WorldWideScience

Sample records for arbitrary lagrangian-eulerian method

  1. Evaluation of Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian methods for fluid-structure interaction problems in HCDA analysis

    International Nuclear Information System (INIS)

    Chang, Y.W.; Chu, H.Y.; Gvildys, J.; Wang, C.Y.

    1979-01-01

    The analysis of fluid-structure interaction involves the calculation of both fluid transient and structure dynamics. In the structural analysis, Lagrangian meshes have been used exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these three types of meshes. The emphasis is placed on the applicability of the method in analyzing fluid-structure interaction problems in HCDA analysis

  2. Simulation of Steady Laser Hardening by an Arbitrary Lagrangian Eulerian Method

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Huetink, Han

    2004-01-01

    One of the most practical methods for simulation of steady state thermal processing is the Arbitrary Lagrangian- Eulerian method. Each calculation step is split into two phases. In the first phase, the Lagrangian phase, the element mesh remains attached to the material. The evolution of the state

  3. An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Rieben, R N; White, D A; Wallin, B K; Solberg, J M

    2006-06-12

    We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.

  4. Development of a multimaterial, two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program

    International Nuclear Information System (INIS)

    Barton, R.T.

    1982-01-01

    We have developed a large, multimaterial, two-dimensional Arbitrary Lagrangian-Eulerian (ALE) computer program. The special feature of an ALE mesh is that it can be either an embedded Lagrangian mesh, a fixed Eulerian mesh, or a partially embedded, partially remapped mesh. Remapping is used to remove Lagrangian mesh distortion. This general purpose program has been used for astrophysical modeling, under the guidance of James R. Wilson. The rationale behind the development of this program will be used to highlight several important issues in program design

  5. Arbitrary Lagrangian-Eulerian method for non-linear problems of geomechanics

    International Nuclear Information System (INIS)

    Nazem, M; Carter, J P; Airey, D W

    2010-01-01

    In many geotechnical problems it is vital to consider the geometrical non-linearity caused by large deformation in order to capture a more realistic model of the true behaviour. The solutions so obtained should then be more accurate and reliable, which should ultimately lead to cheaper and safer design. The Arbitrary Lagrangian-Eulerian (ALE) method originated from fluid mechanics, but has now been well established for solving large deformation problems in geomechanics. This paper provides an overview of the ALE method and its challenges in tackling problems involving non-linearities due to material behaviour, large deformation, changing boundary conditions and time-dependency, including material rate effects and inertia effects in dynamic loading applications. Important aspects of ALE implementation into a finite element framework will also be discussed. This method is then employed to solve some interesting and challenging geotechnical problems such as the dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, and the modelling of dynamic penetration of objects into soil layers.

  6. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    Science.gov (United States)

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  7. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anderson, Andrew T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barton, Nathan R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bramwell, Jamie A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Capps, Arlie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, Michael H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chou, Jin J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dawson, David M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Diana, Emily R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunn, Timothy A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Faux, Douglas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fisher, Aaron C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinz, Ines [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kanarska, Yuliya [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khairallah, Saad A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liu, Benjamin T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Margraf, Jon D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nichols, Albert L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reus, James F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robinson, Peter B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Alek I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Taller, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Christopher A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Jeremy L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-23

    ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.

  8. A General Arbitrary Lagrangian Eulerian Formulation for the Numerical Simulation of 3D Forming Processes

    International Nuclear Information System (INIS)

    Boman, R.; Papeleux, L.; Ponthot, J. P.

    2007-01-01

    In this paper, the Arbitrary Lagrangian Eulerian formalism is used to compute the steady state of a 2D metal cutting operation and a 3D U-shaped cold roll forming process. Compared to the Lagrangian case, this method allows the use of a refined mesh near the tools, leading to an accurate representation of the chip formation (metal cutting) and the bending of the sheet (roll forming) with a limited computational time. The main problem of this kind of simulation is the rezoning of the nodes on the free surfaces of the sheet. A modified iterative isoparametric smoother is used to manage this geometrically complex and CPU expensive task

  9. Analysis of primary containment response using an arbitrary Langrangian-Eulerian method

    Energy Technology Data Exchange (ETDEWEB)

    Chungyi, Wang

    1988-02-01

    This paper describes an advanced arbitrary Lagrangian-Eulerian method and its associated computer program, ALICE-II, for calculating the response of liquid metal reactor containment to core energetics. It is a versatile numerical algorithm with more flexibility and efficiency than other methods used to treat reactor containment with complex internals such as internal thin shells, upper internal structures, perforated plates, core-support diagrid, shield baffles, and deflector plates. The algorithm uses a two-dimensional, hybrid Lagrangian-Eulerian finite-difference technique to calculate the hydrodynamics and fluid-structure interactions, together with a purely Eulerian finite-difference approach to analyze the free-surface and material interface motions. It has significant advantages in treating complex phenomena such as flow through perforated structures, large material distortions, multi-dimensional sliding interfaces, flow around corners, highly contorted fluid boundaries, outflow boundary conditions, and coolant spillage. Numerical calculations for the hydrodynamic solutions are separated into three phases. The first phase consists of an explicit Lagrangian calculation. The second phase, which is options, contains an implicit iteration. The third phase, which is also optional, rezones the mesh vertices to prescribed positions. The structural response is computed by a library of elastic-plastic elements formulated in corotational coordinates in conjunction with an explicit time-integration scheme. Interaction between fluid and structure is accounted for by rigorously enforcing the interface boundary conditions. Many sample problems are given to illustrate the code effectiveness. Results demonstrate that these complex fluid-structure interaction problems can be analyzed with the ALICE-II code in a relatively natural and straightforward manner.

  10. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    Science.gov (United States)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  11. An arbitrary Lagrangian-Eulerian method for interfacial flows with insoluble surfactants

    Science.gov (United States)

    Yang, Xiaofeng

    Interfacial flows, fluid flows involving two or more fluids that do not mix, are common in many natural and industrial processes such as rain drop formation, crude oil recovery, polymer blending, fuel spray formation, and so on. Surfactants (surface active substances) play an important role in such processes because they significantly change the interfacial dynamics. In this thesis, an arbitrary Lagrangian-Eulerian (ALE) method has been developed to numerically simulate interfacial flows with insoluble surfactants. The interface is captured using a coupled level set and volume of fluid method. To evolve the surfactant concentration, the method directly tracks the surfactant mass and the interfacial area. The surfactant concentration, which determines the local surface tension through an equation of state, is then computed as surfactant mass per interfacial area. By directly tracking the surfactant mass, the method conserves the surfactant mass exactly. To accurately approximate the interfacial area, the fluid interface is reconstructed using piecewise parabolas. The evolution of the level set function, volume fraction, interfacial area, and the surfactant mass is performed using an ALE approach. The fluid flow is governed by Stokes equations, which are solved using a finite element method. The surface forces are included in the momentum equation using a continuum surface stress formulation. To efficiently resolve the complex interfacial dynamics, interfacial regions of high surface curvature, and near contact regions between two interacting interfaces, the grid near the interface is adaptively refined. The method is extendible to axisymmetric and 3D spaces, and can be coupled with other flow solvers, such as Navier-Stokes and viscoelastic flow solvers, as well. The method has been applied to study the effect of surfactants on drop deformation and breakup in an extensional flow. Drop deformation results are compared with available experimental and theoretical

  12. Numerical methods for Eulerian and Lagrangian conservation laws

    CERN Document Server

    Després, Bruno

    2017-01-01

    This book focuses on the interplay between Eulerian and Lagrangian conservation laws for systems that admit physical motivation and originate from continuum mechanics. Ultimately, it highlights what is specific to and beneficial in the Lagrangian approach and its numerical methods. The two first chapters present a selection of well-known features of conservation laws and prepare readers for the subsequent chapters, which are dedicated to the analysis and discretization of Lagrangian systems. The text is at the frontier of applied mathematics and scientific computing and appeals to students and researchers interested in Lagrangian-based computational fluid dynamics. It also serves as an introduction to the recent corner-based Lagrangian finite volume techniques.

  13. AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION

    Science.gov (United States)

    Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...

  14. SALE-3D, 3-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method

    International Nuclear Information System (INIS)

    Amsden, A.A.; Ruppel, H.M.

    1991-01-01

    1 - Description of problem or function: SALE-3D calculates three- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: SALE3D uses an ICED-ALE technique, which combines the ICE method of treating flow speeds and the ALE mesh treatment to calculate three-dimensional fluid flow. The finite- difference approximations to the conservation of mass, momentum, and specific internal energy differential equations are solved in a sequence of time steps on a network of deformable computational cells. The basic hydrodynamic part of each cycle is divided into three phases: (1) an explicit solution of the Lagrangian equations of motion updating the velocity field by the effects of all forces, (2) an implicit calculation using Newton-Raphson iterative scheme that provides time-advanced pressures and velocities, and (3) the addition of advective contributions for runs that are Eulerian or contain some relative motion of grid and fluid. A powerful feature of this three-phases approach is the ease with which

  15. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    Science.gov (United States)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  16. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    Science.gov (United States)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  17. Presentation of two Lagrangian and coupled Eulerian-Lagrangian methods for fluid-structure interaction

    International Nuclear Information System (INIS)

    Blanchet, Y.; Obry, P.; Louvet, J.; Graveleau, J.

    1981-04-01

    Two different numerical methods have been implemented in two computer codes developed in CEA/DRNR, Cadarache, to predict the dynamic response of the containment of Super-Phenix reactor after a hypothetical energy excursion. Both codes are 2D-axisymmetric and solve the time-dependent flow of compressible fluids in the presence of deformable thin structures. The first one, called SIRIUS, uses only Lagrangian meshes; in the second one, called CASSIOPEE, the thick elastic-plastic materials are calculated in Lagrangian coordinates while fluids can be calculated either in Lagrangian or in Eulerian coordinates. The treatment of hydrodynamic, elastic-plastic thick domains then the thin shells models and the fluid-structure couplings are described in parallel for both codes. The efficiency and the limits of the previous methods are finally illustrated by comparison of measured and predicted strains of a vessel issued from one of the MARA experiments which are being purposely performed in Cadarache for validation of these codes in Super-Phenix scale models. These comparisons are encouraging and justify that the Super-Phenix reactor vessel response can be determined using the SIRIUS and CASSIOPEE codes

  18. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates

    Science.gov (United States)

    Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.

  19. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    Science.gov (United States)

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  20. IMPOSING A LAGRANGIAN PARTICLE FRAMEWORK ON AN EULERIAN HYDRODYNAMICS INFRASTRUCTURE IN FLASH

    International Nuclear Information System (INIS)

    Dubey, A.; Daley, C.; Weide, K.; Graziani, C.; ZuHone, J.; Ricker, P. M.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  1. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    Science.gov (United States)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  2. A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.

    Science.gov (United States)

    Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu

    2017-10-01

    The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.

  3. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Eulerian and Lagrangian statistics from high resolution numerical simulations of weakly compressible turbulence

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.

    2009-01-01

    We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data

  5. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.

    1977-01-01

    The basic finite element equations for transient compressible fluid flow are presented in a form that allows the elements to be moved with the fluid in normal Lagrangian fashion, to be held fixed in a Eulerian manner, or to be moved in some arbitrarily specified way. The co-existence of Lagrangian and Eulerian regions within the finite element mesh will permit to handle greater distortions in the fluid motion than would be allowed by a purely Lagrangian method, with more resolution than is afforded by a purely Eulerian method. To achieve a mixed formulation, the conservation statements of mass, momentum and energy are expressed in integral form over a reference volume whose surface may be moving with an arbitrarily prescribed velocity. Direct use can be made of the integral forms of the mass and energy equations to adjust the element density and specific internal energy. The Galerkin process is employed to formulate a variational statement associated with the momentum equation. The difficulties associated with the presence of convective terms in the conservation equations are handled by expressing transports of mass, momentum and energy terms of intermediate velocities derived at each cycle from the previous cycle velocities and accelerations. The hydrodynamic elements presented are triangles, quadrilaterals with constant pressure and density. The finite element equations associated with these elements are described in the necessary detail. Numerical results are presented based on purely Lagrangian, purely Eulerian and mixed formulations. Simple problems with analytic solution are solved first to show the validity and accuracy of the proposed mixed finite element formulation. Then, practical problems are illustrated in the field of fast reactor safety analysis

  6. Dynamic Load Balancing for PIC code using Eulerian/Lagrangian partitioning

    OpenAIRE

    Sauget, Marc; Latu, Guillaume

    2017-01-01

    This document presents an analysis of different load balance strategies for a Plasma physics code that models high energy particle beams with PIC method. A comparison of different load balancing algorithms is given: static or dynamic ones. Lagrangian and Eulerian partitioning techniques have been investigated.

  7. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.

    Directory of Open Access Journals (Sweden)

    Alessandra M Bavo

    Full Text Available In recent years the role of FSI (fluid-structure interaction simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results.

  8. A comparison of Lagrangian/Eulerian approaches for tracking the kinematics of high deformation solid motion.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad

    2009-09-01

    The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.

  9. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    Science.gov (United States)

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  10. Flow Modeling in Pelton Turbines by an Accurate Eulerian and a Fast Lagrangian Evaluation Method

    Directory of Open Access Journals (Sweden)

    A. Panagiotopoulos

    2015-01-01

    Full Text Available The recent development of CFD has allowed the flow modeling in impulse hydro turbines that includes complex phenomena like free surface flow, multifluid interaction, and unsteady, time dependent flow. Some commercial and open-source CFD codes, which implement Eulerian methods, have been validated against experimental results showing satisfactory accuracy. Nevertheless, further improvement of accuracy is still a challenge, while the computational cost is very high and unaffordable for multiparametric design optimization of the turbine’s runner. In the present work a CFD Eulerian approach is applied at first, in order to simulate the flow in the runner of a Pelton turbine model installed at the laboratory. Then, a particulate method, the Fast Lagrangian Simulation (FLS, is used for the same case, which is much faster and hence potentially suitable for numerical design optimization, providing that it can achieve adequate accuracy. The results of both methods for various turbine operation conditions, as also for modified runner and bucket designs, are presented and discussed in the paper. In all examined cases the FLS method shows very good accuracy in predicting the hydraulic efficiency of the runner, although the computed flow evolution and the torque curve exhibit some systematic differences from the Eulerian results.

  11. Statistics of a mixed Eulerian-Lagrangian velocity increment in fully developed turbulence

    International Nuclear Information System (INIS)

    Friedrich, R; Kamps, O; Grauer, R; Homann, H

    2009-01-01

    We investigate the relationship between Eulerian and Lagrangian probability density functions obtained from numerical simulations of two-dimensional as well as three-dimensional turbulence. We show that in contrast to the structure functions of the Lagrangian velocity increment δ τ v(y)=u(x(y, τ), τ)- u(y, 0), where u(x, t) denotes the Eulerian velocity and x(y, t) the particle path initially starting at x(y, 0)=y, the structure functions of the velocity increment δ τ w(y)=u(x(y, τ), τ)- u(y, τ) exhibit a wide range of scaling behavior. Similar scaling indices are detected for the structure functions for particles diffusing in frozen turbulent fields. Furthermore, we discuss a connection to the scaling of Eulerian transversal structure functions.

  12. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    Science.gov (United States)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  13. ICECO-CEL: a coupled Eulerian-Lagrangian code for analyzing primary system response in fast reactors

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1981-02-01

    This report describes a coupled Eulerian-Lagrangian code, ICECO-CEL, for analyzing the response of the primary system during hypothetical core disruptive accidents. The implicit Eulerian method is used to calculate the fluid motion so that large fluid distortion, two-dimensional sliding interface, flow around corners, flow through coolant passageways, and out-flow boundary conditions can be treated. The explicit Lagrangian formulation is employed to compute the response of the containment vessel and other elastic-plastic solids inside the reactor containment. Large displacements, as well as geometrical and material nonlinearities are considered in the analysis. Marker particles are utilized to define the free surface or the material interface and to visualize the fluid motion. The basic equations and numerical techniques used in the Eulerian hydrodynamics and Lagrangian structural dynamics are described. Treatment of the above-core hydrodynamics, sodium spillage, fluid cavitation, free-surface boundary conditions and heat transfer are also presented. Examples are given to illustrate the capabilities of the computer code. Comparisons of the code predictions with available experimental data are also made

  14. On the Eulerian-Lagrangian Transform in the Statistical Theory of Turbulence

    DEFF Research Database (Denmark)

    Wandel, C. F:; Kofoed-Hansen, O.

