the AM effect on nitrification rates in the plant rhizosphere.Nitrification rates were assayed following an extensive 3-week bacterial equilibration step of the re-inoculated soil and a 13-week plant growth period in a controlled environment.Under these specific conditions,the nitrification potential levels at harvest were exceptionally low,and actual nitrification rates of the root compartment of non-mycorrhizal P.lanceolata were significantly lower than those of any other compartment.It is then argued that the specific effects should be attributed to the alleged higher growth rates of non-mycorrhizal plants that are known to occur early in the AM experiment.It is concluded that the specific experimental approach is not suitable for the study of microbes with slow growth rates.

  7. Occurrence of vesicular-arbuscular mycorrhizae in mixed overburden mine spoils of Texas

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.B.; Zuberer, D.A.

    1987-07-01

    Presently in east Texas, lignite surface mines are reclaimed and revegetated using mixed overburden materials which are equivalent to or better in physical-chemical properties than the poor topsoils removed during mining. Little information is available regarding the biological characteristics of levelled mixed overburden and the re-establishment of endomycorrhizal associations on revegetated mixed overburden sites. Therefore, the authors investigated the occurrence of infection of coastal bermudagrass (Cynodon dactylon), planted vegetatively on reclamation sites (1-10 years post-mining), with vesicular-arbuscular mycorrhizal (VAM) fungi. Numbers of spores were also monitored. For comparison, infection of coastal bermudagrass and spore numbers were determined for an unmined old field succession on soil typical of the region. VAM infection, measured as a percentage of root length infected or as a percentage of root segments exhibiting infection, returned to pre-mining levels by 3-7 years after disturbance. Intensity of infection was not altered by disturbance, age of reclaimed site, or season. Significantly greater numbers of spores (ca. 10-fold) were observed in the unmined soil and no differences were found between numbers of spores from variously aged mine spoil sites. 35 refs., 3 tabs.

  8. Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of. Eucalyptus spp. Sucessão de micorrizas vesicular-arbuscular e ectomicorrizas em mudas de Eucalyptus spp.

    Directory of Open Access Journals (Sweden)

    Vera Lúcia dos Santos

    2001-06-01

    Full Text Available The occurrence of vesicular-arbuscular mycorrhizae (AM and ectomycorrhizae (ECM in the same root system was observed when species of Eucalyptus urophylla S.T. Blake, E. citriodora Hook f., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell. and E. camaldulensis Dehnh were simultaneously inoculated with Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch, isolate Pt 90A. The succession between the two fungi was observed. In general ectomycorrhizal colonization increased followed by a decrease in AM. Pisolithus tinctorius was favored in simultaneous inoculation with G. etunicatum, and the positive effect of the simultaneous inoculation of both fungi in the percent colonization by the AM fungus occurred up to 60 days after inoculation. After 120 days, colonization of roots by G. etunicatum decreased in the presence of P. tinctorius. When inoculated simultaneously, the proportion of AM and ECM varied with evaluation time, while the combined percentage of mycorrhizal roots approached the maximum and remained more or less constant after 60 days, suggesting that there could be competition between the fungi for limiting substrate. The maximum percent mycorrhizal colonization varied with Eucalyptus species and the highest value was observed for E. camaldulensis, followed in order by E. citriodora, E. urophylla, E. grandis and E. cloeziana.A ocorrência de micorrizas arbusculares (AM e ectomicorrizas (ECM no mesmo sistema radicular foi observada quando Eucalyptus urophylla S.T. Blake, E. citriodora Hook F., E. grandis W. Hill ex Maiden, E. cloeziana F. Muell e E. camaldulensis Dehnh foram inoculadas simultaneamente com Glomus etunicatum Becker & Gederman and Pisolithus tinctorius (Per. Cocker & Couch. A sucessão entre os dois fungos foi observada. De modo geral, o aumento da colonização ECM foi acompanhado de um decréscimo em AM. A inoculação simultânea resultou em percentagens de colonização diferenciadas das

  9. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato

    Science.gov (United States)

    Wu, Ping; Wu, Yue; Liu, Cheng-Chen; Liu, Li-Wei; Ma, Fang-Fang; Wu, Xiao-Yi; Wu, Mian; Hang, Yue-Yu; Chen, Jian-Qun; Shao, Zhu-Qing; Wang, Bin

    2016-01-01

    A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring. PMID:27066061

  10. Effects of arbuscular mycorrhiza inoculation on growth and yield of tomato (Lycopersicum esculentum Mill. under salinity stress

    Directory of Open Access Journals (Sweden)

    D.R.R. Damaiyanti

    2015-10-01

    Full Text Available Objective of the research was to study the effect mycorrhiza on growth and yield of tomato. The experiment was conducted in screen house 14 m x 10.5 m, in Pasuruan on November 2013 until March 2014, The experiment was conducted as a factorial randomized complete design. The first factor was dose of mycorrhiza (without mycorrhiza, 5 g mycorrhiza, 10 g mycorrhiza, and 20 g mycorrhiza. The second factor was the salinity stress level (without NaCl, 2500 ppm NaCl, 5000 ppm NaCl, and 7500 ppm NaCl. The results showed that salinity stress at the level 7500 ppm decreased the amount of fruit by 30.84% and fresh weight per hectare decreased by 51.72%. Mycorrhizal application was not able to increase the growth and yield in saline stress conditions; it was shown by the level of infection and the number of spores on the roots of tomato plants lower the salinity level 5000 ppm and 7500 ppm. But separately, application of 20 g mycorrhiza enhanced plant growth, such as plant height, leaf area, leaf number and proline. Application of 20 g mycorrhiza increased the yield by 35.99%.

  11. Comparative nitrogen fixation, native arbuscular mycorrhiza formation and biomass production potentials of some grain legumes species grown in the field in the Guinea Savannah zone of Ghana

    International Nuclear Information System (INIS)

    An on-station trial was conducted in the experimental field of Savannah Agricultural Research Institute at Nyankpala in the Northern Region of Ghana to assess the nitrogen fixation, native arbuscular mycorrhizal formation and biomass production potentials of cowpea (Vigna unguiculata), devil-bean (Crotalaria retusa), Mucuna pruriens var. utilis (black and white types) and Canavalia ensiformis with maize (Dorke SR) as the reference crop using the total nitrogen difference (TND) method. Plants were fertilized with 40 kg P/ha and 30 kg K/ha at 2 weeks after planting and grown for 55 days after which they were harvested. The harvested biomass (separated into roots, stems and leaves) of each crop was oven-dried at 700C for 48 h to a constant weight. Cowpea and devil-bean produced approximately 5 and 6 t/ha biomass whereas Mucuna and Canavalia yielded about 2 t/ha biomass each. Although cowpea had the least number of arbuscular mycorrhiza fungal (AMF) spores in its rhizosphere, its roots were the most heavily colonized (34%) and M. pruriens recording below 5% colonization. Apart from C. ensiformis, the test legumes derived over 50% of their total accumulated N from the atmosphere with cowpea being the most efficient (90% Ndfa). Both N and P accumulations were significantly higher in cowpea than the other legumes due to increased N concentration and dry matter accumulation, respectively. In all the legumes, there was a direct positive correlation between the extent of mycorrhiza formation, biological N fixation and total N uptake. It could, therefore, be concluded that the extensive mycorrhiza formation in cowpea and its high N2-fixing potential resulted in a high shoot N and P uptake leading to a comparatively better growth enhancement. Cowpea could, therefore, be the grain legume for consideration in the selection of a suitable legume pre-crop to cereals for the amelioration of the low fertility of the degraded soils of the Guinea savannah zone of Ghana, and also as a

  12. Arbuscular mycorrhiza of plants from the Mountain Botanical Garden in Zakopane

    Directory of Open Access Journals (Sweden)

    Szymon Zubek

    2014-08-01

    Full Text Available The mycorrhizal status of 77 plant species collected from the Mountain Botanical Garden of the Polish Academy of Sciences in Zakopane (southern Poland was surveyed. These plants include rare, endemic and threatened species in the Tatra Mts. (the Western Carpathians and are maintained in the botanical garden in order to develop effective methods of protection and cultivation. Plants belonging to Brassicaceae, Caryophyllaceae, Dryopteridaceae, Juncaceae, Polygonaceae, Rubiaceae and Woodsiaceae families were nonmycorrhizal. 41 species formed AM symbiosis. Spores of nine AMF spccies (Glomeromycota, including Archaeospora trappei, Glomus aggregatum, G. claroideum, G. constrictum, G. deserticola, G. geosponrum, G. microcarpum, G. mosseae and G.rubiforme were isolated for the first time from this region of Poland. In addition, the occurrence of the fine endophyte, G. tenue was detected in roots of 18 species from the study area, although formation of arbuscules by this fungus was observed rarely. AM fungi were sporadically accompanied by dark septate endophytes (DSE. 70% of nonmycorrhizal plant sepcies were devoid of DSE.

  13. Mycorrhiza of Dryopteris carthusiana in southern Poland

    Directory of Open Access Journals (Sweden)

    Juliusz Unrug

    2014-08-01

    Full Text Available The research on mycorrhiza of Dryopteris carthusiana from natural sites and those contaminated by heavy metals (Niepołomice Forest, both on lowlands and mountainous areas in Poland, was carried out. Mycorrhizal colonization of Arum-type was higher in ferns growing on tree stumps than in specimens developing directly on the soil. Additionally, an increase in mycorrhiza intensity and arbuscular richness with the rising ground humidity was observed. In comparison to natural sites, mycorrhizas from the areas contaminated by heavy metals were much less developed and the roots were often infected by parasites. Two morphotypes of mycorrhizal fungi have been described The most common was a fine endophyte (Glomales.

  14. Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba

    OpenAIRE

    Herrera-Peraza, Ricardo A.; Eduardo Furrazola; Ferrer, Roberto L.; Rigel Fernández Valle; Yamir Torres Arias

    2004-01-01

    Se analizó aquí el funcionamiento excluyente de los pelos radicales y las micorrizas arbusculares (MA) a nivel de ecosistema, y se demostró que la exclusión de ambas estructuras depende de los tipos biológicos que sean considerados en el análisis. Por otra parte, recientemente, han sido definidas las estrategias exuberante y austera para explicar el papel funcional de grupos sucesionales de especies y ecosistemas forestales tropicales. Para conocer el funcionamiento micorrízico arbuscular (MA...

  15. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting

    DEFF Research Database (Denmark)

    Madsen, Mette Vestergård; Henry, Frédéric; Rangel-Castro, J. Ignacio;

    2008-01-01

    BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere...

  16. Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species

    DEFF Research Database (Denmark)

    Cavagnaro, T.R.; Smith, F.A.; Smith, S.E.;

    2005-01-01

    Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soi...

  17. The role of vesicular-arbuscular mycorrhiza in N2-fixed by legume-Rhizobium systems in phosphate-fixing agricultural soils

    International Nuclear Information System (INIS)

    The scarcity of available phosphate in many soils is a critical limiting factor in legume-Rhizobium-systems because it affects not only plant growth but nodulation and N2-fixation by the micro-symbiont. Hence, VA mycorrhizas, which are widespread in legumes, play an important role in the development of such crops and are thus of great interest for food production in the biosphere. This paper discusses the work developed in this laboratory in relation to the significance of VA mycorrhiza in N2-fixation within two legume-Rhizobium-systems: Medicago sativa (alfalfa)-Rhizobium meliloti and Hedysarum coronarium (sulla)-Rhizobium sp.. Several experiments have been carried out to study the interactions between natural and introduced VA endophytes and Rhizobium, and soluble phosphate fertilizer on growth, nodulation and N-uptake of the two test legumes in natural (unsterilized) agricultural soils. The tests were conducted under both pot and field conditions. (author)

  18. The effect of SO sub 2 on the vesicular-arbuscular mycorrhizae associated with a submontane mixed grass prairie in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Clapperton, M.J.; Parkinson, D. (Calgary Univ., AB (Canada))

    1990-01-01

    Studies were conducted to examine the effect of long-term exposure to sulfur-based acid-forming emissions (primarily sulfur dioxide) on a sumontane mixed grass prairie and the associated vesicular-arbuscular mycorrhizae (VAM). Three prairie field sites were selected at distances of 5.13, and 20 km from an Alberta sour gas processing plant that had been operating for 23 y. The sites were selected for similarity of vegetation and soils. The soil at site 1 showed symptoms of acidification as did the soil from site 2, but to a lesser extent. The VAM inoculum potential was also significantly lower in soil from site 1, and to a lesser extent from site 2, compared with soil from site 3. There are two possible explanations for the differences in VAM inocolum potential between the field sites. The first is that changes in the soil properties caused by acidification affected the infectivity and productivity of the VAM fungi. A more likely explanation is that changes in plant physiology associated with increased exposure to low concentrations of SO{sub 2} affected the infectivity and productivity of the VAM at field site 1 and 2 compared with site 3. 35 refs., 1 fig., 2 tabs.

  19. Influencia de la fertilización, la época y la especie forrajera en la presencia Influence of fertilization, season, and forage species in presence of arbuscular mycorrhizae in a degraded Andisoil of Colombia

    Directory of Open Access Journals (Sweden)

    Arnulfo Gómez-Carabalí

    2011-01-01

    and percentage of root infection of arbuscular mycorrhiza increased with age and varied with the species and season. We founded differences among forage grass and legume species under field conditions to form symbiosis with mycorrhizal fungi. Knowledge on these interspecific differences could contribute to developing better adapted forage systems to contribute recuperating the degraded soils of the Andean hillsides of Latin America.

  20. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    Directory of Open Access Journals (Sweden)

    Veronica Massena Reis

    1999-10-01

    Full Text Available Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima do palhiço. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com água estéril.The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco, Brazil, were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2,070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State, especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Acaulospora sp. and Gigaspora margarita. A

  1. Dinâmica e contribuição da micorriza arbuscular em sistemas de produção com rotação de culturas Dynamics and contribution of arbuscular mycorrhiza in culture systems with crop rotation

    Directory of Open Access Journals (Sweden)

    Jeanne Christine Claessen de Miranda

    2005-10-01

    Full Text Available Rotação de culturas e variações sazonais podem promover alterações quantitativas e qualitativas na comunidade de fungos micorrízicos arbusculares nativos e na formação da micorriza arbuscular. Essa dinâmica foi avaliada, em campo, num Latossolo Vermelho, em relação ao tempo de cultivo e variação sazonal, em sistemas de rotação de culturas. Em casa de vegetação, avaliou-se, em solo proveniente da área experimental, a contribuição da micorriza arbuscular no crescimento de soja e capim-andropógon utilizados na rotação. O número de esporos dos fungos aumentou no solo cultivado. O número de esporos e o porcentual de colonização radicular, inicialmente maiores sob pastagem, variaram de acordo com o tempo de cultivo, as estações seca e chuvosa, a cultura e o sistema de rotação utilizados. O número de gêneros e espécies aumentou com o tempo de cultivo e manejo de culturas e foi maior sob culturas anuais em rotação. A presença dos fungos no solo contribuiu no crescimento da soja e do capim-andropógon em 53% e 95%, respectivamente. A cultura e o sistema de cultivo são fatores determinantes para o enriquecimento do sistema com micorriza arbuscular.Crop rotation and seasonal variations can promote quantitative and qualitative changes in the indigenous arbuscular mycorrhizal fungi population in the soil and arbuscular mycorrhiza establishment. These fungi dynamics were evaluated in the field, in a Red Latosol, in relation to cropping time, seasonal variation and rotation systems. The contribution of arbuscular mycorrhiza to the growth of andropogon grass and soybean, which were used in the systems, was evaluated in a greenhouse experiment using soil from the experimental area. The number of spores of the fungi increased in the cultivated soil. The spores number and percent root colonization varied according to cropping time, soil moisture, crops and rotation system and were, initially, higher under pasture. The number

  2. No significant transfer of N and P from Pueraria Phaseoloides to Hevea Brasiliensis via Hyphal links of Arbuscular Mycorrhiza

    DEFF Research Database (Denmark)

    Ikram, A.; Jensen, E.S.; Jakobsen, I.

    1994-01-01

    The possible role of arbuscular mycorrhizal fungi in the transfer of nitrogen and phosphorus from Pueraria phaseoloides (donor) to Hevea brasiliensis (receiver) was examined. P. phaseoloides is used as a cover crop in rubber tree (H. brasiliensis) plantations. Roots of donor and receiver plants...... four split applications of N-15 and P-32 from 12 to 15 weeks after planting. After 16 weeks donor shoots were then left intact, shaded or removed and the isotope content of donor and receiver plants measured after a further 4 weeks growth. The recovery of labelled N in receiver plants was small and...

  3. Structure and function of arbuscular mycorrhiza: A review%丛枝菌根结构与功能研究进展

    Institute of Scientific and Technical Information of China (English)

    田蜜; 陈应龙; 李敏; 刘润进

    2013-01-01

    Arbuscular mycorrhiza (AM) is one of the most widely distributed and the most important mutualistic symbionts in terrestrial ecosystems,playing a significant role in enhancing plant resistance to stresses,remediating polluted environments,and maintaining ecosystem stabilization and sustainable productivity.The structural characteristics of AM are the main indicators determining the mycorrhizal formation in root system,and have close relations to the mycorrhizal functions.This paper summarized the structural characteristics of arbuscules,vesicles,mycelia and invasion points of AM,and analyzed the relationships between the Arum (A) type arbuscules,Paris (P) type arbuscules,vesicles,and external mycelia and their functions in improving plant nutrient acquisition and growth,enhancing plant resistance to drought,waterlogging,salinity,high temperature,diseases,heavy metals toxicity,and promoting toxic organic substances decomposition and polluted and degraded soil remediation.The factors affecting the AM structure and functions as well as the action mechanisms of mycorrhizal functions were also discussed.This review would provide a basis for the systemic study of AM structural characteristics and functional mechanisms and for evaluating and screening efficient AM fungal species.%丛枝菌根(arbuscular mycorrhiza,AM)是陆地生态系统中分布最广泛、最重要的互惠共生体之一,对提高植物抗逆性、修复污染生境、保持生态系统稳定与可持续生产力的作用显著.AM结构特征是判断菌根形成的主要指标,与其功能密切相关.本文总结了AM丛枝结构、泡囊结构、菌丝结构和侵入点结构等发育特征;分析了A型丛枝结构、P型丛枝结构、泡囊结构和根外菌丝结构与促进寄主植物养分吸收和生长、提高植物抗旱性、耐涝性、耐盐性、抗高温、拮抗病原物、提高植物抗病性、抗重金属毒性、分解有毒有机物、修复污染与退化土壤等功能

  4. Vesicular-arbuscular mycorrhizae and the enzymatic utilization of inorganic phosphate by plant roots: Progress report 1985

    Energy Technology Data Exchange (ETDEWEB)

    Marx, D. H.

    1985-01-01

    It is well known that phosphorus absorption, especially from soil with low phosphorus levels, by plant roots can be enhanced by mycorrhizal infection. Root cortical cells colonized by vesicular-arbuscular mycorrhizal fungi (VAM) have higher concentrations of phosphorus than noninfected cells. Polyphosphate is the major phosphorus reserve in many fungi and is reported to be present abundantly in young and proliferating arbuscules. We propose that mycorrhizal polyphosphate can be utilized by the VAM-plant symbiont system as a phosphorus donor and an energy source in the glycolytic pathway, possibly after being hydrolyzed to pytrophosphate (PPi). The VAM systems of infected and noninfected roots of sweetgum (Liquidambar styraciflua L.) and onion (Allium cepa L. var. Texas Grand) were used to compare the activity of PPI-dependent phosphofructokinase (PFK), an enzyme utilizing PPi to convert frutose-6-phosphate into fructosel,6-bisphosphate. The ATP-PKF activity was measured also. 1 fig., 3 tabs.

  5. Functional strategies of root hairs and arbuscular mycorrhizae in an evergreen tropical forest, Sierra del Rosario, Cuba

    Directory of Open Access Journals (Sweden)

    Ricardo A. Herrera-Peraza

    2004-01-01

    Full Text Available Se analizó aquí el funcionamiento excluyente de los pelos radicales y las micorrizas arbusculares (MA a nivel de ecosistema, y se demostró que la exclusión de ambas estructuras depende de los tipos biológicos que sean considerados en el análisis. Por otra parte, recientemente, han sido definidas las estrategias exuberante y austera para explicar el papel funcional de grupos sucesionales de especies y ecosistemas forestales tropicales. Para conocer el funcionamiento micorrízico arbuscular (MA en este sentido, fueron estudiadas seis parcelas forestales (tres réplicas cada una. Las parcelas fueron diferentes en cuanto a la presencia o no de raicillas entremezcladas con una matriz de necromasa de humus bruto sobre la superficie del suelo del bosque (estera radical. Al inicio, las réplicas fueron analizadas separadamente para las parcelas con tasas de renovación menores (PLTR o con tasas de renovación mayores (PHTR, a partir de lo cual, se demostró que el micelio externo de las MA está muy influido por el contenido de humus bruto del suelo. En un segundo análisis, las parcelas fueron usadas como réplicas de dos tratamientos (PLTR y PHTR para descubrir las tendencias principales del funcionamiento micorrízico. Las variables correspondientes a raicillas y AM se asociaron a la absorción de elementos nutritivos (fitomasa de raicillas, micelio externo, etc. y produjeron valores significativemente mayores en PLTR, mientras que el valor obtenido para la colonización AM fue significativamente mayor en PHTR. Se explican las tendencias exuberante y austera del funcionamiento micorrízico de acuerdo con los resultados obtenidos.

  6. Evolution of mycorrhiza systems

    Science.gov (United States)

    Cairney, J. W. G.

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. Fossil records and molecular clock dating suggest that all extant land plants have arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas evolved concurrently with the first colonisation of land by plants some 450-500 million years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200million years ago) and ericoid mycorrhizas (about 100million years ago) evolved subsequently as the organic matter content of some ancient soils increased and sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary processes. While early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi, available evidence points largely to ongoing parallel evolution of the partners in response to environmental change.

  7. Effects of vesicular-arbuscular mycorrhiza and ''phosphate-solubilizing bacteria'' on the utilization of rock phosphate by plants in neutral-alkaline soils

    International Nuclear Information System (INIS)

    Autoradiographic techniques using 32P labelled soils have provided evidence that phosphate-depletion zones develop around plant roots and that mycorrhizas are able to take and translocate phosphate ions to the plant by exploring soil beyond the P-depleted rhizosphere. Besides, such mycorrhizal uptake is highly efficient. Thus, mycorrhizas not only enlarge the P-depleted zones but also these zones are even more exhausted in available phosphate. The use of sparingly soluble rock phosphate (RP) to restore the phosphate stock has been assayed and the interaction between RP and the mycorrhizal effects studied. There is evidence to show that mycorrhizas achieve a better exploitation of RP because the hyphae make a closer contact with phosphate particles than roots, thus absorbing any soluble ions as they are chemically (or biochemically) dissociated from RP. However, such phosphate release is rather limited in non-acidic soils. This paper reports on situations in which VA mycorrhizal fungi and phosphate solubilizing bacteria (PSB) seem to cooperate to improve the utilization of added RP by plants growing on neutral to alkaline soils. The combined VA-fungi + PSB inoculum increased significantly plant growth and P-uptake above that achieved by either separately. The effectiveness of PSB whether native or inoculated into soil is dependent on the presence of available carbon sources. Despite the general scarcity of energy-providing substrates in the soil as a whole, it is feasible that PSB could act by releasing phosphate ions from RP in discrete microhabitats endowed with the necessary pre-requisites for P-solubilization. The phosphate ions hydrolysed by the bacteria from RP could enter the soil solution. As mycorrhizal plants can explore microhabitats outside the rhizosphere and translocate these ions to the plant, re-fixation of the solubilized ions by soil components (clay minerals, Ca++, Fe+++ and Al+++ ...), may be reduced, explaining the benefit of PSB + VAM

  8. Influência da colonização micorrízica arbuscular sobre a nutrição do quiabeiro Influence of arbuscular mycorrhiza fungi on the nutrition of okra plant

    Directory of Open Access Journals (Sweden)

    Ricardo Luís Louro Berbara

    1999-09-01

    Full Text Available Foram estudados em casa de vegetação alguns parâmetros de crescimento em plantas de quiabo (Abelmoschus esculentus (L. Moench cv. Piranema colonizadas por dois grupos de fungos micorrízicos arbusculares, com o objetivo de determinar a influência dos inóculos na nutrição e morfologia radicular do quiabeiro. Um grupo continha apenas esporos de Acaulospora longula (A enquanto o outro, esporos de oito espécies: Glomus occultum, Glomus aggregatum, Glomus microcarpum, Acaulospora longula, Acaulospora morrowae, Sclerocystis coremioides, Sclerocystis sinuosa, Scutellospora pellucida. As plantas foram submetidas a três níveis de P (0, 10 e 60 kg ha-1 de P2O5 e coletadas em três diferentes idades (22, 32 e 47 dias, com quatro repetições para cada tratamento. Foi determinado o acúmulo de N, P, K, e Mg na raiz e parte aérea, bem como o influxo médio desses elementos e a área radicular. Os resultados indicaram, além da resposta positiva do quiabeiro ao P, uma maior eficiência da inoculação com mistura de espécies apesar de o influxo médio, determinado aos 47 dias, apresentar maiores valores para o tratamento com A. longula.An experiment was carried out in greenhouse to determine the influence of inoculation of two groups of arbuscular mycorrhizae on the nutrition and radicular morphology of the okra plant (Abelmoschus esculentus (L. Moench cv. Piranema. One group had only Acaulospora longula spores and the other a spore mixture of eight species: Glomus occultum, Glomus aggregatum, Glomus microcarpum, Acaulospora longula, Acaulospora morrowae, Sclerocystis coremioides, Sclerocystis sinuosa, Scutellospora pellucida. The experiment was held in greenhouse conditions with three levels of P (0, 10 and 60 kg ha-1 of P2O5, three samplings dates (22, 32 and 47 days and four replications. The accumulation of N, P, K, Ca and Mg in roots and shoots, root area and their influx ratio were determined. The results made evident that the mixture of

  9. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    Science.gov (United States)

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  10. Effect of Arbuscular Mycorrhizae on zinc nutrition of maize grow in calcareous soil amended with different phosphorus sources

    International Nuclear Information System (INIS)

    Arbuscular mycorrhizal fungi (AMF) are known to improve P nutrition of plants. The information of AMF effects on corn Zn nutrition under P fertilization in calcareous soil is limited. A greenhouse experiment was carried out using calcareous soil and two P-sources i.e single superphosphate and rock phosphate (with full and one third of recommended dose). to evaluate the ability of AMF on improving Zn nutrition in maize plants. Labelled 65 ZnSo4 was added at rates of 0.10 and 20 mg Zn Kg-1 soil. Zinc uptake and dry mater of corn shoots were improved as a result of AMF inoculation. The maximum improvement was recorded with super-P fertilizer in combination with 10 or 20 mg Zn Kg-1 soil for non-inoculated and AMF inoculated plants. respectively. The amount of Zn in non-inoculated and AMF inoculated plants. respectively. The amount of ZnSo4 utilized plant derived from fertilizer.(Zndff) and the percent of ZnSo4 utilization by corn plants were increased when ZnSo4 was added at rate of 10 mg Zn Kg-1 soil in the presence of super-P fertilizer. Inoculated plants with AMF had higher Zndff content and U% than non-inoculated ones and the greater Zndff and superphosphate fertilizer. It could be concluded that. AMF is useful method utilization by corn plants grown in calcareous soil

  11. Evaluation of Two Biochemical Markers for Salt Stress in Three Pistachio Rootstocks Inoculated with Arbuscular Mycorrhiza (Glomus mosseae

    Directory of Open Access Journals (Sweden)

    Shamshiri M.H.

    2014-03-01

    Full Text Available The possible involvement of the methylglyoxal and proline accumulation in leaves and roots of three pistachio rootstocks, cv. Sarakha, Abareqi and Bane baghi, pre-inoculated with arbuscular mycorrhizal fungus (Glomus mosseae in response to salt stress was studied during a greenhouse experiment in 2013. Six months old pistachio seedlings were exposed to four salinity levels of irrigation water (EC of 0.5 as control, 5, 10 and 15 dS m-1 for 70 days. Methylglyoxal and proline of the roots and leaves were increased by increasing salt stress. The highest concentrations of proline in leaves and roots were recorded in Abareqi rootstock while the lowest concentration was observed in Sarakhs. In general, a negative relationship was obtained between proline and methylglyoxal concentrations in both tissues especially at two highest levels of salinity. A very strong relationship between salinity and measured biochemical markers were found. The level of both biomarkers were reduced in both tissues and in all rootstocks as the effect of mycorrhizal symbiosis. Root colonization percentage was declined as the effect of salinity in Abareqi and Bane baghi and not in Sarakhs.

  12. Enhanced hyphal growth of arbuscular mycorrhizae by root exudates derived from high R/FR treated Lotus japonicus.

    Science.gov (United States)

    Nagata, Maki; Yamamoto, Naoya; Miyamoto, Taro; Shimomura, Aya; Arima, Susumu; Hirsch, Ann M; Suzuki, Akihiro

    2016-06-01

    Red/Far Red (R/FR) sensing positively influences the arbuscular mycorrhizal (AM) symbiosis of both legume and nonlegume plants through jasmonic acid (JA) and strigolactone signaling. We previously reported that root exudates obtained from high R/FR-grown plants contained more strigolactone than low R/FR-grown plants. To determine whether JA and JA derivatives were secreted from roots, we investigated the expression levels of JA-responsive genes in L. japonicus Miyakojima MG20 plants treated with root exudates prepared from either high or low R/FR light-treated plants. The root exudates from high R/FR light-treated plants were found to enhance the expression levels of JA-responsive genes significantly. Moreover, exogenous JA increased AM fungal hyphal elongation as did the root exudates derived from high R/FR-grown L. japonicus plants. We conclude that increased JA accumulation and secretion into root exudates from high R/FR light-grown plants is the best explanation for increased colonization and enhanced mycorrhization under these conditions. PMID:27191935

  13. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region

    International Nuclear Information System (INIS)

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve 137Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009–2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with 137Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with 137Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to 137Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of 137Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of 137Cs could not be recommended. -- Highlights: • Effect of mycorrhization on 137Cs uptake by crops was studied in a field experiment. • AM fungi did not enhance radionuclide plant uptake or biomass. • Plants growing on inoculated and non-inoculated soil accumulate 137Cs equally

  14. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants - A soil microcosm experiment.

    Science.gov (United States)

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. PMID:26761602

  15. EFFECT OF ARBUSCULAR MYCORRHIZAL FUNGI ON THE DEVELOPMENT OF TWO LEGUMINOUS TREES

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Winckler Caldeira

    2009-09-01

    Full Text Available In a green house at the National Center of Research of Agrobiology (CNPAB/EMBRAPA, the effect of the inoculation of Arbuscular Micorrhizal Fungi (AMF in the production of Peltogyne venosa and Sclerolobium paniculatum was evaluated. The experimental design was completely randomized with 4 treatments (Glomus clarum Nicolson & Schenk, Gigaspora margarita Becke Hall, native mycorrhizae and controls - without inoculation and 25 repetitions. One hundred sixty eight days after seed germination, it was observed that the treatments did not affect seedling growth, except for P. venosa inoculated with G. margarita, which had a larger production of dry weight of fine roots. Seedlings of P. venosa and S. paniculatum inoculated with G. clarum and native mycorrhizae had the largest percentages of micorrhizal colonization. In both species studied, the largest survival percentages was of seedlings inoculated with native mycorrhizae.

  16. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    used with previous crop (Zea mays L.-maize and Brassica napus L.-canola), tillage practices (no-tillage or conventional tillage) and P fertilization (5 levels) as factors chosen to modify mycorrhizae development at early developmental stages of maize. Previous cropping with canola resulted in decreased...

  17. Fungos micorrízicos-arbusculares no desenvolvimento de mudas de helicônia e gérbera micropropagadas Application of arbuscular mycorrhiza to micropropagated heliconia and gerbera plants during acclimatization period

    Directory of Open Access Journals (Sweden)

    Aurora Yoshiko Sato

    1999-03-01

    Full Text Available Plântulas micropropagadas de helicônia (Heliconia sp gérbera (Gerbera sp de vaso, foram aclimatadas em substrato (torta de filtro 50%, solo 30% e areia 20%, inoculado com três espécies de fungo micorrízico (Glomus clarum Nicolson. & Schenck, Glomus etunicatum Becker & Gerdemann e Gigaspora margarita Becker & Hall e uma mistura destas espécies (inóculo múltiplo. As avaliações quanto ao desenvolvimento da parte aérea e do sistema radicular e porcentagem de colonização, foram feitas aos 60 dias para gérbera e aos 90 dias para helicônia, após transplante. As duas espécies comportaram-se de modo diferente em resposta à micorrização. Glomus etunicatum não colonizou bem nenhuma das duas espécies estudadas. Apesar da elevada colonização, a helicônia não se beneficiou da inoculação, enquanto que a gérbera beneficiou-se da inoculação com G. clarum, G. etunicatum e do inóculo misto.Heliconia (Heliconia sp. and pot gerbera plantlets (Gerbera sp. obtained by in vitro micropropagation on Murashige and Skoog (MS medium were inoculated with 3 vesicular arbuscular mycorrhiza (VAM species and a mixture of three species. A control treatment without inoculation was also included. The plantlets were acclimated in a mixture of soil 30%, sand 20% and "torta de filtro" 50%. The fungal species were Glomus clarum, Glomus etunicatum and Gigaspora margarita. At 60 days for gerbera and 90 days for heliconia after the inoculation, fresh and dry matter of the aerial and root parts were determined, and the percentage of mycorrhizal colonization of the roots was obtained. Both species behaved different to mycorrhization. Glomus etunicatum did not show to be effective in colonization of heliconia and gerbera. Colonization was high, but heliconia did not benefit from this inoculation, however Gerbera was benefited by G. clarum, G. etunicatum and mixture inoculation.

  18. Micorriza arbuscular e rizóbios no enraizamento e nutrição de mudas de angico-vermelho Arbuscular mycorrhizae and rhizobium in rooting and nutrition of angico-vermelho seedlings

    Directory of Open Access Journals (Sweden)

    Poliana Coqueiro Dias

    2012-12-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da inoculação dos fungos micorrízicos arbusculares (FMAs e rizóbio no enraizamento, crescimento e nutrição de mudas de angico-vermelho (Anadenanthera macrocarpa (Benth Brenan propagadas via miniestaquia. Foram utilizadas seis progênies, das quais foram confeccionadas miniestacas com um par de folhas inteiras, bem como tubetes de 55 cm³ contendo substrato comercial Bioplant®. Foram testados quatro tratamentos: 8 kg m-3 de superfosfato simples (SS misturados ao substrato; 4 kg m-3 de SS misturados ao substrato; 4 kg m-3 de SS misturados ao substrato e adição de suspensão contendo rizóbios; e 4 kg m-3 de SS e adição de suspensão contendo rizóbios e 5 g de solo contendo esporos de FMAs. Não houve interação entre os tratamentos para percentagem de sobrevivência das miniestacas e percentagem de miniestacas com raízes observadas na extremidade inferior do tubete, na saída da casa de vegetação (30 dias e da casa de sombra (40 dias, provavelmente em função do sistema radicular ainda estar em formação. Houve diferenças entre as progênies para percentagem de sobrevivência das miniestacas, percentagem de miniestacas com raízes observadas na extremidade inferior do tubete, altura, diâmetro de colo e massa seca da parte aérea. As avaliações das características de crescimento das miniestacas enraizadas, principalmente com relação à sobrevivência a pleno sol (140 dias, evidenciam a eficiência dos rizóbios e FMAs na produção de mudas desta espécie. Conclui-se que a associação simbiótica com rizóbio e/ou FMA favorece a produção de mudas de A. macrocarpa via miniestaquia.The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizae fungi (AMF and rhizobium on rooting, growth and nutrition of seedlings of angico-red (Anadenanthera macrocarpa (Benth Brenan propagated by minicutting. Six progenies were used, of which were prepared

  19. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    Science.gov (United States)

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits. PMID:25162317

  20. Arbuscular Mycorrhizae-Trichoderma harzianum (Moniliaceae Interaction and Effects on Brachiaria decumbens (Poaceae’s Growth Interacción micorrizas arbusculares-Trichoderma harzianum (Moniliaceae y efectos sobre el crecimiento de Brachiaria decumbens (Poaceae

    Directory of Open Access Journals (Sweden)

    Morales Gutiérrez Esperanza

    2006-06-01

    Full Text Available The laboratory trial was made using native's Arbuscular Mycorrhizal Fungi (AMF sampled in Pennisetum clandestinum's rhizospheric soil obtained from Universidad Nacional de Colombia (Bogotá. Brachiaria decumbens was used as the host plant, growing in draining pots of steamed sandy soil supplemented with a complete nutritive solution.Four different treatments were tested to determine the kind of interaction between Arbuscular Mycorrhizal Fungi and Trichoderma harzianum and the effect of AMF plus T. harzianum on B. decumbens growth: plants with AMF inoculum, plants with T. harzianum, plants with AMF plus T. harzianum and uninoculated controls. Root colonization was decreased by T. harzianum, although AMF spores/g dry soil quantity was unaffected by this fungi. On the other hand, T. harzianum's population level (CFU /g dry soil decreased in presence of AMF. These results shows an interaction between AMF and T. harzianum and this interaction affects as AMF development as population density of T. harzianum. Based in the values of the plant growth parameters studied, is possible to conclude the AMF-T. harzianum interaction has a neutral effect on B. decumbens's growth.Se efectuó un ensayo en condiciones controladas utilizando hongos formadores de micorrizas arbusculares (HFMA nativos, provenientes de un suelo rizosférico de Pennisetum clandestinum de la Universidad Nacional de Colombia (Bogotá, manteniéndolos en plantas de Brachiaria decumbens creciendo sobre sustrato arenoso suplementado con solución nutritiva. Se evaluaron diferentes tratamientos: plantas con inóculo de HFMA, plantas con Trichoderma harzianum, plantas con HFMA+T. harzianum y plantas control no inoculadas, con el fin de determinar las posibles interacciones entre dichos microorganismos, así como su efecto sobre el crecimiento de B. decumbens. La presencia de T. harzianum disminuyó la colonización radicular por HFMA, aunque no afectó la cantidad de esporas de HFMA/g suelo

  1. Chromium resistance of dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon [Linn.] Pers.) is enhanced by arbuscular mycorrhiza in Cr(VI)-contaminated soils.

    Science.gov (United States)

    Wu, Song-Lin; Chen, Bao-Dong; Sun, Yu-Qing; Ren, Bai-Hui; Zhang, Xin; Wang, You-Shan

    2014-09-01

    In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations. PMID:24920536

  2. Arbuscular mycorrhizas and ectomycorrhizas of Uapaca bojeri L. (Euphorbiaceae) : sporophore diversity, patterns of root colonization, and effects on seedling growth and soil microbial catabolic diversity

    OpenAIRE

    Ramanankierana, N.; Ducousso, M.; Rakotoarimanga, N.; Prin, Y.; Thioulouse, J.; Randrianjohany, E.; Ramaroson, L.; Kisa, Marija; Galiana, A; Duponnois, Robin

    2007-01-01

    The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belongi...

  3. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yan; Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, Adelaide, SA 5005 (Australia); Wang Youshan [Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry, Beijing 100089 (China); Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)], E-mail: bdchen@rcees.ac.cn

    2008-09-15

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 {mu}m nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination.

  4. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    International Nuclear Information System (INIS)

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 μm nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination

  5. The role of pH in Tuber aestivum syn. uncinatum mycorrhiza development within commercial orchards

    Directory of Open Access Journals (Sweden)

    Paul W. Thomas

    2013-12-01

    Full Text Available The accepted advice when establishing a plantation of Tuber aestivum syn. uncinatum is that young inoculated trees should be planted on calcareous soils with a naturally high pH level. When a site is employed that has a naturally low pH level, lime is often applied to raise the pH to a considered ideal level of c.7.5. However, this may not be the correct approach. Here we present data from 33 data points taken from commercial truffle orchards in England, UK. Soil pH is correlated to Tuber aestivum syn. uncinatum mycorrhiza survivorship and development. The optimal observed pH was 7.51 but the actual optimal pH for cultivation may be higher. Sub optimal pH levels lead to a reduction of Tuber aestivum syn. uncinatum mycorrhiza. This reduction is not permanent and mycorrhization levels may be improved within a 12 month period by amending the soil pH. The importance of understanding the interaction of pH with other variables and the results in relation truffle cultivation are discussed.

  6. The Role of Arbuscular Mycorrhiza in the Growth and Development of Plants in the Family Gentianaceae

    Czech Academy of Sciences Publication Activity Database

    Sýkorová, Zuzana

    Heidelberg : Springer-Verlag, 2014 - (Rybczyński, J.; Davey, M.; Mikuła, A.), s. 303-316 ISBN 978-3-642-54009-7 R&D Projects: GA ČR GPP504/10/P021 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : mycoheterotrophy * Paris type * Glomeromycota Subject RIV: EF - Botanics

  7. Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium

    OpenAIRE

    RAHMATY, Raziyeh; Khara, Jalil

    2011-01-01

    Contamination of soil and ground water by chromium (Cr), due to its wide industrial use, has become a serious source of concern over the past decade. In this study a glasshouse experiment was conducted to investigate the effects of the mycorrhizal fungus Glomus intraradices on Cr toxicity in maize plants. Half of the plants were inoculated with the arbuscular mycorrhizal fungus (AMF). Cr was supplied in the form of potassium dichromate at 0.00, 0.10, 0.25, and 0.50 mM through irrigation water...

  8. Micorriza arbuscular e rizóbios no enraizamento e nutrição de mudas de angico-vermelho Arbuscular mycorrhizae and rhizobium in rooting and nutrition of angico-vermelho seedlings

    OpenAIRE

    Poliana Coqueiro Dias; Muriel da Silva Folli Pereira; Maria Catarina MegumiKasuya; Haroldo Nogueira de Paiva; Leandro Silva Oliveira; Aloisio Xavier

    2012-01-01

    O objetivo deste estudo foi avaliar o efeito da inoculação dos fungos micorrízicos arbusculares (FMAs) e rizóbio no enraizamento, crescimento e nutrição de mudas de angico-vermelho (Anadenanthera macrocarpa (Benth) Brenan) propagadas via miniestaquia. Foram utilizadas seis progênies, das quais foram confeccionadas miniestacas com um par de folhas inteiras, bem como tubetes de 55 cm³ contendo substrato comercial Bioplant®. Foram testados quatro tratamentos: 8 kg m-3 de superfosfato simples (SS...

  9. Micorriza arbuscular em plantações de Eucalyptus cloeziana F. Muell no litoral norte da Bahia, Brasil Arbuscular mycorrhiza in Eucalyptus cloeziana F. Muell plantations in the north littoral of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Cristiano V.M. Araújo

    2004-09-01

    Full Text Available As micorrizas arbusculares são de longa data conhecidas e exploradas devido à importância ecológica e aos efeitos no crescimento e na nutrição das plantas. Eucalyptus cloeziana F. Muell, particularmente nas áreas em estudo, apresenta comportamento diferenciado quando comparado com outras espécies de eucaliptos, instalando-se em sítios de solos pobres e textura arenosa, com crescimento reduzido, dificuldades para a formação das mudas e problemas nutricionais. Objetivando avaliar a percentagem de colonização radicular e a densidade de esporos de fungos micorrízicos arbusculares em plantações de E. cloeziana, foram realizadas coletas de solo rizosférico e de raízes em 20 áreas, distribuídas em seis municípios do Estado da Bahia, Brasil. Os resultados médios da percentagem de colonização variaram de 10% a 96,66% e a densidade de esporos variou de 3 a 110 esporos/50cm³ de solo, demonstrando a grande suscetibilidade do E. cloeziana à micorrização.The arbuscular mycorrhizal are known and explored long ago due to the ecological significance and the effects in the growth and nutrition of the plants. Eucalyptus cloeziana F. Muell, particularly in the studied sites, exhibit differenced behaviour when compared with other eucaliptus species, establishing in sites of the poor soils and sandy texture, with reduced growth, difficulty to formation of the seedling and nutritional problems. Aiming to evaluate the percentage of mycorrhizal colonization, as well as the density of arbuscular mycorrhizal fungi spores in E. cloeziana plantations, rhizospheric soil and roots samples were collected in twenty sites, distributed in six municipalities of Bahia state, Brazil. The mean results of percentage root colonization ranged from 10 to 96.66% and spore number ranged from 3 to 110 spores/50cm³ soil, demonstrating high susceptibility of the E. cloeziana to mycorrhization.

