WorldWideScience

Sample records for arbitrary zeta potentials

  1. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    Science.gov (United States)

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wettability Studies Using Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-01-01

    Full Text Available Wettability studies have been carried out on reservoir rocks using different techniques such as the Amott-Harvey method, the USBM method, and the contact angle method, all with limitations. In this study, the wettability is studied by discussing the surface charge using zeta potential measurements. The study relies on the finding that carbonated reservoir rocks, consisting of CaCO3 mainly, are positively charged and their surface has the potential to adsorb significant quantities of anions. Moreover, heavy fractions such as asphaltenes are reported to remain afloat depending on dispersive forces present in the oil and its various fractions. Experiments are carried out on aqueous limestone suspension with the addition of crude oil. The experiment is repeated with the use of polymeric inhibitors, A and B. The zeta potential is found to alter depending on the sequence of polymeric inhibitor in oil/water addition. The inhibitor is found to adsorb on the limestone surface, with a net negative charge, causing repulsion between crude oil and the inhibitor and, hence, preventing the deposition of heavy fractions and particularly asphaltenes. This study gives a comprehensive insight on the mechanism of polymeric inhibitor interaction with the surface and the effect of wettability on its performance.

  3. Zeta potential in colloid science principles and applications

    CERN Document Server

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  4. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. The results obtained reveal the importance of proper choice of water as well as the type of reagents for flotation processes.

  5. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  6. Zeta-function approach to Casimir energy with singular potentials

    International Nuclear Information System (INIS)

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  7. Measuring the zeta potential. The relationships with sandstone fineness

    Directory of Open Access Journals (Sweden)

    de Luxán, M. P.

    1989-09-01

    Full Text Available The application of the zeta potential technique in the area of construction materials and Portland cement is quite recent. The initial research work involved the study of cement suspensions or suspensions of one of the components of cement, such as alite, tricalcium alumínate, in the presence of additives and, more specifically, superplasticizers. The studies of this sort were extended with the mixing of active additions into cement (fly ashes, etc.. The present study discusses the application of siliceous materials (sandstone as a basis of the research into the behaviour of sandstone mortars containing repair products.

    La aplicación de la técnica del potencial zeta en el campo de los materiales de construcción y del cemento portland es muy reciente. Las primeras investigaciones se refieren al estudio de suspensiones de cemento o de alguno de sus compuestos que lo forman como alita, aluminato tricálcico, en presencia de aditivos y, más concretamente, de superfluidificantes. Con la incorporación de adiciones activas al cemento (cenizas volantes,... se amplían los estudios de este tipo de cementos. En este trabajo se considera la aplicación a los materiales silíceos (arenisca como base para la investigación del comportamiento de los morteros de arenisca conteniendo productos de reparación.

  8. Zeta potentials in the flotation of oxide and silicate minerals.

    Science.gov (United States)

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.

  9. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    Science.gov (United States)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  10. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.

    Science.gov (United States)

    Kirby, Brian J; Hasselbrink, Ernest F

    2004-01-01

    This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.

  12. Solving stochastic inflation for arbitrary potentials

    International Nuclear Information System (INIS)

    Martin, Jerome; Musso, Marcello

    2006-01-01

    A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case

  13. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  14. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    Science.gov (United States)

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    Zeta potential is a scientific term for electrokinetic potential in colloidal systems which has a major effect on the various properties of nano-drug delivery systems. Presently, colloidal nano-carriers are growing at a remarkable rate owing to their strong potential for overcoming old challenges such as poor drug solubility and ...

  16. Application of the zeta potential for stationary phase characterization in ion chromatography.

    Science.gov (United States)

    Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina

    2013-01-01

    Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  18. Analyte preconcentration in nanofluidic channels with nonuniform zeta potential

    Science.gov (United States)

    Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.

    2017-12-01

    It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.

  19. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite.

    Science.gov (United States)

    Fahami, Abbas; Beall, Gary W; Betancourt, Tania

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of Zeta Potential on the Properties of Nano-Drug Delivery ...

    African Journals Online (AJOL)

    The zeta potential (ZP) of colloidal systems and nano-medicines, as well as their particle size exert a major effect on the various properties of nano-drug delivery systems. Not only the stability of dosage forms and their release rate are affected but also their circulation in the blood stream and absorption into body membranes ...

  1. Zeta potential of Polish copper-bearing shale in the absence and presence of flotation frothers

    Directory of Open Access Journals (Sweden)

    Mengsu Peng

    2014-09-01

    Full Text Available In this paper, zeta potential as a function of pH of copper-bearing shale, which is mined in Poland by KGHM, was investigated. The measurements were conducted in water and aqueous solutions of selected flotation frothers. It was established that for investigated copper-bearing shale, after dispersion in water, the isoelectric point (IEP occurs at pH=3.5. Addition of frothers decreased the IEP on the pH scale and the IEP for butanol was 1.93, for MIBC 2.90 and for eicosaethylene glycol hexadecyl ether (C16E20 2.76. In the case of introducing frothers changed, the zeta potential becomes less negative. An empirical equation, having two adjustable parameters, was used in the paper to approximate the course of the zeta potential-pH curve. The equation showed a very good approximation of the zeta potential of the investigated shale either in water or frother aqueous solutions.

  2. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  3. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Fahami, Abbas; Beall, Gary W.; Betancourt, Tania

    2016-01-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl"− and F"− substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  4. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Fahami, Abbas, E-mail: fahami@txstate.edu [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Beall, Gary W. [Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States); Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Betancourt, Tania [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666 (United States); Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)

    2016-02-01

    Chlorine and fluorine substituted hydroxyapatites (HA-Cl–F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20 ± 5 to 70 ± 5 nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14 days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl–F will lead to the formation of new apatite particles and therefore be a potential implant material. - Highlights: • Cl{sup −} and F{sup −} substituted hydroxyapatite was synthesized by mechanochemical process. • Structural features were influenced strongly by incorporation of different ions. • Microscopic observations showed a mean particle size of around 20 ± 5 to 70 ± 5 nm. • The bioactivity properties indicated that apatite was successfully formed.

  5. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  6. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States)

    2012-03-15

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  7. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    International Nuclear Information System (INIS)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-01-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  8. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: An exact analytical solution

    Science.gov (United States)

    Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar

    2018-06-01

    We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.

  9. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    Science.gov (United States)

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  11. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    Science.gov (United States)

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  12. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    OpenAIRE

    López-Maldonado, Eduardo Alberto; Oropeza-Guzmán, Mercedes Teresita; Ochoa-Terán, Adrián

    2014-01-01

    Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration) through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a k...

  13. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

    Science.gov (United States)

    Low, Y. J.; Lau, S. W.

    2017-06-01

    Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

  14. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Andalaft, E; Vega, R; Correa, M; Araya, R; Loyola, P [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-02-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs.

  15. Zeta potential control in decontamination with inorganic membranes and inorganic adsorbents

    International Nuclear Information System (INIS)

    Andalaft, E.; Vega, R.; Correa, M.; Araya, R.; Loyola, P.

    1997-01-01

    The application of some advanced separation processes such as microfiltration and ultrafiltration, electroosmosis and electrodialysis for treating nuclear waste from different aqueous streams is under examination at the Chilean Commission for Nuclear Energy. The application of these techniques can be extended to regular industrial wastes when economically advisable. This report deals mainly with electrodialysis, electroosmosis and adsorption with inorganic materials. Special attention is paid to zeta potential control as a driving factor to electroosmosis. For radioactive contaminants that are present in the form of cations, anions, non-ionic solutions, colloids and suspended matter, appropriate combination of the processes may considerably increase the efficiency of processes used. As an example, colloids and suspended particles may be retained in porous ceramic membranes by nanofiltration, ultrafiltration or microfiltration depending on the particle size of the particles. The control of zeta potential by acting in the solid phase or else on the liquid phase has been studied; a mathematical model to predict electrodialysis data has been developed, and finally, the use of a home-made inorganic adsorbent illustrated. The effect of gamma irradiation on the membranes has also been studied. Properties such as salt retention, water flux and pore size diameter determined on both organic and inorganic membranes before and after irradiation indicate deterioration of the organic membrane. (author). 13 refs, 15 figs, 2 tabs

  16. Stability of fenbendazole suspensions for veterinary use. Correlation between zeta potential and sedimentation.

    Science.gov (United States)

    Arias, José L; López-Viota, Margarita; Clares, Beatriz; Ruiz, Ma Adolfina

    2008-08-07

    In this paper we have carried out a detailed investigation of the stability and redispersibility characteristics of fenbendazole aqueous suspensions, through a thermodynamic and electrokinetic characterization, considering the effect of both pH and ionic strength. The hydrophobic character of the drug, and the surface charge and electrical double-layer thickness play an essential role in the stability of the system, hence the need for a full characterization of fenbendazole. It was found that the drug suspensions displays "delayed" or "hindered" sedimentation, determined by their hydrophobic character and their low zeta potential (indicating a small electrokinetic charge on the particles). The electrostatic repulsion between the particles is responsible for the low sedimentation volume and poor redispersibility of the drug. However, only low concentrations of AlCl(3) induced a significant effect on both the zeta potential and stability of the drug, leading to a "free-layered" sedimentation and a very easy redispersion which could be of great interest in the design of an oral pharmaceutical dosage form for veterinary.

  17. The arbitrary l continuum states of the hyperbolic molecular potential

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2014-06-27

    Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.

  18. ZETA POTENTIAL AND COLOR INVESTIGATIONS OF VEGETABLE OIL BASED EMULSIONS AS ECO-FRIENDLY LUBRICANTS

    Directory of Open Access Journals (Sweden)

    ROMICĂ CREŢU

    2017-06-01

    Full Text Available In the past 10 years, the need for biodegradable lubricants has been more and more emphasized. The use of vegetable oils as lubricants offers several advantages. The vegetable oils are biodegradable; thus, the environmental pollution is minimal either during or after their use. The aim of this paper is to presents a preliminary study concerning the influence of some preparation conditions on the stability of vegetable oil-in-water (O/W emulsions as eco-friendly lubricants stabilized by nonionic surfactant. In this context, vegetable oil-in-water emulsions characteristics where assessed using microscopically observation and zeta potential. In addition, the color of these emulsions can be evaluated. It can be observed that the emulsions tend to stabilize in time.

  19. Cellular internalization of polycation-coated microparticles and its dependence on their zeta potential

    Science.gov (United States)

    Kato, Noritaka; Kondo, Ryosuke

    2018-03-01

    By applying microparticles to HeLa cells, the number of particles adhered on the cell and that of the ones internalized in the cells were evaluated. Three-dimensional tomographic images of the cells with the particles were obtained by multiphoton excitation laser scanning microscopy, and the adhered and internalized particles were counted separately. When the surface charge of the particles was reversed from negative to positive by coating the particles with polycations, both numbers significantly increased owing to the electrostatic attraction between the cells and the polycation-coated particles. Four different positively charged particles were prepared using four different polycations, and the numbers of adhered and internalized particles were compared. Our results suggest that these numbers depended on the zeta potential rather than the molecular structure of the polycation.

  20. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  1. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  2. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    Science.gov (United States)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  3. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  4. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems

    International Nuclear Information System (INIS)

    Selmani, Atiða; Kallay, Nikola; Preočanin, Tajana; Lützenkirchen, Johannes

    2014-01-01

    We have carried out surface and zeta-potential measurements on AgCl and AgBr single crystals. As for particle systems we find that, surprisingly and previously unnoted, the zeta-potential exhibits pH-dependence, while the surface potential does not. A possible interpretation of these observations is the involvement of water ions in the interfacial equilibria and in particular, stronger affinity of the hydroxide ion compared to the proton. The pH-dependence of the zeta-potential can be suppressed at sufficiently high silver concentrations, which agrees with previous measurements in particle systems where no pH-dependence was found at high halide ion concentrations. The results suggest a subtle interplay between the surface potential determining the halide and silver ion concentrations, and the water ions. Whenever the charge due to the halide and silver ions is sufficiently high, the influence of the proton/hydroxide ion on the zeta-potential vanishes. This might be related to the water structuring at the relevant interfaces which should be strongly affected by the surface potential. Another interesting observation is accentuation of the assumed water ion effect on the zeta-potential at the flat single crystal surfaces compared to the corresponding silver halide colloids. Previous generic MD simulations have indeed predicted that hydroxide ion adsorption is accentuated on flat/rigid surfaces. A thermodynamic model for AgI single crystals was developed to describe the combined effects of iodide, silver and water ions, based on two independently previously published models for AgI (that only consider constituent and background electrolyte ions) and inert surfaces (that only consider water and background electrolyte ions). The combined model correctly predicts all the experimentally observed trends. (paper)

  5. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  6. Zeta potentials of the rare earth element fluorcarbonate minerals focusing on bastnäsite and parisite.

    Science.gov (United States)

    Owens, C L; Nash, G R; Hadler, K; Fitzpatrick, R S; Anderson, C G; Wall, F

    2018-06-01

    Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to

  7. Reduced Zeta potential through use of cationic adhesion promoter for improved resist process performance and minimizing material consumption

    Science.gov (United States)

    Hodgson, Lorna; Thompson, Andrew

    2012-03-01

    This paper presents the results of a non-HMDS (non-silane) adhesion promoter that was used to reduce the zeta potential for very thin (proprietary) polymer on silicon. By reducing the zeta potential, as measured by the minimum sample required to fully coat a wafer, the amount of polymer required to coat silicon substrates was significantly reduced in the manufacture of X-ray windows used for high transmission of low-energy X-rays. Moreover, this approach used aqueous based adhesion promoter described as a cationic surface active agent that has been shown to improve adhesion of photoresists (positive, negative, epoxy [SU8], e-beam and dry film). As well as reducing the amount of polymer required to coat substrates, this aqueous adhesion promoter is nonhazardous, and contains non-volatile solvents.

  8. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.

    Science.gov (United States)

    Kwak, Dong-Heui; Kim, Mi-Sug

    2015-01-01

    The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.

  9. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.

    Science.gov (United States)

    Yan, Deguang; Nguyen, Nam-Trung; Yang, Chun; Huang, Xiaoyang

    2006-01-14

    We have demonstrated a transient micro particle image velocimetry (micro-PIV) technique to measure the temporal development of electroosmotic flow in microchannels. Synchronization of different trigger signals for the laser, the CCD camera, and the high-voltage switch makes this measurement possible with a conventional micro-PIV setup. Using the transient micro-PIV technique, we have further proposed a method on the basis of inertial decoupling between the particle electrophoretic motion and the fluid electroosmotic flow to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. It is shown that using the measured zeta potentials, the theoretical predictions agree well with the transient response of the electroosmotic velocities measured in this work.

  10. Zeta potential study of Sb2S3 nanoparticles synthesized by a facile polyol method in various surfactants

    Science.gov (United States)

    Saxena, Monika; Okram, Gunadhor Singh

    2018-05-01

    In the present work, we report the successful synthesis of stibnite Sb2S3 nanoparticles (NPs) by a facile polyol method using various surfactant. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy and Zeta potential. Rietveld refinement of XRD data confirms the single phase orthorhombic crystal structure of stibnite Sb2S3. Presence of six obvious Raman modes further confirmed their stoichiometric formation. Effect of different surfactants on the surface charge of Sb2S3 NPs was studied using Zeta potential measurement in deionized water at different pH values. They reveal that these NPs are more stable when it was synthesized in presence of EDTA than that of CTAB or without surfactant samples with high zeta potential. The isoelectronic point was found at pH = 6.4 for pure sample, 3.5 and 7.2 for CTAB and not found for EDTA Sb2S3 samples. This information can be useful for many industrial applications like pharmaceuticals, ceramics, waste water treatment and medicines.

  11. Towards the Development of Global Nano-Quantitative Structure–Property Relationship Models: Zeta Potentials of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrey A. Toropov

    2018-04-01

    Full Text Available Zeta potential indirectly reflects a charge of the surface of nanoparticles in solutions and could be used to represent the stability of the colloidal solution. As processes of synthesis, testing and evaluation of new nanomaterials are expensive and time-consuming, so it would be helpful to estimate an approximate range of properties for untested nanomaterials using computational modeling. We collected the largest dataset of zeta potential measurements of bare metal oxide nanoparticles in water (87 data points. The dataset was used to develop quantitative structure–property relationship (QSPR models. Essential features of nanoparticles were represented using a modified simplified molecular input line entry system (SMILES. SMILES strings reflected the size-dependent behavior of zeta potentials, as the considered quasi-SMILES modification included information about both chemical composition and the size of the nanoparticles. Three mathematical models were generated using the Monte Carlo method, and their statistical quality was evaluated (R2 for the training set varied from 0.71 to 0.87; for the validation set, from 0.67 to 0.82; root mean square errors for both training and validation sets ranged from 11.3 to 17.2 mV. The developed models were analyzed and linked to aggregation effects in aqueous solutions.

  12. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension

    Science.gov (United States)

    Lamberty, Andrée; Franks, Katrin; Braun, Adelina; Kestens, Vikram; Roebben, Gert; Linsinger, Thomas P. J.

    2011-12-01

    The Institute for Reference Materials and Measurements has organised an interlaboratory comparison (ILC) to allow the participating laboratories to demonstrate their proficiency in particle size and zeta potential measurements on monomodal aqueous suspensions of silica nanoparticles in the 10-100 nm size range. The main goal of this ILC was to identify competent collaborators for the production of certified nanoparticle reference materials. 38 laboratories from four different continents participated in the ILC with different methods for particle sizing and determination of zeta potential. Most of the laboratories submitted particle size results obtained with centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) or electron microscopy (EM), or zeta potential values obtained via electrophoretic light scattering (ELS). The results of the laboratories were evaluated using method-specific z scores, calculated on the basis of consensus values from the ILC. For CLS (13 results) and EM (13 results), all reported values were within the ±2 | z| interval. For DLS, 25 of the 27 results reported were within the ±2 | z| interval, the two other results were within the ±3 | z| interval. The standard deviations of the corresponding laboratory mean values varied between 3.7 and 6.5%, which demonstrates satisfactory interlaboratory comparability of CLS, DLS and EM particle size values. From the received test reports, a large discrepancy was observed in terms of the laboratory's quality assurance systems, which are equally important for the selection of collaborators in reference material certification projects. Only a minority of the participating laboratories is aware of all the items that are mandatory in test reports compliant to ISO/IEC 17025 (ISO General requirements for the competence of testing and calibration laboratories. International Organisation for Standardization, Geneva, 2005b). The absence of measurement uncertainty values in the reports, for

  13. The influence of zeta potential and yield stress on the filtration characteristics of a magnesium hydroxide simulant

    International Nuclear Information System (INIS)

    Biggs, Simon; Nabi, Rafiq; Poole, Colin; Patel, Ashok

    2007-01-01

    In the UK, irradiated fuels from Magnox reactors are often stored in water-filled ponds under alkaline conditions, so as to minimise corrosion of fuel cladding. This is important to prevent or reduce leakage of soluble fission products and actinides to the pond water. A variety of intermediate level wastes derived from Magnox materials are stored at power stations. Under these alkaline conditions, various species of magnesium are formed, of which magnesium hydroxide is the dominant material. The particle-fluid interactions are significant for the design and operation of facilities for hydraulic retrieval, filtration, dewatering and ion exchange treatment of fuel storage pond water and stored wet Magnox wastes. Here we describe a study of particulate properties and filtration characteristics of oxide particle simulants under laboratory conditions. Cake and medium resistance data were correlated across a range of pH conditions with electro-acoustic zeta potential and shear yield stress measurements, as a function of particle volume fractions. The influence of zeta potential on filtration properties arises directly from the interaction of particles within the sediment cake. (authors)

  14. Zeta potential and Raman studies of PVP capped Bi2S3 nanoparticles synthesized by polyol method

    Science.gov (United States)

    Tarachand, Sathe, Vasant G.; Okram, Gunadhor S.

    2018-05-01

    Here we report the synthesis and characterisation of polyvinylpyrrolidone (PVP) capped Bi2S3 nanoparticles via one step catalyst-free polyol method. Raman spectroscopy, dynamic light scattering and zeta potential analysis were performed on it. Rietveld refinement of powder XRD of PVP capped samples confirmed the formation of single phase orthorhombic Bi2S3 for all PVP capped samples. The presence of eight obvious Raman modes further confirmed the formation of stoichiometric Bi2S3. Dynamic light scattering (DLS) studies show a clear increase in hydrodynamic diameter for samples made with increasing PVP concentration. Particle size obtained from DLS and XRD (using Scherrer's formula) combine with change in full width half maxima of Raman modes collectively suggest overall improvement in crystallinity and quality of product on introducing PVP. In zeta potential (ζ) measurement, steric hindrance of carbon chains plays very crucial role and a systematic reduction of ζ value is observed for samples made with decreasing PVP concentration. An isoelectric point is obtained for sample made with low PVP (1g). Present results are likely to open a window for its medical and catalytic applications.

  15. Improving the Efficiency of a Coagulation-Flocculation Wastewater Treatment of the Semiconductor Industry through Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto López-Maldonado

    2014-01-01

    Full Text Available Efficiency of coagulation-flocculation process used for semiconductor wastewater treatment was improved by selecting suitable conditions (pH, polyelectrolyte type, and concentration through zeta potential measurements. Under this scenario the zeta potential, ζ, is the right parameter that allows studying and predicting the interactions at the molecular level between the contaminants in the wastewater and polyelectrolytes used for coagulation-flocculation. Additionally, this parameter is a key factor for assessing the efficiency of coagulation-flocculation processes based on the optimum dosages and windows for polyelectrolytes coagulation-flocculation effectiveness. In this paper, strategic pH variations allowed the prediction of the dosage of polyelectrolyte on wastewater from real electroplating baths, including the isoelectric point (IEP of the dispersions of water and commercial polyelectrolytes used in typical semiconductor industries. The results showed that there is a difference between polyelectrolyte demand required for the removal of suspended solids, turbidity, and organic matter from wastewater (23.4 mg/L and 67 mg/L, resp.. It was also concluded that the dose of polyelectrolytes and coagulation-flocculation window to achieve compliance with national and international regulations as EPA in USA and SEMARNAT in Mexico is influenced by the physicochemical characteristics of the dispersions and treatment conditions (pH and polyelectrolyte dosing strategy.

  16. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    Science.gov (United States)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  17. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    Science.gov (United States)

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  18. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping

    International Nuclear Information System (INIS)

    Sankhla, Aryan; Sharma, Rajeshwar; Yadav, Raghvendra Singh; Kashyap, Diwakar; Kothari, S.L.; Kachhwaha, S.

    2016-01-01

    Biological approaches have been amongst the most promising protocols for synthesis of nanomaterials. In this study, Cadmium sulfide nanoparticles (CdS NPs) were synthesized by incubating their precursor salts with Escherichia coli and zeta potential (ζ-potential) measurement with varying pH was carried out to evaluate stability of the colloidal dispersion. Formation of CdS NPs was studied in synchrony with microbial growth. TEM analysis confirmed the uniform distribution of NPs. Average size (5 ± 0.4 nm) and electron diffraction pattern revealed polycrystalline cubic crystal phase of these nanoparticles. X-ray diffractogram ascertained the formation of CdS nanoparticles with phase formation and particle size distribution in accordance with the particle size obtained from TEM. Absorption edge of biosynthesized CdS NPs showed a blue shift at ∼400 nm in comparison to their bulk counterpart. A hump at 279 nm indicated presence of biomolecules in the solution in addition to the particles. FT-IR spectrum of capped CdS NPs showed peaks of protein. This confirms adsorption of protein molecules on nanoparticle surface. They act as a capping agent hence responsible for the stability of NPs. The enhanced stability of the particles was confirmed by Zeta potential analysis. The presence of charge on the surface of capped CdS NPs gave a detail understanding of dispersion mechanism and colloidal stability at the NP interface. This stability study of biosynthesized semiconductor nanoparticles utilizing microbial cells had not been done in the past by any research group providing an impetus for the same. Surface area of capped CdS NPs and bare CdS NPs were found to be 298 ± 2.65 m 2 /g and 117 ± 2.41 m 2 /g respectively. A possible mechanism is also proposed for the biosynthesis of CdS NPs. - Highlights: • Synthesis of CdS NPs utilizing reproducible molecular machinery viz. Escherichia coli biomass. • Uniform and Polydispersed NPs with high surface area and

  19. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping

    Energy Technology Data Exchange (ETDEWEB)

    Sankhla, Aryan, E-mail: aaryansankhla@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Sharma, Rajeshwar; Yadav, Raghvendra Singh [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Kashyap, Diwakar [Department of Biological Chemistry, Ariel University, Ariel, 40700 (Israel); Kothari, S.L. [Institute of Biotechnology, Amity University, Jaipur, 303002 (India); Kachhwaha, S. [Department of Botany, University of Rajasthan, Jaipur, 302004 (India)

    2016-02-15

    Biological approaches have been amongst the most promising protocols for synthesis of nanomaterials. In this study, Cadmium sulfide nanoparticles (CdS NPs) were synthesized by incubating their precursor salts with Escherichia coli and zeta potential (ζ-potential) measurement with varying pH was carried out to evaluate stability of the colloidal dispersion. Formation of CdS NPs was studied in synchrony with microbial growth. TEM analysis confirmed the uniform distribution of NPs. Average size (5 ± 0.4 nm) and electron diffraction pattern revealed polycrystalline cubic crystal phase of these nanoparticles. X-ray diffractogram ascertained the formation of CdS nanoparticles with phase formation and particle size distribution in accordance with the particle size obtained from TEM. Absorption edge of biosynthesized CdS NPs showed a blue shift at ∼400 nm in comparison to their bulk counterpart. A hump at 279 nm indicated presence of biomolecules in the solution in addition to the particles. FT-IR spectrum of capped CdS NPs showed peaks of protein. This confirms adsorption of protein molecules on nanoparticle surface. They act as a capping agent hence responsible for the stability of NPs. The enhanced stability of the particles was confirmed by Zeta potential analysis. The presence of charge on the surface of capped CdS NPs gave a detail understanding of dispersion mechanism and colloidal stability at the NP interface. This stability study of biosynthesized semiconductor nanoparticles utilizing microbial cells had not been done in the past by any research group providing an impetus for the same. Surface area of capped CdS NPs and bare CdS NPs were found to be 298 ± 2.65 m{sup 2}/g and 117 ± 2.41 m{sup 2}/g respectively. A possible mechanism is also proposed for the biosynthesis of CdS NPs. - Highlights: • Synthesis of CdS NPs utilizing reproducible molecular machinery viz. Escherichia coli biomass. • Uniform and Polydispersed NPs with high surface area

  20. Adsorbed polymers in aqueous media. The relation between zeta-potential, layer thickness and ionic strength

    NARCIS (Netherlands)

    Cohen Stuart, M.A.; Mulder, J.W.