    1962-01-01

    "Fundamental Problems in Turbulence" Conference Paper (see Abstr. 1962A024007). Two important types of probing of a turbulent velocity field droarr/dtoarr = voarr (voarr constant) and the Lagrangian probing defined by droarr/dtoarr = roarr (roarr t). Explicit expressions are derived for the trans......"Fundamental Problems in Turbulence" Conference Paper (see Abstr. 1962A024007). Two important types of probing of a turbulent velocity field droarr/dtoarr = voarr (voarr constant) and the Lagrangian probing defined by droarr/dtoarr = roarr (roarr t). Explicit expressions are derived...... for the transformation of autocorrelations and power spectra obtained by Eulerian and Lagrangian probing in the case of fully developed isotropic and homogeneous turbulence. The derivations are based on a statistical representation of the turbulent velocity field using the results of the equilibrium theory of turbulence....... The Taylor (1921) hypothesis is verified in the limit of high probing velocities. The Hay-Pasquill (1960) conjecture relating the Lagrangian and Eulerian power spectra results as an approximation to the transformation equations. Application of the results to the theory of turbulent diffusion is indicated....

  15. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig

    2012-02-01

    We present a method for applying semi-implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has semi-implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension as a semi-implicit Lagrangian force, the resulting method benefits from improved stability and the ability to take larger time steps. The resulting discretization is also able to maintain parasitic currents at low levels. © 2011.

  16. Lagrangian and Eulerian diffusion study in the coastal surface layers. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Carter, H.H.; Okubo, A.; Wilson, R.E.; Sanderson, B.; Pritchard, D.W.

    1980-07-01

    This research project addresses a fundamental problem in turbulence theory, the relation between Lagrangian and Eulerian statistics, by carrying out, analyzing, and interpreting a set of field experiments in the coastal waters off the south shore of Long Island. The study will not only provide information on the relation between the Lagrangian and Eulerian autocorrelations but also between the various experimental methods for quantitatively estimating turbulent diffusion. Two experiments, one in summer and one in winter, consisting of simultaneous measurements of dye diffusion, drogue dispersion, and Eulerian current velocities in a typical coastal locale were planned. In order to ensure a match between the Lagrangian (drogues, dye) scales of motion and the Eulerian (current meters) scales, however, a preliminary experiment, consisting of a 6 mooring current meter array and a short (approx. 3 hours) drogue experiment, was conducted during March 1980. Results of this preliminary experiment and their implications to the experimental program are discussed. The principal results were an improved design of our current meter array, and a wider variety of drogue experiments, i.e., multi-level, multi-scale, and continuous source simulation

  17. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    Science.gov (United States)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  18. A Locally Conservative Eulerian--Lagrangian Method for a Model Two-Phase Flow Problem in a One-Dimensional Porous Medium

    KAUST Repository

    Arbogast, Todd; Huang, Chieh-Sen; Russell, Thomas F.

    2012-01-01

    Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a

  19. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    Science.gov (United States)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  20. Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations

    International Nuclear Information System (INIS)

    Atzberger, Paul J.

    2011-01-01

    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.

  1. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence

    OpenAIRE

    Schmitt , François G

    2005-01-01

    Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...

  2. Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.

    Science.gov (United States)

    Suk, Heejun

    2016-07-01

    MT3DMS, a modular three-dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian-Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third-order total-variation-diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes. © 2016, National Ground Water Association.

  3. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total

  4. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with

  5. Serial fusion of Eulerian and Lagrangian approaches for accurate heart-rate estimation using face videos.

    Science.gov (United States)

    Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan

    2017-07-01

    Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.

  6. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  7. Users' manual for LEHGC: A Lagrangian-Eulerian Finite-Element Model of Hydrogeochemical Transport Through Saturated-Unsaturated Media. Version 1.1

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    1995-11-01

    The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N 2 as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids

  8. On the integration of the arbitrary Lagrangian-Eulerian concept and non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Knobbe, E.M.

    2010-01-01

    The aim of this treatise is to present a harmonious mathematical formulation of an explicit moving mesh method that can be used as a basis for many numerical techniques. In most cases a moving mesh is only used to include arbitrary motions and deformations of a geometry into the simulation of a

  9. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    Science.gov (United States)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  10. A mechanistic Eulerian-Lagrangian model for dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    In this paper a new mechanistic model of heat transfer in the dispersed flow regime is presented. The usual assumptions that render most of the available models unsuitable for the analysis of the reflooding phase of the LOCA are discussed, and a two-dimensional time-independent numerical model is developed. The gas temperature field is solved in a fixed-grid (Eulerian) mesh, with the droplets behaving as mass and energy sources. The histories of a large number of computational droplets are followed in a Lagrangian frame, considering evaporation, break-up and interactions with the vapor and with the wall. comparisons of calculated wall and vapor temperatures with experimental data are shown for two reflooding tests

  11. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins.

    Science.gov (United States)

    Cucco, Andrea; Umgiesser, Georg

    2015-09-15

    In this work, we investigated if the Eulerian and the Lagrangian approaches for the computation of the Transport Time Scales (TTS) of semi-enclosed water bodies can be used univocally to define the spatial variability of basin flushing features. The Eulerian and Lagrangian TTS were computed for both simplified test cases and a realistic domain: the Venice Lagoon. The results confirmed the two approaches cannot be adopted univocally and that the spatial variability of the water renewal capacity can be investigated only through the computation of both the TTS. A specific analysis, based on the computation of a so-called Trapping Index, was then suggested to integrate the information provided by the two different approaches. The obtained results proved the Trapping Index to be useful to avoid any misleading interpretation due to the evaluation of the basin renewal features just from an Eulerian only or from a Lagrangian only perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Locally Conservative Eulerian--Lagrangian Method for a Model Two-Phase Flow Problem in a One-Dimensional Porous Medium

    KAUST Repository

    Arbogast, Todd

    2012-01-01

    Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.

  13. Lagrangian velocity correlations in homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Gotoh, T.; Rogallo, R.S.; Herring, J.R.; Kraichnan, R.H.

    1993-01-01

    The Lagrangian velocity autocorrelation and the time correlations for individual wave-number bands are computed by direct numerical simulation (DNS) using the passive vector method (PVM), and the accuracy of the method is studied. It is found that the PVM is accurate when K max /k d ≥2 where K max is the maximum wave number carried in the simulation and k d is the Kolmogorov wave number. The Eulerian and Lagrangian time correlations for various wave-number bands are compared. At moderate to high wave number the Eulerian time correlation decays faster than the Lagrangian, and the effect of sweep on the former is observed. The time scale of the Eulerian correlation is found to be (kU 0 ) -1 while that of the Lagrangian is [∫ 0 k p 2 E(p)dp] -1/2 . The Lagrangian velocity autocorrelation in a frozen turbulent field is computed using the DIA, ALHDIA, and LRA theories and is compared with DNS measurements. The Markovianized Lagrangian renormalized approximation (MLRA) is compared with the DNS, and good agreement is found for one-time quantities in decaying turbulence at low Reynolds numbers and for the Lagrangian velocity autocorrelation in stationary turbulence at moderate Reynolds number. The effect of non-Gaussianity on the Lagrangian correlation predicted by the theories is also discussed

  14. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: validation with experimental data using multi-sensor conductivity probes and laser doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Chiva, S. [Univ. Jaume I, Dept. of Mechnical Engineering and Construction, Castellon (Spain); Abd El Aziz Essa, M. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Mendes, S. [Univ. Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica (Mexico)

    2011-07-01

    A set of air-water experiments have been performed under isothermal upward concurrent flow in a vertical column. The interfacial velocity, interfacial area of the bubbles and the void fraction distributions was obtained. Numerical validation of these results for bubbly flow conditions were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. Both Lagrangian and Eulerian calculations were performed in parallel and iterative self-consistent method was developed. The bubbles-induced turbulence is an important issue considered, to obtain good predictions of experimental results. (author)

  15. On the integration of the arbitrary Lagrangian-Eulerian concept and non-equilibrium thermodynamics

    OpenAIRE

    Knobbe, E.M.

    2010-01-01

    The aim of this treatise is to present a harmonious mathematical formulation of an explicit moving mesh method that can be used as a basis for many numerical techniques. In most cases a moving mesh is only used to include arbitrary motions and deformations of a geometry into the simulation of a physical problem. The innovative part of this research is to develop a mechanism that controls the motion of interior mesh points by detecting and tracking the location of physical phenomena. The motio...

  16. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  17. Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Matthew L.; Owen, Steven James

    2010-09-01

    Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.

  18. Numerical simulation of spray coalescence in an Eulerian framework: Direct quadrature method of moments and multi-fluid method

    International Nuclear Information System (INIS)

    Fox, R.O.; Laurent, F.; Massot, M.

    2008-01-01

    The scope of the present study is Eulerian modeling and simulation of polydisperse liquid sprays undergoing droplet coalescence and evaporation. The fundamental mathematical description is the Williams spray equation governing the joint number density function f(v,u;x,t) of droplet volume and velocity. Eulerian multi-fluid models have already been rigorously derived from this equation in Laurent et al. [F. Laurent, M. Massot, P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays, J. Comput. Phys. 194 (2004) 505-543]. The first key feature of the paper is the application of direct quadrature method of moments (DQMOM) introduced by Marchisio and Fox [D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci. 36 (2005) 43-73] to the Williams spray equation. Both the multi-fluid method and DQMOM yield systems of Eulerian conservation equations with complicated interaction terms representing coalescence. In order to focus on the difficulties associated with treating size-dependent coalescence and to avoid numerical uncertainty issues associated with two-way coupling, only one-way coupling between the droplets and a given gas velocity field is considered. In order to validate and compare these approaches, the chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle with sprays having various size distributions, ranging from smooth ones up to Dirac delta functions. The second key feature of the paper is a thorough comparison of the two approaches for various test-cases to a reference solution obtained through a classical stochastic Lagrangian solver. Both Eulerian models prove to describe adequately spray coalescence and yield a very interesting alternative to the Lagrangian solver. The third key point of the study is a detailed description of the limitations associated with each method, thus giving criteria for

  19. Solution of the stellar structure equations in Eulerian coordinates

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1976-01-01

    The equations of hydrostatic and thermal equilibrium, assuming only radiative energy transport and spherical symmetry, are solved in Eulerian coordinates by a suitable modification of the Henyey method. An Eulerian approach may possibly be more suitably extended to more spatial dimensions than the usual Lagrangian procedure. The principle advantage of this method is that the equations of hydrostatic and thermal equilibrium and Poisson's equation may be solved simultaneously

  20. Lagrangian and ALE Formulations For Soil Structure Coupling with Explosive Detonation

    Directory of Open Access Journals (Sweden)

    M Souli

    2017-03-01

    Full Text Available Simulation of Soil-Structure Interaction becomes more and more the focus of computational engineering in civil and mechanical engineering, where FEM (Finite element Methods for structural and soil mechanics and Finite Volume for CFD are dominant. New formulations have been developed for FSI applications using ALE (Arbitrary Lagrangian Eulerian and mesh free methods as SPH method, (Smooth Particle Hydrodynamic. In defence industry, engineers have been developing protection systems for many years to reduce the vulnerability of light armoured vehicles (LAV against mine blast using classical Lagrangian FEM methods. To improve simulations and assist in the development of these protections, experimental tests, and new numerical techniques are performed. To carry out these numerical calculations, initial conditions such as the loading prescribed by a mine on a structure need to be simulated adequately. The effects of blast on structures depend often on how these initial conditions are estimated and applied. In this report, two methods were used to simulate a mine blast: the classical Lagrangian and the ALE formulations. The comparative study was done for a simple and a more complex target. Particle methods as SPH method can also be used for soil structure interaction.

  1. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    Science.gov (United States)

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  2. General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2. Fermionic fields

    International Nuclear Information System (INIS)

    Reshetnyak, A.

    2013-01-01

    We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST–BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, (arXiv:1110.5044 [hep-th])]. Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to osp(k|2k) superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2)

  3. The semi-Lagrangian method on curvilinear grids

    Directory of Open Access Journals (Sweden)

    Hamiaz Adnane

    2016-09-01

    Full Text Available We study the semi-Lagrangian method on curvilinear grids. The classical backward semi-Lagrangian method [1] preserves constant states but is not mass conservative. Natural reconstruction of the field permits nevertheless to have at least first order in time conservation of mass, even if the spatial error is large. Interpolation is performed with classical cubic splines and also cubic Hermite interpolation with arbitrary reconstruction order of the derivatives. High odd order reconstruction of the derivatives is shown to be a good ersatz of cubic splines which do not behave very well as time step tends to zero. A conservative semi-Lagrangian scheme along the lines of [2] is then described; here conservation of mass is automatically satisfied and constant states are shown to be preserved up to first order in time.

  4. Use of the ''Lagrangian and Eulerian points of view'' in the transient critical heat flux calculations for BWR rod bundles and experimental verifications

    International Nuclear Information System (INIS)

    Marinelli, V.; Pellei, A.; Vallero, P.; Vitanza, C.

    1975-01-01

    The calculations performed in comparison of the ''Lagrangian point of view'', by means of the DOLCE computer code with the local space--time approach of the ''Eulerian point of view'' indicate that the two methods give substantially equivalent results and predict satisfactorily the onset of the transient CHF for the Centro Informazioni Studi Esperienze annuli experimental data and General Electric Company 16-rod bundles data under typical boiling water reactor transients, including loss-of-coolant accident simulations. 9 references

  5. Investigation of erosion behavior in different pipe-fitting using Eulerian-Lagrangian approach

    Science.gov (United States)

    Kulkarni, Harshwardhan; Khadamkar, Hrushikesh; Mathpati, Channamallikarjun

    2017-11-01

    Erosion is a wear mechanism of piping system in which wall thinning occurs because of turbulent flow along with along with impact of solid particle on the pipe wall, because of this pipe ruptures causes costly repair of plant and personal injuries. In this study two way coupled Eulerian-Lagrangian approach is used to solve the liquid solid (water-ferrous suspension) flow in the different pipe fitting namely elbow, t-junction, reducer, orifice and 50% open gate valve. Simulations carried out using incomressible transient solver in OpenFOAM for different Reynolds's number (10k, 25k, 50k) and using WenYu drag model to find out possible higher erosion region in pipe fitting. Used transient solver is a hybrid in nature which is combination of Lagrangian library and pimpleFoam. Result obtained from simulation shows that exit region of elbow specially downstream of straight, extradose of the bend section more affected by erosion. Centrifugal force on solid particle at bend affect the erosion behavior. In case of t-junction erosion occurs below the locus of the projection of branch pipe on the wall. For the case of reducer, orifice and a gate valve reduction area as well as downstream is getting more affected by erosion because of increase in velocities.

  6. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    OpenAIRE

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.; Schramm, Jesper; Walther, Jens Honore

    2016-01-01

    The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range of conditions [2,3]. Alternatively, the transported PDF model can also be formulated in the Eulerian framework[4]. The Eulerian PDF is commonly known as the Eulerian Stochastic Fields (ESF) model. ...

  7. Numerical Analysis of Constrained Dynamical Systems, with Applications to Dynamic Contact of Solids, Nonlinear Elastodynamics and Fluid-Structure Interactions

    National Research Council Canada - National Science Library

    Armero, Francisco

    2000-01-01

    ... dissipation for the tangential frictional laws. We have also developed new arbitrary Eulerian-Lagrangian finite element methods with a direct application to the Lagrangian treatment of viscous fluids...

  8. A cavitation model based on Eulerian stochastic fields

    Science.gov (United States)

    Magagnato, F.; Dumond, J.

    2013-12-01

    Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  9. The shallow water equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Mead, J.L.