  10. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  11. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    Energy Technology Data Exchange (ETDEWEB)

    Renker, C. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany)]. E-mail: crenker@uni-leipzig.de; Blanke, V. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany); Buscot, F. [Institute of Ecology, Department of Environmental Sciences, University of Jena, Dornburger Str. 159, D-07743 Jena (Germany)

    2005-05-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal.

  12. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  13. Agronomic Management of Indigenous Mycorrhizas

    OpenAIRE

    Brito, Isabel; Goss, Michael J.; Carvalho, Mário; van Tuinen, Diederik; Antunes, Pedro,

    2008-01-01

    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb ...

  14. Ocorrência de micorrizas arbusculares e da bactéria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar Occurrence of arbuscular mycorrhizae and bacterium Acetobacter diazotrophicus in sugar cane

    OpenAIRE

    Veronica Massena Reis; Mauro Augusto de Paula; Johanna Döbereiner

    1999-01-01

    Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares (FMAs) e Acetobacter diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O número de esporos variou de 18 a 2.070/100 mL de solo, e os maiores número e diversidade de espécies foram ve...

  15. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands.

    Science.gov (United States)

    Rodrigues, Cassie R; Rodrigues, Bernard F

    2015-01-01

    Macaranga peltata (Roxb.) Mull. Arg. is a disturbance tolerant plant species with potential in mine wasteland reclamation. Our study aims at studying the phyto-extraction potential of M. peltata and determining plant-soil interaction factors effecting plant growth in iron ore mine spoils. Plants were grown in pure mine spoil and spoil amended with Farm Yard Manure (FYM) and Vermicompost (VC) along with arbuscular mycorrhizal (AM) species Rhizophagus irregularis. Pure and amended mine spoils were evaluated for nutrient status. Plant growth parameters and foliar nutrient contents were determined at the end of one year. FYM amendment in spoil significantly increased plant biomass compared to pure mine spoil and VC amended spoil. Foliar Fe accumulation was recorded highest (594.67 μg/g) in pure spoil with no mortality but considerably affecting plant growth, thus proving to exhibit phyto-extraction potential. FYM and VC amendments reduced AM colonization (30.4% and 37% resp.) and plants showed a negative mycorrhizal dependency (-30.35 and -39.83 resp.). Soil pH and P levels and, foliar Fe accumulation are major factors determining plant growth in spoil. FYM amendment was found to be superior to VC as a spoil amendment for hastening plant growth and establishment in iron ore mine spoil. PMID:25495939

  16. Seedling mycorrhiza

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Nina; Rasmussen, Finn N.

    2014-01-01

    prevalent mycobionts suggest a derivation from a pathogenic relationship, and sister group comparison offers little support for derivation from other mycorrhizal relationships. A combination of in situ sowings and molecular identification of seedling mycobionts has established that a broad range of fungi......Recent phylogenetic analyses confirm the monophyly of Orchidaceae as sister group to the remainder of Asparagales, and identify the sequence of early branching lineages in Orchidaceae. Orchid seedling mycorrhiza (OSM) involving rhizoctonious fungi is distributed widely in all subfamilies, including...

  17. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

    Science.gov (United States)

    Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E

    2016-10-01

    Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future. PMID:27266519

  18. The interaction of heavy metals and nutrients present in soil and native plants with arbuscular mycorrhizae on the riverside in the Matanza-Riachuelo River Basin (Argentina).

    Science.gov (United States)

    Mendoza, Rodolfo E; García, Ileana V; de Cabo, Laura; Weigandt, Cristian F; Fabrizio de Iorio, Alicia

    2015-02-01

    This study assessed the contamination by heavy metals (Cr, Cu, Pb, Zn), and nutrients (N, P) in soils and native plants, and the effect of the concentration of those elements with the density of arbuscular-mycorrhizal (AM) spores in soil and colonization in roots from the riverside of the Matanza-Riachuelo River Basin (MRRB). The concentration of metals and nutrients in soils and plants (Eleocharis montana, Cyperus eragrostis, Hydrocotyle bonariensis) increased from the upper sites (8 km from headwaters) to the lower sites (6 km from the mouth of the Riachuelo River) of the basin. AM-colonization on the roots of H. bonariensis and spore density in soil decreased as the concentrations of metals in soil and plant tissues increased from the upper to lower sites of the basin within a consistent gradient of contamination associated with land use, soil disturbance, population, and chemicals discharged into the streams and rivers along the MRRB. The general trends for all metals in plant tissue were to have highest concentrations in roots, then in rhizomes and lowest in aerial biomass. The translocation (TF) and bioconcentration (BCF) factors decreased in plants which grow from the upper sites to the lower sites of the basin. The plants tolerated a wide range in type and quantity of contamination along the basin by concentrating more metals and nutrients in roots than in aboveground tissue. The AM spore density in soil and colonization in roots of H. bonariensis decreased with the increase of the degree of contamination (Dc) in soil. PMID:25461058

  19. El tiempo de establecimiento de postura y su relación con la micorriza arbuscular en paisajes de loma y vega Time of Stablishment of Pastures and Their Relationship with Arbuscular Mycorrhiza in Hilly Terrain and Fertile Valley

    Directory of Open Access Journals (Sweden)

    Posada Almanza Raúl Hernando

    2006-12-01

    Full Text Available El presente trabajo fue realizado para evaluar el efecto del tiempo (0-5 años, 5-10 años y más de 10 años de establecimiento de pasturas de Brachiaria sp. sobre las poblaciones de hongos de micorriza arbuscular (HMA, su distribución de esporas, géneros, longitud de micelio extramatrical, colonización radical por HMA y otros hongos, en sistemas donde previamente existían bosques, en paisajes de loma y vega en Florencia, Caquetá, Colombia. Cualquiera que sea la edad de establecimiento de la pastura, predominan los géneros Glomus y Acaulospora; el cambio de la cobertura requiere de un periodo de más de diez años para que diferentes especies de HMA puedan recolonizar, adaptarse y diversificarse. En loma, la relación de Brachiaria sp. con los HMA disminuye con la edad, especialmente después de diez años; en vega se mantiene media y estable (21-50 %, mientras la colonización radical por hongos diferentes a los HMA se incrementa, mostrando posiblemente un mecanismo de competencia por el espacio radical, o una acción conjunta. Finalmente, el micelio extramatrical y las esporas en loma y vega siguen tendencias variables (incremento, descenso o
    estabilidad con la edad.The subject of this research was to evaluate the effect of the time of establishment (0-5 years, 5-10 years, and more than 10 years. of pastures of Brachiaria sp. over theArbuscular Mycorrhizal Fungal populations (AMF: genus and spore distribution, length of extramatrical mycelia, root colonizations by AMF and septate fungi; the pastures resulting from fragmentation of the tropical rainforest with valley and hilly landscapes at Florencia, Caquetá, Colombia. Whichever the age of pasture, the genera Glomus and Acaulospora predominate; the change of coverage require more than ten years for different species of MAF to recolonize, adapt and diversify. In hilly terrain, the Brachiaria sp-MAF relationship decrease with time, specially after ten years of establishment; in

  20. Fungos micorrízicos arbusculares em estéril revegetado com Acacia mangium, após mineração de bauxita Colonization of arbuscular mycorrhizae fungi in substrate, after bauxite mining, vegetated with Acacia mangium

    Directory of Open Access Journals (Sweden)

    Ana Lucy Caproni

    2005-06-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição das comunidades de FMAs em áreas revegetadas com Acacia mangium após a mineração de bauxita na região de Porto Trombetas, PA. Foram coletadas amostras de solo compostas nos períodos seco e chuvoso, em áreas revegetadas com Acacia mangium, que receberam inóculos de Glomus clarum e Gigaspora margarita, com 1 e 5 anos de idade. Os solos foram revegetados sem a reposição do horizonte superficial orgânico. Os esporos dos fungos micorrízicos arbusculares (FMAs foram extraídos e identificados através de suas características morfológicas. Analisou-se a densidade de esporos e de espécies em cada amostra, a densidade relativa e a freqüência de ocorrência de cada espécie por período de amostragem, além do índice de abundância e freqüência (IAF. Sob o plantio de mudas de A. mangium, a densidade de esporos de FMAs foi elevada e aumentou com a idade, enquanto o número de espécies não variou. Glomus clarum produz alta densidade de esporos na fase inicial do plantio e declina com o tempo, e Gigaspora margarita não esporula nas condições edafoclimáticas locais. A maioria das espécies de FMA não apresenta o mesmo padrão de esporulação nos períodos seco e chuvoso.The objective of this work was to monitor the establishment of Gigaspora margarita and Glomus clarum in reclaimed areas after the bauxite mining in Porto Trombetas, PA, Brazil. Soil samples were collected during the dry and rainy periods under one and five-year-old Acacia mangium trees grown from seedlings that had been inoculated with Glomus clarum and Gigaspora margarita. The exposed subsoil was managed without replacing the organic soil layer. FMA spores were extracted and identified through their morphologic characteristics. Spore density and frequency of each species were determined in each sampling The index of abundance and frequency (IAF were estimated for all samples. Under A. mangium the arbuscular

  1. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    OpenAIRE

    Giovannetti Marco; Balestrini Raffaella; Volpe Veronica; Guether Mike; Straub Daniel; Costa Alex; Ludewig Uwe; Bonfante Paola

    2012-01-01

    Abstract Background Arbuscular mycorrhizas (AM) are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus...

  2. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Hijri Mohamed

    2011-02-01

    Full Text Available Abstract Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF. This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.

  3. Mycorrhizas influence functional traits of two tallgrass prairie species.

    Science.gov (United States)

    Weremijewicz, Joanna; Seto, Kotaro

    2016-06-01

    Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm-season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool-season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root-to-shoot ratios. Unlike other highly dependent species, A. gerardii had a high root-to-shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root-to shoot ratio than A. gerardii. The mycorrhiza-related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and

  4. Desenvolvimento Vegetativo e morfologia radicular de citrange carrizo afetado por ácido indolbutírico e micorrizas arbusculares Vegetative development and root morphology of carrizo citrange affected by indolebutyric acid and arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Paulo Vitor Dutra de Souza

    2000-04-01

    Full Text Available Este estudo foi realizado na localidade de Alcanar (Tarragona, Espanha e objetivou avaliar o efeito de cinco concentrações do ácido indolbutírico (AIB (0,0; 0,5; 1,0; 1,5; 2,0 g/L e da inoculação com micorrizas arbusculares (MA (Glomus intraradices Schenck & Smith sobre o desenvolvimento vegetativo, conteúdo foliar de P e K e morfologia radicular de plântulas de citrange Carrizo (Citrus sinensis (L. X Poncirus trifoliata (L. Raf.. Utilizou-se o delineamento experimental de blocos completos casualisados em esquema fatorial, com 4 repetições e 10 plantas por parcela. A aplicação de AIB não alterou o desenvolvimento vegetativo das plântulas cultivadas em ausência de MA, apesar de haver incrementado a quantidade de P e K e a espessura dos feixes vasculares. As MA incrementaram o conteúdo de P foliar. Encontrou-se uma interação positiva entre o AIB e as MA, pois as plântulas micorrizadas apresentaram um incremento no desenvolvimento vegetativo, nos conteúdos foliares de P e K e na espessura dos feixes vasculares com o aumento das concentrações de AIB.This study was carried out in Alcanar (Tarragona - Spain to evaluate the effect of five indolebutyric acid (IBA concentrations (0.0; 0.5; 1.0; 1.5; 2.0 g/L and inoculation with arbuscular mycorrhizae fungi (AMF (Glomus intraradices Schenck & Smith on Carrizo citrange (Citrus sinensis (L. x Poncirus trifoliata (L. Raf. vegetative development, P and K foliar contents and root morphology. The experimental design was in a Completly Randomized Block Design with 10 seedlings per plot and 4 replicates. The IBA concentrations had no effect on vegetative development of nonmycorrhizal seedlings, althougt it had increased P and K foliar contents and primary xylem tickness. AMF increased P foliar content. IBA x AMF interaction was observed, increasing IBA concentrations on mycorrhizal seedlings resulted in increased in vegetative development, P and K foliar contents and primary xylem thickness.

  5. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Püschel, David; Hujslová, M.; Slavíková, R.; Jansa, J.

    2015-01-01

    Roč. 25, č. 3 (2015), s. 205-214. ISSN 0940-6360 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhiza * quantitative real-time PCR * sample preservation Subject RIV: EF - Botanics Impact factor: 3.459, year: 2014

  6. Colonização micorrízica arbuscular e tolerância ao mal-do-Panamá em mudas de banana-maçã Colonisation of arbuscular mycorrhiza and tolerance to Panama disease in seedlings of the maçã banana

    Directory of Open Access Journals (Sweden)

    Deusiane Batista Sampaio

    2012-09-01

    Full Text Available O objetivo desse trabalho foi avaliar o efeito da colonização micorrízica arbuscular na tolerância da bananeira, cv. Maçã, ao mal-do-Panamá, sob diferentes fontes de nutrientes. Utilizou-se um delineamento inteiramente casualizado com fatorial 2 x 4 [2 densidades de esporos de FMA nativos (D1 - 3.500 esporos kg-1 solo e D2 - 7.000 esporos kg-1 solo e 4 diferentes concentrações de fontes de nutrientes - três de solução nutritiva (SN 40%, SN 70% e SN 100% e uma de biofertilizante 100% (B4] com três repetições. Após o plantio inoculou-se Fusarium oxysporum f.sp. cubense e posteriormente avaliou-se matéria seca da parte aérea (MSPA, o teor de fósforo foliar (P, a colonização micorrízica, o pH do solo e o índice de severidade da doença (ID. As diferentes fontes de nutrientes influenciaram a matéria seca da parte aérea, o teor de fósforo, a colonização micorrízica e o índice de severidade da doença, porém não influenciaram o pH da solução do solo. O biofertilizante não atendeu à demanda nutricional das plantas, as quais se mostraram pouco desenvolvidas. Porém proporcionou intensa colonização micorrízica e menor índice de severidade da fusariose, o qual aumentou com a adubação mineral.The aim of this study was to evaluate the effect of the colonization of arbuscular mycorrhiza on the tolerance to Panama disease of the banana plant cv. maçã under different sources of nutrients. A completely randomized design was employed, having a 2 x 4 factorial [2 densities of native FMA spores (D1 - 3,500 spores kg-1 soil and D2 - 7000 spores kg-1 soil and four different concentrations of nutrient sources - three of a nutrient solution (SN 40%, SN 70% and SN 100% and a 100% solution of bio-fertiliser (B4], with three replications. After planting, the seedlings were inoculated with Fusarium oxysporum f.sp. cubense, and later the shoot dry matter, leaf phosphorus content, mycorrhizal colonization, soil pH and disease

  7. Arbuscular mycorrhiza in soil quality assessment

    DEFF Research Database (Denmark)

    Kling, M.; Jakobsen, I.

    1998-01-01

    aggregates and to the protection of plants against drought and root pathogens. Assessment of soil quality, defined as the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant health, should therefore include both...

  8. Effect of Arbuscular Mycorrhiza (AM) on Tolerance of Cattail to Cd Stress in Aquatic Environment%湿生环境中丛枝菌根(AM)对香蒲耐 Cd 胁迫的影响

    Institute of Scientific and Technical Information of China (English)

    罗鹏程; 李航; 王曙光

    2016-01-01

    Hygrophytes are planted more and more in landscaping and greening in many cities, but they often encounter threat from environmental pollution. Arbuscular mycorrhiza ( AM ) have been confirmed to enhance the tolerance of terrestrial plants to environmental pollution in many previous studies, but it is unclear how they affect hygrophytes. In the present study, a hydroponic culture experiment was carried out to investigate the effects of AM fungi ( Glomus etunicatum) inoculation on the tolerance of cattail (Typha latifolia) to different concentrations Cd2 + (0, 2. 5, 5. 0 mg•L - 1 ). The aim was to provide reference for evaluating whether mycorrhizal technology can be used to enhance the tolerance of hygrophytes to environmental pollution. The results showed that symbiotic association was well established between AM fungi and cattail roots, and the mycorrhizal colonization rates ( MCR) were beyond 30% . However, MCR presented downward trend one month after mycorrhizal cattails were transported to solution, and the maximal decrease was 25. 5% (P < 0. 05). AM increased pigment concentrations and peroxidase (POD) activity in cattail leaves, and also increased roots radial oxygen loss. However, AM only produced significant effect on increase of fresh weight in 5 mg•L - 1 Cd2 +solution. Although plant growth was inhibited by 5 mg•L - 1 Cd2 + and MCR was lower, AM increased Cd uptake of cattail at the two Cd2 + levels, and the maximal increments were 40. 24% and 56. 52% in aboveground and underground parts, respectively. This study indicates that AM has potential to enhance the tolerance of hygrophytes to environmental pollution and might be used to remedy heavy metal pollution.%湿生植物在城市景观绿化和美化中应用越来越多,但也经常遭遇环境污染胁迫的问题.大量研究证实丛枝菌根(AM)可提高陆生植物耐受环境污染胁迫的能力,但对湿生植物的影响却鲜有认识.通过水培实验,探索接种 AM

  9. Glomus claroideum and G. spurcum, arbuscular mycorrhizal fungi (Glomeromycota new for Poland and Europe, respectively

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2011-04-01

    Full Text Available The ontogenetic development and morphological properties of spores of two species of arbuscular mycorrhizal fungi (Glomeromycota of the genus Glomus, G. claroideum and G. spurcum, are described and illustrated. Spores of the two species were not earlier found in Poland, and this paper is the first report of the occurrence of G. spurcum in Europe. In one-species pot cultures with Plantago lanceolata as the host plant, the mycorrhizae of G. claroideum consist of arbuscules, vesicles, as well as intra- and extraradical hyphae staining intensively with trypan blue. Glomus spurcum mycorrhizae were not recognized, because many attempts to establish one-species cultures of this fungus failed. Additionally, the distribution of both the fungi in the world is presented.

  10. MULTIPLICACIÓN DE HONGOS MICORRIZA ARBUSCULAR (H.M.A Y EFECTO DE LA MICORRIZACIÓN EN PLANTAS MICROPROPAGADAS DE BANANO (Musa AAA cv. Gran Enano (Musaceae MULTIPLICATION OF ARBUSCULAR MYCORRHIZAE FUNGI (AMF AND MYCORRHIZATION EFFECT IN MICROPROPAGATED PLANTS OF BANANA (Musa AAA cv. ‘Gran Enano’ (Musaceae

    Directory of Open Access Journals (Sweden)

    Carmen Elena Usuga Osorio

    2008-06-01

    Full Text Available Se evaluó el proceso de multiplicación de hongos que forman micorriza arbuscular (HMA, para lo cual se usaron diferentes tipos de inóculos entre ellos nativos de agroecosistemas bananeros del Urabá (Antioquia-Colombia, en sustrato sólido, con diferentes plantas hospedadoras y la infectividad y efectividad sobre plantas de banano (Musa AAA cv. Gran Enano. La colonización micorrizal promedio general de los HMA a las plantas trampa fue de 37,76 ± 21,86 %, con respecto a este porcentaje, las plantas B (Brachiaria decumbens y S (Sorgum vulgare fueron las que más favorecieron la simbiosis. Teniendo en cuenta el sustrato, el S2 (Arena 50 - suelo 50 y el S6 (Vermiculita 50-suelo 50 permitieron expresiones significativamente mayores respecto a los demás. El Sorgum vulgare y Pueraria phaseoloides y en el sustrato S1 (Arena 30 - suelo 70, se encontró un mayor número de esporas. La combinación planta-sustrato que más favoreció la asociación fue la planta trampa B en los sustratos S2 y S4 (cascarilla de arroz 50-suelo50 y la producción de esporas fueron las plantas K y S en el sustrato S1. La asociación micorrícica general en plantas de banano provenientes de cultivo de tejidos fue de 48,74 ± 30,44. No se encontraron diferencias significativas (P > 0,05 entre plantas de cero días con plantas de 30 de aclimatadas. Los inóculos que significativamente favorecieron la asociación fueron los provenientes de agroecosistemas bananeros al compararse con el inóculo comercial y el proveniente de ecosistemas naturales del Urabá. El mayor peso seco foliar y radical se encontró en plántulas de banano inoculadas con I5 (Inóculo proveniente de agroecosistema bananeros de la zona de estudio. Para las variables de crecimiento no se encontraron diferencias.The process of multiplication of arbuscular mycorrhizae fungi (AMF from indigenous banana agro-environments from Urabá (Antioquia - Colombia was evaluated, using solid substrate, with different

  11. Reaction and interaction of mycorrhizae and rhizosphere

    International Nuclear Information System (INIS)

    Mycorrhizae of forest trees react and interact in a sensitive manner to environmental stress but have evolved adaption mechanism. Soil acidification causes no reduction of mycorrhizal frequency but shorter life span which is frequently compensated for by a higher production rate of mycorrhizae. Mycorrhizae of Norway spruce preferentially develop in soil pores. Nutrient availability probably relies more on the exchangeable ions at the surfaces of the pores than on the total ion exchange capacity. Additionally, organically bound compounds are mobilized by fungal hyphae and interaction on the rhizoplane. A lack of soil pores results in severe difficulties for Norway spruce to penetrate soil and to maintain mycorrhizal acticity. Water stress in the top soil causing a high percentage of dormant and dead mycorrhizae can be compensated for by a higher mycorrhizal production in deeper soil layers. At low nutrient availability in the mineral soil preferentially development of mycorrhizae is observed in the organic layer that may be regarded as an internal regulation mechanism, not as a toxic effect caused by Al in the mineral soil. Differentiated hyphal mantles protect mycorrhizae against water stress by impermeability and enhanced trehalose content and serve as storage and detoxification organs. There are indications of mycorrhizal types specially adapted to acidified soil conditions. (orig./vhe)

  12. Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Vosátka, Miroslav; Hršelová, Hana; Chvátalová, Irena; Jansa, Jan

    2002-01-01

    Roč. 19, - (2002), s. 279-288. ISSN 0929-1393 R&D Projects: GA ČR GA526/99/0895 Institutional research plan: CEZ:AV0Z5020903 Keywords : arbuscular mycorrhiza * sporulation * cellulose Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2002

  13. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production. PMID:26499883

  14. Micorriza arbuscular em cupuaçu e pupunha cultivados em sistema agroflorestal e em monocultivo na Amazônia Central Arbuscular mycorrhiza in cupuaçu and peach palm cultivated in agroforestry and monoculture systems in the Central Amazon region

    Directory of Open Access Journals (Sweden)

    José Pereira da Silva Junior

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a colonização micorrízica arbuscular em pupunha (Bactris gasipaes Kunth e cupuaçu (Theobroma grandiflorum (Willd ex Spring K. Schum cultivados em sistema agroflorestal e em monocultivo na Amazônia Central, em duas épocas do ano, e também identificar características anatômicas da formação dessa simbiose nessas espécies. Foram realizadas coletas de solo e raízes em duas estações, seca e chuvosa. A colonização micorrízica arbuscular no cupuaçu e na pupunha é alterada pelo sistema de manejo adotado, com taxas maiores de colonização no monocultivo. A densidade total dos esporos de fungos micorrízicos arbusculares sob o cupuaçu não é alterada pelo sistema de manejo ou pela época do ano, ao contrário do que ocorre sob a pupunha. Nessa cultura, a densidade de esporos foi maior sob sistema agroflorestal no período seco. A colonização micorrízica na pupunha apresenta dois padrões anatômicos, Paris e Arum, enquanto no cupuaçu ocorre o padrão Arum.The objective of this work was to evaluate the arbuscular mycorrhizal colonization in peach palm (Bactris gasipaes Kunth and cupuaçu (Theobroma grandiflorum (Willd ex Spring K. Schum, in agroforestry systems and monoculture in the Central Amazon region, and to identify anatomic characteristics of mycorrhizal colonization in these species. Soil and root samples were collected in the field, in the dry and rainy season. Mycorrhizal root colonization of cupuaçu and peach palm is affected by the management systems, with higher colonization rates in the monoculture system. Total spore density of the arbuscular mycorrhizal fungi under cupuaçu is not affected by management systems or season, but under peach palm this variation is season dependent. Mycorrhizal colonization of Arum and Paris types occur in peach palm, and only Arum type occurs in cupuaçu.

  15. Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium

    OpenAIRE

    Kurth, Florence; Feldhahn, Lasse; Bönn, Markus; Herrmann, Sylvie; Buscot, François; Tarkka, Mika T

    2015-01-01

    Background Pedunculate oak, Quercus robur is an abundant forest tree species that hosts a large and diverse community of beneficial ectomycorrhizal fungi (EMFs), whereby ectomycorrhiza (EM) formation is stimulated by mycorrhiza helper bacteria such as Streptomyces sp. AcH 505. Oaks typically grow rhythmically, with alternating root flushes (RFs) and shoot flushes (SFs). We explored the poorly understood mechanisms by which oaks integrate signals induced by their beneficial microbes and endoge...

  16. Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner.

    Science.gov (United States)

    Ait Lahmidi, Nassima; Courty, Pierre-Emmanuel; Brulé, Daphnée; Chatagnier, Odile; Arnould, Christine; Doidy, Joan; Berta, Graziella; Lingua, Guido; Wipf, Daniel; Bonneau, Laurent

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We provide experimental support for a primary role of both RiMST5 and RiMST6 in sugar uptake directly from the soil. The expression patterns of RiMSTs in response to partial light deprivation and to interaction with different host plants were investigated. Expression of genes coding for RiMSTs was transiently enhanced after 48 h of shading and was unambiguously dependent on the host plant species. These results cast doubt on the 'fair trade' principle under carbon-limiting conditions. Therefore, in light of these findings, the possible mechanisms involved in the modulation between mutualism and parasitism in plant-AM fungus interactions are discussed. PMID:27362299

  17. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Verdin, A.; Lounes-Hadj Sahraoui, A.; Fontaine, J.; Grandmougin-Ferjani, A.; Durand, R. [Universite du Littoral-Cote d' Opale, Lab. de Mycologie/Phytopathologie/Environnement, 62 - Calais (France)

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants found in many environments as result of the incomplete combustion of organic matter, and some of them are of great environmental concern due to their highly cytotoxic, genotoxic and carcinogenic properties for mammals. PAHs are thermodynamically stable and recalcitrant to microbial degradation, due to their aromatic nature and low aqueous solubility. Ecologically and economically speaking, plants have tremendous potential for bio-remediation of PAH-contaminated soils. The effect of plant roots on the dissipation of organic pollutants has mainly been attributed to an increase in microbial population and selection of specialized microbial communities in the rhizosphere, and also by improving physical and chemical soil conditions. Arbuscular mycorrhizal (AM) fungi living in symbiosis with plant roots play an essential role in plant nutrition and stress tolerance. AM plants are known to be involved in the biodegradation of pollutants such as PAHs. The role of AM fungi concerns two aspects: the improvement of the establishment and development of plants on polluted soil and the enhancement of PAHs degradation levels. AM colonization of different plant species is negatively affected when the plants are grown in contaminated soils. Nevertheless the AM colonization was shown to enhance plant survival and growth. Objectives of this work was to study the impact of PAHs on the development of G. intraradices and on the colonization of chicory (Cichorium intybus L.) and carrot (Daucus carota L.) roots transformed by Agrobacterium rhizogenes. Monoxenous root cultures have obvious advantages over traditional systems. This technique provides unique visualization of extra-radical fungus development and also allows an important production of extra-radical hyphae, spores and colonized roots free of any other microorganisms. These aspects are important to evaluate direct impact of PAHs on AM fungal

  18. Impact of PAHs on the development of the arbuscular mycorrhizal fungus, G. Intraradices, on the colonization of chicory and carrot grown in vitro

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants found in many environments as result of the incomplete combustion of organic matter, and some of them are of great environmental concern due to their highly cytotoxic, genotoxic and carcinogenic properties for mammals. PAHs are thermodynamically stable and recalcitrant to microbial degradation, due to their aromatic nature and low aqueous solubility. Ecologically and economically speaking, plants have tremendous potential for bio-remediation of PAH-contaminated soils. The effect of plant roots on the dissipation of organic pollutants has mainly been attributed to an increase in microbial population and selection of specialized microbial communities in the rhizosphere, and also by improving physical and chemical soil conditions. Arbuscular mycorrhizal (AM) fungi living in symbiosis with plant roots play an essential role in plant nutrition and stress tolerance. AM plants are known to be involved in the biodegradation of pollutants such as PAHs. The role of AM fungi concerns two aspects: the improvement of the establishment and development of plants on polluted soil and the enhancement of PAHs degradation levels. AM colonization of different plant species is negatively affected when the plants are grown in contaminated soils. Nevertheless the AM colonization was shown to enhance plant survival and growth. Objectives of this work was to study the impact of PAHs on the development of G. intraradices and on the colonization of chicory (Cichorium intybus L.) and carrot (Daucus carota L.) roots transformed by Agrobacterium rhizogenes. Monoxenous root cultures have obvious advantages over traditional systems. This technique provides unique visualization of extra-radical fungus development and also allows an important production of extra-radical hyphae, spores and colonized roots free of any other microorganisms. These aspects are important to evaluate direct impact of PAHs on AM fungal

  19. MULTIPLICACIÓN DE HONGOS MICORRIZA ARBUSCULAR (H.M.A) Y EFECTO DE LA MICORRIZACIÓN EN PLANTAS MICROPROPAGADAS DE BANANO (Musa AAA cv. Gran Enano) (Musaceae) MULTIPLICATION OF ARBUSCULAR MYCORRHIZAE FUNGI (AMF) AND MYCORRHIZATION EFFECT IN MICROPROPAGATED PLANTS OF BANANA (Musa AAA cv. ‘Gran Enano’) (Musaceae)

    OpenAIRE

    Carmen Elena Usuga Osorio; Darío Antonio Castañeda Sánchez; Ana Esperanza Franco Molano

    2008-01-01

    Se evaluó el proceso de multiplicación de hongos que forman micorriza arbuscular (HMA), para lo cual se usaron diferentes tipos de inóculos entre ellos nativos de agroecosistemas bananeros del Urabá (Antioquia-Colombia), en sustrato sólido, con diferentes plantas hospedadoras y la infectividad y efectividad sobre plantas de banano (Musa AAA cv. Gran Enano). La colonización micorrizal promedio general de los HMA a las plantas trampa fue de 37,76 ± 21,86 %, con respecto a este porcentaje, las p...

  20. The best for the guest: high Andean nurse cushions of Azorella madreporica enhance arbuscular mycorrhizal status in associated plant species.

    Science.gov (United States)

    Casanova-Katny, M Angélica; Torres-Mellado, Gustavo Adolfo; Palfner, Goetz; Cavieres, Lohengrin A

    2011-10-01

    Positive interactions between cushion plant and associated plants species in the high Andes of central Chile should also include the effects of fungal root symbionts. We hypothesized that higher colonization by arbuscular mycorrhizal (AM) fungi exists in cushion-associated (nursling) plants compared with conspecific individuals growing on bare ground. We assessed the AM status of Andean plants at two sites at different altitudes (3,200 and 3,600 ma.s.l.) in 23 species, particularly in cushions of Azorella madreporica and five associated plants; additionally, AM fungal spores were retrieved from soil outside and beneath cushions. 18 of the 23 examined plant species presented diagnostic structures of arbuscular mycorrhiza; most of them were also colonized by dark-septate endophytes. Mycorrhization of A. madreporica cushions showed differences between both sites (68% and 32%, respectively). In the native species Hordeum comosum, Nastanthus agglomeratus, and Phacelia secunda associated to A. madreporica, mycorrhization was six times higher than in the same species growing dispersed on bare ground at 3,600 ma.s.l., but mycorrhiza development was less cushion dependent in the alien plants Cerastium arvense and Taraxacum officinale at both sites. The ratio of AM fungal spores beneath versus outside cushions was also 6:1. The common and abundant presence of AM in cushion communities at high altitudes emphasizes the importance of the fungal root symbionts in such situations where plant species benefit from the microclimatic conditions generated by the cushion and also from well-developed mycorrhizal networks. PMID:21384201

  1. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species

    OpenAIRE

    Guisande-Collazo, Alejandra; González, Luís; Souza-Alonso, Pablo

    2016-01-01

    This study contributes to knowledge on the effect of the invasive N2-fixing tree, Acacia dealbata, on soil microbial communities and consequences on plant species that are dependent on symbiotic relationships as in the case of Plantago lanceolata. The main results of this work indicate that Acacia dealbata modifies the structure of arbuscular mycorrhizal fungi in the invaded shrublands and consequently the growth and development of plants that depend on AMF. Plantago lanceolata showed a subst...

  2. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest.

    Science.gov (United States)

    Rains, Kai Coshow; Nadkarni, Nalini M; Bledsoe, Caroline S

    2003-10-01

    The epiphyte community is the most diverse plant community in neotropical cloud forests and its collective biomass can exceed that of the terrestrial shrubs and herbs. However, little is known about the role of mycorrhizas in this community. We assessed the mycorrhizal status of epiphytic (Araceae, Clusiaceae, Ericaceae, and Piperaceae) and terrestrial (Clusiaceae, Ericaceae) plants in a lower montane cloud forest in Costa Rica. Arbuscular mycorrhizas were observed in taxa from Araceae and Clusiaceae; ericoid mycorrhizas were observed in ericaceous plants. This is the first report of intracellular hyphal coils characteristic of ericoid mycorrhizas in roots of Cavendishia melastomoides, Disterigma humboldtii, and Gaultheria erecta. Ericaceous roots were also covered by an intermittent hyphal mantle that penetrated between epidermal cells. Mantles, observed uniquely on ericaceous roots, were more abundant on terrestrial than on epiphytic roots. Mantle abundance was negatively correlated with gravimetric soil water content for epiphytic samples. Dark septate endophytic (DSE) fungi colonized roots of all four families. For the common epiphyte D. humboldtii, DSE structures were most abundant on samples collected from exposed microsites in the canopy. The presence of mycorrhizas in all epiphytes except Peperomia sp. suggests that inoculum levels and environmental conditions in the canopy of tropical cloud forests are generally conducive to the formation of mycorrhizas. These may impact nutrient and water dynamics in arboreal ecosystems. PMID:14593519

  3. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants

    OpenAIRE

    Waed Tarraf; Claudia Ruta; Francesca De Cillis; Anna Tagarelli; Luigi Tedone; Giuseppe De Mastro

    2015-01-01

    Arbuscular mycorrhizal (AM) symbiosis is widely investigated in aromatic herbs. Several studies have shown different effects on secondary metabolites, biomass production, as well as oil quantitative and qualitative aspects. The seeking to increase the yield of plants and their oils is an interesting topic in the world of medicinal and aromatic plant production. In tune with that, this study evaluated the effectiveness of two mycorrhiza fungi, Funneliformis mosseae (syn. Glomus mosseae) and Se...

  4. Tripartite symbiosis of Lentil (Lense culinaris L.), Mycorrhiza and Azospirillum brasilense under Rainfed Condition

    OpenAIRE

    Ardakani, M. Reza; Maleki, Sadegh; Aghayari, Fayaz; Rejali, Farhad; Faregh, Amir. H.

    2014-01-01

    A field experiment was conducted aiming to determine the possibility of improving the lentil performance when co-inoculated with Vesicular Arbuscular Mycorrhiza (VAM) fungi and Azospirillum under natural rain-fed conditions, in Iran. Results showed the substantial impact of VAM fungi on grain protein, root colonization and shoot dry weight. Highest value for shoot dry weight recorded in plants which inoculated with G. intraradices and highest values for root colonization and grain protein con...

  5. Heavy metal binding properties of Pinus sylvestris mycorrhizas from industrial wastes

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-02-01

    Full Text Available Mycorrhizas of Pinus sylvestris, collected from zinc wastes in Poland and France were investigated using transmission electron microscope (TEM and scanning electron microscope (SEM equipped with energy dispersion spectroscopy (EDS and electron energy loss spectroscopy (EELS. At both sites, mycorrhizas of Hebeloma were the most frequent, however, they were often characterised by a sparse or only locally developed fungal mantle. Mycorrhizas formed by suilloid fungi were much less frequent, and usually produced a clearly defined fungal mantle characterised by abundant formation of pigments and crystals covering the hyphae of the outer mantle. These two groups of mycorrhizas differed in their heavy metal binding properties. A biofiltering effect of Pb and Zn by the fungal mantle was observed only in the case of suilloid mycorrhizas, which represented up to 10% of the total number of mycorrhizas. No statistical differences between the mantle, the cortical cell walls and the vascular tissue were demonstrated in mycorrhizas formed by other fungi dominating on industrial wastes. In the case of Hebeloma and Inocybe, however, elements such as Cu and Cd were present in higher amounts in the extra-matrical mycelium, whereas no or only low amounts of these elements were detected within fungal mantles, mainly in mycorrhizas from the French waste. Analysis of the root systems has shown relatively high percentage of nonmycorrhizal short roots, suggesting the inhibition of mycorrhiza formation or a decreased number of mycorrhizal propagules. The role of dead roots and mycorrhizas in biosorption and immobilization of heavy metals was discussed.

  6. Occurrence and ecology of arbuscular mycorrhizal fungi in substrates of abandoned industrial sedimentation basins

    Czech Academy of Sciences Publication Activity Database

    Batkhuugyin, Enkhtuya; Rydlová, Jana; Vosátka, Miroslav

    1. Praha : Academia, 2004 - (Kovář, P.), s. 98-120 ISBN 80-200-1279-6 R&D Projects: GA ČR(CZ) GA526/99/0895; GA ČR(CZ) GA206/93/2256 Institutional research plan: CEZ:AV0Z6005908 Keywords : arbuscular mycorrhiza * extraradical mycelium Subject RIV: EF - Botanics

  7. Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.)

    Institute of Scientific and Technical Information of China (English)

    YANG Ruyi; YU Guodong; TANG Jianjan; CHEN Xin

    2008-01-01

    It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants.A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species(Solidago canadensis L.)in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments.Three Pb levels(control,300,and 600 mg/kg soil)were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows.Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species (Glomus mosseae,Glomus versiform,Glomus diaphanum,Glomus geosporum,and Glomus etunicatum).The 15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants.The results showed that S. canadensis was highly dependent on mvcOrrhizae.The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization(root length colonized,RLC%) but did not affect spore numbers,N(including total N and 15N) and P uptake.The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments.The Pb was mostly sequestered in belowground of plant (root and rhizome).The results suggest that the high efficiency of mycorrhizae on nutrient uptake mightgive S. canadensis a great advantage over native species in Pb polluted softs.

  8. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study.

    Science.gov (United States)

    Bona, Elisa; Scarafoni, Alessio; Marsano, Francesco; Boatti, Lara; Copetta, Andrea; Massa, Nadia; Gamalero, Elisa; D'Agostino, Giovanni; Cesaro, Patrizia; Cavaletto, Maria; Berta, Graziella

    2016-01-01

    Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses. PMID:27216714

  9. Chitin stimuůates development and sporulation of arbuscular mycorrhizal fungi

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Jansa, Jan; Hršelová, Hana; Chvátalová, Irena; Vosátka, M.

    2003-01-01

    Roč. 22, - (2003), s. 283-287. ISSN 0929-1393 R&D Projects: GA ČR GA526/99/0895 Institutional research plan: CEZ:AV0Z5020903 Keywords : arbuscular mycorrhizal fungi * chitin Subject RIV: EE - Microbiology, Virology Impact factor: 1.483, year: 2003

  10. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks

    Czech Academy of Sciences Publication Activity Database

    Vosátka, Miroslav; Látr, A.; Gianinazzi, S.; Albrechtová, Jana

    2013-01-01

    Roč. 58, 1-3 (2013), s. 29-37. ISSN 0334-5114 R&D Projects: GA MPO FR-TI1/299 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * sustainable agriculture * inoculum quality Subject RIV: EF - Botanics Impact factor: 0.941, year: 2013

  11. ANATOMY OF ARBUSCULAR MYCORRIZA FUNGUS (AMF ACAULOSPORA SCROBICULATU ON ROOTS OF THE SHEA TREE VITELLARIA PARADOXA IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Odigie E.E.

    2013-09-01

    Full Text Available The discovery of root nodules on healthy Shea tree seedlings revealed the mutualistic associations between root nodules, arbuscular mycorrhiza fungus Acaulospora scrobiculatu and the host plant. The root was transversally sectioned to illustrate its structure, detect the presence of mycorrhiza colonization, intact cells of healthy tissues, impact of the mycorrhiza on host tissue and changes resulting from presence of the colonization. The root with mycorrhiza application was thicker and bigger when compared to the control treatment. The anatomical study revealed that the root contains epidemis, exodemis, cortex, early metaxylem and the pith. The nodule contains fungus hyphae which were seen growing outward and inward of the host without causing damage to the host cells. This mycorrhiza colonization resulted in enlargement of the host cells possibly to facilitate and improve the nutritional uptake of both partners.

  12. Modelling Spatial Interactions in the Arbuscular Mycorrhizal Symbiosis using the Calculus of Wrapped Compartments

    CERN Document Server

    Calcagno, Cristina; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Troina, Angelo; 10.4204/EPTCS.67.3

    2011-01-01

    Arbuscular mycorrhiza (AM) is the most wide-spread plant-fungus symbiosis on earth. Investigating this kind of symbiosis is considered one of the most promising ways to develop methods to nurture plants in more natural manners, avoiding the complex chemical productions used nowadays to produce artificial fertilizers. In previous work we used the Calculus of Wrapped Compartments (CWC) to investigate different phases of the AM symbiosis. In this paper, we continue this line of research by modelling the colonisation of the plant root cells by the fungal hyphae spreading in the soil. This study requires the description of some spatial interaction. Although CWC has no explicit feature modelling a spatial geometry, the compartment labelling feature can be effectively exploited to define a discrete surface topology outlining the relevant sectors which determine the spatial properties of the system under consideration. Different situations and interesting spatial properties can be modelled and analysed in such a ligh...

  13. Eficiência de fungos micorrízicos arbusculares isolados de solos sob diferentes sistemas de uso na região do Alto Solimões na Amazônia Effectiveness of arbuscular mycorrhiza fungal isolated from soils under different land use systems in the Alto Solimões river region in the Amazon

    Directory of Open Access Journals (Sweden)

    Gláucia Alves e Silva

    2009-09-01

    Full Text Available Os fungos micorrízicos arbusculares (FMAs são importantes componentes dos ecossistemas terrestres onde acredita-se desempenharem papel fundamental para a sustentabilidade destes. Estes fungos sofrem influência de diversos fatores antrópicos como o uso da terra, que modificam a estrutura e diversidade das comunidades podendo comprometer suas funções ecológicas. No presente estudo avaliou-se o comportamento de FMAs isolados de solos sob diferentes sistemas de uso (SUT. Fungos isolados de amostras de solo sob diferentes SUT foram testados em caupi [Vigna unguiculata (L. Walp] em condições controladas. Verificou-se que todos os cinqüenta e um fungos avaliados colonizaram o caupi, porém de modo muito diferenciado, tal como ocorreu para os efeitos destes na absorção de fósforo e crescimento da planta. A colonização variou de 1 a 68%, e os efeitos positivos no crescimento variaram de 33 a 148%, sendo mais comuns nos fungos isolados de pastagem e roça. O aumento nos teores de fósforo foi generalizado (95% dos fungos testados, no entanto, nem todos foram capazes de promover o crescimento do Caupi. Apenas 39% dos fungos foram considerados eficientes, sendo estes isolados de quase todos os SUT. Os tratamentos fúngicos de mais alta eficiência continham as espécies: A. foveata, Glomus sp.1, Acaulospora sp.1 e mistura dos dois primeiros mais E. infrequens e A. bireticulata-like. Os resultados indicam ampla diversidade de eficiência dos FMAs do Alto Solimões. Embora a eficiência não tenha relação direta com o SUT, a proporção de isolados eficientes variou com a origem de isolamento.Arbuscular mycorrhizal fungi (AMF are important components of terrestrial ecosystems where they are believed to play a fundamental role for their sustainability. These fungi are influenced by a number of anthropic factors such as, land use which modifies the structure and diversity of fungal communities and this may compromise their ecological functions

  14. Effect of mycorrhizas application on plant growth and nutrient uptake in cucumber production under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ortas, I.