    1985-01-01

    Streaming potentials for glass capillaries with and without adsorbed poly(vinyl pyrrolidone) were used to determine the thickness of the adsorbed polymer layer. It was found that the thickness determined in this way is a strong function of the ionic strength of the solution. The results are compared

  1. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S; Choudhary, J N, E-mail: subhra-datta@iitd.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2013-10-01

    The effect of hydrodynamic slippage on the electro-osmotic flow in a nanochannel with thick electrical double layers whose wall surface potential has a periodic axial variation is studied. The equations of Stokes flow are solved exactly with the help of the Navier slip boundary condition and the Debye-Huckel linearization of the equation governing the potential of the electrical double layer. Each periodic cell of the flow field consists of four counter-rotating vortices. The cross-channel profile of the axial velocity at the center of the cell exhibits three extrema and a reversed velocity zone near the channel axis of symmetry. The size of the extrema and that of the reversed velocity zone increases with increase in the degree of slippage. In the limit when the wavelength of axial variation in surface potential is much larger than the channel width, the flow characteristics are interpreted in terms of the lubrication approximation. In the limit when the electrical double layer is much thinner than the channel height, the effect of slip is modeled by a Helmholtz-Smoluchowski apparent slip boundary condition that depends on the pattern wavelength. (paper)

  2. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  3. Effect of Tannic Acid on the zeta Potential, Sorption, and Surface Free Energy in the Process of Dyeing of Leacril with a Cationic Dye.

    Science.gov (United States)

    Espinosa-Jiménez; Giménez-Martín; Ontiveros-Ortega

    1998-11-01

    The behavior of the surface free energy in the process of dyeing Leacril pretreated with tannic acid and subsequently dyeing with the cationic dye Rhodamine B has been studied. Also the electrokinetic behavior of these systems has been analyzed by studying the zeta potential, which has been obtained by means of the streaming potential technique. Values more significative of the zeta potential of these systems have been obtained using the three models of capillaries existing in the literature. The qualitative behavior of the zeta potential is the same for the three models of capillaries tested in this paper. These models are those of Goring and Mason, Biefer and Mason, and Chang and Robertson. The zeta potential of the systems analyzed is negative in the range of concentration of the dye in the liquid phase from 10(-6) to ca. 10(-4) M of dye. In the range of low concentrations (from 10(-6) to ca. 10(-5) M of dye) the zeta potential of the system untreated Leacril/Rhodamine B increases in absolute value due to increasing hydrophobic attractions between both the hydrophobic chains of the dye and the Leacril fibers in aqueous media. In the system Leacril treated with tannic acid/Rhodamine B, this increase is also due to the presence of hydrogen bonding between the phenolic hydroxyl groups of the tannic acid and the sulfonate and sulfate end groups of Leacril fibers. For concentrations of dye between 10(-5) and 10(-4) M of dye in solution, the zeta potential decreases in absolute value due to the electrostatic attractions between the groups negatively charged in the fiber and the cation of the dye. The zeta potential changes its sign at the highest concentrations of dye used in this work. The adsorption of Rhodamine B onto both untreated Leacril and Leacril treated with tannic acid is favored by the increasing temperature of adsorption. The behavior of the components of the surface free energy obtained by the thin-layer wicking technique led us to consider that the

  4. Determination of zeta-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Voráčová, Ivona; Klepárník, Karel; Lišková, Marcela; Foret, František

    2015-01-01

    Roč. 36, č. 6 (2015), s. 867-874 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : CE * LIF * zeta-potential * quantum dots Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  5. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Safi, B.

    2011-09-01

    Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

    En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

  6. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  7. Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements.

    Science.gov (United States)

    Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann

    2010-07-01

    Polyelectrolyte-based dispersants are commonly used in a wide range of industrial applications to provide specific workability to colloidal suspensions. Their working mechanism is based on adsorption onto the surfaces of the suspended particles. The adsorbed polymer layer can exercise an electrostatic and/or a steric effect which is responsible for achieving dispersion. This study is focused on the dispersion forces induced by polycarboxylate ether-based superplasticizers (PCEs) commonly used in concrete. They are investigated by atomic force microscopy (AFM) applying standard silicon nitride tips exposed to solutions with different ionic compositions in a wet cell. Adsorption isotherms and zeta potential analysis were performed to characterize polymer displacement in the AFM system on nonreactive model substrates (quartz, mica, calcite, and magnesium oxide) in order to avoid the complexity of cement hydration products. The results show that PCE is strongly adsorbed by positively charged materials. This fact reveals that, being silicon nitride naturally positively charged, in most cases the superplasticizer adsorbs preferably on the silicon nitride tip than on the AFM substrate. However, the force-distance curves displayed repulsive interactions between tip and substrates even when polymer was poorly adsorbed on both. These observations allow us to conclude that the dispersion due to PCE strongly depends on the particle charge. It differs between colloids adsorbing and not adsorbing PCE, and leads to different forces acting between the particles. Copyright 2010 Elsevier Inc. All rights reserved.

  8. The effect of the electrical double layer on hydrodynamic lubrication: a non-monotonic trend with increasing zeta potential

    Directory of Open Access Journals (Sweden)

    Dalei Jing

    2017-07-01

    Full Text Available In the present study, a modified Reynolds equation including the electrical double layer (EDL-induced electroviscous effect of lubricant is established to investigate the effect of the EDL on the hydrodynamic lubrication of a 1D slider bearing. The theoretical model is based on the nonlinear Poisson–Boltzmann equation without the use of the Debye–Hückel approximation. Furthermore, the variation in the bulk electrical conductivity of the lubricant under the influence of the EDL is also considered during the theoretical analysis of hydrodynamic lubrication. The results show that the EDL can increase the hydrodynamic load capacity of the lubricant in a 1D slider bearing. More importantly, the hydrodynamic load capacity of the lubricant under the influence of the EDL shows a non-monotonic trend, changing from enhancement to attenuation with a gradual increase in the absolute value of the zeta potential. This non-monotonic hydrodynamic lubrication is dependent on the non-monotonic electroviscous effect of the lubricant generated by the EDL, which is dominated by the non-monotonic electrical field strength and non-monotonic electrical body force on the lubricant. The subject of the paper is the theoretical modeling and the corresponding analysis.

  9. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.

    Science.gov (United States)

    Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A

    2006-02-01

    Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.

  10. An application of zeta potential method for the selection of nano-fluids to enhance IVR capability

    International Nuclear Information System (INIS)

    Pham Quynh Trang; Kim, Tae Il; Chang, Soon Heung

    2009-01-01

    In-vessel Retention (IVR) is one of the key severe accident management strategies that have been applied currently for advanced light water reactors such as APR1000 or APR1400. The concept of IVR consists of external cooling of the reactor vessel by flooding the reactor cavity to remove the decay heat from the molten core through the lower head of the vessel. However, the heat removal process is limited by the occurrence of critical heat flux (CHF) at the reactor vessel outer surface that may lead to a sharp increase of local temperature, damaging the integrity of the reactor vessel. In order to obtain higher power of nuclear reactors and to assure the achievement of the IVR capability during accident conditions, an enhancement of CHF at the outer surface of the vessel is required. The potential use of nano-fluids to increase the CHF is among the main IVR enhancing approaches. In this study, Al 2 O 3 and CNT nano-fluids with different concentrations have been used as the potential coolant to enhance IVR capabilities. The dispersion stability of the nano-fluids was verified by zeta potential measurements. The results showed effects of time, concentration and pH on the stability of nanofluids. Three types of nano-fluids were selected as the candidates to apply for the IVR. A series of experiments have been performed in this study to understand the pool-boiling critical heat flux behavior on downward facing surfaces submerged in a pool of nano-fluids at very low concentration. The inclination angle was changed from horizontal to vertical to investigate the effect of orientation on CHF enhancement which is needed for the application in IVR

  11. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    International Nuclear Information System (INIS)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr.

    2004-01-01

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on native gels

  12. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr

    2004-09-27

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on

  13. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.

    Science.gov (United States)

    Wang, Wenjie; Ding, Xiaofan; Xu, Qing; Wang, Jing; Wang, Lei; Lou, Xinhui

    2016-12-01

    Zeta potentials (ZP) of gold nanoparticle bioconjugates (AuNP-bios) provide important information on surface charge that is critical for many applications including drug delivery, biosensing, and cell imaging. The ZP measurements (ZPMs) are conducted under an alternative electrical field at a high frequency under laser irradiation, which may strongly affect the status of surface coating of AuNP-bios and generate unreliable data. In this study, we systemically evaluated the ZP data reliability (ZPDR) of citrate-, thiolated single stranded DNA-, and protein-coated AuNPs mainly according to the consistence of ZPs in the repeated ZPMs and the changes of the hydrodynamic size before and after the ZPMs. We found that the ZPDR was highly dependent on both buffer conditions and surface modifications. Overall, the higher ionic strength of the buffer and the lower affinity of surface bounders were related with the worse ZPDR. The ZPDR of citrate-coated AuNP was good in water, but bad in 10mM phosphate buffer (PB), showing substantially decrease of the absolute ZP values after each measurement, probably due to the electrical field facilitated adsorption of negatively charged phosphate ions on AuNPs. The significant desorption of DNAs from AuNP was observed in the PB containing medium concentration of NaCl, but not in PB. The excellent ZPDR of bovine serum albumin (BSA)-coated AuNP was observed at high salt concentrations and low surface coverage, enabling ZPM as an ultra-sensitive tool for protein quantification on the surface of AuNPs with a single molecule resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.

    Science.gov (United States)

    Dittrich, Maria; Sibler, Sabine

    2005-06-15

    In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.

  15. Evaluating Zeta Potential and the Calcite/Aragonite Ratio as Potential Success Indicators for Magnetic Water Treatment

    National Research Council Canada - National Science Library

    Lambert, Kevin

    1999-01-01

    The potential benefits of anti-scale magnetic treatment (AMT) are not realized or reliably predicted because the factors measuring performance of magnetic treatment have either not been identified or are poorly defined...

  16. Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H/sub 2/O in a double-zeta basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F B; Shavitt, I; Shepard, R

    1984-03-23

    Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.

  17. Comparison of methods of zeta potential and residual turbidity of pectin solutions using calcium sulphate/aluminium sulphate as a precipitant

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2017-01-01

    Full Text Available The affinity of calcium ion binding from CaO used in the most common process of purification of sugar beet juice is relatively low. Therefore, large amounts of this compound are required. This paper presents the theoretical basis of a novel sugar beet juice purification method based on the application of the binary system CaSO4/Al2(SO4 . In order to monitor the process of coagulation and precipitation of pectin in the presence of CaSO4/Al2(SO43, two methods were compared: measurement of the zeta potential and of residual solution turbidity. The zeta potential of pectin solution was determined by electrophoretic method, while the residual turbidity was determined by spectrophotometry. Two model solutions of pectin (0.1 % w/w were investigated. Studies were performed with 10 different concentrations of the binary solution CaSO4/Al2(SO43 (50 - 500 g dm-3. The amount of the precipitant CaSO4/Al2(SO43 (1:1 w/w needed to achieve the minimum solution turbidity and charge neutralization of pectin particles (zero zeta potential were measured and compared. Colloidal destabilization occurred before a complete neutralization of the surface charge of pectin particles (zeta potential ~ 0 mV. Optimal quantities (490 - 705 mg g-1 pectin of the applied binary mixture, were obtained using both methods. This is much lower than the amount of CaO that is commonly used in the conventional process of sugar beet juice purification (about 9 g• g-1 pectin. The use of these precipitants could be important from both economic and environmental point of view. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 31055

  18. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  19. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    Science.gov (United States)

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    International Nuclear Information System (INIS)

    Mahaki, Hanie; Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan; Reza Saberi, Mohammad

    2013-01-01

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA–ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: ► We studied the interaction of ropinirole hydrochloride and aspirin with HSA. ► Molecular modeling and zeta-potential used to describe competitive interaction. ► We determined the critical induced aggregation concentration of both drugs on HSA. ► The binding mechanism of drugs as separate and simultaneous to HSA has been compared. ► The binding site of both drugs as simultaneous effects on HSA has been determined.

  1. Interaction between ropinirole hydrochloride and aspirin with human serum albumin as binary and ternary systems by multi-spectroscopic, molecular modeling and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Mahaki, Hanie, E-mail: hanieh.mahaki@gmail.com [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Memarpoor-Yazdi, Mina; Chamani, Jamshidkhan [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Reza Saberi, Mohammad [Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-02-15

    The aim of the present study was to describe the competition of ropinirole hydrochloride (RP) and aspirin (ASA) in binding to human serum albumin (HSA) in physiological buffer (pH=7.4) using multi-spectroscopic, molecular modeling and zeta-potential measurements. Fluorescence analysis was used to define the binding and quenching properties of drug-HSA complexes in binary and ternary systems. Fluorescence spectroscopy showed that in the presence of RP, the binding constant of HSA-ASA was increased. Static quenching was confirmed to result in the fluorescence quenching and FRET. The effect of drugs on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy, three-dimensional fluorescence spectra and circular dichroism (CD). The RLS method determined the critical aggregation concentration of drugs on HSA in binary and ternary systems that confirmed the zeta potential results. Structural modeling showed that the affinity of each of the drugs to HSA in binary and ternary systems confirms the spectroscopic results. - Highlights: Black-Right-Pointing-Pointer We studied the interaction of ropinirole hydrochloride and aspirin with HSA. Black-Right-Pointing-Pointer Molecular modeling and zeta-potential used to describe competitive interaction. Black-Right-Pointing-Pointer We determined the critical induced aggregation concentration of both drugs on HSA. Black-Right-Pointing-Pointer The binding mechanism of drugs as separate and simultaneous to HSA has been compared. Black-Right-Pointing-Pointer The binding site of both drugs as simultaneous effects on HSA has been determined.

  2. Arbitrary l-wave solutions of the Schroedinger equation for the screen Coulomb potential

    International Nuclear Information System (INIS)

    Dong, Shishan; Sun, Guohua; Dong, Shihai

    2013-01-01

    Using improved approximate schemes for centrifugal term and the singular factor 1/r appearing in potential itself, we solve the Schroedinger equation with the screen Coulomb potential for arbitrary angular momentum state l. The bound state energy levels are obtained. A closed form of normalization constant of the wave functions is also found. The numerical results show that our results are in good agreement with those obtained by other methods. The key issue is how to treat two singular points in this quantum system. (author)

  3. Interpretation of colloidal dyeing of polyester fabrics pretreated with ethyl xanthogenate in terms of zeta potential and surface free energy balance.

    Science.gov (United States)

    Espinosa-Jiménez, M; Padilla-Weigand, R; Ontiveros-Ortega, A; Ramos-Tejada, M M; Perea-Carpio, R

    2003-09-15

    Data are presented on the adsorption of the colloidal dye Disperse Blue 3 onto polyester fabric (Dacron 54, Stile 777), the fabric being pretreated with different amounts of the surfactant potassium ethyl xanthogenate (PEX). This study has been made by means of both the evolution of the zeta potential of the fiber/dye interface and the behaviour of the surface free energy components of the above systems. The kinetics of adsorption of the process of dyeing, using 10(-4) M of PEX in the pretreatment of the fabric, shows that increasing temperature of adsorption decrease the amount of colloidal dye adsorbed onto the fabric. This fact shows that the principal mechanism involved in this adsorption process is physical in nature. The adsorption isotherms of the colloidal dye onto polyester pretreated with different amounts of PEX, shows that the adsorption of the dye is favored with the increase in the concentration of the surfactant used in the pretreatment. This fact shows that the pretreatment with PEX is a very interesting aspect of interest in textile industry. The zeta potential of the system fabric/surfactant shows that this parameter is negative (about -25 mV) for the untreated fiber and decreases in absolute value for increasing concentration of the surfactant on the fiber, the value of the zeta potential of the system being -5 mV for 10(-2) M of PEX. This behavior can be explained for the chemical reaction nucleophilic attack between the carboxyl groups of polyester, ionized at pH 8, and the thiocarbonyl group of the xanthogenate ion. On the other hand, the zeta potential of the system polyester pretreated with PEX/Disperse Blue 3 at increasing concentrations of the surfactant and the dye shows that this parameter increases its negative value strongly with increasing concentration of the surfactant used in the treatment. This can be explained for the hydrogen bonds between the hydroxy groups of the dye and the S- ions of the thiocarbonyl group of the surfactant

  4. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    Science.gov (United States)

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy.

    Science.gov (United States)

    Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile

    2014-09-28

    We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped

  6. Use of Spectroscopic, Zeta Potential and Molecular Dynamic Techniques to Study the Interaction between Human Holo-Transferrin and Two Antagonist Drugs: Comparison of Binary and Ternary Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Saberi

    2012-03-01

    Full Text Available For the first time, the binding of ropinirole hydrochloride (ROP and aspirin (ASA to human holo-transferrin (hTf has been investigated by spectroscopic approaches (fluorescence quenching, synchronous fluorescence, time-resolved fluorescence, three-dimensional fluorescence, UV-vis absorption, circular dichroism, resonance light scattering, as well as zeta potential and molecular modeling techniques, under simulated physiological conditions. Fluorescence analysis was used to estimate the effect of the ROP and ASA drugs on the fluorescence of hTf as well as to define the binding and quenching properties of binary and ternary complexes. The synchronized fluorescence and three-dimensional fluorescence spectra demonstrated some micro-environmental and conformational changes around the Trp and Tyr residues with a faint red shift. Thermodynamic analysis displayed the van der Waals forces and hydrogen bonds interactions are the major acting forces in stabilizing the complexes. Steady-state and time-resolved fluorescence data revealed that the fluorescence quenching of complexes are static mechanism. The effect of the drugs aggregating on the hTf resulted in an enhancement of the resonance light scattering (RLS intensity. The average binding distance between were computed according to the forster non-radiation energy transfer theory. The circular dichroism (CD spectral examinations indicated that the binding of the drugs induced a conformational change of hTf. Measurements of the zeta potential indicated that the combination of electrostatic and hydrophobic interactions between ROP, ASA and hTf formed micelle-like clusters. The molecular modeling confirmed the experimental results. This study is expected to provide important insight into the interaction of hTf with ROP and ASA to use in various toxicological and therapeutic processes.

  7. Scattering states of the Klein-Gordon equation with Coulomb-like scalar plus vector potentials in arbitrary dimension

    International Nuclear Information System (INIS)

    Chen Changyuan; Sun Dongsheng; Lu Falin

    2004-01-01

    Properties of scattering states of the Klein-Gordon equation with Coulomb-like scalar plus vector potentials are investigated in an arbitrary dimension. Exact results of normalized wave functions of scattering states in the 'k/2π scale' and formula of phase shifts are presented

  8. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  9. Concerning the theory of radiation cascades of atomic collisions in a solid with an arbitrary interatomic interaction potential

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Metelkin, E.V.

    1980-01-01

    Cascades of atomic collisions created by high energy particles as a result of irradiation of solids by them are considered. The solution of the problem is based on the investigation of the Boltzmann stationary kinetic equation for moving atoms. For this equation a model scattering indicatrix is constructed with an arbitrary form of the potential of interaction of moving atoms with lattice atoms. The choice of the model scattering indicatrix of atoms is determined by the normalization, the average energy loss in a single collision and by the deviation of the energy losses really occurring in the collision from the mean value, as well as by the initial kinetic equation for moving atoms. The energy distribution of moving atoms for arbitrary interatomic interaction potentials has been obtained using the constructed model scattering indicatrix. On the basis of the theory constructed a cascade is calculated with an interatomic interaction potential in the form of the Thomas-Fermi potential and the power potential. (author)

  10. Stability Investigation of Ligand-Exchanged CdSe/ZnS-Y (Y = 3-Mercaptopropionic Acid or Mercaptosuccinic Acid through Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ngoc Thuy Vo

    2016-01-01

    Full Text Available Quantum dots have been considered to be promising candidates for bioapplications because of their high sensitivity, rapid response, and reliability. The synthesis of high-quality quantum dots that can be dissolved in water and other biological media is a crucial step toward their further application in biology. Starting with a one-pot reaction and the successive ionic layer adsorption and reaction (SILAR method, we produced the CdSe/ZnS core/shell structure. Through a ligand-exchange mechanism, we coated the as-made CdSe/ZnS structure with 3-mercaptopropionic acid (MPA or mercaptosuccinic acid (MSA. Various techniques, including photoluminescence (PL, ultraviolet-visible (UV-Vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FTIR spectroscopy, were utilized to characterize the ligand-coated CdSe/ZnS structure. The results show enhanced luminescence intensity, CdSe surface passivation by ZnS, and successful coating with MPA and MSA. The stability of quantum dots in solutions with different pH values was investigated by performing zeta potential measurements. The results revealed that the quantum dots shifted from displaying hydrophobic to hydrophilic behavior and could be connected with bioagents.

  11. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    International Nuclear Information System (INIS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-01-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO 2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na 2 Ti 2 O 5 ·H 2 O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO 2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO 2 ), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C 9 H 10 ClN 5 O 2 ) degradation to CO 2 formation under UV irradiation because of its largest surface area 176 m 2 g −1 among the catalysts studied.

  12. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  13. Zeta-function regularization of the quantum fluctuations around the Yang-Mills pseudoparticle

    International Nuclear Information System (INIS)

    Chadha, S.; Di Vecchia, P.; D'Adda, A.; Nicodemi, F.

    1977-01-01

    The hypersphere stereographic projection and the zeta-function regularization procedure are used to compute the one loop correction around the Yang-Mills pseudoparticle with scalars and fermions in an arbitrary representation of the SU(2) gauge group. (Auth.)

  14. Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion

    DEFF Research Database (Denmark)

    Gaunaa, M.

    2006-01-01

    In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by itscamberline as in classic thin-airfoil theory...... using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use ofDuhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use...

  15. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO{sub 2} nanostructures of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO{sub 2} catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO{sub 2} with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO{sub 2}), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C{sub 9}H{sub 10}ClN{sub 5}O{sub 2}) degradation to CO{sub 2} formation under UV irradiation because of its largest surface area 176 m{sup 2} g{sup −1} among the catalysts studied.

  16. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  17. Unsteady 2D potential-flow forces and a thin variable geometry airfoil undergoing arbitrary motion

    Energy Technology Data Exchange (ETDEWEB)

    Gaunaa, M.

    2006-07-15

    In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by its camberline as in classic thin-airfoil theory, and the deflection of the airfoil is given by superposition of chordwise deflection mode shapes. It is shown from the expressions for the forces, that the influence from the shed vorticity in the wake is described by the same time-lag for all chordwise positions on the airfoil. This time-lag term can be approximated using an indicial function approach, making the practical calculation of the aerodynamic response numerically very efficient by use of Duhamel superposition. Furthermore, the indicial function expressions for the time-lag terms are formulated in their equivalent state-space form, allowing for use of the present theory in problems employing the eigenvalue approach, such as stability analysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can be used for various applications which up to now have been possible only using much more computational costly methods. The propulsive performance of a soft heaving propulsor, and the influence of airfoil camberline elasticity on the flutter limit are two computational examples given in the report that highlight this feature. (au)

  18. Preparing and probing many-body correlated systems in a Quantum Gas Microscope by engineering arbitrary landscape potentials

    Science.gov (United States)

    Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus

    2015-05-01

    Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.

  19. On the tunneling time of arbitrary continuous potentials and the Hartman effect

    International Nuclear Information System (INIS)

    Yin Cheng; Wu Zhi-Jing; Wang Xian-Ping; Sun Jing-Jing; Cao Zhuang-Qi

    2010-01-01

    This paper obtains a generalized tunneling time of one-dimensional potentials via time reversal invariance. It also proposes a simple explanation for the Hartman effect using the useful concept of the scattered subwaves

  20. Josephson-like currents in graphene for arbitrary time-dependent potential barriers

    OpenAIRE

    Savel'ev, Sergey E.; Hausler, Wolfgang; Hanggi, Peter

    2011-01-01

    From the exact solution of the Dirac-Weyl equation we find unusual currents j_y running in y-direction parallel to a time-dependent scalar potential barrier W(x,t) placed upon a monolayer of graphene, even for vanishing momentum component p_y. In their sine-like dependence on the phase difference of wave functions, describing left and right moving Dirac fermions, these currents resemble Josephson currents in superconductors, including the occurance of Shapiro steps at certain frequencies of p...

  1. Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and L-Arginine (L-Arg) using multi-spectroscopic, molecular modeling and zeta potential techniques

    Energy Technology Data Exchange (ETDEWEB)

    Memarpoor-Yazdi, Mina [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Mahaki, Hanie, E-mail: hanieh.mahaki@gmail.com [Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2013-04-15

    This study was designed to examine the interaction of Riboflavin (RB) and L-Arginine (L-Arg) with human serum albumin (HSA) using different spectroscopic, zeta potential and molecular modeling techniques under imitated physiological conditions. The resonance light scattering (RLS) method determined the critical aggregation concentration of RB on HSA in the presence and absence of L-Arg which confirmed the zeta potential results. The binding constants (K{sub a}) of HSA–RB were 2.5×10{sup 4} and 9.7×10{sup 3} M{sup −1}, respectively in binary and ternary system at the excitation wavelength of 280 nm, also were 7.5×10{sup 3} and 7.3×10{sup 3}, respectively in binary and ternary system at the excitation wavelength of 295 nm. Fluorescence spectroscopy demonstrated that in the presence of L-Arg, the binding constant of HSA–RB was increased. Static quenching was confirmed to results in the fluorescence quenching and FRET. The binding distances between HSA and RB in two- and three-component systems were estimated by the Forster theory which revealed that nonradiative energy transfer from HSA to RB occurred with a high probability. The effect of RB on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy and circular dichroism (CD) in both systems. Docking studies demonstrated a reduction in the binding affinity between RB and HSA in the presence of L-Arg. -- Highlights: ► We studied the interaction of riboflavin with HSA in presence and absence of L-Arg. ► Molecular modeling and zeta-potential used to describe competitive interaction. ► We compared the binding mechanism of riboflavin (RB) to HSA in both systems. ► We determined critical aggregation concentration of RB on HSA in both systems. ► The binding site of RB on HSA in both systems has been determined.