    2004-01-01

    Recent advances in the collection of Lagrangian data from the ocean and results about the well-posedness of the primitive equations have led to a renewed interest in solving flow equations in Lagrangian coordinates. We do not take the view that solving in Lagrangian coordinates equates to solving on a moving grid that can become twisted or distorted. Rather, the grid in Lagrangian coordinates represents the initial position of particles, and it does not change with time. We apply numerical methods traditionally used to solve differential equations in Eulerian coordinates, to solve the shallow water equations in Lagrangian coordinates. The difficulty with solving in Lagrangian coordinates is that the transformation from Eulerian coordinates results in solving a highly nonlinear partial differential equation. The non-linearity is mainly due to the Jacobian of the coordinate transformation, which is a precise record of how the particles are rotated and stretched. The inverse Jacobian must be calculated, thus Lagrangian coordinates cannot be used in instances where the Jacobian vanishes. For linear (spatial) flows we give an explicit formula for the Jacobian and describe the two situations where the Lagrangian shallow water equations cannot be used because either the Jacobian vanishes or the shallow water assumption is violated. We also prove that linear (in space) steady state solutions of the Lagrangian shallow water equations have Jacobian equal to one. In the situations where the shallow water equations can be solved in Lagrangian coordinates, accurate numerical solutions are found with finite differences, the Chebyshev pseudospectral method, and the fourth order Runge-Kutta method. The numerical results shown here emphasize the need for high order temporal approximations for long time integrations

  10. Accurate signal reconstruction for higher order Lagrangian–Eulerian back-coupling in multiphase turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zwick, D; Balachandar, S [Department of Mechanical and Aerospace Engineering, University of Florida, FL, United States of America (United States); Sakhaee, E; Entezari, A, E-mail: dpzwick@ufl.edu [Department of Computer and Information Science and Engineering, University of Florida, FL, United States of America (United States)

    2017-10-15

    Multiphase flow simulation serves a vital purpose in applications as diverse as engineering design, natural disaster prediction, and even study of astrophysical phenomena. In these scenarios, it can be very difficult, expensive, or even impossible to fully represent the physical system under consideration. Even still, many such real-world applications can be modeled as a two-phase flow containing both continuous and dispersed phases. Consequentially, the continuous phase is thought of as a fluid and the dispersed phase as particles. The continuous phase is typically treated in the Eulerian frame of reference and represented on a fixed grid, while the dispersed phase is treated in the Lagrangian frame and represented by a sample distribution of Lagrangian particles that approximate a cloud. Coupling between the phases requires interpolation of the continuous phase properties at the locations of the Lagrangian particles. This interpolation step is straightforward and can be performed at higher order accuracy. The reverse process of projecting the Lagrangian particle properties from the sample points to the Eulerian grid is complicated by the time-dependent non-uniform distribution of the Lagrangian particles. In this paper we numerically examine three reconstruction, or projection, methods: (i) direct summation (DS), (ii) least-squares, and (iii) sparse approximation. We choose a continuous representation of the dispersed phase property that is systematically varied from a simple single mode periodic signal to a more complex artificially constructed turbulent signal to see how each method performs in reconstruction. In these experiments, we show that there is a link between the number of dispersed Lagrangian sample points and the number of structured grid points to accurately represent the underlying functional representation to machine accuracy. The least-squares method outperforms the other methods in most cases, while the sparse approximation method is able to

  11. GPU acceleration of Eulerian-Lagrangian particle-laden turbulent flow simulations

    Science.gov (United States)

    Richter, David; Sweet, James; Thain, Douglas

    2017-11-01

    The Lagrangian point-particle approximation is a popular numerical technique for representing dispersed phases whose properties can substantially deviate from the local fluid. In many cases, particularly in the limit of one-way coupled systems, large numbers of particles are desired; this may be either because many physical particles are present (e.g. LES of an entire cloud), or because the use of many particles increases statistical convergence (e.g. high-order statistics). Solving the trajectories of very large numbers of particles can be problematic in traditional MPI implementations, however, and this study reports the benefits of using graphical processing units (GPUs) to integrate the particle equations of motion while preserving the original MPI version of the Eulerian flow solver. It is found that GPU acceleration becomes cost effective around one million particles, and performance enhancements of up to 15x can be achieved when O(108) particles are computed on the GPU rather than the CPU cluster. Optimizations and limitations will be discussed, as will prospects for expanding to two- and four-way coupled systems. ONR Grant No. N00014-16-1-2472.

  12. Estimation of the Lagrangian structure function constant ¤C¤0 from surface-layer wind data

    DEFF Research Database (Denmark)

    Anfossi, D.; Degrazia, G.; Ferrero, E.

    2000-01-01

    Eulerian turbulence observations, made in the surface layer under unstable conditions (z/L > 0), by a sonic anemometer were used to estimate the Lagrangian structure function constant C(0). Two methods were considered. The first one makes use of a relationship, widely used in the Lagrangian...... stochastic dispersion models, relating C(0) to the turbulent kinetic energy dissipation rate epsilon, wind velocity variance and Lagrangian decorrelation time. The second one employs a novel equation, connecting C(0) to the constant of the second-order Eulerian structure function. Before estimating C(0...

  13. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    Science.gov (United States)

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  14. Topology Optimization of Passive Micromixers Based on Lagrangian Mapping Method

    Directory of Open Access Journals (Sweden)

    Yuchen Guo

    2018-03-01

    Full Text Available This paper presents an optimization-based design method of passive micromixers for immiscible fluids, which means that the Peclet number infinitely large. Based on topology optimization method, an optimization model is constructed to find the optimal layout of the passive micromixers. Being different from the topology optimization methods with Eulerian description of the convection-diffusion dynamics, this proposed method considers the extreme case, where the mixing is dominated completely by the convection with negligible diffusion. In this method, the mixing dynamics is modeled by the mapping method, a Lagrangian description that can deal with the case with convection-dominance. Several numerical examples have been presented to demonstrate the validity of the proposed method.

  15. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames

    KAUST Repository

    Attili, Antonio

    2013-09-01

    A Lagrangian particle scheme is applied to the solution of soot dynamics in turbulent nonpremixed flames. Soot particulate is described using a method of moments and the resulting set of continuum advection-reaction equations is solved using the Lagrangian particle scheme. The key property of the approach is the independence between advection, described by the movement of Lagrangian notional particles along pathlines, and internal aerosol processes, evolving on each notional particle via source terms. Consequently, the method overcomes the issues in Eulerian grid-based schemes for the advection of moments: errors in the advective fluxes pollute the moments compromising their realizability and the stiffness of source terms weakens the stability of the method. The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical than commonly used Eulerian schemes as it allows the resolution requirements dictated by the different physical phenomena to be independently optimized. Finally, the scheme posseses excellent scalability on massively parallel computers. © 2013 Elsevier Ltd.

  16. A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics

    Directory of Open Access Journals (Sweden)

    E. Kaas

    2013-11-01

    Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.

  17. An online-coupled NWP/ACT model with conserved Lagrangian levels

    Science.gov (United States)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  18. Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies

    Science.gov (United States)

    Dutt, A.; Lermusiaux, P. F. J.

    2017-12-01

    Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.

  19. Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method

    Directory of Open Access Journals (Sweden)

    Yongjie Shi

    2016-01-01

    Full Text Available A coupled Eulerian–Lagrangian methodology was developed in this paper in order to provide an efficient and accurate tool for rotor wake and flow prediction. A Eulerian-based Reynolds-averaged Navier–Stokes (RANS solver was employed to simulate the grid-covered near-body zone, and a grid-free Lagrangian-based viscous wake method (VWM was implemented to model the complicated rotor-wake dynamics in the off-body wake zone. A carefully designed coupling strategy was developed to pass the flow variables between two solvers. A sample case of a forward flying rotor was performed first in order to show the capabilities of the VWM for wake simulations. Next, the coupled method was applied to rotors in several representative flight conditions. Excellent agreement regarding wake geometry, chordwise pressure distribution and sectional normal force with available experimental data demonstrated the validity of the method. In addition, a comparison with the full computational fluid dynamics (CFD method is presented to illustrate the efficiency and accuracy of the proposed coupled method.

  20. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  1. Towards Eulerian-Eulerian large eddy simulation of reactive two-phase plows; Vers la simulation des grandes echelles en formulation Euler-Euler des ecoulements reactifs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, A.

    2004-03-15

    Particle laden flows occur in industrial applications ranging from droplets in gas turbines to fluidized bed in chemical industry. Prediction of the dispersed phase properties such as concentration and dynamics are crucial for the design of more efficient devices that meet the new pollutant regulations of the European community. Numerical simulation coupling Lagrangian tracking of discrete particles with DNS or LES of the carrier phase provide a well established powerful tool to investigate particle laden flows. Such numerical methods have the drawback of being numerically very expensive for practical applications. Numerical simulations based on separate Eulerian balance equations for both phases, coupled through inter-phase exchange terms might be an effective alternative approach. This approach has been validated for the case of tracer particles with very low inertia that follow the carrier phase almost instantaneously due to their small response time compared with the micro-scale time scales of the carrier phase. Objective of this thesis is to extend this approach to more inertial particles that occur in practical applications such as fuel droplets in gas turbine combustors. Existing results suggest a separation of the dispersed phase velocity into a correlated and an uncorrelated component. The energy related to the uncorrelated component is about 30% of the total particle kinetic energy when the particle relaxation time is comparable to the Lagrangian integral time scale. The presence of this uncorrelated motion leads to stress terms in the Eulerian balance equation for the particle momentum. Models for this stress terms are proposed and tested. Numerical simulations in the Eulerian framework are validated by comparison with simulations using Lagrangian particle tracking. Additionally coupling of the Eulerian transport equations for the particles to combustion models is tested. (author)

  2. Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: Application to sea-ice

    Science.gov (United States)

    Samaké, Abdoulaye; Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar

    2017-12-01

    We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto-Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.

  3. A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Yang-Yih, Chen; Hung-Chu, Hsu

    2009-01-01

    Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)

  4. A coupled PFEM-Eulerian approach for the solution of porous FSI problems

    Science.gov (United States)

    Larese, A.; Rossi, R.; Oñate, E.; Idelsohn, S. R.

    2012-12-01

    This paper aims to present a coupled solution strategy for the problem of seepage through a rockfill dam taking into account the free-surface flow within the solid as well as in its vicinity. A combination of a Lagrangian model for the structural behavior and an Eulerian approach for the fluid is used. The particle finite element method is adopted for the evaluation of the structural response, whereas an Eulerian fixed-mesh approach is employed for the fluid. The free surface is tracked by the use of a level set technique. The numerical results are validated with experiments on scale models rockfill dams.

  5. Lagrangian methods for blood damage estimation in cardiovascular devices--How numerical implementation affects the results.

    Science.gov (United States)

    Marom, Gil; Bluestein, Danny

    2016-01-01

    This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed.

  6. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  7. Eulerian derivations of non-inertial Navier-Stokes equations

    CSIR Research Space (South Africa)

    Combrinck, MA

    2014-09-01

    Full Text Available The paper presents an Eulerian derivation of the non-inertial Navier-Stokes equations as an alternative to the Lagrangian fluid parcel approach. This work expands on the work of Kageyama and Hyodo [1] who derived the incompressible momentum equation...

  8. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  9. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    Science.gov (United States)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  10. Differential geometry based solvation model II: Lagrangian formulation.

    Science.gov (United States)

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    computation, thanks to the equivalence of the Laplace-Beltrami operator in the two representations. The coupled partial differential equations (PDEs) are solved with an iterative procedure to reach a steady state, which delivers desired solvent-solute interface and electrostatic potential for problems of interest. These quantities are utilized to evaluate the solvation free energies and protein-protein binding affinities. A number of computational methods and algorithms are described for the interconversion of Lagrangian and Eulerian representations, and for the solution of the coupled PDE system. The proposed approaches have been extensively validated. We also verify that the mean curvature flow indeed gives rise to the minimal molecular surface and the proposed variational procedure indeed offers minimal total free energy. Solvation analysis and applications are considered for a set of 17 small compounds and a set of 23 proteins. The salt effect on protein-protein binding affinity is investigated with two protein complexes by using the present model. Numerical results are compared to the experimental measurements and to those obtained by using other theoretical methods in the literature. © Springer-Verlag 2011

  11. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  12. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.

    2013-01-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  13. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo

    2013-04-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  14. Horizontal distribution of near-inertial waves in the western Gulf of Mexico: Eulerian vs Lagrangian.

    Science.gov (United States)

    Pallas Sanz, E.; García-Carrillo, P.; Garcia Gomez, B. I.; Lilly, J. M.; Perez-Brunius, P.

    2016-02-01

    The time-average horizontal distribution of the near-inertial waves (NIWs) on the western Gulf of Mexico (GoM) is investigated using horizontal velocity data obtained from Lagrangian trajectories of 200 surface drifters drogued at 50m and deployed between September 2008 and September 2012. Preliminary results suggest maximum time-averaged near-inertial circle radius of 2.6km located in the southern Campeche bay near [22N,95W]; implying an inertial velocity of about 0.14m/s. Similar conclusions are delineated using horizontal velocity data obtained from 21 moorings deployed in the western GoM during the same time period. Maximum near-inertial kinetic energy and clockwise spectral energy is found in the mooring LNK3500 located at 21.850N and 94.028W. Maximum inertial circles measured with mooring data, however, are of about 1.6km leading to inertial currents of 0.087m/s, approximately a 40% smaller. This discrepancy seems to be due to the different depth level of the measurements and the bandwidth used to extract the near-inertial oscillations from the total flow. The time-average horizontal distributions of wind work computed from Lagrangian and Eulerian data are compared and they are not consistent with the time-averaged NIW field. The differences are not well understood but we speculate they may be due to the different time scales of wind fluctuations in the northwestern GoM compared to those observed in the Bay of Campeche, together with the change of sign of the background vorticity in the region; being negative (anticyclonic) in the northern GoM and positive (cyclonic) in the Bay of Campeche.

  15. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    were simultaneously solved using the k, epsilon model in a (r, z) grid by the finite volume method and the SIMPLER algorithm. Both Lagrangian and Eulerian calculations were performed in parallel and an iterative self-consistent method was developed. The turbulence induced by the bubbles is an important issue considered in this paper, in order to obtain good predictions of the void fraction distribution and the interfacial velocity at different gas and liquid flow conditions.

  16. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    International Nuclear Information System (INIS)

    Muñoz-Cobo, José L.; Chiva, Sergio; Essa, Mohamed Ali Abd El Aziz; Mendes, Santos

    2012-01-01

    Highlights: ► We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. ► A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. ► We have investigated the influence of the turbulence induced by the bubbles on the results. ► Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air–water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, φ, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate ε transport equations were simultaneously solved using the k, epsilon model in a (r, z) grid by the finite volume method and the

  17. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  18. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Saumil S. [Argonne National Lab. (ANL), Argonne, IL (United States); Fischer, Paul F. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois, Urbana-Champaign, IL (United States); Min, Misun [Argonne National Lab. (ANL), Argonne, IL (United States); Tomboulides, Ananias G [Argonne National Lab. (ANL), Argonne, IL (United States); Aristotle Univ., Thessaloniki (Greece)

    2017-10-21

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  19. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  20. Nitrate Sources, Supply, and Phytoplankton Growth in the Great Australian Bight: An Eulerian-Lagrangian Modeling Approach

    Science.gov (United States)

    Cetina-Heredia, Paulina; van Sebille, Erik; Matear, Richard J.; Roughan, Moninya

    2018-02-01

    The Great Australian Bight (GAB), a coastal sea bordered by the Pacific, Southern, and Indian Oceans, sustains one of the largest fisheries in Australia but the geographical origin of nutrients that maintain its productivity is not fully known. We use 12 years of modeled data from a coupled hydrodynamic and biogeochemical model and an Eulerian-Lagrangian approach to quantify nitrate supply to the GAB and the region between the GAB and the Subantarctic Australian Front (GAB-SAFn), identify phytoplankton growth within the GAB, and ascertain the source of nitrate that fuels it. We find that nitrate concentrations have a decorrelation timescale of ˜60 days; since most of the water from surrounding oceans takes longer than 60 days to reach the GAB, 23% and 75% of nitrate used by phytoplankton to grow are sourced within the GAB and from the GAB-SAFn, respectively. Thus, most of the nitrate is recycled locally. Although nitrate concentrations and fluxes into the GAB are greater below 100 m than above, 79% of the nitrate fueling phytoplankton growth is sourced from above 100 m. Our findings suggest that topographical uplift and stratification erosion are key mechanisms delivering nutrients from below the nutricline into the euphotic zone and triggering large phytoplankton growth. We find annual and semiannual periodicities in phytoplankton growth, peaking in the austral spring and autumn when the mixed layer deepens leading to a subsurface maximum of phytoplankton growth. This study highlights the importance of examining phytoplankton growth at depth and the utility of Lagrangian approaches.