    2010-07-01

    Mycorrhizas application in horticultural production in the Eastern Mediterranean region of Turkey has been studied under field conditions for several years. The effects of different arbuscular mycorrhizal fungi (AMF) have been evaluated under field conditions for cucumber production. The parameters measured were seedling survival, plant growth and yield, and root colonization. In 1998 and 1999, Glomus mosseae and Glomus etunicatum inoculated cucumber seedlings were treated with and without P (100 kg P2O5 ha-1) application. A second experiment was set up to evaluate the response of cucumber to the inoculation with a consortia of indigenous mycorrhizae, G. mosseae, G. etunicatum, Glomus clarum, Glomus caledonium and a mixture of these four species. Inoculated and control non inoculated cucumber seedlings were established under field conditions in 1998, 2001, 2002 and 2004. Seedling quality, seedling survival under field conditions and yield response to mycorrhiza were tested. Fruits were harvested periodically; at blossom, plant leaves and root samples were taken for nutrient content and mycorrhizal colonization analysis respectively. The field experiment results showed that mycorrhiza inoculation significantly increased cucumber seedling survival, fruit yield, P and Zn shoot concentrations. Indigenous mycorrhiza inoculum was successful in colonizing plant roots and resulted in better plant growth and yield. The relative effectiveness of each of the inocula tested was not consistent in the different experiments, although inoculated plants always grew better than control no inoculated. The most relevant result for growers was the increased survival of seedlings. (Author) 20 refs.

  15. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza

    DEFF Research Database (Denmark)

    Rønn, R.; Gavito, M.; Larsen, J.;

    2002-01-01

    Possible interactions between mycorrhiza, atmospheric CO2, free-living soil microorganisms and protozoa were investigated in pot experimental systems. Pea plants (Pisum sativum L. cv. Solara) were grown under ambient (360 mul l(-1)) or elevated (700 mul l(-1)) atmospheric CO2 concentration with or...... without the presence of the arbuscular mycorrhizal (AM) fungus Glomus caledonium. It was hypothesised that (1) the populations of free-living soil protozoa would increase as a response to elevated CO2, (2) the effect of elevated CO2 on protozoa would be moderated by the presence of mycorrhiza and (3) the...... presence of arbuscular mycorrhiza would affect soil protozoan numbers regardless of atmospheric CO2. After 3 weeks growth there was no difference in bacterial numbers (direct counts) in soil, but the number of free-living bacterial-feeding protozoa was significantly higher under elevated CO2 and was...

  16. Vesicular-Arbuscular Mycorrhiza in Field-Grown Crops

    DEFF Research Database (Denmark)

    Jakobsen, Iver

    1983-01-01

    inoculation increased the uptake of bromide, Zn and Cu significantly. Mycorrhizal infection in inoculated plots was first observed 25 days after seedling emergence, and final infection levels were c. 50% in contrast to 12 % without inoculation. The introduced endophyte had spread 30 cm horizontally during the...

  17. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-09-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  18. Nursery inoculation with the arbuscular mycorrhizal fungus Glomus viscosum and its effect on the growth and physiology of hybrid artichoke seedlings

    Directory of Open Access Journals (Sweden)

    Angela Campanelli

    2011-07-01

    Full Text Available Most nurseries operating in Italy adopt high technologies and produce transplants that well suit and satisfy the grower’s need to produce high value crops. Mycorrhizas are discussed as a tool for improving and developing plant production in the nursery. Much research has been carried out on mycorrhizal symbiosis and we now know more about the symbiontic relationship between fungi and host plants. Plants receive numerous benefits from this symbiosis which are more macroscopic the earlier in the ontogenetic cycle this symbiosis is established. Therefore, it appears that the most effective period in which the inoculum should be made corresponds to the in-nursery growing stage. The earlier the plant is inoculated, the more evident the effect will be. In this study, several aspects related to the physiological foundations of arbuscular mycorrhiza in artichoke plants are presented. The main goal was to study the effects of mycorrhiza on the growth and physiological parameters of three hybrids of artichokes growing in the nursery. The experimental 3¥2 design included two treatments (with or without arbuscular mycorrhizal fungi and three hybrids of artichokes marketed by Nunhems (Opal F1, Madrigal F1, Concerto F1. Mycorrhizal plants have greater shoot length, leaf area, shoot and root fresh and dry mass, and root density. This also corresponded with increased photosynthetic rates and stomatal conductance of mycorrhizal plants. Mycorrhizal colonization improves relative water content and increases proline concentration in vegetal tissue. Inoculation produced the most beneficial effect on hybrid Madrigal F1 and on hybrid Opal F1; the best mycorrhizal affinity was enhanced when compared to hybrid Concerto F1. The results showed that mycorrhizal symbiosis stimulated the growth of inoculated seedlings providing a qualitatively good propagation material.

  19. Glomus perpusillum, a new arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Błaszkowski, Janusz; Kovács, Gábor M; Balázs, Tímea

    2009-01-01

    A new arbuscular mycorrhizal fungal species of genus Glomus, G. perpusillum (Glomeromycota), forming small, hyaline spores is described and illustrated. Spores of G. perpusillum were formed in hypogeous aggregates and occasionally inside roots. They are globose to subglobose, (10-)24(-30) microm diam, rarely egg-shaped, oblong to irregular, 18-25 x 25-63 microm. The single spore wall of G. perpusillum consists of two permanent layers: a finely laminate, semiflexible to rigid outer layer and a flexible to semiflexible inner layer. The inner layer becomes plastic and frequently contracts in spores crushed in PVLG-based mountants and stains reddish white to grayish red in Melzer's reagent. Glomus perpusillum was associated with roots of Ammophila arenaria colonizing sand dunes of the Mediterranean Sea adjacent to Calambrone, Italy, and this is the only site of its occurrence known to date. In single-species cultures with Plantago lanceolata as host plant, G. perpusillum formed vesicular-arbuscular mycorrhiza. Phylogenetic analyses of partial SSU sequences of nrDNA placed the species in Glomus group A with no affinity to its subgroups. The sequences of G. perpusillum unambiguously separated from the sequences of described Glomus species and formed a distinct clade together with in planta arbuscular mycorrhizal fungal sequences found in alpine plants. PMID:19397199

  20. Occurrence and succession of mycorrhizas in Alnus incana

    Energy Technology Data Exchange (ETDEWEB)

    Arveby, A.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Section of Forest Ecophysiology; Granhall, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Microbiology

    1998-12-31

    The occurrence of different mycorrhizas of the grey alder, Alnus incana (L.) Moench., in Sweden was investigated. Root sampling was carried out in planted and natural grey alder stands, representing different soil types, geographical sites, and plant ages. Mycorrhizal infection of roots was found to be frequent at all investigated sites, except for some planted peat bogs, where alders do not occur naturally. At the latter sites, mycorrhizal infection was less frequent and consisted only of ectomycorrhizas. Young trees here were non-mycorrhizal. At all other sites vesicular-arbuscular mycorrhiza (VAM) was found to be the almost exclusive type of mycorrhiza in first-year seedlings. In trees older than one year ectomycorrhiza was the dominating type. In the planted stands up to five years of age no fruitbodies of ectomycorrhizal fungi were found. In such stands the ectomycorrhizas generally had thin, translucent mantles and could be observed only by microscopic examination. In one old plantation (27 years) and in the natural stands sporocarps of several specific `alder fungi` were found. Here, the mycorrhizal root tips had thick, mostly whitish mantles. The Hartig net was in all cases confined to penetration between epidermal cells. Soil collected from one alder site and two non-alder biotopes readily infected grey alder seedlings with Frankia and VAM fungi whereas a peat soil failed to infect seedlings with any symbiont. In vitro inoculation of nodulated seedlings with Glomus mossae (Nicol. and Gerd.) Gerdemann and Trappe resulted in VAM-infection. Simultaneous syntheses with isolates of alder-specific, and other, ectomycorrhizal fungi, using three different methods, failed. On the basis of these results an endomycorrhizal-ectomycorrhizal succession after the first growth season in Alnus incana is concluded. A subsequent succession of ectomycorrhizal species from early-stage to late-stage ones is discussed 58 refs, 3 figs, 2 tabs

  1. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen

    2000-01-01

    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  2. EFFECTS OF VARIOUS SOIL ENVIRONMENTAL STRESSES ON THE OCCURRENCE, DISTRIBUTION AND EFFECTIVENESS OF VA MYCORRHIZAE

    Directory of Open Access Journals (Sweden)

    A.G. KHAN

    1995-01-01

    Full Text Available The vesicular - arbuscular (VA mycorrhizal fungi are geographically ubiquitous soil inhabitants and form universal symbiotic relationship with plants from every phylum. These fungi link host plants with host soils and their biota in the mycorrhizosphere and play an important role in plant health, productivity and soil structure. Although VA mycorrhizal fungi do not show any host specificity, there is increasing evidence that various climatic and edaphic environmental factors such as land use and management practices, physical, chemical and biological properties of host soils and host plant characteristics influence their occurrence, taxonomic distribution and effectiveness. The interaction of these factors with vesicular-arbuscular mycorrhizae (VAM is poorly understood except in a few cases. It is now very clear that VA mycorrhizal associations are ecologically significant factors that require more attention than previously accorded. This paper discusses the occurrence, distribution and significance of VAM in environmentally stressed soil conditions that limit plant growth such as drought, waterlogging and salinity.

  3. Advances in the study of genetic diversity of arbuscular mycorrhizal fungi

    OpenAIRE

    Yanpeng Liu; Bokyoon Sohn; Miaoyan Wang; Guoyong Jiang; Runjin Liu

    2008-01-01

    Arbuscular mycorrhizal (AM) fungi are obligate symbiotic endophytes which have not been cultured in vitro. The life cycle of AM fungi can be completed only when the mycorrhiza forms between the fungi and plant roots. There are more than 200 genetically-diverse species of AM fungi belonging to Glomeromycota in the Kingdom Fungi. It is well documented that surprisingly high genetic variability exists between and within species, and even in a single spore of AM fungi. We summarize recent advance...

  4. Amazonian açai and food dyes for staining arbuscular- micorrhizal fungi

    OpenAIRE

    Aline Lourdes Martins Silva; Marcos Diones Ferreira Santana; John César de Jesus Pereira; Milena Pupo Raimam; Ulisses Brigatto Albino

    2015-01-01

    Arbuscular mycorrhizae microscopy requires differential staining of typical structures. Dyes employed, such as trypan blue, pose risks to health and environment. Alternative dyes such as pen ink and aniline have variable coloring efficiency. In this work, Brachiaria decumbens roots, discolored with caustic soda (NaOH), were stained with açai, annatto, saffron, trypan blue and pen inks. There were significant differences among dyes regarding stained mycorrhizal structures and pictures quality....

  5. Rhizoglomus melanum, a new arbuscular mycorrhizal fungal species associated with submerged plants in freshwater lake Avsjøen in Norway

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Sýkorová, Zuzana; Rydlová, Jana; Čtvrtlíková, Martina; Oehl, F.

    2015-01-01

    Roč. 14, č. 3 (2015), s. 1-8, no.9. ISSN 1617-416X R&D Projects: GA ČR GAP504/10/0781 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : arbuscular mycorrhiza * biodiversity * submerged plants Subject RIV: EF - Botanics; DA - Hydrology ; Limnology (BC-A) Impact factor: 1.913, year: 2014

  6. Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    HongLing LIU; Yong TAN; Monika NELL; Karin ZITTER-EGLSEER; Chris WAWSCRAH; Brigitte KOPP; ShaoMing WANG; Johannes NOVAK

    2014-01-01

    Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min-eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel-opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G. intraradices, G. cladoideum, G. microagregatum, G. caledonium and G. etunica-tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab-lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con-centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.

  7. Influence of salinity on the development of the banana colonised by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Aldênia Mendes Mascena de Almeida

    2016-09-01

    Full Text Available ABSTRACT This study evaluated the effect of salt stress on the growth of banana seedling colonized with mycorrhizal fungi (AMF on a substrate from a Quartzipsamment. The experiment was conducted in a greenhouse, using a completely randomized design in split plots; the plots had 5 levels of salinity in irrigation water (0.5, 1.5, 2.5, 3.5 and 4 5 dS m-1 and the subplots of four collection periods (40, 60, 80 and 100 days after transplanting, with 4 repetitions, totaling 80 experimental units. The seedlings of banana cv. "Prata" was produced by micropropagation and inoculated with arbuscular mycorrhizal and acclimatization for 40 days. Evaluations were made of leaf gas exchange, shoot dry mass, nutrient content, mycorrhizal root colonization and spore density. Increased levels of salinity caused reduction in dry matter production and photosynthetic rate, which may be associated with osmotic effects of salts in the soil, the increase in sodium and reduced the levels of N in leaves. Salinity reduced root mycorrhizal colonization, but did not influence the density of AMF spores under the conditions of this study.

  8. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying.

    Science.gov (United States)

    Neumann, Elke; Schmid, Barbara; Römheld, Volker; George, Eckhard

    2009-11-01

    Sweet potato plants were grown with or without Glomus intraradices in split-root pots with adjacent root compartments containing a soil with a low availability of phosphate. One fungal tube, from which root growth was excluded, was inserted into each root compartment. During 4 weeks before harvest, the soil moisture level in either both or only one of the two root-compartments of each pot was decreased. Controls remained well watered. Low soil moisture generally had a negative effect on the amount of extraradical mycelium of G. intraradices extracted from the fungal tubes. Sporulation in the fungal tubes was much higher compared with the soil in the root compartment, but remained unaffected by the soil moisture regime. Concentrations of P in extraradical mycelium were much lower than usually found in plants and fungi, while P concentrations in associated mycorrhizal host plant tissues were in an optimum range. This suggests efficient transfer of P from the extraradical mycelium to the host plant. Despite the negative effect of a low soil moisture regime on extraradical G. intraradices development, the symbiosis indeed contributed significantly to P uptake of plants exposed to partial rootzone drying. The possibility that extraradical arbuscular mycorrhizal fungal development was limited by P availability under dry soil conditions is discussed. PMID:19499252

  9. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus

    Directory of Open Access Journals (Sweden)

    Giovannetti Marco

    2012-10-01

    Full Text Available Abstract Background Arbuscular mycorrhizas (AM are widespread symbioses that provide great advantages to the plant, improving its nutritional status and allowing the fungus to complete its life cycle. Nevertheless, molecular mechanisms that lead to the development of AM symbiosis are not yet fully deciphered. Here, we have focused on two putative aquaporin genes, LjNIP1 and LjXIP1, which resulted to be upregulated in a transcriptomic analysis performed on mycorrhizal roots of Lotus japonicus. Results A phylogenetic analysis has shown that the two putative aquaporins belong to different functional families: NIPs and XIPs. Transcriptomic experiments have shown the independence of their expression from their nutritional status but also a close correlation with mycorrhizal and rhizobial interaction. Further transcript quantification has revealed a good correlation between the expression of one of them, LjNIP1, and LjPT4, the phosphate transporter which is considered a marker gene for mycorrhizal functionality. By using laser microdissection, we have demonstrated that one of the two genes, LjNIP1, is expressed exclusively in arbuscule-containing cells. LjNIP1, in agreement with its putative role as an aquaporin, is capable of transferring water when expressed in yeast protoplasts. Confocal analysis have demonstrated that eGFP-LjNIP1, under its endogenous promoter, accumulates in the inner membrane system of arbusculated cells. Conclusions Overall, the results have shown different functionality and expression specificity of two mycorrhiza-inducible aquaporins in L. japonicus. One of them, LjNIP1 can be considered a novel molecular marker of mycorrhizal status at different developmental stages of the arbuscule. At the same time, LjXIP1 results to be the first XIP family aquaporin to be transcriptionally regulated during symbiosis.

  10. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  11. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    OpenAIRE

    Comas, Louise H; Callahan, Hilary S.; Midford, Peter E.

    2014-01-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, qua...

  12. Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    OpenAIRE

    Gange, Alan; Ayres, R.L.; Aplin, D.M.

    2006-01-01

    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size ine...

  13. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae)

    Czech Academy of Sciences Publication Activity Database

    Sudová, Radka; Vosátka, Miroslav

    2008-01-01

    Roč. 308, 1-2 (2008), s. 55-67. ISSN 0032-079X. [5th International Conference on Mycorrhizae. Granada, 23.07.2006-27.07.2006] R&D Projects: GA ČR(CZ) GP526/05/P063 Institutional research plan: CEZ:AV0Z60050516 Keywords : arbuscular mycorrhizal symbiosis * physiological integration * stoloniferous plants Subject RIV: EF - Botanics Impact factor: 1.998, year: 2008

  14. The characterization of novel mycorrhiza-specific phosphate transporters from ¤Lycopersicon esculentum¤ and ¤Solanum tuberosum¤ uncovers functional redundancy in symbiotic phosphate transport in solanaceous species

    DEFF Research Database (Denmark)

    Nagy, F.; Karandashov, V.; Chague, W.;

    2005-01-01

    Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture...... species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice...

  15. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis.

    Directory of Open Access Journals (Sweden)

    Caroline Gutjahr

    Full Text Available Development of the mutualistic arbuscular mycorrhiza (AM symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2, which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.

  16. Modelling Spatial Interactions in the Arbuscular Mycorrhizal Symbiosis using the Calculus of Wrapped Compartments

    Directory of Open Access Journals (Sweden)

    Cristina Calcagno

    2011-09-01

    Full Text Available Arbuscular mycorrhiza (AM is the most wide-spread plant-fungus symbiosis on earth. Investigating this kind of symbiosis is considered one of the most promising ways to develop methods to nurture plants in more natural manners, avoiding the complex chemical productions used nowadays to produce artificial fertilizers. In previous work we used the Calculus of Wrapped Compartments (CWC to investigate different phases of the AM symbiosis. In this paper, we continue this line of research by modelling the colonisation of the plant root cells by the fungal hyphae spreading in the soil. This study requires the description of some spatial interaction. Although CWC has no explicit feature modelling a spatial geometry, the compartment labelling feature can be effectively exploited to define a discrete surface topology outlining the relevant sectors which determine the spatial properties of the system under consideration. Different situations and interesting spatial properties can be modelled and analysed in such a lightweight framework (which has not an explicit notion of geometry with coordinates and spatial metrics, thus exploiting the existing CWC simulation tool.

  17. Amazonian açai and food dyes for staining arbuscular- micorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Aline Lourdes Martins Silva

    2015-12-01

    Full Text Available Arbuscular mycorrhizae microscopy requires differential staining of typical structures. Dyes employed, such as trypan blue, pose risks to health and environment. Alternative dyes such as pen ink and aniline have variable coloring efficiency. In this work, Brachiaria decumbens roots, discolored with caustic soda (NaOH, were stained with açai, annatto, saffron, trypan blue and pen inks. There were significant differences among dyes regarding stained mycorrhizal structures and pictures quality. Acai was considered the best alternative dye, with similar results to trypan blue.

  18. The Distribution of Cytoplasm and Nuclei within the Extra-radical Mycelia in Glomus intraradices, a Species of Arbuscular Mycorrhizal Fungi

    OpenAIRE

    Lee, Jaikoo

    2011-01-01

    Nuclear distribution within the extra-radical fungal structures and during spore production in the arbuscular mycorrhizae fungus Glomus intraradices was examined using an in vitro monoxenic culture system. A di-compartmental monoxenic culture system was modified using a nitrocellulose membrane and a coverglass slip for detailed observations. Nuclear distribution was observed using the fluorescent DNA binding probes SYBR Green I and DAPI. Both septate and non-septate mycelial regions were obse...

  19. Effects of arbuscular mycorrhizal fungi on nutrient uptake of maize in reclaimed soil

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Y.; Hu, Z.; Si, J.; Quan, W. [China University of Mining and Technology (CUMT), Beijing (China). Dept. of Resources Exploitation Engineering

    2002-05-01

    An experiment was carried out on the effects of arbuscular mycorrhizal (AM) fungi, glomus mosseae, on the growth and nutrient uptaking of maize in reclaimed soil with coal fly ash layers at different depths. The research shows that plant yields increase with soil depth. Mycorrhizal plants can absorb more nutrients than non-mycorrhizal ones, and transport less Na to shoot, protecting plants from the excessive accumulation of Na. Plant biomass and nutrient content for mycorrhizal plants in reclaimed soil with a small soil thickness of 5 cm and a great fly ash thickness of 10 cm are higher than those for non-mycorrhizal plants in reclaimed soil with a great soil thickness of 10 cm and a small fly ash thickness of 5 cm. Arbuscular mycorrhizae have a potential to counteract the effect induced by a small thickness of covered soil, and so can reduce reclamation fee. 20 refs., 6 tabs.

  20. Enhanced Tomato Disease Resistance Primed by Arbuscular Mycorrhizal Fungus

    Directory of Open Access Journals (Sweden)

    Yuanyuan eSong

    2015-09-01

    Full Text Available Roots of most terrestrial plants form symbiotic associations (mycorrhiza with soil- borne arbuscular mycorrhizal fungi (AMF. Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill. early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL and lipoxygenase (LOX in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related (PR proteins, PR1, PR2 and PR3, as well as defense-related genes LOX, AOC and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT plant, a jasmonate (JA biosynthesis mutant (spr2, and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for

  1. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  2. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  3. Effects of mycorrhiza on growth and essential oil production in selected aromatic plants

    Directory of Open Access Journals (Sweden)

    Waed Tarraf

    2015-09-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis is widely investigated in aromatic herbs. Several studies have shown different effects on secondary metabolites, biomass production, as well as oil quantitative and qualitative aspects. The seeking to increase the yield of plants and their oils is an interesting topic in the world of medicinal and aromatic plant production. In tune with that, this study evaluated the effectiveness of two mycorrhiza fungi, Funneliformis mosseae (syn. Glomus mosseae and Septoglomus viscosum (syn. Glomus viscosum, on three species from Lamiaceae family: Salvia officinalis L., Origanum vulgare L., and Thymus vulgaris L. besides untreated control. It was found that the effect of symbiosis on growth was more favourable with S. viscosum than other AM fungus. The S. viscosum inoculation raised the yield of essential oil in oregano. Analysis of gas chromatography/mass spectrometry showed that manool obtained the highest abundance in leaf essential oil of inoculated sage; thymol was the major component whatever the treatment in thyme and lower relative content of carvacrol was reported with arbuscular mycorrhizal fungi inoculation in oregano. The results suggest the mycorrhizal inoculation as a promising technology in sustainable agricultural system to improve the plant productivity performance. Specific inocula are strategic to enhance the chemical profile of essential oils.

  4. Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants

    Directory of Open Access Journals (Sweden)

    Szymon Zubek

    2011-10-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF and dark septate endophyte (DSE associations were studied in 36 medicinal plant species from 33 genera and 17 families, collected from the Botanical Garden of the Jagiellonian University in Kraków. Arbuscular mycorrhiza (AM was found in 34 species (94%; 26 were of the Arum-type, 4 – Paris and 4 taxa revealed intermediate morpho­logy. The abundance of AMF hyphae in roots varied with particular species, ranging from 2.5% (Helianthus tuberosus to 77.9% (Convallaria majalis. The mycelium of DSE was observed in 13 plant species (36%, however, the percentage of root colonization by these fungi was low. Spores of 7 AMF species (Glomeromycota were isolated from trap cultures established from rhizosphere soils of the investigated plants: Archaeospora trappei (Archaeosporaceae, Glomus aureum, Glomus caledonium, Glomus claroideum, Glomus constrictum, Glomus mosseae, Glomus versiforme (Glomeraceae. Our results are the first detailed report of root endophyte associations of the plant species under study. Moreover, the mycorrhizal status of 14 plant species is reported for the first time.

  5. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    Science.gov (United States)

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitiveein2mutant in pea (Pisum sativumL.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1and indole-3-acetic acid levels inein2roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses betweenein2and the severely gibberellin-deficientnaand brassinosteroid-deficientlkmutants showed increased nodule numbers and reduced nodule spacing compared with thenaandlksingle mutants, but nodule numbers and spacing were typical ofein2plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation,ein2does not override the effect oflkornaon the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. PMID:26889005

  6. Could biological invasion by Cryptostegia madagascariensis alter the composition of the arbuscular mycorrhizal fungal community in semi-arid Brazil?

    Directory of Open Access Journals (Sweden)

    Tancredo Augusto Feitosa de Souza

    2016-03-01

    Full Text Available Biological invasions pose a serious threat to native semi-arid areas of Brazil, especially in areas of the state of Ceará that are typically invaded byCryptostegia madagascariensis, an exotic plant species from Madagascar. However, how this biological invasion influences the composition of the arbuscular mycorrhizal fungal (AMF community and how this affects further invasion by C. madagascariensis is not well known. Here we tested how inoculation with species of AMF affects the development of this invasive plant. We analyzed and compared the AMF community composition of four different stages of biological invasion by C. madagascariensis, and examined the effects of inoculation with these four AMF communities, plus a dominant AMF species (Rhizoglomus intraradices on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas of plants of C. madagascariensis. We found that all studied treatments (except the inoculum from the native plant root zone promoted the growth of C. madagascariensis and lead to a higher P concentration. Our results demonstrate that the invader might be altering the composition of the AMF community in field conditions, because inoculation with this community enhanced invader growth, root colonization, and P uptake.

  7. Associations of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Rydlova, J.; Vosatka, M. [Academy of Science. Pruhonice (Czech Republic). Inst. of Botany

    2001-07-01

    Among plants colonizing mine spoil banks in Northern Bohemia the first colonizers, mainly ruderal annuals from Chenopodiaceae and Brassicaceae were found not to be associated with arbuscular mycorrhizal fungi (AMF). These species cultivated in pots with soil from four sites in different succession stages of the spoil bank did not respond to the presence of native or non-native AMF. All grass species studied (Elytrigia repens, Calamagrostis epigejos and Arrhenatherum elatius) were found moderately colonized in the field. Carduus acanthoides was found to be highly colonized in the field; however, it did not show growth response to AMF in the pot experiment. The AMF native in four sites on the spoil banks showed high infectivity but low effectiveness in association with colonizing plants compared to the non-native isolate G. fistulosum BEG23. In general, dependence on AMF in the cultivation experiment was rather low, regardless of the fact that plants were found to be associated with AMF either in the field or in pots. Occurrence and effectiveness of mycorrhizal associations might relate primarily to the mycotrophic status of each plant species rather than to the age of the spoil bank sites studied.

  8. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment. PMID:25492807

  9. 桑树(Morusalba)与丛枝菌根的共生对重金属元素吸收的影响%Effects of symbiosis of mulberry (Morus alba) with arbuscular mycorrhizae on absorption of heavy metals (Fe, Mn, Zn, Cu and Cd)

    Institute of Scientific and Technical Information of China (English)

    樊宇红; 凌宏文; 朴河春

    2014-01-01

    Mulberry is colonized by Arbuscular mycorrhizal (AM) fungi. The AM symbiosis is important for heavy metal absorption by host mulberry. However, the symbiont of mulberry with AM fungi should change with various soil conditions. Mulberry is usually established for sericulture in Libo and Huangping areas of southwest China. Therefore, the leaf quality is important for sericulture. Libo and Huangping are located in limestone areas, among where sandstone distributed, resulting in different soil pH in collected samples in both Libo and Huangping. Our results showed that average soil pH of Libo soils (4.92±1.03) was significantly lower than that of Huangping soils (5.96±1.08). Soil acidity directly affects the distribution of AM fungi. Relatively lower soil pH of Libo soils should be favorable to the growth of fungi, therefore, to the formation of symbionts, resulting in higher bioavailability of heavy metals in soils, and higher absorption of heavy metals by mulberry. In addition, sugar concentration of mulberry foliage from Libo (67±27) mg·g-1 was significantly lower than that from Huangping (105±57) mg·g-1, but sugar concentration of mulberry roots from Libo (125±43) mg·g-1was significantly higher than that from Huangping (91±43) mg·g-1 Those results indicate that compared with Huangping (with higher soil pH), more products of photosynthesis enter to roots from Libo (with lower soil pH). Fungi are obligated symbionts and cannot survive without photosynthate supply from plants. Another role of root exudates is the solubility of heavy metals, resulting in higher ability of movements, and easily absorption by host plants. Therefore, it is why mulberry foliagein from Libo with lower soil pH having higher concentrations of heavy metal. Although mulberry can adapt to Kast areas with drought and poor nutrients of environments, their favorable soil is relatively acidified with rich nutrients.%桑树(Morus alba)可与丛枝菌根(AM)真菌形成互利共生

  10. Effect of arbuscular mycorrhizal (AM) fungi on 137Cs uptake by plants grown on different soils

    International Nuclear Information System (INIS)

    The potential use of mycorrhiza as a bioremediation agent for soils contaminated by radiocesium was evaluated in a greenhouse experiment. The uptake of 137Cs by cucumber, perennial ryegrass, and sunflower after inoculation with a commercial arbuscular mycorrhizal (AM) product in soils contaminated with 137Cs was investigated, with non-mycorrhizal quinoa included as a “reference” plant. The effect of cucumber and ryegrass inoculation with AM fungi on 137Cs uptake was inconsistent. The effect of AM fungi was most pronounced in sunflower: both plant biomass and 137Cs uptake increased on loamy sand and loamy soils. The total 137Cs activity accumulated within AM host sunflower on loamy sand and loamy soils was 2.4 and 3.2-fold higher than in non-inoculated plants. Although the enhanced uptake of 137Cs by quinoa plants on loamy soil inoculated by the AM fungi was observed, the infection of the fungi to the plants was not confirmed. - Highlights: ► Effect of soil inoculation on 137Cs uptake by crops was studied in greenhouse. ► 137Cs uptake by inoculated sunflower plants was most pronounced. ► The higher 137Cs uptake by inoculated sunflower due to presence of mycorrhiza. ► Studies suggest potential for use of mycorrhiza on contaminated sites.

  11. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling.

    Science.gov (United States)

    Soudzilovskaia, Nadejda A; van der Heijden, Marcel G A; Cornelissen, Johannes H C; Makarov, Mikhail I; Onipchenko, Vladimir G; Maslov, Mikhail N; Akhmetzhanova, Asem A; van Bodegom, Peter M

    2015-10-01

    A significant fraction of carbon stored in the Earth's soil moves through arbuscular mycorrhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget are poorly understood. We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We discuss the need to acquire additional data to use our method, and present our new global database holding information on plant species-by-site intensity of root colonization by mycorrhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground biomass carbon (mostly AM). Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact on local and global carbon cycling processes, paving the way towards an improved understanding of the role of mycorrhizas in the Earth's carbon cycle. PMID:26011828

  12. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass

    International Nuclear Information System (INIS)

    In a first experiment of soil contaminated with 137Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of 137Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the 137Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of 137Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced 137Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or 137Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of 137Cs. There may be a potential for selecting fungal strains that stimulate 137Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of 137Cs-contaminated soil

  13. Arbuscular mycorrhizal fungi mediated uptake of {sup 137}Cs in leek and ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Klas; Weiliang, Zhong; Maertensson, Anna [Department of Soil Sciences, Swedish University of Agricultural Sciences P.O. Box 7014, SE-750 07 Uppsala (Sweden)

    2005-02-15

    In a first experiment of soil contaminated with {sup 137}Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of {sup 137}Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the {sup 137}Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of {sup 137}Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced {sup 137}Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or {sup 137}Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of {sup 137}Cs. There may be a potential for selecting fungal strains that stimulate {sup 137}Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of {sup 137}Cs-contaminated soil.

  14. Incremento no desenvolvimento do porta-enxerto de pessegueiro "Aldrighi" por fungos micorrízicos arbusculares autóctones Development increase of 'Aldrighi' peach rootstocks by indigenous arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    José Luis da Silva Nunes

    2008-12-01

    Full Text Available Objetivou-se, neste trabalho, avaliar a influência de três espécies de fungos micorrízicos arbusculares (FMA isolados de pomares de pessegueiro sobre o crescimento vegetativo, nutrição mineral e substâncias de reserva em plantas do porta-enxerto de pessegueiro cv. Aldrighi [Prunus persica (L. Batsch]. O delineamento experimental utilizado foi o de blocos casualizados, com dez plantas por parcela e quatro repetições. As plantas inoculadas com Glomus etunicatum apresentaram maior altura, diâmetro, área foliar, biomassa fresca e seca, nutrição mineral e substâncias de reserva da parte aérea, enquanto as inoculadas com Glomus clarum induziram um crescimento intermediário, superior àquelas inoculadas com Gigaspora margarita, que apresentaram resultados semelhantes às plantas não inoculadas. O desempenho foi relacionado com as taxas de colonização que nas plantas inoculadas com Glomus etunicatum e Glomus clarum foram de 92% e 77% respectivamente, enquanto Gigaspora margarita colonizou somente 30% das raízes.This work aimed to evaluate the influence of three arbuscular mycorrhizal fungi (AMF species on the vegetative growth, mineral nutrition and carbohidrate contents on peach rootstocks cv. Aldrighi [Prunus persica (L. Batsch]. The experimental desing was the one of randomized blocks, with ten plants per plots and four repetitions. Plants inoculated with Glomus etunicatum presented larger stem height, stem diameter, foliar area, fresh and dry shoot biomass, leaf mineral nutrition and carbohidrate contents, while those inoculated with Glomus clarum induced an intermediate growth, higher to those inoculated with Gigaspora margarita that presented results similar to the non inoculated plants. Plant growth performance was related to colonization taxes, which were, respectively, 92%, 77% and 30% to Glomus etunicatum, Glomus clarum and Gigaspora margarita inoculated plants.

  15. Influence of arbuscular mycorrhiza on the growth and cadmium uptake of tobacco with inserted metallothionein gene

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Pavlíková, D.; Macek, Tomáš; Vosátka, Miroslav

    2005-01-01

    Roč. 29, - (2005), s. 209-214. ISSN 0929-1393 R&D Projects: GA ČR(CZ) GA526/02/0293 Institutional research plan: CEZ:AV0Z60050516 Keywords : heavy metals * genetic engineering * phytoremediation Subject RIV: EF - Botanics Impact factor: 1.755, year: 2005

  16. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi

    DEFF Research Database (Denmark)

    Cruz, C.; Egsgaard, Helge; Trujillo, C.;

    2007-01-01

    - compartment petri dishes and three ammonium levels were supplied to the compartment containing the extraradical mycelium (ERM), but no roots. Time courses of specific enzyme activity were obtained for glutamine synthetase, argininosuccinate synthetase, arginase, and urease in the ERM and AM roots. 15 NH 4 1...

  17. Arbuscular mycorrhizas contribute to phyto stabilization of uranium in uranium mining tailings

    DEFF Research Database (Denmark)

    Chen, Bao-Dong; Roos, Per; Zhu, Yong-Guan;

    2008-01-01

    Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending with uncontamina......Uranium (U) tailings pose environmental risks and call for proper remediation. In this paper medic and ryegrass plants were used as host plants to examine whether inoculation with an AM fungus, Glomus intraradices, would help phytostabilization of U tailings. The need of amending...

  18. The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia

    Czech Academy of Sciences Publication Activity Database

    Rydlová, Jana; Sýkorová, Zuzana; Slavíková, Renata; Turis, P.

    2015-01-01

    Roč. 25, č. 8 (2015), s. 599-609. ISSN 0940-6360 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : wild cyclamens * Septoglomus constrictum * growth response Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 3.459, year: 2014

  19. Arbuscular mycorrhiza technology applied to micropropagated Prunus avium and to protection against Phytophthora cinnamomi

    OpenAIRE

    Cordier, Christelle; Trouvelot, A; GIANINAZZI, Silvio; Gianinazzi-Pearson, Vivienne

    1996-01-01

    Deux champignons endomycorhizogenes a arbuscules (Glomus intraradices, Glomus caledonium), introduits pendant la periode d'acclimatation, ont ete testes pour leur pouvoir infectieux et leur effet sur la croissance de plants micropropages de merisiers (Prunus avium L) transplantes dans deux differents sols neutres, prealablement desinfectes ou non. Les vitroplants endomycorhizes presentent une meilleure croissance que les plantes temoins sur les deux sols desinfectes. L'importance de l'augment...

  20. Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts

    Directory of Open Access Journals (Sweden)

    Szymon Zubek

    2011-04-01

    Full Text Available The mycorrhizal status of 24 plant species considered as endemic, endangered in Poland and included in the IUCN Red List of Threatened Plants is reported. Selected plants and rhizosphere soil samples were collected in the Tatra Mts (Western Carpathians. Individuals of seriously threatened taxa were obtained from seeds and inoculated with available AM fungal strains under laboratory conditions. AM colonisation was found in 16 plants; 9 species were of the Arum-type, 4 - Paris and 3 taxa revealed intermediate morphology. The mycelium of the fine endophyte (Glomus tenue and dark septate fungi (DSE were observed in the material collected in the field. 20 AMF species (Glomeromycota found in the rhizosphere of the investigated plants were reported for the first time from the Tatra Mts. The results provide information that might be useful for conservation and restoration programmes of these species. Application of AMF in active plant protection projects is discussed.

  1. INFLUENCE OF ADVERSE SOIL CONDITIONS ON THE FORMATION AND FUNCTION OF ARBUSCULAR MYCORRHIZAS

    Science.gov (United States)

    The majority of plants have mycorrhizal fungi associated with them. Mycorrhizal fungi are ecologically significant because they form relationships in and on the roots of a host plant in a symbiotic association. The host plant provides the fungus with soluble carbon sources and the fungus provides t...

  2. Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas

    Czech Academy of Sciences Publication Activity Database

    Genre, A.; Ivanov, S.; Fendrych, Matyáš; Faccio, A.; Žárský, Viktor; Bisseling, T.; Bonfante, P.

    2012-01-01

    Roč. 53, č. 1 (2012), s. 244-255. ISSN 0032-0781 R&D Projects: GA ČR(CZ) GAP305/11/1629 Institutional research plan: CEZ:AV0Z50380511 Keywords : Daucus carota * Exocytosis * Medicago truncatula Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.134, year: 2012

  3. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. PMID:22418429

  4. Characterization of Tuber borchii and Arbutus unedo mycorrhizas.

    Science.gov (United States)

    Lancellotti, Enrico; Iotti, Mirco; Zambonelli, Alessandra; Franceschini, Antonio

    2014-08-01

    For the first time, arbutoid mycorrhizas established between Tuber borchii and Arbutus unedo were described. Analyzed mycorrhizas were from one T. borchii natural truffle ground, dominated by Pinus pinea, as well as synthesized in greenhouse conditions. A. unedo mycorrhizas presented some typical characteristics of ectomycorrhizas of T. borchii. However, as in arbutoid mycorrhizas, ramification was cruciform and intracellular colonization in epidermal cells was present. The ability of T. borchii to form ectomycorrhizas with A. unedo opens up the possibility to also use this fruit plant for truffle cultivation. This represents an important economic opportunity in Mediterranean areas by combining both the cultivation of precious truffles and the production of edible fruits which are used fresh or in food delicacies. PMID:24535602

  5. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Buscot, François

    2015-01-01

    Being highly sensitive to ecological variations, symbiotic associations should inherently have a limited occurrence in nature. To circumvent this sensitivity and reach their universal distribution, symbioses used three strategies during their evolution, which all generated high biodiversity levels: (i) specialization to a specific environment, (ii) protection of one partner via its internalization into the other, (iii) frequent partner exchange. Mycorrhizal associations follow the 3rd strategy, but also present traits of internalization. As most ancient type, arbuscular mycorrhiza (AM) formed by a monophyletic fungal group with reduced species richness did constantly support the mineral nutrition of terrestrial plants and enabled their ecological radiation and actual biodiversity level. In contrast ectomycorrhiza (EM) evolved later and independently within different taxa of fungi able to degrade complex organic plant residues, and the diversity levels of EM fungal and tree partners are balanced. Despite their different origins and diversity levels, AM and EM fungi display similar patterns of diversity dynamics in ecosystems. At each time or succession interval, a few dominant and many rare fungi are recruited by plants roots from a wide reservoir of propagules. However, the dominant fungal partners are frequently replaced in relation to changes in the vegetation or ecological conditions. While the initial establishment of AM and EM fungal communities corresponds to a neutral recruitment, their further succession is rather driven by niche differentiation dynamics. PMID:25239593

  6. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae)

    OpenAIRE

    Katja Kühdorf; B. Münzenberger; D. Begerow; J. Gómez-Laurito; R. Hüttl

    2015-01-01

    Arbutoid mycorrhizal plants are commonly found as understory vegetation in forests worldwide where ectomycorrhiza-forming trees occur. Comarostaphylis arbutoides (Ericaceae) is a tropical woody plant and common in tropical Central America. This plant forms arbutoid mycorrhiza, whereas only associations with Leccinum monticola as well as Sebacina sp. are described so far. We collected arbutoid mycorrhizas of C. arbutoides from the Cerro de la Muerte (Cordillera de Talamanca), Costa Rica, where...

  7. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field

    DEFF Research Database (Denmark)

    Olsson, P.A.; Thingstrup, I.; Jakobsen, I.; Bååth, F.

    1999-01-01

    -treated soil, and it was assumed that the PLFA 16:1 omega 5 remaining in treated soil originated from bacteria. The biomass of the extraradical AM mycelium could then be estimated by multiplying the difference in PLFA 16:1 omega 5 between dazomet treated and nontreated soils by a conversion factor. This......Linseed was grown in field plots included in a long-term P fertilisation experiment (0, 15 or 30 kg P ha(-1) yr(-1) for 20 yr). Two months before sowing, half of each plot man applied with dazomet to prevent the formation of arbuscular mycorrhiza (AM). The biomass of different groups of micro......-organisms was estimated 28, 51 and 72 d after sowing based on amounts of certain fatty acids extracted from the soil. Dazomet application strongly suppressed colonisation of the linseed roots by AM fungi throughout the experiment. In plots with no dazomet application, root colonisation by the AM fungi increased...

  8. A critical review on the nutrition role of arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2012-06-01

    Full Text Available Even though many factors influence the accession of mineral nutrients required for plantgrowth, arbuscular mycorrhizal-roots can greatly enhance the accession of mineral nutrients in hostplants. The nutrients enhanced most by AM are those that are of low mobility or sparingly soluble. Withother factors being equal in specific environments, AM may be the difference between whether plants willsurvive and/or have the ability to obtain the required mineral nutrients for sustainability. Although themost commonly reported mineral nutrient enhanced in host plants with AM-roots is P, accession of manyother mineral nutrients (e.g., Zn, Cu, N, S, Ca, Mg, K may be enhanced in plants by AM. Severalreviews about accession of mineral nutrients in AM plants have been published fairly recently. Some ofthe concepts mentioned with P accession may be applicable to the other mineral nutrients. This reviewgives an overview on the role of mycorrhizae in nutrition.

  9. Sugar beet waste and its component ferulic acid inhibits external mycelium of arbuscular mycorrhizal fungus

    DEFF Research Database (Denmark)

    Medina, Almudena; Jakobsen, Iver; Egsgaard, Helge

    2011-01-01

    External arbuscular mycorrhiza (AM) mycelium plays an important role in soil while interacting with a range of biotic and abiotic factors. One example is the soil organic amendment sugar beet waste. The fermented Aspergillus niger–sugar beet waste (ASB) increases growth and P uptake by the AM...... mycelium in soil whereas non-fermented waste (SB) had a strong inhibitory effect. The underlying mechanisms are not understood. We used gas chromatography–mass spectrometry to identify differences in composition of water extracts of ASB and SB. The chromatograms showed that ferulic acid was present in SB...... and absent in ASB. We compared the effects of the water extracts of SB and ASB and ferulic acid upon the growth of Glomus intraradices in in vitro monoxenic cultures. Hyphal growth of the AM fungus G. intraradices was extremely reduced in ferulic acid and SB treatments. Moreover, AM hyphae appeared...

  10. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Science.gov (United States)

    Janos, David P; Scott, John; Aristizábal, Catalina; Bowman, David M J S

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary. PMID:23460899

  11. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Directory of Open Access Journals (Sweden)

    David P Janos

    Full Text Available Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  12. Inoculant production in developing countries - Problems, potentials and success

    International Nuclear Information System (INIS)

    Sustainable agriculture is a long-term goal that seeks to overcome some of problems and constraints that confront the economic viability, environmental soundness and social acceptance of agricultural production systems. In this context, bio-fertilizers assume special significance particularly because they are 'eco-friendly', but also since their alternative, chemical fertilizers are expensive. Undoubtedly, the most commonly used bio-fertilizers are soil bacteria of the genus Rhizobium, but others like Azolla, Azospirillum, various cyanobacteria also contribute significant amounts of N to e.g. rice. Other bacteria like Frankia and Acetobacter contribute N to trees of the genus Casuarina and sugarcane, respectively. Furthermore, although they are rarely used as inoculants, vesicular arbuscular mycorrhizae (VAM) and phosphobacteria help countless plants solubilise and assimilate soil phosphorus. Despite these advantages, bio-fertilizers could be more widely used in developing countries. Contingent upon greater use is improved quality of the inoculants, and all aspects of their production are discussed here. (author)

  13. Root and nodule : lateral organ development in N2-fixing plants

    NARCIS (Netherlands)

    Xiao, T.T.