  2. Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and L-Arginine (L-Arg) using multi-spectroscopic, molecular modeling and zeta potential techniques

    International Nuclear Information System (INIS)

    Memarpoor-Yazdi, Mina; Mahaki, Hanie

    2013-01-01

    This study was designed to examine the interaction of Riboflavin (RB) and L-Arginine (L-Arg) with human serum albumin (HSA) using different spectroscopic, zeta potential and molecular modeling techniques under imitated physiological conditions. The resonance light scattering (RLS) method determined the critical aggregation concentration of RB on HSA in the presence and absence of L-Arg which confirmed the zeta potential results. The binding constants (K a ) of HSA–RB were 2.5×10 4 and 9.7×10 3 M −1 , respectively in binary and ternary system at the excitation wavelength of 280 nm, also were 7.5×10 3 and 7.3×10 3 , respectively in binary and ternary system at the excitation wavelength of 295 nm. Fluorescence spectroscopy demonstrated that in the presence of L-Arg, the binding constant of HSA–RB was increased. Static quenching was confirmed to results in the fluorescence quenching and FRET. The binding distances between HSA and RB in two- and three-component systems were estimated by the Forster theory which revealed that nonradiative energy transfer from HSA to RB occurred with a high probability. The effect of RB on the conformation of HSA was analyzed using synchronous fluorescence spectroscopy and circular dichroism (CD) in both systems. Docking studies demonstrated a reduction in the binding affinity between RB and HSA in the presence of L-Arg. -- Highlights: ► We studied the interaction of riboflavin with HSA in presence and absence of L-Arg. ► Molecular modeling and zeta-potential used to describe competitive interaction. ► We compared the binding mechanism of riboflavin (RB) to HSA in both systems. ► We determined critical aggregation concentration of RB on HSA in both systems. ► The binding site of RB on HSA in both systems has been determined

  3. Salpeter equation in position space: Numerical solution for arbitrary confining potentials

    International Nuclear Information System (INIS)

    Nickisch, L.J.; Durand, L.; Durand, B.

    1984-01-01

    We present and test two new methods for the numerical solution of the relativistic wave equation [(-del 2 +m 1 2 )/sup 1/2/+(-del 2 +m 2 2 )/sup 1/2/+V(r)-M]psi( r ) = 0, which appears in the theory of relativistic quark-antiquark bound states. Our methods work directly in position space, and hence have the desirable features that we can vary the potential V(r) locally in fitting the qq-bar mass spectrum, and can easily build in the expected behavior of V for r→0,infinity. Our first method converts the nonlocal square-root operators to mildly singular integral operators involving hyperbolic Bessel functions. The resulting integral equation can be solved numerically by matrix techniques. Our second method approximates the square-root operators directly by finite matrices. Both methods converge rapidly with increasing matrix size (the square-root matrix method more rapidly) and can be used in fast-fitting routines. We present some tests for oscillator and Coulomb interactions, and for the realistic Coulomb-plus-linear potential used in qq-bar phenomenology

  4. Wind models for zeta Orionis

    International Nuclear Information System (INIS)

    Olson, G.L.

    1979-01-01

    Several models for the winds of O stars have been proposed to explain the unexpected presence of high ionization potential ions such as N +4 and O +5 . Lamers and Snow (1978) proposed that the winds of stars showing N V and O VI lines have elevated temperatures near 4 +- 2 x 10 5 K while cooler stars with anomalous Si IV lines have Tsub(e) approximately 7+-3 x 10 4 K. Alternately, Cassinelli and Olson (1978, CO) and Olson (1978) have explained the presence of these ions by showing that a thin corona at the base of a cool wind (Tsub(e) < approximately Tsub(eff)) can produce these ions by the Auger photoionization process where a single X-ray photon causes the ejection of two electrons. A third possibility is that the winds are at only slightly elevated temperatures (40 000 to 60 000K) and photoionization in an optically thick wind produces the unexpected ions. The present analysis tests the ability of these three wind models to fit the observations of zeta Orionis A 09.7 Ib. (Auth.)

  5. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  6. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the lanthanides La–Lu

    NARCIS (Netherlands)

    Dyall, K.G.; Gomes, A.S.P.; Visscher, L.

    2010-01-01

    Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized for the lanthanide elements La-Lu. The basis sets include SCF exponents for the occupied spinors and for the 6p shell, exponents of correlating functions for the valence shells (4f, 5d and 6s) and the

  7. Bernoulli numbers and zeta functions

    CERN Document Server

    Arakawa, Tsuneo; Kaneko, Masanobu

    2014-01-01

    Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of ...

  8. Lectures on zeta functions over finite fields

    OpenAIRE

    Wan, Daqing

    2007-01-01

    These are the notes from the summer school in G\\"ottingen sponsored by NATO Advanced Study Institute on Higher-Dimensional Geometry over Finite Fields that took place in 2007. The aim was to give a short introduction on zeta functions over finite fields, focusing on moment zeta functions and zeta functions of affine toric hypersurfaces.

  9. Relativistic bound states in the presence of spherically ring-shaped q-deformed Woods–Saxon potential with arbitrary l-states

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.

    2013-01-01

    Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)

  10. Multifractal and higher-dimensional zeta functions

    International Nuclear Information System (INIS)

    Véhel, Jacques Lévy; Mendivil, Franklin

    2011-01-01

    In this paper, we generalize the zeta function for a fractal string (as in Lapidus and Frankenhuijsen 2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (New York: Springer)) in several directions. We first modify the zeta function to be associated with a sequence of covers instead of the usual definition involving gap lengths. This modified zeta function allows us to define both a multifractal zeta function and a zeta function for higher-dimensional fractal sets. In the multifractal case, the critical exponents of the zeta function ζ(q, s) yield the usual multifractal spectrum of the measure. The presence of complex poles for ζ(q, s) indicates oscillations in the continuous partition function of the measure, and thus gives more refined information about the multifractal spectrum of a measure. In the case of a self-similar set in R n , the modified zeta function yields asymptotic information about both the 'box' counting function of the set and the n-dimensional volume of the ε-dilation of the set

  11. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality.

    Science.gov (United States)

    Thakur, Deepika; Jain, Ashay; Ghoshal, Gargi; Shivhare, U S; Katare, O P

    2017-07-01

    β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy.

  12. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  13. Zeta functions and regularized determinants related to the Selberg trace formula

    DEFF Research Database (Denmark)

    Momeni, Arash; Venkov, Alexei

    determinants of one dimensional Schroedinger operator for harmonic oscillator. We decompose the determinant of the automorphic Laplacian into a product of the determinants where each factor is a determinant representation of a zeta function related to Selberg's trace formula. Then we derive an identity...... connecting the determinants of the automorphic Laplacians on different Riemannian surfaces related to the arithmetical groups. Finally, by using the Jacquet-Langlands correspondence we connect the determinant of the automorphic Laplacian for the unit group of quaternions to the product of the determinants......For a general Fuchsian group of the first kind with an arbitrary unitary representation we define the zeta functions related to the contributions of the identity, hyperbolic, elliptic and parabolic conjugacy classes in Selberg's trace formula. We present Selberg's zeta function in terms...

  14. Status of the zeta(8.3)

    International Nuclear Information System (INIS)

    Lowe, S.T.

    1985-05-01

    Results are presented from 22.1 pb -1 of UPSILON(1S) data, taken with the Crystal Ball detector at DORIS. These data were taken to further explore the zeta(8.3) signal originally seen in 10.4 pb -1 of UPSILON(1S) data. No evidence for the zeta is observed in this new sample. Data quality checks and possible explanations are discussed

  15. Heat kernels and zeta functions on fractals

    International Nuclear Information System (INIS)

    Dunne, Gerald V

    2012-01-01

    On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  16. Lectures on the Riemann zeta function

    CERN Document Server

    Iwaniec, H

    2014-01-01

    The Riemann zeta function was introduced by L. Euler (1737) in connection with questions about the distribution of prime numbers. Later, B. Riemann (1859) derived deeper results about the prime numbers by considering the zeta function in the complex variable. The famous Riemann Hypothesis, asserting that all of the non-trivial zeros of zeta are on a critical line in the complex plane, is one of the most important unsolved problems in modern mathematics. The present book consists of two parts. The first part covers classical material about the zeros of the Riemann zeta function with applications to the distribution of prime numbers, including those made by Riemann himself, F. Carlson, and Hardy-Littlewood. The second part gives a complete presentation of Levinson's method for zeros on the critical line, which allows one to prove, in particular, that more than one-third of non-trivial zeros of zeta are on the critical line. This approach and some results concerning integrals of Dirichlet polynomials are new. Th...

  17. Trace maps for arbitrary substitution sequences

    International Nuclear Information System (INIS)

    Avishai, Y.

    1993-01-01

    The discovery of quasi-crystals and their 1-dimensional modeling have led to a deep mathematical study of Schroedinger operators with an arbitrary deterministic potential sequence. In this work we address this problem and find trace maps for an arbitrary substitution sequence. our trace maps have lower dimensionality than those of Kolar and Nori, which make them quite attractive for actual applications. (authors)

  18. Zeta function methods and quantum fluctuations

    International Nuclear Information System (INIS)

    Elizalde, Emilio

    2008-01-01

    A review of some recent advances in zeta function techniques is given, in problems of pure mathematical nature but also as applied to the computation of quantum vacuum fluctuations in different field theories, and specially with a view to cosmological applications

  19. 77 FR 72975 - Zeta Cypermethrin; Pesticide Tolerances

    Science.gov (United States)

    2012-12-07

    ... for quantifying risks, there is no increase in hazard with increasing dosing duration. Therefore, the... exposure models in the dietary exposure analysis and risk assessment for zeta-cypermethrin in drinking... the dietary exposure model. For acute dietary risk assessment, the water concentration value of 3.77...

  20. New inequalities for the Hurwitz zeta function

    Indian Academy of Sciences (India)

    We establish various new inequalities for the Hurwitz zeta function. Our results generalize some known results ... mention here two of them: The first is the evaluation by Kolbig [10] of integrals of the form. Rm(μ, υ) = ∫ ∞. 0 e. −μttυ−1 log m t dt,.

  1. Bernoulli Polynomials, Fourier Series and Zeta Numbers

    DEFF Research Database (Denmark)

    Scheufens, Ernst E

    2013-01-01

    Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...

  2. Euler Polynomials, Fourier Series and Zeta Numbers

    DEFF Research Database (Denmark)

    Scheufens, Ernst E

    2012-01-01

    Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....

  3. Fractal zeta functions and fractal drums higher-dimensional theory of complex dimensions

    CERN Document Server

    Lapidus, Michel L; Žubrinić, Darko

    2017-01-01

    This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the f...

  4. Fractal diffusion coefficient from dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

    2006-03-10

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  5. Fractal diffusion coefficient from dynamical zeta functions

    International Nuclear Information System (INIS)

    Cristadoro, Giampaolo

    2006-01-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  6. The design and performance of ZETA

    Energy Technology Data Exchange (ETDEWEB)

    Butt, E P; Carruthers, R; Mitchell, J T.D.; Pease, R S; Thonemann, P C [U.K. Atomic Energy Authority, AERE Harwell (United Kingdom); Bird, M A; Blears, J; Hartill, E R [Metropolitan Vickers Electrical Co. Ltd., Trafiord Park, Manchester 17 (United Kingdom)

    1958-07-01

    ZETA is an experimental apparatus for studying the pinched ring discharge as a possible method of producing controlled thermonuclear power. The principle of this method is that the self-magnetic field of the discharge current isolates the plasma from the walls of the discharge tube. The present paper reports the principal mechanical and electrical parameters, the performance as an electrical circuit, and our present knowledge of the physical characteristics of the plasma.

  7. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    1995-01-01

    Zeta-function regularization is a powerful method in perturbation theory. This book is meant as a guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice (e.g. Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking). The formulas some of which are new can be used for accurate numerical calculations. The book is to be considered as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice.

  8. Generalized Born-Oppenheimer treatment of Jahn-Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential.

    Science.gov (United States)

    Varandas, A J C; Sarkar, B

    2011-05-14

    Generalized Born-Oppenheimer equations including the geometrical phase effect are derived for three- and four-fold electronic manifolds in Jahn-Teller systems near the degeneracy seam. The method is readily extendable to N-fold systems of arbitrary dimension. An application is reported for a model threefold system, and the results are compared with Born-Oppenheimer (geometrical phase ignored), extended Born-Oppenheimer, and coupled three-state calculations. The theory shows unprecedented simplicity while depicting all features of more elaborated ones.

  9. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    2012-01-01

    Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, inclu...

  10. The multiple zeta value data mine

    Energy Technology Data Exchange (ETDEWEB)

    Buemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Broadhurst, D.J. [Open Univ., Milton Keynes (United Kingdom). Physics and Astronomy Dept.; Vermaseren, J.A.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); NIKHEF, Amsterdam (Netherlands)

    2009-07-15

    We provide a data mine of proven results for multiple zeta values (MZVs) of the form {zeta}(s{sub 1},s{sub 2},..,s{sub k}) = sum {sup {infinity}}{sub n{sub 1}}{sub >n{sub 2}}{sub >...>n{sub k}}{sub >0} {l_brace}1/(n{sub 1}{sup s{sub 1}}..n{sub k}{sup s{sub k}}){r_brace} with weight w = sum {sup K}{sub i=1}s{sub i} and depth k and for Euler sums of the form sum {sup {infinity}}{sub n{sub 1}}{sub >n{sub 2}}{sub >...>n{sub k}}{sub >0} {l_brace}({epsilon}{sub 1}{sup n{sub 1}}..{epsilon}{sub 1}{sup n{sub k}})/(n{sub 1}{sup s{sub 1}}..n{sub k}{sup s{sub k}}){r_brace} with signs {epsilon}{sub i} = {+-} 1. Notably, we achieve explicit proven reductions of all MZVs with weights w{<=}22, and all Euler sums with weights w{<=}12, to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst. Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights (w{<=}30), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the ''pushdown'' mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language FORM, will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of quantum field theory, and to mathematicians alike. (orig.)

  11. The multiple zeta value data mine

    International Nuclear Information System (INIS)

    Buemlein, J.; Broadhurst, D.J.

    2009-07-01

    We provide a data mine of proven results for multiple zeta values (MZVs) of the form ζ(s 1 ,s 2 ,..,s k ) = sum ∞ n 1 >n 2 >...>n k >0 {1/(n 1 s 1 ..n k s k )} with weight w = sum K i=1 s i and depth k and for Euler sums of the form sum ∞ n 1 >n 2 >...>n k >0 {(ε 1 n 1 ..ε 1 n k )/(n 1 s 1 ..n k s k )} with signs ε i = ± 1. Notably, we achieve explicit proven reductions of all MZVs with weights w≤22, and all Euler sums with weights w≤12, to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst. Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights (w≤30), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the ''pushdown'' mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language FORM, will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of quantum field theory, and to mathematicians alike. (orig.)

  12. Mayer Transfer Operator Approach to Selberg Zeta Function

    DEFF Research Database (Denmark)

    Momeni, Arash; Venkov, Alexei

    . In a special situation the dynamical zeta function is defined for a geodesic flow on a hyperbolic plane quotient by an arithmetic cofinite discrete group. More precisely, the flow is defined for the corresponding unit tangent bundle. It turns out that the Selberg zeta function for this group can be expressed...... in terms of a Fredholm determinant of a classical transfer operator of the flow. The transfer operator is defined in a certain space of holomorphic functions and its matrix representation in a natural basis is given in terms of the Riemann zeta function and the Euler gamma function....

  13. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    Science.gov (United States)

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  14. Algorithms for Some Euler-Type Identities for Multiple Zeta Values

    Directory of Open Access Journals (Sweden)

    Shifeng Ding

    2013-01-01

    Full Text Available Multiple zeta values are the numbers defined by the convergent series ζ(s1,s2,…,sk=∑n1>n2>⋯>nk>0(1/n1s1 n2s2⋯nksk, where s1, s2, …, sk are positive integers with s1>1. For k≤n, let E(2n,k be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n,2=3ζ(2n/4 was extended to E(2n,3 and E(2n,4 by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n,k and then gave a direct formula for E(2n,k for arbitrary k≤n. In this paper we apply a technique introduced by Granville to present an algorithm to calculate E(2n,k and prove that the direct formula can also be deduced from Eisenstein's double product.

  15. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  16. From Fourier Series to Rapidly Convergent Series for Zeta(3)

    DEFF Research Database (Denmark)

    Scheufens, Ernst E

    2011-01-01

    The article presents a mathematical study which investigates the exact values of the Riemann zeta (ζ) function. It states that exact values can be determined from Fourier series for periodic versions of even power functions. It notes that using power series for logarithmic functions on this such ......The article presents a mathematical study which investigates the exact values of the Riemann zeta (ζ) function. It states that exact values can be determined from Fourier series for periodic versions of even power functions. It notes that using power series for logarithmic functions...

  17. Crossing the entropy barrier of dynamical zeta functions

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

  18. Dynamical zeta functions for piecewise monotone maps of the interval

    CERN Document Server

    Ruelle, David

    2004-01-01

    Consider a space M, a map f:M\\to M, and a function g:M \\to {\\mathbb C}. The formal power series \\zeta (z) = \\exp \\sum ^\\infty _{m=1} \\frac {z^m}{m} \\sum _{x \\in \\mathrm {Fix}\\,f^m} \\prod ^{m-1}_{k=0} g (f^kx) yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval [0,1]. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of \\zeta (z) and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of (M,f,g).

  19. On calculation of zeta function of integral matrix

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří

    2009-01-01

    Roč. 134, č. 1 (2009), s. 49-58 ISSN 0862-7959 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : Epstein zeta function * integral lattice * Riemann theta function Subject RIV: BA - General Mathematics

  20. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  1. Zeta Functions, Renormalization Group Equations, and the Effective Action

    International Nuclear Information System (INIS)

    Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M.

    1998-01-01

    We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society

  2. Lecture notes: string theory and zeta-function

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: toppan@cbpf.br

    2001-11-01

    These lecture notes are based on a revised and LaTexed version of the Master thesis defended at ISAS. The research part being omitted, they included a review of the bosonic closed string a la Polyakov and of the one-loop background field method of quantisation defined through the zeta-function. In an appendix some basic features of the Riemann zeta-function are also reviewed. The pedagogical aspects of the material here presented are particularly emphasized. These notes are used, together with the Scherk's article in Rev. Mod. Phys. and the first volume of the Polchinski book, for the mini-course on String Theory (16-hours of lectures) held at CBPF. In this course the Green-Schwarz-Witten two-volumes book is also used for consultative purposes. (author)

  3. Relating zeta functions of discrete and quantum graphs

    Science.gov (United States)

    Harrison, Jonathan; Weyand, Tracy

    2018-02-01

    We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.

  4. Zeta functional equation on Jordan algebras of type II

    International Nuclear Information System (INIS)

    Kayoya, J.B.

    2003-10-01

    Using the Jordan algebras method, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of Type II. As particular cases of our result, we can cite the case of V M (n, R) studied by Gelbart and Godement-Jacquet, and the case of V Herm(3, O s ) studied by Muro. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one to one correspondence with simple Jordan algebras. The method used in this paper is a direct application of specific properties of Jordan algebras of Type H. (author)

  5. Potencial zeta de sulfatos de de bario y de estroncio

    OpenAIRE

    Delgado M., Edgar

    2010-01-01

    Por medio de la electroforesis se determinó las movilidades electroforéticas y los potenciales zeta del sulfato de bario a 25,0 °C como función de la fuerza iónica de NaCI, así como del Sulfato de estroncio en función de la fuerza iónica del cloruro de sodio y del pH. Se encontró que el amento de la fuerza iónica de NaCI causa un cambio del Potencial Zeta negativo del sulfato de estroncio a positivo con valor cero a aprox. 0,06 de fuerza iónica. El P.Z. del sulfato de estroncio es positivo...

  6. Multiple zeta values and application to the Lacunary recurrence formulas of Bernoulli numbers

    International Nuclear Information System (INIS)

    Chen, Y-H

    2008-01-01

    This paper obtains a recurrence related to multiple zeta function, which generalizes the Newton recurrence for multiple zeta values for period 1. Moreover, we obtain some new Lacunary recurrence formulas of Bernoulli numbers

  7. Evaluation of spectral zeta-functions with the renormalization group

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Li, Shanshan

    2017-01-01

    We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)

  8. A zeta function approach to the semiclassical quantization of maps

    International Nuclear Information System (INIS)

    Smilansky, Uzi.

    1993-11-01

    The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)

  9. Justification of the zeta-function renormalization in rigid string model

    International Nuclear Information System (INIS)

    Nesterenko, V.V.; Pirozhenko, I.G.

    1997-01-01

    A consistent procedure for regularization of divergences and for the subsequent renormalization of the string tension is proposed in the framework of the one-loop calculation of the interquark potential generated by the Polyakov-Kleinert string. In this way, a justification of the formal treatment of divergences by analytic continuation of the Riemann and Epstein-Hurwitz zeta-functions is given. A spectral representation for the renormalized string energy at zero temperature is derived, which enables one to find the Casimir energy in this string model at nonzero temperature very easy

  10. Functional equation for the Mordell-Tornheim multiple zeta-function

    OpenAIRE

    Okamoto, Takuya; Onozuka, Tomokazu

    2016-01-01

    We show a relation between the Mordell-Tornheim multiple zeta-function and the confluent hypergeometric function, and using it, we give the functional equation for the Mordell-Tornheim multiple zeta-function. In the double case, the functional equation includes the known functional equation for the Euler-Zagier double zeta-function.

  11. Generation of arbitrary vector beams

    Science.gov (United States)

    Perez-Garcia, Benjamin; López-Mariscal, Carlos; Hernandez-Aranda, Raul I.; Gutiérrez-Vega, Julio C.

    2017-08-01

    Optical vector beams arise from point to point spatial variations of the electric component of an electromagnetic field over the transverse plane. In this work, we present a novel experimental technique to generate arbitrary vec- tor beams, and provide sufficient evidence to validate their state of polarization. This technique takes advantage of the capability of a Spatial Light Modulator to simultaneously generate two components of an electromagnetic field by halving the screen of the device and subsequently recombining them in a Sagnac interferometer. Our experimental results show the versatility and robustness of this technique for the generation of vector beams.

  12. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  13. The semi-simple zeta function of quaternionic Shimura varieties

    CERN Document Server

    Reimann, Harry

    1997-01-01

    This monograph is concerned with the Shimura variety attached to a quaternion algebra over a totally real number field. For any place of good (or moderately bad) reduction, the corresponding (semi-simple) local zeta function is expressed in terms of (semi-simple) local L-functions attached to automorphic representations. In an appendix a conjecture of Langlands and Rapoport on the reduction of a Shimura variety in a very general case is restated in a slightly stronger form. The reader is expected to be familiar with the basic concepts of algebraic geometry, algebraic number theory and the theory of automorphic representation.

  14. The Riemann zeta-function theory and applications

    CERN Document Server

    Ivic, Aleksandar

    2003-01-01

    ""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim

  15. Exploring the Riemann zeta function 190 years from Riemann's birth

    CERN Document Server

    Nikeghbali, Ashkan; Rassias, Michael

    2017-01-01

    This book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography.

  16. The Stokes phenomenon and the Lerch zeta function

    Directory of Open Access Journals (Sweden)

    R. B. Paris

    2016-05-01

    Full Text Available We examine the exponentially improved asymptotic expansion of the Lerch zeta function $L(\\lambda,a,s=\\sum_{n=0}^\\infty \\exp (2\\pi ni\\lambda/(n+a^s$ for large complex values of $a$, with $\\lambda$ and $s$ regarded as parameters. It is shown that an infinite number of subdominant exponential terms switch on across the Stokes lines $\\arg\\,a=\\pm\\fs\\pi$. In addition, it is found that the transition across the upper and lower imaginary $a$-axes is associated, in general, with unequal scales. Numerical calculations are presented to confirm the theoretical predictions.

  17. Fluctuations of quantum fields via zeta function regularization

    International Nuclear Information System (INIS)

    Cognola, Guido; Zerbini, Sergio; Elizalde, Emilio

    2002-01-01

    Explicit expressions for the expectation values and the variances of some observables, which are bilinear quantities in the quantum fields on a D-dimensional manifold, are derived making use of zeta function regularization. It is found that the variance, related to the second functional variation of the effective action, requires a further regularization and that the relative regularized variance turns out to be 2/N, where N is the number of the fields, thus being independent of the dimension D. Some illustrating examples are worked through. The issue of the stress tensor is also briefly addressed

  18. Introduction of an Elementary Method to Express $\\zeta(2n+1)$ in Terms of $\\zeta(2k)$ with $k\\geq 1$

    OpenAIRE

    Fujii, Kazuyuki; Suzuki, Tatsuo

    2008-01-01

    In this note we give the most elementary method (as far as we know) to express $\\zeta(2n+1)$ in terms of $\\{\\zeta(2k)|k\\geq 1\\}$. The method is based on only some elementary works by Leonhard Euler, so it is very instructive to non-experts or students.

  19. Potencial zeta de sulfatos de de bario y de estroncio

    Directory of Open Access Journals (Sweden)

    Edgar Delgado M.

    2010-06-01

    Full Text Available Por medio de la electroforesis se determinó las movilidades electroforéticas y los potenciales zeta del sulfato de bario a 25,0 °C como función de la fuerza iónica de NaCI, así como del Sulfato de estroncio en función de la fuerza iónica del cloruro de sodio y del pH. Se encontró que el amento de la fuerza iónica de NaCI causa un cambio del Potencial Zeta negativo del sulfato de estroncio a positivo con valor cero a aprox. 0,06 de fuerza iónica. El P.Z. del sulfato de estroncio es positivo a pH inferiores a aprox. 2,5 y negativo a pH superiores. El sulfato de bario presenta P.Z. negativas a fuerza iónicas de NaCI inferiores a aprox. 0.06 y PZ positivos a fuerzas iónicas mayores

  20. Minority game with arbitrary cutoffs

    Science.gov (United States)

    Johnson, N. F.; Hui, P. M.; Zheng, Dafang; Tai, C. W.