  1. Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian-Lagrangian approach capturing NO-NO 2-O 3 chemistry

    Science.gov (United States)

    Oettl, Dietmar; Uhrner, Ulrich

    2011-02-01

    Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.

  2. Simulation of free airfoil vibrations in incompressible viscous flow – comparison of FEM and FVM

    Czech Academy of Sciences Publication Activity Database

    Sváček, P.; Horáček, Jaromír; Honzátko, R.; Kozel, K.

    2012-01-01

    Roč. 52, č. 6 (2012), s. 104-114 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : laminar flow * finite volume method * finite element method * arbitrary Lagrangian -Eulerian method * nonlinear aeroelasticity Subject RIV: BI - Acoustics

  3. Arbitrary lagrangian-eulerian formulation of quasistatic nonlinear problems

    OpenAIRE

    Rodríguez Ferran, Antonio

    1996-01-01

    En esta tesis se presenta una metodología para la simulación numérica de procesos cuasistaticos en mecánica de sólidos no lineal, basada en una formulación arbitrariamente lagrangiana-euleriana (ale) del problema. Se hace un enfoque generalista, que abarca algunas cuestiones fundamentales en mecánica computacional y en análisis numérico: la resolución de sistemas no lineales de ecuaciones algebraicas y la integración de las ecuaciones constitutivas no lineales. Como entorno de trabajo se util...

  4. Computational methods for predicting the response of critical as-built infrastructure to dynamic loads (architectural surety)

    Energy Technology Data Exchange (ETDEWEB)

    Preece, D.S.; Weatherby, J.R.; Attaway, S.W.; Swegle, J.W.; Matalucci, R.V.

    1998-06-01

    Coupled blast-structural computational simulations using supercomputer capabilities will significantly advance the understanding of how complex structures respond under dynamic loads caused by explosives and earthquakes, an understanding with application to the surety of both federal and nonfederal buildings. Simulation of the effects of explosives on structures is a challenge because the explosive response can best be simulated using Eulerian computational techniques and structural behavior is best modeled using Lagrangian methods. Due to the different methodologies of the two computational techniques and code architecture requirements, they are usually implemented in different computer programs. Explosive and structure modeling in two different codes make it difficult or next to impossible to do coupled explosive/structure interaction simulations. Sandia National Laboratories has developed two techniques for solving this problem. The first is called Smoothed Particle Hydrodynamics (SPH), a relatively new gridless method comparable to Eulerian, that is especially suited for treating liquids and gases such as those produced by an explosive. The SPH capability has been fully implemented into the transient dynamics finite element (Lagrangian) codes PRONTO-2D and -3D. A PRONTO-3D/SPH simulation of the effect of a blast on a protective-wall barrier is presented in this paper. The second technique employed at Sandia National Laboratories uses a relatively new code called ALEGRA which is an ALE (Arbitrary Lagrangian-Eulerian) wave code with specific emphasis on large deformation and shock propagation. ALEGRA is capable of solving many shock-wave physics problems but it is especially suited for modeling problems involving the interaction of decoupled explosives with structures.

  5. Free surface modeling of contacting solid metal flows employing the ALE formulation

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; Huetink, Han; Merklein, M.; Hagenah, H.

    2012-01-01

    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition

  6. On numerical solution of compressible flow in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopová, Jaroslava

    2012-01-01

    Roč. 137, č. 1 (2012), s. 1-16 ISSN 0862-7959 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : compressible Navier-Stokes equations * arbitrary Lagrangian-Eulerian method * discontinuous Galerkin finite element method * interior and boundary penalty Subject RIV: BI - Acoustics

  7. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  8. Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS3 space

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.

    2012-01-01

    We develop the frame-like formulation of massive bosonic higher spin fields in the case of three-dimensional (A)dS space with the arbitrary cosmological constant. The formulation is based on gauge invariant description by involving the Stueckelberg auxiliary fields. The explicit form of the Lagrangians and the gauge transformation laws are found. The theory can be written in terms of gauge invariant objects similar to the massless theories, thus allowing us to hope to use the same methods for investigation of interactions. In the massive spin 3 field example we are able to rewrite the Lagrangian using the new the so-called separated variables, so that the study of Lagrangian formulation reduces to finding the Lagrangian containing only half of the fields. The same construction takes places for arbitrary integer spin field as well. Further working in terms of separated variables, we build Lagrangian for arbitrary integer spin and write it in terms of gauge invariant objects. Also, we demonstrate how to restore the full set of variables, thus receiving Lagrangian for the massive fields of arbitrary spin in the terms of initial fields.

  9. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    Science.gov (United States)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  10. Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J

    2005-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs

  11. Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.

    2006-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)

  12. Improved quantification of CO2 emission at Campi Flegrei by combined Lagrangian Stochastic and Eulerian dispersion modelling

    Science.gov (United States)

    Pedone, Maria; Granieri, Domenico; Moretti, Roberto; Fedele, Alessandro; Troise, Claudia; Somma, Renato; De Natale, Giuseppe

    2017-12-01

    This study investigates fumarolic CO2 emissions at Campi Flegrei (Southern Italy) and their dispersion in the lowest atmospheric boundary layer. We innovatively utilize a Lagrangian Stochastic dispersion model (WindTrax) combined with an Eulerian model (DISGAS) to diagnose the dispersion of diluted gas plumes over large and complex topographic domains. New measurements of CO2 concentrations acquired in February and October 2014 in the area of Pisciarelli and Solfatara, the two major fumarolic fields of Campi Flegrei caldera, and simultaneous measurements of meteorological parameters are used to: 1) test the ability of WindTrax to calculate the fumarolic CO2 flux from the investigated sources, and 2) perform predictive numerical simulations to resolve the mutual interference between the CO2 emissions of the two adjacent areas. This novel approach allows us to a) better quantify the CO2 emission of the fumarolic source, b) discriminate ;true; CO2 contributions for each source, and c) understand the potential impact of the composite CO2 plume (Pisciarelli ;plus; Solfatara) on the highly populated areas inside the Campi Flegrei caldera.

  13. Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters

    Science.gov (United States)

    2015-09-30

    Sea from Lagrangian Drifters Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive Mail Code 0213 La Jolla, California 92103...Contribute to the study of coastal and open ocean current systems in sparsely sampled regions such us the South China Sea (SCS), using a Lagrangian ...We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS

  14. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1993-06-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts` ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  15. Fluid-structure-interaction analyses of reactor vessel using improved hybrid Lagrangian Eulerian code ALICE-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1993-01-01

    This paper describes fluid-structure-interaction and structure response analyses of a reactor vessel subjected to loadings associated with postulated accidents, using the hybrid Lagrangian-Eulerian code ALICE-II. This code has been improved recently to accommodate many features associated with innovative designs of reactor vessels. Calculational capabilities have been developed to treat water in the reactor cavity outside the vessel, internal shield structures and internal thin shells. The objective of the present analyses is to study the cover response and potential for missile generation in response to a fuel-coolant interaction in the core region. Three calculations were performed using the cover weight as a parameter. To study the effect of the cavity water, vessel response calculations for both wet- and dry-cavity designs are compared. Results indicate that for all cases studied and for the design parameters assumed, the calculated cover displacements are all smaller than the bolts' ultimate displacement and no missile generation of the closure head is predicted. Also, solutions reveal that the cavity water of the wet-cavity design plays an important role of restraining the downward displacement of the bottom head. Based on these studies, the analyses predict that the structure integrity is maintained throughout the postulated accident for the wet-cavity design.

  16. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Energy Technology Data Exchange (ETDEWEB)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    2017-01-15

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  17. Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds

    OpenAIRE

    Lehn, Christian

    2011-01-01

    We generalize Voisin's theorem on deformations of pairs of a symplectic manifold and a Lagrangian submanifold to the case of Lagrangian normal crossing subvarieties. Partial results are obtained for arbitrary Lagrangian subvarieties. We apply our results to the study of singular fibers of Lagrangian fibrations.

  18. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  19. Lagrangian condensation microphysics with Twomey CCN activation

    Directory of Open Access Journals (Sweden)

    W. W. Grabowski

    2018-01-01

    Full Text Available We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the

  20. Lagrangian condensation microphysics with Twomey CCN activation

    Science.gov (United States)

    Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna

    2018-01-01

    We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation

  1. Some New Verification Test Problems for Multimaterial Diffusion on Meshes that are Non-Aligned with Material Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Dawes, Alan Sidney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    In this report a number of new verification test problems for multimaterial diffusion will be shown. Using them we will show that homogenization of multimaterial cells in either Arbitrary Lagrangian Eulerian (ALE) or Eulerian simulations can lead to errors in the energy flow at the interfaces. Results will be presented that show that significant improvements and predictive capability can be gained by using either a surrogate supermesh, such as Thin Mesh in FLAG, or the emerging method based on Static Condensation.

  2. Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme

    Science.gov (United States)

    Burton, D. E.; Morgan, N. R.; Charest, M. R. J.; Kenamond, M. A.; Fung, J.

    2018-02-01

    From the very origins of numerical hydrodynamics in the Lagrangian work of von Neumann and Richtmyer [83], the issue of total energy conservation as well as entropy production has been problematic. Because of well known problems with mesh deformation, Lagrangian schemes have evolved into Arbitrary Lagrangian-Eulerian (ALE) methods [39] that combine the best properties of Lagrangian and Eulerian methods. Energy issues have persisted for this class of methods. We believe that fundamental issues of energy conservation and entropy production in ALE require further examination. The context of the paper is an ALE scheme that is extended in the sense that it permits cyclic or periodic remap of data between grids of the same or differing connectivity. The principal design goals for a remap method then consist of total energy conservation, bounded internal energy, and compatibility of kinetic energy and momentum. We also have secondary objectives of limiting velocity and stress in a non-directional manner, keeping primitive variables monotone, and providing a higher than second order reconstruction of remapped variables. In particular, the new contributions fall into three categories associated with: energy conservation and entropy production, reconstruction and bounds preservation of scalar and tensor fields, and conservative remap of nonlinear fields. The paper presents a derivation of the methods, details of implementation, and numerical results for a number of test problems. The methods requires volume integration of polynomial functions in polytopal cells with planar facets, and the requisite expressions are derived for arbitrary order.

  3. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    Science.gov (United States)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  4. Eulerian velocity reconstruction in ideal atmospheric dynamics using potential vorticity and potential temperature

    Science.gov (United States)

    Blender, R.

    2009-04-01

    An approach for the reconstruction of atmospheric flow is presented which uses space- and time-dependent fields of density ?, potential vorticity Q and potential temperature Î& cedil;[J. Phys. A, 38, 6419 (2005)]. The method is based on the fundamental equations without approximation. The basic idea is to consider the time-dependent continuity equation as a condition for zero divergence of momentum in four dimensions (time and space, with unit velocity in time). This continuity equation is solved by an ansatz for the four-dimensional momentum using three conserved stream functions, the potential vorticity, potential temperature and a third field, denoted as ?-potential. In zonal flows, the ?-potential identifies the initial longitude of particles, whereas potential vorticity and potential temperature identify mainly meridional and vertical positions. Since the Lagrangian tracers Q, Î&,cedil; and ? determine the Eulerian velocity field, the reconstruction combines the Eulerian and the Lagrangian view of hydrodynamics. In stationary flows, the ?-potential is related to the Bernoulli function. The approach requires that the gradients of the potential vorticity and potential temperature do not vanish when the velocity remains finite. This behavior indicates a possible interrelation with stability conditions. Examples with analytical solutions are presented for a Rossby wave and zonal and rotational shear flows.

  5. Relating Lagrangian and Hamiltonian Formalisms of LC Circuits

    NARCIS (Netherlands)

    Clemente-Gallardo, Jesús; Scherpen, Jacquelien M.A.

    2003-01-01

    The Lagrangian formalism earlier defined for (switching) electrical circuits, is adapted to the Lagrangian formalism defined on Lie algebroids. This allows us to define regular Lagrangians and consequently, well-defined Hamiltonian descriptions of arbitrary LC networks. The relation with other

  6. Simulation of Free Airfoil Vibrations in Incompressible Viscous Flow — Comparison of FEM and FVM

    Directory of Open Access Journals (Sweden)

    Petr Sváček

    2012-01-01

    Full Text Available This paper deals with a numerical solution of the interaction of two-dimensional (2-D incompressible viscous flow and a vibrating profile NACA 0012 with large amplitudes. The laminar flow is described by the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form. The profile with two degrees of freedom (2-DOF can rotate around its elastic axis and oscillate in the vertical direction. Its motion is described by a nonlinear system of two ordinary differential equations. Deformations of the computational domain due to the profile motion are treated by the arbitrary Lagrangian-Eulerianmethod. The finite volume method and the finite element method are applied, and the numerical results are compared.

  7. A New Method to Simulate Free Surface Flows for Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific numerical methods are required to accurately capture the shape of free surface. This paper proposed a new method which combined the Arbitrary Lagrangian-Eulerian (ALE technique with the Finite Volume Method (FVM to simulate the time-dependent viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further analysis of free surface phenomenon. The results validated the correctness and effectiveness of the proposed method for free surface simulation in both Newtonian fluid and viscoelastic fluid.

  8. Modelling of diesel spray flame under engine-like conditions using an accelerated eulerian stochastic fields method: A convergence study of the number of stochastic fields

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, X.-S.

    generated similar results. The principal motivation for ESF compared to Lagrangian particle based PDF is the relative ease of implementation of the former into Eulerian computational fluid dynamics(CFD) codes [5]. Several works have attempted to implement the ESF model for the simulations of diesel spray......The use of transported Probability Density Function(PDF) methods allows a single model to compute the autoignition, premixed mode and diffusion flame of diesel combustion under engine-like conditions [1,2]. The Lagrangian particle based transported PDF models have been validated across a wide range...... combustion under engine-like conditions.The current work aims to further evaluate the performance of the ESF model in this application, with an emphasis on examining the convergence of the number of stochastic fields, nsf. Five test conditions, covering both the conventional diesel combustion and low...

  9. Numerical Simulation of Glottal Flow in Interaction with Self Oscillating Vocal Folds: Comparison of Finite Element Approximation with a Simplified Model

    Czech Academy of Sciences Publication Activity Database

    Sváček, P.; Horáček, Jaromír

    2012-01-01

    Roč. 12, č. 3 (2012), s. 789-806 ISSN 1815-2406 R&D Projects: GA MŠk OC09019; GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite element method * arbitrary Lagrangian -Eulerian method * biomechanics of voice production Subject RIV: BI - Acoustics Impact factor: 1.863, year: 2012 http://www.global-sci.com/

  10. Second-order particle-in-cell (PIC) computational method in the one-dimensional variable Eulerian mesh system

    International Nuclear Information System (INIS)

    Pyun, J.J.

    1981-01-01

    As part of an effort to incorporate the variable Eulerian mesh into the second-order PIC computational method, a truncation error analysis was performed to calculate the second-order error terms for the variable Eulerian mesh system. The results that the maximum mesh size increment/decrement is limited to be α(Δr/sub i/) 2 where Δr/sub i/ is a non-dimensional mesh size of the ith cell, and α is a constant of order one. The numerical solutions of Burgers' equation by the second-order PIC method in the variable Eulerian mesh system wer compared with its exact solution. It was found that the second-order accuracy in the PIC method was maintained under the above condition. Additional problems were analyzed using the second-order PIC methods in both variable and uniform Eulerian mesh systems. The results indicate that the second-order PIC method in the variable Eulerian mesh system can provide substantial computational time saving with no loss in accuracy

  11. Semi-Lagrangian methods in air pollution models

    Directory of Open Access Journals (Sweden)

    A. B. Hansen

    2011-06-01

    Full Text Available Various semi-Lagrangian methods are tested with respect to advection in air pollution modeling. The aim is to find a method fulfilling as many of the desirable properties by Rasch andWilliamson (1990 and Machenhauer et al. (2008 as possible. The focus in this study is on accuracy and local mass conservation.