    2015-01-01

    Plants are sessile organisms. This characteristic severely limits their ability of approaching nutrients. To cope with this issue, plants evolved endosymbiotic relationships with soil fungi to extend their interface with surrounding environment. In case of arbuscular mycorrhizae (AM) fungi this occu

  14. Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Renker, Carsten; Buscot, François

    2006-05-01

    Two new ectocarpic arbuscular mycorrhizal fungal species, Glomus drummondii and G. walkeri (Glomeromycota), found in maritime sand dunes of northern Poland and those adjacent to the Mediterranean Sea are described and illustrated. Mature spores of G. drummondii are pastel yellow to maize yellow, globose to subglobose, (58-)71(-85) micromdiam, or ovoid, 50-80x63-98 microm. Their wall consists of three layers: an evanescent, hyaline, short-lived outermost layer, a laminate, smooth, pastel yellow to maize yellow middle layer, and a flexible, smooth, hyaline innermost layer. Spores of G. walkeri are white to pale yellow, globose to subglobose, (55-)81(-95) micromdiam, or ovoid, 60-90x75-115 microm, and have a spore wall composed of three layers: a semi-permanent, hyaline outermost layer, a laminate, smooth, white to pale yellow middle layer, and a flexible, smooth, hyaline innermost layer. In Melzer's reagent, only the inner- and outermost layers stain reddish white to greyish rose in G. drummondii and G. walkeri, respectively. Both species form vesicular-arbuscular mycorrhizae in one-species cultures with Plantago lanceolata as the host plant. Phylogenetic analyses of the ITS and parts of the LSU of the nrDNA of spores placed both species in Glomus Group B sensu Schüssler et al. [Schüssler A, Schwarzott D, Walker C, 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycolological Research 105: 1413-1421.]. PMID:16769509

  15. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    International Nuclear Information System (INIS)

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The 137Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of 137Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground 137Cs deposition of the cluster area (400 or 625 cm2) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of 137Cs in the forest floor during the production of fruitbodies. The distribution of 137Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the 137Cs level in the cap was 2.7 times higher compared to in the stripe. (Author)

  16. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    Directory of Open Access Journals (Sweden)

    François Le Tacon

    Full Text Available Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy or from soil organic matter (saprotrophy. The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum production and situated in the west part of the Vosges, France, was labeled with (13CO2. The transfer of (13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13C prior to ascocarp development. Then, the mycorrhizas transferred (13C to the ascocarps to provide constitutive carbon (1.7 mg of (13C per day. The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season came from the host.

  17. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    Science.gov (United States)

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely. PMID:27208643

  18. Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucaria angustifolia (Bert.) O. Ktze. ecosystems Densidade de esporos e colonização radicular por fungos microrrízicos arbusculares em ecossistemas de Araucaria angustifolia (Bert.) O. Ktze. preservados e impactados

    OpenAIRE

    Milene Moreira; Dilmar Baretta; Siu Mui Tsai; Elke Jurandy Bran Nogueira Cardoso

    2006-01-01

    Araucaria angustifolia (Bert.) O. Ktze., a native forest tree from Brazil, is under extinction risk. This tree depends on arbuscular mycorrhizal fungi for growth and development, especially in tropical low-P soils but, despite being a conifer, Araucaria does not form ectomycorrhiza, but only the arbuscular endomycorrhiza. This study aimed at surveying data on the spore density and root colonization (CR) by arbuscular mycorrhizal fungi (AMF) in Araucaria angustifolia forest ecosystems, in orde...

  19. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    OpenAIRE

    Adolfsson, Lisa; Solymosi, Katalin; Andersson, Mats X; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth thro...

  20. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants. PMID:27094118

  1. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae).

    Science.gov (United States)

    Kühdorf, Katja; Münzenberger, B; Begerow, D; Gómez-Laurito, J; Hüttl, R F

    2015-02-01

    Arbutoid mycorrhizal plants are commonly found as understory vegetation in forests worldwide where ectomycorrhiza-forming trees occur. Comarostaphylis arbutoides (Ericaceae) is a tropical woody plant and common in tropical Central America. This plant forms arbutoid mycorrhiza, whereas only associations with Leccinum monticola as well as Sebacina sp. are described so far. We collected arbutoid mycorrhizas of C. arbutoides from the Cerro de la Muerte (Cordillera de Talamanca), Costa Rica, where this plant species grows together with Quercus costaricensis. We provide here the first evidence of mycorrhizal status for the Ascomycete Leotia cf. lubrica (Helotiales) that was so far under discussion as saprophyte or mycorrhizal. This fungus formed arbutoid mycorrhiza with C. arbutoides. The morphotype was described morphologically and anatomically. Leotia cf. lubrica was identified using molecular methods, such as sequencing the internal-transcribed spacer (ITS) and the large subunit (LSU) ribosomal DNA regions, as well as phylogenetic analyses. Specific plant primers were used to confirm C. arbutoides as the host plant of the leotioid mycorrhiza. PMID:25033922

  2. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus

    DEFF Research Database (Denmark)

    Johansen, A.; Jensen, E.S.

    1996-01-01

    The role of arbuscular mycorrhizas in the transfer of N and P between pea (Pisum sativum L.) and barley (Hordeum vulgare L.) plants was studied in a controlled environment. The plants were grown together in PVC containers, either in symbiosis with Glomus intraradices Schenck and Smith or as non-mycorrhizal...... hyphae between mycorrhizal donor and receiver plants. No significant transfer of N was detected from intact pea donor plants to the barley receiver plants in the non-mycorrhizal controls. Mycorrhizal colonization slightly increased the transfer of N. However, the net transfer of N was almost...... insignificant since N was also transferred in the reverse direction, from barley to pea. Removal of the pea donor-plant shoots increased the N transfer to 4% of the donor-root N in the non-mycorrhizal controls. Contrastingly, 15% of the donor-root N was transferred to the receiver plants, when plants were...

  3. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    International Nuclear Information System (INIS)

    The influence of arbuscular mycorrhizal fungus on 134Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more 134Cs (up to 250,000 Bq kg-1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased 134Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg-1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  4. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    Science.gov (United States)

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation. PMID:26250548

  5. Miombo trees and mycorrhizae: ecological strategies, a basis for afforestation.

    OpenAIRE

    Munyanziza, E.

    1994-01-01

    This project has covered one or several aspects of the life cycle of the main miombo tree species, namely Afzelia quanzensis ,Brachystegia microphylla, Brachystegia spiciformis ,Julbernardia globifloraand Pterocarpus angolensis . These aspects included natural and artificial regeneration, fertilization, artificial inoculation of seedlings and natural occurrence of mycorrhizae on field-grown seedlings. Mycorrhizal survey of pine seedlings in various nurseries and inoculation trials on pines wi...

  6. Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Blaszkowski, Janusz; Chwat, Gerard; Kovács, Gábor M; Gáspár, Bence K; Ryszka, Przemyslaw; Orlowska, Elzbieta; Pagano, Marcela C; Araújo, Francisca S; Wubet, Tesfaye; Buscot, François

    2013-01-01

    Two new arbuscular mycorrhizal fungal species, (Glomeromycota) Septoglomus fuscum and S. furcatum, are described and illustrated. Spores of S. fuscum usually occur in loose hypogeous clusters, rarely singly in soil or inside roots, and S. furcatum forms only single spores in soil. Spores of S. fuscum are brownish orange to dark brown, globose to subglobose, (20-)47(-90) μm diam, rarely ovoid, 21-50 × 23-60 μm. Their spore wall consists of a semi-persistent, semi-flexible, orange white to golden yellow, rarely hyaline, outer layer, easily separating from a laminate, smooth, brownish orange to dark brown inner layer. Spores of S. furcatum are reddish brown to dark brown, globose to subglobose, (106-) 138(-167) μm diam, rarely ovoid, 108-127 × 135-160 μm, usually with one subtending hypha that is frequently branched below the spore base, or occasionally with two subtending hyphae located close together. Spore walls consists of a semipermanent, hyaline to light orange outermost layer, a semipermanent, hyaline to golden yellow middle layer, and a laminate, smooth, reddish brown to dark brown innermost layer. None of the spore-wall layers of S. fuscum and S. furcatum stain in Melzer's reagent. In the field, S. fuscum was associated with roots of Arctotheca populifolia colonizing maritime dunes located near Strand in South Africa and S. furcatum was associated with Cordia oncocalyx growing in a dry forest in the Ceará State, Brazil. In single-species cultures with Plantago lanceolata as host plant, S. fuscum and S. furcatum formed arbuscular mycorrhizae. Phylogenetic analyses of the SSU, ITS and LSU nrDNA sequences placed the two new species in genus Septoglomus and both new taxa were separated from described Septoglomus species. PMID:23233507

  7. Glomus africanum and G. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota).

    Science.gov (United States)

    Błaszkowski, Janusz; Kovács, Gábor M; Balázs, Tímea K; Orlowska, Elzbieta; Sadravi, Mehdi; Wubet, Tesfaye; Buscot, François

    2010-01-01

    Two new arbuscular mycorrhizal fungal species (Glomeromycota) of genus Glomus, G. africanum and G. iranicum, are described and illustrated. Both species formed spores in loose clusters and singly in soil and G. iranicum sometimes inside roots. G. africanum spores are pale yellow to brownish yellow, globose to subglobose, (60-)87(-125) μm diam, sometimes ovoid to irregular, 80-110 x 90-140 μm. The spore wall consists of a semipermanent, hyaline, outer layer and a laminate, smooth, pale yellow to brownish yellow, inner layer, which always is markedly thinner than the outer layer. G. iranicum spores are hyaline to pastel yellow, globose to subglobose, (13-)40(-56) μm diam, rarely egg-shaped, prolate to irregular, 39-54 x 48-65 μm. The spore wall consists of three smooth layers: one mucilaginous, short-lived, hyaline, outermost; one permanent, semirigid, hyaline, middle; and one laminate, hyaline to pastel yellow, innermost. Only the outermost spore wall layer of G. iranicum stains red in Melzer's reagent. In the field G. africanum was associated with roots of five plant species and an unrecognized shrub colonizing maritime sand dunes of two countries in Europe and two in Africa, and G. iranicum was associated with Triticum aestivum cultivated in southwestern Iran. In one-species cultures with Plantago lanceolata as the host plant G. africanum and G. iranicum formed arbuscular mycorrhizae. Phylogenetic analyses of partial SSU sequences of nrDNA placed the two new species in Glomus group A. Both species were distinctly separated from sequences of described Glomus species. PMID:20943558

  8. Mycorrhizae In Sagebrush-Steppe Community Restoration: Mycorrhizal Dependency Of Invasive And Native Grasses With Intraspecific And Interspecific Competition

    OpenAIRE

    Scherpenisse, Dara S.

    2009-01-01

    Mycorrhizae have been used in restoration for decades. However, studies assessing the use of mycorrhizae in Bromus tectorum-invaded areas of the Great Basin are limited. Two greenhouse pot experiments were conducted to assess the role of mycorrhizae in sagebrush restoration. The first objective (Chapter 2) was to determine the response of Pseudoroegneria spicatum, Elymus elymoides, and B. tectorum to mycorrhizal symbiosis by altering phosphorus, density, species, presence of mycorrhizae an...

  9. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    OpenAIRE

    Omid Alizadeh; Ali Parsaeimehr

    2011-01-01

    An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD) in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza) and M0 (non-mycorrhiza). The Results showed that, the drought stress hadsignificant infl...

  10. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  11. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  12. Nodulation, arbuscular mycorrhizal colonization and growth of some legumes native from Brazil Nodulação, colonização micorrízica arbuscular e crescimento de algumas leguminosas nativas do Brasil

    Directory of Open Access Journals (Sweden)

    Camila M. Patreze

    2005-09-01

    Full Text Available The effects of rhizobial and mycorrhizal inoculation, nitrogen and phosphorus fertilization on nodulation, mycorrhizal colonization and initial growth were examined in Brazilian native plants, Enterolobium contortisiliquum (Vell. Conc. Morong, Inga laurina (Sw. Willd., Lonchocarpus muehlbergianus Hassl and Platypodium elegans Vogel. The experiment was carried out in a glasshouse using plastic bags filled with a mixture of sandy soil from riparian forest and vermiculite (2:1 amended with basal nutrients including NP, P and N and infected with rhizobia (r, mycorrhiza (m or both (rm, amounting seven treatments: NP, P, P+r, P+rm, N, N+m and N+rm, with ten replications each. The plants were analyzed at 120 and 255 days after sowing. P deficiency negatively affected growth and nodulation of all species. Autochton arbuscular mycorrhizal fungi (AMF colonized host roots and fungal inoculations did not enhance mycorrhizal colonization, which was also favored by added P. Nodulation was relatively higher in E. contortisiliquum and L. muehlbergianus, mainly in treatments containing P, and with rhizobial inoculation (P+r. Plants from these treatments developed better than others and, despite the rhizobia inoculated had no synergistic relationship with inoculated AMF, they also showed the best percentages of mycorrhizal colonization. Moreover, these two species showed highest rates of acetylene reduction and highest leghemoglobin content. These results suggest that E. contortisiliquum and L. muehlbergianus can have advantages for establishment in soils with low nitrogen levels.Foram examinados os efeitos da inoculação com rizóbio e micorriza, da fertilização com nitrogênio e fósforo na nodulação, na colonização micorrízica e no crescimento inicial das leguminosas arbóreas brasileiras Enterolobium contortisiliquum (Vell. Conc. Morong, Inga laurina (Sw. Willd., Lonchocarpus muehlbergianus Hassl e Platypodium elegans Vogel. O experimento foi

  13. Mycorrhizas effects on nutrient interception in two riparian grass species

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asghari

    2014-12-01

    Full Text Available Effects of arbuscular mycorrhizal (AM fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively for 8 weeks under glasshouse conditions. Mycorrhizal colonization, AM external hyphae development, plant growth, nutrient uptake and NO3, NH4 and available P in soil and leachate were measured. Mycorrhizal fungi highly colonized roots of exotic grass Phalaris aquatica and significantly increased plant growth and nutrient uptake. Columns containing of AM Phalaris aquatica had higher levels of AM external hyphae, lower levels of NO3, NH4 and available P in soil and leachate than NM columns. Although roots of native grass Austrodanthonia caespitosa had moderately high levels of AM colonization and AM external hyphae in soil, AM inoculation had no significant effects on plant growth, soil and leachate concentration of NO3 and NH4. But AM inoculation decreased available soil P concentration in deeper soil layer and had no effects on dissolved P in leachate. Although both grass species had nearly the same biomass, results showed that leachate collected from Austrodanthonia caespitosa columns significantly had lower levels of NO3, NH4 and dissolve P than leachate from exotic Phalaris aquatica columns. Taken together, these data shows that native plant species intercept higher nutrient than exotic plant species and had no responsiveness to AM fungi related to nutrient leaching, but AM fungi play an important role in interception of nutrient in exotic plant species.

  14. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2011-12-01

    Full Text Available An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza and M0 (non-mycorrhiza. The Results showed that, the drought stress hadsignificant influences on dry matter of shoot, length of the root and percentage of the mycorrhizacolonization. It seemed that, the mycorrhiza had significantly increased the biomass of sorghum byinfluences on the root characteristics, such as: root length, colonization and root/shoot ratio.

  15. Hyphal growt and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Hršelová, Hana; Sudová, Radka; Gryndlerová, Hana; Řezáčová, Veronika; Merhautová, Věra

    2005-01-01

    Roč. 15, - (2005), s. 483-488. ISSN 0940-6360 R&D Projects: GA ČR GA526/03/0188; GA ČR GA526/00/1276 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60050516 Keywords : fulvic acid * humic acid * iron Subject RIV: EE - Microbiology, Virology Impact factor: 1.753, year: 2005

  16. Vesicular-arbuscular mycorrhizae and the enzymatic utilization of inorganic phosphate by plant roots: Progress report 1987

    Energy Technology Data Exchange (ETDEWEB)

    Marx, D. H.

    1987-01-01

    Whether the first-order lateral roots (FOLR) of tree seedlings is important in determining the competitiveness of individual sweet gums would be advantageous in a forest environment was investigated . We have hypothesized that large seedlings would have larger numbers of FOLR and thus would be more competitive. It was found however with half-sib sweetgum progeny that increasing seedling size through mycorrhizal fungi manipulation or through increasing fertility levels had no significant affect upon the number of FOLR. This suggested that FOLR might be under considerable genetic control and could, therefore, be of importance in predicting the future performance of an individual seedling.

  17. The Potential Use of Arbuscular Mycorrhiza in the Cultivation of Medicinal Plants in Barak Valley, Assam: A Review

    Directory of Open Access Journals (Sweden)

    Dhritiman Chanda

    2014-08-01

    Full Text Available AM fungi are widespread and are found from arctic to tropics in most agricultural and natural ecosystems. They play an important role in plant growth, health and productivity. They increase seedling tolerance to drought, high temperatures, toxic heavy metals, high or low pH and even extreme soil acidity. The cultivation of medicinal and herbal plants has assumed greater importance in recent years due to their tremendous potential in modern and traditional medicine. They are also used as raw materials for pharmaceutical, cosmetic and fragrance industries. Indian system of medicine (ISM uses 25,000 species belonging to more than 1000 genera. About 25% species are used by the industries. The Barak Valley is the southernmost part of the Assam and consists of three districts namely Cachar, Karimganj and Hailakandi. Different tribes staying here are directly using of medicinal plants for the treatments of different ailments. Comparatively very less attention has been given for the conservation of some of these rare and endangered medicinal plants which are extensively used by the tribes of Assam. So, AM fungi can play an effective role in the conservation of some valuable medicinal plants where Glomus sp. was found to be widely used for the increase yield of important medicinal plants. This review summarizes the data from recent studies to elucidate the potential use of AM fungi for promoting growth and disease resistance in medicinal plants found in southern part of Assam, which in turn provide a natural enhancer for the commercial production of traditional drugs from various important plants.

  18. Relative Importance of Individual Climatic Drivers Shaping Arbuscular Mycorrhizal Fungal Communities.

    Science.gov (United States)

    Xiang, Dan; Veresoglou, Stavros D; Rillig, Matthias C; Xu, Tianle; Li, Huan; Hao, Zhipeng; Chen, Baodong

    2016-08-01

    The physiological tolerance hypothesis (PTH) postulates that it is the tolerance of species to climatic factors that determines overall community richness. Here, we tested whether a group of mutualistic microbes, Glomeromycota, is distributed in semi-arid environments in ways congruent with the PTH. For this purpose, we modeled with climatic predictors the niche of each of the four orders of Glomeromycota and identified predictors of arbuscular mycorrhizal (AM) fungal operational taxonomic unit (OTU) richness. Our dataset consisted of 50 paired grassland and farmland sites in the farming-pastoral ecotone of northern China. We observed shifts in the relative abundance of AM fungal orders in response to climatic variables but also declines in OTU richness in grassland sites that had experienced high precipitation during the preceding year which was incongruous with the PTH. We found pronounced differences across groups of Glomeromycotan fungi in their responses to climatic variables and identified strong dependencies of AM fungal communities on precipitation. Given that precipitation is expected to further decline in the farming-pastoral ecotone over the coming years and that mycorrhiza represents an integral constituent of ecosystem functioning, it is likely that the ecosystem services in the region will change accordingly. PMID:27117797

  19. Role of Dual Inoculation of Rhizobium and Arbuscular Mycorrhizal (AM Fungi on Pulse Crops Production

    Directory of Open Access Journals (Sweden)

    Erneste HAVUGIMANA

    2016-01-01

    Full Text Available Legume crops are useful as human and animal feed, wood energy, and as soil-improving components of agricultural and agro forestry systems through its association with bio-fertilizers. The later have a potential environment friendly inputs that are supplemented for proper plant growth. Bio-fertilizers are preparations containing living cells of microorganisms that help crop plants in the uptake of nutrients by their interactions in the rhizosphere. Arbuscular mycorrhizal (AM fungi are beneficial symbionts for plant growth. They are associated with higher plants by a symbiotic association and benefit plants in the uptake of phosphorus nutrients, production of growth hormones, increase of proteins, lipids and sugars levels, helps in heavy metal binding, salinity tolerance and disease resistance. In nature symbiotic association of Rhizobium and leguminous plants fixes atmospheric nitrogen. Indeed, research has proved that the association of mycorrhizae fungi and Rhizobium, with pulse crops, increased the beneficial aspects comparatively more than their single associations with the host plants. This review focuses on the role of dual inoculation of AM fungi and Rhizobium on different pulse crops.

  20. Effect of inoculation with arbuscular mycorrhizal fungi on the degradation of DEHP in soil

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-guang; LIN Xian-gui; YIN Rui; HOU Yan-lin

    2004-01-01

    The effect of inoculation with arbuscular mycorrhiza(AM) fungi(Acaulospora lavis) on the degradation of di(2-ethylhexyl) phthalate(DEHP) in soil was studies. Cowpea plants(Pigna sinensis) were used as host plants and grown in a specially designed rhizobox. The experimental results indicated that, both in sterile and non-sterile soil, mycorrhizal colonization rates were much higher in the mycorrhizal plants than in the non-mycorrhizal plants. Addition of 4 mg/kg DEHP slightly affected mycorrhizal colonization, but the addition of 100 mg/kg DEHP significantly decreased mycorrhizal colonization. DEHP degradation in the mycorrhizosphere(Ms) and hyphosphere(Hs), especially in the Hs, increased after inoculation with Acaulospora lavis. It is concluded that mycorrhizal hyphae play an important role in the plant uptake, degradation and translocation of DEHP. The mechanism might be attributed to increased numbers of bacteria and actinomycetes and activity of dehydrogenase, urease and acid phosphatase in the Ms and Hs by mycorrhizal fungi.

  1. Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L. Seedlings under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2015-03-01

    Full Text Available Morus alba L. is an important tree species planted widely in China because of its economic value. In this report, we investigated the influence of two arbuscular mycorrhizal fungal (AMF species, Glomus mosseae and Glomus intraradices, alone and together, on the growth of M. alba L. seedlings under greenhouse conditions. The growth parameters and physiological performance of M. alba L. seedlings were evaluated 90 days after colonization with the fungi. The growth and physiological performance of M. alba L. seedlings were significantly affected by the AMF species. The mycorrhizal seedlings were taller, had longer roots, more leaves and a greater biomass than the non-mycorrhizae-treated seedlings. In addition, the AMF species-inoculated seedlings had increased root activity and a higher chlorophyll content compared to non-inoculated seedlings. Furthermore, AMF species colonization increased the phosphorus and nitrogen contents of the seedlings. In addition, simultaneous root colonization by the two AMF species did not improve the growth of M. alba L. seedlings compared with inoculation with either species alone. Based on these results, these AMF species may be applicable to mulberry seedling cultivation.

  2. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    García de León, David; Moora, Mari; Öpik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C Guillermo; Davison, John; Zobel, Martin

    2016-07-01

    Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession. PMID:27162183

  3. Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina).

    Science.gov (United States)

    Becerra, Alejandra; Zak, Marcelo R; Horton, Thomas R; Micolini, Jorge

    2005-11-01

    The objective of this study was to determine patterns of ectomycorrhizas (ECM) and arbuscular mycorrhizas (AM) colonization associated with Alnus acuminata (Andean alder), in relation to soil parameters (electrical conductivity, field H(2)O holding capacity, pH, available P, organic matter, and total N) at two different seasons (autumn and spring). The study was conducted in natural forests of A. acuminata situated in Calilegua National Park (Jujuy, Argentina). Nine ECM morphotypes were found on A. acuminata roots. The ECM colonization was affected by seasonality and associated positively with field H(2)O holding capacity, pH, and total N and negatively associated with organic matter. Two morphotypes (Russula alnijorullensis and Tomentella sp. 3) showed significant differences between seasons. Positive and negative correlations were found between five morphotypes (Alnirhiza silkacea, Lactarius omphaliformis, Tomentella sp. 1, Tomentella sp. 3, and Lactarius sp.) and soil parameters (total N, pH, and P). A significant negative correlation was found between field H(2)O holding capacity and organic matter with AM colonization. Results of this study provide evidence that ECM and AM colonization of A. acuminata can be affected by some soil chemical edaphic parameters and indicate that some ECM morphotypes are sensitive to changes in seasonality and soil parameters. PMID:16034621

  4. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Tomè, Elisabetta; Tagliavini, Massimo; Scandellari, Francesca

    2015-05-01

    Most crop species form a symbiotic association with arbuscular mycorrhizal (AM) fungi, receiving plant photosynthate and exchanging nutrients from the soil. The plant carbon (C) allocation to AM fungi and the nitrogen feedback are rarely studied together. In this study, a dual (13)CO2 and (15)NH4(15)NO3 pulse labeling experiment was carried out to determine the allocation of recent photosynthates to mycorrhizal hyphae and the translocation of N absorbed by hyphae to strawberry plants. Plants were grown in pots in which a 50 μm mesh net allowed the physical separation of the mycorrhizal hyphae from the roots in one portion of the pot. An inorganic source of (15)N was added to the hyphal compartment at the same time of the (13)CO2 pulse labeling. One and seven days after pulse labeling, the plants were destructively harvested and the amount of the recently fixed carbon (C) and of the absorbed N was determined. (13)C allocated to belowground organs such as roots and mycorrhizal hyphae accounted for an average of 10%, with 4.3% allocated to mycorrhizal hyphae within the first 24h after the pulse labeling. Mycorrhizae absorbed labeled inorganic nitrogen, of which almost 23% was retained in the fungal mycelium. The N uptake was linearly correlated with the (13)C fixed by the plants suggesting a positive correlation between a plant photosynthetic rate and the hyphal absorption capacity. PMID:25841208

  5. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique

    International Nuclear Information System (INIS)

    The effect of arbuscular mycorrhizal (AM) colonization on the uptake of trace elements in marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7Be, 22Na, 46Sc, 51Cr, 54Mn, 59Fe, 56Co, 65Zn, 74As, 75Se, 83Rb, 85Sr, 88Y, 88Zr, and 95mTc. Marigold plants were grown under controlled environmental conditions in sand culture either without mycorrhizas or in association with an AM fungus, Glomus etunicatum. The multitracer was applied to the pot, and plants were harvested at 7 and 21 d after tracer application. We found that the uptake of 7Be, 22Na, 51Cr, 59Fe, 65Zn, and 95mTc was higher in the mycorrhizal marigolds than in the non-mycorrhizal ones, while that of 46Sc, 56Co, 83Rb, and 85Sr was lower in the mycorrhizal marigolds than in the non-mycorrhizal ones. Thus, the multitracer technique enabled to analyze the uptake of various elements by plant simultaneously. It is suggested that this technique could be used to analyze the effects of AM colonization on the uptake of trace elements by plant. (author)

  6. Ambispora granatensis, a new arbuscular mycorrhizal fungus, associated with Asparagus officinalis in Andalucia (Spain).

    Science.gov (United States)

    Palenzuela, Javier; Barea, José-Miguel; Ferrol, Nuria; Oehl, Fritz

    2011-01-01

    A new dimorphic fungal species in the arbuscular mycorrhiza-forming Glomeromycota, Ambispora granatensis, was isolated from an agricultural site in the province of Granada (Andalucía, Spain) growing in the rhizosphere of Asparagus officinalis. It was propagated in pot cultures with Trifolium pratense and Sorghum vulgare. The fungus also colonized Ri T-DNA transformed Daucus carota roots but did not form spores in these root organ cultures. The spores of the acaulosporoid morph are 90-150 μm diam and hyaline to white to pale yellow. They have three walls and a papillae-like rough irregular surface on the outer surface of the outer wall. The irregular surface might become difficult to detect within a few hours in lactic acid-based mountings but are clearly visible in water. The structural central wall layer of the outer wall is only 0.8-1.5 μm thick. The glomoid spores are formed singly or in small, loose spore clusters of 2-10 spores. They are hyaline to pale yellow, (25)40-70 μm diam and have a bilayered spore wall without ornamentation. Nearly full length sequences of the 18S and the ITS regions of the ribosomal gene place the new fungus in a separate clade next to Ambispora fennica and Ambispora gerdemannii. The acaulosporoid spores of the new fungus can be distinguished easily from all other spores in genus Ambispora by the conspicuous thin outer wall. PMID:20952800

  7. The role of mycorrhizae in mediterranean ecosystem revegetation

    OpenAIRE

    Correia, Patrícia Maria Ferreira, 1970-

    2005-01-01

    Tese de doutoramento em Biologia (Ecologia), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2006 The reestablishment of a functional soil microbial community, in particular arbuscular mycorrhizal fungi (AMF), is crucial for successful plant establishment in ecosystem restoration trials. AMF soil inoculation is suggested for these extreme situations. However, little is known about its beneficial effects on woody Mediterranean plants. The overall aim of this research ...

  8. Mycorrhizas effects on nutrient interception in two riparian grass species

    OpenAIRE

    Hamid Reza Asghari; Timothy Richard Cavagnaro

    2014-01-01

    Effects of arbuscular mycorrhizal (AM) fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM) plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively) for 8 weeks under glasshouse conditions. Mycorrhi...

  9. The influence of pre-crop plants on the occurrence of arbuscular mycorrhizal fungi (Glomales and Phialophora graminicola associated with roots of winter XTriticosecale

    Directory of Open Access Journals (Sweden)

    Janusz Błaszkowski

    2014-08-01

    Full Text Available The influence of four pre-crop plant species on the occurrence of arbuscular mycorrhizal fungal (AMF, Glomales, Zygomycetes spores, mycorrhizae and Phialophora graminicola (Deacon Walker associated with roots of field-culuvated XTriticosecale Wittmack cv. Malno was investigated. The pre-crop plant species were Hordeum vutgare L., Lupinus luteus L., Pisum sativum L., and Vicia faba v. major Harz. Most spores and species of AMF were found when XTriticosecale was cultivated following P. sativum. Prior cropping with L. luteus caused the occurrence of the lowest number of spores among XTriticosecale roots. Mycorrhizal colonization of XTriticosecale was highest when planted after P. sativum and lowest when grown after L. luteus.

  10. Root and nodule : lateral organ development in N2-fixing plants

    OpenAIRE

    Xiao, T.T.

    2015-01-01

    Plants are sessile organisms. This characteristic severely limits their ability of approaching nutrients. To cope with this issue, plants evolved endosymbiotic relationships with soil fungi to extend their interface with surrounding environment. In case of arbuscular mycorrhizae (AM) fungi this occurred about 400 million years ago. The AM fungi can interact with most angiosperms. In this symbiotic relationship, the plant get nutrients, especially phosphate, from the fungi, and plants provide ...

  11. The use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilizers, in particular rock phosphate, in Venezuela: II. Monitoring mycorrhizas and phosphate solubilizing microorganisms

    International Nuclear Information System (INIS)

    The objectives of the study were to quantify and isolate P solubilizing microorganisms (fungus and bacteria) from corn, sorghum and beans rhizosphere from El Sombrero soil, located in Guarico state, a very important agricultural area in Venezuela. Rhizospheric soil samples were taken from the crops in the field and taken to the laboratory to conduct a serial dilution procedure in specific medium culture to obtain pure cultures and isolate microorganisms according to their function. The spores of arbuscular mycorrhiza (AM) from the soils were reproduced using trap pots in the greenhouse and after 4-6 months a dilute soil sample was wet-sieved and decanted for isolation of AM spores which were used for classification and for obtaining native pure cultures. Finally, the infective potential of AM was determined by setting pots with test crops and determining the AM colonization and efficiency to produce potential infection in the root system. There were no differences in the total microflora in both crop rhizospheres but there was a tendency of higher values in the corn rhizosphere due to the root exudates. Two solubilizing fungi identified were Aspergillus terreus and Aspergillus niger. (author)

  12. Transport processes in the arbuscular mycorrhizal symbiosis

    OpenAIRE

    Duensing, Nina

    2013-01-01

    The nutrient exchange between plant and fungus is the key element of the arbuscular mycorrhizal (AM) symbiosis. The fungus improves the plant’s uptake of mineral nutrients, mainly phosphate, and water, while the plant provides the fungus with photosynthetically assimilated carbohydrates. Still, the knowledge about the mechanisms of the nutrient exchange between the symbiotic partners is very limited. Therefore, transport processes of both, the plant and the fungal partner, are investigated in...

  13. Arbuscular mycorrhizal fungi affect phytophagous insect specialism

    OpenAIRE

    Gange, Alan; Stagg, P.G.; Ward, L. K.

    2002-01-01

    The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist ...

  14. Metal content in fruit-bodies and mycorrhizas of Pisolithus arrhizus from zinc wastes in Poland

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-08-01

    Full Text Available Pisolithus arrhizus has been selected for investigation as one of the ectomycorrhizal species most resistant to stress factors. Metal content in fruit-bodies and mycorrhizas was estimated to evaluate their role as bioindicators and to check whether mycorrhizas have any special properties for heavy metal accumulation. Fruit-bodies and mycorrhizas were collected from zinc wastes in Katowice-Wełnowiec and analyzed using conventional atomic absorption spectroscopy and energy dispersive spectroscopy accompanying scanning electron microscopy. Differences in tendencies to accumulate metals within sporophores and mycorrhizas were found. The fruit-bodies accumulated Al (up to 640 µg g-1, while high concentrations of Al, Zn, Fe, Ca and Si were noted in the outer mantle of the mycorrhizas. in the material secreted and in the mycelium wali. The content of elements varied depending on the agę of mycorrhizas. The ability of extramatrical mycelium and hyphae forming mycorrhizal mantle to immobilize potentially toxic elements might indicate biofiltering properties though thc next step should include investigations on ability of the fungus to prevent element uptake by the plant.

  15. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.

    Science.gov (United States)

    Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur

    2015-06-23

    For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis. PMID:25964335

  16. Efecto de algunos fungicidas sobre la interacción Rhizoctonia solani Kuhn-Micorriza vesículo arbuscular en soya, Glycine max Merril

    Directory of Open Access Journals (Sweden)

    Sánchez de Prager Marina

    1987-09-01

    Full Text Available En el campo se dispuso de dos preparaciones de suelo: natural y desinfectado químicamente (Ditrapex-CE y en el invernadero de suelo esterilizado con vapor. Se utilizaron los fungicidas Propamocarb, SN-84364, PCNB y Vitavax-300. Se contó con la flora micorrizógena natural y una cepa introducida, Glomus manihotis. R. solani disminuyó en un 50 % la emergencia de la soya, comportándose más agresivo en suelo desinfectado. En los primeros 15 días su ataque se incrementó y redujo el desarrollo de MVA en suelo natural. Al avanzar la edad de la planta decreció su infección. Con relación a la MVA la tendencia es contraria. La presencia de la MVA, incluyendo G. manihotis no incrementó significativamente la materia seca y el rendimiento de la soya. Al desinfectar el suelo los fungicidas afectaron negativamente la infección micorrizógena, mientras que en suelo natural no sucedió este fenómeno, al contrario SN-84364 incrementó su presencia. Este producto es el que menos afecta la simbiosis en el suelo desinfectado. Los fungicidas SN-84364 y PCNB mostraron gran especificidad contra R. solani y Vitavax-300 mayor espectro de acción.With the object to evaluate in the soybeans crop behavior in the interaction of Rhizoctonia solani, vesicular-arbuscular mycorrhizae (VAM and fungicides used to treatment of seed, two different soil preparations were used in the field trials: natural and chemically disinfected (Ditrapex-CE and under greenhouse: using vapor- sterilized. Was utilized the fungicides Propamocarb, SN-84364, PCNB y Vitavax- 300. Be had into account the natural mycorrhizal flora and a source of Glomus manihotis introduced. R. solani reduced the emergence of soybean by 50%, the above-metioned pathogen was more agressive in disinfected soil. In the 15 days first the attack increased and reduced the VAM development in the natural soil. With the age of the plant the pathogen infection decreased. With relation by VAM is contrary the tendency

  17. Contribuição de fungos micorrízicos arbusculares autóctones no crescimento de Guazuma ulmifolia em solo de cerrado degradado Contribution of arbuscular mycorrhizal fungi to the growth of Guazuma ulmifolia in degraded 'cerrado' soil

    Directory of Open Access Journals (Sweden)

    Sueli da Silva Aquino

    2002-12-01

    Full Text Available Ensaios foram conduzidos, em casa de vegetação, com solos de pastagem degradada reflorestada e cerrado preservado (controle visando avaliar a contribuição de fungos micorrízicos arbusculares (FMA autóctones no crescimento de mutambo (Guazuma ulmifolia Lamb.. As mudas foram transplantadas para sacos de plástico (2 kg com substratos esterilizados na proporção 4:1 (solo:areia, e o tratamento inoculado recebeu 300 esporos de FMA por saco. A inoculação não proporcionou aumento significativo na produção da matéria seca da parte aérea, matéria fresca das raízes e altura da planta, sugerindo que a G. ulmifolia não é responsiva à micorrização.Experiments were carried out in a greenhouse, using reforested degraded pasture and preserved 'cerrado' (control soil with the objective to evaluate the contribution of autoctone arbuscular mycorrhizal fungi (AMF on the Guazuma ulmifolia Lamb. growth. Seedlings were transplanted to plastic bags with 2 kg of sterilized soil: sand substrate (4:1. Plants were inoculated with ca. 300 spores of AMF per replication; noninoculated plants served as control. AMF did not improve significantly canopy dry matter, root fresh matter and plant height. G. ulmifolia showed no response to mycorrhizae.

  18. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  19. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem

    Directory of Open Access Journals (Sweden)

    Nicholas A Barber

    2013-09-01

    Full Text Available Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant-AMF interactions should include these indirect effects. To determine how AMF affect plant-insect interactions, we grew Cucumis sativus (Cucurbitaceae under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context dependency of plant-AMF interactions.

  20. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem.

    Science.gov (United States)

    Barber, Nicholas A; Kiers, E Toby; Hazzard, Ruth V; Adler, Lynn S

    2013-01-01

    Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutualists, such as pollinators, and antagonists, such as herbivores. Because herbivory and pollination can dramatically influence plant fitness, comprehensive assessment of plant-AMF interactions should include these indirect effects. To determine how AMF affect plant-insect interactions, we grew Cucumis sativus (Cucurbitaceae) under five AMF inoculum treatments and control. We measured plant growth, floral production, flower size, and foliar nutrient content of half the plants, and transferred the other half to a field setting to measure pollinator and herbivore preference of wild insects. Mycorrhizal treatment had no effect on plant biomass or floral traits but significantly affected leaf nutrients, pollinator behavior, and herbivore attack. Although total pollinator visitation did not vary with AMF treatment, pollinators exhibited taxon-specific responses, with honey bees, bumble bees, and Lepidoptera all responding differently to AMF treatments. Flower number and size were unaffected by treatments, suggesting that differences in pollinator preference were driven by other floral traits. Mycorrhizae influenced leaf K and Na, but these differences in leaf nutrients did not correspond to variation in herbivore attack. Overall, we found that AMF indirectly influence both antagonistic and mutualistic insects, but impacts depend on the identity of both the fungal partner and the interacting insect, underscoring the context-dependency of plant-AMF interactions. PMID:24046771

  1. Response of Solanum melongena L. to Inoculation with Arbuscular Mycorrhizal Fungi under Low and High Phosphate Condition

    Directory of Open Access Journals (Sweden)

    Irfan AZIZ

    2011-08-01

    Full Text Available Solanum melongena L. a medicinally and economically important crop plants were grown in polythene bags. The effect of mycorrhizal inoculation (Glomus mosseae and increasing phosphate levels on the expression of the photosynthetic activity in terms of chlorophyll content. Antioxidant enzymes like peroxidase, polyphenol oxidase, root acid and alkaline phosphatase activity of Solanum melongena were evaluated. The experimental design was entirely at CRBD with eight treatments with three levels of phosphate (50,100,150 mg kg-1 of soil. Root colonization ranged from 50.33% to 67.33% . The activity of the studied antioxidant enzymes were found to be increased in arbuscular mycorrhizal (AM Solanum plants. Root phosphatase activity was greater in 100 and 150 mg phosphate level in AM treated than non AM treated Solanum plants. Besides, only AM treated plants of Solanum reflected increase in total chlorophyll content as compared to non AM plants. This work suggests that the mycorrhiza helps Solanum plants to perform better in low and high phosphate level by enhancing antioxidant enzyme activity, acid and alkaline phosphatase activity and total chlorophyll content.

  2. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus

    DEFF Research Database (Denmark)

    Johansen, A.; Jensen, E.S.

    1996-01-01

    of growth. In half of the containers, the donor-plant shoot was removed 42 d after the start of labelling and the roots were left in the soil to decompose. The reverse transfer of N and P, from barley donor to pea receiver plants was also measured to allow calculation of the net transfer through......The role of arbuscular mycorrhizas in the transfer of N and P between pea (Pisum sativum L.) and barley (Hordeum vulgare L.) plants was studied in a controlled environment. The plants were grown together in PVC containers, either in symbiosis with Glomus intraradices Schenck and Smith or as non......-mycorrhizal controls, and with their root systems separated by an intermediate buffer zone (2 cm), confined by fine nylon mesh. The pea donor plants were supplied simultaneously with N-15 and P-32, using a split-root labelling technique, in order to follow the flow of N and P to the barley receiver plants during 60 d...

  3. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil

    International Nuclear Information System (INIS)

    Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of 238U in the range 0-87 mg kg-1. Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg-1 soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil. - Plant mycorrhization may decrease U concentration in shoots of plants grown at high level of U in soil

  4. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil

    Energy Technology Data Exchange (ETDEWEB)

    Rufyikiri, Gervais; Huysmans, Lien; Wannijn, Jean; Hees, May van; Leyval, Corinne; Jakobsen, Iver

    2004-08-01

    Subterranean clover inoculated or not with the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown on soil containing six levels of {sup 238}U in the range 0-87 mg kg{sup -1}. Increasing U concentration in soil enhanced the U concentration in roots and shoots of both mycorrhizal and nonmycorrhizal plants but had no significant effects on plant dry matter production or root AM colonization. Mycorrhizas increased the shoot dry matter and P concentration in roots and shoots, while in most cases, it decreased the Ca, Mg and K concentrations in plants. The AM fungus influenced U concentration in plants only in the treatment receiving 87 mg U kg{sup -1} soil. In this case, U concentration in shoots of nonmycorrhizal plants was 1.7 times that of shoots of mycorrhizal plants. These results suggested that mycorrhizal fungi can limit U accumulation by plants exposed to high levels of U in soil. - Plant mycorrhization may decrease U concentration in shoots of plants grown at high level of U in soil.

  5. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress.

    Science.gov (United States)

    de Andrade, Sara Adrian Lopez; Domingues, Adilson Pereira; Mazzafera, Paulo

    2015-09-01

    The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (AsV) or arsenite (AsIII) and inoculated or not with Rhizophagus irregularis. Under AsV and AsIII exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of AsV and AsIII on the photosynthetic rates and PSII efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as AsV. PMID:25935603

  6. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland.

    Science.gov (United States)

    He, Xinhua; Bledsoe, Caroline S; Zasoski, Robert J; Southworth, Darlene; Horwath, William R

    2006-01-01

    Nitrogen transfer among plants in a California oak woodland was examined in a pulse-labeling study using 15N. The study was designed to examine N movement among plants that were mycorrhizal with ectomycorrhizas (EM), arbuscular mycorrhizas (AM), or both. Isotopically enriched N (K15NO3-) was applied to gray pine (Pinus sabiniana) foliage (donor) and traced to neighboring gray pine, blue oak (Quercus douglasii), buckbrush (Ceanothus cuneatus) and herbaceous annuals (Cynosurus echinatus, Torilis arvensis and Trifolium hirtum). After 2 wk, needles of 15N-treated pines and foliage from nearby annuals were similarly enriched, but little 15N had appeared in nontreated (receiver) pine needles, oak leaves or buckbrush foliage. After 4 wk foliar and root samples from pine, oak, buckbrush and annuals were significantly 15N-enriched, regardless of the type of mycorrhizal association. The rate of transfer during the first and second 2-wk periods was similar, and suggests that 15N could continue to be mobilized over longer times. PMID:16539611

  7. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  8. Growing poplars for research with and without mycorrhizas.

    Science.gov (United States)

    Müller, Anna; Volmer, Katharina; Mishra-Knyrim, Manika; Polle, Andrea

    2013-01-01

    During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research have become available. Poplar species occur in different habitats and harbor large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula, and P. euphratica) and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus) as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported. PMID:23986772

  9. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    International Nuclear Information System (INIS)

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed

  10. Heavy metal distribution in Suillus luteus mycorrhizas - as revealed by micro-PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Turnau, K. E-mail: ubturnau@cyf-kr.edu.pl; Przybylowicz, W.J.; Mesjasz-Przybylowicz, J

    2001-07-01

    Suillus luteus/Pinus sylvestris mycorrhizas, collected from zinc wastes in Southern Poland, were selected as potential biofilters on the basis of earlier studies carried out with energy dispersive spectrometry (EDS) microanalytical system coupled to scanning electron microscope (SEM) and transmission electron microscope (TEM). Using the National Accelerator Centre (NAC) nuclear microprobe, elemental concentrations in the ectomycorrhiza parts were for the first time estimated quantitatively. Micro-proton-induced X-ray emission (PIXE) true elemental maps from freeze-dried and chemically fixed mycorrhizas revealed strong accumulation of Ca, Fe, Zn and Pb within the fungal mantle and in the rhizomorph. Vascular tissue was enriched with P, S and K, while high concentrations of Si and Cl were present in the endodermis. Cu was the only element showing elevated concentrations in the cortex region. Elemental losses and redistributions were found in mycorrhizas prepared by chemical fixation. Some problems related to elemental imaging are discussed.