    1999-07-01

    We study a model of a competing population of N adaptive agents, with similar capabilities, repeatedly deciding whether to attend a bar with an arbitrary cutoff L. Decisions are based upon past outcomes. The agents are only told whether the actual attendance is above or below L. For L∼ N/2, the game reproduces the main features of Challet and Zhang's minority game. As L is lowered, however, the mean attendances in different runs tend to divide into two groups. The corresponding standard deviations for these two groups are very different. This grouping effect results from the dynamical feedback governing the game's time-evolution, and is not reproduced if the agents are fed a random history.

  1. Arbitrary Inequality in Reputation Systems

    Science.gov (United States)

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  2. Hose instability at arbitrary conductivity

    International Nuclear Information System (INIS)

    Lee, E.P.

    1975-01-01

    A model is developed for studying the dynamics of a low-current, highly relativistic beam propagating in a conducting medium. Here the conductivity (sigma) is of arbitrary magnitude, the usual assumption being that the scale beam radius (a) is small compared with the magnetic skin length (4 π sigma a 2 /c). A dispersion formula for the hose instability is derived for the case of uniform sigma and Bennett current profile J/sub b/(r) varies as (a 2 + r 2 ) -2 . The peak growth rate at fixed laboratory position, maximized with respect to sigma as well as driver frequency, is approximately 0.465 c/a. This growth rate is realized when 4 π sigma a/c = √12/5. (U.S.)

  3. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    Science.gov (United States)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; hide

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions

  4. ABJM Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  5. ABJM Wilson loops in arbitrary representations

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-06-01

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  6. On Montgomery's pair correlation conjecture to the zeros of Riedmann zeta function

    OpenAIRE

    Li, Pei

    2005-01-01

    In this thesis, we are interested in Montgomery's pair correlation conjecture which is about the distribution of.the spacings between consecutive zeros of the Riemann Zeta function. Our goal is to explain and study Montgomery's pair correlation conjecture and discuss its connection with the random matrix theory. In Chapter One, we will explain how to define the Ftiemann Zeta function by using the analytic continuation. After this, several classical properties of the Ftiemann Zeta function wil...

  7. A Possible Massive Asteroid Belt Around $\\zeta$ Lep

    CERN Document Server

    Chen Chuan Hung

    2001-01-01

    We have used the Keck I telescope to image at 11.7 microns and 17.9 microns the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from the Sun with an infrared excess. The excess is at most marginally resolved at 17.9 microns. The dust distance from the star is probably less than or equal to 6 AU, although some dust may extend to 9 AU. The mass of observed dust is \\~10^22 g. Since the lifetime of dust particles is about 10,000 years because of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ~300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system.

  8. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

    Directory of Open Access Journals (Sweden)

    Floyd L.Williams

    2015-07-01

    Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

  9. Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions

    International Nuclear Information System (INIS)

    Rudaz, S.

    1990-01-01

    Asymptotic series for the Hurwitz zeta function, its derivative, and related functions (including the Riemann zeta function of odd integer argument) are derived as an illustration of a simple, direct method of broad applicability, inspired by the calculus of finite differences

  10. Generalized Riemann zeta-function regularization and Casimir energy for a piecewise uniform string

    International Nuclear Information System (INIS)

    Li Xinzhou; Shi Xin; Zhang Jianzu.

    1990-12-01

    The generalized zeta-function techniques will be utilized to investigate the Casimir energy for the transverse oscillations of a piecewise uniform closed string. We find that zeta-function regularization method can lead straightforwardly to a correct result. (author). 6 refs

  11. Detection of interstellar (C-13)N toward Zeta Ophiuchi

    International Nuclear Information System (INIS)

    Crane, P.; Hegyi, D.J.

    1988-01-01

    Observations of a diffuse interstellar cloud toward Zeta Oph, obtained with resolution 100,000-150,000 near the 3874.608-A R(0) line of (C-12)N using a coude echelle spectrograph on the 1.4-m telescope at ESO during 1984 and 1985, are reported. Data from 54 20-min runs were fitted to Gaussian line shapes using the line center, depth, and width of the R(0) and R(1) lines of (C-12)N and the line center and depth of the R(0) line of (C-13)N as fitting parameters. The (C-13)N R(0) line, with equivalent width 0.190 + or - 0.020 mA, was detected 173.7 + or - 0.8 mA to the red of (C-12)N R(0); the corresponding isotope abundance ratio, (C-12)N/(C-13)N = 47.3 + 5.5 or -4.4, is shown to be in good agreement with previous measurements for CH(+) (Hawkins et al., 1985). 13 references

  12. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  13. Matrix superpotentials and superintegrable systems for arbitrary spin

    International Nuclear Information System (INIS)

    Nikitin, A G

    2012-01-01

    A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202). (paper)

  14. On the $a$-points of the derivatives of the Riemann zeta function

    OpenAIRE

    Onozuka, Tomokazu

    2016-01-01

    We prove three results on the $a$-points of the derivatives of the Riemann zeta function. The first result is a formula of the Riemann-von Mangoldt type; we estimate the number of the $a$-points of the derivatives of the Riemann zeta function. The second result is on certain exponential sum involving $a$-points. The third result is an analogue of the zero density theorem. We count the $a$-points of the derivatives of the Riemann zeta function in $1/2-(\\log\\log T)^2/\\log T

  15. Acoustic invisibility cloaks of arbitrary shapes for complex background media

    Science.gov (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2016-04-01

    We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.

  16. Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2012-06-01

    Full Text Available We study boundary value problems of nonlinear fractional differential equations and inclusions of order $q in (m-1, m]$, $m ge 2$ with multi-strip boundary conditions. Multi-strip boundary conditions may be regarded as the generalization of multi-point boundary conditions. Our problem is new in the sense that we consider a nonlocal strip condition of the form: $$ x(1=sum_{i=1}^{n-2}alpha_i int^{eta_i}_{zeta_i} x(sds, $$ which can be viewed as an extension of a multi-point nonlocal boundary condition: $$ x(1=sum_{i=1}^{n-2}alpha_i x(eta_i. $$ In fact, the strip condition corresponds to a continuous distribution of the values of the unknown function on arbitrary finite segments $(zeta_i,eta_i$ of the interval $[0,1]$ and the effect of these strips is accumulated at $x=1$. Such problems occur in the applied fields such as wave propagation and geophysics. Some new existence and uniqueness results are obtained by using a variety of fixed point theorems. Some illustrative examples are also discussed.

  17. Instabilities of the zeta-function regularization in the presence of symmetries

    International Nuclear Information System (INIS)

    Rasetti, M.

    1980-01-01

    The zeta-function regularization method requires the calculation of the spectrum-generating function zeta sub(M) of a generic real, elliptic, self-adjoint differential operator on a manifold M. An asymptotic expansion for zeta sub(M) is given for the class of all symmetric spaces of rank 1, sufficient to compute its Mellin transform and deduce the regularization of the corresponding quadratic path integrals. The summability properties of the generalized zeta-function introduce physical instabilities in the system as negative specific heat. The technique (and the instability as well) is shown to hold - under the assumed symmetry properties - in any dimension (preserving both the global and local properties of the manifold, as opposed to the dimensional regularization, where one adds extra flat dimensions only). (author)

  18. Engineering arbitrary pure and mixed quantum states

    International Nuclear Information System (INIS)

    Pechen, Alexander

    2011-01-01

    Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

  19. Zeta function of self-adjoint operators on surfaces of revolution

    International Nuclear Information System (INIS)

    Lu, Tianshi; Jeffres, Thalia; Kirsten, Klaus

    2015-01-01

    In this article we analyze the zeta function for the Laplace operator on a surface of revolution. A variety of boundary conditions, separated and unseparated, are considered. Formulas for several residues and values of the zeta function as well as for the determinant of the Laplacian are obtained. The analysis is based upon contour integration techniques in combination with a WKB analysis of solutions of related initial value problems. (paper)

  20. Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions

    OpenAIRE

    Biane, P.; Pitman, J.; Yor, M.

    1999-01-01

    This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.

  1. Kosovo case: A unique arbitrariness

    Directory of Open Access Journals (Sweden)

    Nakarada Radmila

    2007-01-01

    Full Text Available The end of Cold war, contrary to expectations has brought new conflicts and forms of violence, new divisions and new relativizations of the international legal order. Taking as an example the endeavors to resolve the Kosovo conflict, the author attempts to indicate the broader implications of the international efforts to constitute an independent state on part of the territory of an existing sovereign state. The arguments used to justify the redefinition of the borders of the Serbian state without its consent, the moral, democratic, peace arguments, are reviewed. Particular attention is paid to the argument that Kosovo is a unique case and therefore unique rules should be applied. The author seeks to understand the deeper significance of these efforts, concluding that dismantling the present international legal order is not only a potential danger but a possible aim.

  2. Automatic Shape Control of Triangular B-Splines of Arbitrary Topology

    Institute of Scientific and Technical Information of China (English)

    Ying He; Xian-Feng Gu; Hong Qin

    2006-01-01

    Triangular B-splines are powerful and flexible in modeling a broader class of geometric objects defined over arbitrary, non-rectangular domains. Despite their great potential and advantages in theory, practical techniques and computational tools with triangular B-splines are less-developed. This is mainly because users have to handle a large number of irregularly distributed control points over arbitrary triangulation. In this paper, an automatic and efficient method is proposed to generate visually pleasing, high-quality triangular B-splines of arbitrary topology. The experimental results on several real datasets show that triangular B-splines are powerful and effective in both theory and practice.

  3. Monadic Maps and Folds for Arbitrary Datatypes

    NARCIS (Netherlands)

    Fokkinga, M.M.

    Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting

  4. Factoring polynomials over arbitrary finite fields

    NARCIS (Netherlands)

    Lange, T.; Winterhof, A.

    2000-01-01

    We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of

  5. Accelerating flight: Edge with arbitrary acceleration

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2011-11-01

    Full Text Available This study concludes the possession of a theoretical framework for arbitrary manoeuvre which allows us to keep an eye on transformations. In the theory, relative frame equations are useful in guiding us in what to look for. The code...

  6. Composition dependence of the thermodynamic activity and lattice parameter of zeta nickel-indium

    International Nuclear Information System (INIS)

    Bhattacharya, B.; Masson, D.B.

    1976-01-01

    The vapor pressure of indium over six alloys in the zeta phase of the nickel-indium system was measured by the method of atomic absorption. Values of thermodynamic activity were calculated from the vapor pressure, and partial heat and entropy of indium were calculated from the temperature coefficients. The lattice parameters of the hexagonal B8 2 unit cell of all alloys were calculated from X-ray diffraction powder patterns. It was found that the a lattice parameter passed through a minimum at the same composition that the excess chemical potential showed a sharp change of slope, when graphed as a function of composition. These effects were similar to those observed previously which have been attributed to overlap by the Fermi surface of a Brillouin zone face. In the present case they were attributed to overlap of the Fermi surface across faces tentatively identified as the [110] faces of the Brillouin zone of the B8 2 structure. The influence of substitutional disorder was also considered as a cause of the thermodynamic effects, but this was rejected because it does not explain the minimum in lattice parameter. (Auth.)

  7. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  8. PAN AIR - A Computer Program for Predicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations Using a Higher Order Panel Method. Volume I. Theory Document (Version 1.0)

    Science.gov (United States)

    1980-04-15

    1.4.104) C Second, using intergration by parts (with all subscripts modulo 3):ij+2M NN N f M (CM-1) nj(C)N d( (Cj+2)M(nj+2) - (Cj+I)M (nj+l)N (j+1 - +2 (CM...the horizontal line, the potential approaches values 0 and 0’ on the two exterior surfaces. But as the surface and its image approach each other, the

  9. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  10. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  11. Active Learning Using Arbitrary Binary Valued Queries

    Science.gov (United States)

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  12. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  13. Zeta functions for the spectrum of the non-commutative harmonic oscillators

    CERN Document Server

    Ichinose, T

    2004-01-01

    This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at $s=1$, and further that it has a zero at all non-positive even integers, i.e. at $s=0$ and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.

  14. Selberg zeta functions and transfer operators an experimental approach to singular perturbations

    CERN Document Server

    Fraczek, Markus Szymon

    2017-01-01

    This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac...

  15. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    Science.gov (United States)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  16. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  17. Effective action for scalar fields and generalized zeta-function regularization

    International Nuclear Information System (INIS)

    Cognola, Guido; Zerbini, Sergio

    2004-01-01

    Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effective action for a scalar field defined in the ultrastatic manifold RxH 3 /Γ, H 3 /Γ being the finite volume, noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormalization group equations are derived

  18. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK{zeta} by attenuating its association with importins

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Masashi; Hozumi, Yasukazu [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Ichimura, Tohru [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Tanaka, Toshiaki; Hasegawa, Hiroshi; Yamamoto, Masakazu; Takahashi, Nobuya [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Iseki, Ken [Department of Emergency and Critical Care Medicine, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Yagisawa, Hitoshi [Laboratory of Biological Signaling, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297 (Japan); Shinkawa, Takashi; Isobe, Toshiaki [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Goto, Kaoru, E-mail: kgoto@med.id.yamagata-u.ac.jp [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan)

    2011-12-10

    Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGK{zeta}, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGK{zeta}. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGK{zeta} binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGK{zeta} and NAP1Ls prohibits nuclear import of DGK{zeta} because binding of NAP1Ls to DGK{zeta} blocks import carrier proteins, Qip1 and NPI1, to interact with DGK{zeta}, leading to cytoplasmic tethering of DGK{zeta}. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGK{zeta} and provide a clue to examine functional significance of its translocation under pathological conditions.

  19. Zeros da função zeta de Riemann e o teorema dos números primos

    OpenAIRE

    Oliveira, Willian Diego [UNESP

    2013-01-01

    We studied various properties of the Riemann’s zeta function. Three proofs of the Prime Number Theorem were provides. Classical results on zero-free region of the zeta function, as well as their relation to the error term in the Prime Number Theorem, were studied in details Estudamos várias propriedades da função zeta de Riemann. Três provas do Teorema dos Números Primos foram fornecidas. Resultados clássicos sobre regiões livres de zeros da função zeta, bem como sua relação com o termo do...

  20. Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    International Nuclear Information System (INIS)

    Warnock, R

    2004-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch

  1. Relationship between phospholipase C-zeta, semen parameters, and chromatin status.

    Science.gov (United States)

    Tavalaee, Marziyeh; Kiani-Esfahani, Abbas; Nasr-Esfahani, Mohammad H

    2017-08-01

    The need for additional tests to complement basic sperm analysis in clinics is well appreciated. In this regard, a number of tests such as sperm DNA integrity test as a tool in diagnosis and treatment of infertility are suggested. But recent studies have focused on main sperm factors involved in oocyte activation such as phospholipase C-zeta (PLCζ) that initiate intracellular Ca 2+ signaling and embryogenesis. Therefore, this study aimed to investigate the relationship between PLCζ, basic semen parameters, sperm DNA fragmentation (SDF), and protamine deficiency in men with normal (n=32) and abnormal (n=23) semen parameters. Unlike SDF and protamine deficiency, as negative factors related to fertility, the mean value of PLCζ as positive factor related to infertility was significantly lower in men with abnormal semen parameters compared to men with normal semen parameters. Significant correlations were also observed between sperm concentration, motility, and abnormal morphology with the percentage of PLCζ positive spermatozoa. In addition, logistic regression analysis revealed that sperm morphology is more predictive than sperm motility and concentration for PLCζ presence. In addition, a statistically significant negative relationship was observed between the percentage of PLCζ positive spermatozoa and SDF. These findings suggested during ICSI, selection of sperm based on morphology has a profound effect on its ability to induce oocyte activation based on the likelihood of PLCζ expression. Therefore, assessment of PLCζ as an index for fertilization potential of a semen sample in men with severe teratozoospermia may define individuals who are candidates for artificial oocyte activation (AOA) and may avoid failed fertilization post ICSI.

  2. Clausius entropy for arbitrary bifurcate null surfaces

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2014-01-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)

  3. Broadway teatrites näeb Denzel Washingtoni ja Catherine Zeta-Jonesi / Andres Laasik

    Index Scriptorium Estoniae

    Laasik, Andres, 1960-2016

    2010-01-01

    New Yorgis välja antud Tony teatriauhinna pälvisid filminäitlejad Denzel Washington, Catherine Zeta-Jones ja Scarlett Johansson. Parim lavale naasnud näidend - "Piirdeaed", parim uus näidend - draama "Punane", mis räägib läti päritolu maalikunstnikust Mark Rothkost. Parim muusikal - "Memphis"

  4. Certain Subclasses of Analytic and Bi-Univalent Functions Involving Double Zeta Functions

    OpenAIRE

    Siregar, Saibah; Raman, Sintuja

    2012-01-01

    In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double zeta functions in the open unit disc U={z:zEC, |z|<1}. The estimates on the coefficients |a2| and |a3| for functions in these new subclasses of the function class Σ are obtained in our investigation.

  5. "Armastuse retsepti" tippkokk Zeta Jones ei oska muna keeta / Triin Tael

    Index Scriptorium Estoniae

    Tael, Triin

    2007-01-01

    Scott Hicksi romantiline komöödiafilm "Armastuse retsept" ("No Reservations"), mille peaosas Walesist pärit näitlejanna Catherine Zeta Jones. Näitlejanna muljeid oma rolliks ettevalmistustest, mille hulka käis ka praktika pärisrestoranis

  6. Boundary Conditions for the Maintenance of Memory by PKM[zeta] in Neocortex

    Science.gov (United States)

    Shema, Reul; Hazvi, Shoshi; Sacktor, Todd C.; Dudai, Yadin

    2009-01-01

    We report here that ZIP, a selective inhibitor of the atypical protein kinase C isoform PKM[zeta], abolishes very long-term conditioned taste aversion (CTA) associations in the insular cortex of the behaving rat, at least 3 mo after encoding. The effect of ZIP is not replicated by a general serine/threonine protein kinase inhibitor that is…

  7. Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian

    Science.gov (United States)

    Bender, Carl M.; Brody, Dorje C.

    2018-04-01

    The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.

  8. Critical dimension of bosonic string theory and zeta-function regularization

    International Nuclear Information System (INIS)

    Vanzo, L.; Zerbini, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1988-01-01

    A derivation of the critical dimension of the Polyakov bosonic string is presented. It is based on the use of the anholonomic formalism, a ghost-anti-ghost symmetric action, zeta-function regularization and the Seeley method of pseudo-differential operators. (orig.)

  9. Microwave power divider with arbitrary distribution ratio

    International Nuclear Information System (INIS)

    Gu Pengda; Geng Zheqiao; Cui Yanyan; Syratchev, I.

    2004-01-01

    As is well known, the EM field of TE11 mode at the wall of the circular waveguide changes as sine (or cosine) function azimuthally. So when we attach two perpendicular waveguides to the wall of the circular waveguide and rotate them around the axis of the waveguide, authors can distribute the input power between the two waveguides with arbitrary distribution proportion. The authors have designed a new power divider following this idea. The 3D electromagnetic simulation software HFSS is used in the design. And a new type circular TE11 mode launcher is developed. (author)

  10. Wigner Functions for Arbitrary Quantum Systems.

    Science.gov (United States)

    Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae

    2016-10-28

    The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.

  11. Path integrals for arbitrary canonical transformations

    International Nuclear Information System (INIS)

    Oliveira, L.A.R. de.

    1980-01-01

    Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt

  12. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  13. Fabrication of longitudinally arbitrary shaped fiber tapers

    Science.gov (United States)

    Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2018-02-01

    We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.

  14. Adding control to arbitrary unknown quantum operations

    Science.gov (United States)

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  15. Integrated module inverter using a zeta DC-DC converter with feedforward MPPT (Maximum Power Point Tracking) control; Inversor modulo integrado utilizando um conversor CC-CC zeta com controle MPPT feedforward

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Henrique Fioravanti Miguel

    2009-08-15

    This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author)

  16. The interaction between saliva and Actinobacillus actinomycetemcomitans influenced by the Zeta potential

    NARCIS (Netherlands)

    Groenink, J; Veerman, ECI; Zandvoort, MS; van der Mei, HC; Busscher, HJ; Amerongen, AVN

    The adhesion of Actinobacillus actinomycetemcomitans is a virulence factor in the aetiology of periodontitis and is determined by physico-chemical properties, e.g. surface charge and hydrophobicity, of the bacterial cell surface. Although oral surfaces are constantly coated with saliva, few studies

  17. The Sugawara generators at arbitrary level

    International Nuclear Information System (INIS)

    Gebert, R.W.; Koepsell, K.; Nicolai, H.

    1996-04-01

    We construct an explicit representation of the Sugawara generators for arbitrary level in terms of the homogeneous Heisenberg subalgebra, which generalizes the well-known expression at level 1. This is achieved by employing a physical vertex operator realization of the affine algebra at arbitrary level, in contrast to the Frenkel-Kac-Segal construction which uses unphysical oscillators and is restricted to level 1. At higher level, the new operators are transcendental functions of DDF oscillators unlike the quadratic expressions for the level-1 generators. An essential new feature of our construction is the appearance, beyond level 1, of new types of poles in the operator product expansions in addition to the ones at coincident points, which entail (controllable) non-localities in our formulas. We demonstrate the utility of the new formalism by explicitly working out some higher-level examples. Our results have important implications for the problem of constructing explicit representations for higher-level root spaces of hyperbolic Kac-Moody algebras, and E 10 in particular. (orig.)

  18. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  19. Special values of the spectral zeta function of the non-commutative harmonic oscillator and confluent Heun equations

    CERN Document Server

    Ichinose, T

    2004-01-01

    We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\

  20. A pulse generator of arbitrary shaped waveform

    International Nuclear Information System (INIS)

    Jiang Jiayou; Chen Zhihao

    2011-01-01

    The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)

  1. Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2010-06-01

    Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.

  2. 4d fermionic superstrings with arbitrary twists

    International Nuclear Information System (INIS)

    Antoniadis, I.; Bachas, C.

    1988-01-01

    We present the rules for systematically constructing all consistent four-dimensional string theories, using free world-sheet fermions which pick up arbitrary phases when parallel transported around the string. These rules are necessary and sufficient for multi-loop modular invariance. They lead to theories with general Z N (GSO-type) projections, whose merits for model-building we discuss. We classify all boundary conditions yielding massless space-time spinors. We show that, in contrast to the case of only real 2d fermions, all possible realizations of world-sheet supersymmetry are now allowed. This opens the way for the construction of a new class of supersymmetric string models. (orig.)

  3. Arbitrary spin fermions on the lattice

    International Nuclear Information System (INIS)

    Bullinaria, J.A.

    1985-01-01

    Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out

  4. Perceptually stable regions for arbitrary polygons.

    Science.gov (United States)

    Rocha, J

    2003-01-01

    Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

  5. Ionization waves of arbitrary velocity driven by a flying focus

    Science.gov (United States)

    Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.

  6. Modelling magnetic laminations under arbitrary starting state and flux waveform

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Ragusa, Carlo

    2005-01-01

    A numerical model able to predict the behaviour of a magnetic sheet under arbitrary supply conditions has been developed. The electromagnetic field problem is formulated in terms of an electric vector potential, which provides the magnetic field strength evolution. The hysteretic behaviour of the material is represented through the dynamic Preisach model where the activation law of the bi-state operators is modified in order to guarantee a smooth response. The problem has been solved through a time step procedure using the fixed Point technique for handling nonlinearity. The model has been validated by comparison with suitable experiments and it is applied to the investigation of the influence of the materials' starting state on the magnetic behaviour

  7. Compound words prompt arbitrary semantic associations in conceptual memory

    Directory of Open Access Journals (Sweden)

    Bastien eBoutonnet

    2014-03-01

    Full Text Available Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse – sea reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language.

  8. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)

    Energy Technology Data Exchange (ETDEWEB)

    Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)

    2015-12-15

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.

  9. Averages of ratios of the Riemann zeta-function and correlations of divisor sums

    Science.gov (United States)

    Conrey, Brian; Keating, Jonathan P.

    2017-10-01

    Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios.

  10. Resonance chains in open systems, generalized zeta functions and clustering of the length spectrum

    International Nuclear Information System (INIS)

    Barkhofen, S; Faure, F; Weich, T

    2014-01-01

    In many non-integrable open systems in physics and mathematics, resonances have been found to be surprisingly ordered along curved lines in the complex plane. In this article we provide a unifying approach to these resonance chains by generalizing dynamical zeta functions. By means of a detailed numerical study we show that these generalized zeta functions explain the mechanism that creates the chains of quantum resonance and classical Ruelle resonances for three-disk systems as well as geometric resonances on Schottky surfaces. We also present a direct system-intrinsic definition of the continuous lines on which the resonances are strung together as a projection of an analytic variety. Additionally, this approach shows that the existence of resonance chains is directly related to a clustering of the classical length spectrum on multiples of a base length. Finally, this link is used to construct new examples where several different structures of resonance chains coexist. (paper)

  11. Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)

    International Nuclear Information System (INIS)

    Matassa, Marco

    2015-01-01

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension

  12. Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.

    1991-01-01

    The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs

  13. An Arbitrary Benchmark CAPM: One Additional Frontier Portfolio is Sufficient

    OpenAIRE

    Ekern, Steinar

    2008-01-01

    First draft: July 16, 2008 This version: October 7, 2008 The benchmark CAPM linearly relates the expected returns on an arbitrary asset, an arbitrary benchmark portfolio, and an arbitrary MV frontier portfolio. The benchmark is not required to be on the frontier and may be non-perfectly correlated with the frontier portfolio. The benchmark CAPM extends and generalizes previous CAPM formulations, including the zero beta, two correlated frontier portfolios, riskless augmented frontier, an...

  14. Projection operator and propagator for an arbitrary integral spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced

  15. Unusual poles of the {zeta}-functions for some regular singular differential operators

    Energy Technology Data Exchange (ETDEWEB)

    Falomir, H [IFLP, Departamento de Fisica-Facultad de Ciencias Exactas, UNLP, CC 67 (1900) La Plata (Argentina); Muschietti, M A [Departamento de Matematica-Facultad de Ciencias Exactas, UNLP, CC 172 (1900) La Plata (Argentina); Pisani, P A G [IFLP, Departamento de Fisica-Facultad de Ciencias Exactas, UNLP, CC 67 (1900) La Plata (Argentina); Seeley, R [University of Massachusetts at Boston, Boston, MA 02125 (United States)

    2003-10-03

    We consider the resolvent of a system of first-order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of {lambda} which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding {zeta}- and {eta}-functions are also discussed.