    The methods tested are, first, classical semi-Lagrangian cubic interpolation, see e.g. Durran (1999, second, semi-Lagrangian cubic cascade interpolation, by Nair et al. (2002, third, semi-Lagrangian cubic interpolation with the modified interpolation weights, Locally Mass Conserving Semi-Lagrangian (LMCSL, by Kaas (2008, and last, semi-Lagrangian cubic interpolation with a locally mass conserving monotonic filter by Kaas and Nielsen (2010.

    Semi-Lagrangian (SL interpolation is a classical method for atmospheric modeling, cascade interpolation is more efficient computationally, modified interpolation weights assure mass conservation and the locally mass conserving monotonic filter imposes monotonicity.

    All schemes are tested with advection alone or with advection and chemistry together under both typical rural and urban conditions using different temporal and spatial resolution. The methods are compared with a current state-of-the-art scheme, Accurate Space Derivatives (ASD, see Frohn et al. (2002, presently used at the National Environmental Research Institute (NERI in Denmark. To enable a consistent comparison only non-divergent flow configurations are tested.

    The test cases are based either on the traditional slotted cylinder or the rotating cone, where the schemes' ability to model both steep gradients and slopes are challenged.

    The tests showed that the locally mass conserving monotonic filter improved the results significantly for some of the test cases, however, not for all. It was found that the semi-Lagrangian schemes, in almost every case, were not able to outperform the current ASD scheme

  12. Quantizing non-Lagrangian gauge theories: an augmentation method

    International Nuclear Information System (INIS)

    Lyakhovich, Simon L.; Sharapov, Alexei A.

    2007-01-01

    We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest

  13. Shear and shearless Lagrangian structures in compound channels

    Science.gov (United States)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  14. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea; Kyza, Irene; Nochetto, Ricardo H.

    2013-01-01

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our

  15. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    International Nuclear Information System (INIS)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-01-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  16. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    Science.gov (United States)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-06-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  17. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    Science.gov (United States)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  18. Functional methods for arbitrary densities in curved spacetime

    International Nuclear Information System (INIS)

    Basler, M.

    1993-01-01

    This paper gives an introduction to the technique of functional differentiation and integration in curved spacetime, applied to examples from quantum field theory. Special attention is drawn on the choice of functional integral measure. Referring to a suggestion by Toms, fields are choosen as arbitrary scalar, spinorial or vectorial densities. The technique developed by Toms for a pure quadratic Lagrangian are extended to the calculation of the generating functional with external sources. Included are two examples of interacting theories, a self-interacting scalar field and a Yang-Mills theory. For these theories the complete set of Feynman graphs depending on the weight of variables is derived. (orig.)

  19. Large deformation analysis of adhesive by Eulerian method with new material model

    International Nuclear Information System (INIS)

    Maeda, K; Nishiguchi, K; Iwamoto, T; Okazawa, S

    2010-01-01

    The material model to describe large deformation of a pressure sensitive adhesive (PSA) is presented. A relationship between stress and strain of PSA includes viscoelasticity and rubber-elasticity. Therefore, we propose the material model for describing viscoelasticity and rubber-elasticity, and extend the presented material model to the rate form for three dimensional finite element analysis. After proposing the material model for PSA, we formulate the Eulerian method to simulate large deformation behavior. In the Eulerian calculation, the Piecewise Linear Interface Calculation (PLIC) method for capturing material surface is employed. By using PLIC method, we can impose dynamic and kinematic boundary conditions on captured material surface. The representative two computational examples are calculated to check validity of the present methods.

  20. Methods for simulation-based analysis of fluid-structure interaction.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  1. Analysis of Thermo-Mechanical Distortions in Sliding Components : An ALE Approach

    NARCIS (Netherlands)

    Owczarek, P.; Geijselaers, H.J.M.

    2008-01-01

    A numerical technique for analysis of heat transfer and thermal distortion in reciprocating sliding components is proposed. In this paper we utilize the Arbitrary Lagrangian Eulerian (ALE) description where the mesh displacement can be controlled independently from the material displacement. A

  2. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2013-01-01

    . The proposed scheme exhibits superior properties with respect to conventional Eulerian schemes in terms of stability, accuracy, and grid convergence. Taking into account the quality of the solution, the Lagrangian approach can be computationally more economical

  3. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  4. Lagrangian structures in time-periodic vortical flows

    Directory of Open Access Journals (Sweden)

    S. V. Kostrykin

    2006-01-01

    Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.

  5. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  6. Simulation of 2-D Compressible Flows on a Moving Curvilinear Mesh with an Implicit-Explicit Runge-Kutta Method

    KAUST Repository

    AbuAlSaud, Moataz

    2012-07-01

    The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.

  7. Application of an Arbitrary Lagrangian Eulerian Method to Describe High Velocity Gas-Particle Flow Behavior

    Science.gov (United States)

    2011-09-01

    applied in this work was based on some of the standard definitions of soil constitutive properties as found in, e.g., Chen and Baladi [20], and...Livermore, CA. [20] Chen, W. F., and Baladi , G. Y., 1985. Soil Plasticity: Theory and Implementation. Elsevier Science, New York. [21] Zimmerman, H.D

  8. General Eulerian formulation of the comoving-frame equation of radiative transfer

    International Nuclear Information System (INIS)

    Riffert, H.

    1986-01-01

    For a wide range of problems in radiation hydrodynamics the motion of the matter is best described in an Eulerian coordinate system, and here a comoving-frame equation of radiation transfer in such fixed coordinates is derived, using the radiation quantities measured in the comoving frame. The choice of coordinates is arbitrary, and the equation is given explicitly for an arbitrary diagonal metric, correct to all orders in v/c. All comoving frame equations derived earlier are included as special cases. An example is given for the case of a spherically symmetric flow in a Schwarzschild metric. 9 references

  9. Simulation on the shock attenuation behavior of coupled RHA and ...

    African Journals Online (AJOL)

    This paper presents the shock attenuation behavior of engineering materials namely Rolled Homogenous Armor (RHA) and sandwich composite when subject to blast loadings. Blast loading on sandwich composite structure and monolithic material are investigated using LSDYNA 3D with Arbitrary LagrangianEulerian ...

  10. Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore

    in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct......The ability to predict aerodynamic forces, due to the interaction of a fluid flow with a solid body, is central in many fields of engineering and is necessary to identify error-prone structural designs. In bluff-body flows the aerodynamic forces oscillate due to vortex shedding and variations...... numerical simulation of the flow past a bodies of arbitrary shape. Vortex methods use a simple formulation where only the trajectories of discrete vortex particles are simulated. The Lagrangian formulation eliminates the CFL type condition that Eulerian methods have to satisfy. This allows vortex methods...

  11. Extension of the renormalizability criterion to the case of arbitrary unperturbed Lagrangian

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1979-01-01

    Extension of the renormalizability criterium of the perturbation theory is generalized in the case, when an unperturbed lagrangian is not a lagrangian of free fields L 0 . The derivating functional of the Green function, written in the form of a function integral is disintegrated by the perturbed lagrangian L 1 when building the perturbation theory. Described are ultraviolet divergences and possibilities of their elimination in eucledian space. The criterion permits to state extension renormalizability of the perturbation theory for eVery point L 0 and the direction L 1 assigned in this point in linear space of different lagrangians. According to the Weinberg theorem the grade asymptotics of Green functions is not changed at slight shift from the initial point in the supernormalized direction. For any point and any direction the extension of the perturbation theory is supernormalized in this space

  12. A pure Eulerian method for multi-material fluid flows in dimension 1,2 and 3

    International Nuclear Information System (INIS)

    Braeunig, J.Ph.

    2007-12-01

    The method described in this report is designed to simulate multi-material fluid flows, by solving compressible Euler equations with sharp interface capturing, in dimension 2 and 3. Materials are supposed to be non-miscible and to follow different equations of state. The main purpose of this work is to design an interface reconstruction method with no diffusion at all between materials of any Eulerian quantity. One novelty of our approach is the use of a pure Eulerian finite volume scheme in an interface reconstruction method. A new concept is introduced, the 'condensate', which allows to handle mixed cells containing two or more materials and to calculate the evolution of the interface on the fixed Eulerian grid. Moreover, this method allows a free sliding of materials on each others. The accuracy of the method is evaluated on academic 1D benchmarks and its robustness is tested with severe 2D benchmarks. (author)

  13. Semi-implicit surface tension formulation with a Lagrangian surface mesh on an Eulerian simulation grid

    KAUST Repository

    Schroeder, Craig; Zheng, Wen; Fedkiw, Ronald

    2012-01-01

    -implicit and fully-coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of a surface tension force, which when treated explicitly leads to a tight time step restriction. By applying surface tension

  14. A particle method for history-dependent materials

    Energy Technology Data Exchange (ETDEWEB)

    Sulsky, D.; Chen, Z.; Schreyer, H.L. [New Mexico Univ., Albuquerque, NM (United States)

    1993-06-01

    A broad class of engineering problems including penetration, impact and large rotations of solid bodies causes severe numerical problems. For these problems, the constitutive equations are history dependent so material points must be followed; this is difficult to implement in an Eulerian scheme. On the other hand, purely Lagrangian methods typically result in severe mesh distortion and the consequence is ill conditioning of the element stiffness matrix leading to mesh lockup or entanglement. Remeshing prevents the lockup and tangling but then interpolation must be performed for history dependent variables, a process which can introduce errors. Proposed here is an extension of the particle-in-cell method in which particles are interpreted to be material points that are followed through the complete loading process. A fixed Eulerian grid provides the means for determining a spatial gradient. Because the grid can also be interpreted as an updated Lagrangian frame, the usual convection term in the acceleration associated with Eulerian formulations does not appear. With the use of maps between material points and the grid, the advantages of both Eulerian and Lagrangian schemes are utilized so that mesh tangling is avoided while material variables are tracked through the complete deformation history. Example solutions in two dimensions are given to illustrate the robustness of the proposed convection algorithm and to show that typical elastic behavior can be reproduced. Also, it is shown that impact with no slip is handled without any special algorithm for bodies governed by elasticity and strain hardening plasticity.

  15. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  16. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  17. Flux form Semi-Lagrangian methods for parabolic problems

    Directory of Open Access Journals (Sweden)

    Bonaventura Luca

    2016-09-01

    Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.

  18. Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

    OpenAIRE

    Huan-huan Wang; Xian-long Jin

    2016-01-01

    This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the...

  19. The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    2003-01-01

    . This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...

  20. Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations

    International Nuclear Information System (INIS)

    Mestdag, T; Crampin, M

    2008-01-01

    We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated with Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper, we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory

  1. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    Science.gov (United States)

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  2. Duality for massive spin two theories in arbitrary dimensions

    International Nuclear Information System (INIS)

    Gonzalez, B.; Urrutia, L.F.; Khoudeir, A.; Montemayor, R.

    2008-01-01

    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor T A[B 1 B 2 ...B D-2 ] , without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.

  3. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    Science.gov (United States)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  4. Tracing the Ventilation Pathways of the Deep North Pacific Ocean Using Lagrangian Particles and Eulerian Tracers

    NARCIS (Netherlands)

    Syed, H.A.M.S.; Primeau, F.W.; Deleersnijder, E.L.C.; Heemink, A.W.

    2017-01-01

    Lagrangian forward and backward models are introduced into a coarse-grid ocean global circulation model to trace the ventilation routes of the deep North Pacific Ocean. The random walk aspect in the Lagrangian model is dictated by a rotated isopycnal diffusivity tensor in the circulation model,

  5. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil

    Directory of Open Access Journals (Sweden)

    Junyoung Ko

    2017-10-01

    Full Text Available This paper presents the application of the Coupled Eulerian–Lagrangian (CEL technique on the constructability problems of site on very soft soil. The main objective of this study was to investigate the constructability and application of two ground improvement methods, such as the forced replacement method and the deep mixing method. The comparison between the results of CEL analyses and field investigations was performed to verify the CEL modelling. The behavior of very soft soil and constructability with methods can be appropriately investigated using the CEL technique, which would be useful tools for comprehensive reviews in preliminary design.

  6. Mean Lagrangian drift in continental shelf waves

    Science.gov (United States)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  7. Mathematical modellings and computational methods for structural analysis of LMFBR's

    International Nuclear Information System (INIS)

    Liu, W.K.; Lam, D.

    1983-01-01

    In this paper, two aspects of nuclear reactor problems are discussed, modelling techniques and computational methods for large scale linear and nonlinear analyses of LMFBRs. For nonlinear fluid-structure interaction problem with large deformation, arbitrary Lagrangian-Eulerian description is applicable. For certain linear fluid-structure interaction problem, the structural response spectrum can be found via 'added mass' approach. In a sense, the fluid inertia is accounted by a mass matrix added to the structural mass. The fluid/structural modes of certain fluid-structure problem can be uncoupled to get the reduced added mass. The advantage of this approach is that it can account for the many repeated structures of nuclear reactor. In regard to nonlinear dynamic problem, the coupled nonlinear fluid-structure equations usually have to be solved by direct time integration. The computation can be very expensive and time consuming for nonlinear problems. Thus, it is desirable to optimize the accuracy and computation effort by using implicit-explicit mixed time integration method. (orig.)

  8. A Stochastic Lagrangian Basis for a Probabilistic Parameterization of Moisture Condensation in Eulerian Models

    OpenAIRE

    Tsang, Yue-Kin; Vallis, Geoffrey K.

    2018-01-01

    In this paper we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained field on a grid cannot properly resolve regions of saturation---in which condensation occurs---that are smaller than the grid boxes. Thus, in the absence of a parameterization scheme, either the grid box must become saturated or condensation will ...

  9. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  10. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  11. Deformation of two-phase aggregates using standard numerical methods

    Science.gov (United States)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  12. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are... Martensitic Stainless Steel Report Title An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material

  13. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    Science.gov (United States)

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  14. An Eulerian description of the streaming process in the lattice Boltzmann equation

    CERN Document Server

    Lee Tae Hun

    2003-01-01

    This paper presents a novel strategy for solving discrete Boltzmann equation (DBE) for simulation of fluid flows. This strategy splits the solution procedure into streaming and collision steps as in the lattice Boltzmann equation (LBE) method. The streaming step can then be carried out by solving pure linear advection equations in an Eulerian framework. This offers two significant advantages over previous methods. First, the relationship between the relaxation parameter and the discretization of the collision term developed from the LBE method is directly applicable to the DBE method. The resulting DBE collision step remains local and poses no constraint on time step. Second, decoupling of the advection step from the collision step facilitates implicit discretization of the advection equation on arbitrary meshes. An implicit unstructured DBE method is constructed based on this strategy and is evaluated using several test cases of flow over a backward-facing step, lid-driven cavity flow, and flow past a circul...

  15. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  16. Lagrangian particle method for compressible fluid dynamics

    Science.gov (United States)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  17. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  18. Verification of Eulerian-Eulerian and Eulerian-Lagrangian simulations for fluid-particle flows

    Science.gov (United States)

    Kong, Bo; Patel, Ravi G.; Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2017-11-01

    In this work, we study the performance of three simulation techniques for fluid-particle flows: (1) a volume-filtered Euler-Lagrange approach (EL), (2) a quadrature-based moment method using the anisotropic Gaussian closure (AG), and (3) a traditional two-fluid model. By simulating two problems: particles in frozen homogeneous isotropic turbulence (HIT), and cluster-induced turbulence (CIT), the convergence of the methods under grid refinement is found to depend on the simulation method and the specific problem, with CIT simulations facing fewer difficulties than HIT. Although EL converges under refinement for both HIT and CIT, its statistical results exhibit dependence on the techniques used to extract statistics for the particle phase. For HIT, converging both EE methods (TFM and AG) poses challenges, while for CIT, AG and EL produce similar results. Overall, all three methods face challenges when trying to extract converged, parameter-independent statistics due to the presence of shocks in the particle phase. National Science Foundation and National Energy Technology Laboratory.

  19. Unambiguous formalism for higher order Lagrangian field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris

    2009-01-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  20. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  1. Micro Expression Recognition Using the Eulerian Video Magnification Method

    Directory of Open Access Journals (Sweden)

    Elham Zarezadeh

    2016-08-01

    Full Text Available In this paper we propose a new approach for facial micro expressions recognition. For this purpose the Eulerian Video Magnification (EVM method is used to retrieve the subtle motions of the face. The results of this method are obtained as in the magnified images sequence. In this study the numerical tests are performed on two databases: Spontaneous Micro expression (SMIC and Category and Sourcing Managers Executive (CASME. We evaluate our proposed method in two phases using the eigenface method. In phase 1 we recognize the type of a micro expression, for example emotional versus unemotional in SMIC database. Phase 2 classifies the recognized micro expression as negative versus positive in SMIC database and happiness versus disgust in CASME database. The results show that the eigenface method by the EVM method for the retrieval of subtle motions of the face increases the performance of micro expression recognition. Moreover, the proposed approach is more accurate and promising than the previous works in micro expressions recognition.