  11. Fungos micorrízicos arbusculares e adubação fosfatada em mudas de mangabeira Arbuscular mycorrhizal fungi and phosphorus supply on seedlings of mangabeira

    Directory of Open Access Journals (Sweden)

    Cynthia Maria Carneiro Costa

    2005-03-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de fungos micorrízicos arbusculares (FMA e da adubação fosfatada em mudas de mangabeira (Hancornia speciosa Gomes. O experimento, em casa de vegetação, utilizou delineamento inteiramente casualizado em fatorial com dois tratamentos de solo nativo oriundo de pomar com mangabeiras, desinfestado com brometo de metila e não-desinfestado, seis doses de P (3*, 3, 48, 93, 138 e 183 mg dm-3 e três tratamentos de inoculação, Gigaspora albida Schenck & Smith, Glomus etunicatum Becker & Gerdemann e controle sem inoculação, com quatro repetições. O tratamento 3* não recebeu solução nutritiva e os demais receberam solução nutritiva de Hoagland sem fósforo por ocasião da inoculação. Após 150 dias, observou-se aumento na altura, biomassa e área foliar nos tratamentos com G. albida, em solo desinfestado. Respostas à inoculação ocorreram nas mudas cultivadas com a menor dose de P, nos dois tratamentos de solo. A mangabeira mostrou-se dependente da micorrização apenas na menor dose de P em solo desinfestado. Nos demais níveis de P, a dependência variou em função do FMA e da condição do solo. A associação com G. albida proporcionou melhor desenvolvimento das mudas de mangabeira.The objective of this work was to evaluate the effects of the association of arbuscular mycorrhizal fungi (AMF and phosphorus fertilization on seedlings of "mangaba" (Hancornia speciosa. The experiment, at a greenhouse, was in a completely randomized factorial design with two treatments of the native soil from an H. speciosa orchard, fumigated with methyl bromite and non-fumigated, six doses of P (3*, 3, 48, 93, 138 and 183 mg dm-3 and three inoculation treatments, Gigaspora albida Schenck & Smith, Glomus etunicatum Becker & Gerdemann and an uninoculated control, with four replicates. The treatment 3* did not receive nutrient solution and the others received Hoagland nutrient solution without phosphorus

  12. Molecular Identification of Mycorrhizae of Cymbidium kanran (Orchidaceae) on Jeju Island, Korea.

    Science.gov (United States)

    Hong, Ji Won; Suh, Hyoungmin; Kim, Oh Hong; Lee, Nam Sook

    2015-12-01

    A fungal internal transcribed spacer region was used to identify the mycorrhizae of Cymbidium kanran. The family Russulaceae was found to be the most frequently occurring group in both root and soil samples. In phylogenetic analyses, the majority of the Russulaceae clones were clustered with Russula brevipes and R. cyanoxantha. Therefore, C. kanran may form symbiotic relationships with the genus Russula. PMID:26839508

  13. AM对重金属和有机污染土壤的修复及机理%Arbuscular Mycorrhizal Remediation and Mechanisms on Heavy Metals and Organic Pollutants Con-taminated Soils

    Institute of Scientific and Technical Information of China (English)

    张又丹; 郝鲜俊

    2015-01-01

    随着现代农业科技的发展,土壤中污染物的种类和数量也迅速增加,这直接导致了我国可利用耕地土壤面积的减少,造成土地减产和大量的经济损失。如何恢复或修复遭受污染的土地成为21世纪环境生态治理的热点。菌根(Mycorrhiza)是土壤中某些真菌与植物根系形成的一种共生体,在自然界中普遍存在,最常见的类型是丛枝菌根(Ar‐buscular Mycorrhiza ,AM )。 AM 的自身代谢作用能将一些土壤污染物分解为无毒物质,其分泌的球囊霉素可以络合土壤中的重金属,并且 AM 与宿主植物建立共生关系后,不仅能改善植物的生长状况,还可引起植物根际微域环境的变化,如 pH 值、酶以及微生物的数量和种类等,这些都有助于降低土壤中污染物的含量。本文主要综述了 AM 在污染土壤方面的最新研究进展,重点阐述了其对重金属和有机污染土壤的修复效应及机理,并对目前研究中存在的问题以及未来研究方向做出探讨。%With the development of modern agricultural technology ,the kinds and amounts of contaminants in soil are al‐so increasing rapidly ,which led directly to the area of arable land can be used to reduce and cause land reduction of out‐put and amount of economic loss. Therefore ,how to restore or remediate of contaminated land has become a hot of envi‐ronment ecological management in the 21st century. Mycorrhiza is a kind of symbiont that fungi and plant roots formed , it is ubiquitous in nature ,and the most common type is arbuscular mycorrhizal(AM ). The metabolism of AM can de‐compose some pollutants in the soil into non‐toxic substances ,and the glomalinwhich AM secrete can chelate heavy metals in the soil ,and after the AM establishing a symbiotic relationship with the host plant ,that not only improve the grow th conditions of plant ,but also cause changes in the rhizosphere micro domain

  14. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas.

    Science.gov (United States)

    Bencherif, Karima; Boutekrabt, Ammar; Fontaine, Joël; Laruelle, Fréderic; Dalpè, Yolande; Sahraoui, Anissa Lounès-Hadj

    2015-11-15

    Soil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere. Soil samples were collected from natural sites with increasing salinity (1.82-4.95 ds.m(-1)). Six arbuscular mycorrhizal fungi (AMF) species were isolated from the different saline soils and identified as Septoglomus constrictum, Funneliformis mosseae, Funneliformis geosporum, Funneliformis coronatum, Rhizophagus fasciculatus, and Gigaspora gigantea. The number of AMF spores increased with soil salinity. Total root colonization rate decreased from 65 to 16% but remained possible with soil salinity. Microbial biomass in T. articulata rhizosphere was affected by salinity. The phospholipid fatty acids (PLFA) C16:1ω5 as well as i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, C18:1ω7 and cy19:0 increased in high saline soils suggesting that AMF and bacterial biomasses increased with salinity. In contrast, ergosterol amount was negatively correlated with soil salinity indicating that ectomycorrhizal and saprotrophic fungal biomasses were reduced with salinity. Our findings highlight the adaptation of arbuscular and bacterial communities to natural soil salinity and thus the potential use of mycorrhizal T. articulata trees as an approach to restore moderately saline disturbed arid lands. PMID:26184906

  15. Mycorrhizal phosphate uptake pathway in maize: Vital for growth and cob development on nutrient poor agricultural and greenhouse soils

    Directory of Open Access Journals (Sweden)

    Martin eWillmann

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighbouring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labelled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighbouring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signalling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells.

  16. A quantitative and molecular examination of Tuber melanosporum mycorrhizae in Quercus ilex seedlings from different suppliers in Spain

    Directory of Open Access Journals (Sweden)

    P. Alvarado

    2013-07-01

    Full Text Available Aim of study: The aim of the work was to determine the degree of mycorrhization of Quercus ilex L. subsp. ballota (Desf. Samp. by the black truffle fungus T. melanosporum Vittad. by quantitative and molecular analyses.Area of study: seedlings inoculated by different Spanish suppliers.Material and methods: The internal transcribed spacers (ITS of mycorrhizae from different plants were amplified by nested PCR involving fluorescently-labelled primers, and the amplicons either directly sized by ARISA or analysed by TRFLP following their digestion with restriction endonucleases. TRFLP analysis distinguished between mycorrhizae of T. melanosporum, T. indicum Cooke & Massee and T. borchii Vittad., as suggested possible by virtual (in silico TRFLP analysis and real TRFLP analysis of the ascomata of these species.Main results: Significant differences between suppliers were detected in terms of the mean number of mycorrhizae established per plant and percentage mycorrhization. These results allowed the following quality standards for 2 year-old plants to be proposed: a good quality: >3000 mycorrhizae/plant, >40% mycorrhization, b medium (acceptable: >3000 mycorrhizae/plant, >30% mycorrhization, c low quality: <3000 mycorrhizae/plant or <30% mycorrhization, always supposing the mycorrhizae counted represent the species of interest as confirmed by the presence of its DNA and the absence of DNA belonging to contaminating species. Finally, a new microsatellite allelic map obtained from the analysis of several T. melanosporum populations across Spain was used to provide a tool capable of determining the geographic origin of the fungi used to inoculate plants.Research highlights: The proposed quality standards can be useful for the evaluation and certification of commercialized Q. ilex plants mycorrhized with T. melanosporum.Keywords: mycorrhiza; certification; truffle; TRFLP; fungi.

  17. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  18. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Science.gov (United States)

    Adolfsson, Lisa; Solymosi, Katalin; Andersson, Mats X; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  19. Compatibilidade simbiótica de fungos micorrízicos arbusculares com espécies arbóreas tropicais Symbiotic compatibility of arbuscular mycorrhizal fungi with tropical tree species

    Directory of Open Access Journals (Sweden)

    Enrique Pouyu-Rojas

    2006-06-01

    revegetação de áreas degradadas é discutida.Revegetation with tree species is an appropriate strategy for the rehabilitation of degraded areas. However, the establishment and growth of these species in low nutrient soils depends upon several factors, such as the ability of the species to form and benefit from mycorrhizae. In this study, conducted in pots under greenhouse conditions at the Federal University of Lavras in Minas Gerais, Brazil, aspects of host-fungus relationship in tree species found in Southeastern Brazil were evaluated. The following arbuscular mycorrhiza (AM fungal species were studied: Scutellospora pellucida, Acaulospora scrobiculata, Entrophospora colombiana, Gigaspora gigantea, Gigaspora margarita, Glomus etunicatum, Scutellospora gregaria, Glomus clarum, and fungi isolated from agrosystems and native forest. All these fungi were inoculated on the following sixteen plant species: Luehea grandiflora, Cecropia pachystachya, Schinus terebinthifoliu, Machaerium nyctitans, Senna macranthera, Senna spectabilis, Solanum granuloso-leprosum, Caesalpinea férrea, Tabebuia serratifolia, Maclura tinctoria, Guazuma ulmifolia, Acacia polyphylla, Mimosa caesalpiniaefolia, Enterolobium contortisiliquum, Trema micrantha, and Cedrela fissilis. These species presented differentiated susceptibility and growth response under inoculation with AM fungi. Within the substantially wide range of symbiotic efficiency Gl. clarum, E. colombiana, S. pellucid,a and Gl. etunicatum presented the highest amplitudes, being efficient for over 80 % of all studied species, whereas A. scrobiculata was the fungus with the most restricted range of hosts. A compatibility analysis of the host-fungus relationships indicated the existence of a differential selectivity among them, resulting in varied symbiotic efficiency for the host plants. The importance of these results for the revegetation of degraded areas is discussed.

  20. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters of the...... asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  1. Arbuscular mycorrhizal associations of plants colonizing coal mine spoil in India

    Energy Technology Data Exchange (ETDEWEB)

    Mehotra, V.S. [PSS Central Institute of Vocational Education, Bhopal (India)

    1998-03-01

    A survey of soil and root samples collected beneath some pioneering plants colonizing reclaimed mine spoil at an opencast coal mine site at Chandrapur, Maharashtra State, India, was conducted in October 1994 to examine the possible host and edaphic influence on the occurrence of arbuscular mycorrhizal (AM) fungi. Thirteen plant species were sampled to determine the mycorrhizal root colonization and the number of spores of individual AM fungal species in the rhizosphere. The paper concludes that the pioneering plant species on mine spoils can cause the development of different populations of AM fungi. The study also indicated that certain species of AM fungi have broad environmental requirements.

  2. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    Science.gov (United States)

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology. PMID:25247056

  3. The role of arbuscular mycorrhizal fungi on the early-stage restoration of seasonally dry tropical forest in Chamela, Mexico

    Directory of Open Access Journals (Sweden)

    Pilar Huante

    2012-04-01

    Full Text Available It was evaluated the effect of two different sources of local inocula from two contrasting sites (mature forest, pasture of arbuscular mycorrhizae fungi (AMF and a non-mycorrhizal control on the plant growth of six woody species differing in functional characteristics (slow-, intermediate- and fast-growth, when introduced in a seasonally tropical dry forest (STDF converted into abandoned pasture. Six plots (12 X 12m were set as AMF inoculum source. Six replicates of six different species arranged in a Latin Square design were set in each plot. Plant height, cover area and the number of leaves produced by individual plant was measured monthly during the first growing season in each treatment. Species differed in their ability to benefit from AMF and the largest responsiveness in plant height and leaf production was exhibited by the slow-growing species Swietenia humilis, Hintonia latiflora and Cordia alliodora. At the end of the growing season (November, the plant height of the fast growing species Tabebuia donnel-smithii, Ceiba pentandra and Guazuma ulmifolia were not influenced by AMF. However, inocula of AMF increased leaf production of all plant species regardless the functional characteristics of the species, suggesting a better exploitation of above-ground space and generating a light limited environment under the canopy, which contributed to pasture suppression. Inoculation of seedlings planted in abandoned pasture areas is recommended for ecological restoration due to the high responsiveness of seedling growth in most of species. Use of forest inoculum with its higher diversity of AMF could accelerate the ecological restoration of the above and below-ground comunities.

  4. Linking mycorrhizas to sporocarps: a new species, Geopora cercocarpi, on Cercocarpus ledifolius (Rosaceae).

    Science.gov (United States)

    Southworth, Darlene; Frank, Jonathan L

    2011-01-01

    Mycorrhizal assemblages characterized by molecular data frequently differ from collections of mycorrhizal sporocarps at the same site. Geopora species are frequent mycobionts of ectomycorrhizal roots, but except for G. cooperi they are rarely identified to species by molecular methods. Among the mycobionts of ectomycorrhizas with Cercocarpus ledifolius (Rosaceae) was a fungal species with a 91% BLAST match to G. arenicola. To determine the species of Geopora we surveyed for hypogeous sporocarps under C. ledifolius at sites in southern Oregon where the Geopora mycorrhizas had been collected and identified by DNA sequences of the ITS region. We found sporocarps of a Geopora species with 100% BLAST match to the mycorrhizas. Morphological characters of a white hymenium, inrolled entire margin and large spores, along with a hypogeous habit and a mycorrhizal host of C. ledifolius, distinguished these specimens from previously described species. Here we describe a new species, Geopora cercocarpi. PMID:21700635

  5. Effects of VA mycorrhizas fungus on phosphorus and potassium uptake in tea seedlings

    International Nuclear Information System (INIS)

    Tea (Camellia sinensis) seeds were sown on sterilized acidic yellow soil (pH 5.6) in a pot experiment and treated as follows: 1) inoculated with VA mycorrhizas fungus (Glomus citricolum), 2) nonmycorrhizal as control, top dressed with 32P-single superphosphate (M-32P) and 86Rb-rubidium chloride (M-86Rb). The results showed that the percentage of VA mycorrhizas infection was 52.6% for M-32P and 56.7% for M-86Rb. Plant height, dry weight and the uptake of phosphorus and potassium were 2.1 and 1.8 times, 2.4 and 2.5 times, 5.6 and 4.1 times as that of control respectively. The utilization rate of phosphorus and potassium were raised by 14.10% and 17.13% respectively

  6. Simulating mycorrhiza contribution to forest C- and N cycling-the MYCOFON model

    OpenAIRE

    Meyer, A.; R. Grote; Polle, A.; K. Butterbach-Bahl

    2009-01-01

    Although mycorrhiza has been identified to be of major importance for plant nutrition and ecosystem stability, existing C- and N- simulation models on the ecosystem scale do not explicitly consider the feedbacks between ectomycorrhizal fungi and plants. We present a simple dynamic feedback model which allows estimating the main C- and N- flows between ectomycorrhizal fungi and tree roots in order to test the sensitivity of the system fungus-tree to environmental parameters and to assess the f...

  7. Dipterocarps and Mycorrhiza. An ecological adaptation and a factor in forest regeneration

    OpenAIRE

    Smits, W.Th.M.

    1983-01-01

    Each dipterocarp has its own species of fungus, forming an ectomycorrhiza. From literature and experiments (in East Kalimantan and in vitro) ecological consequences are explored. These help explain the clumping of dipterocarp trees in the forest, the lack of hybrids, the poor dispersal, and speciation as dependent on the viability of the root-fungus combination on a particular soil type. Mycorrhizas are located in the top soil. They are extremely sensitive to increase of soil temperatures as ...

  8. Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum

    Czech Academy of Sciences Publication Activity Database

    Vosátka, Miroslav; Dodd, J. C.

    1. Basel: Birkhäuser Verlag, 2002 - (Gianinazzi, S.; Schüepp, H.; Barea, J.; Haselwandter, K.), s. 235-247 R&D Projects: GA ČR GA526/99/0895; GA MŠk OC 838.10 Institutional research plan: CEZ:AV0Z6005908 Keywords : ecology of AMF * edaphic stress * indigenous mycorrhiza Subject RIV: EF - Botanics

  9. Rendimento de massa seca e absorção de fósforo pelo milho afetado pela aplicação de fósforo, calcário e inoculação com fungos micorrízicos Dry matter of corn and phosphorus uptake as affected by liming, rates of phosphorus, and mycorrhizae inoculation

    Directory of Open Access Journals (Sweden)

    Julio Cesar Pires Santos

    1996-04-01

    Full Text Available A colonização do sistema radicular com micorrizas pode aumentar a absorção de P e com isto aumentar o crescimento das plantas, o que parece ser mais comum em solos com baixa disponibilidade de P. No presente trabalho, a inoculação com fungos micorrízicos arbusculares (FMA, objetivou avaliar seu efeito na morfologia do sistema radicular, na produção de massa seca e na absorção de fósforo pelo milho. Utilizou-se o latossolo bruno argiloso, e os tratamentos consistiram de dois valores de pH (4,8 e 5,5, duas doses de fósforo (25 e 100mg P/kg de solo e inoculação com FMA. O experimento foi conduzido em casa de vegetação com cinco repetições, distribuídas no delineamento experimental completamente casualisado. Aos 46 dias após a emergência as plantas foram colhidas, e nelas determinou-se a produção de massa seca de parte aérea e de raízes, o comprimento e o raio médio radicular. a porcentagem e intensidade de colonização micorrízica e a absorção de fósforo. A inoculação com FMA aumentou a CM mas não afetou a produção de massa seca e absorção de fósforo pelo milho, embora as raízes mostrassem menor comprimento, indicando que as hifas extraradiculares compensaram o crescimento radicular. A adição de fósforo e a elevação do pH aumentaram a massa seca da parte aérea e raízes, a absorção de fósforo e o comprimento radicular.The existence of mycorrhiza in the plant roots may increase phosphorus uptake and thus crop yield. This effect, however, seems to occur only in phosphorus deficient soils. The objetive of this work was to evaluate the effect of soil pH, rates of phosphorus addition, and mycorrhiza inoculation on dry matter yield of corn and on phosphorus uptake. The experiment was run in a greenhouse, using an oxisol, with five replicates per treatment distributed in a completely randomized experimental design. The treatments, a 2x2x2 factorial, were two rates of phosphorus (25 and 100mg P/kg, two p

  10. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Science.gov (United States)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  11. Effects of two arbuscular mycorrhizae fungi on some soil hydraulic properties and nutrient uptake by spring barley in an alkaline soil under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    2015-06-01

    Full Text Available In order to investigate the effects of mycorrhizal symbiosis on some soil hydraulic properties and nutrients uptake by spring barley, a greenhouse experiment was conducted based on a completely randomized blocks design with four replications, using two mycorrhizl fungi including Glomus intraradices (GI and Glomus etunicatum (GE and non-mycorrhizal (control treatments, in an alkaline coarse-textured soil. Results showed that GE and GI significantly increased (P< 0.01 field capacity (FC water content by 24.7 and 12.6%, permanent wilting point (PWP water content by 20.1 and 11.1%, available water capacity (AWC by 27.1 and 13.3%, micropores by 14.1 and 5%, mesopores by 27.8 and 20.8% and decreased macropores by 17.3 and 9.5% and saturated hydraulic conductivity by 88.2 and 68.8% relative to the control, respectively. Also, GE and GI fungi significantly increased (P< 0.01 uptake of phosphorus in barely seeds by 44.1 and 20.3% and in stem by 181 and 50.6% and potassium in seeds by 290.8 and 167.9%, respectively. It is concluded that mycorrhizal symbiosis, as a biological and sustainable method, improved hydraulic and chemical quality of the alkaline coarse-textured soil.

  12. Effects of two arbuscular mycorrhizae fungi on some soil hydraulic properties and nutrient uptake by spring barley in an alkaline soil under greenhouse conditions

    OpenAIRE

    2015-01-01

    In order to investigate the effects of mycorrhizal symbiosis on some soil hydraulic properties and nutrients uptake by spring barley, a greenhouse experiment was conducted based on a completely randomized blocks design with four replications, using two mycorrhizl fungi including Glomus intraradices (GI) and Glomus etunicatum (GE) and non-mycorrhizal (control) treatments, in an alkaline coarse-textured soil. Results showed that GE and GI significantly increased (P< 0.01) field capacity (FC) wa...

  13. 丛枝菌根在芦荟育苗中的应用%Study on Application of Arbuscular-Mycorrhizas in Growing Seedlings of Aloe vera

    Institute of Scientific and Technical Information of China (English)

    弓明钦; 王凤珍; 陈羽

    2002-01-01

    利用6种丛枝(AM)菌和 1 种 AM 菌剂对库拉索芦荟Aloe vera 组培幼苗接种的结果表明:供试菌种或菌剂均可使幼苗形成丛枝菌根,感染率达96.67%~100%,感染指数达73.30~86.67;接种13个月的苗高比对照增加19.85%~51.91%;叶片长度比对照增加56.67%;芦荟幼苗经接种后,叶片汁液的干物质含量,比对照分别增加13.13%~150.%%.接种15个月的芦荟幼苗叶汁鲜重比对照增加60.87%~233.80%;折合有效成分的生药含量,比对照提高2.17倍~7.24倍.

  14. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.

    Science.gov (United States)

    Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella

    2015-12-01

    High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands. PMID:26423290

  15. Effects of arbuscular mycorrhizal fungus on net ion fluxes in the roots of trifoliate orange(Poncirus trifoliata) and mineral nutrition in seedlings under zinc contamination%丛枝菌根真菌对枳根净离子流及锌污染下枳苗矿质营养的影响

    Institute of Scientific and Technical Information of China (English)

    肖家欣; 杨慧; 张绍铃

    2012-01-01

    We investigated the effects of arbuscular mycorrhizal fungus inoculation on net ion flux in the roots of trifoliate orange ( Poncirus trifoliata ( L. ) Raf. ) and mineral nutrition in seedlings under zinc contamination. A pot experiment was conducted to study plant growth as well as the distribution of zinc, copper, phosphorus, potassium, calcium, and magnesium in trifoliate orange seedlings inoculated by the arbuscular mycorrhizal fungus, Glomus intraradices, under greenhouse conditions. Plants were grown in yellow soil:quartz sand (9:1 , v/v) medium and were irrigated with solutions containing three different zinc concentrations (0, 300 and 600 mg/kg) , which corresponded to control, medium and high zinc contamination treatments, respectively. Meanwhile, a non-invasive micro-test technique was used to determine the net fluxes of Ca2+, H+ and NO-3 along mycorrhizal and non-mycorrhizal roots of trifoliate orange seedlings grown in medium with no zinc added. Arbuscular mycorrhizal colonization significantly increased the fresh weight of shoots and roots exposed todifferent zinc levels. With increasing zinc concentrations, the myeorrhizal colonization percentage decreased, while the zinc levels in the shoots and roots progressively increased. Zinc concentrations in the roots were significantly higher in arbuscular myeorrhizal seedlings than in non-arbuscular myeorrhizal seedlings. The shoot/root ratios of the zinc translocation coefficient gradually decreased in arbuscular myeorrhizal seedlings with increasing zinc concentrations. This indicated that at medium or high levels of zinc contamination, a lot of zinc was immobilized in roots through the establishment of mycorrhizae. Therefore, phytotoxicity might be alleviated. Copper, phosphorus, potassium, and magnesium concentrations in shoots of plants grown in medium with no added zinc were significantly higher in arbuscular myeorrhizal seedlings than those in non-arbuscular myeorrhizal seedlings. Similarly, copper

  16. Dynamic of arbuscular mycorrhizal population on Amazon forest from the south Colombia

    International Nuclear Information System (INIS)

    This work compared changes occurred on the number of arbuscular mycorrhizal spores at three mature forests and three regenerative forests, before and after clear-cutting. Results suggest that it is possible to predict the quantity of arbuscular mycorrhizal inocule after clear-cutting if initial number and type of forests is known before. A model to explain these changes shows that arbuscular mycorrhizal depletion on mature forests is about 70% after clear-cutting. Survival mycorrhizal populations colonize regenerative forests. Then, if a clear-cutting occurs on regenerative forests, arbuscular mycorrhizal populations will decrease on 35%, being less drastic that it occurred on mature forests

  17. Fungos micorrízicos-arbusculares no desenvolvimento de mudas de helicônia e gérbera micropropagadas Application of arbuscular mycorrhiza to micropropagated heliconia and gerbera plants during acclimatization period

    OpenAIRE

    Aurora Yoshiko Sato; Dulcimara Carvalho Nannetti; José Eduardo Brasil Pereira Pinto; José Oswaldo Siqueira; Maria de Fátima Arrigoni Blank

    1999-01-01

    Plântulas micropropagadas de helicônia (Heliconia sp) gérbera (Gerbera sp) de vaso, foram aclimatadas em substrato (torta de filtro 50%, solo 30% e areia 20%), inoculado com três espécies de fungo micorrízico (Glomus clarum Nicolson. & Schenck, Glomus etunicatum Becker & Gerdemann e Gigaspora margarita Becker & Hall) e uma mistura destas espécies (inóculo múltiplo). As avaliações quanto ao desenvolvimento da parte aérea e do sistema radicular e porcentagem de colonização, foram feitas aos 60 ...

  18. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  19. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Lobinski, R.; Burger-Meyer, K.;

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic...... garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 mu g g(-1) (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in...... garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that gamma-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few...

  20. Research on: A. Reclamation of borrow pits and denuded lands; B. Biochemical aspects of mycorrhizae of forest trees

    Energy Technology Data Exchange (ETDEWEB)

    Marx, D.H. (comp.)

    1990-12-01

    This report furnishes a list of compiled and ongoing studies and a list of publications which resulted from the research accomplished by Institute scientists and other collaborators. The research accomplished can be placed in four categories: I. Research on borrow pit rehabilitation with 12 publications; II. Research on artificial regeneration of southern pines with 34 publications; III. Research on artificial regeneration of eastern hardwoods with 16 publications; and IV. Cooperative research with the University of Georgia on biochemical aspects of mycorrhizae with 5 publications. Major accomplishments of this research are: 1. Procedures to successfully reclaim borrow pits with sludge, subsoiling and seedlings with specific mycorrhizae. 2. Protocols to successfully artificially regenerate southern pines (particularly ling leaf pine) and certain eastern hardwoods. 3. Basic understanding of the biochemistry of mycorrhizae and the discovery of a new pathway for sucrose utilization in plants. 67 refs.

  1. Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business

    Czech Academy of Sciences Publication Activity Database

    Gianinazzi, S.; Vosátka, Miroslav

    2004-01-01

    Roč. 82, - (2004), s. 1264-1271. ISSN 0008-4026 Institutional research plan: CEZ:AV0Z6005908 Keywords : Inoculum production * mycorrhiza applications Subject RIV: EF - Botanics Impact factor: 1.194, year: 2004

  2. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Brian; Kjøller, Rasmus; Bruun, Hans Henrik; Schnoor, Tim Krone; Rosendahl, Søren

    2016-01-01

    The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities was...... assessed through 454 pyrosequencing. Internal community structure was investigated through fitting the rank-abundance of Operational Taxonomic Units to different models. Heterogeneity of communities within islands was assessed by analysis of group dispersion. The mean OTU richness per sample was...... significantly lower on the artificial island than on the neighboring natural island, indicating that richness of the colonizing AM fungal community is restricted by limited dispersal. The AM fungal communities colonizing the new island appeared to be a non-random subset of communities on the natural and much...

  3. Development of root-symbiosis systems for testing environmental chemicals in their effects in soils; Entwicklung eines Wurzelsymbiosesystems zum Testen von Umweltchemikalien auf ihre Wirkung in Boeden

    Energy Technology Data Exchange (ETDEWEB)

    Werner, D. [Marburg Univ. (Germany). Abt. Angewandte Botanik; Wetzel, A. [Marburg Univ. (Germany). Abt. Angewandte Botanik; Goerge, E. [Marburg Univ. (Germany). Abt. Angewandte Botanik; Brandt, S. [Marburg Univ. (Germany). Abt. Angewandte Botanik; Klante, G. [Marburg Univ. (Germany). Abt. Angewandte Botanik

    1992-03-31

    Root symbiosis of legumes with symbiotic bacteria of the genus Rhizobium and with symbiotic fungi (vesicular-arbuscular mycorrhiza) have been established as sensitive bioindicators for soil environmental chemicals. For different plant species also different transfer rates for those substances have been found. Towards heavy metals (cadmium, lead, arsenite) the symbioses react very differentiated. As environmental chemicals chinoline, fluoranthene, phenanthrene und anthracene have been studied. (orig.) [Deutsch] Die Wurzelsymbiosen von Leguminosen mit symbiotischen Bakterien (Rhizobium) und symbiotischen Pilzen (vesikulaer-arbuskulaere Mycorrhiza) wurden als empfindliche Bioindikatoren gegenueber bodenbelastenden Altstoffen nachgewiesen. Fuer verschiedene Kulturpflanzen wurden unterschiedliche Transferraten aus dem Boden in die Pflanzenmatrix nachgewiesen. Gegenueber Schwermetallen (Cadmium, Blei, Arsenit) reagieren die Symbiosen sehr unterschiedlich. Als Altstoffe wurden modellhaft Chinolin, Fluoranthen, Phenanthren und Anthrazen verwendet. (orig.)

  4. Efeito da mobilização do solo nas micorrizas arbusculares de cereais de Inverno Effects of soil management on arbuscular mycorrhizal fungi in autumn-sown crops

    Directory of Open Access Journals (Sweden)

    I. Brito

    2007-01-01

    sua capacidade para gerar novas colonizações no período cultural. Com o objectivo de avaliar a diversidade dos Glomeromycota presentes no campo de ensaios em estudo, sujeito aos dois tipos de mobilização do solo (SD e MT, foi usada a técnica de amplificação de sequências de rDNA destes fungos a partir de DNA total do solo. Esta técnica permite uma avaliação abrangente, evitando a morosidade e complexidade da abordagem clássica através de culturas armadilha. No total foram analisadas 87 sequencias, provenientes de solo perturbado e não perturbado, e encontrados 11 tipos ribosomais. Considerando as diferenças de frequência dos tipos ribosomais presentes em cada tipo de solo, os resultados parecem confirmar que os fungos micorrízicos arbusculares são diferencialmente susceptíveis à perturbação do solo, não só em termos de diversidade como ao nível da estrutura da comunidade.Soil tillage may markedly reduce the rate of arbuscular mycorrhiza (AM establishment by breaking up the living AM fungal mycelium in the soil. In no till or reduced till management, this mycelium can allow earlier AM formation. Work under field conditions in a Mediterranean climate clearly confirmed that wheat plants cultivated under no-till system had a 6 fold greater mycorrhizal colonization than those grown using a conventional tillage system. Pot experiments were initiated to determine the benefit of the timing of colonization on plants. Soil disturbance induced by tillage practices was simulated by passing the soil through a 4 mm sieve at the start of each successive period of 3 weeks plant growth cycles. After 4 cycles of plant growth (wheat, significant effects in all colonization parameters were detected. Arbuscular, vesicular and hyphal colonization were clearly higher in undisturbed soil. To gain a global overview of the diversity of Glomeromycota under the 2 cultivation systems in the experimental field, rDNA sequences from the fungi have been amplified

  5. OCCURRENCE OF ARBUSCULAR MYCORRHIZAL FUNGI IN SOME MEDICINAL PLANTS OF KERALA

    OpenAIRE

    Mathew, Abraham; Malathy, M.R.

    2006-01-01

    The occurrence of mycorrhiza in 40 selected medicinal plants was studied. The percentage of mycorrhizal colonization in each of the plant was calculated. The colonization was found to be very less in four plants and very high in six plants. All others showed a moderate level of colonization. The present work suggests the use of mycorrhiza as a biofertilizer to enhance the growth and yield of medicinal plants.

  6. Long-term preservation of Arbuscular mycorrhizal fungi

    OpenAIRE

    Lalaymia, Ismahen

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts, forming associations with most existing terrestrial plants. The plants obtain inorganic nutrients (e.g. N, P) via their fungal partners in exchange of which they provide the fungi with carbon compounds. AMF improve plant growth, health and productivity and as such, represent key organisms in agro-ecosystems. Currently, AMF diversity is maintained via continuous culture; in vivo on trap plants under greenhouse facilities, and in v...

  7. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes

  8. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales

    Czech Academy of Sciences Publication Activity Database

    Vohník, Martin; Sadowsky, J. J.; Kohout, Petr; Lhotáková, Z.; Nestby, R.; Kolařík, Miroslav

    2012-01-01

    Roč. 7, č. 6 (2012), e39524. E-ISSN 1932-6203 R&D Projects: GA ČR GP206/09/P340 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : ericoid mycorrhiza * Ericaceae * Basidiomycetes Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 3.730, year: 2012

  9. Arbuscular mycorrhizal fungi associated with shade trees and Coffea arabica L. in a coffee-based agroforestry system in Bonga, Southwestern Ethiopia

    Directory of Open Access Journals (Sweden)

    Sewnet ,Tadesse Chanie

    2014-03-01

    Full Text Available In a first step to understand the interactions between Coffea arabica L. trees and mycorrhizae in Ethio¬pia, an investigation of the current mycorrhizal colonization status of roots was undertaken. We sampled 14 shade tree species occurring in coffee populations in Bonga forest, Ethiopia. Milletia fer¬ruginea, Schefflera abyssinica, Croton macrostachyus, Ficus vasta, F. sur, Albizia gummifera, Olea capensis, Cordia africana, Ehretia abyssinica, Pouteria adolfi-friederici, Pavetta oliveriana, Prunus africana, Phoenix reclinata and Polyscias fulva. Coffee trees sampled under each shade tree were all shown to be colonized by arbus¬cular mycorrhizal fungi (AM fungi. Four genera and 9 different species of AM fungi were found in the soils. Glomus (Sp1, Sp2, & Sp3 & Sp4, Scutellospora (Sp1 & Sp2 and Gigaspora (Sp1 & Sp2 were found under all 14 shade tree species, whereas Acaulospora (Sp1 occurred only in slightly acidic soils, within a pH range of 4.93-5.75. Generally, roots of the coffee trees were colonized by arbuscules to a greater degree than those of their shade trees, the arbuscular colonization percentage (AC% of the former being higher than the latter (significant difference at 0.05 level. Though differences were not statistically significant, the overall hyphal colonization percentage (HC% and mycorrhizal hyphal colonization percentage (MHC% were shown to be slightly higher under coffee trees than under their shade trees. However, the differences were statistically significant at 0.05 level in the case of HC% values of coffee trees under Pouteria adolf-friederici and MHC% under Cordia africana. Spore density and all types of proportional root colonization parameters (HC%, MHC%, AC% and vesicular colonization percentage, VC% for both coffee and shade trees were negatively and sig¬nificantly correlated with organic soil carbon, total N, available P, EC and Zn. Correlation between arbuscular colonization for coffee (AC% and organic carbon

  10. Effect of Inoculation of Acacia senegal mature trees with Mycorrhiza and Rhizobia on soil properties and microbial community structure

    Science.gov (United States)

    Assigbetsé, K.; Ciss, I.; Bakhoum, N.; Dieng, L.

    2012-04-01

    Inoculation of legume plants with symbiotic microorganisms is widely used to improve their development and productivity. The objective of this study was to investigate the effect of inoculation of Acacia senegal mature trees with rhizobium (Sinorhizobium) and arbuscular mycorrhizal fungus (G. mosseae, G. fasciculatum, G. intraradices) either singly or in combination, on soil properties, activity and the genetic structure of soil microbial communities. The experiment set up in Southern Senegal consisted of 4 randomized blocks of A. senegal mature trees with 4 treatments including inoculated trees with Rhizobium (R), mycorrhizal fungus (M) and with Rhizobium+mycorhizal fungus (RM) and non-inoculated control (CON). Soil were sampled 2 years after the inoculation. Soil pH, C and N and available P contents were measured. The microbial abundance and activity were measured in terms of microbial biomass C (MBC) and basal soil respiration. The community structure of the total bacterial, diazotrophic and denitrifying communities was assessed by denaturing gradient gel electrophoresis of 16S rDNA, nifH and nirK genes respectively. Inoculations with symbiont under field conditions have increased soil pH. The C and N contents were enhanced in the dual-inoculated treatments (RM). The mycorrhized treatment have displayed the lowest available P contents while RM and R treatments exhibited higher contents rates. The microbial biomass C rates were higher in treatments co-inoculated with AM fungi and Rhizobium than in those inoculated singly with AM fungi or Rhizobium strains. The basal soil respiration were positively correlated to MBC, and the highest rates were found in the co-inoculated treatments. Fingerprints of 16S rDNA gene exhibited similar patterns between inoculated treatments and the control showing that the inoculation of mature trees have not impacted the total bacterial community structure. In contrast, the inoculated treatments have displayed individually different

  11. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Liao, Dehua; Chen, Xiao; Chen, Aiqun; Wang, Huimin; Liu, Jianjian; Liu, Junli; Gu, Mian; Sun, Shubin; Xu, Guohua

    2015-04-01

    In plants, the GH3 gene family is widely considered to be involved in a broad range of plant physiological processes, through modulation of hormonal homeostasis. Multiple GH3 genes have been functionally characterized in several plant species; however, to date, limited works to study the GH3 genes in tomato have been reported. Here, we characterize the expression and regulatory profiles of six tomato GH3 genes, SlGH3.2, SlGH3.3, SlGH3.4, SlGH3.7, SlGH3.9 and SlGH3.15, in response to different phytohormone applications and arbuscular mycorrhizal (AM) fungal colonization. All six GH3 genes showed inducible responses to external IAA, and three members were significantly up-regulated in response to AM symbiosis. In particular, SlGH3.4, the transcripts of which were barely detectable under normal growth conditions, was strongly activated in the IAA-treated and AM fungal-colonized roots. A comparison of the SlGH3.4 expression in wild-type plants and M161, a mutant with a defect in AM symbiosis, confirmed that SlGH3.4 expression is highly correlated to mycorrhizal colonization. Histochemical staining demonstrated that a 2,258 bp SlGH3.4 promoter fragment could drive β-glucuronidase (GUS) expression strongly in root tips, steles and cortical cells of IAA-treated roots, but predominantly in the fungal-colonized cells of mycorrhizal roots. A truncated 654 bp promoter failed to direct GUS expression in IAA-treated roots, but maintained the symbiosis-induced activity in mycorrhizal roots. In summary, our results suggest that a mycorrhizal signaling pathway that is at least partially independent of the auxin signaling pathway has evolved for the co-regulation of the auxin- and mycorrhiza-activated GH3 genes in plants. PMID:25535196

  12. First year sugar maple (Acer saccharum, Marsh. ) seedling nutrition, vesicular-arbuscular mycorrhizal colonization, physiology, and growth along an acidic deposition gradient in Michigan

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.W.

    1992-01-01

    A field study was conducted to evaluate the use of foliar amino acid and root reducing sugar accumulations to separate acidic deposition from natural (i.e., soil phosphorus, mycorrhizae, and temperature) ecosystem stressors on first-year sugar maple seedling growth in three Michigan forests. Seedling growth was greatest at the sites exposed to highest levels of acidic deposition. However, sites receiving greatest acidic deposition rates also had high available soil phosphorus contents. No significant differences occurred, suggesting increased nitrogen loadings were not reflected in seedling tissue nitrogen. Seedling root or foliar calcium, magnesium, or potassium also were not significantly different, suggesting those elements were not growth limiting. Significant differences, however, occurred for seedling arginine and glutamine concentrations in foliage and reducing sugar concentrations in roots and were negatively correlated with seedling tissue phosphorus concentrations, suggesting phosphorus was limiting seedling growth at the low acidic deposition site. Vesicular-arbuscular mycorrhizal colonization of seedling roots was greater at the low acidic deposition site and positively correlated with seedling amino acid and reducing sugar accumulation but negatively correlated with sucrose concentrations in seedling roots, indicating that the fungal partner may have stimulated sucrose degradation to reducing sugars. Both air and soil temperatures were positively correlated with total sugar and sucrose concentrations in seedling roots. High levels of arginine, glutamine, and reducing sugars were negatively correlated with seedling growth indicating that seedlings at the low acidic deposition site were more stressed than seedlings at the sites receiving higher levels of pollutant loads. The results suggest differences in foliar arginine and glutamine and root reducing sugars in the forests in this study are likely due to natural rather than acidic deposition stress.

  13. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  14. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L.) from 32P-labelled organic matter during mineralization in soil

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1994-01-01

    An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two...... horizontal compartments contained 100 g soil (quartz sand : clay loam, 1:1) with 0.5 g ground clover leaves labelled with P-32. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root...... compartment by either 37 mu m or 700 mu m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of P-32 from the hyphal compartment was 5.5 and 8.6 % for plants colonized with Glomus sp. and G. caledonium, respectively, but only 0.6 % for the non...

  15. Effects and mechanisms of interactions between arbuscular mycorrrhizal fungi and plant growth promoting rhizobacteria%丛枝菌根真菌与根围促生细菌相互作用的效应与机制

    Institute of Scientific and Technical Information of China (English)

    戴梅; 王洪娴; 殷元元; 武侠; 王淼焱; 刘润进

    2008-01-01

    丛枝菌根(arbuscular mycorrhiza,AM)真菌是植物活体营养专性共生菌,广泛存在于陆地各生态系统中.研究表明,AM真菌与根围促生细菌(plant growth promoting rhizobacteria,PGPR)之间的相互作用,尤其是它们之间的协同作用不仅影响植物养分吸收利用、病原物发生发展、土壤理化特性与生物修复等,而且对于可持续农、林、牧业生产、稳定生态系统都具有十分重要的意义.因此,近年来给予众多关注和研究.综述了AM真菌与PGPR之间的相互影响及其可能的作用机制,以及AM真菌与PGPR协同改善植物营养和生长、协同抑制病原菌、协同修复土壤方面的作用,旨在总结AM真菌与PGPR相互作用的效应与机制方面的最新研究进展,为今后研究发展提供依据.

  16. PHOSPHATE AND INOCULATION WITH ARBUSCULAR MYCORRHIZAL FUNGI ON THE GROWTH OF Cecropia pachystachya (Trec SEEDLINGS FÓSFORO E INOCULAÇÃO COM FUNGOS MICORRÍZICOS ARBUSCULARES NO ESTABELECIMENTO DE MUDAS DE EMBAÚBA (Cecropia pachystachya Trec

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Carbone Carneiro

    2007-09-01

    Full Text Available

    The objective of this study was to evaluate the effect of the inoculation with arbuscular mycorrhizal fungi (FMA in different levels of P2O5 on the growth of Cecropia pachystachya seedlings in the field. The study consisted of a 5x2 factorial with five levels of P2O5 (zero, 85, 170, 255 and 340 mg.kg-1, with and ithout inoculation with a mixture of FMA. It was used four replications, each one with twelve seedlings. The seeds were sowed in plastic tubes with capacity of 50 cm3 of substratum and stored for 120 days. After this period the seedlings were transplanted to the field, where they remained for another 150 days. Seedling diameter and height were measured at 60 and 120 days, aerial part and root dry matter, and arbuscular mycorrhizal colonization. Diameter, height, leaf area, aerial part dry matter and the number of surviving seedlings were determined after 150 days. None of the factors tested had any effect on seedling growth with one exception; inoculated plants with FMA had more root dry matter. Plants inoculated with smaller doses of P2O5 showed a larger percentage of surviving individuals and more vigorous seedlings. Results suggest that in low fertility soils of and subject to the hydric stress the C. pachystachya seedlings should be inoculated with FMA.