  16. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  17. Arbitrariness of geometry and the aether

    International Nuclear Information System (INIS)

    Browne, P.F.

    1976-01-01

    As emphasized by Milne, an observer ultimately depends on the transmission and reception of light signals for the measurement of natural lengths and periods remote from his world point. The laws of geometry which are obeyed when these lengths and periods are plotted on a space--time depend, inevitably, on assumptions concerning the dependence of light velocity on the spatial and temporal coordinates. A convention regarding light velocity fixes the geometry, and conversely. However, the convention of flat space--time implies nonintegrable ''radar distances'' unless the concept of coordinate-dependent units of measure is employed. Einstein's space--time has the advantage of admitting a special reference system R with respect to which the aether fluid is at rest and the total gravitational field vanishes. A holonomic transformation from R to another reference system R belonging to the same space--time introduces a nonpermanent gravitational field and holonomic aether motion. A nonholonomic transformation from R to a reference system R* which belongs to a different space--time introduces a permanent gravitational field and nonholonomic aether motion. The arbitrariness of geometry is expressed by extending covariance to include the latter transformation. By means of a nonholonomic (or units) transformation it is possible, with the aid of the principle of equivalence, to obtain the Schwarzschild and de Sitter metrics from the Newtonian fields that would arise in a flat space--time description. Some light is thrown on the interpretation of cosmological models

  18. Electron plasma oscillations at arbitrary Debye lengths

    International Nuclear Information System (INIS)

    Lehnert, B.

    1990-12-01

    A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λ D and the perturbation wave length λ. The limit λ D D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λ D > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)

  19. A sheath model for arbitrary radiofrequency waveforms

    Science.gov (United States)

    Turner, M. M.; Chabert, Pascal

    2012-10-01

    The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.

  20. Heterotic string in an arbitrary background field

    International Nuclear Information System (INIS)

    Sen, A.

    1985-01-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N = 1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N = 1 supersymmetric nonlinear and N = 2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories

  1. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  2. A generalized transformation to convert an arbitrary perfect electric conductor into another arbitrary dielectric object

    International Nuclear Information System (INIS)

    Huang Lujun; Zhou Daming; Wang Jian; Li Guanhai; Li Zhifeng; Chen Xiaoshuang; Lu Wei

    2011-01-01

    A generalized transformation is proposed to design an illusion device. The device can reshape an arbitrarily shaped perfect electrical conductor (PEC) into another dielectric object with arbitrary geometry. Such a device can evolve into an ideal invisibility cloak with non-conformal boundaries if the virtual space is filled with air. Furthermore, the validity of our proposed transformation is confirmed by two specific devices. One is to convert a regular polygonal PEC cylinder into a circular dielectric cylinder. Another one is to reshape a circular PEC cylinder into a regular polygonal dielectric cylinder.

  3. Statistical properties of the zeros of zeta functions - beyond the Riemann case

    International Nuclear Information System (INIS)

    Bogomolny, E.; Leboeuf, P.

    1993-09-01

    The statistical distribution of the zeros of Dirichlet L-functions is investigated both analytically and numerically. Using the Hardy-Littlewood conjecture about the distribution of primes it is shown that the two-point correlation function of these zeros coincides with that for eigenvalues of the Gaussian unitary ensemble of random matrices, and that the distributions of zeros of different L-functions are statistically independent. Applications of these results to Epstein's zeta functions are shortly discussed. (authors) 30 refs., 3 figs., 1 tab

  4. Fractional parts and their relations to the values of the Riemann zeta function

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-09-06

    A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem.

  5. On the irrationality measure for a q-analogue of \\zeta(2)

    Science.gov (United States)

    Zudilin, W. V.

    2002-08-01

    A Liouville-type estimate is proved for the irrationality measure of the quantities \\displaystyle \\zeta_q(2)=\\sum_{n=1}^\\infty\\frac{q^n}{(1-q^n)^2}with q^{-1}\\in\\mathbb Z\\setminus\\{0,\\pm1\\}. The proof is based on the application of a q-analogue of the arithmetic method developed by Chudnovsky, Rukhadze, and Hata and of the transformation group for hypergeometric series-the group-structure approach introduced by Rhin and Viola.

  6. Fractional parts and their relations to the values of the Riemann zeta function

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-01-01

    A well-known result, due to Dirichlet and later generalized by de la Vallée–Poussin, expresses a relationship between the sum of fractional parts and the Euler–Mascheroni constant. In this paper, we prove an asymptotic relationship between the summation of the products of fractional parts with powers of integers on the one hand, and the values of the Riemann zeta function, on the other hand. Dirichlet’s classical result falls as a particular case of this more general theorem.

  7. Applications of Wirtinger Inequalities on the Distribution of Zeros of the Riemann Zeta-Function

    Directory of Open Access Journals (Sweden)

    Saker SamirH

    2010-01-01

    Full Text Available On the hypothesis that the th moments of the Hardy -function are correctly predicted by random matrix theory and the moments of the derivative of are correctly predicted by the derivative of the characteristic polynomials of unitary matrices, we establish new large spaces between the zeros of the Riemann zeta-function by employing some Wirtinger-type inequalities. In particular, it is obtained that which means that consecutive nontrivial zeros often differ by at least 6.1392 times the average spacing.

  8. Hearing the music of the primes: auditory complementarity and the siren song of zeta

    International Nuclear Information System (INIS)

    Berry, M V

    2012-01-01

    A counting function for the primes can be rendered as a sound signal whose harmonies, spanning the gamut of musical notes, are the Riemann zeros. But the individual primes cannot be discriminated as singularities in this ‘music’, because the intervals between them are too short. Conversely, if the prime singularities are detected as a series of clicks, the Riemann zeros correspond to frequencies too low to be heard. The sound generated by the Riemann zeta function itself is very different: a rising siren howl, which can be understood in detail from the Riemann–Siegel formula. (fast track communication)

  9. Arbitrary Phase Vocoders by means of Warping

    Directory of Open Access Journals (Sweden)

    Gianpaolo Evangelista

    2013-08-01

    duration and/or frequency dependent bandwidth. As an example, in a constant Q frequency band allocation, the ratios of center band frequencies over bandwidth remains constant, so that the frequency bands become wider and wider as center frequency increases, similarly to the frequency distance of 12-tone scale notes or of octaves.While time-frequency allocation can be performed in an arbitrary way, the ability to reconstruct the original signal from Vocoder analysis data is essential in sound processing and transformation applications. Moreover, even the analysis or the production of spectrograms benefits from the perfect reconstruction property if one needs to be confident that no important information is hidden, which serves to completely describe the signal.

  10. Streaming Potential and Electroosmosis Measurements to Characterize Porous Materials

    NARCIS (Netherlands)

    Luong, D.T.; Sprik, R.

    2013-01-01

    Characterizing the streaming potential and electroosmosis properties of porous media is essential in applying seismoelectric and electroseismic phenomena for oil exploration. Some parameters such as porosity, permeability, formation factor, pore size, the number of pores, and the zeta potential of

  11. Conformal array design on arbitrary polygon surface with transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  12. Conformal array design on arbitrary polygon surface with transformation optics

    International Nuclear Information System (INIS)

    Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

    2016-01-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  13. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel.

    Directory of Open Access Journals (Sweden)

    Yan Chen

    Full Text Available Preharvest sprouting reduces the maize quality and causes a significant yield loss in maize production. vp-wl2 is a Mutator (Mu-induced viviparous mutant in maize, causing white or pale yellow kernels, dramatically reduced carotenoid and ABA content, and a high level of zeta-carotene accumulation. Here, we reported the cloning of the vp-wl2 gene using a modified digestion-ligation-amplification method (DLA. The results showed that an insertion of Mu9 in the first intron of the zeta-carotene desaturase (ZDS gene results in the vp-wl2 mutation. Previous studies have suggested that ZDS is likely the structural gene of the viviparous9 (vp9 locus. Therefore, we performed an allelic test using vp-wl2 and three vp9 mutants. The results showed that vp-wl2 is a novel allele of the vp9 locus. In addition, the sequences of ZDS gene were identified in these three vp9 alleles. The vp-wl2 mutant gene was subsequently introgressed into four maize inbred lines, and a viviparous phenotype was observed with yield losses from 7.69% to 13.33%.

  14. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  15. Arbitrary Deprivation of an Unregistered Credit Provider's Right to ...

    African Journals Online (AJOL)

    Arbitrary Deprivation of an Unregistered Credit Provider's Right to Claim Restitution of Performance Rendered Opperman v Boonzaaier (24887/2010) 2012 ZAWCHC 27 (17 April 2012) and National Credit Regulator v Opperman 2013 2 SA 1 (CC)

  16. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties

    International Nuclear Information System (INIS)

    Reid, M. T. Homer; White, Jacob; Johnson, Steven G.

    2011-01-01

    We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  17. Closed description of arbitrariness in resolving quantum master equation

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A., E-mail: batalin@lpi.ru [P.N. Lebedev Physical Institute, Leninsky Prospect 53, 119 991 Moscow (Russian Federation); Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation)

    2016-07-10

    In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.

  18. Josephson effect in SIFS junctions at arbitrary scattering

    International Nuclear Information System (INIS)

    Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.

    2011-01-01

    Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the

  19. Efficient Spectral Power Estimation on an Arbitrary Frequency Scale

    Directory of Open Access Journals (Sweden)

    F. Zaplata

    2015-04-01

    Full Text Available The Fast Fourier Transform is a very efficient algorithm for the Fourier spectrum estimation, but has the limitation of a linear frequency scale spectrum, which may not be suitable for every system. For example, audio and speech analysis needs a logarithmic frequency scale due to the characteristic of a human’s ear. The Fast Fourier Transform algorithms are not able to efficiently give the desired results and modified techniques have to be used in this case. In the following text a simple technique using the Goertzel algorithm allowing the evaluation of the power spectra on an arbitrary frequency scale will be introduced. Due to its simplicity the algorithm suffers from imperfections which will be discussed and partially solved in this paper. The implementation into real systems and the impact of quantization errors appeared to be critical and have to be dealt with in special cases. The simple method dealing with the quantization error will also be introduced. Finally, the proposed method will be compared to other methods based on its computational demands and its potential speed.

  20. Two-photon couplings of quarkonia with arbitrary JPC

    International Nuclear Information System (INIS)

    Barnes, T.; Tennessee Univ., Knoxville, TN

    1992-01-01

    We present theoretical results for the two-photon widths of relativistic quarkonium states with arbitrary angular momenta. These relativistic formulas are required to obtain reasonable agreement with the absolute scale of quarkonium decay rates to two photons, and have previously only been derived for spin-singlet q bar q states. We also evaluate these formulas numerically for ell ≤3 q = u, d states in a Coulomb-plus-linear q bar q potential model. Light-quark higher-ell and radially-excited q bar q states should be observable experimentally, as their two-photon widths are typically found to be ∼1 KeV. The radially-excited 1 S 0 higher-mass quarkonium states such as c bar c and b bar b should also be observable in γγ, but orbitally-excited c bar c states with ell>1 and b bar b states with ell>0 are expected to have very small two-photon widths. The helicity structure of the higher-ell q bar q couplings is predicted to be nontrivial, with both λ=0 and λ=2γγ final states contributing significantly; these results may be useful as signatures for q bar q states

  1. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  2. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Yun Gi [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Shin, Jeon-Soo [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Hoguen, E-mail: hkyonsei@yuhs.ac [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  3. Dynamical zeta functions and dynamical determinants for hyperbolic maps a functional approach

    CERN Document Server

    Baladi, Viviane

    2018-01-01

    The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of...

  4. Relations between elliptic multiple zeta values and a special derivation algebra

    International Nuclear Information System (INIS)

    Broedel, Johannes; Matthes, Nils; Schlotterer, Oliver

    2016-01-01

    We investigate relations between elliptic multiple zeta values (eMZVs) and describe a method to derive the number of indecomposable elements of given weight and length. Our method is based on representing eMZVs as iterated integrals over Eisenstein series and exploiting the connection with a special derivation algebra. Its commutator relations give rise to constraints on the iterated integrals over Eisenstein series relevant for eMZVs and thereby allow to count the indecomposable representatives. Conversely, the above connection suggests apparently new relations in the derivation algebra. Under https://tools.aei.mpg.de/emzv we provide relations for eMZVs over a wide range of weights and lengths. (paper)

  5. Uncoupling of T Cell Receptor Zeta Chain Function during the Induction of Anergy by the Superantigen, Staphylococcal Enterotoxin A

    Directory of Open Access Journals (Sweden)

    William D. Cornwell

    2010-06-01

    Full Text Available Staphylococcus aureus enterotoxins have immunomodulatory properties. In this study, we show that Staphylococcal enterotoxin A (SEA induces a strong proliferative response in a murine T cell clone independent of MHC class II bearing cells. SEA stimulation also induces a state of hypo-responsiveness (anergy. We characterized the components of the T cell receptor (TCR during induction of anergy by SEA. Most interestingly, TCR zeta chain phosphorylation was absent under SEA anergizing conditions, which suggests an uncoupling of zeta chain function. We characterize here a model system for studying anergy in the absence of confounding costimulatory signals.

  6. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  7. The Mehler-Fock transform of general order and arbitrary index and its inversion

    Directory of Open Access Journals (Sweden)

    Cyril Nasim

    1984-01-01

    Full Text Available An integral transform involving the associated Legendre function of zero order, P−12+iτ(x, x∈[1,∞, as the kernel (considered as a function of τ, is called Mehler-Fock transform. Some generalizations, involving the function P−12+iτμ(x, where the order μ is an arbitrary complex number, including the case when μ=0,1,2,… have been known for some time. In this present note, we define a general Mehler-Fock transform involving, as the kernel, the Legendre function P−12+tμ(x, of general order μ and an arbitrary index −12+t, t=σ+iτ, −∞<τ<∞. Then we develop a symmetric inversion formulae for these transforms. Many well-known results are derived as special cases of this general form. These transforms are widely used for solving many axisymmetric potential problems.

  8. The Construction of 3-d Neutral Density for Arbitrary Data Sets

    Science.gov (United States)

    Riha, S.; McDougall, T. J.; Barker, P. M.

    2014-12-01

    The Neutral Density variable allows inference of water pathways from thermodynamic properties in the global ocean, and is therefore an essential component of global ocean circulation analysis. The widely used algorithm for the computation of Neutral Density yields accurate results for data sets which are close to the observed climatological ocean. Long-term numerical climate simulations, however, often generate a significant drift from present-day climate, which renders the existing algorithm inaccurate. To remedy this problem, new algorithms which operate on arbitrary data have been developed, which may potentially be used to compute Neutral Density during runtime of a numerical model.We review existing approaches for the construction of Neutral Density in arbitrary data sets, detail their algorithmic structure, and present an analysis of the computational cost for implementations on a single-CPU computer. We discuss possible strategies for the implementation in state-of-the-art numerical models, with a focus on distributed computing environments.

  9. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  10. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  11. Redirecting Therapeutic T Cells against Myelin-Specific T Lymphocytes Using a Humanized Myelin Basic Protein-HLA-DR2-{zeta} Chimeric Receptor

    DEFF Research Database (Denmark)

    Moisini, Ioana; Nguyen, Phuong; Fugger, Lars

    2008-01-01

    Therapies that Ag-specifically target pathologic T lymphocytes responsible for multiple sclerosis (MS) and other autoimmune diseases would be expected to have improved therapeutic indices compared with Ag-nonspecific therapies. We have developed a cellular immunotherapy that uses chimeric receptors...... mouse model system. Finally, the chimeric receptor-modified CTL ameliorated or blocked experimental allergic encephalomyelitis (EAE) disease mediated by MBP(84-102)/DR2-specific T lymphocytes. These results provide support for the further development of redirected therapeutic T cells able to counteract...... pathologic, self-specific T lymphocytes, and specifically validate humanized MBP-DR2-zeta chimeric receptors as a potential therapeutic in MS. Udgivelsesdato: 2008-Mar-1...

  12. Igusa's $p$-Adic local zeta function and the monodromy conjecture for non-degenerate surface singularities

    CERN Document Server

    Bories, Bart

    2016-01-01

    In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's p-adic and the motivic zeta function. In the p-adic case, this is, for a polynomial f\\in\\mathbf{Z}[x,y,z] satisfying f(0,0,0)=0 and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local p-adic zeta function of f induces an eigenvalue of the local monodromy of f at some point of f^{-1}(0)\\subset\\mathbf{C}^3 close to the origin. Essentially the entire paper is dedicated to proving that, for f as above, certain candidate poles of Igusa's p-adic zeta function of f, arising from so-called B_1-facets of the Newton polyhedron of f, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of L...

  13. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  14. The sewing technique and correlation functions on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We describe in the case of free bosonic and fermionic theories the sewing procedure, that is a very convenient way for constructing correlation functions of these theories on an arbitrary Riemann surface from their knowledge on the sphere. The fundamental object that results from this construction is the N-point g-loop vertex. It summarizes the information of all correlation functions of the theory on an arbitrary Riemann surface. We then check explicitly the bosonization rules and derive some useful formulas. (orig.)

  15. Stabilization at almost arbitrary points for chaotic systems

    International Nuclear Information System (INIS)

    Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.

    2008-01-01

    We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low

  16. Probabilistic teleportation of an arbitrary pure state of two atoms

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun

    2007-01-01

    In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.

  17. Probabilistic teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    Lin Xiu; Li Hong-Cai

    2005-01-01

    A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.

  18. Hadrons of arbitrary spin and heavy quark symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.; Koerner, J.G.

    1993-11-01

    We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs

  19. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  20. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  1. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  2. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors.

    Science.gov (United States)

    Braren, Stephen H; Drapala, Damian; Tulloch, Ingrid K; Serrano, Peter A

    2014-01-01

    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  3. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects Protein Kinase M zeta (PKMζ, dopamine, and glutamate receptors

    Directory of Open Access Journals (Sweden)

    Stephen H Braren

    2014-12-01

    Full Text Available Methamphetamine (MA is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg on working memory using the radial 8-arm maze (RAM across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1, dopamine transporter (DAT and tyrosine hydroxylase (TH; and memory markers, protein kinase M zeta (PKMζ and protein kinase C zeta (PKCζ. Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  4. On the issue of the {zeta} series convergence and loop corrections in the generation of observable primordial non-Gaussianity in slow-roll inflation: I. The bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cogollo, Heiner R S; Rodriguez, Yeinzon; Valenzuela-Toledo, Cesar A, E-mail: heiner.sarmiento@ciencias.uis.edu.co, E-mail: yeinzon.rodriguez@uan.edu.co, E-mail: cavalto@ciencias.uis.edu.co [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia)

    2008-08-15

    We show in this paper that it is possible to attain very high, including observable, values for the level of non-Gaussianity f{sub NL} associated with the bispectrum B{sub {zeta}} of the primordial curvature perturbation {zeta}, in a subclass of small-field slow-roll models of inflation with canonical kinetic terms. Such a result is obtained by taking care of loop corrections both in the spectrum P{sub {zeta}} and in the bispectrum B{sub {zeta}}. Sizable values for f{sub NL} arise even if {zeta} is generated during inflation. Five issues are considered when constraining the available parameter space: (1) We must ensure that we are in a perturbative regime so that the {zeta} series expansion, and its truncation, are valid. (2) We must apply the correct condition for the (possible) loop dominance in B{sub {zeta}} and/or P{sub {zeta}}. (3) We must satisfy the spectrum normalization condition. (4) We must satisfy the spectral tilt constraint. (5) We must have enough inflation to solve the horizon problem.

  5. Concept of fractional parentage for arbitrary molecular point groups

    International Nuclear Information System (INIS)

    Koenig, E.; Kremer, S.

    1977-01-01

    The method of fractional parentage is extended to the general case of mixed configurations in arbitrary nonsimply reducible groups, G is contained in SO(3). Particular attention is devoted to the calculation of coefficients of fractional parentage (CFP) and expressions are provided for the matrix elements of F and G type operators between N electron functions. 29 references

  6. Effective Hamiltonian for 2-dimensional arbitrary spin Ising model

    International Nuclear Information System (INIS)

    Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)

    1983-08-01

    The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)

  7. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  8. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    Science.gov (United States)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  9. Simulating an arbitrary number of flavors of dynamical overlap fermions

    International Nuclear Information System (INIS)

    DeGrand, T.; Schaefer, S.

    2006-05-01

    We present a set of related Hybrid Monte Carlo methods to simulate an arbitrary number of dynamical overlap fermions. Each fermion is represented by a chiral pseudo-fermion field. The new algorithm reduces critical slowing down in the chiral limit and for sectors of nontrivial topology. (Orig.)

  10. Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism

    Science.gov (United States)

    Choi, Su-Jin

    2012-01-01

    This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…

  11. On the entropy of random surfaces with arbitrary genus

    International Nuclear Information System (INIS)

    Kostov, I.K.; Krzywicki, A.

    1987-01-01

    We calculate the susceptibility critical exponent γ for Polyakov random surfaces with arbitrary genus, using the Liouville theory to one-loop order. Some rigorous results obtained for special dimensionalities in a discrete version of the model are also noted. In all cases γ grows linearly with the genus of the surface. (orig.)

  12. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  13. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  14. Garbage-free reversible constant multipliers for arbitrary integers

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2013-01-01

    We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...

  15. Directional Positive Selection on an Allele of Arbitrary Dominance

    OpenAIRE

    Teshima, Kosuke M.; Przeworski, Molly

    2006-01-01

    Most models of positive directional selection assume codominance of the beneficial allele. We examine the importance of this assumption by implementing a coalescent model of positive directional selection with arbitrary dominance. We find that, for a given mean fixation time, a beneficial allele has a much weaker effect on diversity at linked neutral sites when the allele is recessive.

  16. Dynamics of number systems computation with arbitrary precision

    CERN Document Server

    Kurka, Petr

    2016-01-01

    This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .

  17. Pair production of arbitrary spin particles by electromagnetic fields

    International Nuclear Information System (INIS)

    Kruglov, S.I.

    2006-01-01

    The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied

  18. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  19. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    International Nuclear Information System (INIS)

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi

    2005-01-01

    Phospholipase C-zeta (PLCζ), a strong candidate of the egg-activating sperm factor, causes intracellular Ca 2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCζ. Changes in the localization of expressed PLCζ were investigated by tagging with a fluorescent protein. PLCζ began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCζ in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCζ was recognized in every embryo up to blastocyst. Thus, PLCζ exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca 2+ oscillations in early embryogenesis

  20. Multiple zeta functions and double wrapping in planar N=4 SYM

    Science.gov (United States)

    Leurent, Sébastien; Volin, Dmytro

    2013-10-01

    Using the FiNLIE solution of the AdS/CFT Y-system, we compute the anomalous dimension of the Konishi operator in planar N=4 SYM up to eight loops, i.e. up to the leading double wrapping order. At this order a non-reducible Euler-Zagier sum, ζ1,2,8, appears for the first time. We find that at all orders in perturbation, every spectral-dependent quantity of the Y-system is expressed through multiple Hurwitz zeta functions, hence we provide a Mathematica package to manipulate these functions, including the particular case of Euler-Zagier sums. Furthermore, we conjecture that only Euler-Zagier sums can appear in the answer for the anomalous dimension at any order in perturbation theory. We also resum the leading transcendentality terms of the anomalous dimension at all orders, obtaining a simple result in terms of Bessel functions. Finally, we demonstrate that exact Bethe equations should be related to an absence of poles condition that becomes especially non-trivial at double wrapping.

  1. Perancangan Zeta Converter yang dilengkapi Power Factor Correction pada Aplikasi Pengaturan Kecepatan Motor Brushless DC

    Directory of Open Access Journals (Sweden)

    Adhika Prajna Nandiwardhana

    2017-01-01

    Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.

  2. Tc Trends and Terrestrial Planet Formation: The Case of Zeta Reticuli

    Science.gov (United States)

    Adibekyan, Vardan; Delgado-Mena, Elisa; Figueira, Pedro; Sousa, Sergio; Santos, Nuno; Faria, Joao; González Hernández, Jonay; Israelian, Garik; Harutyunyan, Gohar; Suárez-Andrés, Lucia; Hakobyan, Artur

    2016-11-01

    During the last decade astronomers have been trying to search for chemical signatures of terrestrial planet formation in the atmospheres of the hosting stars. Several studies suggested that the chemical abundance trend with the condensation temperature, Tc, is a signature of rocky planet formation. In particular, it was suggested that the Sun shows 'peculiar' chemical abundances due to the presence of the terrestrial planets in our solar-system. However, the rocky material accretion or the trap of rocky materials in terrestrial planets is not the only explanation for the chemical 'peculiarity' of the Sun, or other Sun-like stars with planets. In this talk I madea very brief review of this topic, and presented our last results for the particular case of Zeta Reticuli binary system: A very interesting and well-known system (known in science fiction and ufology as the world of Grey Aliens, or Reticulans) where one of the components hosts an exo-Kuiper belt, and the other component is a 'single', 'lonely' star.

  3. Giants of eclipse the ζ [Zeta] Aurigae stars and other binary systems

    CERN Document Server

    Griffin, Elizabeth

    2015-01-01

    The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere an...

  4. Experiments with arbitrary networks in time-multiplexed delay systems

    Science.gov (United States)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  5. Fast RBF OGr for solving PDEs on arbitrary surfaces

    Science.gov (United States)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  6. The arbitrary order design code Tlie 1.0

    International Nuclear Information System (INIS)

    Zeijts, J. van; Neri, Filippo

    1993-01-01

    We describe the arbitrary order charged particle transfer map code TLIE. This code is a general 6D relativistic design code with a MAD compatible input language and among others implements user defined functions and subroutines and nested fitting and optimization. First we describe the mathematics and physics in the code. Aside from generating maps for all the standard accelerator elements we describe an efficient method for generating nonlinear transfer maps for realistic magnet models. We have implemented the method to arbitrary order in our accelerator design code for cylindrical current sheet magnets. We also have implemented a self-consistent space-charge approach as in CHARLIE. Subsequently we give a description of the input language and finally, we give several examples from productions run, such as cases with stacked multipoles with overlapping fringe fields. (Author)

  7. Quantum optical arbitrary waveform manipulation and measurement in real time.

    Science.gov (United States)

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

  8. Quantum teleportation of an arbitrary superposition of atomic states

    Institute of Scientific and Technical Information of China (English)

    Chen Qiong; Fang Xi-Ming

    2008-01-01

    This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.