  2. An entropic solver for ideal Lagrangian magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bezard, F.; Despres, B.

    1999-01-01

    In this paper, the authors adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, they describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper

  3. Combinatorial Interpretation of General Eulerian Numbers

    OpenAIRE

    Tingyao Xiong; Jonathan I. Hall; Hung-Ping Tsao

    2014-01-01

    Since 1950s, mathematicians have successfully interpreted the traditional Eulerian numbers and $q-$Eulerian numbers combinatorially. In this paper, the authors give a combinatorial interpretation to the general Eulerian numbers defined on general arithmetic progressions { a, a+d, a+2d,...}.

  4. Evaluating the performance of the particle finite element method in parallel architectures

    Science.gov (United States)

    Gimenez, Juan M.; Nigro, Norberto M.; Idelsohn, Sergio R.

    2014-05-01

    This paper presents a high performance implementation for the particle-mesh based method called particle finite element method two (PFEM-2). It consists of a material derivative based formulation of the equations with a hybrid spatial discretization which uses an Eulerian mesh and Lagrangian particles. The main aim of PFEM-2 is to solve transport equations as fast as possible keeping some level of accuracy. The method was found to be competitive with classical Eulerian alternatives for these targets, even in their range of optimal application. To evaluate the goodness of the method with large simulations, it is imperative to use of parallel environments. Parallel strategies for Finite Element Method have been widely studied and many libraries can be used to solve Eulerian stages of PFEM-2. However, Lagrangian stages, such as streamline integration, must be developed considering the parallel strategy selected. The main drawback of PFEM-2 is the large amount of memory needed, which limits its application to large problems with only one computer. Therefore, a distributed-memory implementation is urgently needed. Unlike a shared-memory approach, using domain decomposition the memory is automatically isolated, thus avoiding race conditions; however new issues appear due to data distribution over the processes. Thus, a domain decomposition strategy for both particle and mesh is adopted, which minimizes the communication between processes. Finally, performance analysis running over multicore and multinode architectures are presented. The Courant-Friedrichs-Lewy number used influences the efficiency of the parallelization and, in some cases, a weighted partitioning can be used to improve the speed-up. However the total cputime for cases presented is lower than that obtained when using classical Eulerian strategies.

  5. Eulerian frequency analysis of structural vibrations from high-speed video

    International Nuclear Information System (INIS)

    Venanzoni, Andrea; De Ryck, Laurent; Cuenca, Jacques

    2016-01-01

    An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motion of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content

  6. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  7. Flow simulation of a Pelton bucket using finite volume particle method

    International Nuclear Information System (INIS)

    Vessaz, C; Jahanbakhsh, E; Avellan, F

    2014-01-01

    The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

  8. Seakeeping with the semi-Lagrangian particle finite element method

    Science.gov (United States)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  9. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.

    Science.gov (United States)

    Tian, Siyu; Huang, Xiaoxia; Li, Hongga

    2017-03-15

    Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    International Nuclear Information System (INIS)

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-01

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow

  11. A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations

    Science.gov (United States)

    Maljaars, Jakob M.; Labeur, Robert Jan; Möller, Matthias

    2018-04-01

    A generic particle-mesh method using a hybridized discontinuous Galerkin (HDG) framework is presented and validated for the solution of the incompressible Navier-Stokes equations. Building upon particle-in-cell concepts, the method is formulated in terms of an operator splitting technique in which Lagrangian particles are used to discretize an advection operator, and an Eulerian mesh-based HDG method is employed for the constitutive modeling to account for the inter-particle interactions. Key to the method is the variational framework provided by the HDG method. This allows to formulate the projections between the Lagrangian particle space and the Eulerian finite element space in terms of local (i.e. cellwise) ℓ2-projections efficiently. Furthermore, exploiting the HDG framework for solving the constitutive equations results in velocity fields which excellently approach the incompressibility constraint in a local sense. By advecting the particles through these velocity fields, the particle distribution remains uniform over time, obviating the need for additional quality control. The presented methodology allows for a straightforward extension to arbitrary-order spatial accuracy on general meshes. A range of numerical examples shows that optimal convergence rates are obtained in space and, given the particular time stepping strategy, second-order accuracy is obtained in time. The model capabilities are further demonstrated by presenting results for the flow over a backward facing step and for the flow around a cylinder.

  12. Numerical Simulation of Droplet Motion and Two-Phase Flow Field in an Oscillating Container

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available The dynamic motion of the droplet in the oscillating flow field is simulated numerically using the arbitrary Lagrangian-Eulerian and level set coupled method. It is shown that radiating flows are generated from the droplet surface in the oscillating direction and the droplet moves toward the pressure node. The translational motion of the droplet is caused by the density variation, while the radiating flows are by the pressure variation. The flow field around the droplet in the oscillating container is found to be similar to that around the oscillating droplet in the stationary container.

  13. Numerical approximation of flow in a symmetric channel with vibrating walls

    Directory of Open Access Journals (Sweden)

    Sváček P.

    2010-12-01

    Full Text Available In this paper the numerical solution of two dimensional fluid-structure interaction problem is addressed. The fluid motion is modelled by the incompressible unsteady Navier-Stokes equations. The spatial discretization by stabilized finite element method is used. The motion of the computational domain is treated with the aid of Arbitrary Lagrangian Eulerian (ALE method. The time-space problem is solved with the aid of multigrid method. The method is applied onto a problem of interaction of channel flow with moving walls, which models the air flow in the glottal region of the human vocal tract. The pressure boundary conditions and the effects of the isotropic and anisotropic mesh refinement are discussed. The numerical results are presented.

  14. Design of a Simple Blast Pressure Gauge Based on a Heterodyne Velocimetry Measuring Technique

    Science.gov (United States)

    2016-08-01

    intensity of the blast being measured. For relatively low-pressure fields, such as that generated by release of compressed air from a standard shop ...unlimited. 13 4. References 1. Walter PL. Air-blast and the science of dynamic pressure measurements. Depew (NY): PCB Piezotronics; Fort Worth (TX...ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code. 46th AIAA Aerospace Sciences Meeting and Exhibit; 2008 Jan 7–10; Reno (NV

  15. Eulerian graph embeddings and trails confined to lattice tubes

    International Nuclear Information System (INIS)

    Soteros, C E

    2006-01-01

    Embeddings of graphs in sublattices of the square and simple cubic lattice known as tubes (or prisms) are considered. For such sublattices, two combinatorial bounds are obtained which each relate the number of embeddings of all closed eulerian graphs with k branch points (vertices of degree greater than two) to the number of self-avoiding polygons. From these bounds it is proved that the entropic critical exponent for the number of embeddings of closed eulerian graphs with k branch points is equal to k, and the entropic critical exponent for the number of closed trails with k branch points is equal to k + 1. One of the required combinatorial bounds is obtained via Madras' 1999 lattice cluster pattern theorem, which yields a bound on the number of ways to convert a self-avoiding polygon into a closed eulerian graph embedding with k branch points. The other combinatorial bound is established by constructing a method for sequentially removing branch points from a closed eulerian graph embedding; this yields a bound on the number of ways to convert a closed eulerian graph embedding into a self-avoiding polygon

  16. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  17. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  18. Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver

    International Nuclear Information System (INIS)

    Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.

    2005-01-01

    Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated

  19. Modeling of radionuclide migration through porous material with meshless method

    International Nuclear Information System (INIS)

    Vrankar, L.; Turk, G.; Runovc, F.

    2005-01-01

    To assess the long term safety of a radioactive waste disposal system, mathematical models are used to describe groundwater flow, chemistry and potential radionuclide migration through geological formations. A number of processes need to be considered when predicting the movement of radionuclides through the geosphere. The most important input data are obtained from field measurements, which are not completely available for all regions of interest. For example, the hydraulic conductivity as an input parameter varies from place to place. In such cases geostatistical science offers a variety of spatial estimation procedures. Methods for solving the solute transport equation can also be classified as Eulerian, Lagrangian and mixed. The numerical solution of partial differential equations (PDE) is usually obtained by finite difference methods (FDM), finite element methods (FEM), or finite volume methods (FVM). Kansa introduced the concept of solving partial differential equations using radial basis functions (RBF) for hyperbolic, parabolic and elliptic PDEs. Our goal was to present a relatively new approach to the modelling of radionuclide migration through the geosphere using radial basis function methods in Eulerian and Lagrangian coordinates. Radionuclide concentrations will also be calculated in heterogeneous and partly heterogeneous 2D porous media. We compared the meshless method with the traditional finite difference scheme. (author)

  20. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    Science.gov (United States)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  1. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  2. Lagrangian statistics in weakly forced two-dimensional turbulence.

    Science.gov (United States)

    Rivera, Michael K; Ecke, Robert E

    2016-01-01

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.

  3. Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    International Nuclear Information System (INIS)

    Wocjan, Pawel

    2006-01-01

    The task of decoupling, i.e., removing unwanted internal couplings of a quantum system and its couplings to an environment, plays an important role in quantum control theory. There are many efficient decoupling schemes based on combinatorial concepts such as orthogonal arrays, difference schemes, and Hadamard matrices. So far these combinatorial decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control, Viola and Knill proposed a method called 'Eulerian decoupling' that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the local structure of internal couplings and couplings to an environment that typically occur in multipartite quantum systems. In this paper we define a combinatorial structure called Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be used to remove both internal couplings and couplings to an environment of a multipartite quantum system. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes

  4. Syrlic: a Lagrangian code to handle industrial problems involving particles and droplets

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Numerous industrial applications require to solve droplets or solid particles trajectories and their effects on the flow. (fuel injection in combustion engine, agricultural spraying, spray drying, spray cooling, spray painting, particles separator, dispersion of pollutant, etc). SYRLIC is being developed to handle the dispersed phase while the continuous phase is tackled by classical Eulerian codes like N3S-EF, N3S-NATUR, ESTET. The trajectory of each droplet is calculated on unstructured grids or structured grids according the Eulerian code with SYRLIC is coupled. The forces applied to each particle are recalculated along each path. The Lagrangian approach treats the convection and the source terms exactly. It is particularly adapted to problems involving a wide range of particles characteristics (diameter, mass, etc). In the near future, wall interaction, heat transfer, evaporation more complex physics, etc, will be included. Turbulent effects will be accounted for by a Langevin equation. The illustration shows the trajectories followed by water droplets (diameter from 1 mm to 4 mm) in a cooling tower. the droplets are falling down due to gravity but are deflected towards the center of the tower because of a lateral wind. It is clear that particles are affected differently according their diameter. The Eulerian flow field used to compute the forces has been generated by N3S-AERO, on an unstructured mesh

  5. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael

    2011-04-01

    Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.

  6. Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation

    International Nuclear Information System (INIS)

    Goudreau, G.L.; Hallquist, J.O.

    1979-08-01

    Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications

  7. Lagrangian numerical methods for ocean biogeochemical simulations

    Science.gov (United States)

    Paparella, Francesco; Popolizio, Marina

    2018-05-01

    We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

  8. Numerical simulation of nucleate boiling and heat transfer using MPL-MAFL

    Energy Technology Data Exchange (ETDEWEB)

    Han Young Yoon, Hee Cheol Kim [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-10-01

    A mesh-free numerical method is presented for direct calculation of bubble growth. It is a combination of particle and gridless methods where the terms, 'particle' and 'gridless', refer to Lagrangian and Eulerian schemes respectively. Thus, an arbitrary-Lagrangian-Eulerian calculation is possible, in this method, with a cloud of computing points that are equivalent to the computing cells in mesh-based methods. The moving interface is traced through the Lagrangian motion of the computing points using a particle method and, at the fixed computing points, convection is calculated using a gridless method. The particle interaction model of the moving-particle semi-implicit (MPS) method is applied to the differential operators and the meshless-advection using a flow-directional local-grid (MAFL) scheme is utilized for the gridless method. A complex moving interface problems can be effectively analyzed by MPS-MAFL since the mesh is no longer used. The present method is applied to the calculation of gas-liquid two-phase flow with and without the phase change in two dimensions. The pressure and temperature gradients are ignored for the vapor region and the phase interface is treated as a free boundary. As an isothermal flow, a gas bubble rising in viscous liquids is simulated numerically and the results are compared with the empirical correlation. The energy equation is coupled with the equation of motion for the calculation of nucleate pool boiling. The numerical results are provided for the bubble growth rate, departure radius, and the heat transfer rate, which show good agreement with the experimental observations. The heat transfer mechanism associated with nucleate pool boiling is quantitatively evaluated and discussed with previous empirical studies. (author)

  9. Estimating Eulerian spectra from pairs of drifters

    Science.gov (United States)

    LaCasce, Joe

    2017-04-01

    GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.

  10. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  11. Lagrangian formulation of classical BMT-theory

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto

    2013-01-01

    Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)

  12. Nonlinear Lagrangian and the π N → π π π N process

    International Nuclear Information System (INIS)

    Pinto, F.A.

    1976-02-01

    A nonlinear Lagrangian is constructed involving only pions and nucleons consisting of a part invariant under the transformations of the group SU(2) (X) SU(2) and of a part which breaks this symmetry and contains an arbitrary parameter zeta introduced in order to allow the breaking of exact PCAC. The total cross-section for the process π N → π π π N at low incident energies of the incident pion, in the threshold approximation, is calculated utilizing this nonlinear Lagrangian. The parameter zeta appears in the total cross-section of the process π N → π π N also [pt

  13. The PDF method for Lagrangian two-phase flow simulations

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1996-04-01

    A recent turbulence model put forward by Pope (1991) in the context of PDF modelling has been used. In this approach, the one-point joint velocity-dissipation pdf equation is solved by simulating the instantaneous behaviour of a large number of Lagrangian fluid particles. Closure of the evolution equations of these Lagrangian particles is based on stochastic models and more specifically on diffusion processes. Such models are of direct use for two-phase flow modelling where the so-called fluid seen by discrete inclusions has to be modelled. Full Lagrangian simulations have been performed for shear-flows. It is emphasized that this approach gives far more information than traditional turbulence closures (such as the K-ε model) and therefore can be very useful for situations involving complex physics. It is also believed that the present model represents the first step towards a complete Lagrangian-Lagrangian model for dispersed two-phase flow problems. (authors). 21 refs., 6 figs

  14. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    Science.gov (United States)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  15. The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schroedinger equation

    International Nuclear Information System (INIS)

    Leung Shingyu; Qian Jianliang

    2010-01-01

    We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.

  16. Applications of Arbitrary Lagrangian Eulerian (ALE) Analysis Approach to Underwater and Air Explosion Problems

    National Research Council Canada - National Science Library

    Trevino, Theodore

    2000-01-01

    ...) numerical technique. The investigation primarily examined the explosive-fluid, fluid-structure, and fluid-air interaction effects, and the shock wave pressure propagation through a subjected medium, with the intent...

  17. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    Science.gov (United States)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  18. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  19. 3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis

    Science.gov (United States)

    Cheng, Huai-yu; Long, Xin-ping; Ji, Bin; Liu, Qi; Bai, Xiao-rui

    2018-02-01

    In the present paper, the unsteady cavitating flow around a 3-D Clark-Y hydrofoil is numerically investigated with the filter-based density correction model (FBDCM), a turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model. A reasonable agreement is obtained between the numerical and experimental results. To study the complex flow structures more straightforwardly, a 3-D Lagrangian technology is developed, which can provide the particle tracks and the 3-D Lagrangian coherent structures (LCSs). Combined with the traditional methods based on the Eulerian viewpoint, this technology is used to analyze the attached cavity evolution and the re-entrant jet behavior in detail. At stage I, the collapse of the previous shedding cavity and the growth of a new attached cavity, the significant influence of the collapse both on the suction and pressure sides are captured quite well by the 3-D LCSs, which is underestimated by the traditional methods like the iso-surface of Q-criteria. As a kind of special LCSs, the arching LCSs are observed in the wake, induced by the counter-rotating vortexes. At stage II, with the development of the re-entrant jet, the influence of the cavitation on the pressure side is still not negligible. And with this 3-D Lagrangian technology, the tracks of the re-entrant jet are visualized clearly, moving from the trailing edge to the leading edge. Finally, at stage III, the re-entrant jet collides with the mainstream and finally induces the shedding. The cavitation evolution and the re-entrant jet movement in the whole cycle are well visualized with the 3-D Lagrangian technology. Moreover, the comparison between the LCSs obtained with 2-D and 3-D Lagrangian technologies indicates the advantages of the latter. It is demonstrated that the 3-D Lagrangian technology is a promising tool in the investigation of complex cavitating flows.