    KEY-WORDS: Native vegetation; mycorrhiza fungi; native species; seedling production; inoculation.

    O objetivo deste estudo foi avaliar o efeito da inoculação com fungos micorrízicos arbusculares (FMA em diferentes doses de P2O5 na formação de mudas de embaúba (Cecropia pachystachya e no seu estabelecimento em campo. O estudo constou de um experimento fatorial 5x2, sendo cinco doses de P2O5

  17. Estudio preliminar sobre micorriza versículo – Arbuscular (MVA en lulo (Solanum quitoense Lam

    Directory of Open Access Journals (Sweden)

    Sieverding Ewald

    1986-12-01

    Full Text Available En el estudio se determinó el carácter (obligado o facultativo de la asociación micorrícica y se evaluó la eficiencia de nueve cepas de micorriza en dos tipos de oxisoles con fertilidad baja y moderada y en presencia de tres niveles de fósforo (0,50 Y 100 kg/ha. El lulo es una especie micotrófica facultativa, ya que con adecuados niveles de fósforo asimilable en el suelo su desarrollo no depende de la asociación micorrícica, mientras que con bajos niveles sucede lo contrario. En general, la inoculación con MVA incrementó el desarrollo del lulo tanto en semilleros como en plántulas. Los mejores aislamientos de MVA fueron una mezcla de Acaulospora spp y Glomus sp y Entrophospora colombiana. En general, la efectividad de la MVA incrementó con niveles bajos y medios de fósforo y se deprimió con el nivel alto, El desarrollo del lulo y la efectividad de la micorriza fue mayor en la localidad más cálida (1050 m, 24°C y 60 % HR que en la más templada (2100 m, 14°C Y 80 % HR.A preliminary study to determine the character (obligate or facultative of the mycorrhizal association in, "naranjilla" (Solanum quitoense L. and an evaluation of nine mycorrhiza stock, was carried out at Palmira (1050 m, 24°C and R.H. of 60 % and Jamundí (2100 m, 14°C and R.H. of 80 %. The trial was held on two oxyzole having a lowand moderate fertility, with 3 levels of phosphorus (0,50 Y 100 kq/ha. The "naranjilla" is a facultative mycotrophic specie. In general, the inoculation with MVA fungi, increased the development of the "naranjilla" in seed beds as well as transplanted seed lings. The effectivity of MVA was dependent on the fungus specie, its origin, the phosphorus levels in the soil and the weather of both Iocalities. The development of the "naranjilla" and the effectivity of the mycorrhiza was superior at the locality (14°C. In general, the isolations which showed the best behavior were a mixture of Acaulospora spp and Glomus sp, and

  18. Establishment of vegetation on mined sites by management of mycorrhizae

    International Nuclear Information System (INIS)

    Plant ecosystems, including those in the tropical, temperate, boreal, and desert zones, began evolving more than 400 million years ago. Trees and other land plants in these environments were faced with many natural stresses including extreme temperature changes, fluctuating levels of available water, soil infertility, catastrophic fires and storms, poor soil physical conditions and competition. Basically, these plants evolved by genetic selection and developed many physical, chemical, and biological requirements necessary to survive these periodically stressed environments. Survivors were those that could form extensive lateral root systems to occupy soil volumes sufficiently large for them to obtain enough essential mineral elements and water to support their above and below ground growth needs. The most competitive plants in these stressed ecosystems were those with the largest root systems. One major biological requirement that evolved was the association of plants with mycorrhizal fungi. This is still true today for land that has been disturbed by mining, construction, and other activities. Successful vegetation establishment on these lands has been achieved by using the biological tools; native tree seedlings, shrubs, forbs, and grasses inoculated with specific, beneficial mycorrhizal fungi. Trees and shrubs are custom grown in nurseries with selected mycorrhizal fungi, such as Pisolithus tinctorius (Pt) and other fungi, provide significant benefits to the plants through increased water and mineral adsorption, decreased toxin absorption and overall reduction of plant stress. This has resulted in significant increases in plant growth and survival rates, density and sustainable vegetation

  19. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  20. Arbuscular Mycorrhizal Fungi and Biochar Improved Early Growth of Neem (Melia azedarach Linn. Seedling Under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Sri Wilarso Budi

    2013-08-01

    Full Text Available The objective of this research was to determine the effect of biochar on the seedling quality index and growth of neem tree seedlings and arbuscular mycorrhizal fungi (AMF development  grown on ultisol  soil medium.  Two factors in completely randomised experimental design was conducted under green house conditions and Duncan Multiple Range Test was used to analyse the data. The results showed that neem seedling quality index was improved by interaction of AMF fungi and biochar amandment. The growth of neem seedling was significantly increased by interactions of arbuscular mycorrhizal fungi and biochar.  The combination  treatment of Glomus etunicatum and biochar 10% gave best results of height and diameter, and significantly increased by 712% and 303% respectively, as compared to control plant, while the combination treatment of Gigaspora margarita and biochar 10% gave the best result of shoot dry weight, and root dry weight and significantly increase by 4,547% and 6,957% as compared to control plant.  The mycorrhizal root colonization was increased with increasing biochar added, but decreases when 15% of biochar was applied.  N, P, and K uptake of 12 weeks neem seedling old was higher and significantly increased as compared to control plant.Keywords: AMF development, nutrient uptake , plant growth , seedling quality index, biochar  DOI: 10.7226/jtfm.19.2.103

  1. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism

    Czech Academy of Sciences Publication Activity Database

    Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A. G.; Hiiesalu, Inga; Jairus, T.; Johnson, N. C.; Kane, A.; Koorem, K.; Kochar, M.; Ndiaye, C.; Pärtel, M.; Reier, Ü.; Saks, Ü.; Singh, R.; Vasar, M.; Zobel, M.

    2015-01-01

    Roč. 349, č. 6251 (2015), 970-973. ISSN 0036-8075 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * 454 sequencing * diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 33.611, year: 2014

  2. Arbuscular-Mycorrhizal Networks Inhibit Eucalyptus tetrodonta Seedlings in Rain Forest Soil Microcosms

    OpenAIRE

    Janos, David P.; Scott, John; Aristizábal, Catalina; Bowman, David M. J. S.

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular...

  3. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Erik H.; Hansen, Marianne; Rasmussen, Peter Have; Sloth, Jens J. [Danish Institute for Food and Veterinary Research, Department of Food Chemistry, Soeborg (Denmark); Lobinski, Ryszard; Ruzik, Rafal; Mazurowska, Lena [CNRS UMR 5034, Pau (France); Warsaw University of Technology, Department of Analytical Chemistry, Warsaw (Poland); Burger-Meyer, Karin; Scholten, Olga [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Kik, Chris [Wageningen University and Research Centre, Plant Research International (PRI), P.O. Box 16, Wageningen (Netherlands); Wageningen University and Research Centre, Centre for Genetic Resources, The Netherlands (CGN), P.O. Box 16, Wageningen (Netherlands)

    2006-07-15

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic enzymes, which ensured liberation of selenium species contained in peptides or proteins. Separate extractions using an aqueous solution of enzyme-deactivating hydroxylamine hydrochloride counteracted the possible degradation of labile selenium species by enzymes (such as alliinase) that occur naturally in garlic. The selenium content in garlic, which was analysed by ICP-MS, showed that addition of mycorrhiza to the natural soil increased the selenium uptake by garlic tenfold to 15 {mu}g g{sup -1} (dry mass). Fertilisation with selenate and addition of mycorrhiza strongly increased the selenium content in garlic to around one part per thousand. The parallel analysis of the sample extracts by cation exchange and reversed-phase HPLC with ICP-MS detection showed that {gamma}-glutamyl-Se-methyl-selenocysteine amounted to 2/3, whereas methylselenocysteine, selenomethionine and selenate each amounted to a few percent of the total chromatographed selenium in all garlic samples. Se-allyl-selenocysteine and Se-propyl-selenocysteine, which are selenium analogues of biologically active sulfur-containing amino acids known to occur in garlic, were searched for but not detected in any of the extracts. The amendment of soil by mycorrhiza and/or by selenate increased the content of selenium but not the distribution of detected selenium species in garlic. Finally, the use of two-dimensional HPLC (size exclusion followed by reversed-phase) allowed the structural characterisation of {gamma}-glutamyl-Se-methyl-selenocysteine and {gamma}-glutamyl-Se-methyl-selenomethionine in isolated chromatographic fractions by quadrupole time-of-flight mass spectrometry. (orig.)

  4. Draft Genome Sequence of Klebsiella variicola Strain KV321 Isolated from Rhizosphere Soil of Pisolithus tinctorius-Eucalyptus Mycorrhiza.

    Science.gov (United States)

    Jiang, Shao-Feng; Liu, Yi; Xiao, Mi-Yun; Ruan, Chu-Jin; Lu, Zu-Jun

    2016-01-01

    The draft genome sequences of Klebsiella variicola strain KV321, which was isolated from rhizosphere soil of Pisolithus tinctorius-Eucalyptus mycorrhiza, are reported here. The genome sequences contain genes involved in ABC transporter function in multiple-antibiotic drug resistance and colonization. This genomic analysis will help understand the genomic basis of K. variicola virulence genes and how the genes play a part in its interaction with other living organisms. PMID:27445373

  5. Stomatal Conductance, Plant Species Distribution, and an Exploration of Rhizosphere Microbes and Mycorrhizae at a Deliberately Leakimg Experimental Carbon Sequestration Field (ZERT)

    Science.gov (United States)

    Sharma, B.; Apple, M. E.; Morales, S.; Zhou, X.; Holben, B.; Olson, J.; Prince, J.; Dobeck, L.; Cunningham, A. B.; Spangler, L.

    2010-12-01

    One measure to reduce atmospheric CO2 is to sequester it in deep geological formations. Rapid surface detection of any CO2 leakage is crucial. CO2 leakage rapidly affects vegetation above sequestration fields. Plant responses to high CO2 are valuable tools in surface detection of leaking CO2. The Zero Emission Research Technology (ZERT) site in Bozeman, MT is an experimental field for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010) from a 100m horizontal injection well, HIW, 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, VI, (6/3-6/24/2010). The vegetation includes Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), and other herbaceous plants. We collected soil and roots 1, 3 and 5 m from the VI to determine the responses of mycorrhizal fungi and rhizosphere microbes to high CO2. Mycorrhizal fungi obtain C from root exudates, increase N and P availability, and reduce desiccation, while prokaryotic rhizosphere microbes fix atmospheric N and will be examined for abundance and expression of carbon and nitrogen cycling genes. We are quantifying mycorrhizal colonization and the proportion of spores, hyphae, and arbuscules in vesicular-arbuscular mycorrhizae (VAM) in cleared and stained roots. Stomatal conductance is an important measure of CO2 uptake and water loss via transpiration. We used a porometer (5-40°C, 0-90% RH, Decagon) to measure stomatal conductivity in dandelion and orchard grass at 1, 3, and 5 m from the VI and along a transect perpendicular to the HIW. Dandelion conductance was highest close to the VI and almost consistently higher close to hot spots (circular regions with maximum CO2 and leaf dieback) at the HIW, with 23.2 mmol/m2/s proximal to the hot spot, and 10.8 mmol/m2/s distally. Average conductance in grass (50.3 mmol/m2/s) was higher than in dandelion, but grass did not have high conductance near hot spots. Stomata generally close at elevated CO2

  6. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  7. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    International Nuclear Information System (INIS)

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: → The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. → Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. → Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. → Mycorrhizal colonization affected concentration and uptake of other elements. → Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  8. Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions

    Czech Academy of Sciences Publication Activity Database

    Aghili, F.; Jansa, Jan; Khoshgoftarmanesh, A. H.; Afyuni, M.; Schulin, R.; Frossard, E.; Gamper, H.A.

    2014-01-01

    Roč. 84, DEC 2014 (2014), s. 93-111. ISSN 0929-1393 Institutional support: RVO:61388971 Keywords : Indigenous arbuscular mycorrhizal fungi (Glomeromycota) * Marginal land * Mycorrhizal benefit Subject RIV: EE - Microbiology, Virology Impact factor: 2.644, year: 2014

  9. Enhanced Pb Absorption by Hordeum vulgare L. and Helianthus annuus L. Plants Inoculated with an Arbuscular Mycorrhizal Fungi Consortium.

    Science.gov (United States)

    Arias, Milton Senen Barcos; Peña-Cabriales, Juan José; Alarcón, Alejandro; Maldonado Vega, María

    2015-01-01

    The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and (32)P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg(-1) substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg(-1)) shoot dry weight than non-colonized controls (26.5 mg Pb kg(-1)) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg(-1) root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants. PMID:25495930

  10. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi

    OpenAIRE

    Hijri Mohamed; St-Arnaud Marc; Dalpé Yolande; Marleau Julie

    2011-01-01

    Abstract Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such...

  11. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    International Nuclear Information System (INIS)

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  12. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    International Nuclear Information System (INIS)

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies

  13. Native arbuscular mycorrhizal fungi in the Yungas forests, Argentina.

    Science.gov (United States)

    Becerra, Alejandra G; Cabello, Marta N; Bartoloni, Norberto J

    2011-01-01

    The arbuscular mycorrhizal fungal (AMF) communities from the Yungas forests of Argentina were studied. The AMF species present in the rhizosphere of some dominant native plants (one tree: Alnus acuminata; three herbaceous species: Duchesnea indica, Oxalis conorrhiza, Trifolium aff. repens; and one shrub: Sambucus peruviana) from two sites (Quebrada del Portugués and Narváez Range) of the Yungas forests were isolated, identified and quantified during the four seasons of the year. Twenty-two AMF morphotaxa were found. Spore density of some AMF species at each site varied among seasons. The genera that most contributed to the biodiversity index were Acaulospora for Quebrada del Portugués and Glomus for Narváez Range. High diversity values were observed in the Yungas forests, particularly in the spring (rainy season). We concluded AMF differed in species composition and seasonal sporulation dynamics in the Yungas forests. PMID:21415289

  14. Vesicular-arbuscular mycorrhizal populations in stored topsoil

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.A.; Hunter, D.; Birch, P.; Short, K.C. (North East London Polytechnic, London (UK). Environment and Industry Research Unit, Dept. of Biology and Biochemistry)

    1987-01-01

    Two soil stores of different ages were sampled to investigate their vesicular-arbuscular mycorrhizal (VAM) populations. The soils collected were assessed for pH, moisture content, loss on ignition, spore numbers, number and size of root fragments present and percentage of these roots infected with VAM. A corn-root bioassay was used to determine soil infectivity. Root fragment number, size, % root infection and soil infectivity were negatively correlated with soil depth. VAM spore number was not significantly correlated with depth in either store. It appears that infected root fragments and fresh roots were the source of inoculum although there may have been a contribution from spores in the younger store. The infectivity of the older store soil was less than that of the younger store. 12 refs., 5 tabs.

  15. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, H. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Joner, E.J. [Bioforsk Soil and Environment, Fredrik A. Dahls vei 20, N-1432 As (Norway); Leyval, C. [LIMOS, Nancy University, CNRS, Faculte des Sciences, BP239, 54506 Vandoeuvre-les-Nancy, Cedex (France); Jakobsen, I. [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Chen, B.D. [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Roos, P. [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Thiry, Y.; Rufyikiri, G. [CEN-SCK, Radiation Protection Research Department, 200 Boeretang, 2400 Mol (Belgium); Delvaux, B. [Universite catholique de Louvain, Unite des Sciences du Sol Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, S. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)], E-mail: declerck@mbla.ucl.ac.be

    2008-05-15

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies.

  16. Diversidade de fungos micorrízicos arbusculares em remanescente florestal impactado (Parque Cinqüentenário - Maringá, Paraná, Brasil Diversity of arbuscular mycorrizal fungi in an impacted forest remnant - Parque Cinquentenário, Maringá, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Eduardo Ferreira dos Santos

    2011-06-01

    Full Text Available As micorrizas são consideradas importante componente na recuperação e restabelecimento da vegetação em áreas frágeis ou degradadas, bem como na manutenção da biodiversidade de plantas e das funções dos ecossistemas. O conhecimento da diversidade e dinâmica dos fungos micorrízicos arbusculares (FMA em áreas impactadas pela ação humana é importante para seu manejo e como indicador de sua qualidade. O Parque Cinqüentenário, localizado no município de Maringá, PR, pertence à formação original do conjunto Mata Atlântica, do domínio da floresta Estacional semi-decidual, é um dos poucos remanescentes florestais existentes na cidade de Maringá, PR, e encontra-se em estádio acelerado de degradação. O objetivo deste trabalho foi avaliar a diversidade de FMA nativos no solo e o grau de micorrização das plantas neste ecossistema. Amostras de solo e raízes foram coletadas em 65 pontos diferentes, na profundidade de 0-20 cm. A determinação da porcentagem de colonização micorrízica arbuscular foi feita sob microscópio estereoscópico, pelo método da interseção de quadrantes. A identificação das espécies de FMA foi realizada de acordo com a análise morfológica dos esporos. Foram estimados índices de diversidade, calculados com base no número de esporos em cada amostra. Foi verificada a ocorrência de 50 espécies de FMA, distribuídas em cinco gêneros: Glomus (31 espécies, Acaulospora (10 espécies, Scutellospora (6 espécies, Gigaspora (duas espécies e Paraglomus (uma espécie. Glomus foi o gênero mais abundante, com várias espécies esporocárpicas.Mycorrhizae are important components of any recuperation and recovery plan for threatened and endangered vegetation in degraded areas, as well as for the maintenance of plant diversity and ecosystem functions. Knowledge of diversity and dynamics of arbuscular mycorrhizal fungi (AMF in areas impacted by anthropic activities is important for managing these areas

  17. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species.

    Science.gov (United States)

    Duponnois, R; Plenchette, C

    2003-04-01

    The aims of this study were to test the effects of a mycorrhiza helper bacterium (MHB), Pseudomonas monteilii strain HR13 on the mycorrhization of (1) an Australian Acacia, A. holosericea, by several ectomycorrhizal fungi or one endomycorrhizal fungus Glomus intraradices, and (2) several Australian Acacia species by Pisolithus alba strain IR100 under glasshouse conditions. Bacterial inoculant HR13 significantly promoted ectomycorrhizal colonization for all the Acacia species, from 45.8% ( A. mangium) to 70.3% ( A. auriculiformis). A stimulating effect of HR13 on the ectomycorrhizal establishment was recorded with all the fungal isolates (strains of Pisolithus and Scleroderma). The same effect of bacteria on the frequency of endomycorrhizal colonization of A. holosericea seedlings by G. intraradices with vesicles and hyphae frequencies was recorded. The stimulation of saprophytic fungal growth by MHB is usually the main mechanism that could explain this bacterial effect on mycorrhizal establishment. MHB could stimulate the production of phenolic compounds such as hypaphorine and increase the aggressiveness of the fungal symbiont. However, no significant effect of MHB on fungal growth was recorded with Scleroderma isolates under axenic conditions but positive bacterial effects were observed with Pisolithus strains. From a practical viewpoint, it appears that MHB could stimulate the mycorrhizal colonization of Australian Acacia species with ectomycorrhizal or endomycorrhizal fungi, and could also facilitate controlled mycorrhization in nursery practices where Acacia species are grown for forestation purposes. PMID:12682830

  18. Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri.

    Science.gov (United States)

    Bougoure, Jeremy; Ludwig, Martha; Brundrett, Mark; Grierson, Pauline

    2009-10-01

    Fully subterranean Rhizanthella gardneri (Orchidaceae) is obligately mycoheterotrophic meaning it is nutritionally dependent on the fungus it forms mycorrhizas with. Furthermore, R. gardneri purportedly participates in a nutrient sharing tripartite relationship where its mycorrhizal fungus simultaneously forms ectomycorrhizas with species of Melaleuca uncinata s.l. Although the mycorrhizal fungus of R. gardneri has been morphologically identified as Thanatephorus gardneri (from a single isolate), this identification has been recently questioned. We sought to clarify the identification of the mycorrhizal fungus of R. gardneri, using molecular methods, and to identify how specific its mycorrhizal relationship is. Fungal isolates taken from all sites where R. gardneri is known to occur shared almost identical ribosomal DNA (rDNA) sequences. The fungal isolate rDNA most closely matched that of other Ceratobasidiales species, particularly within the Ceratobasidium genus. However, interpretation of results was difficult as we found two distinct ITS sequences within all mycorrhizal fungal isolates of R. gardneri that we assessed. All mycorrhizal fungal isolates of R. gardneri readily formed ectomycorrhizas with a range of M. uncinata s.l. species. Consequently, it is likely that R. gardneri can form a nutrient sharing tripartite relationship where R. gardneri is connected to autotrophic M. uncinata s.l. by a common mycorrhizal fungus. These findings have implications for better understanding R. gardneri distribution, evolution and the ecological significance of its mycorrhizal fungus, particularly in relation to nutrient acquisition. PMID:19619652

  19. Interaction of Vesicular-Arbuscular Mycorrhizal Fungi with Erosion in an Oxisol †

    Science.gov (United States)

    Habte, M.; Fox, R. L.; Aziz, T.; El-Swaify, S. A.

    1988-01-01

    The development of vesicular-arbuscular mycorrhizal (VAM) symbiosis was monitored in Leucaena leucocephala grown in an Oxisol subjected to incremental simulated erosion. The density of VAM infective propagules in the soil diminished as the level of simulated erosion (removal of surface soil) was increased from 0 to 50 cm. The level of infection on L. leucocephala roots observed at harvest was not significantly influenced by simulated erosion unless removal of surface soil exceeded 25 cm. Inoculation of this soil and the uneroded soil with Glomus aggregatum enhanced the early onset of infection but did not significantly influence the level of infection observed at the time of harvest. Simulated erosion in excess of 7.5 cm of surface soil removal significantly delayed the development of VAM effectiveness monitored in terms of the P status of L. leucocephala subleaflets and also curtailed the level of maximum effectiveness observed. Decreases in VAM effectiveness were significantly correlated with decreases in soil chemical constituents. However, VAM effectiveness in a soil subjected to 30 cm of surface soil removal was not restored to a significant extent unless the soil was amended with P, even though other nutrients were restored to sufficiency levels. Our results demonstrate that the development of VAM effectiveness is the phase of the VAM symbiosis that is most adversely influenced by simulated erosion and that this effect appears to be caused primarily by insufficient P in the soil solution. PMID:16347615

  20. Phosphorus nutrition of ectomycorrhizal and arbuscular mycorrhizal tree seedlings from a lowland tropical rain forest in Korup National Park, Cameroon

    OpenAIRE

    Moyersoen, B.; Alexander, I. J.; Fitter, A. H.

    1998-01-01

    The relationship between mycorrhizal colonisation and phosphorus acquired by seedlings of the arbuscular mycorrhizal tree Oubanguia alata Bak f. (Scytopetalaceae) and the ectomycorrhizal tree Tetraberlinia moreliana Aubr. (Caesalpiniodeae) was evaluated at low and high inorganic phosphorus availability. AM colonisation was positively correlated with phosphorus uptake by O. alata at low, but not at high phosphorus availability. Seedlings growth was positively related to arbuscular mycorrhizal ...

  1. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbios

    Directory of Open Access Journals (Sweden)

    Daniel eWipf

    2014-12-01

    Full Text Available Sulfur plays an essential role in plants’ growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate. It is part of amino acids, glutathione (GSH, thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM interaction improves N, P and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis.Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.

  2. Cultivable microflora and endo mycorrhizas obtained in litter forest (Paramo Guerrero - Finca Puente de Tierra) Zipaquira, Colombia

    International Nuclear Information System (INIS)

    The count of cultivable microorganisms (bacteria and fungi), cellulolytic microorganisms and endo mycorrhizas present in litter forest (property Puente de Tierra) in the Guerrero's moor, Colombia was made. The most frequently isolated microorganisms belonged to the staphylococcus, bacillus, pseudomonas, micrococcus, penicillium and rhodotorulagenus and cladosporium sp., which is a cellulolytic microorganism, was isolated in carboxymethyl cellulose agar. In addition eight morphotypes of endomycorrhizas were found, species of glomus and acaulospora predominated among them. This study contributes with the knowledge of the cultivable microorganisms of litter that have been little explored in moor ecosystems

  3. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  4. Suppression of allene oxide synthase 3 in potato increases degree of arbuscular mycorrhizal fungal colonization.

    Science.gov (United States)

    Morcillo, Rafael Jorge León; Navarrete, María Isabel Tamayo; Bote, Juan Antonio Ocampo; Monguio, Salomé Prat; García-Garrido, José Manuel

    2016-01-15

    Arbuscular mycorrhizal (AM) is a mutually beneficial interaction among higher plants and soil fungi of the phylum Glomeromycota. Numerous studies have pointed that jasmonic acid plays an important role in the development of the intraradical fungus. This compound belongs to a group of biologically active compounds known as oxylipins which are derived from the oxidative metabolism of polyunsaturated fatty acids. Studies of the regulatory role played by oxylipins in AM colonization have generally focused on jasmonates, while few studies exist on the 9-LOX pathway of oxylipins during AM formation. Here, the cDNA of Allene oxide synthase 3 (AOS3), a key enzyme in the 9-LOX pathway, was used in the RNA interference (RNAi) system to transform potato plants in order to suppress its expression. Results show increases in AOS3 gene expression and 9-LOX products in roots of wild type potato mycorrhizal plants. The suppression of AOS3 gene expression increases the percentage of root with mycorrhizal colonization at early stages of AM formation. AOS3 RNA interference lead to an induction of LOXA and 13-LOX genes, a reduction in AOS3 derived 9-LOX oxylipin compounds and an increase in jasmonic acid content, suggesting compensation between 9 and 13-LOX pathways. The results in a whole support the hypothesis of a regulatory role for the 9-LOX oxylipin pathway during mycorrhization. PMID:26629611

  5. Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé.

    Science.gov (United States)

    Mello, Antonietta; Lumini, Erica; Napoli, Chiara; Bianciotto, Valeria; Bonfante, Paola

    2015-06-01

    The development of the fruiting body (truffle) of the ectomycorrhizal fungus Tuber melanosporum is associated with the production of an area (commonly referred to with the French word brûlé) around its symbiotic plant that has scanty vegetation. As truffles produce metabolites that can mediate fungal-plant interactions, the authors wondered whether the brûlé could affect the arbuscular mycorrhizal fungi (AMF) that colonize the patchy herbaceous plants inside the brûlé. A morphological evaluation of the roots of plants collected in 2009 from a T. melanosporum/Quercus pubescens brûlé in France has shown that the herbaceous plants are colonized by AMF to a great extent. An analysis of the 18S rRNA sequences obtained from roots and soil inside the brûlé has shown that the AMF community structure seemed to be affected in the soil inside the brûlé, where less richness was observed compared to outside the brûlé. PMID:25986549

  6. Two Arbuscular Mycorrhizal Fungi Colonizing Maize Under Different Phosphorus Regimes in a Compartment Cultivation System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified glass bead compartment cultivation system was used to compare some chemical and biological properties of the two arbuscular mycorrhizal (AM) fungi Glomus mosseae and Glomus versiforme using maize (Zea mays) as the host plant with four added levels of available phosphorus (P). The proportion of host plant root length infected was determined at harvest. Shoot and root yields and nutrient concentrations were determined, together with the nutrient concentrations in the AM fungal external mycelium. The morphology of various mycorrhizal structures of the two AM fungi was also compared by microscopic observation. Inoculation with G. mosseae gave higher plant yields than that with G. versiforme, and the two fungi responded differently in infection rate to available phosphorus level. Root infection rate of mycorrhizal maize colonized by G. mosseae decreased markedly with increasing P level, and there was very poor development of the extraradical mycelium at the highest rate of P addition. In contrast, G. versiforme showed greater tolerance to increasing P level. Elemental analysis showed that phosphorus, copper and zinc concentrations in the external mycelium differed between the two fungi and were much higher than those in the host plant.Differences in the morphology of the two fungi were also observed.

  7. Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato

    Directory of Open Access Journals (Sweden)

    Jonathan D. Judy

    2016-04-01

    Full Text Available Bioaccumulation of engineered nanomaterials (ENMs by plants has been demonstrated in numerous studies over the past 5–10 years. However, the overwhelming majority of these studies were conducted using hydroponic systems and the degree to which the addition of the biological and chemical components present in the soil might fundamentally alter the potential of plant bioaccumulation of ENMs is unclear. Here, we used two genotypes of Solanum lycopersicum (tomato, reduced mycorrhizal colonization (rmc, a mutant which does not allow arbuscular mycorrhizal fungi (AMF colonization, and its progenitor, 76R, to examine how colonization by AMF alters trends of gold ENM bioaccumulation from a natural soil. Gold was taken up and bioaccumulated by plants of both genotypes. Gold concentrations were significantly higher in the rmc treatment although this was likely attributable to the large differences in biomass between the 76R and rmc plants. Regardless, there was little evidence that AMF played a significant role in trafficking Au ENMs into the plants. Furthermore, despite very low NH4NO3 extractable Au concentrations, Au accumulated at the root-soil interface. Although this observation would seem to suggest that ENMs may have potential to influence this particularly biologically active and important soil compartment, we observed no evidence of this here, as the 76R plants developed a robust AMF symbiosis despite accumulation of Au ENMs at the rhizoplane.

  8. Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Raudaskoski, Marjatta; Kothe, Erika

    2015-05-01

    The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses. PMID:25260351

  9. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.

    Science.gov (United States)

    Hempel, Stefan; Götzenberger, Lars; Kühn, Ingolf; Michalski, Stefan G; Rillig, Matthias C; Zobel, Martin; Moora, Mari

    2013-06-01

    Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities, and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life history traits, and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, and higher pH; and negatively associated with moist, acidic, and fertile soils. Competitive species were more frequently OM, and stress tolerators were non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM + NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology. PMID:23923502

  10. EFECTO DE LA INOCULACIÓN CON HONGOS FORMADORES DE MICORRIZAS ARBUSCULARES SOBRE PLÁNTULAS DE CAUCHO Effects Of Inoculation With Arbuscular Mycorrhizal Fungi On Rubber Seedlings

    Directory of Open Access Journals (Sweden)

    TIFFANY SOSA RODRÍGUEZ

    Full Text Available Hongos formadores de micorrizas arbusculares (HFMA obtenidos a partir de suelos caucheros se multiplicaron en plantas de Lolium sp., con 73% de colonización radical luego de cuatro meses. Se obtuvieron siete morfotipos de HFMA, con los cuales se inocularon dos grupos de plántulas de Hevea brasiliensis: 1 producidas in vivo a partir de semilla; 2 producidas in vitro por rescate de embrión, para determinar efectos sobre mortalidad, crecimiento, micorrización y contenido de fósforo foliar. Los niveles de colonización por HFMA para las plántulas obtenidas in vitro e in vivo fueron de 12,6% y de 44,7%, respectivamente. La biomasa media total acumulada por las plántulas producidas in vitro fue de 0,41 y de 1,40 g por las procedentes del material in vivo, en comparación con los controles no inoculados, los cuales acumularon 0,37 y 0,40 g , respectivamente. El tratamiento con HFMA disminuyó la mortalidad en las plántulas obtenidas in vitro, aunque no tuvo un efecto significativo sobre el contenido de fósforo foliar. La respuesta del crecimiento de las plántulas inoculadas fue diferente dependiendo del origen del material vegetal y del tipo de inóculo (nativo o no nativo. La simbiosis entre HFMA y H. brasiliensis se desarrolló en condiciones controladas de crecimiento, aunque su avance dependió del estado de desarrollo de la plántula. No obstante, influyó en el crecimiento y en la disminución de la mortalidad de las plántulas, lo que abre la posibilidad de utilizarla como alternativa de inoculación en las fases tempranas de obtención del material vegetal.Hevea brasiliensis rubber plants were inoculated with native arbuscular mycorrhizal fungi (AMF during their greenhouse acclimatization. The AMF were multiplied for 4 months associated with Lolium sp. plants having 73% root colonization. Seven morphotypes were obtained. Two different groups of H. brasiliensis plants were inoculated with these morphotypes to determine AMF effect on

  11. Relationships between mycorrhizas and antioxidant enzymes in citrus (citrus tangerina) seedlings inoculated with glomus mosseae

    International Nuclear Information System (INIS)

    A potted experiment was conducted to evaluate the effects of an arbuscular mycorrhizal fungus (AMF), Glomus mosseae, on growth performance and superoxide dismutase (SOD) and catalase (CAT) activities of citrus (Citrus tangerina) seedlings. After five months of AMF inoculation, mycorrhizal colonization and vesicles, but not arbuscules and entry points, increased with the increase of inoculated mycorrhizal dosages among 5-40 g (32 spores/g dosage). Mycorrhizal inoculation with 10-40 g dosages significantly increased plant growth traits, including plant height, stem diameter, and shoot, root and total fresh weights. Higher leaf chlorophyll content was found in all the mycorrhizal plants, compared with the non-mycorrhizal plants. Inoculation with G. mosseae markedly decreased SOD and CAT activities of leaf and root, except an increase of either root CAT with the 20 g mycorrhizal treatment or root SOD with the 20 and 40 g mycorrhizal treatments. In addition, mycorrhizal colonization and vesicles significantly positively correlated with root SOD and without root CAT. We also discussed the relationships between mycorrhizal effects on antioxidant enzymes and growth environment of host plants. (author)

  12. Nuclear techniques to study the role of mycorrhiza in increasing food crop production

    International Nuclear Information System (INIS)

    A group of consultants, whose names are listed at the end of this publication were invited by the FAO/IAEA Division to Vienna from 16-20 November 1981 to review, together with the Division's staff, the state-of-the-art regarding Vascular-arbuscular-mycorrhizal symbiosis with various food crops, to assess the useful role of the association in food crop production, and to recommend inputs that the Joint FAO/IAEA Division could make to promote research which might lead to the exploitation of VAM for increased crop production. The reports presented at the meeting covered several topics, including the ecology of the VAM fungus, mechanism of VAM infection, factors affecting the establishment of an effective symbiosis with food crops, mechanisms for enhanced nutrient availability to mycorrhizal plants, increased tolerance of mycorrhizal plants to adverse environmental conditions, inoculum production and field inoculation procedures. These reports, together with the experimental plans and recommendations made at the meeting, are embodied in this unpriced Technical Document. Separate abstracts were prepared for the various presentations at this meeting

  13. INFLUENCE OF MYCORRHIZAS, ORGANIC SUBSTRATES AND CONTAINER VOLUMES ON THE GROWTH OF Heliocarpus popayanensis Kunth

    Directory of Open Access Journals (Sweden)

    Waldemar Zangaro

    2015-09-01

    Full Text Available This work assessed, under nursery conditions, the effect of arbuscular mycorrhizal fungi (AMF inoculation on the initial growth of the woody species Heliocarpus popayanensis Kunth in containers of different sizes (nursery tubes of 50 or 250 cm3 containing composted cattle manure or organic Pinus spp bark compost diluted (0 to 100%, each 9% with low fertility soil. Plants in cattle manure grew more than plants grown in pine bark manure independent of tube size. AMF were more efficient in improving plant growth in 250 cm3 tubes than in 50 cm3 tubes independent of the substrates. Mycorrhizal plants grown in 50 cm3 tubes showed less growth than non-mycorrhizal ones irrespective of the substrates. Nevertheless, this growth depression decreased with an increase of substrates dilution with low fertility soil. In the higher dilutions, growth depression did not occur and there was a positive response to AMF inoculation. In addition, only mycorrhizal plantlets showed some growth in low fertility soil as the sole substrate. These results indicated that AMF affect plantlet growth positively or negatively depending on the combination of substrates, fertility level, and container size.

  14. Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama and the root-knot nematode (Meloidogyne incognita on sweet passion fruit (Passiflora alata

    Directory of Open Access Journals (Sweden)

    Érika Cristina Teixeira dos Anjos

    2010-08-01

    Full Text Available The effects of inoculation of sweet passion fruit plants with the arbuscular mycorrhizal (AM fungus Scutellospora heterogama on the symptoms produced by Meloidogyne incognita race 1 and its reproduction were evaluated in two greenhouse experiments. In the 1st, the M. incognita (5000 eggs/plant and S. heterogama (200 spores/plant inoculations were simultaneous; in the 2nd, the nematodes were inoculated 120 days after the fungal inoculation. In both the experiments, 220 days after AM fungal inoculation, plant growth was stimulated by the fungus. In disinfested soil, control seedlings (without S. heterogama were intolerant to parasitism of M. incognita, while the growth of mycorrhized seedlings was not affected. Sporulation of S. heterogama was negatively affected by the nematodes that did not impair the colonization. M. incognita did not affect mycorrhizal seedling growth. The establishment of mycorrhiza prior to the nematode infection contributed for the reduction of symptoms severity and reproduction of M. incognita in disinfested soil.O efeito da inoculação com Scutellospora heterogama (200 esporos/planta em relação aos sintomas e reprodução de Meloidogyne incognita raça 1 (5000 ovos/planta foi avaliado em plantas de maracujazeiro doce em dois experimentos em casa de vegetação. No primeiro experimento, inoculações com nematóide e FMA foram simultâneas; no segundo, nematóides foram inoculados 120 dias após o estabelecimento da simbiose micorrízica. Após o 220º dia da inoculação do FMA o fungo estimulou o crescimento da planta nos dois experimentos. No solo desinfestado as mudas não inoculadas com S. heterogama mostraram intolerância ao parasitismo de M. incognita. A esporulação de S. heterogama foi negativamente afetada pela presença do nematóide. M. incognita não afetou o crescimento das mudas micorrizadas ou o desenvolvimento do FMA. O estabelecimento da micorriza antes do nematóide contribui para a redução da

  15. Arbuscular Mycorrhizal Fungal Associations in Biofuel Cropping Systems

    Science.gov (United States)

    Murray, K.

    2012-12-01

    Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that play an important role in delivering nutrients to plant roots via mutualistic symbiotic relationships. AMF root colonization was compared between four different biofuel cropping systems in an effort to learn more about the factors that control colonization. The four biofuel systems sampled were corn, switchgrass, prairie, and fertilized prairie. We hypothesized that prairie systems would have the highest levels of AMF colonization and that fertilization would result in lower AMF colonization rates. Roots were sampled from each system in early June and mid-July. Soil P and pH were also measured. In contrast to our hypothesis, corn systems had 70-80% colonization and the unfertilized prairie system had ~35% (P=0.001) in June. In July, all systems saw an increase in colonization rate, but corn roots still had significantly more AMF colonization than unfertilized prairie (P=0.001). AMF colonization in the unfertilized prairie system increased ~55% from June to July. In contrast to previous work, AMF colonization rates were highest in systems with the greatest availability on P and N (corn systems). These results indicate that seasonal differences in root growth were more influential to AMF root colonization than soil nutrient availability.

  16. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.

    Directory of Open Access Journals (Sweden)

    Arnaud Besserer

    2006-07-01

    Full Text Available The association of arbuscular mycorrhizal (AM fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13 M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants.

  17. Uptake of Organic Phosphorus by Arbuscular Mycorrhizal Red Clover

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The capacities of two arbuscular mycorrhizal (AM) fungi, Glomus mosseae and Glomus versiforme, to mineralize added organic P were studied in a sterilized calcareous soil. Mycorrhizal (inoculated with either of the AM fungi) and non-mycorrhizal red clover (Trifolium pratense L.) plants were grown for eight weeks in pots with upper root, central hyphal and lower soil compartments. The hyphal and soil compartments received either organic P (as Na-phytate) or inorganic P (as KH2PO4) at the rate of 50 mg P kg-1. No P was added to the root compartments. Control pots received no added P. Yields were higher in mycorrhizal than in non-mycorrhizal clover. Mycorrhizal inoculation doubled shoot P concentration and more than doubled total P uptake of plants in P-amended soil, irrespective of the form of applied P. The mycorrhizal contribution to inorganic P uptake was 80% or 76% in plants inoculated with G. mosseae or G. versiforme, respectively.Corresponding values were 74% and 82% when Na-phytate was applied. In the root compartments of the mycorrhizal treatments, the proportion of root length infected, hyphal length density and phosphatase activity were all higher when organic P was applied than when inorganic P was added.

  18. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    International Nuclear Information System (INIS)

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement

  19. Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Leyval, C.; Binet, P. [H. Poincare University, Vandoeuvre-les-Nancy (France). Centre de Pedologie Biologique

    1998-03-01

    The rhizosphere of plants plays a role in the bioremediation of soils polluted with organic pollutants such as polyaromatic hydrocarbons (PAHs). Arbuscular mycorrhizal (AM) fungi provide a direct link between soil and plant roots, but very little is known of the interactions between PAHs and AM fungi. The effect of PAHs on mycorrhizal colonization in polluted soil were studied and the effect of AM fungi on plant growth in these soils. Lee (Allium porrum L.), maize (Zea mays L.), ryegrass (Lolium perenne L.), and clover (Trifolium subterraneum L.) were grown in pots containing a soil artificially contaminated with increasing concentrations of anthracene or mixed with an industrial soil polluted with PAHs. Mycorrhizal colonization by the indigenous AM population of the nonpolluted soil was not significantly affected by the addition of anthracene up to 10 g kg{sup -1}. However, mycorrhizal colonization of clover and leek decreased when the industrial soil was added to the nonpolluted soil, while maize and ryegrass colonization was not affected. The effect of PAHs on plant survival and growth depended on plant species. Inoculation of ryegrass with Glomus mosseae improved plant survival and plant growth in the industrially polluted soil. At 5 g of PAH kg{sup -1} only mycorrhizal plants survived. Mycorrhizal fungi may contribute to the establishment and maintenance of plants in PAH-polluted soils. 34 refs., 3 figs., 4 tabs.

  20. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Dalpe, Y. [Agriculture Canada, Ottawa, ON (Canada). Grain and Oilseeds Branch

    2005-07-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement.

  1. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants.

    Science.gov (United States)

    de Boulois, H Dupré; Joner, E J; Leyval, C; Jakobsen, I; Chen, B D; Roos, P; Thiry, Y; Rufyikiri, G; Delvaux, B; Declerck, S

    2008-05-01

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies. PMID:18069098

  2. Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas ( Pisum sativum ) caused by Aphanomyces euteiches

    DEFF Research Database (Denmark)

    Bødker, Lars; Kjøller, Rasmus; Rosendahl, Søren

    1998-01-01

    in the growth medium. The arbuscular mycorrhizal fungus Glomus intraradices increased P uptake and the P concentration in the plant but reduced disease development in peas. Polyacrylamide gel electrophoresis followed by densitometry of glucose-6-phosphate dehydrogenase specific to A.euteiches was....... The epicotyl of mycorrhizal plants showed a reduction in disease severity although this part of the plants was not mycorrhizal. Thus, an induced systemic factor may be responsible for increased resistance in mycorrhizal plants....

  3. Fungos micorrízicos arbusculares no crescimento e nutrição de mudas de jenipapeiro Arbuscular mycorrhizal fungi in the growth and nutrition of jenipapo fruit tree seedlings

    Directory of Open Access Journals (Sweden)

    Ana Cristina Fermino Soares

    2012-03-01

    Full Text Available Alguns trabalhos têm demonstrado que a inoculação de fungos micorrízicos arbusculares (FMA na produção de mudas apresenta grande potencial para o desenvolvimento de um cultivo racional e eficiente de mudas de fruteiras. O objetivo neste trabalho foi avaliar a inoculação de fungos micorrízicos arbusculares no crescimento e nutrição de mudas de jenipapeiro (Genipa americana L.. O experimento foi conduzido em blocos casualizados, avaliando-se seis espécies fúngicas: Glomus clarum, Glomus etunicatum, Glomus manihots, Gigaspora albida, Acaulospora scrobiculata e Scutellospora heterogama, com dez repetições. As espécies A. scrobiculata, G. clarum e G. etunicatum colonizaram mais intensamente o sistema radicular e promoveram melhor desenvolvimento das mudas de jenipapeiro quando comparados a G. manihots e G. albida. O fungo G. etunicatum destacou-se, promovendo incrementos na altura (44,4%; no diâmetro do caule (63,6%; na produção de biomassa seca na parte aérea (288,8%, nas raízes (248,7% e na área foliar (315,7% em comparação às mudas controle. Com exceção de Mn e Fe, mudas inoculadas apresentaram teores de nutrientes superior às mudas controle. As mudas que receberam inóculo de S. heterogama apresentaram crescimento e teor de nutrientes similares aos das mudas controle. A colonização micorrízica correlacionou-se positivamente com os teores de N, P, K, Mg e Cu e negativamente com os teores de Fe e Mn nas folhas das mudas de jenipapeiro. O jenipapeiro é uma planta responsiva aos FMA e a inoculação beneficiou o crescimento e a nutrição das mudas.Some studies have shown that inoculation with arbuscular mycorrhizal fungi (AMF in seedling production has great potential for developing a rational and efficient cultivation of fruit tree seedlings. The objective of this study was to evaluate the effect of inoculation of arbuscular mycorrhizal fungi on growth and nutrition of seedlings of genipap (Genipa americana L.. The

  4. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    Science.gov (United States)

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances. PMID:16159334

  5. Effects of mycorrhizas and pH on nitrogen and potassium fluxes in Pacific Northwest coniferous roots

    Energy Technology Data Exchange (ETDEWEB)

    Rygiewicz, P.T.