  9. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  10. Epoetin zeta in the management of anemia associated with chronic kidney disease, differential pharmacology and clinical utility

    Directory of Open Access Journals (Sweden)

    Davis-Ajami ML

    2014-04-01

    Full Text Available Mary Lynn Davis-Ajami,1 Jun Wu,2 Katherine Downton,3 Emilie Ludeman,3 Virginia Noxon4 1Organizational Systems and Adult Health, University of Maryland School of Nursing, Baltimore, MD, USA; 2South Carolina College of Pharmacy, University of South Carolina, Greenville, SC, USA; 3Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, USA; 4Department of Clinical Pharmacy and Outcomes Science, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA Abstract: Epoetin zeta was granted marketing authorization in October 2007 by the European Medicines Agency as a recombinant human erythropoietin erythropoiesis-stimulating agent to treat symptomatic anemia of renal origin in adult and pediatric patients on hemodialysis and adults on peritoneal dialysis, as well as for symptomatic renal anemia in adult patients with renal insufficiency not yet on dialysis. Currently, epoetin zeta can be administered either subcutaneously or intravenously to correct for hemoglobin concentrations ≤10 g/dL (6.2 mmol/L or with dose adjustment to maintain hemoglobin levels at desired levels not in excess of 12 g/dL (7.5 mmol/L. This review article focuses on epoetin zeta indications in chronic kidney disease, its use in managing anemia of renal origin, and discusses its pharmacology and clinical utility. Keywords: biosimilar, chronic kidney disease, epoetin alfa, erythropoiesis, renal anemia, Retacrit®

  11. Investigation on Fuzzy Logic Based Centralized Control in Four-Port SEPIC/ZETA Bidirectional Converter for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    VENMATHI, M.

    2016-02-01

    Full Text Available In this paper, a new four-port DC-DC converter topology is proposed to interface renewable energy sources and the load along with the energy storage device. The proposed four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC converter comprises an isolated output port with two unidirectional and one bidirectional input ports. This converter topology is obtained by the fusion of SEPIC/ZETA BDC and full-bridge converter. This converter topology ensures the non-reversal of output voltage hence it is preferred mostly for battery charging applications. In this work, photovoltaic (PV source is considered and the power balance in the system is achieved by means of distributed maximum power point tracking (DMPPT in the PV ports. The centralized controller is implemented using fuzzy logic controller (FLC and the performance is compared with conventional proportional integral (PI controller. The results offer useful information to obtain the desired output under line and load regulations. Experimental results are also provided to validate the simulation results.

  12. Compound words prompt arbitrary semantic associations in conceptual memory

    OpenAIRE

    Boutonnet, Bastien; McClain, Rhonda; Thierry, Guillaume

    2014-01-01

    Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness ...

  13. Probabilistic Teleportation of an Arbitrary Two-particle State

    Institute of Scientific and Technical Information of China (English)

    顾永建; 郑亦庄; 郭光灿

    2001-01-01

    A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.

  14. On Babinet's principle and diffraction associated with an arbitrary particle.

    Science.gov (United States)

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  15. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  16. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    OpenAIRE

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-01-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and ...

  17. A compact, multichannel, and low noise arbitrary waveform generator.

    Science.gov (United States)

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  18. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  19. A compact, multichannel, and low noise arbitrary waveform generator

    International Nuclear Information System (INIS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-01-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation

  20. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  1. Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter H; Bonefeld, Charlotte Menné; von Essen, Marina

    2004-01-01

    containing the di-leucine-based endocytosis motif of the TCR subunit CD3 gamma have indicated that the zeta chain can mask this motif. In this study, we show that successive truncations of the cytoplasmic tail of zeta led to reduced surface expression levels of completely assembled TCR complexes. The reduced...... TCR expression levels were caused by an increase in the TCR endocytic rate constant in combination with an unaffected exocytic rate constant. Furthermore, the TCR degradation rate constant was increased in cells with truncated zeta. Introduction of a CD3 gamma chain with a disrupted di-leucine...

  2. A new approach to triggering mechanism of volcano landslides based on zeta potential and surface free energy balance

    Science.gov (United States)

    Plaza, I.; Ontiveros-Ortega, A.; Calero, J.; Romero, C.

    2018-01-01

    The layers of Almagre (iron-rich deposits) from Tenerife Island are the result of thermal metamorphism of soils in contact with lava flow (1073-1273 K). These layers of small thickness relative to the basaltic wash, are interesting for geotechnical study, because the stability of the deposits is determined by the weakest element, in this case Almagre, which acts as a sliding plane. The flow of maritime air over the hillsides of the volcanic islands increases the content of cations in ashes deposits. This modifies the superficial properties of material that composes the substratum. This modification affects the retention of water and the cohesion of material making up the deposit. The results show that the presence of sodium and magnesium increased the hydrophobicity of the material, which had a weak water retention capacity and strong cohesion at basic pH. When there is iron in solution, repulsion between the particles is greater than one obtained with other studied electrolytes. Hence, the deposit is less stable, and Almagre under saturated water conditions constitutes an ideal layer for landslides.

  3. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .1. ZETA-POTENTIALS OF HYDROCARBON DROPLETS

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDEBELTGRITTER, B; VANDERMEI, HC

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. As microbial adhesion is a complicated interplay of long-range van der Waals and electrostatic forces and various short-range interactions, the above statement only holds

  4. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 2: Flotability

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work was to study floatability of the mineral sheelite from mine 'Rudnik', central Serbia. Flotation tests of the mineral in a Hallimond tube cell were carried out in four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the flotability of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. Also, it was found the floatability of mineral depends on the scheelite particle size fraction used in microflotation experiments. Presented results may be useful for proper selection of type of water, as well of the type of reagents used in flotation processes.

  5. Ion Adsorption Parameters Determined from Zeta Potential and Titration Data for a y-Alumina Nanofiltration Membrane

    NARCIS (Netherlands)

    de Lint, W.B.S.; Benes, Nieck Edwin; Lyklema, Johannes; Bouwmeester, Henricus J.M.; van der Linde, Ab J.; Wessling, Matthias

    2003-01-01

    Theoretical models for the prediction of nanofiltration separation performance as a function of, e.g., pH and electrolyte composition require knowledge on the ion-surface adsorption chemistry. Adsorption parameters have been extracted from electrophoretic mobility measurements on a ceramic y-alumina

  6. Ion adsorption parameters determined from zeta potential and titration data for a gamma-alumina nanofiltration membrane

    NARCIS (Netherlands)

    Samuel de Lint, W.B.; Benes, N.E.; Lyklema, J.; Bouwmeester, H.J.M.; Linde, van der A.J.; Wessling, M.

    2003-01-01

    Theoretical models for the prediction of nanofiltration separation performance as a function of, e.g., pH and electrolyte composition require knowledge on the ion-surface adsorption chemistry. Adsorption parameters have been extracted from electrophoretic mobility measurements on a ceramic -alumina

  7. 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in Head and Neck cancer cells

    International Nuclear Information System (INIS)

    Macha, Muzafar A; Matta, Ajay; Chauhan, SS; Siu, KW Michael; Ralhan, Ranju

    2010-01-01

    The five-year survival rates for head and neck squamous cell carcinoma (HNSCC) patients are less than 50%, and the prognosis has not improved, despite advancements in standard multi-modality therapies. Hence major emphasis is being laid on identification of novel molecular targets and development of multi-targeted therapies. 14-3-3 zeta, a multifunctional phospho-serine/phospho-threonine binding protein, is emerging as an effector of pro-survival signaling by binding to several proteins involved in apoptosis (Bad, FKHRL1 and ASK1) and may serve as an appropriate target for head and neck cancer therapy. Herein, we determined effect of guggulsterone (GS), a farnesoid X receptor antagonist, on 14-3-3 zeta associated molecular pathways for abrogation of apoptosis in head and neck cancer cells. Head and neck cancer cells were treated with guggulsterone (GS). Effect of GS-treatment was evaluated using cell viability (MTT) assay and apoptosis was verified by annexin V, DNA fragmentation and M30 CytoDeath antibody assay. Mechanism of GS-induced apoptosis was determined by western blotting and co-IP assays using specific antibodies. Using in vitro models of head and neck cancer, we showed 14-3-3 zeta as a key player regulating apoptosis in GS treated SCC4 cells. Treatment with GS releases BAD from the inhibitory action of 14-3-3 zeta in proliferating HNSCC cells by activating protein phosphatase 2A (PP2A). These events initiate the intrinsic mitochondrial pathway of apoptosis, as revealed by increased levels of cytochrome c in cytoplasmic extracts of GS-treated SCC4 cells. In addition, GS treatment significantly reduced the expression of anti-apoptotic proteins, Bcl-2, xIAP, Mcl1, survivin, cyclin D1 and c-myc, thus committing cells to apoptosis. These events were followed by activation of caspase 9, caspase 8 and caspase 3 leading to cleavage of its downstream target, poly-ADP-ribose phosphate (PARP). GS targets 14-3-3 zeta associated cellular pathways for reducing

  8. Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A rigorous theoretical investigation has been made of arbitrary amplitude dust-acoustic solitary structures in an unmagnetized three-component dusty plasma whose constituents are an inertial charged dust fluid and Boltzmann distributed ions and electrons. The pseudo-potential approach and the reductive perturbation technique are employed for this study. It is found from both weakly and highly nonlinear analyses that the dusty plasma model can support solitary waves only with negative potential but not with positive potential. The effects of equilibrium free electron density and its temperature on these solitary structures are discussed. The implications of these results to some astrophysical and space plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  9. Efficient Evaluation of Arbitrary Static Fields For Symplectic Particle Tracking

    CERN Document Server

    Bojtar, Lajos

    2018-01-01

    This article describes a method devised for efficient evaluation of arbitrary static magnetic and electric fields in a source free region needed for long time tracking of charged particles. Field values given on the boundary of the region of interest are reproduced inside by an arrangement of hypothetical magnetic or electric monopoles surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each monopole. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Software has been developed to test and demonstrate the method on a small particle accelerator. To our knowledge, there is no other meth...

  10. Clinical Trials Using Anti-CD19/CD28/CD3zeta CAR Gammaretroviral Vector-transduced Autologous T Lymphocytes KTE-C19

    Science.gov (United States)

    NCI supports clinical trials that test new and more effective ways to treat cancer. Find clinical trials studying anti-cd19/cd28/cd3zeta car gammaretroviral vector-transduced autologous t lymphocytes kte-c19.

  11. Antenna Correlation From Input Parameters for Arbitrary Topologies and Terminations

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2012-01-01

    The spatial correlation between pairs of antennas in a system comprised of N RF ports is found by extending the N × N scattering matrix to (N + 1)×(N + 1) spatial scattering matrix, where the extra space dimension accounts for the reference port patterns. The lossless property of the spatial...... scattering matrix in a 3D uniform field is employed for expressing the spatial correlation between the port patterns at arbitrary complex terminations merely from the reference scattering parameters and the complex terminations without any far-field calculation....

  12. Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.

    Science.gov (United States)

    Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui

    2017-04-06

    In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.

  13. Bessel-like beams modulated by arbitrary radial functions

    Science.gov (United States)

    Herman; Wiggins

    2000-06-01

    An approximate method for determining the radial and axial intensity of a Bessel-like beam is presented for the general case in which a radial Bessel distribution of any order is modulated by an arbitrary function. For Bessel-Gauss, generalized Bessel-Gauss, and Bessel-super-Gauss beams, this simple approximation yields results that are very close to the exact values, while they are exact for Bessel beams. A practical beam that can be generated with a combination of simple lenses is also analyzed and illustrated.

  14. Model for decays of boson resonances with arbitrary spins

    International Nuclear Information System (INIS)

    Grigoryan, A.A.; Ivanov, N.Ya.

    1985-01-01

    A formula for the width of resonance with spin J decay into hadrons with arbitrary spins is derived. This width is expressed via S-channel helicity residues of Regge trajectory α J where the resonance J lies. Using the quark-gluon picture predictions for the coupling of quarks with Regge trajectories and SU(6)-classification of hadrons this formula is applied to calculate the widths of decays of resonances, which lie on the vector and tensor trajectories, into pseudoscalar and vector, two vectors and NN-bar-pair

  15. Functional methods for arbitrary densities in curved spacetime

    International Nuclear Information System (INIS)

    Basler, M.

    1993-01-01

    This paper gives an introduction to the technique of functional differentiation and integration in curved spacetime, applied to examples from quantum field theory. Special attention is drawn on the choice of functional integral measure. Referring to a suggestion by Toms, fields are choosen as arbitrary scalar, spinorial or vectorial densities. The technique developed by Toms for a pure quadratic Lagrangian are extended to the calculation of the generating functional with external sources. Included are two examples of interacting theories, a self-interacting scalar field and a Yang-Mills theory. For these theories the complete set of Feynman graphs depending on the weight of variables is derived. (orig.)

  16. Teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    陈立冰

    2002-01-01

    We propose two schemes for teleporting an arbitrary three-particle state. In the first scheme, a two-particle state and a three-particle entangled state (both non-maximally entangled states) are used as quantum channels, while in the second scheme, three non-maximally entangled particle pairs are employed as quantum channels. We show that teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations. Their success probabilities and the classical communication costs are different.

  17. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  18. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    Science.gov (United States)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  19. Revenue comparisons for auctions when bidders have arbitrary types

    Directory of Open Access Journals (Sweden)

    Yeon-Koo Che

    2006-03-01

    Full Text Available This paper develops a methodology for characterizing expected revenue from auctions when bidders' types come from an arbitrary distribution. In particular, types may be multidimensional, and there may be mass points in the distribution. One application extends existing revenue equivalence results. Another application shows that first-price auctions yield higher expected revenue than second-price auctions when bidders are risk averse and face financial constraints. This revenue ranking extends to risk-averse bidders with general forms of non-expected utility preferences.

  20. Controlling electromagnetic fields at boundaries of arbitrary geometries

    Science.gov (United States)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  1. Shrinking an arbitrary object as one desires using metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang

    2011-05-01

    Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.

  2. Grover's quantum search algorithm for an arbitrary initial mixed state

    International Nuclear Information System (INIS)

    Biham, Eli; Kenigsberg, Dan

    2002-01-01

    The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm

  3. ETFOD: a point model physics code with arbitrary input

    International Nuclear Information System (INIS)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code

  4. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  5. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    DEFF Research Database (Denmark)

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  6. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    Science.gov (United States)

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  7. Duality for massive spin two theories in arbitrary dimensions

    International Nuclear Information System (INIS)

    Gonzalez, B.; Urrutia, L.F.; Khoudeir, A.; Montemayor, R.

    2008-01-01

    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor T A[B 1 B 2 ...B D-2 ] , without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.

  8. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    Science.gov (United States)

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  9. Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics

    Science.gov (United States)

    Welland, M. J.; Tenuta, E.; Prudil, A. A.

    2017-06-01

    This article describes a phase-field model for an isothermal multicomponent, multiphase system which avoids implicit interfacial energy contributions by starting from a grand potential formulation. A method is developed for incorporating arbitrary forms of the equilibrium thermodynamic potentials in all phases to determine an explicit relationship between chemical potentials and species concentrations. The model incorporates variable densities between adjacent phases, defect migration, and dependence of internal pressure on object dimensions ranging from the macro- to nanoscale. A demonstrative simulation of an overpressurized nanoscopic intragranular bubble in nuclear fuel migrating to a grain boundary under kinetically limited vacancy diffusion is shown.

  10. Consistent gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations.

    Science.gov (United States)

    Laun, Joachim; Vilela Oliveira, Daniel; Bredow, Thomas

    2018-02-22

    Consistent basis sets of double- and triple-zeta valence with polarization quality for the fifth period have been derived for periodic quantum-chemical solid-state calculations with the crystalline-orbital program CRYSTAL. They are an extension of the pob-TZVP basis sets, and are based on the full-relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and on the def2-SVP and def2-TZVP valence basis of the Ahlrichs group. We optimized orbital exponents and contraction coefficients to supply robust and stable self-consistent field (SCF) convergence for a wide range of different compounds. The computed crystal structures are compared to those obtained with standard basis sets available from the CRYSTAL basis set database. For the applied hybrid density functional PW1PW, the average deviations of calculated lattice constants from experimental references are smaller with pob-DZVP and pob-TZVP than with standard basis sets. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Explicit learning of arbitrary and non-arbitrary action-effect relations in adults and 4-year-olds

    Directory of Open Access Journals (Sweden)

    Stephan Alexander eVerschoor

    2012-02-01

    Full Text Available Ideomotor theories claim that carrying out a movement that produces a perceivable effect creates a bidirectional association between the two, which can be used by action control processes to retrieve the associated action by anticipating its outcome. Indeed, previous implicit-learning studies have shown that practice renders novel but action-contingent stimuli effective retrieval cues of the action they used to follow, suggesting that experiencing sequences of actions and effects creates bidirectional action-effect associations. We investigated whether action-effect associations are also acquired under explicit-learning conditions and whether familiar action-effect relations (such as between a trumpet and a trumpet sound are learned the same way as novel, arbitrary relations are. We also investigated whether these factors affect adults and 4-year-old children equally. Our findings suggest that explicit learning produces the same bidirectional action-effect associations as implicit learning does, that non-arbitrary relations improve performance without affecting learning per se, and that adults and young children show equivalent performance—apart from the common observation that children have greater difficulty to withstand stimulus-induced action tendencies.

  12. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    Science.gov (United States)

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  13. Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques

    International Nuclear Information System (INIS)

    Kantowski, R.; Milton, K.A.

    1987-01-01

    The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out

  14. Extending Landauer's bound from bit erasure to arbitrary computation

    Science.gov (United States)

    Wolpert, David

    The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No

  15. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    Science.gov (United States)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution

  16. Method of preparing mercury with an arbitrary isotopic distribution

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  17. Towards the classification of conformal field theories in arbitrary dimension

    CERN Document Server

    Anselmi, D

    2000-01-01

    I identify the subclass of higher-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this subclass the domain of validity of the recently proposed formula for the irreversibility of the renormalization-group flow is suitably enhanced. The trace anomaly is quadratic in the Ricci tensor and contains a unique central charge. This implies, in particular, a relationship between the coefficient in front of the Euler density (charge a) and the stress-tensor two-point function (charge c). I check the prediction in detail in four, six and eight dimensions, and then in arbitrary dimension. In four and six dimensions there is agreement with results from the AdS/CFT correspondence. A by-product is a mathematical algorithm to construct conformal invariants.

  18. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  19. Perfect transfer of arbitrary states in quantum spin networks

    International Nuclear Information System (INIS)

    Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.

    2005-01-01

    We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log 3 N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)

  20. Faithful teleportation with arbitrary pure or mixed resource states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Mingjing; Fei Shaoming; Wang Zhixi [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Li Zongguo [College of Science, Tianjin University of Technology, Tianjin 300191 (China); Lijost Xianqing, E-mail: zhaomingjingde@126.com [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany)

    2011-05-27

    We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |{phi}) in C{sup d} with an entangled resource {rho} in C{sup m} otimes C{sup d} and C{sup d} otimes C{sup n} are derived. It is shown that for {rho} in C{sup m} otimes C{sup d}, {rho} must be a maximally entangled state, while for {rho} in C{sup d} otimes C{sup n}, {rho} must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.

  1. Fatigue life of drilling bit bearings under arbitrary random loads

    Energy Technology Data Exchange (ETDEWEB)

    Talimi, M.; Farshidi, R. [Calgary Univ., AB (Canada)

    2009-07-01

    A fatigue analysis was conducted in order to estimate the bearing life of a roller cone rock bit under arbitrary random loads. The aim of the study was to reduce bearing failures that can interrupt well operations. Fatigue was considered as the main reason for bearing failure. The expected value of cumulative fatigue damage was used to estimate bearing life. An equation was used to express the relation between bearing life and bearing load when the bearing was subjected to a steady load and constant speed. The Palmgren-Miner hypothesis was used to determine the ultimate tensile strength of the material. The rain flow counting principle was used to determine distinct amplitude cycles. Hertzian equations were used to determine maximum stress loads. Fourier series were used to obtain simple harmonic functions for estimating stress-life relations. It was concluded that the method can be used during the well planning phase to prevent bearing failures. 6 refs.

  2. Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups

    DEFF Research Database (Denmark)

    Cramer, Ronald; Fehr, Serge

    2002-01-01

    A black-box secret sharing scheme for the threshold access structure T t,n is one which works over any finite Abelian group G. Briefly, such a scheme differs from an ordinary linear secret sharing scheme (over, say, a given finite field) in that distribution matrix and reconstruction vectors...... are defined over ℤ and are designed independently of the group G from which the secret and the shares are sampled. This means that perfect completeness and perfect privacy are guaranteed regardless of which group G is chosen. We define the black-box secret sharing problem as the problem of devising......, for an arbitrary given T t,n , a scheme with minimal expansion factor, i.e., where the length of the full vector of shares divided by the number of players n is minimal. Such schemes are relevant for instance in the context of distributed cryptosystems based on groups with secret or hard to compute group order...

  3. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  4. Classically exact surface diffusion constants at arbitrary temperature

    International Nuclear Information System (INIS)

    Voter, A.F.; Cohen, J.M.

    1989-01-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces

  5. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  6. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    Science.gov (United States)

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  7. COSY INFINITY, a new arbitrary order optics code

    International Nuclear Information System (INIS)

    Berz, M.

    1990-01-01

    The new arbitrary order particle optics and beam dynamics code COSY INFINITY is presented. The code is based on differential algebraic (DA) methods. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual or novice user. At the same time, it offers the advanced user a very flexible and powerful tool for the utilization of DA. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language. The approach also facilitates the implementation of new features because special code generated by a user can be readily adopted to the source code. Besides being very compact in size, the code is also very fast, thanks to efficiently programmed elementary DA operations. For simple low order problems, which can be handled by conventional codes, the speed of COSY INFINITY is comparable and in certain cases even higher

  8. Khovanov homology for virtual knots with arbitrary coefficients

    International Nuclear Information System (INIS)

    Manturov, Vassily O

    2007-01-01

    The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for 'twisted virtual knots' in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms

  9. Arbitrary function generator for APS injector synchrotron correction magnets

    International Nuclear Information System (INIS)

    Despe, O.D.

    1991-01-01

    The APS injector synchrotron has eighty correction magnets around its circumference to provide the vernier field changes required for beam orbit correction during acceleration. The arbitrary function generator (AFG) design is based on scanning out encoded data from a semi-conductor memory, a first-in-first-out (FIFO) device. The data input consists of a maximum of 20 correction values specified within the acceleration window. Additional points between these values are then linearly interpolated to create a uniformly spaced 1000 data-point function stored in the FIFO. Each point, encoded as a 3-bit value is scanned out in synchronism with the injection pulse and used to clock the up/down counter driving the DAC. The DAC produces the analog reference voltage used to control the magnet current. 1 ref., 4 figs

  10. Surface acoustic wave micromotor with arbitrary axis rotational capability

    Science.gov (United States)

    Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.

    2011-11-01

    A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.

  11. Electron with arbitrary pseudo-spins in multilayer graphene

    International Nuclear Information System (INIS)

    Prarokijjak Worasak; Soodchomshom Bumned

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (ħ/2), where N = {1, 2, 3,…}. It is said that for N > 1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers. (paper)

  12. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    Science.gov (United States)

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  13. Electron with arbitrary pseudo-spins in multilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Worasak Prarokijjak; Bumned Soodchomshom

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.

  14. Efficient scheme for parametric fitting of data in arbitrary dimensions.

    Science.gov (United States)

    Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching

    2008-07-01

    We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.

  15. Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits

    International Nuclear Information System (INIS)

    Warnock, R.; Bassi, G.; Ellison, J.A.

    2006-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp

  16. Exact results for Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Fiol, Bartomeu; Torrents, Genís [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, 08028 Barcelona, Catalonia (Spain)

    2014-01-08

    We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of N=4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

  17. Photonic arbitrary waveform generation applicable to multiband UWB communications.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.

  18. Arbitrary digital pulse sequence generator with delay-loop timing

    Science.gov (United States)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  19. Faithful teleportation with arbitrary pure or mixed resource states

    International Nuclear Information System (INIS)

    Zhao Mingjing; Fei Shaoming; Wang Zhixi; Li Zongguo; Lijost Xianqing

    2011-01-01

    We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |φ) in C d with an entangled resource ρ in C m otimes C d and C d otimes C n are derived. It is shown that for ρ in C m otimes C d , ρ must be a maximally entangled state, while for ρ in C d otimes C n , ρ must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.

  20. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  1. Contextually in a Peres—Mermin square using arbitrary operators

    International Nuclear Information System (INIS)

    Laversanne-Finot, A; Ketterer, A; Coudreau, T; Milman, P; Barros, M R; Walborn, S P; Keller, A

    2016-01-01

    The contextuality of quantum mechanics can be shown by the violation of inequalities based on measurements of well chosen observables. These inequalities have been designed separately for both discrete and continuous variables. Here we unify both strategies by introducing general conditions to demonstrate the contextuality of quantum mechanics from measurements of observables of arbitrary dimensions. Among the consequences of our results is the impossibility of having a maximal violation of contextuality in the Peres-Mermin scenario with discrete observables of odd dimensions. In addition, we show how to construct a large class of observables with a continuous spectrum enabling the realization of contextuality tests both in the Gaussian and non-Gaussian regimes. (paper)

  2. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5

  3. Universal sequence map (USM of arbitrary discrete sequences

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2002-02-01

    Full Text Available Abstract Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM, is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR. The latter enables the representation of 4 unit type sequences (like DNA as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules.