  20. Vortex dynamics and Lagrangian statistics in a model for active turbulence.

    Science.gov (United States)

    James, Martin; Wilczek, Michael

    2018-02-14

    Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain conditions. We study this phenomenon of "active turbulence" statistically by using numerical tools. Following Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of two-point statistics in this system. Furthermore, we extend this statistical study with measurements of vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.

  1. Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing

    DEFF Research Database (Denmark)

    Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.

    2017-01-01

    is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism.The developed...... methodology is validated by comparison to experimental measurements conducted in plane strip drawing. The effect of physical parameters like the drawing speed, the die angle and the strip thickness reduction is investigated. The numerical results show good agreement with experiments....

  2. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method

    International Nuclear Information System (INIS)

    Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.

    2003-01-01

    In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers

  3. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    Science.gov (United States)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  4. Time-discrete higher order ALE formulations: a priori error analysis

    KAUST Repository

    Bonito, Andrea

    2013-03-16

    We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.

  5. Eulerian method for ice crystal icing with application to particle trajectories and accretion on a three-element airfoil

    NARCIS (Netherlands)

    Norde, E.; van der Weide, E. T.A.; Hoeijmakers, H. W.M.

    2017-01-01

    The aim of this study is to show the application of an Eulerian method for ice crystal icing to a three-element airfoil in high-lift configuration. The ice crystals have been modeled as non-spherical particles which are subject to convection and/or phase change along their trajectories. On impact

  6. An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems

    International Nuclear Information System (INIS)

    Zhang Jianzhong; Zhang Liwei

    2010-01-01

    We consider an inverse quadratic programming (QP) problem in which the parameters in the objective function of a given QP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. We formulate this problem as a minimization problem with a positive semidefinite cone constraint and its dual is a linearly constrained semismoothly differentiable (SC 1 ) convex programming problem with fewer variables than the original one. We demonstrate the global convergence of the augmented Lagrangian method for the dual problem and prove that the convergence rate of primal iterates, generated by the augmented Lagrange method, is proportional to 1/r, and the rate of multiplier iterates is proportional to 1/√r, where r is the penalty parameter in the augmented Lagrangian. As the objective function of the dual problem is a SC 1 function involving the projection operator onto the cone of symmetrically semi-definite matrices, the analysis requires extensive tools such as the singular value decomposition of matrices, an implicit function theorem for semismooth functions, and properties of the projection operator in the symmetric-matrix space. Furthermore, the semismooth Newton method with Armijo line search is applied to solve the subproblems in the augmented Lagrange approach, which is proven to have global convergence and local quadratic rate. Finally numerical results, implemented by the augmented Lagrangian method, are reported.

  7. A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous, unsaturated formations

    International Nuclear Information System (INIS)

    Aquino, J.; Pereira, T.J.; Souto, H.P. Amaral; Francisco, A.S.

    2009-01-01

    The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)

  8. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  9. A robust two-node, 13 moment quadrature method of moments for dilute particle flows including wall bouncing

    Science.gov (United States)

    Sun, Dan; Garmory, Andrew; Page, Gary J.

    2017-02-01

    For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.

  10. Simulations of Spray Reacting Flows in a Single Element LDI Injector With and Without Invoking an Eulerian Scalar PDF Method

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2012-01-01

    This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.

  11. Topology of two-dimensional turbulent flows of dust and gas

    Science.gov (United States)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, StDNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  12. Target Lagrangian kinematic simulation for particle-laden flows.

    Science.gov (United States)

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  13. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  14. Optimisation of production from an oil-reservoir using augmented Lagrangian methods

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, Daniel Christopher

    2007-07-01

    This work studies the use of augmented Lagrangian methods for water flooding production optimisation from an oil reservoir. Commonly, water flooding is used as a means to enhance oil recovery, and due to heterogeneous rock properties, water will flow with different velocities throughout the reservoir. Due to this, water breakthrough can occur when great regions of the reservoir are still unflooded so that much of the oil may become 'trapped' in the reservoir. To avoid or reduce this problem, one can control the production so that the oil recovery rate is maximised, or alternatively the net present value (NPV) of the reservoir is maximised. We have considered water flooding, using smart wells. Smart wells with down-hole valves gives us the possibility to control the injection/production at each of the valve openings along the well, so that it is possible to control the flowregime. One can control the injection/production at all valve openings, and the setting of the valves may be changed during the production period, which gives us a great deal of control over the production and we want to control the injection/ production so that the profit obtained from the reservoir is maximised. The problem is regarded as an optimal control problem, and it is formulated as an augmented Lagrangian saddle point problem. We develop a method for optimal control based on solving the Karush-Kuhn-Tucker conditions for the augmented Lagrangian functional, a method, which to my knowledge has not been presented in the literature before. The advantage of this method is that we do not need to solve the forward problem for each new estimate of the control variables, which reduces the computational effort compared to other methods that requires the solution of the forward problem every time we find a new estimate of the control variables, such as the adjoint method. We test this method on several examples, where it is compared to the adjoint method. Our numerical experiments show

  15. Symmetries and conservation laws in the single-time Lagrangian form of the Fokker-type relativistic dynamics

    International Nuclear Information System (INIS)

    Tretyak, V.I.; Gaida, R.P.

    1980-01-01

    Symmetry properties of the single-time relativistic Lagrangian of an N-particle-system corresponding to the many-time action of the Fokker-type, which are a function of derivatives of particle coordinates with respect to time up to infinite order, are investigated. The conditions for quasi-invariance for such a Lagrangian, with respect to a representation of an arbitrary group in infinite continuation of configuration space of the system, are discussed. Using these conditions a general expression for the Lagrangian, securing Poincare covariance of corresponding equations of motion, is found, and the conservation laws related to this covariance are formulated. In the case of tensor interaction, the expansion of conserved quantities in c -1 up to terms of the order c -4 is performed. (author)

  16. A Stirling engine analysis method based upon moving gas nodes

    Science.gov (United States)

    Martini, W. R.

    1986-01-01

    A Lagrangian nodal analysis method for Stirling engines (SEs) is described, validated, and applied to a conventional SE and an isothermalized SE (with fins in the hot and cold spaces). The analysis employs a constant-mass gas node (which moves with respect to the solid nodes during each time step) instead of the fixed gas nodes of Eulerian analysis. The isothermalized SE is found to have efficiency only slightly greater than that of a conventional SE.

  17. Global dynamics of shaft lines of turbo-machineries coupled to surrounding fluids: application to the case of fluid sheets; Dynamique globale des lignes d'arbres de turbomachines couplees aux fluides environnants: application au cas des lames fluides

    Energy Technology Data Exchange (ETDEWEB)

    Lornage, D.

    2001-12-15

    Shaft lines of turbo-machineries have to stand increasing reliability, efficiency and safety requirements. A precise modeling of the rotating parts with all possible coupling has become necessary. In this context, this work aims to develop a global modeling of rotating wheel/shaft system inside a surrounding fluid in order to foresee its dynamical behaviour. The use and advantage of Eulerian, Lagrangian and mixed (arbitrary Lagrangian Eulerian - ALE) formulations is recalled first. A bibliographic synthesis of the classical techniques used in structure mechanics and of coupling techniques for rotating machines is presented. The coupling technique retained is presented. It uses fluid and structure models independently developed and validated. The structure domain is discretized by the finite-element method. The fluid domain is discretized by the finite-difference method taking into consideration the hypotheses linked with thin films. A modal base projection combined with a mesh at the fluid-structure interface allows an efficient, adaptable and evolutive coupling. Finally, the method is applied to 3 test-cases. The first two ones comprise a shaft/disc system coupled to a fluid sheet between the disc and the casing and to an hydrodynamic bearing. Both cases allow a first validation of the coupling method. The third case aims to study a structure closer to a real system made of a shaft and a wheel coupled to a fluid sheet between a flange and a casing. These three applications allow to show the trends linked with the fluid effects and the coupling between the flexible sub-parts of the structure. (J.S.)

  18. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, David Bradley [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Monayem, A. K. M. [Univ. of New Mexico, Albuquerque, NM (United States); Mazumder, H. [Univ. of New Mexico, Albuquerque, NM (United States); Heinrich, Juan C. [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.

  19. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  20. Lagrangians for plasmas in drift-fluid approximation

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1996-10-01

    For drift waves and related instabilities conservation laws can play a crucial role. In an ideal theory these conservation laws are guaranteed when a Lagrangian can be found from which the equations for the various quantities result by Hamilton's principle. Such a Lagrangian for plasmas in drift-fluid approximation was obtained by a heuristic method in a recent paper by Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is derived from the exact multi-fluid Lagrangian via an iterative approximation procedure which resembles the standard method usually applied to the equations of motion. That method, however, does not guarantee all the conservation laws to hold. (orig.)

  1. Eulerian Graphs and Related Topics

    CERN Document Server

    Fleischner, Herbert

    1990-01-01

    The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a

  2. Using an Augmented Lagrangian Method and block fracturing in the DDA method

    International Nuclear Information System (INIS)

    Lin, C.T.; Amadei, B.; Sture, S.

    1994-01-01

    This paper presents two extensions to the Discontinuous Deformation Analysis (DDA) method orginally proposed by Shi for modeling the response of blocky rock masses to mechanical loading. The first extension consists of improving the block contact algorithm. An Augmented Lagrangian Method is used to replace the Penalty Method orginally proposed. It allows Lagrange multipliers to be introduced without increasing the number of equations that need to be solved and thus, block contract forces can be calculated more accurately. A block fracturing capability based on a three-parameter Mohr-Coulomb criterion represents the second extension. It allows for shear or tensile fracturing of intact blocks and the formation of smaller blocks

  3. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    Science.gov (United States)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  4. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  5. A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA (registered)

    International Nuclear Information System (INIS)

    Slavik, Todd P

    2010-01-01

    A coupling method recently implemented in LS-DYNA (registered) allows empirical explosive blast loads to be applied to air domains treated with the multi-material arbitrary Lagrangian-Eulerian (ALE) formulation. Previously, when simulating structures subjected to blast loads, two methods of analysis were available: a purely Lagrangian approach or one involving the ALE and Lagrangian formulations coupled with a fluid-structure interaction (FSI) algorithm. In the former, air blast pressure is computed with empirical equations and directly applied to Lagrangian elements of the structure. In the latter approach, the explosive as well as the air are explicitly modeled and the blast wave propagating through the ALE air domain impinges on the Lagrangian structure through FSI. Since the purely Lagrangian approach avoids modeling the air between the explosive and structure, a significant computational cost savings can be realized - especially so when large standoff distances are considered. The shortcoming of the empirical blast equations is their inability to account for focusing or shadowing of the blast waves due to their interaction with structures which may intervene between the explosive and primary structure of interest. The new method presented here obviates modeling the explosive and air leading up the structure. Instead, only the air immediately surrounding the Lagrangian structures need be modeled with ALE, while effects of the far-field blast are applied to the outer face of that ALE air domain with the empirical blast equations; thus, focusing and shadowing effects can be accommodated yet computational costs are kept to a minimum. Comparison of the efficiency and accuracy of this new method with other approaches shows that the ability of LS-DYNA (registered) to model a variety of new blast scenarios has been greatly extended.

  6. Option volatility and the acceleration Lagrangian

    Science.gov (United States)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  7. Eulerian fluid-structure analysis of BWR

    International Nuclear Information System (INIS)

    McMaster, W.H.

    1979-05-01

    A fluid-structure-interaction algorithm is developed for the analysis of the dynamic response of a BWR pressure-suppression pool and containment structure. The method is incorporated into a two-dimensional semi-implicit Eulerian hydrodynamics code, PELE-IC, for the solution of incompressible flow coupled to flexible structures. The fluid, structure, and coupling algorithms have been verified by calculation of solved problems from the literature and by comparison with air and steam blowdown experiments

  8. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cé cile

    2012-01-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper

  9. Lagrangian based methods for coherent structure detection

    Energy Technology Data Exchange (ETDEWEB)

    Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-09-15

    There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.

  10. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  11. Numerical approximations of flow induced vibrations of vocal folds

    Directory of Open Access Journals (Sweden)

    Sváček Petr

    2017-01-01

    Full Text Available The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  12. Numerical approximations of flow induced vibrations of vocal folds

    Science.gov (United States)

    Sváček, Petr

    The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE) form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  13. Lagrangian postprocessing of computational hemodynamics.

    Science.gov (United States)

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  14. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using EulerianEulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  15. Quasi-Eulerian formulation for fluid-structure interaction

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Belytschko, T.B.

    1979-01-01

    In this paper, recent developments of a quasi-Eulerian finite element formulation for the treatment of the fluid in fluid-structure interaction problems are described. The present formulation is applicable both to plane two-dimensional and axisymmetric three-dimensional problems. In order to reduce the noise associated with the convection terms, an amplification factor is used to implement an up-winding type scheme. The application of the method is illustrated in two problems which are of importance in nuclear reactor safety: 1. A two-dimensional model of a cross section of a subassembly configuration, where the quasi-Eulerian formulation is used to model the fluid adjacent to the structures and in the channel between the subassemblies. 2. Pressure transients in a straight pipe, where the axisymmetric formulation is used to model the fluid in the pipe. These results are compared to experimental results for these problems and compare quite well. The major problem in the application of these methods appears to be the automation of the scheme for moving the fluid nodes. Several alternative schemes are used in the problems described here, and a more general scheme which appears to offer a reasonable (orig.)

  16. One-loop effective lagrangians after matching

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Santiago, J. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Kunszt, Z. [ETH Zuerich, Institute for Theoretical Physics, Zuerich (Switzerland)

    2016-05-15

    We discuss the limitations of the covariant derivative expansion prescription advocated to compute the one-loop Standard Model (SM) effective lagrangian when the heavy fields couple linearly to the SM. In particular, one-loop contributions resulting from the exchange of both heavy and light fields must be explicitly taken into account through matching because the proposed functional approach alone does not account for them. We review a simple case with a heavy scalar singlet of charge -1 to illustrate the argument. As two other examples where this matching is needed and this functional method gives a vanishing result, up to renormalization of the heavy sector parameters, we re-evaluate the one-loop corrections to the T-parameter due to a heavy scalar triplet with vanishing hypercharge coupling to the Brout-Englert-Higgs boson and to a heavy vector-like quark singlet of charged 2/3 mixing with the top quark, respectively. In all cases we make use of a new code for matching fundamental and effective theories in models with arbitrary heavy field additions. (orig.)

  17. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  18. A purely Lagrangian method for the numerical integration of Fokker-Planck equations

    International Nuclear Information System (INIS)

    Combis, P.; Fronteau, J.

    1986-01-01

    A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself

  19. A pure Eulerian method for multi-material fluid flows in dimension 1,2 and 3; Sur la simulation d'ecoulements multi-materiaux par une methode eulerienne directe avec capture d'interfaces en dimensions 1,2 et 3

    Energy Technology Data Exchange (ETDEWEB)

    Braeunig, J.Ph

    2007-12-15

    The method described in this report is designed to simulate multi-material fluid flows, by solving compressible Euler equations with sharp interface capturing, in dimension 2 and 3. Materials are supposed to be non-miscible and to follow different equations of state. The main purpose of this work is to design an interface reconstruction method with no diffusion at all between materials of any Eulerian quantity. One novelty of our approach is the use of a pure Eulerian finite volume scheme in an interface reconstruction method. A new concept is introduced, the 'condensate', which allows to handle mixed cells containing two or more materials and to calculate the evolution of the interface on the fixed Eulerian grid. Moreover, this method allows a free sliding of materials on each others. The accuracy of the method is evaluated on academic 1D benchmarks and its robustness is tested with severe 2D benchmarks. (author)

  20. Improvements to SOIL: An Eulerian hydrodynamics code

    International Nuclear Information System (INIS)

    Davis, C.G.