    1983-01-01

    This dissertation research studied mechanisms by which mycorrhizal tree roots take up ammonium and nitrate over a range of solution pH. Using mycorrhizal and nonmycorrhizal Douglas-fir, Sitka spruce and western hemlock seedlings, fluxes of N, H/sup +/, OH/sup -/, K/sup +/ and Ca/sup + +/ were measured. As pH increased, ammonium uptake rates increased and mycorrhizas significantly increased uptake for all three tree species. Surprisingly, nitrate uptake rates also increased with increasing pH, although not as dramatically as for ammonium. Even though mycorrhizas increased nitrate uptake rates, the effect was observed only to a small extent for Douglas-fir. Ammonium rates were substantially greater than nitrate rates for all coniferous seedlings. Calcium fluxes increased with increasing pH and ranged from efflux at low pH to uptake at high pH. Potassium was consistently released and these dynamic fluxes were the largest measured. Bicarbonate was also released during ammonium uptake and in significantly greater amounts by mycorrhizal roots. Total cation fluxes were much faster than anion fluxes and may have resulted in increased organic acid synthesis. This relative importance of cation flux was particularly significant for these coniferous seedlings, because cation fluxes were tenfold greater than comparable fluxes reported for agricultural species. In conclusion, this research suggests that ectomycorrhizas can significantly improve nutrient acquisition and have particular importance for nitrogen, the major nutrient limitation in Pacific Northwest forests.

  6. The study of Mycorrhizas and Streptomyces' efficiency at different levels of phosphorus by using 32P in greenhouse condition

    International Nuclear Information System (INIS)

    In order to study the symbiosis of Mycorrhizas and Streptomyces from actinomycetes with the roots of wheat as bio fertilizers that could provide plant nutrients and plant protection, a research has been established with different levels of phosphorus at greenhouse condition. On the other hand, the interaction of two microorganisms, to achieve a good fertilizations formula was also studied. For obtaining the best results, 32P was also utilized. A factorial experiment in a completely randomized design in 3 replication was used in which 4 levels of P (0, 0.20, 0.40 and 0.60 g/pot) were applied and for each microorganisms 2 levels (one with and one without using) in form of seed inoculation was utilized. Our results showed that, using Mycorrhizas has a positive and significant effect in all characters. By increasing the phosphorus level, however, the Mycorrhizal activity increased at the rate of 0.40 g/pot which showed a good activity. There were a negative or antagonistic interaction between two microorganisms and all characters reduced by using them together

  7. Application of 32P to investigate Mycorrhiza and streptomyces efficiency in wheat (Triticum aestivum) at various levels of phosphorus

    International Nuclear Information System (INIS)

    In order to study the symbiosis of Mycorrhiza and Streptomyes from actinomycetes with the roots of wheat as bio fertilizers that could provide plant nutrients and plant protection, a research was established with different levels of phosphorus under greenhouse conditions. On the other hand, the interaction of two microorganisms, to achieve a good fertilization formula, was also studied. To obtain precise results, 32P was utilized. A factorial experiment in a completely randomized design with 3 replications was used in which 4 levels of P(0, 0.20, 0.40 and 0.60 g pot-1) were applied for each microorganism 2 levels (one with and one without using) in form of seed inoculation are used. Results showed that, using mycorrhiza had a positive and significant effect on all characters. By increasing the phosphorus levels, however, the mycorrhizal activity increased at 0.40 g pot-1 which indicated a good activity. There were negative or antagonistic interaction between two microorganisms and all characters were reduced by using them together. (author)

  8. Injuries to Scots pine mycorrhizas and chemical gradients in forest soil in the environment of a pulp mill in Central Finland

    International Nuclear Information System (INIS)

    The occurrence and condition of Scots pine mycorrhizas were studied at different distances from a pulp mill in Central Finland. The chemical analyses of the soil humus layer in the vicinity of the mill revealed increased levels of ammonium-nitrogen, sulphur and calcium but unaltered concentrations of phosphorus and magnesium. Higher nitrate levels and nitrification were clearly detected at some sites which had recently been limed. Significant decreases in root ramification index and number of living mycorrhizas were found in a 0-0.6 km zone surrounding the factory but these parameters increased with increasing distance. Within a 2 km zone around the mill there were abundant Cenococcum geophilus and Paxilus involutus-type mycorrhizas while lowered frequencies of several other mycorrhizal types were detected. An ultrastructural study revealed changes in several types of mycorrhizas, the clearest of which were increased tannin deposition in cortical cells, intracellular growth of hyphae in cortical cells and the appearance of electron dense accumulations in the vacuoles of the funal cells. The ultrastructural changes observed were distributed at least to a distance of 3 km from the mill and occurred in the roots of trees that had only a slight loss of needle mass. Nitrogen deposition is suspected to be the primary cause of root decline but atmospheric SO2 through the tree crown is also likely to be a contributing factor. 37 refs., 10 figs., 7 tabs

  9. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32.

    Science.gov (United States)

    Tan, Yung-Chie; Wong, Mui-Yun; Ho, Chai-Ling

    2015-11-01

    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system. PMID:26322853

  10. MYCORRHIZAL AND NONMYCORRHIZAL DOUGLAS-FIR GROWN IN HYDROCULTURE - THE EFFECT OF NUTRIENT CONCENTRATION ON THE FORMATION AND FUNCTIONING OF MYCORRHIZA

    NARCIS (Netherlands)

    KAMMINGAVANWIJK, C; PRINS, HBA; KUIPER, PJC

    1992-01-01

    A series of experiments using the Douglas fir as the subject of research were performed in hydroculture. Different relative nutrient addition rates were used prior to and after plants had been inoculated with Laccaria bicolor. The effect of the resulting nutrient conditions on mycorrhiza formation w

  11. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    Directory of Open Access Journals (Sweden)

    Johann G Zaller

    Full Text Available Both earthworms and arbuscular mycorrhizal fungi (AMF are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2. AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study

  12. Application of mycorrhizas to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Ornamental crops are high-cash crops, grown under greenhouse conditions in semi-arid regions in Israel where a reduction in the native population of arbuscular mycorrhizal fungi (AMF) is expected due to routine soil disinfection. The application of AMF inoculum to the soil has been shown to be effective at improving plant growth and enhancing plant resilience to abiotic and biotic stresses. One of our aims is to introduce mycorrhizal application to ornamental crops, and a test case is presented here for two cultivars of lisianthus (Eustoma grandiflorum), one of the major ornamental crops grown in Israel. Several different methods of AMF application and their effects on growth, yield and vase life were examined in lisianthus grown in two different semi-arid locations in southern Israel. AMF enhanced lisianthus growth and yield, especially when introduced to the growth medium during seeding and to the pit hole during planting. Significantly enhanced growth and yield parameters included flowering stem length (58 {+-} 0.7 and 65.1 {+-} 0.7 cm for control and AMF treated, respectively) and number of flowering stems per square meter (73 {+-} 9 and 106 {+-} 6 for control and AMF treated, respectively); positive but non-significant effects were recorded on stem weight, number of flowers per stem and vase life of cut flowers. Yield enhancement was recorded under both low and regular phosphorus conditions. Although not significant, higher resilience against two pathogenic fungi was also recorded following AMF inoculation (23 {+-} 13 and 41 {+-} 10 surviving plants for control and AMF treated, respectively). Hence, AMF is suggested to be a useful growth amendment for promotion of lisianthus commercial production, and may potentially be applied to additional ornamental crops. (Author) 23 refs.

  13. The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus

    NARCIS (Netherlands)

    Song, Fang; Pan, Zhiyong; Bai, Fuxi; An, Jianyong; Liu, Jihong; Guo, Wenwu; Bisseling, Ton; Deng, Xiuxin; Xiao, Shunyuan

    2015-01-01

    Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colon

  14. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato

    NARCIS (Netherlands)

    Ruiz-Lozano, J.M.; Aroca, R.; Zamarreno, A.M.; Molina, S.; Andreo Jimenez, B.; Porcel, R.; Garcia-Mina, J.M.; Ruyter-Spira, C.P.; Lopez-Raez, J.A.

    2015-01-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of drou

  15. Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland

    NARCIS (Netherlands)

    Gamper, H.A.; Leuchtmann, A.

    2007-01-01

    Taxon-specific polymerase chain reaction (PCR) primers enable detection of arbuscular mycorrhizal fungi (AMF, Glomeromycota) in plant roots where the fungi lack discriminative morphological and biochemical characters. We designed and validated pairs of new PCR primers targeted to the flanking region

  16. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Suda, Jan; Sudová, Radka

    2012-01-01

    Roč. 4, č. 1 (2012), s. 56-64. ISSN 0038-0717 R&D Projects: GA AV ČR KJB600050812 Institutional research plan: CEZ:AV0Z60050516 Keywords : serpentine syndrome * arbuscular mycorrhizal fungi * reciprocal transplant experiment Subject RIV: EF - Botanics Impact factor: 3.654, year: 2012

  17. Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Martina; Püschel, David; Hujslová, Martina; Slavíková, Renata; Jansa, Jan

    2015-01-01

    Roč. 25, č. 3 (2015), s. 205-214. ISSN 0940-6360 R&D Projects: GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal fungi * Intraradical colonization * PCR inhibition Subject RIV: EE - Microbiology, Virology Impact factor: 3.459, year: 2014

  18. Impact of arbuscular mycorrhizal fungi on maize physiology and biochemical response under variable nitrogen levels

    Science.gov (United States)

    Arbuscular mycorrhizal (AM) fungi are known for colonizing plant roots, transporting water and nutrients from the soil to the plant. Therefore, environmental conditions set mainly by soil water and nutrient levels are important determinants of AM function and host plant response. Mechanisms of nitro...

  19. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  20. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  1. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Vlasáková, E.; Sudová, Radka

    2013-01-01

    Roč. 370, 1-2 (2013), s. 149-161. ISSN 0032-079X R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * drought * serpentine soil Subject RIV: EF - Botanics Impact factor: 3.235, year: 2013

  2. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L

    International Nuclear Information System (INIS)

    The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots. - Highlights: ► The role of arbuscular mycorrhizal fungi (AMF) in As uptake was studied. ► Growth of Plantago lanceolata was significantly enhanced by mycorrhizal inoculation. ► Arsenic concentration and uptake significantly depended on the AMF isolate. ► Arbuscular mycorrhizal fungi may be useful for bioremediation of As contaminated wastes. - Effect of arbuscular mycorrhizal fungi on As uptake by Plantago lanceolata strongly depends on the origin of fungal isolates.

  3. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  4. Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants.

    Science.gov (United States)

    García-Sánchez, Mercedes; Palma, José Manuel; Ocampo, Juan Antonio; García-Romera, Inmaculada; Aranda, Elisabet

    2014-03-15

    The behaviour of tomato plants inoculated with arbuscular mycorrhizal (AM) fungi grown in the presence of aqueous extracts from dry olive residue (ADOR) was studied in order to understand how this symbiotic relationship helps plants to cope with oxidative stress caused by ADOR. The influence of AM symbiosis on plant growth and other physiological parameters was also studied. Tomato plants were inoculated with the AM fungus Funneliformis mosseae and were grown in the presence of ADOR bioremediated and non-bioremediated by Coriolopsis floccosa and Penicillium chrysogenum-10. The antioxidant response as well as parameters of oxidative damage were examined in roots and leaves. The data showed a significant increase in the biomass of AM plant growth in the presence of ADOR, regardless of whether it was bioremediated. The establishment and development of the symbiosis were negatively affected after plants were exposed to ADOR. No differences were observed in the relative water content (RWC) or PS II efficiency between non-AM and AM plants. The increase in the enzymatic activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione-S-transferase (GST; EC 2.5.1.18) were simultaneous to the reduction of MDA levels and H2O2 content in AM root growth in the presence of ADOR. Similar H2O2 levels were observed among non-AM and AM plants, although only AM plants showed reduced lipid peroxidation content, probably due to the involvement of antioxidant enzymes. The results highlight how the application of both bioremediated ADOR and AM fungi can alleviate the oxidative stress conditions, improving the growth and development of tomato plants. PMID:24594394

  5. Changes in communities of Fusarium and arbuscular mycorrhizal fungi as related to different asparagus cultural factors.

    Science.gov (United States)

    Yergeau, Etienne; Vujanovic, Vladimir; St-Arnaud, Marc

    2006-07-01

    Asparagus (Asparagus officinalis) is a high-value perennial vegetable crop that has shown a marked decline in productivity after many years of continuous harvesting. This decline is caused by an increase in both abiotic (autotoxicity, harvesting pressure) and biotic stresses [fungal infections, mainly Fusarium crown and root rot (FCRR)]. To gain insight into disease development and possible mitigation strategies, we studied the effects of harvesting, time in the growing season, and field age on FCRR development, Fusarium species composition, and arbuscular mycorrhizal fungi (AMF) communities in both a controlled field experiment and an ecological survey of commercial fields. In one experiment, a 3-year-old asparagus field was subdivided into plots that were harvested or not and sampled throughout the growing season to assess short-term dominant Fusarium species shifts. In addition, diseased and healthy asparagus plants sampled from six commercial fields in the same geographical region were used to assess Fusarium and AMF communities in relation to different parameters. Fusarium and AMF communities were described by using a polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) approach, and results were analyzed by mainly correspondence analysis and canonical correspondence analysis. Results showed that dominant Fusarium taxa assemblages changed throughout the growing season. Harvested plots had significantly more FCRR symptomatic plants at the end of the growing season, but this effect was not related with any trend in Fusarium community structure. Sampling site and plant age significantly influenced AMF community structure, whereas only sampling site consistently influenced the Fusarium community. Diseased and healthy plants harbored similar Fusarium and AMF communities. Shifts in Fusarium community might not be responsible for different disease incidence because they are ubiquitous regardless of plant health status or harvesting regime

  6. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution?

    Czech Academy of Sciences Publication Activity Database

    Kohout, P.; Sudová, R.; Janoušková, M.; Čtvrtlíková, Martina; Hejda, M.; Pánková, H.; Slavíková, R.; Štajerová, K.; Vosátka, M.; Sýkorová, Z.

    2014-01-01

    Roč. 68, January (2014), s. 482-493. ISSN 0038-0717 Institutional support: RVO:60077344 Keywords : arbuscular mycorrhizal fungi * primers * diversity Subject RIV: EF - Botanics Impact factor: 3.932, year: 2014

  7. Características químicas determinan la capacidad micotrófica arbuscular de suelos agrícolas y prístinos de Buenos Aires (Argentina Chemical characteristics as determinants of arbuscular mycotrophic ability of agricultural and pristine soils from Buenos Aires (Argentina

    Directory of Open Access Journals (Sweden)

    Fernanda Covacevich

    2012-12-01

    , the soils' natural fertility and the beneficial microbial populations such as arbuscular mycorrhizal fungi (AMF could be affected. The objective of this study was to identify changes in the nutrient content in soils under contrasting managements (agricultural vs. pristine that could influence the mycotrophic ability of AMF. Soil samples were collected from 29 agricultural sites in Buenos Aires Province under cropped and non-cropped (pristine systems. Chemical characteristics were determined (CIC, Fe, Mn, Cu, Zn, B, P-Bray, CO and pH in composed samples collected from each field. Mycotrophic ability was estimated by assessing the degree of root colonization by native mycorrhiza in trap crops after 12 weeks of sowing. The values of chemical properties were generally higher for pristine sites than for agricultural plots. However, the mycotrophic ability did not differ between cropped and pristine soils. The principal component analysis allowed grouping field sites under agriculture or pristine conditions. Soil available P content, together with Fe and to a lesser extent Mn content- seemed to depress the mycotrophic ability of the analyzed soil, particularly under moderate to low organic carbon contents conditions.

  8. Uso de fungos micorrízicos arbusculares (FMA na promoção do crescimento de mudas de pinheira (Annona squamosa L., Annonaceae Use of arbuscular mycorrhizal fungi (AMF to promote the growth of sugar apple seedlings (Annona squamosa L. Annonaceae

    Directory of Open Access Journals (Sweden)

    Ieda Ribeiro Coelho

    2012-12-01

    Full Text Available Os fungos micorrízicos arbusculares (FMA podem ser usados na formação de mudas frutíferas, porém o seu efeito na pinheira não é conhecido. Foi investigado o papel de dois isolados de FMA (Acaulospora longula e Gigaspora albida na promoção do crescimento de mudas de pinheira. O delineamento experimental foi tipo inteiramente casualizado em seis tratamentos: 1 Controle não inoculado em solo; 2 Controle não inoculado em solo adubado; 3 Inoculado com A. longula em solo; 4 Inoculado com A. longula em solo adubado; 5 Inoculado com G. albida em solo; 6 Inoculado com G. albida em solo adubado, em quatro repetições, totalizando 24 unidades. Plântulas com duas folhas foram inoculadas na região das raízes com solo-inóculo fornecendo 200 esporos de G. albida ou de A. longula. Após 140 dias em casa de vegetação avaliou-se: altura, número de folhas, diâmetro do caule, área foliar, massa fresca e seca da parte aérea e radicular, colonização micorrízica e produção de esporos de FMA. Em solo não adubado, os benefícios da micorrização foram evidenciados nas mudas formando simbiose com G. albida. Em solo com vermicomposto, a micorrização não incrementou o crescimento da mudas. A micorrização com G. albida pode ser alternativa para produção de mudas de pinheira, dispensando a fertilização.Arbuscular mycorrhizal fungi (AMF can be used to promote seedling growth of fruit trees, but their effect on sugar apple is not known. We investigated the role of two isolates of AMF (Acaulospora longula and Gigaspora albida in promoting the growth of sugar apple seedlings. The experimental design was completely randomized with six treatments and four replicates (totaling 24 units: 1 uninoculated control; 2 uninoculated control in fertilized soil; 3 inoculated with A. longula in soil, 4 inoculated with A. longula in fertilized soil, 5 inoculated with G. albida in soil; 6 inoculated with G. albida in fertilized soil. Seedlings with two

  9. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms. PMID:27197388

  10. Arbuscular mycorrhizal fungi (AMF) as bio protector agents against wilt induced by Verticillium spp. in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, N.; Garmendia, I.; Sanchez-Diaz, M.; Aguirreolea, J.

    2010-07-01

    Verticillium dahliae Kleb. is a vascular pathogen that alters water status and growth of pepper plants and causes drastic reductions in yield. Its control is difficult because it can survive in field soil for several years. The application of arbuscular mycorrhizal fungi (AMF) as bio protector agents against V. dahliae is an alternative to the use of chemicals which, in addition, is more respectful with the environment. The establishment of the mutualistic association of plant roots and AMF involves a continuous cellular and molecular dialogue between both symbionts that includes the pre activation of plant defense responses that may enhance the resistance or tolerance of mycorrhizal plants to soil-borne pathogens. Some AMF can improve the resistance of Capsicum annuum L. against V. dahliae. This is especially relevant for pepper cultivars (i.e. cv. Piquillo) that exhibit high susceptibility to this pathogen. Compared with non-mycorrhizal plants, mycorrhizal pepper can exhibit more balanced antioxidant metabolism in leaves along the first month after pathogen inoculation, which may contribute to delay both the development of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants with the subsequent benefit for yield. In stems, mycorrhizal pepper show earlier and higher deposition of lignin in xylem vessels than non mycorrhizal plants, even in absence of the pathogen. Moreover, AMF can induce new isoforms of acidic chitinases and superoxide dismutase in roots. Mycorrhizal-specific induction of these enzymatic activities together with enhanced peroxidase and phenylalanine ammonia-lyase in roots may also be involved in the bio protection of Verticillium-induced wilt in pepper by AMF. (Author) 81 refs.

  11. Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca, Mexico.

    Science.gov (United States)

    Guadarrama, Patricia; Castillo-Argüero, Silvia; Ramos-Zapata, José A; Camargo-Ricalde, Sara L; Alvarez-Sánchez, Javier

    2008-03-01

    Plant cover loss due to changes in land use promotes a decrease in spore diversity of arbuscular mycorrhizal fungi (AMF), viable mycelium and, therefore, in AMF colonization, this has an influence in community diversity and, as a consequence, in its recovery. To evaluate different AMF propagules, nine plots in a tropical dry forest with secondary vegetation were selected: 0, 1, 7, 10, 14, 18, 22, 25, and 27 years after abandonment in Nizanda, Oaxaca, Mexico. The secondary vegetation with different stages of development is a consequence of slash and burn agriculture, and posterior abandonment. Soil samples (six per plot) were collected and percentage of AMF field colonization, extrarradical mycelium, viable spore density, infectivity and most probable number (MPN) ofAMF propagules were quantified through a bioassay. Means for field colonization ranged between 40% and 70%, mean of total mycelium length was 15.7 +/- 1.88 mg(-1) dry soil, with significant differences between plots; however, more than 40% of extracted mycelium was not viable, between 60 and 456 spores in 100 g of dry soil were recorded, but more than 64% showed some kind of damage. Infectivity values fluctuated between 20% and 50%, while MPN showed a mean value of 85.42 +/- 44.17 propagules (100 g dry soil). We conclude that secondary communities generated by elimination of vegetation with agricultural purposes in a dry forest in Nizanda do not show elimination of propagules, probably as a consequence of the low input agriculture practices in this area, which may encourage natural regeneration. PMID:18624242

  12. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    Science.gov (United States)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any

  13. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  14. Spore density and root colonization by arbuscular mycorrhizal fungi in preserved or disturbed Araucaria angustifolia (Bert. O. Ktze. ecosystems Densidade de esporos e colonização radicular por fungos microrrízicos arbusculares em ecossistemas de Araucaria angustifolia (Bert. O. Ktze. preservados e impactados

    Directory of Open Access Journals (Sweden)

    Milene Moreira

    2006-08-01

    Full Text Available Araucaria angustifolia (Bert. O. Ktze., a native forest tree from Brazil, is under extinction risk. This tree depends on arbuscular mycorrhizal fungi for growth and development, especially in tropical low-P soils but, despite being a conifer, Araucaria does not form ectomycorrhiza, but only the arbuscular endomycorrhiza. This study aimed at surveying data on the spore density and root colonization (CR by arbuscular mycorrhizal fungi (AMF in Araucaria angustifolia forest ecosystems, in order to discriminate natural, implemented, and anthropic action-impacted ecosystems, by means of Canonical Discriminant Analysis (CDA. Three ecosystems representative of the Campos do Jordão (SP, Brazil region were selected: 1. a native forest (FN; 2. a replanted Araucaria forest (R; and 3. a replanted Araucaria forest, submitted to accidental fire (RF. Rhizosphere soil and roots were sampled in May and October, 2002, for root colonization, AMF identification, and spores counts. Root percent colonization rates at first collection date were relatively low and did not differ amongst ecosystems. At the second period, FN presented higher colonization than the other two areas, with much higher figures than during the first period, for all areas. Spore density was lower in FN than in the other areas. A total of 26 AMF species were identified. The percent root colonization and spore numbers were inversely related to each other in all ecosystems. CDA indicated that there is spatial distinction among the three ecosystems in regard to the evaluated parameters.A Araucaria angustifolia (Bert. O. Ktze. é uma espécie florestal nativa do Brasil e encontra-se ameaçada de extinção. É altamente dependente de fungos micorrízicos arbusculares para seu desenvolvimento, principalmente em solos com baixos teores de fósforo. Embora sendo uma conífera, esta árvore não forma ectomicorriza, mas sim a endomicorriza arbuscular. O presente estudo teve como objetivo levantar dados

  15. Effect of different strains of bradyrhizobium and two types of vesicular arbuscular mycorrhizas (vam) on biomass and nitrogen fixation in Vigna Radiata (L) wilczek var. NM 20-21

    International Nuclear Information System (INIS)

    Effect of three strains of Bradyrhizobium (VR16, Vr 17 and Vm 1) and two VAM species (Glomus mosseae Nicol. and Gerd., and an unknown species ME) on biomass, acetylene reducing activity (ARA) of modules and nitrogen content of shoots in Vigna radiata (L.) Wilczek var. NM 20-21, using nitrogen free nutrient solution, was studied. Plants inoculated with Vr16 or Vm1 showed greater biomass of shoots as compared to Vr17 or Vr16+Vr17+VM1 inoculated plants. Biomass of Vr17 inoculated plants was increase by mycorrhizal inoculation while other treatments i.e., Vr16, Vm1 or Vr16+Vr17+Vm1 showed negative response to mycorrhizal inoculation. ARA of nodules and nitrogen content per gram dry weight of shoots were different in different treatments of Bradyrhizobium. ARA and nitrogen content of plants inoculated with Vm1 or mixture of Bradyrhizobium strains (Vr16+Vr17+Vm1) was increased on mycorrhizal inoculation. (author)

  16. Mycorrhiza formation and nutrient concentration in leeks (¤Allium porrum¤) in relation to previous crop and cover crop management on high P soils

    DEFF Research Database (Denmark)

    Sørensen, J.N.; Larsen, J.; Jakobsen, I.

    An improved integration of mycorrhizas may increase the sustainability in plant production. Two strategies for increasing the soil inoculum potential of mycorrhizal fungi were investigated in field experiments with leeks: Pre-cropping with mycorrhizal main crops and pre-establishment of mycorrhizal...... cover crops. Experiments on soils with moderate to high P content (26-50 mg kg(-1) bicarbonate-extractable P) showed that the previous crop influenced mycorrhiza formation, uptake of P, Zn, and Cu, and early growth of leek seedlings. A cover crop of black medic, established the previous autumn......, increased the colonization of leek roots by mycorrhizal fungi. During early growth stages, this increase was 45-95% relative to no cover crop. However, cover cropping did not significantly increase nutrient concentration or growth. These variables were not influenced by the time of cover crop incorporation...

  17. Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505.

    Science.gov (United States)

    Keller, Simone; Schneider, Kathrin; Süssmuth, Roderich D

    2006-12-01

    Mycorrhiza helper bacterium Streptomyces strain AcH 505 stimulates ectomycorrhiza formation between spruce and fly agaric by supporting fungal growth whereas growth of pathogenic fungi is suppressed. A fungal growth promoting substance was isolated and the chemical structure elucidated by mass spectrometry and NMR spectroscopy. The absolute configuration of the novel fungal growth promoting compound auxofuran (1) was deduced from NMR data with the help of Mosher esters. PMID:17323648

  18. Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505†

    OpenAIRE

    Riedlinger, Julia; Schrey, Silvia D; Tarkka, Mika T.; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-01-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigate...

  19. Mycorrhiza and root-associated fungi of the ericaceous Arctic plant Cassiope tetragona after artificial warming and in the natural environment

    OpenAIRE

    Lorberau, Kelsey Erin

    2015-01-01

    Mycorrhizal associations are essential to most plant life on earth. Cassiope tetragona is a circumpolar Arctic plant in the Ericaceae family, which has been reported to form ericoid mycorrhiza as well as ectomycorrhiza, though little is known about the functions and identities of these fungal partners. In light of climate change, it is essential to unravel these gaps in our knowledge as we attempt to predict how the Arctic will respond. In this study, the fungal root associates of C. tetragon...

  20. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Potassium, a chemical analogue of cesium, and phosphorus, an essential macronutrient transported by arbuscular mycorrhizal fungi (AMF), have been suggested to influence the transport of radiocesium by AMF. However, no study investigated the effects of increasing concentrations of both elements on the importance of this transport. Here, the arbuscular mycorrhizal-plant (AM-P) in vitro culture system associating Medicago truncatula plantlets with Glomus intraradices was used to evaluate this effect. Using three concentrations of K (0, 1, 10 mM) and two concentrations of P (30 and 3000 μM) added to a compartment only accessible to the AMF, we demonstrated that K and P individually and in combination significantly influenced radiocesium transport by AMF. Whilst increased concentration of K decreased the amount of radiocesium transported, the opposite was observed for P. Although the exact mechanisms involved need to be assessed, both elements were identified as important factors influencing the transport of radiocesium by AMF.

  1. Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Dupre de Boulois, Herve [Universite catholique de Louvain, Unite de microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane, E-mail: stephan.declerck@uclouvain.b [Universite catholique de Louvain, Unite de microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-06-15

    Potassium, a chemical analogue of cesium, and phosphorus, an essential macronutrient transported by arbuscular mycorrhizal fungi (AMF), have been suggested to influence the transport of radiocesium by AMF. However, no study investigated the effects of increasing concentrations of both elements on the importance of this transport. Here, the arbuscular mycorrhizal-plant (AM-P) in vitro culture system associating Medicago truncatula plantlets with Glomus intraradices was used to evaluate this effect. Using three concentrations of K (0, 1, 10 mM) and two concentrations of P (30 and 3000 muM) added to a compartment only accessible to the AMF, we demonstrated that K and P individually and in combination significantly influenced radiocesium transport by AMF. Whilst increased concentration of K decreased the amount of radiocesium transported, the opposite was observed for P. Although the exact mechanisms involved need to be assessed, both elements were identified as important factors influencing the transport of radiocesium by AMF.

  2. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses

    OpenAIRE

    Foo, Eloise; Ferguson, Brett J; Reid, James B.

    2014-01-01

    All of the classical plant hormones have been suggested to influence nodulation, including some that interact with the Autoregulation of Nodulation (AON) pathway. Leguminous plants strictly regulate the number of nodules formed through this AON pathway via a root-shoot-root loop that acts to suppress excessive nodulation. A related pathway, the Autoregulation of Mycorrhization (AOM) pathway controls the more ancient, arbuscular mycorrhizal (AM) symbiosis. A comparison of the published respons...

  3. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi

    OpenAIRE

    Asrar, Abdul-Wasea A.; Elhindi, Khalid M.

    2010-01-01

    The effect of an arbuscular mycorrhizal fungus “AMF” (Glomus constrictum Trappe) on growth, pigments, and phosphorous content of marigold (Tagetes erecta) plant grown under different levels of drought stress was investigated. The applied drought stress levels reduced growth vigor (i.e. plant height, shoot dry weight, flower diameter as well as its fresh and dry weights) of mycorrhizal and non-mycorrhizal plant as compared to control plant (non-drought stressed plant). The presence of mycorrhi...

  4. Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions

    OpenAIRE

    Martha Viviana Torres Cely; Admilton Gonçalves Oliveira; Vanessa Fogaça Freitas; Marcelo Benite de Luca; André Riedi Barazetti; Igor Matheus Oliveira Santos; Bárbara eGionco; Guilherme Volante Garcia; Cássio Egidio Cavenaghi Prete; Galdino eAndrade

    2016-01-01

    Nutrient availability is an important factor in crop production, and regular addition of chemical fertilizers is the most common practice to improve yield in agrosystems for intensive crop production. The use of some groups of microorganisms that have specific activity providing nutrients to plants is a good alternative, and arbuscular mycorrhizal fungi (AMF) enhance plant nutrition by providing especially phosphorus (P), improving plant growth and increasing crop production. Unfortunately, t...

  5. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient

    OpenAIRE

    Wilson, Hannah; Johnson, Bart R.; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D.

    2016-01-01

    Background: Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulati...

  6. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    OpenAIRE

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai; Liu, Sheng-Qun; Tian, Chen-Jie

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks and subsequently subjected to two temperature treatments (158C, low temperature; 258C, ambient control) for 2 weeks. Low-temperature stress significantlydecreasedAMcolonisation, plant height and biomass. TotalNco...

  7. Sink stimulation of leaf photosynthesis by the carbon costs of rhizobial and arbuscular mycorrhizal fungal symbioses

    OpenAIRE

    Kaschuk, G.

    2009-01-01

    Key words: biochemical model of leaf photosynthesis; carbon sink strength; chlorophyll fluorescence; harvest index; leaf protein; leaf senescence; legumes; photosynthetic nutrient use efficiency; Pi recycling; source-sink regulation; ureides One of the most fascinating processes in plant physiology and agronomy is the capability of legumes to associate symbiotically with rhizobial bacteria and arbuscular mycorrhizal (AM) fungi. The legumes supply photosynthates in exchange for nitrogen, deriv...

  8. Plant mortality varies with arbuscular mycorrhizal fungal species identities in a self-thinning population

    OpenAIRE

    Zhang, Qian; Tang, Jianjun; Chen, Xin

    2010-01-01

    Because arbuscular mycorrhizal fungal (AMF) species differ in stimulating the growth of particular host plant species, AMF species may vary in their effects on plant intra-specific competition and the self-thinning process. We tested this hypothesis using a microcosm experiment with Medicago sativa L. as a model plant population and four AMF species. Our results showed that the AMF species Glomus diaphanum stimulated host plant growth more than the other three AMF species did when the plants ...

  9. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence

    OpenAIRE

    Roger, Aurélien; Colard, Alexandre; Angelard, Caroline; Sanders, Ian R.

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, a...

  10. Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores

    OpenAIRE

    V Bianciotto; Genre, A.; Jargeat, P.; Lumini, E; Bécard, G.; Bonfante, P.

    2004-01-01

    Arbuscular mycorrhizal (AM) fungi living in symbiotic association with the roots of vascular plants have also been shown to host endocellular rod-shaped bacteria. Based on their ribosomal sequences, these endobacteria have recently been identified as a new taxon, Candidatus Glomeribacter gigasporarum. In order to investigate the cytoplasmic stability of the endobacteria in their fungal host and their transmission during AM fungal reproduction (asexual), a system based on transformed carrot ro...

  11. Reforestation of Bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with Arbuscular mycorrhizal fungi

    OpenAIRE

    A.Karthikeyan; N. Krishnakumar

    2012-01-01

    Open cast mining for bauxite at Yercaud hills (India) resulted in degradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils). To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM) fungi essential for plant growth. However, the use of top soil is expensive and in this study b...

  12. Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing

    OpenAIRE

    Trejo-Aguilar, Dora; Lara-Capistrán, Liliana; Maldonado-Mendoza, Ignacio E.; Zulueta-Rodríguez, Ramón; Sangabriel-Conde, Wendy; Mancera-López, María Elena; Negrete-Yankelevich, Simoneta; Barois, Isabelle

    2013-01-01

    Long-term successional dynamics of an inoculum of arbuscular mycorrhizal fungi (AMF) associated with the maize rhizosphere (from traditionally managed agroecosystems in Los Tuxtlas, Veracruz, Mexico), was followed in Bracchiaria comata trap cultures for almost eight years. The results indicate that AMF diversity is lost following long-term subculturing of a single plant host species. Only the dominant species, Claroideoglomus etunicatum, persisted in pot cultures after 13 cycles. The absence ...

  13. The plant – arbuscular mycorrhizal fungi – bacteria – pathogen system

    OpenAIRE

    Bharadwaj, Dharam Parkash

    2007-01-01

    The aim of this study was to determine the role of the bacteria associated with arbuscular mycorrhizal (AM) fungi in the interactions between AM fungi, plant hosts and pathogens. Mycorrhizal traits were studied in a potato host using field rhizosphere soils of 12 different plant species as inoculum. High colonisation was found with soil of Festuca ovina and Leucanthemum vulgare, which contained two dominant AMF species (Glomus mosseae and G. intraradices). Bacteria associated with spores of A...

  14. EFFECT OF ARBUSCULAR MYCORRHIZAL FUNGI (AMF) ON GROWTH AND YIELD OF SUNFLOWER (Helianthus annuus L.)

    OpenAIRE

    Kavitha T; Nelson R

    2014-01-01

    The arbuscular mycorrhizal fungi (AMF) are a group of plant growth promoting organisms related to improve the overall growth of various crops. Hence the present study was aimed to investigate the agronomical characteristics induced by AMF in sunflower (Helianthus annuus L.). Three different indigenous AM fungi such as Glomus mosseae, Glomus fasiculatum, Acalospora scrobiculata isolated from the sunflower rhizosphere soil were used either alone or in various combinations for th...

  15. Nuevos registros de hongos micorrizógenos arbusculares para México

    OpenAIRE

    Heriberto Méndez Cortés; José G. Marmolejo Monsivais; Víctor Olalde Portugal; César M. Cantú Ayala; Lucía Varela Fregoso

    2012-01-01

    Se describen cuatro nuevos registros de hongos micorrizógenos arbusculares para México, los cuales fueron extraídos de la rizósfera del cedro rojo (Cedrela odorata), en dos ecosistemas tropicales del estado de Veracruz. Rhizophagus custos se recolectó en el ecosistema de selva alta perennifolia; mientras que Glomus arenarium, G. aureum y G. hyderabadensis en la selva mediana subperennifolia.

  16. Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem

    OpenAIRE

    Barber, Nicholas A.; Kiers, E. Toby; Hazzard, Ruth V.; Adler, Lynn S.

    2013-01-01

    Plants interact with a variety of other community members that have the potential to indirectly influence each other through a shared host plant. Arbuscular mycorrhizal fungi (AMF) are generally considered plant mutualists because of their generally positive effects on plant nutrient status and growth. AMF may also have important indirect effects on plants by altering interactions with other community members. By influencing plant traits, AMF can modify aboveground interactions with both mutu...

  17. Caracterização fenotípica e molecular de esporos de fungos micorrízicos arbusculares mantidos em banco de germoplasma Phenotypic and molecular characterization of arbuscular mycorrhizal fungal spores from cultures maintained in germplasm collection

    Directory of Open Access Journals (Sweden)

    Cândido Barreto de Novais

    2010-08-01

    Full Text Available O objetivo deste trabalho foi caracterizar fenotípica e genotipicamente isolados de espécies de fungos micorrízicos arbusculares (FMA mantidos em cultura pura e avaliar a aplicabilidade da técnica PCR-DGGE desenvolvida para Gigaspora, na identificação molecular de espécies de FMA pertencentes a outros gêneros. A caracterização fenotípica das espécies foi realizada de acordo com critérios morfológicos, descritos pela taxonomia, e com uso de descrições originais das espécies presentes na literatura especializada. A análise genotípica foi feita com base na discriminação específica da região V9 do 18S rDNA, que permitiu a diferenciação das espécies e não revelou qualquer diferença entre os isolados geográficos de Glomus clarum, e entre os de Glomus etunicatum. Isto indica a aplicabilidade da técnica para a avaliação da pureza genética e discriminação de espécies de FMA.The objective of this work was to characterize phenotypically and genotypically isolates of arbuscular mycorrhizal fungi (AMF maintained in pure culture and to evaluate the applicability of PCR-DGGE analysis, developed for Gigaspora, for molecular identification of AMF species belonging to other genres. The species phenotypic characterization was done according to morphological criteria, as described by taxonomy, and according to original descriptions of species published in the specialized literature. The genotypic analysis was made through specific discrimination of the V9 region in the 18S rDNA, which allowed the distinction of species and showed no difference among geographical isolates of Glomus clarum, and among those of Glomus etunicatum. This indicates the applicability of this technique for assessment of genetic purity and discrimination of AMF species.

  18. Infectivity of Arbuscular Mycorrhizal Fungi in Naturally Regenerating, Unmanaged and Clear-Cut Beech Forests

    Institute of Scientific and Technical Information of China (English)

    I.CLOSA; N.GOICOECHEA

    2011-01-01

    Clear-cutting, a management practice applied to many beech forests in the North of Spain, modifies microclimate and, consequently,the composition of the understory plant community in the disturbed areas. The objectives of this study were to assess if changes in the understory vegetation caused by altered light microclimate after clear-cutting affect the infectivity of arbuscular mycorrhizal fungi (AMF) on herbaceous plant species in beech (Fagus sylvatica L.) forests naturally regenerating from clear-cutting and to test if the use of bioassays for studying the infectivity of native AMF could provide aseful information to improve the management of clear-cut areas.Three nearby beech forests in northwest Navarra, Spain, a region in the northwest part of the Pyrenees, were selected: an unmanaged forest, a forest clear-cut in 1996, and another forest clear-cut in 2001. High stem density in the forest clear-cut in 1996 (44 000 trees ha-1) attenuated photosynthetic active radiation (PAR) and impaired the growth of herbaceous species within the ecosystem. The percentage of AMF colonization of plants in bioassays performed on soil samples collected from the forest clear-cut in 1996 was always lower than 10%. In the forest clear-cut in 2001, where soil was covered by perennial grasses, PAR was high and thc infectivity of native AMF achieved minimum values in spring and autumn and a maximum value in summer. In contrast, the infectivity of native AMF in the umnanaged forest remained similar across the seasons. Our results demonstrated that changes in the composition of understory vegetation within beech forests strongly affected the infectivity of native AMF in clear-cut areas and suggested that the assessment of the infectivity of native AMF through bioassays could provide helpful information for planning either the removal of overstory when the tree density is so high that it impairs the correct development of herbaceous species or the plantation of new sesdlings when high

  19. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As)uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment. Non-mycorrhizal and zero-P addition controls were included. Plant biomass and concentrations and uptake of As, P, and other nutrients, AM colonization, root lengths, and hyphal length densities were determined. The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium. Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments, but shoot and root biomass of AM plants was depressed by P application. AM fungal inoculation decreased shoot As concentrations when no P was added, and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition, respectively. Shoot and root uptake of P, Mn, Cu, and Zn increased, but shoot Fe uptake decreased by 44.6%, with inoculation,when P was added. P addition reduced shoot P, Fe, Mn, Cu, and Zn uptake of AM plants, but increased root Fe and Mn uptake of the nonmycorrhizal ones. AM colonization therefore appeared to enhance plant tolerance to As in low P soil, and have some potential for the phytostabilization of As-contaminated soil, however, P application may introduce additional environmental risk by increasing soil As mobility.

  20. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Prosser, R S; Lissemore, L; Shahmohamadloo, R S; Sibley, P K

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with the majority of crop plants. AMF provide plants with nutrients (e.g., P), modulate the effect of metal and pathogen exposure, and increase tolerance to moisture stress. The benefits of AMF to plant growth make them important to the development of sustainable agriculture. The land application of biosolids is becoming an increasingly common practice in sustainable agriculture, as a source of nutrients. However, biosolids have been found to contain numerous pharmaceutical and personal care products including antimicrobial chemicals such as triclosan and triclocarban. The potential risks that these two compounds may pose to plant-AMF interactions are poorly understood. The current study investigated whether biosolids-derived triclosan and triclocarban affect the colonization of the roots of lettuce and corn plants by AMF. Plants were grown in soil amended with biosolids that contained increasing concentrations of triclosan (0 to 307 μg/g dw) or triclocarban (0 to 304 μg/g dw). A relationship between the concentration of triclosan or triclocarban and colonization of plants roots by AMF was not observed. The presence of biosolids did not have a significant (p>0.05) effect on percent colonization of corn roots but had a significant, positive effect (ptriclocarban did not inhibit the colonization of crop plant roots by AMF. PMID:25497682

  1. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M.

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead. PMID:26635750

  2. Tuber melanosporum spread within sub-optimal climatic zones is controlled by fruiting triggers and not mycorrhiza survival

    Directory of Open Access Journals (Sweden)

    Paul W. Thomas

    2014-07-01

    Full Text Available Tuber melanosporum is the most valuable of all cultivatable truffle species. Farming of this species spans every continent with the exception of Antarctica. Tuber aestivum (syn. T. uncinatum and Tuber brumale are truffle species that have similar host plant preference and a similar affinity for calcareous soils as T. melanosporum, but occur over a broader geographic zone. The geographic limit of T. melanosporum is thought to be climatically dictated but it is not known whether this is due to an impact on mycorrhizal survival or climatically-derived fruiting triggers. Here, data is compiled from five cultivated research sites in the climatically sub-optimal conditions of the UK in order to address this question. Here we show: (iTuber melanosporum mycorrhiza can survive and grow in sub-optimal climatic conditions. (iiIt is climatically-derived fruiting triggers and not ectomycorrhiza survival that dictate the climatic preferences and geographic spread of T. melanosporum. (iiiImportant climatic parameters for potential fruiting triggers are sunshine hours, summer rainfall and summer temperatures.   The data presented here not only aid our understanding of the ecological parameters of T. melanosporum but also have a practical application for truffle cultivators in choosing suitable locations for a plantation.