  4. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    International Nuclear Information System (INIS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-01-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  5. Fuzzy-PI-based centralised control of semi-isolated FP-SEPIC/ZETA BDC in a PV/battery hybrid system

    Science.gov (United States)

    Mahendran, Venmathi; Ramabadran, Ramaprabha

    2016-11-01

    Multiport converters with centralised controller have been most commonly used in stand-alone photovoltaic (PV)/battery hybrid system to supply the load smoothly without any disturbances. This study presents the performance analysis of four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC) using various types of centralised control schemes like Fuzzy tuned proportional integral controller (Fuzzy-PI), fuzzy logic controller (FLC) and conventional proportional integral (PI) controller. The proposed FP-SEPIC/ZETA BDC with various control strategy is derived for simultaneous power management of a PV source using distributed maximum power point tracking (DMPPT) algorithm, a rechargeable battery, and a load by means of centralised controller. The steady state and the dynamic response of the FP-SEPIC/ZETA BDC are analysed using three different types of controllers under line and load regulation. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller. The power balance between the ports is achieved by pseudorandom carrier modulation scheme. The response of the FP-SEPIC/ZETA BDC is also validated experimentally using hardware prototype model of 500 W system. The effectiveness of the control strategy is validated using simulation and experimental results.

  6. Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.

    Science.gov (United States)

    Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A

    2006-05-15

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.

  7. Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    International Nuclear Information System (INIS)

    Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila

    2007-01-01

    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between

  8. Progress on a Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    CERN Document Server

    Bassi, Gabriele; Warnock, Robert L

    2005-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding). The time evolution of the phase space distribution is determined by solving the Vlasov-Maxwell equations in the time domain. This provides lower numerical noise than the macroparticle method, and allows the study of emittance degradation and microbunching in bunch compressors. We calculate the fields excited by the bunch in the lab frame using a formula simpler than that based on retarded potentials.* We have developed an algorithm for solving the Vlasov equation in the beam frame using arc length as the independent variable and our method of local characteristics (discretized Perron-Frobenius operator).We integrate in the interaction picture in the hope that we can adopt a fixed grid. The distribution function will be represented by B-splines, in a scheme preserving positivity and normalization of the distribution. The transformation between l...

  9. Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC

    DEFF Research Database (Denmark)

    Alonzo, Carlo Amadeo; Rodrigo, Peter John; Palima, Darwin

    2007-01-01

    With the aid of phase-only spatial light modulators (SLM), generalized phase contrast (GPC) has been applied with great success to the projection of binary light patterns through arbitrary-NA microscope objectives for real-time three-dimensional manipulation of microscopic particles. Here, we...... review the analysis of the GPC method with emphasis on efficiently producing speckle-free two-dimensional grey-level light Patterns. Numerical simulations are applied to construct 8-bit grey-level optical potential landscapes with high fidelity and optical throughput via the GPC method. Three types...... of patterns were constructed: geometric block patterns, multi-level optical trap arrays, and optical obstacle arrays. Non-periodic patterns were accurately projected with an average of 80% diffraction efficiency. Periodic patterns yielded even higher diffraction efficiencies, averaging 94%, by the utilization...

  10. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  11. Effect of adsorption of charged macromolecules on streaming and membrane potential values measured with a microporous polysulfone membrane

    DEFF Research Database (Denmark)

    Benavente, J.; Jonsson, Gunnar Eigil

    1997-01-01

    with a polyanion (dextran sulfate or DS) and a polycation (diethylaminoethyl or DEAE-dextran). From electrokinetic and electrochemical measurements, information about characteristic membrane parameters (transport number and ionic permselectivity) and membrane/solution interactions (zeta potential) can be obtained...

  12. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  13. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup

    DEFF Research Database (Denmark)

    Jin, Emma Yu; Nebel, M. E.

    2016-01-01

    that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More...... sparsification) may reduce the runtime to n2 on average, assuming that nucleotides of distance d form a hydrogen bond (i.e. are paired) with probability (Formula Presented.) for some constants b > 0, c > 1. The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned...... algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming...

  14. Mapping the brain pathways of traumatic memory: inactivation of protein kinase M zeta in different brain regions disrupts traumatic memory processes and attenuates traumatic stress responses in rats.

    Science.gov (United States)

    Cohen, Hagit; Kozlovsky, Nitsan; Matar, Michael A; Kaplan, Zeev; Zohar, Joseph

    2010-04-01

    Protein kinase M zeta (PKMzeta), a constitutively active isoform of protein kinase C, has been implicated in protein synthesis-dependent maintenance of long-term potentiation and memory storage in the brain. Recent studies reported that local application of ZIP, a membrane-permeant PKMzeta inhibitor, into the insular cortex (IC) of behaving rats abolished long-term memory of taste associations. This study assessed the long-term effects of local applications of ZIP microinjected immediately (1 h) or 10 days after predator scent stress exposure, in a controlled prospectively designed animal model for PTSD. Four brain structures known to be involved in memory processes and in anxiety were investigated: lateral ventricle (LV), dorsal hippocampus (DH), basolateral amygdala and IC. The outcome measures included behavior in an elevated plus maze and acoustic startle response 7 days after microinjection, and freezing behavior upon exposure to trauma-related cue 8 days after microinjection. Previously acquired/encoded memories associated with the IC were also assessed. Inactivation of PKMzeta in the LV or DH within 1h of exposure effectively reduced PTSD-like behavioral disruption and trauma cue response 8 days later. Inactivation of PKMzeta 10 days after exposure had equivalent effects only when administered in the IC. The effect was demonstrated to be specific for trauma memories, whereas previously acquired data were unaffected by the procedure. Predator scent related memories are located in different brain areas at different times beginning with an initial hippocampus-dependent consolidation process, and are eventually stored in the IC. These bring the IC to the forefront as a potential region of significance in processes related to traumatic stress-induced disorders. 2010 Elsevier B.V. and ECNP. All rights reserved.

  15. A novel conductivity mechanism of highly disordered carbon systems based on an investigation of graph zeta function

    Science.gov (United States)

    Matsutani, Shigeki; Sato, Iwao

    2017-09-01

    In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.

  16. Geometrical critical phenomena on a random surface of arbitrary genus

    International Nuclear Information System (INIS)

    Duplantier, B.; Kostov, I.K.

    1990-01-01

    The statistical mechanics of self-avoiding walks (SAW) or of the O(n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum Δ L , L ≥ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line 'watermelon' exponents Δ L of the O(n) model on a random surface. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This provides a proof, in the presence of a fluctuating metric, of a result conjectured earlier in the standard plane. From this, the value of the string susceptibility γ str (H,c) is extracted for a random surface of arbitrary genus H, bearing a field theory of central charge c, or equivalently, embedded in d=c dimensions. Lastly, by enumerating spanning trees on a random lattice, we solve the similar problem of hamiltonian walks on the (fluctuating) Manhattan covering lattice. We also obtain new results for dilute trees on a random surface. (orig./HSI)

  17. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, _q) and PGL(2, _q)

    International Nuclear Information System (INIS)

    Roche, Ph.

    2016-01-01

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, _q) and PGL(2, _q). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  18. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Plesner, T

    1989-01-01

    components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...... diminished levels of TcR-CD3. This clone produced all the TcR-CD3 components except the CD3-zeta, as demonstrated by metabolic labelling and immunoprecipitation followed by one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. These data indicate that the CD3-zeta determines...

  19. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  20. Coordinate transformations make perfect invisibility cloaks with arbitrary shape

    International Nuclear Information System (INIS)

    Yan Wei; Yan Min; Ruan Zhichao; Qiu Min

    2008-01-01

    By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists

  1. New Hamiltonians for loop quantum cosmology with arbitrary spin representations

    Science.gov (United States)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Geiller, Marc

    2017-04-01

    In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity of which the understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat Friedmann-Lemaître-Robertson-Walker models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple-spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased and the stability of the difference equations in the quantum theory.

  2. Heat transfer from the moving heat source of arbitrary shape

    International Nuclear Information System (INIS)

    Fomin, Sergei A.

    2000-01-01

    The present research is related to contact melting by a moving heat source of arbitrary shape. Heat conduction in the melting material is governed by 3D differential equation, where the thermal conductivity of the surrounding material is assumed to be strongly temperature dependent. By using the Green's formula, the boundary-value problem is converted to the boundary integral equation. This non-linear equation is solved numerically by interactions utilizing the boundary element method. Different shapes of heat sources are investigated. Since the obtained integral equation is the Fredholm type equation of the first kind and belongs to the family of so-called ill-posed problems, therefore, supplementary computations, that verify the stability of numerical algorithm, are provided. For the special cases associated with thermodrilling technology, some analytical estimations and solutions are obtained. Particularly, if the melting velocity is high (Pe>10), asymptotic solutions are found. In this case the integral equation is significantly reduced, that simplifies the computations. Numerical results are in good agreement with the closed-form solutions available for the elliptical shape of a solid-liquid interface. (author)

  3. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    Science.gov (United States)

    Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.

    2016-01-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676

  4. Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing

    Science.gov (United States)

    Brevik, Justus A.; Flowers-Jacobs, Nathan E.; Fox, Anna E.; Golden, Evan B.; Dresselhaus, Paul D.; Benz, Samuel P.

    2017-01-01

    We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin. PMID:28736494

  5. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    International Nuclear Information System (INIS)

    Hernaski, C.A.; Vargas-Paredes, A.A.; Helayel-Neto, J.A.

    2009-01-01

    Full text. Massive gravity has been an issue of particular interest since the early days of Quantum Gravity. More recently, in connection with models based on brane-world scenarios, the discussion of massive gravitons is drawing a great deal of attention, in view of the possibility of their production at LHC and the feasibility of detection of quantum gravity effects at the TeV scale. In this paper, we reassess a particular R 2 -type gravity action in D dimensions, recently studied by Nakasone and Oda, taking now torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is non-propagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions. To make this we construct a complete basis of operators that projects the degrees of freedom of the dynamical fields of the model in their irreducible spin decomposition. The outcome is that we find a set of Lagrangians with a massive graviton that, in D=4, reproduce those already studied in the literature. (author)

  6. Modelling of subsonic COIL with an arbitrary magnetic modulation

    Science.gov (United States)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  7. Numerical transport of an arbitrary number of components

    International Nuclear Information System (INIS)

    Jaouen, S.; Lagoutiere, F.

    2007-01-01

    This paper deals with the numerical transport of an arbitrary number of materials having the same velocity. One difficulty is to derive numerical algorithms that are conservative for the mass of each component and that satisfy some inequality and equality constraints: each mass fraction has to stay in [0, 1] and the sum of all mass fractions should be 1. These constraints are satisfied by the classical upwind scheme (which is very dissipative) but not for most of nonlinear (high-order or anti-dissipative) schemes. Here we propose local conditions of inequality type for the finite volume fluxes of mass fractions to ensure the aforementioned constraints. More precisely, we give explicit stability intervals for each flux. This is done in the manner of Despres and Lagoutiere for hyperbolic systems, for the transport of two components, for the same type of inequality constraints for nonlinear conservation laws. Comparisons on two dimensional test-cases with the Youngs' interface reconstruction algorithm show that results are qualitatively comparable. The advantages of this approach are its simplicity, its low computational cost, and its flexibility since it can deal with interfaces as well as mixing zones. (authors)

  8. Monomial geometric programming with an arbitrary fuzzy relational inequality

    Directory of Open Access Journals (Sweden)

    E. Shivanian

    2015-11-01

    Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.

  9. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  10. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    Science.gov (United States)

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  11. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  12. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  13. Matching conditions for a brane of arbitrary codimension

    International Nuclear Information System (INIS)

    Charmousis, Christos; Zegers, Robin

    2005-01-01

    We present matching conditions for distributional sources of arbitrary codimension in the context of Lovelock gravity. Then we give examples, treating maximally symmetric distributional p-branes, embedded in flat, de Sitter and anti-de Sitter spacetime. Unlike Einstein theory, distributional defects of locally smooth geometry and codimension greater than 2 are demonstrated to exist in Lovelock theories. The form of the matching conditions depends on the parity of the brane codimension. For odd codimension, the matching conditions involve discontinuities of Chern-Simons forms and are thus similar to junction conditions for hypersurfaces. For even codimension, the bulk Lovelock densities induce intrinsic Lovelock densities on the brane. In particular, this results in the appearance of the induced Einstein tensor for p>2. For the matching conditions we present, the effect of the bulk is reduced to an overall topological solid angle defect which sets the Planck scale on the brane and to extrinsic curvature terms. Moreover, for topological matching conditions and solid deficit angle, we find that the equations of motion are obtained from an exact p+1 dimensional action, which reduces to an induced Lovelock theory for large codimension. In essence, this signifies that the distributional part of the Lovelock bulk equations can naturally give rise to induced gravity terms on a brane of even co-dimension. We relate our findings to recent results on codimension 2 branes

  14. More on zeta-function regularization of high-temperature expansions

    International Nuclear Information System (INIS)

    Actor, A.

    1987-01-01

    A recent paper using the Riemann ζ-function to regularize the (divergent) coefficients occurring in the high-temperature expansions of one-loop thermodynamic potentials is extended. This method proves to be a powerful tool for converting Dirichlet-type series Σ m a m (x i )/m s into power series in the dimensionless parameters x i . The coefficients occurring in the power series are (proportional to) ζ-functions evaluated away from their poles - this is where the regularization occurs. High-temperature expansions are just one example of this highly-nontrivial rearrangement of Dirichlet series into power series form. We discuss in considerable detail series in which a m (x i ) is a product of trigonometric, algebraic and Bessel function factors. The ζ-function method is carefully explained, and a large number of new formulae are provided. The means to generalize these formulae are also provided. Previous results on thermodynamic potentials are generalized to include a nonzero constant term in the gauge potential (time component) which can be used to probe the electric sector of temperature gauge theories. (author)

  15. Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    QIAN Xue-Min; FANG Jian-Xing; ZHU Shi-Qun; XI Yong-Jun

    2005-01-01

    The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.

  16. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  17. Target Antigen Density Governs the Efficacy of Anti-CD20-CD28-CD3 zeta Chimeric Antigen Receptor-Modified Effector CD8(+) T Cells

    NARCIS (Netherlands)

    Watanabe, Keisuke; Terakura, Seitaro; Martens, Anton C.; van Meerten, Tom; Uchiyama, Susumu; Imai, Misa; Sakemura, Reona; Goto, Tatsunori; Hanajiri, Ryo; Imahashi, Nobuhiko; Shimada, Kazuyuki; Tomita, Akihiro; Kiyoi, Hitoshi; Nishida, Tetsuya; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    The effectiveness of chimeric Ag receptor (CAR)-transduced T (CAR-T) cells has been attributed to supraphysiological signaling through CARs. Second-and later-generation CARs simultaneously transmit costimulatory signals with CD3 zeta signals upon ligation, but may lead to severe adverse effects

  18. A Self-Stabilizing Synchronization Protocol for Arbitrary Digraphs

    Science.gov (United States)

    Malekpour, Mahyar R.

    2011-01-01

    This paper presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period. We present an outline of a deductive proof of the correctness of the protocol. A bounded model of the protocol was mechanically verified for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  19. Randomness and arbitrary coordination in the reactive ultimatum game

    Science.gov (United States)

    da Silva, Roberto; Valverde, Pablo; Lamb, Luis C.

    2016-07-01

    Darwin's theory of evolution - as introduced in game theory by Maynard Smith - is not the only important evolutionary aspect in an evolutionary dynamics, since complex interdependencies, competition, and growth should be modeled by, for example, reactive aspects. In the ultimatum game, the reciprocity and the fifty-fifty partition seems to be a deviation from rational behavior of the players under the light of Nash equilibrium. Such equilibrium emerges, for example, from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version of the game, the proposers are able to improve their proposals by adding a value thus making fairer proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a fundamental aspect: they reflect their actions according to value of the offers. Recently, a reactive version of the ultimatum game where acceptance occurs with fixed probability was proposed. In this paper, we aim at exploring this reactive version of the ultimatum game where the acceptance by players depends on the offer. In order to do so, we analyze two situations: (i) mean field and (ii) we consider players inserted within the networks with arbitrary coordination. We then show that the reactive aspect, here studied, thus far not analyzed in the evolutionary game theory literature can unveil an essential feature for the convergence to fifty-fifty split. Moreover we also analyze populations under four different polices ranging from a highly conservative to a moderate one, with respect to the decision in changing the proposal based on acceptances. We show that the idea of gaining less more times added to the reciprocity of the players is highly relevant to the concept of ;healthy; societies population bargaining.

  20. Generalization of the Ewens sampling formula to arbitrary fitness landscapes.

    Directory of Open Access Journals (Sweden)

    Pavel Khromov

    Full Text Available In considering evolution of transcribed regions, regulatory sequences, and other genomic loci, we are often faced with a situation in which the number of allelic states greatly exceeds the size of the population. In this limit, the population eventually adopts a steady state characterized by mutation-selection-drift balance. Although new alleles continue to be explored through mutation, the statistics of the population, and in particular the probabilities of seeing specific allelic configurations in samples taken from the population, do not change with time. In the absence of selection, the probabilities of allelic configurations are given by the Ewens sampling formula, widely used in population genetics to detect deviations from neutrality. Here we develop an extension of this formula to arbitrary fitness distributions. Although our approach is general, we focus on the class of fitness landscapes, inspired by recent high-throughput genotype-phenotype maps, in which alleles can be in several distinct phenotypic states. This class of landscapes yields sampling probabilities that are computationally more tractable and can form a basis for inference of selection signatures from genomic data. Using an efficient numerical implementation of the sampling probabilities, we demonstrate that, for a sizable range of mutation rates and selection coefficients, the steady-state allelic diversity is not neutral. Therefore, it may be used to infer selection coefficients, as well as other evolutionary parameters from population data. We also carry out numerical simulations to challenge various approximations involved in deriving our sampling formulas, such as the infinite-allele limit and the "full connectivity" assumption inherent in the Ewens theory, in which each allele can mutate into any other allele. We find that, at least for the specific numerical examples studied, our theory remains sufficiently accurate even if these assumptions are relaxed. Thus our

  1. Beyond rational imitation: learning arbitrary means actions from communicative demonstrations.

    Science.gov (United States)

    Király, Ildikó; Csibra, Gergely; Gergely, György

    2013-10-01

    The principle of rationality has been invoked to explain that infants expect agents to perform the most efficient means action to attain a goal. It has also been demonstrated that infants take into account the efficiency of observed actions to achieve a goal outcome when deciding whether to reenact a specific behavior or not. It is puzzling, however, that they also tend to imitate an apparently suboptimal unfamiliar action even when they can bring about the same outcome more efficiently by applying a more rational action alternative available to them. We propose that this apparently paradoxical behavior is explained by infants' interpretation of action demonstrations as communicative manifestations of novel and culturally relevant means actions to be acquired, and we present empirical evidence supporting this proposal. In Experiment 1, we found that 14-month-olds reenacted novel arbitrary means actions only following a communicative demonstration. Experiment 2 showed that infants' inclination to reproduce communicatively manifested novel actions is restricted to behaviors they can construe as goal-directed instrumental acts. The study also provides evidence that infants' reenactment of the demonstrated novel actions reflects epistemic motives rather than purely social motives. We argue that ostensive communication enables infants to represent the teleological structure of novel actions even when the causal relations between means and end are cognitively opaque and apparently violate the efficiency expectation derived from the principle of rationality. This new account of imitative learning of novel means shows how the teleological stance and natural pedagogy--two separate cognitive adaptations to interpret instrumental versus communicative actions--are integrated as a system for learning socially constituted instrumental knowledge in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The impact of approximations and arbitrary choices on geophysical images

    Science.gov (United States)

    Valentine, Andrew P.; Trampert, Jeannot

    2016-01-01

    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the

  3. Massive graviton on arbitrary background: derivation, syzygies, applications

    International Nuclear Information System (INIS)

    Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von

    2015-01-01

    We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a ''reference metric' which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized

  4. Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday Applications of zeta functions and other spectral functions in mathematics and physics: a special issue in honour of Stuart Dowker's 75th birthday

    Science.gov (United States)

    Dowker, Fay; Elizalde, Emilio; Kirsten, Klaus

    2012-09-01

    and Dyson F J 1956 Low's scattering equation for the charged and neutral scalar theories Phys. Rev. 101 453 [3] Dowker J S 1961 Application of the Chew and Low extrapolation procedure to K- + d → Y + N + π absorption reactions Il Nuovo Cimento 10 182 [4] Bogoliubov N N and Shirkov D V 1959 Introduction to the Theory of Quantized Fields (New York: Interscience) [5] Eddington A S 1923 The Mathematical Theory of Relativity (Cambridge: Cambridge University Press) [6] Thomson J J 1909 Elements of Electricity and Magnetism 4th edn (Cambridge: Cambridge University Press) [7] Dowker J S and Critchley R 1976 Effective Lagrangian and energy momentum tensor in de Sitter space Phys. Rev. D 13 3224 [8] Schwinger J 1951 On gauge invariance and vacuum polarization Phys. Rev. 82 664 [9] Schulman L S 1968 A path integral for spin Phys. Rev. 176 1558 [10] Dowker J S 1970 When is the sum over classical paths exact? J. Phys. A: Math. Gen. 3 451 [11] Dowker J S 1971 Quantum mechanics on group space and Huygens' principle Ann. Phys. 62 361 [12] Hawking S W 1977 Zeta function regularization of path integrals in curved space-time Comm. Math. Phys. 55133 [13] Hawking S W 1974 Black hole explosions Nature 248 30 [14] Dowker J S and Kennedy G 1978 Finite temperature and boundary effects in static space-times J. Phys. A: Math. Gen. 11 895 [15] Kennedy G, Critchley R and Dowker J S 1980 Finite temperature field theory with boundaries: stress tensor and surface action renormalization Ann. Phys. 125 346 [16] Dowker J S 1977 Quantum field theory on a cone J. Phys. A: Math. Gen. 10 115 [17] Dowker J S and Banach R 1978 Quantum field theory on Clifford-Klein space-times. The effective Lagrangian and vacuum stress-energy tensor J. Phys. A: Math. Gen. 11 2255 [18] Weinberg S 1964 Feynman rules for any spin Phys. Rev. 133 B1318 [19] Fierz M and Pauli W 1939 On relativistic wave equations for particles of arbitrary spin in an electromagnetic field Proc. Roy. Soc. A 173 221 [20] Dowker J S and Dowker Y

  5. H{sub 2} EXCITATION STRUCTURE ON THE SIGHTLINES TO {delta} SCORPII AND {zeta} OPHIUCI: FIRST RESULTS FROM THE SUB-ORBITAL LOCAL INTERSTELLAR CLOUD EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin; Nell, Nicholas; Kane, Robert; Green, James C. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Burgh, Eric B. [SOFIA/USRA, NASA Ames Research Center, M/S N232-12, Moffett Field, CA 94035 (United States); Beasley, Matthew, E-mail: kevin.france@colorado.edu [Planetary Resources, Inc., 93 S Jackson St 50680, Seattle, WA 98104-2818 (United States)

    2013-07-20

    We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070 A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of {eta} Uma, {alpha} Vir, {delta} Sco, and {zeta} Oph were obtained during a 2013 April 21 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material toward {delta} Sco and {zeta} Oph. Our spectra indicate a factor of two lower total N(H{sub 2}) than previously reported for {delta} Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H{sub 2}) = 1.5 Multiplication-Sign 10{sup 19} cm{sup -2} on the {delta} Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n{sub H} = 56 cm{sup -3}. Our observations of the bulk of the molecular sightline toward {zeta} Oph are consistent with previous measurements (N(H{sub 2}) Almost-Equal-To 3 Multiplication-Sign 10{sup 20} cm{sup -2} at T{sub 01}(H{sub 2}) = 66 K and T{sub exc} = 350 K). However, we detect significantly more rotationally excited H{sub 2} toward {zeta} Oph than previously observed. We infer a cloud density in the rotationally excited component of n{sub H} Almost-Equal-To 7600 cm{sup -3} and suggest that the increased column densities of excited H{sub 2} are a result of the ongoing interaction between {zeta} Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally excited H{sub 2} molecules observed by the Hubble Space Telescope.

  6. Josephson junction between two high Tc superconductors with arbitrary transparency of interface

    Directory of Open Access Journals (Sweden)

    GhR Rashedi

    2010-03-01

    Full Text Available In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coefficient via which the tunneling will occur. We have solved the nonlocal Eilenberger equations and obtained the corresponding and suitable Green functions analytically. Then, using the obtained Green functions, the current-phase diagrams have been calculated. The effect of the potential barrier and mis-orientation on the currents is studied analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in high Tc superconductors.

  7. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  8. Finite temperature Casimir energy in closed rectangular cavities: a rigorous derivation based on a zeta function technique

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2007-01-01

    We derive rigorously explicit formulae of the Casimir free energy at finite temperature for massless scalar field and electromagnetic field confined in a closed rectangular cavity with different boundary conditions by a zeta regularization method. We study both the low and high temperature expansions of the free energy. In each case, we write the free energy as a sum of a polynomial in temperature plus exponentially decay terms. We show that the free energy is always a decreasing function of temperature. In the cases of massless scalar field with the Dirichlet boundary condition and electromagnetic field, the zero temperature Casimir free energy might be positive. In each of these cases, there is a unique transition temperature (as a function of the side lengths of the cavity) where the Casimir energy changes from positive to negative. When the space dimension is equal to two and three, we show graphically the dependence of this transition temperature on the side lengths of the cavity. Finally we also show that we can obtain the results for a non-closed rectangular cavity by letting the size of some directions of a closed cavity go to infinity, and we find that these results agree with the usual integration prescription adopted by other authors

  9. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  10. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Directory of Open Access Journals (Sweden)

    Gary P Brennan

    Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

  11. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    Science.gov (United States)

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  12. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces

    International Nuclear Information System (INIS)

    Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.

    2010-01-01

    We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.

  13. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  14. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses.

    Science.gov (United States)

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-08

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  15. RECTC/RECTCF, 2. Order Elliptical Partial Differential Equation, Arbitrary Boundary Conditions

    International Nuclear Information System (INIS)

    Hackbusch, W.