  3. effect of two rock phosphates and inoculation with VA mycorrhizae and phosphate solubilizing bacteria on the chickpea-rhizobium symbiosis

    International Nuclear Information System (INIS)

    A pot experiment was conducted tracing the effect of two types of phosphorus applied at different rates on the release of nitrogen from fertilizer and its impact on biological nitrogen fixation . chickpea (Cicer Arietinum c v. Cicer 36-ICARDA) was inoculated with peat-based inoculum of phosphorin (Bacillus Megatherium phosphate solubilizing bacteria), Mycorrhizae (VAM) and a mixture of phosphorin and VAM. three types of P fertilizer, i.e.superphosphate, rock P1 (Safaga) and rock P2 (Abou-Trtour) were applied at rate of 25 and 50 mg Pkg-1 soil in the presence or absence of inoculum. labelled ammonium sulfate with 15N 10% atom excess was applied at rates of 15 and 30 mg N kg-1 soil for chickpea and barley (reference crop) respectively . Addition of phosphorus fertilizers, especially at the high rates, positively affected the growth and dry weight as compared to the unfertilized control. infections with VAM mixed with phosphorin under low level of rock P (Abou-tarour) gave the highest values of dry weight and N and P uptake when compared with both superphosphate-P source and control. biological N2 fixed was higher in dual inoculation treatments (i.e.phosphorin +VAM) than those receiving a single inoculum. the percentages of N2-fixed ranged from 24 to 53 according to inoculation treatments, P sources and levels

  4. Implications of some extra-cellular products of soil micro-organisms on plant infection by vesicular-arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    Vesicular-arbuscular mycorrhizal fungi have not yet been successfully cultured axenically. Knowledge of the biosynthetic abilities of these fungi and of their requirements for suitable growth and development would help to unravel the interactions taking place between plants and these fungi, why and how the infection occurs and the nature of host dependence. Hence, progress in the study of the biology of mycorrhizal formation is difficult. This paper reviews the related literature and summarises the experimental work carried out by the authors. The results obtained indicate that soil microorganisms can assist mycorrhizal infection and the above mentioned mechanisms seem to be involved in the ''stimulation'' of the VA fungi in the rhizosphere and/or in the formation of ''entry points'' in susceptible plant roots. (author)

  5. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    Science.gov (United States)

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  6. Effects of different carbon forms on assimilation of nitrogen and production of arginine by arbuscular mycorrhizal fungus%不同外源碳对AM真菌吸收氮源合成精氨酸的影响

    Institute of Scientific and Technical Information of China (English)

    田萌萌; 刘静; 刘洁; 于向鹏; 金海如

    2011-01-01

    The aim of this paper is to investigate the effects of different forms of exogenous organic matters on the assimilation of nitrogen and production of arginine(Arg) by arbuscular mycorrhizal(AM) fungus.AM fungi(Glomus intraradices) were inoculated to the host plant(Sorghum bicolor L.Moench) and grown in the three-compartment pot culture system,4 mmol/L NH4NO3 was added into the mycelium compartment,and different forms of carbons were added into the root compartment.The Arg and total nitrogen contents were determined and analysed in extraradical mycelium(ERM),mycorrhizal roots and shoots separately.The results show that the contents of Arg in ERM and mycorrhizal roots are significantly higher than that those in shoots.The dry weight of ERM and root infection rate are increased under the adding of different forms of organic matters,while the Arg contents in ERM,mycorrhizal roots and shoots are reduced under the adding of glucose.The production of Arg is not significantly affected under the adding of sucrose and glycerol,while the Arg content in ERM is significantly increased under the adding of external Arg and glutamine(Gln).The different forms of carbons have no significant effects on total nitrogen contents in mycorrhizal roots and shoots.Therefore,the carbon for Arg biosynthesis is mostly derived from the carbohydrates of the host plants supply,however the exogenous carbon could promote the growth of AM fungus.%本文意在探究外源碳对丛枝菌根(arbuscular mycorrhiza,AM)真菌吸收氮源合成精氨酸(Arg)的影响。采用三室隔离盆栽培养系统,以高粱(Sorghum bicolor L.Moench)为宿主植物,接种AM真菌Glomus intraradices,在菌丝室施加4 mmol/L的NH4NO3,同时在根室施加不同形式的碳源,测定分析不同外源碳条件下根外菌丝体(ERM)、菌根和植物茎叶中的Arg含量和总氮含量。结果表明ERM和菌根中的Arg含量远远高于其在茎叶中的含量;虽然不同

  7. Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in central Argentina.

    Science.gov (United States)

    Urcelay, Carlos

    2002-04-01

    The roots of Gaultheria poeppiggi (Ericaceae) were examined for fungal symbiont colonization. Typical structures of ericoid mycorrhizas (hyphae and intracellular coil hyphae complexes), dark septate fungal endophytes (hyphae and sclerotia), and arbuscular mycorrhizas (hyphae, coils, vesicles and arbuscules) were found in the roots of all the individuals examined. The evolutionarily derived position of Gaultheria within the Ericales may suggest that G. poeppiggi recently acquired the ability to form arbuscular mycorrhizas rather than having retained it from ancestral lines. PMID:12035732

  8. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis?

    Science.gov (United States)

    Buysens, Catherine; Dupré de Boulois, Hervé; Declerck, Stéphane

    2015-05-01

    There is growing evidence that the application of biocontrol organisms (e.g., Pseudomonas and Bacillus spp., arbuscular mycorrhizal fungi-AMF) is a feasible option to reduce incidence of plant pathogens in an integrated control strategy. However, the utilization of these microorganisms, in particular AMF, may be threatened by the application of fungicides, a widely-used measure to control Rhizoctonia solani in various crops among which potato. Prior to their application, it is thus important to determine the impact of fungicides on AMF. The present study investigated, under in vitro controlled conditions, the impact of azoxystrobin (a systemic broad-spectrum fungicide), flutolanil (a systemic Basidiomycota-specific fungicide), and pencycuron (a contact Rhizoctonia-specific fungicide) and their respective formulations (Amistar, Monarch, and Monceren) on the growth and development of the AMF Rhizophagus irregularis MUCL 41833 (spore germination, root colonization, extraradical mycelium development, and spore production) at doses used to control R. solani. Results demonstrated that azoxystrobin and its formulation Amistar, at threshold values for R. solani control (estimated by the half maximal inhibitory concentration, IC50, on a dry weight basis), did not affect spore germination and potato root colonization by R. irregularis, while the development of extra-radical mycelium and spore production was reduced at 10 times the threshold value. Flutolanil and its formulation Monarch at threshold value did not affect spore germination or extra-radical development but decreased root colonization and arbuscule formation. At threshold value, pencycuron and its formulation Monceren, did not affect spore germination and intra- or extraradical development of R. irregularis. These results suggest that azoxystrobin and pencycuron do not affect the AMF at threshold concentrations to control R. solani in vitro, while flutolanil (as formulation) impacts the intraradical phase of the

  9. Role of mycorhizal links between plants in establishment of liverworts thalli in natural habitats

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-02-01

    Full Text Available Research on the development of arbuscular fungi within thalli of Conocephalum conicum and Pellia endiviifolia was carried out on the banks of a stream ravine in the Beskid Wyspowy Mts. (Southern Poland. The links via arbuscular fungi were observed between liverworts and plants as Dryopteris carthusiana and Oxalis acetosella. Glomus tenuis, a fine endophyte, was the dominating mycorrhizal partner of all the plant species investigated. Arum-type of mycorrhiza was observed in Oxalis acetosella while in the fern and liverworts Paris-type was found. The role of plant roots in the establishment of liverworts thalli (source of fungal inoculum, important mechanical support on unstable sand banks is considered.

  10. Aspectos ecológicos das micorrizas arbusculares na vegetação de sapal

    OpenAIRE

    Carvalho, Luís Miguel Moita de, 1970-

    2003-01-01

    Tese de doutoramento em Biologia (Biologia e Biossistemática), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2004 Os sapais são ecossistemas caracterizados pela inundação regular com água do mar. O alagamento e a salinidade são os principais factores que influenciam a vegetação nos sapais. A maioria das plantas de sapal possui adaptações morfológicas e fisiológicas que lhes permitem sobreviver neste tipo de habitat. A formação de micorrizas arbusculares (AM) poderá...

  11. EFECTO DE HONGOS MICORRÍCICOS ARBUSCULARES Y EXTRACTO ACUOSO DE VERMICOMPOST SOBRE CALIDAD DE FRESA

    OpenAIRE

    Fabián Heriberto Rivera-Chávez; Gilberto Vázquez-Gálvez; Luz Elena Castillejo-Álvarez; M. Valentina Angoa-Pérez; Guadalupe Oyoque-Salcedo; Hortencia Gabriela Mena-Violante

    2012-01-01

    La aplicación de hongos micorrícicos arbusculares (HMA) y vermicompost constituye una alternativa al uso de agroquímicos para garantizar el rendimiento y calidad de los cultivos, disminuyendo el costo y el deterioro del medio ambiente. En el presente trabajo se evaluó el efecto de HMA y extracto acuoso de vermicompost (VL) sobre la calidad de frutos de fresa. Los tratamientos fueron: 1) control absoluto con agua (CTL); 2) fertilizado (F); 3) inoculado con HMA (M); 4) con vermicompost líquido ...

  12. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter

    DEFF Research Database (Denmark)

    Joner, E.J.; Jakobsen, I.

    1995-01-01

    Two experiments were set up to investigate the influence of soil organic matter on growth of arbuscular mycorrhizal (AM) hyphae and concurrent changes in soil inorganic P, organic P and phosphatase activity. A sandy loam soil was kept for 14 months under two regimes (outdoor where surplus...... precipitation leached through the soil, or indoor at constant moisture) with or without 9% (w/w) chopped wheat straw plus mineral N. Then the soils were partially sterilized and placed in two-compartment pots where mycorrhizal or non-mycorrhizal cucumber plants were grown in one root compartment (RC), and soils...

  13. Estudios de diversidad de hongos formadores de micorrizas arbusculares en ambientes mediterráneos

    OpenAIRE

    Azcon Gonzalez de Aguilar, Concepción

    2015-01-01

    Los hongos formadores de micorrizas arbusculares son microorganismos del suelo que establecen simbiosis mutualistas con la mayoría de las plantas existentes en la superficie terrestre. Estos organismos, que desempeñaron un papel clave en la evolución de las plantas sobre la Tierra, son fundamentales para el mantenimiento de la estructura y diversidad de los ecosistemas terrestres. La mayoría de las plantas dependen del establecimiento de la simbiosis para sobrevivir en condiciones naturales y...

  14. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, T.; Radimszky, L.; Nemeth, T. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuezfoe, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. (orig.)

  15. ARBUSCULAR MYCORRHIZAL FUNGI FROM THE RfflZOSPHERES OF SOYBEAN CROPS IN LAMPUNG AND WEST JAVA

    Directory of Open Access Journals (Sweden)

    K. KRAMADIBRATA

    1995-01-01

    Full Text Available The occurrence of arbuscular mycorrhizal (AM fungi in the rhizospheres of field-grown soybean crops in the provinces of Lampung and West Java was examined. Nineteen taxa of AM fungi were identified as follows: Acaulospora delicata, A. Foveata, A. rehmii, A. scrobiculata and A. tuberculata; Gigaspora cf. gigantea and Gigaspora sp. 1; Glomus clavisporum; Glomus cf. fasciculatum, Glomus micro-aggregatum, Glomus sp. 1, Glomus sp. 2, Glomus sp. 3 and Glomus sp. 4; Scutellospora cf. heterogama, Scutellospora cf. pellucida, Scutellospora sp. 1. Scutellospora sp.2. and Scutellospora sp. 3.

  16. Assessment of arbuscular mycorrhizal fungi on the phytoremediation potential of Ipomoea aquatica on cadmium uptake

    OpenAIRE

    Bhaduri, Anwesha M.; Fulekar, M. H.

    2012-01-01

    The phytoremedial potential of Ipomoea aquatica and role of arbuscular mycorrhizal fungi (AMF) during Cadmium uptake was studied under two different soils i.e., soil inoculated with and without AMF. The plants were treated with different concentrations of Cd(NO)3 starting from 0, 5, 10, 25, 50, and 100 ppm in three replicate design in soil with and without AMF inoculation. Results showed that AMF enhanced accumulation of cadmium in plant tissues at all concentrations. Plants in AMF exhibited ...

  17. Micorriza arbuscular. Recurso microbiológico en la agricultura sostenible

    OpenAIRE

    Beatriz Elena Guerra Sierra

    2013-01-01

    Actualmente el uso de microorganismos benéficos en la agricultura juega un papel importante para la sostenibilidad de los ecosistemas; es así como la agricultura moderna ha ido incrementando el uso de microorganismos benéficos, tales como: bacterias promotoras de crecimiento vegetal, bacterias fijadoras de nitrógeno, microorganismos solubilizadores de fosfato y hongos Micorrízicos arbusculares (MA). Es reconocido que la gran mayoría de plantas captan los nutrientes por medio de interacciones ...

  18. Micorrizas arbusculares del tipo 'Arum' y 'Paris' y endófitos radicales septados oscuros en Miconia ioneura y Tibouchina paratropica (Melastomataceae 'Arum' and 'Paris' arbuscular mycorrhizal types and dark septate root endophytes in Miconia ioneura and Tibouchina paratropica (Melastomataceae

    Directory of Open Access Journals (Sweden)

    Carlos Urcelay

    2005-12-01

    Full Text Available Se estudió la colonización de las raíces por simbiontes fúngicos en Miconia ioneura y Tibouchina paratropica (Melastomataceae. Se observaron y describen estructuras micorrícicas arbusculares pertenecientes a los tipos 'Paris' (hifas y rulos intracelulares y 'Arum' (hifas intercelulares y arbúsculos. Además se observaron endófitos septados oscuros (hifas y esclerocios. Se registra por primera vez la ocurrencia de ambos tipos micorrícicos arbusculares y de endófitos septados oscuros en raíces de especies pertenecientes a la familia Melastomataceae. Se discuten las implicancias ecológicas y evolutivas de la ocurrencia simultánea de los distintos tipos de colonización micorrícica en raíces de la misma especie.The roots of Miconia ioneura and Tibouchina paratropica (Melastomataceae were studied for fungal symbionts colonization. Typical structures of 'Paris' (intracellular hyphae and coils and 'Arum' (intercellular hyphae and arbuscules arbuscular mycorrhizal types were observed and are described here. Dark septate fungi (hyphae and sclerotia were also observed. The occurrence of both types of arbuscular mycorrhizal colonisation and dark septate fungi in the roots of species belonging to Melastomataceae is reported for the first time. The possible ecological and evolutionary implications of the co-occurrence of these mycorrhizal colonisation types in the same species are discussed.

  19. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants.

    Science.gov (United States)

    Gupta Sood, Sushma

    2003-08-01

    The chemotactic responses of the plant-growth-promoting rhizobacteria Azotobacter chroococcum and Pseudomonas fluorescens to roots of vesicular-arbuscular mycorrhizal (Glomus fasciculatum) tomato plants were determined. A significantly (P=0.05) greater number of bacterial cells of wild strains were attracted towards vesicular-arbuscular mycorrhizal tomato roots compared to non-vesicular-arbuscular mycorrhizal tomato roots. Substances exuded by roots served as chemoattractants for these bacteria. P. fluorescens was strongly attracted towards citric and malic acids, which were predominant constituents in root exudates of tomato plants. A. chroococcum showed a stronger response towards sugars than amino acids, but the response was weakest towards organic acids. The effects of temperature, pH, and soil water matric potential on bacterial chemotaxis towards roots were also investigated. In general, significantly (P=0.05) greater chemotactic responses of bacteria were observed at higher water matric potentials (0, -1, and -5 kPa), slightly acidic to neutral pH (6, 6.5 and 7), and at 20-30 degrees C (depending on the bacterium) than in other environmental conditions. It is suggested that chemotaxis of P. fluorescens and A. chroococcum towards roots and their exudates is one of the several steps in the interaction process between bacteria and vesicular-arbuscular mycorrhizal roots. PMID:19719591

  20. Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don.

    OpenAIRE

    Rajendran Srinivasan; Chinnavenkataraman Govindasamy

    2014-01-01

    Objective: To study the isolation, identification, mass production and the effect of native arbuscular mycorrhizal fungi (AM fungi) on growth parameters of the Catharanthus roseus (C. roseus). Methods: A total of nine different AM fungi species such as Acaulospora scrobiculata, Acaulospora marrowae, Glomus aggregatum (G. aggregatum), Glomus fasciculatum, Glomus geosporum, Gigaspora margarita, Gigaspora nigra, Scutellospora heterogama and Scutellospora pellucida were isolated...

  1. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats

    Czech Academy of Sciences Publication Activity Database

    Kohout, Petr; Doubková, Pavla; Bahram, M.; Suda, Jan; Tedersoo, L.; Voříšková, Jana; Sudová, Radka

    2015-01-01

    Roč. 24, č. 8 (2015), s. 1831-1843. ISSN 0962-1083 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : arbuscular mycorrhizal fungi * community ecology * NDA barcoding Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 6.494, year: 2014

  2. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis

    Czech Academy of Sciences Publication Activity Database

    Doubková, Pavla; Sudová, Radka

    2014-01-01

    Roč. 24, č. 3 (2014), s. 209-217. ISSN 0940-6360 R&D Projects: GA AV ČR KJB600050812 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal * symbiosis * nickel toxicity * semi-hydroponics Subject RIV: EF - Botanics Impact factor: 3.459, year: 2014

  3. Deficit Irrigation Promotes Arbuscular Colonization of Fine Roots by Mycorrhizal Fungi in Grapevines (Vitis vinifera L.) in an Arid Climate

    Science.gov (United States)

    Regulated deficit irrigation (RDI) is a common practice applied in irrigated vineyards to control canopy growth and improve fruit quality, but little is known of how imposed water deficits may alter root growth and colonization by beneficial, arbuscular mycorrhizal fungi (AMF). Thus, root growth and...

  4. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes

    DEFF Research Database (Denmark)

    Drew, E.A.; Murray, R.S.; Smith, S.E.; Jakobsen, I.

    2003-01-01

    Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected by...

  5. Radiocesium compartmentalization at the root system of plants as a possible consequence of their symbiosis with arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    The influence of arbuscular mycorrhizal (AM) fungi on the radiocesium transport in plants has been analyzed. It was shown that the AM treatment can affect the transport of radionuclides into plants. Radiocesium can be accumulated from the soil complex directly at the AM structures as it was shown with the PIXE technique

  6. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups of...

  7. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes

    DEFF Research Database (Denmark)

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai;

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a...

  8. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    Science.gov (United States)

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-07-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

  9. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils. PMID:27329476

  10. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    Directory of Open Access Journals (Sweden)

    Graziella S Gattai

    2011-09-01

    Full Text Available The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco. Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1 to uncontaminated soil (37 mg Pb Kg soil-1 in the proportions of 7.5%, 15%, and 30% (v:v. The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil.

  11. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    International Nuclear Information System (INIS)

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes

  12. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Directory of Open Access Journals (Sweden)

    Cinta Calvet

    2015-09-01

    Full Text Available Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72 and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5 media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.

  13. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  14. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.

    Science.gov (United States)

    Rajtor, Monika; Piotrowska-Seget, Zofia

    2016-11-01

    Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with the roots of 80-90% of vascular plant species and may constitute up to 50% of the total soil microbial biomass. AMF have been considered to be a tool to enhance phytoremediation, as their mycelium create a widespread underground network that acts as a bridge between plant roots, soil and rhizosphere microorganisms. Abundant extramatrical hyphae extend the rhizosphere thus creating the hyphosphere, which significantly increases the area of a plant's access to nutrients and contaminants. The paper presents and evaluates the role and significance of AMF in phytoremediation of hydrocarbon contaminated sites. We focused on (1) an impact of hydrocarbons on arbuscular mycorrhizal symbiosis, (2) a potential of AMF to enhance phytoremediation, (3) determinants that influence effectiveness of hydrocarbon removal from contaminated soils. This knowledge may be useful for selection of proper plant and fungal symbionts and crucial to optimize environmental conditions for effective AMF-mediated phytoremediation. It has been concluded that three-component phytoremediation systems based on synergistic interactions between plant roots, AMF and hydrocarbon-degrading microorganisms demonstrated high effectiveness in dissipation of organic pollutants in soil. PMID:27487095

  15. Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots.

    Science.gov (United States)

    Akiyama, Kohki; Hayashi, Hideo

    2002-04-01

    Cucumber (Cucumis sativus L.) roots were analyzed by HPLC and TLC for their levels of secondary metabolites upon inoculation with the arbuscular mycorrhizal fungus, Glomus caledonium. Three compounds in EtOAc extracts from the mycorrhizal roots showed significant increases six weeks after inoculation. These compounds were isolated by column chromatography and determined to be two novel triterpenes, 2beta-hydroxybryonolic acid (2beta,3beta-dihydroxy-D:C-friedoolean-8-en-29-oic acid) and 3beta-bryoferulic acid [3beta-O-trans-ferulyl-D:C-friedooleana-7,9(11)-diene-29-oic acid], and the known triterpene, bryonolic acid, by spectroscopic methods. Time-course experiments showed that the levels of the three terpenoids in cucumber roots were significantly increased by the application of a 53-microm sieving from a soil inoculum of the arbuscular mycorrhizal fungus containing soil microbes but no mycorrhizal fungi, and that mycorrhizal colonization further promoted the terpenoid accumulation. Inoculation with Glomus mosseae also enhanced the accumulation of the triterpenes, whereas no accumulation was observed by inoculating with the fungal pathogen, Fusarium oxysporum f. sp. cucumerinum. 2Beta-hydroxybryonolic acid was also isolated from the roots of melon and watermelon. PMID:12036048

  16. Effect of Arbuscular Mycorrhizal Inoculation on Plant Growth and Phthalic Ester Degradation in Two Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui-Rui; YIN Rui; LIN Xian-Gui; CAO Zhi-Hong

    2005-01-01

    A 60-day pot experiment was carried out using di-(2-ethylhexyl) phthalate (DEHP) as a typical organic pollutant phthalic ester and cowpea (Vigna sinensis) as the host plant to determine the effect of arbuscular mycorrhizal inoculation on plant growth and degradation of DEHP in two contaminated soils, a yellow-brown soil and a red soil. The air-dried soils were uniformly sprayed with different concentrations of DEHP, inoculated or left uninoculated with an arbuscular mycorrhizal (AM) fungus, and planted with cowpea seeds. After 60 days the positive impact of AM inoculation on the growth of cowpea was more pronounced in the red soil than in the yellow-brown soil, with significantly higher (P < 0.01)mycorrhizal colonization rate, shoot dry weight and total P content in shoot tissues for the red soil. Both in the yellowbrown and red soils, AM inoculation significantly (P < 0.01) reduced shoot DEHP content, implying that AM inoculation could inhibit the uptake and translocation of DEHP from roots to the aboveground parts. However, with AM inoculation no positive contribution to the degradation of DEHP was found.

  17. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai;

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks and subseque......Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... and subsequently subjected to two temperature treatments (158C, low temperature; 258C, ambient control) for 2 weeks. Low-temperature stress significantly decreasedAMcolonisation, plant height and biomass. TotalNcontent and activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase of AM...... phosphate synthase and amylase activities at low temperature. Moreover, low-temperature stress increased theC :Nratio in the leaves of maize plants, and AM colonisation decreased the root C :N ratio. These results suggested a difference in the C and N metabolism of maize plants at ambient and low...

  18. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  19. Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, J.R.; Ning, J. [West Virginia University, Morgantown, WV (United States). Dept. of Biology

    2003-05-01

    In the eastern United States, broomsedge (Andropogon virginicus L.) is found growing on abandoned coal-mined lands that have extremely acidic soils with high residual aluminium (Al) concentrations. Broomsedge may be inherently metal-resistant and nutrient-efficient or may rely on the arbuscular mycorrhizal (AM) fungal association to overcome limitations on such sites. Broomsedge plants were grown with and without an acidic ecotype AM fungal consortium and exposed to controlled levels of Al in two experiments. The AM fungal consortium conferred Al resistance to broomsedge. Arbuscular mycorrhizal fungi reduced Al uptake and translocation in host plants, potentially reflecting measured reductions in inorganic Al availability in the rhizosphere of mycorrhizal plants. Mycorrhizal plants exhibited lower shoot P concentrations, higher phosphorus use efficiency, and lower root acid phosphatase rates than non-mycorrhizal plants. Aluminium significantly reduced calcium (Ca) and magnesium (Mg) tissue concentrations in both mycorrhizal and non-mycorrhizal plants. However, plant response to any change in nutrient acquisition was substantially less pronounced in mycorrhizal plants. The exclusion of Al and greater stability of tissue biomass accretion-tissue nutrient relationships in mycorrhizal broomsedge plants exposed to Al may be important mechanisms that allow broomsedge to grow on unfavourable acidic soils.

  20. Pré-enraizamento de mudas de mandioquinha-salsa em diferentes bandejas e substratos com fungos micorrízicos arbusculares Pre-rooting of rhizomes of peruvian carrot in different trays and substrates with arbuscular micorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Carla Andréia da Cunha Martins

    2007-02-01

    Full Text Available Realizou-se este trabalho com o objetivo de estudar a colonização radicular por fungos micorrízicos arbusculares (FMAs no período de pré-enraizamento da mandioquinha-salsa (Arracacia xanthorrhiza Bancroft. Os tratamentos constaram de dois substratos e dois tamanhos de bandeja de isopor. Utilizou-se um substrato comum constituído de 30% de composto orgânico, 30% de solo argiloso e 30% de areia e um substrato comercial Plantmax® Hortaliças; os tamanhos de bandejas de isopor foram: 128 células/bandeja (38 cm³ por célula e 200 células/bandeja (18 cm³ por célula. Efetuou-se uma inoculação mista de FMAs com solo inóculo composto pelas espécies Gigaspora margarita e Glomus clarum. Houve em ambos os substratos restrita resposta à inoculação dos FMAs, pela baixa colonização radicular, variando de 0,63 a 2,14% no substrato comercial e 7,93 a 15,09% no substrato comum. O substrato comum não apresentou características físicas desejáveis (aeração e drenagem para um bom desenvolvimento das raízes de mandioquinha-salsa durante a fase de pré-enraizamento. O substrato comercial apresentou maiores médias para a variável área e comprimento radicular em todas as coletas. A área radicular variou de 21,50 cm² com 30 DAP a 68,22 cm² com 60 DAP, enquanto o comprimento radicular variou de 2,64 m com 30 DAP a 12,64 m com 60 DAP. A bandeja de 200 células (18 cm³ célula/bandeja não foi adequada para a produção de mudas de mandioquinha-salsa.The objective of the work was to study the root colonization by arbuscular micorrhizal fungi (AMF during the development of Peruvian carrot rhizomes (Arracacia xanthorrhiza Bancroft. The treatments consisted of two substrates and two polystyrene trays sizes. A common substrate constituted of 30% of organic compost, 30% of loamy soil and 30% of sand, and a commercial substrate "Plantmax® Hortaliças"; and polystyrene trays sizes of 128 cells/tray (38 cm³ per cell and 200 cells/tray (18 cm

  1. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    Science.gov (United States)

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect. PMID:17632722

  2. Cloning of Pinus sylvestris SCARECROW gene and its expression pattern in the pine root system, mycorrhiza and NPA-treated short roots.

    Science.gov (United States)

    Laajanen, Kaisa; Vuorinen, Irmeli; Salo, Vanamo; Juuti, Jarmo; Raudaskoski, Marjatta

    2007-01-01

    The SCARECROW (SCR) gene is central to root radial patterning. Its expression has not been investigated in conifers with morphologically different root types. Additional interest in SCR functions in the Pinus sylvestris root system comes from the effect of ectomycorrhiza formation on the short root apical structure. Here, the P. sylvestris SCR gene (PsySCR) was cloned and its expression investigated by northern blot and in situ hybridization of primary, lateral and short roots and mycorrhiza. Short root dichotomization was induced by auxin transport inhibitor (N-1-naphthylphthalamic acid (NPA)). PsySCR has conserved GRAS family protein motifs at the C-terminus and a variable N-terminus. PsySCR expression occurred in young root tissue and mycorrhiza. In root sections the PsySCR signal runs through the tip in initials for stele and root cap column and becomes upwards-restricted to endodermis in all root types. The PsySCR expression pattern suggests for the first time a regulatory role for SCR in maintaining the endodermal characteristics and radial patterning of roots with open meristem organization. The specific PsySCR localization is also an excellent marker for investigation of the dichotomization process in short roots. PMID:17587372

  3. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    OpenAIRE

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed for...

  4. Eficiência de fungos micorrízicos arbusculares sobre o crescimento do porta-enxerto de pessegueiro 'aldrighi Efficiency of arbuscular mycorrhizal fungi on growth of 'aldrighi' peach tree rootstock

    Directory of Open Access Journals (Sweden)

    José Luis da Silva Nunes

    2009-01-01

    Full Text Available Este trabalho visou avaliar a eficiência de diferentes espécies de fungos micorrízicos arbusculares (FMAs sobre o crescimento vegetativo e o conteúdo de nutrientes de plantas do porta-enxerto de pessegueiro (Prunus persica cv. Aldrighi. O experimento foi realizado no município de Eldorado do Sul (RS, entre 2004 e 2005. Foram utilizados quatro tratamentos de inoculação de estirpes de FMAs (Acaulospora sp. Trappe, Glomus clarum Nicol. & Schenck, Glomus etunicatum Becker & Gerd e Scutellospora heterogama Nicol. & Gerd. e um tratamento testemunha, sem inoculação. O delineamento experimental utilizado foi o de blocos casualizados, com 20 plantas por parcela e quatro repetições. A altura das plantas, o diâmetro do colo, a área foliar, as biomassas fresca e seca, o conteúdo em nutrientes e em substâncias da parte aérea e das raízes e a colonização das raízes foram avaliados aos 180 dias após a semeadura. O uso das espécies de FMAs beneficia o desenvolvimento de plantas do porta-enxerto cv. Aldrighi, e a eficiência da simbiose planta-FMAs é variável com a espécie de FMAs inoculada. As plantas submetidas à inoculação com S. heterogama e G. etunicatum destacaram-se das demais, com maior crescimento vegetativo e maiores teores de nitrogênio, fósforo e potássio nos tecidos.This work aimed to evaluate the eficiency of four species of arbuscular mycorrhizal fungi (AMF on the vegetative growth and the nutrient contents of peach tree rootstocks (Prunus persica cv. Aldrighi. The experiment was conducted at the Estação Experimental Agronômica (EEA of the Universidade Federal do Rio Grande do Sul (UFRGS, Eldorado do Sul, RS, during 2004 and 2005. Four treatments of AMF inoculation strains (Acaulospora sp. Trappe, Glomus clarum Nicol. & Schenck, Glomus etunicatum Becker & Gerd e Scutellospora heterogama Nicol. & Gerd. and one with non-inoculated plants were used. A randomized block design was used, with 20 plants per plot and four

  5. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity.

    Directory of Open Access Journals (Sweden)

    Yuanpeng Wang

    Full Text Available Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd in alfalfa (Medicago sativa L. that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25-60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg kg(-1 Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mgkg(-1 Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2-80.5% in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation.

  6. Regulation of Root Length and Lateral Root Number in Trifoliate Orange Applied by Peroxide Hydrogen and Arbuscular Mycorrhizal Fungi

    Directory of Open Access Journals (Sweden)

    Chun-Yan LIU

    2014-06-01

    Full Text Available Root system morphology (RSM in plants plays a key role in acquiring nutrients from the soil and is also altered by abiotic or biotic factors including soil microorganisms and signal molecules. The present study was made to evaluate the effects of an arbuscular mycorrhizal fungus (AMF, Glomus versiforme and exogenous peroxide hydrogen (H2O2, 0, 1 and 100 μM on root length, lateral root number and activities of polyamine-metabolized enzymes in trifoliate orange (Poncirus trifoliata seedlings. After 5 months of inoculation with AMF, root mycorrhizal colonization was significantly increased by application of 1 μM H2O2, but markedly restrained by 100 μM H2O2. Inoculation with AMF significantly increased the taproot length and the number of second- and third-order lateral roots under 1 and 100 μM H2O2application. The AMF infection significantly increased 0-1 cm classed root length and total root length, regardless of H2O2 concentration. In general, inoculation with AMF increased arginine decarboxylase (ADC and ornithine decarboxylase (ODC activity of roots under 0, 1 and 100 μM H2O2, increased diamine oxidase (DAO activity of roots under 0 μM H2O2 and decreased DAO activity of roots under 1 and 100 μM H2O2. Root polyamine oxidase (PAO activity was similar between AMF and non-AMF seedlings, irrespectively of H2O2concentration. Results suggest that lower concentration of H2O2(1 μM might be regarded as a signal to stimulate mycorrhizal and lateral root development through increase of ADC and ODC and decrease of DAO, while high concentration of 2O2 (100 μM as a toxic compound of reactive oxygen species restricted AMF colonization.

  7. Role of Bioinoculant (AM Fungi Increasing in Growth, Flavor Content and Yield in Allium sativum L. under Field Condition

    Directory of Open Access Journals (Sweden)

    Mahesh BORDE

    2009-11-01

    Full Text Available Present investigation deals with the beneficial effect of Arbuscular Mycorrhiza (AM fungal species Glomus fasciculatum on growth performance of Allium sativum under field condition. In AM inoculated garlic plant showed significant increase in plant growth parameters like plant height, total biomass and bulb diameters, bulb weight, and yield. There was 21.10 % increment in yield of Allium bulb as compared to non AM inoculated garlic plant. Percentage of AM colonization occurred at all sampling and the colonization was higher during bulb initiation. Mycorrhiza inoculated garlic plant showed more alliin and allinase enzyme activity as compared to non inoculated garlic plant. The results reveal that mycorrhiza contribute to growth and development of garlic plant under field condition.

  8. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales.

    Directory of Open Access Journals (Sweden)

    Martin Vohník

    Full Text Available Ericaceae (the heath family are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet

  9. Micorriza arbuscular. Recurso microbiológico en la agricultura sostenible

    Directory of Open Access Journals (Sweden)

    Beatriz Elena Guerra Sierra

    2013-05-01

    Full Text Available Actualmente el uso de microorganismos benéficos en la agricultura juega un papel importante para la sostenibilidad de los ecosistemas; es así como la agricultura moderna ha ido incrementando el uso de microorganismos benéficos, tales como: bacterias promotoras de crecimiento vegetal, bacterias fijadoras de nitrógeno, microorganismos solubilizadores de fosfato y hongos Micorrízicos arbusculares (MA. Es reconocido que la gran mayoría de plantas captan los nutrientes por medio de interacciones que establecen con los microorganismos que viven en la rizosfera, especialmente con aquellos que se han denominado simbiontes. De estos simbiontes de la raíz, los hongos denominados micorriza arbuscular (MA, son tal vez las asociaciones más comunes que se establecen con la mayoría de las especies de plantas, y probablemente son, en cantidad, las más importantes.  Esta simbiosis ha incrementado su interés, como insumo microbiológico en la agricultura moderna pues facilita la captación de fósforo, un nutriente limitante en la mayoría de los suelos, además de proporcionar otros beneficios para la planta como la tolerancia a situaciones de estrés, estabilidad de los agregados del suelo, captación de metales pesados, entre otros, de tal forma que el hongo heterótrofo se beneficia de los sustratos carbonados procedentes de la fotosíntesis y del nicho ecológico protegido que encuentra dentro de la raíz.  Los hongos micorrizicos arbusculares constituyen un insumo microbiológico promisorio para el desarrollo de una agricultura sostenible; su papel en el funcionamiento de los ecosistemas y su potencial como fertilizantes biológicos, son quizás motivos para considerarlos como uno de los componentes importantes de la diversidad biológica del suelo.

  10. Mycorrhiza-like structures in rooted microshoots of Pinus pinea L.

    OpenAIRE

    Castro, Mário Rui da Costa Basílio e; Ragonezi Gomes Lopes, Carla Aparecida; Klimaszewska, Krystyna; Lima, Mónica; Oliveira, Paulo Guilherme de; Zavattieri, Maria Amely

    2010-01-01

    Pinus pinea L. (stone pine) is one of the major plantation species in Iberian Peninsula, being Portugal the largest edible seed producer in the world. The induction and improvement of in vitro rhizogenesis of microshoots of Pinus pinea was developed in our laboratory using a co-culture system with ECM fungi. In the acclimation phase in mixed substrates, or in rhizotrons, anatomical and morphological studies were done to observe the evolution of the root system in microshoots from the co-cultu...

  11. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  12. Studies on Effects of Arbuscular Mycorrhizal (Am. Fungi on Mineral Nutrition of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Sharda Waman KHADE

    2009-06-01

    Full Text Available Experiment was conducted to study the effects of arbuscular mycorrhizal fungi on mineral nutrition of Carica papaya var. Surya. The experiment comprised of un-inoculated seedlings, seedlings inoculated with Glomus intraradices Schenck & Smith, seedlings inoculated with Glomus mosseae [(Nicol. & Gerd. Gerd. & Trappe] and seedlings inoculated with mixed inoculum [Glomus intraradices (Schenck & Smith + Glomus mosseae (Nicol. & Gerd. Gerd. & Trappe]. Studies revealed that total potassium and total phosphorus content of mycorrhizal leaf petiole was higher in inoculated plants as compared to controls and varied significantly within the treatments. Glomus mosseae was the most effective species of AM fungi, in influencing mineral nutrition of papaya followed by mixed inoculum (GI +GM and Glomus intraradices respectively.

  13. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species.

    Science.gov (United States)

    Caglar, S; Akgun, A

    2006-07-01

    The experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species used as rootstocks. The stratified Pistacia seeds were inoculated with VAM fungi. The highest rate of inoculated roots was 96.7% in P. khinjuck seedlings with G. clarum and G. etunicatum, 83.3% in P. vera seedlings with G. caledonium and 73.3% in P. terebinthus seedlings with G. caledonium. Mycorrhizal inoculations improved seedling height only in P. terebinthus. Certain mycorrhizal inoculations increased the leaf N, but not P and K contents. Seedlings inoculated with G. caledonium had higher reducing sugar contents. It was concluded that pre-inoculated Pistacia seedlings could have a better growth in the harsh field conditions. PMID:17402238

  14. Uptake of different forms of nitrogen by hyphae of arbuscular mycorrhizal fungi

    International Nuclear Information System (INIS)

    A two-compartment incorporating air-gap device and 15N-labeling technique was used to investigate the uptake of different forms of N by arbuscular mycorrhizal fungi (AMF). Maize (Zea mays L.) was in association with Glomus mosseae, or Glomus intraradices. Solutions labeled with different forms of 15N were supplied to the hyphae compartment 48 h before harvesting. The results showed that the uptake capability of 15N varied with fungi species and N forms supplied. Percentage of 15N taken up over 48 h by G. intraradices was higher than that by G. mosseae. The uptake capability of 15N by AMF was in the order of 15NH4+>15N-Gln>15N-Gly>15NO3-. 15N uptake by AMF hyphae accounted for 0.005-0.032% of total N uptake. (authors)

  15. Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas

    DEFF Research Database (Denmark)

    Schweiger, P.F.; Spliid, N.H.; Jakobsen, I.

    2001-01-01

    The effect of two commercial fungicide formulations on phosphorus (P) uptake into peas via hyphae of a native arbuscular mycorrhizal (AM) fungal community was examined in the field. The fungicides contained carbendazim or a mixture of propiconazole and fenpropimorph as their active ingredients and...... of the fungicides on other components of the soil microbial community with which AM fungi interact is considered the most likely explanation for the observed stimulation in hyphal P uptake. Hyphal P uptake was completely inhibited by application of carbendazim at 100 x the recommended rate, Plant...... growth and overall P uptake were not affected by fungicide applications apart from application of the propiconazole/fenpropimorph mixture at 100 x the recommended rate. This rate completely inhibited plant growth. AM root colonisation was reduced by the high rate of carbendazim application only. This...

  16. Phosphorus use efficiency of tomato as influenced by phosphorus and vesicular arbuscular mycorrhizal (VAM) fungi inoculation

    International Nuclear Information System (INIS)

    A pot experiment was conducted on tomato (Lycopersicon esculentum L.var. CO3) grown in red non-calcareous soil (Paralythic Ustochrept) to study the effect of different P treatments involving single superphosphate (SSP) and Mussoorie rock phosphate (MRP) added at different levels, viz. 100 and 75 kg P2O5/ha along with and without vesicular arbuscular mycorrhizal (VAM) fungi inoculation. The results revealed that the P application as superphosphate at 100 kg P2O5/ha significantly increased the yield of tomato but the application of VAM fungi did not have any pronounced effect on tomato yield. The 32P studies confirmed the increased uptake of P by the plants at higher level of P application. P content and its uptake by tomato fruit increased with the increasing levels of P application and VAM inoculation. The VAM fungi inoculation was also helpful in increasing the fertilizer use efficiency and also per cent P derived from fertilizer. (author)

  17. Arbuscular Mycorrhizal (AM) Diversity in Prosopis cineraria (L.) Druce Under Arid Agroecosystems

    Institute of Scientific and Technical Information of China (English)

    Neelam Verma; Jagadish Chandra Tarafdar; Krishna Kant Srivastava; Jitendra Panwar

    2008-01-01

    Arbuscular mycorrhizal (AM) fungi associated with Prosopis cineraria (Khejri) were assessed for their qualitative and quantitative distribution from eight districts of Rajasthan. A total of three species of Acaulospora, one species of Entrophospora, two species of Gigaspora, twenty-one species of Glomus, seven species of Sclerocystis and three species of Scutellospora were recorded. A high diversity of AM fungi was observed and it varied at different study sites. Among these six genera, Glomus occurred most frequently. Glomus fasciculatum, Glomus aggregatum, and Glomus mosseae were found to be the most predominant AM fungi in infecting Prosopis cineraria. Acaulospora, G. fasciculatum, Sclerocystis was found in all the fields studied, while Scutellospora species were found only in few sites. A maximum of thirty-six AM fungal species were isolated and identified from Jodhpur, whereas only thirteen species were found from Jaisalmer. Spores of Glomus fasciculatum were found to be most abundant under Prosopis cineraria.

  18. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants

    DEFF Research Database (Denmark)

    Merrild, Marie Porret; Ambus, Per; Rosendahl, Søren;

    2013-01-01

    Common mycorrhizal networks (CMNs) influence competition between plants, but reports regarding their precise effect are conflicting. We studied CMN effects on phosphorus (P) uptake and growth of seedlings as influenced by various disruptions of network components. Tomato (Solanum lycopersicon......) seedlings grew into established networks of Rhizophagus irregularis and cucumber (Cucumis sativus) in two experiments. One experiment studied seedling uptake of 32P in the network in response to cutting of cucumber shoots; the other analysed seedling uptake of P and nitrogen (N) in the presence of intact or...... severed arbuscular mycorrhizal fungus networks and at two soil P concentrations. Pre‐established and intact networks suppressed growth of tomato seedlings. Cutting of cucumber shoots mitigated P deficiency symptoms of seedlings, which obtained access to P in the extraradical mycelium and thereby showed...

  19. [Systematic classification and community research techniques of arbuscular mycorrhizal fungi: a review].

    Science.gov (United States)

    Liu, Yong-Jun; Feng, Hu-Yuan

    2010-06-01

    Arbuscular mycorrhizal fungi (AMF) are an important component of natural ecosystem, being able to form symbiont with plant roots. The traditional AMF classification is mainly based on the morphological identification of soil asexual spores, which has some limitations in the taxonomy of AMF. Advanced molecular techniques make the classification of AMF more accurate and scientific, and can improve the taxonomy of AMF established on the basis of morphological identification. The community research of AMF is mainly based on species classification, and has two kinds of investigation methods, i. e., spores morphological identification and molecular analysis. This paper reviewed the research progress in the systematic classification and community research techniques of AMF, with the focus on the molecular techniques in community analysis of AMF. It was considered that using morphological and molecular methods together would redound to the accurate investigation of AMF community, and also, facilitate the improvement of AMF taxonomy. PMID:20873637

  20. Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing.

    Science.gov (United States)

    Trejo-Aguilar, Dora; Lara-Capistrán, Liliana; Maldonado-Mendoza, Ignacio E; Zulueta-Rodríguez, Ramón; Sangabriel-Conde, Wendy; Mancera-López, María Elena; Negrete-Yankelevich, Simoneta; Barois, Isabelle

    2013-12-01

    Long-term successional dynamics of an inoculum of arbuscular mycorrhizal fungi (AMF) associated with the maize rhizosphere (from traditionally managed agroecosystems in Los Tuxtlas, Veracruz, Mexico), was followed in Bracchiaria comata trap cultures for almost eight years. The results indicate that AMF diversity is lost following long-term subculturing of a single plant host species. Only the dominant species, Claroideoglomus etunicatum, persisted in pot cultures after 13 cycles. The absence of other morphotypes was demonstrated by an 18S rDNA survey, which confirmed that the sequences present solely belonged to C. etunicatum. Members of Diversisporales were the first to decrease in diversity, and the most persistent species belonged to Glomerales. PMID:24563828