    1983-01-01

    1 - Description of problem or function: A general linear elliptical second order partial differential equation on a rectangle with arbitrary boundary conditions is solved. 2 - Method of solution: Multi-grid iteration

  16. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong

    2005-01-01

    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value

  17. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.; Yoo, J.-H.; Grigoropoulos, C. P.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes

  18. Fractional-calculus-based FDTD algorithm for ultrawideband electromagnetic characterization of arbitrary dispersive dielectric materials

    NARCIS (Netherlands)

    Caratelli, Diego; Mescia, Luciano; Bia, Pietro; Stukach, Oleg V.

    2016-01-01

    A novel finite-difference time-domain algorithm for modeling ultrawideband electromagnetic pulse propagation in arbitrary multirelaxed dispersive media is presented. The proposed scheme is based on a general, yet computationally efficient, series representation of the fractional derivative operators

  19. Hardware in the loop simulation of arbitrary magnitude shaped correlated radar clutter

    CSIR Research Space (South Africa)

    Strydom, JJ

    2014-10-01

    Full Text Available This paper describes a simple process for the generation of arbitrary probability distributions of complex data with correlation from sample to sample, optimized for hardware in the loop radar environment simulation. Measured radar clutter is used...

  20. Numerical solution for multi-term fractional (arbitrary) orders differential equations

    OpenAIRE

    El-Sayed, A. M. A.; El-Mesiry, A. E. M.; El-Saka, H. A. A.

    2004-01-01

    Our main concern here is to give a numerical scheme to solve a nonlinear multi-term fractional (arbitrary) orders differential equation. Some results concerning the existence and uniqueness have been also obtained.

  1. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  2. Distillation of the Greenberger-Horne-Zeilinger state from arbitrary tripartite states

    International Nuclear Information System (INIS)

    Mo Yina; Li Chuanfeng; Guo Guangcan

    2002-01-01

    We present a method of distillation of Greenberger-Horne-Zeilinger states from arbitrary tripartite pure states by local operations and classical communication. We go further to discuss the various results we get and calculate the efficiency of the protocol

  3. Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions

    Indian Academy of Sciences (India)

    Hamiltonian method, defining isochronous constant and identifying .... (7) exhibits isochronous properties provided the arbitrary functions f (x) and g(x) ...... we have focussed our attention on the progress made in the identification/generation.

  4. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  5. ON PARTIAL DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH SYMMETRIES DEPENDING ON ARBITRARY FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Giorgio Gubbiotti

    2016-06-01

    Full Text Available In this note we present some ideas on when Lie symmetries, both point and generalized, can depend on arbitrary functions. We show a few examples, both in partial differential and partial difference equations where this happens. Moreover we show that the infinitesimal generators of generalized symmetries depending on arbitrary functions, both for continuous and discrete equations, effectively play the role of master symmetries.

  6. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  7. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-07-27

    We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.

  8. A False-name-Proof Double Auction Protocol for Arbitrary Evaluation Values

    Science.gov (United States)

    Sakurai, Yuko; Yokoo, Makoto

    We develop a new false-name-proof double auction protocol called the Generalized Threshold Price Double auction (GTPD) protocol. False-name-proofness generalizes strategy-proofness by incorporating the possibility of false-name bids, e.g., bids submitted using multiple e-mail addresses. An existing protocol called TPD protocol is false-name-proof but can handle only the cases where marginal utilities of each agent always decrease, while our new GTPD protocol can handle arbitrary evaluation values. When marginal utilities can increase, some bids cannot be divided into a single unit (e.g., an all-or-nothing bid). Due to the existence of such indivisible bids, meeting supply/demand becomes difficult. Furthermore, a seller/buyer can submit a false-name-bid by pretending to be a potential buyer/seller to manipulate allocations and payments. In the GTPD protocol, the auctioneer is required to absorb the supply-demand imbalance up to a given upper-bound. Also, the GTPD incorporate a new false-name-proof one-sided auction protocol that is guaranteed to sell/buy a certain number of units. Simulation results show that when the threshold price is set appropriately, this protocol can obtain a good social surplus, and the number of absorbed units is much smaller than the given upper-bound.

  9. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  10. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    International Nuclear Information System (INIS)

    Hua Ting-Ting; Guo Yu-Feng; Yu Ying; Jian Tong; Yao Jia-Fei; Sheu Gene

    2013-01-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here. (interdisciplinary physics and related areas of science and technology)

  11. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    Science.gov (United States)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  12. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    Science.gov (United States)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  13. Extension of anisotropic effective medium theory to account for an arbitrary number of inclusion types

    Science.gov (United States)

    Myles, Timothy D.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2015-01-01

    The purpose of this work is to extend, to multi-components, a previously reported theory for calculating the effective conductivity of a two component mixture. The previously reported theory involved preferentially oriented spheroidal inclusions contained in a continuous matrix, with inclusions oriented relative to a principle axis. This approach was based on Bruggeman's unsymmetrical theory, and is extended to account for an arbitrary number of different inclusion types. The development begins from two well-known starting points; the Maxwell approach and the Maxwell-Garnett approach for dilute mixtures. It is shown that despite these two different starting points, the final Bruggeman type equation is the same. As a means of validating the developed expression, comparisons are made to several existing effective medium theories. It is shown that these existing theories coincide with the developed equations for the appropriate parameter set. Finally, a few example mixtures are considered to demonstrate the effect of multiple inclusions on the calculated effective property. Inclusion types of different conductivities, shapes, and orientations are considered and each of the aforementioned properties is shown to have a potentially significant impact on the calculated mixture property.

  14. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    Science.gov (United States)

    Hua, Ting-Ting; Guo, Yu-Feng; Yu, Ying; Gene, Sheu; Jian, Tong; Yao, Jia-Fei

    2013-05-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here.

  15. Protein kinase C zeta suppresses low- or high-grade colorectal cancer (CRC) phenotypes by interphase centrosome anchoring.

    Science.gov (United States)

    Deevi, Ravi Kiran; Javadi, Arman; McClements, Jane; Vohhodina, Jekaterina; Savage, Kienan; Loughrey, Maurice Bernard; Evergren, Emma; Campbell, Frederick Charles

    2018-04-01

    Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of

  16. Phosphorylated Protein Kinase C (Zeta/Lambda) Expression in Colorectal Adenocarcinoma and Its Correlation with Clinicopathologic Characteristics and Prognosis.

    Science.gov (United States)

    Yeo, Min-Kyung; Kim, Ji Yeon; Seong, In-Ock; Kim, Jin-Man; Kim, Kyung-Hee

    2017-01-01

    Background: Protein kinase C zeta/lambda (PKCζ/λ) is a family of protein kinase enzymes that contributes to cell proliferation and regulation, which are important for cancer development. PKCζ/λ has been shown to be an important regulator of tumorigenesis in intestinal cancer. The phosphorylated form of PKCζ/λ, p-PKCζ/λ, is suggested as an active form of PKCζ/λ. However, p-PKCζ/λ expression and its clinicopathologic implication in colorectal adenocarcinoma (CRAC) are unclear. Methods: Seven whole-tissue sections of malignant polyps containing both non-neoplastic and neoplastic mucosa, 11 adenomas with low-grade dysplasia, and 173 CRACs were examined by immunohistochemistry and western blot assay for p-PKCζ/λ protein expression. The association of p-PKCζ/λ expression with clinicopathologic factors including patient survival was studied. Results: In non-neoplastic epithelia, p-PKCζ/λ showed a weak cytoplasmic immunostaining. Adenomas and CRACs demonstrated up-regulated p-PKCζ/λ detection. Cytoplasmic p-PKCζ/λ expression was higher in CRAC than in adenoma. In CRACs, p-PKCζ/λ expression was inversely correlated with pathologic TNM stage (I-II versus III-IV) and poor differentiation. Statistical correlations between low expression of p-PKCζ/λ with shortened overall survival and disease-free survival were seen (p=0.004 and p=0.034, respectively). Conclusions: P-PKCζ/λ overexpression is implicated in tumorigenesis but down-regulation was a poor prognostic factor in CRAC.

  17. HST-WFC3 Near-Infrared Spectroscopy of Quenched Galaxies at zeta approx 1.5 from the WISP Survey: Stellar Populations Properties

    Science.gov (United States)

    Bedregal, A. G.; Scarlata, C.; Henry, A. L.; Atek, H.; Rafelski, M.; Teplitz, H. I.; Dominguez, A.; Siana, B.; Colbert, J. W.; Malkan, M.; hide

    2013-01-01

    We combine Hubble Space Telescope (HST) G102 and G141 near-IR (NIR) grism spectroscopy with HST/WFC3- UVIS, HST/WFC3-IR, and Spitzer/IRAC [3.6 microns] photometry to assemble a sample of massive (log(Mstar/M solar mass) at approx 11.0) and quenched (specific star formation rate spectroscopy for quenched sources at these redshifts. In contrast to the local universe, zeta approx 1.5 quenched galaxies in the high-mass range have a wide range of stellar population properties. We find that their spectral energy distributions (SEDs) are well fitted with exponentially decreasing star formation histories and short star formation timescales (tau less than or equal to 100 M/yr). Quenched galaxies also show a wide distribution in ages, between 1 and 4 G/yr. In the (u - r)0-versus-mass space quenched galaxies have a large spread in rest-frame color at a given mass. Most quenched galaxies populate the zeta appro. 1.5 red sequence (RS), but an important fraction of them (32%) have substantially bluer colors. Although with a large spread, we find that the quenched galaxies on the RS have older median ages (3.1 G/yr) than the quenched galaxies off the RS (1.5 G/yr). We also show that a rejuvenated SED cannot reproduce the observed stacked spectra of (the bluer) quenched galaxies off the RS. We derive the upper limit on the fraction of massive galaxies on the RS at zeta approx 1.5 to be 2 and the zeta approx 1.5 RS. According to their estimated ages, the time required for quenched galaxies off the RS to join their counterparts on the z approx. 1.5 RS is of the order of approx. 1G/yr.

  18. 'Syncing' Up with the Quinn-Rand-Strogatz Constant: Hurwitz-ZetaFunctions in Non-Linear physics

    Energy Technology Data Exchange (ETDEWEB)

    Durgin, Natalie J.; Garcia, Sofia M.; Flournoy, Tamara; Bailey,David H.

    2007-12-01

    This work extends the analytical and computationalinvestigation of the Quinn-Rand-Strogatz (QRS) constants from non-linearphysics. The QRS constants (c1, c2, ..., cN) are found in a Winfreeoscillator mean-field system used to examine the transition of coupledoscillators as they lose synchronization. The constants are part of anasymptotic expansion of a function related to the oscillatorsynchronization. Previous work used high-precision software packages toevaluate c1 to 42 decimal-digits, which made it possible to recognize andprove that c1 was the root of a certain Hurwitz-zeta function. Thisallowed a value of c2 to beconjectured in terms of c1. Therefore thereis interest in determining the exact values of these constants to highprecision in the hope that general relationships can be establishedbetween the constants and the zeta functions. Here, we compute the valuesof the higher order constants (c3, c4) to more than 42-digit precision byextending an algorithm developed by D.H. Bailey, J.M. Borwein and R.E.Crandall. Several methods for speeding up the computation are exploredand an alternate proof that c1 is the root of a Hurwitz-zeta function isattempted.

  19. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    International Nuclear Information System (INIS)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-01-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  20. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    Science.gov (United States)

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  1. Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing

    Science.gov (United States)

    Chen, Enguo; Wu, Rengmao; Guo, Tailiang

    2014-06-01

    Collimated beam shaping with freeform surface usually employs a predefined mapping to tailor one or multiple freeform surfaces. Limitation on those designs is that the source, the freeform optics and the target are in fixed one-to-one correspondence with each other. To overcome this drawback, this paper presents a kind of freeform microlens array module integrated with an ultra-thin freeform microlens array and a condenser lens to reshape any arbitrary-shape collimated beam into a prescribed uniform rectangular illumination and achieve color mixing. The design theory is explicitly given, and some key issues are addressed. Several different application examples are given, and the target is obtained with high uniformity and energy efficiency. This freeform microlens array module, which shows better flexibility and practicality than the regular designs, can be used not only to reshape any arbitrary-shape collimated beam (or a collimated beam integrated with several sub-collimated beams), but also most importantly to achieve color mixing. With excellent optical performance and ultra-compact volume, this optical module together with the design theory can be further introduced into other applications and will have a huge market potential in the near future.

  2. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  3. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  4. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  5. On the Face of it: Exploring the Interaction Between Racial and Arbitrary Group Recognition

    Directory of Open Access Journals (Sweden)

    Eva Berlot

    2013-09-01

    Full Text Available The cross-race effect – enhanced recognition of racial ingroup faces – has been justified to exist in other categories, such as arbitrary groups. This study aimed to investigate the effect of crossing racial (black/white and arbitrary (blue/yellow categories, in addition to the role of facial expressions in this phenomenon. 120 Caucasian students (from the UK, Macedonia, and Portugal performed a discrimination task (judging faces as new vs. previously seen. Using a within-subjects design, reaction times and accuracy were measured. We hypothesized that (1 the arbitrary group membership of faces would moderate the cross-race effect and (2 the racial group membership of faces would moderate the usual recognition advantage for happy faces.

  6. Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.

    Science.gov (United States)

    Melrose, D B; Mushtaq, A

    2010-11-01

    The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.

  7. Electromagnetic complementary media with arbitrary geometries and non-conformal boundaries

    Science.gov (United States)

    Liu, Guochang; Li, Chao; Chen, Chao; Fang, Guangyou

    2014-06-01

    A generalized folded transformation procedure is presented for the space with arbitrary shapes. General expressions for the constitute parameters of complementary media are deduced, which can be readily applied to design complementary media based transformation optics devices (CMTOD) with arbitrary shapes. It's no longer limited to the situation when the inner and outer boundaries of the CMTOD are conformal or similar shapes, and can be available for the non-conformal situations. Three kinds of CMTOD are designed and studied, which involves a super-lens, an external cloak that hides object outside the cloaking shell, and an illusion optics device that transforms one object to another. Full-wave simulations are carried out to validate the proposed approach. The generalization introduced here makes a step forward for the flexible design of CMTOD with arbitrary geometries.

  8. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  9. Development of a 2-D Simplified P3 FEM Solver for Arbitrary Geometry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Joo, Han Gyu [Seoul National University, Seoul (Korea, Republic of)

    2010-10-15

    In the calculation of power distributions and multiplication factors in a nuclear reactor, the Finite Difference Method (FDM) and the nodal methods are primarily used. These methods are, however, limited to particular geometries and lack general application involving arbitrary geometries. The Finite Element Method (FEM) can be employed for arbitrary geometry application and there are numerous FEM codes to solve the neutron diffusion equation or the Sn transport equation. The diffusion based FEM codes have the drawback of inferior accuracy while the Sn based ones require a considerable computing time. This work here is to seek a compromise between these two by employing the simplified P3 (SP3) method for arbitrary geometry applications. Sufficient accuracy with affordable computing time and resources would be achieved with this choice of approximate transport solution when compared to full FEM based Pn or Sn solutions. For now only 2-D solver is considered

  10. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  11. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Energy Technology Data Exchange (ETDEWEB)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  12. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Science.gov (United States)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  13. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    International Nuclear Information System (INIS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  14. Lennard–Jones interactions between nano-rod like particles at an arbitrary orientation and an infinite flat solid surface

    International Nuclear Information System (INIS)

    Hamady, Saleem; Hijazi, Abbas; Atwi, Ali

    2013-01-01

    An analytical expression for the Lennard–Jones interaction between nano-rods and an infinite flat solid surface is presented. Starting from the elementary Lennard–Jones interaction between two particles, and taking the shape of the nano-rod to be a filled cylinder of radius r and length L, the obtained expression was valid for arbitrary orientation of the nano-rod at variable elevation from the surface. By differentiating the potential with respect to the orientation and elevation we were able to extract the torque and force, respectively, exerted on the nano-rods when approaching a flat surface. The derivation is subjected to the assumption of additivity and approximated for some limiting case

  15. Multipole expansion of acoustical Bessel beams with arbitrary order and location.

    Science.gov (United States)

    Gong, Zhixiong; Marston, Philip L; Li, Wei; Chai, Yingbin

    2017-06-01

    An exact solution of expansion coefficients for a T-matrix method interacting with acoustic scattering of arbitrary order Bessel beams from an obstacle of arbitrary location is derived analytically. Because of the failure of the addition theorem for spherical harmonics for expansion coefficients of helicoidal Bessel beams, an addition theorem for cylindrical Bessel functions is introduced. Meanwhile, an analytical expression for the integral of products including Bessel and associated Legendre functions is applied to eliminate the integration over the polar angle. Note that this multipole expansion may also benefit other scattering methods and expansions of incident waves, for instance, partial-wave series solutions.

  16. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    Science.gov (United States)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  17. Study on Differential Algebraic Method of Aberrations up to Arbitrary Order for Combined Electromagnetic Focusing Systems

    Institute of Scientific and Technical Information of China (English)

    CHENG Min; TANG Tiantong; YAO Zhenhua; ZHU Jingping

    2001-01-01

    Differential algebraic method is apowerful technique in computer numerical analysisbased on nonstandard analysis and formal series the-ory. It can compute arbitrary high order derivativeswith excellent accuracy. The principle of differentialalgebraic method is applied to calculate high orderaberrations of combined electromagnetic focusing sys-tems. As an example, third-order geometric aberra-tion coefficients of an actual combined electromagneticfocusing system were calculated. The arbitrary highorder aberrations are conveniently calculated by dif-ferential algebraic method and the fifth-order aberra-tion diagrams are given.

  18. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  19. Nonlocal electron heat relaxation in a plasma shock at arbitrary ionization number

    International Nuclear Information System (INIS)

    Ramirez, J.; Sanmartin, J.R.; Fernandez-Feria, R.

    1993-01-01

    A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. Nonlocal effects are only important in the foot of the electronic preheating region, where the electron temperature gradient is the steepest. The results are quantified as a function of a characteristic Knudsen number of that region. This work also generalizes to arbitrary values of Z previous results on plasma shock wave structure

  20. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    Science.gov (United States)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  1. Probabilistic Teleportation of an Arbitrary Three-Level Two-Particle State and Classical Communication Cost

    Institute of Scientific and Technical Information of China (English)

    DAIHong-Yi; KUANGLe-Man; LICheng-Zu

    2005-01-01

    We propose a scheme to probabilistically teleport an unknown arbitrary three-level two-particle state by using two partial entangled two-particle states of three-level as the quantum channel. The classical communication cost required in the ideal probabilistic teleportation process is also calculated. This scheme can be directly generalized to teleport an unknown and arbitrary three-level K-particle state by using K partial entangled two-particle states of three-level as the quantum channel.

  2. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang

    2007-01-01

    Recently, Yeo and Chua [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502] gave a protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state, which is not reducible to a pair of Bell state. Here, we present a 'transformation operator' to give a criterion for faithful teleportation of an arbitrary two-qubit state via a four-qubit entangled state. The theoretical explanations of some quantum channels are given in term of transformation operators. The relation between the transformation operators and the Bell base measurement is also obtained. Furthermore, a new four-qubit entangled state quantum channel is presented

  3. Differential algebraic method for arbitrary order curvilinear-axis combined geometric-chromatic aberration analysis

    International Nuclear Information System (INIS)

    Cheng Min; Tang Tiantong; Lu Yilong; Yao Zhenhua

    2003-01-01

    The principle of differential algebra is applied to analyse and calculate arbitrary order curvilinear-axis combined geometric-chromatic aberrations of electron optical systems. Expressions of differential algebraic form of high order combined aberrations are obtained and arbitrary order combined aberrations can be calculated numerically. As an example, a typical wide electron beam focusing system with curved optical axes named magnetic immersion lens has been studied. All the second-order and third-order combined geometric-chromatic aberrations of the lens have been calculated, and the patterns of the corresponding geometric aberrations and combined aberrations have been given as well

  4. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    International Nuclear Information System (INIS)

    He, Xiao; Wu, Linzhi

    2014-01-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device

  5. Illusion thermodynamics: A camouflage technique changing an object into another one with arbitrary cross section

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Wu, Linzhi, E-mail: wlz@hit.edu.cn [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China)

    2014-12-01

    The previously reported magical thermal devices, such as the thermal invisible cloak and the thermal concentrator, are generalized into one general case named here thermal illusion device. The thermal illusion device is displayed by the design of a thermal reshaper which can reshape an arbitrary thermal object into another one with arbitrary cross section. General expressions of the material parameters for the thermal reshaper are derived unambiguously to greatly facilitate the design of general thermal illusion device. We believe that this work will broaden the current research and pave a path to the thermal invisibility. Numerical simulations show good agreement with the analytical results of the thermal illusion device.

  6. Phase transition in anisotropic holographic superfluids with arbitrary dynamical critical exponent z and hyperscaling violation factor α

    Energy Technology Data Exchange (ETDEWEB)

    Park, Miok [Korea Institute for Advanced Study, Seoul (Korea, Republic of); Park, Jiwon; Oh, Jae-Hyuk [Hanyang University, Department of Physics, Seoul (Korea, Republic of)

    2017-11-15

    Einstein-scalar-U(2) gauge field theory is considered in a spacetime characterized by α and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential μ. It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and α, we first apply Sturm-Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4 to check if the Sturm-Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential μ{sub c} for the given parameter region of α and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and α. However, for large values of z and α, the anisotropic phase is not favored. (orig.)

  7. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    Science.gov (United States)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our

  8. 3-D analysis of Maxwell's equations for cavities of arbitrary shape

    International Nuclear Information System (INIS)

    Whealton, J.H.; Chen, G.L.; McGaffey, R.W.; Raridon, R.J.; Jaeger, E.F.; Bell, M.A.; Hoffman, D.J.

    1986-03-01

    A three-dimensional analysis of cavity antennas is presented. The analysis is based on the finite difference method with a successive overrelaxation convergence scheme. This method permits the calculation of resonance frequencies and corresponding electric and magnetic fields of eigenmodes in a cavity antenna with an arbitrary shape. 12 refs., 8 figs

  9. The Arbitrariness of the Sign: Learning Advantages from the Structure of the Vocabulary

    Science.gov (United States)

    Monaghan, Padraic; Christiansen, Morten H.; Fitneva, Stanka A.

    2011-01-01

    Recent research has demonstrated that systematic mappings between phonological word forms and their meanings can facilitate language learning (e.g., in the form of sound symbolism or cues to grammatical categories). Yet, paradoxically from a learning viewpoint, most words have an arbitrary form-meaning mapping. We hypothesized that this paradox…

  10. The entropy of Garfinkle-Horne dilaton black hole due to arbitrary spin fields

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yougen(沈有根)

    2002-01-01

    Using the membrane model which is based on brick wall model, we calculated the free energy and entropy of Garfinkle-Horne dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a coefficient between them.

  11. Wavefronts, light rays and caustic of a circular wave reflected by an arbitrary smooth curve

    International Nuclear Information System (INIS)

    Marciano-Melchor, Magdalena; Silva-Ortigoza, Ramón; Montiel-Piña, Enrique; Román-Hernández, Edwin; Santiago-Santiago, José Guadalupe; Silva-Ortigoza, Gilberto; Rosado, Alfonso; Suárez-Xique, Román

    2011-01-01

    The aim of the present work is to obtain expressions for both the wavefront train and the caustic associated with the light rays reflected by an arbitrary smooth curve after being emitted by a point light source located at an arbitrary position in the two-dimensional free space. To this end, we obtain an expression for the k-function associated with the general integral of Stavroudis to the eikonal equation that describes the evolution of the reflected light rays. The caustic is computed by using the definitions of the critical and caustic sets of the two-dimensional map that describes the evolution of an arbitrary wavefront associated with the general integral. The general results are applied to circular and parabolic mirrors. The main motivation to carry out this research is to establish, in future work, the caustic touching theorem in a two-dimensional optical medium and to study the diffraction problem by using the k-function concept. Both problems are important in the computation of the image of an arbitrary object under reflection and refraction

  12. On the integration of the arbitrary Lagrangian-Eulerian concept and non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Knobbe, E.M.

    2010-01-01

    The aim of this treatise is to present a harmonious mathematical formulation of an explicit moving mesh method that can be used as a basis for many numerical techniques. In most cases a moving mesh is only used to include arbitrary motions and deformations of a geometry into the simulation of a

  13. Partial wave expansions for arbitrary spin and the role of non-central forces

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1976-09-01

    The partial wave expansion of the amplitudes used by Hooton and Johnson for the scattering of particles of arbitrary spin is derived. A discussion is given of the extent to which effects arising from transition matrix elements that are diagonal and nondiagonal in orbital angular momentum can be distinguished in observables

  14. A novel ultrawideband FDTD numerical modeling of ground penetrating radar on arbitrary dispersive soils

    NARCIS (Netherlands)

    Mescia, L.; Bia, P.; Caratelli, D.

    2017-01-01

    A novel two-dimensional (2-D) finite-difference timedomain algorithm for modeling ultrawideband pulse propagation in arbitrary dispersive soils is presented. The soil dispersion is modeled by general power law series representation, accounting for multiple higher order dispersive relaxation

  15. 44 CFR 5.60 - Disciplinary action against employees for “arbitrary or capricious” denial.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Disciplinary action against... INFORMATION Described Records § 5.60 Disciplinary action against employees for “arbitrary or capricious... Protection Board is required to initiate a proceeding to determine whether disciplinary action is warranted...

  16. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: liwei-b09@mails.gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Department of Physics, Beihang University, Beijing 100191 (China); Gong Shoushu [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Chen Ziyu [Department of Physics, Beihang University, Beijing 100191 (China); Zhao Yang [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Su Gang, E-mail: gsu@gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China)

    2010-05-31

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  17. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    International Nuclear Information System (INIS)

    Li Wei; Gong Shoushu; Chen Ziyu; Zhao Yang; Su Gang

    2010-01-01

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  18. Generation of Arbitrary Pure States for Three-dimensional Motion of a Trapped Ion

    International Nuclear Information System (INIS)

    Li Dachuang; Dong Ping; Cao Zhuoliang; Wang Xianping; Yang Ming

    2010-01-01

    In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Conditional generation of arbitrary multimode entangled states of light with linear optics

    International Nuclear Information System (INIS)

    Fiurasek, J.; Massar, S.; Cerf, N. J.

    2003-01-01

    We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single-photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available

  20. Quaternion based generalization of Chern–Simons theories in arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Alessandro D'Adda

    2017-08-01

    Full Text Available A generalization of Chern–Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.