    1988-04-01

    Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs

  1. Structural dynamics in LMFBR containment analysis. A brief survey of computational methods and codes

    International Nuclear Information System (INIS)

    Chang, Y.W.

    1977-01-01

    This paper gives a brief survey of the computational methods and codes available for LMFBR containment analysis. The various numerical methods commonly used in the computer codes are compared. It provides the reactor engineers to up-to-date information on the development of structural dynamics in LMFBR containment analysis. It can also be used as a basis for the selection of the numerical method in the future code development. First, the commonly used finite-difference expressions in the Lagrangian codes will be compared. Sample calculations will be used as a basis for discussing and comparing the accuracy of the various finite-difference representations. The distortion of the meshes will also be compared; the techniques used for eliminating the numerical instabilities will be discussed and compared using examples. Next, the numerical methods used in the Eulerian formulation will be compared, first among themselves and then with the Lagrangian formulations. Special emphasis is placed on the effect of mass diffusion of the Eulerian calculation on the propagation of discontinuities. Implicit and explicit numerical integrations will be discussed and results obtained from these two techniques will be compared. Then, the finite-element methods are compared with the finite-difference methods. The advantages and disadvantages of the two methods will be discussed in detail, together with the versatility and ease of application of the method to containment analysis having complex geometries. It will also be shown that the finite-element equations for a constant-pressure fluid element is identical to the finite-difference equations using contour integrations. Finally, conclusions based on this study will be given

  2. Chemical Continuous Time Random Walks

    Science.gov (United States)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  3. Form of the manifestly covariant Lagrangian

    Science.gov (United States)

    Johns, Oliver Davis

    1985-10-01

    The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.

  4. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

    Science.gov (United States)

    Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.

    In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

  5. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    Science.gov (United States)

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  6. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    Science.gov (United States)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  7. A permutations representation that knows what " Eulerian" means

    Directory of Open Access Journals (Sweden)

    Roberto Mantaci

    2001-12-01

    Full Text Available Eulerian numbers (and ``Alternate Eulerian numbers'' are often interpreted as distributions of statistics defined over the Symmetric group. The main purpose of this paper is to define a way to represent permutations that provides some other combinatorial interpretations of these numbers. This representation uses a one-to-one correspondence between permutations and the so-called subexceedant functions.

  8. Physical modeling of emergency emission in the atmosphere (experimental investigation of Lagrangian turbulence characteristics in the surface and boundary layer of the atmosphere)

    International Nuclear Information System (INIS)

    Garger, E.K.

    2013-01-01

    Results of diffusion experiments simulating emergency emission in the surface and boundary layers of the atmosphere are presented. Interpretation of measurements in the surface layer of the atmosphere had been conducted on the basis of the Lagrangian similarity hypothesis., Results of measurements in the boundary layer of the atmosphere are interpreted with use of the homogeneous turbulence theory. Regimes of turbulent diffusion from land and low sources of admixtures predicted by the Lagrangian similarity hypothesis for various conditions of thermal stratification in the surface layer of the atmosphere are experimentally confirmed. Universal empirical constants for these regimes are received that allows to use their in practice. Calculation diffusion parameters and concentrations of an admixture from various sources in the surface layer of the atmosphere by model is presented. Results of calculation on this model are compared to independent measurements of mass concentration of a admixture in horizontal and vertical planes. Results of simultaneous measurements Eulerian and Lagrangian turbulence characteristics for various diffusion times in the boundary layer of the atmosphere have allowed to estimate turbulence time scales in Lagrangian variables for conditions close to neutral thermal stratification. The monograph is intended for scientists and students engaged in the field of meteorology, physics of the atmosphere and pollution air control, services of radiation and ecological safety

  9. Super-Lagrangians

    International Nuclear Information System (INIS)

    Beyl, L.M.

    1979-01-01

    It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian

  10. Parallel Dynamic Analysis of a Large-Scale Water Conveyance Tunnel under Seismic Excitation Using ALE Finite-Element Method

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-01-01

    Full Text Available Parallel analyses about the dynamic responses of a large-scale water conveyance tunnel under seismic excitation are presented in this paper. A full three-dimensional numerical model considering the water-tunnel-soil coupling is established and adopted to investigate the tunnel’s dynamic responses. The movement and sloshing of the internal water are simulated using the multi-material Arbitrary Lagrangian Eulerian (ALE method. Nonlinear fluid–structure interaction (FSI between tunnel and inner water is treated by using the penalty method. Nonlinear soil-structure interaction (SSI between soil and tunnel is dealt with by using the surface to surface contact algorithm. To overcome computing power limitations and to deal with such a large-scale calculation, a parallel algorithm based on the modified recursive coordinate bisection (MRCB considering the balance of SSI and FSI loads is proposed and used. The whole simulation is accomplished on Dawning 5000 A using the proposed MRCB based parallel algorithm optimized to run on supercomputers. The simulation model and the proposed approaches are validated by comparison with the added mass method. Dynamic responses of the tunnel are analyzed and the parallelism is discussed. Besides, factors affecting the dynamic responses are investigated. Better speedup and parallel efficiency show the scalability of the parallel method and the analysis results can be used to aid in the design of water conveyance tunnels.

  11. Conservative Eulerian-Lagrangian Methods and Mixed Finite Element Methods for Modeling of Groundwater Flow and Transport

    National Research Council Canada - National Science Library

    Russell, Thomas

    2000-01-01

    New, improved computational methods for modeling of groundwater flow and transport have been formulated and implemented, with the intention of incorporating them as user options into the DoD Ground...

  12. Conservative Eulerian-Lagrangian Methods and Mixed Finite Element Methods for Modeling of Groundwater Flow and Transport

    National Research Council Canada - National Science Library

    Russell, Thomas

    2000-01-01

    ... more detailed three-dimensional (3D) simulations than would otherwise be practical. For 3D solute transport, the methods have been implemented and perform as expected on representative test problems...

  13. Fractional equivalent Lagrangian densities for a fractional higher-order equation

    International Nuclear Information System (INIS)

    Fujioka, J

    2014-01-01

    In this communication we show that the equivalent Lagrangian densities (ELDs) of a fractional higher-order nonlinear Schrödinger equation with stable soliton-like solutions can be related in a hitherto unknown way. This new relationship is described in terms of a new fractional operator that includes both left- and right-sided fractional derivatives. Using this operator it is possible to generate new ELDs that contain different fractional parts, in addition to the already known ELDs, which only differ by a sum of first-order partial derivatives of two arbitrary functions. (fast track communications)

  14. Eulerian Time-Domain Filtering for Spatial LES

    Science.gov (United States)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  15. Modelling Pressurized Water Reactor cores in terms of porous media

    International Nuclear Information System (INIS)

    Ricciardi, G.; Collard, B.; Ricciardi, G.; Bellizzi, S.; Cochelin, B.

    2009-01-01

    The aim of this study is to develop a tractable model of a nuclear reactor core taking the complexity of the structure (including its nonlinear behaviour) and fluid flow coupling into account. The mechanical behaviour modelling includes the dynamics of both the fuel assemblies and the fluid. Each rod bundle is modelled in the form of a deformable porous medium; then, the velocity field of the fluid and the displacement field of the structure are defined over the whole domain. The fluid and the structure are first modelled separately, before being linked together. The equations of motion for the structure are obtained using a Lagrangian approach and, to be able to link up the fluid and the structure, the equations of motion for the fluid are obtained using an arbitrary Lagrangian Eulerian approach. The finite element method is applied to spatially discretize the equations. Simulations are performed to analyse the effects of the characteristics of the fluid and of the structure. Finally, the model is validated with a test involving two fuel assemblies, showing good agreement with the experimental data. (authors)

  16. Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

    Science.gov (United States)

    Dimitroglou Rizell, Georgios

    2015-04-01

    We make the elementary observation that the Lagrangian submanifolds of C n , n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian caps, which obviously are non-uniruled in themselves. This property is also used to show that if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its Chekanov-Eliashberg algebra is acyclic.

  17. Nitrogen injection in stagnant liquid metal. Eulerian-Eulerian and VOF calculations by fluent

    International Nuclear Information System (INIS)

    Pena, A.; Esteban, G.A.

    2004-01-01

    High power spallation sources are devices that can be very useful in different fields, as medicine, material science, and also in the Accelerator Driven Systems (ADS). This devices use Heavy Liquid Metals (HLM) as the spallation target. Furthermore, HLM are thought to be the coolant of those big energy sources produced by the process. Fast breeder reactors, advanced nuclear reactors, as well as the future designs of fusion reactors, also consider HLM as targets or coolants. Gas injection in liquid metal flows allows the enhancement of this coolant circulation. The difference in densities between the gas and the liquid metal is a big challenge for the multiphase models implemented in the Computational Fluid Dynamics (CFD) codes. Also the changing shape of the bubbles involves extra difficulties in the calculations. A N 2 flow in stagnant Lead-Bismuth eutectic (Pb-Bi), experiment available at Forschungszentrum Rossendorf e.V (FZR) in Germany, was used in one of the work-packages of the ASCHLIM project (EU contract number FIKW-CT-2001-80121). In this paper, calculations made by the UPV/EHU (University of the Basque Country) show measuring data compared with numerical results using the CFD (Computational Fluid Dynamics) code FLUENT and two multiphase models: the Eulerian-Eulerian and the Volume of Fluid (VOF). The interpretation of the experimental resulting velocities was difficult, because some parameters were not known, bubble trajectory and bubble shape, for example, as direct optical methods cannot be used, like it is done with water experiments. (author)

  18. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...

  19. Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.

    Science.gov (United States)

    Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano

    2013-04-01

    A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.

  20. Determination of Settling Tanks Performance Using an Eulerian- Lagrangian Method

    OpenAIRE

    A Tamayol; B Firoozabadi; G Ahmadi

    2008-01-01

    Circulation regions always exist in settling tanks. These regions reduce the tank’s performance and decrease its effective volume. The recirculation zones would result in short-circuiting and high flow mixing problems. The inlet position would also affect the size and location of the recirculation region. Using a proper baffle configuration could substantially increase the performance of the settling tanks. A common procedure for the comparison of the performances of diffe...

  1. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2009-01-01

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  2. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  3. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  4. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  5. Equivalent Lagrangians

    International Nuclear Information System (INIS)

    Hojman, S.

    1982-01-01

    We present a review of the inverse problem of the Calculus of Variations, emphasizing the ambiguities which appear due to the existence of equivalent Lagrangians for a given classical system. In particular, we analyze the properties of equivalent Lagrangians in the multidimensional case, we study the conditions for the existence of a variational principle for (second as well as first order) equations of motion and their solutions, we consider the inverse problem of the Calculus of Variations for singular systems, we state the ambiguities which emerge in the relationship between symmetries and conserved quantities in the case of equivalent Lagrangians, we discuss the problems which appear in trying to quantize classical systems which have different equivalent Lagrangians, we describe the situation which arises in the study of equivalent Lagrangians in field theory and finally, we present some unsolved problems and discussion topics related to the content of this article. (author)

  6. Intermittency and geometrical statistics of three-dimensional homogeneous magnetohydrodynamic turbulence: A wavelet viewpoint

    International Nuclear Information System (INIS)

    Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie

    2011-01-01

    Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.

  7. Lagrangian Differentiation, Integration and Eigenvalues Problems

    International Nuclear Information System (INIS)

    Durand, L.

    1983-01-01

    Calogero recently proposed a new and very powerful method for the solution of Sturm-Liouville eigenvalue problems based on Lagrangian differentiation. In this paper, some results of a numerical investigation of Calogero's method for physical interesting problems are presented. It is then shown that one can 'invert' his differentiation technique to obtain a flexible, factorially convergent Lagrangian integration scheme which should be useful in a variety of problems, e.g. solution of integral equations

  8. Eulerian finite-difference calculations of explosions in partially water-filled overstrong cylindrical containment vessels

    International Nuclear Information System (INIS)

    Thompson, S.L.; Herrmann, W.

    1977-01-01

    Calculations, using the two-dimensional Eulerian finite-difference code CSQ, were performed for the problem of a small spherical high-explosive charge detonated in a closed heavy-walled cylindrical container partially filled with water. Data from corresponding experiments, specifically performed to validate codes used for hypothetical core disruptive accidents of liquid metal fast breeder reactors, are available in the literature. The calculations were performed specifically to test whether Eulerian methods could handle this type of problem, to determine whether water cavitation, which plays a large role in the loadings on the roof of the containment vessel, could be described adequately by an equilibrium liquid-vapor mixed phase model, and to investigate the trade-off between accuracy and cost of the calculations by using different sizes of computational meshes. Comparison of the experimental and computational data shows that the Eulerian method can handle the problem with ease, giving good predictions of wall and floor loadings. While roof loadings are qualitatively correct, peak impulse appears to be affected by numerical resolution and is underestimated somewhat

  9. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  10. Diffusion coefficient adaptive correction in Lagrangian puff model

    International Nuclear Information System (INIS)

    Tan Wenji; Wang Dezhong; Ma Yuanwei; Ji Zhilong

    2014-01-01

    Lagrangian puff model is widely used in the decision support system for nuclear emergency management. The diffusion coefficient is one of the key parameters impacting puff model. An adaptive method was proposed in this paper, which could correct the diffusion coefficient in Lagrangian puff model, and it aimed to improve the accuracy of calculating the nuclide concentration distribution. This method used detected concentration data, meteorological data and source release data to estimate the actual diffusion coefficient with least square method. The diffusion coefficient adaptive correction method was evaluated by Kincaid data in MVK, and was compared with traditional Pasquill-Gifford (P-G) diffusion scheme method. The results indicate that this diffusion coefficient adaptive correction method can improve the accuracy of Lagrangian puff model. (authors)

  11. Applications of the representation of the Heisenberg-Euler Lagrangian by means of special functions

    International Nuclear Information System (INIS)

    Valluri, S.R.; Lamm, D.R.; Mielniczuk, W.J.

    1993-01-01

    A convenient series representation for the real part of the Heisenberg-Euler Lagrangian density of quantum electrodynamics for arbitrary nonvanishing electric fields, E, and magnetic fields, B, has been previously provided by Mielniczuk. Using this representation, numerical information for the Lagrangian is presented for the range 0 cr ≤ 5 and 0 cr ≤ 10 (subscript cr stands for critical) with the electric and magnetic fields parallel and E cr ∼ 1.7 X 10 16 V cm -1 and B cr ∼ 4.4 X 10 13 G. It was found that for a fixed electric field, the Lagrangian is monotonically increasing with increasing magnetic field strength. However, for a fixed magnetic field, the Lagrangian exhibits a positively valued maximum before turning monotonically decreasing with increasing electric field strength. Further, the series representation is extended to the case of vanishing electric or magnetic field. Numerical results for these special cases are in very close agreement with previous results, which indicated a maximum value for the Lagrangian density for B = 0 at E/E cr ∼ 3. Also, the techniques developed for deriving the real part of the Heisenberg-Euler Lagrangian are applied to the imaginary part to deduce a similar, convenient series representation that agrees with the previous results derived by others for the special case of a vanishing magnetic field. Possible applications of this Lagrangian to quantum chromodynamics are discussed. This series representation will be of use in calculations of a quantum-electrodynamical field energy density in the absence of real charges, and for calculations of polarization and magnetization of the vacuum. More accurate calculations of the cross-section scattering of light by light in the presence of a constant, homogeneous magnetic and (or) electric field are possible with the aid of this series representation. (author)

  12. An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces

    CERN Document Server

    Udaykumar, H S; Belk, D M; Vanden, K J

    2003-01-01

    A technique is presented for the numerical simulation of high-speed multimaterial impact. Of particular interest is the interaction of solid impactors with targets. The computations are performed on a fixed Cartesian mesh by casting the equations governing material deformation in Eulerian conservation law form. The advantage of the Eulerian setting is the disconnection of the mesh from the boundary deformation allowing for large distortions of the interfaces. Eigenvalue analysis reveals that the system of equations is hyperbolic for the range of materials and impact velocities of interest. High-order accurate ENO shock-capturing schemes are used along with interface tracking techniques to evolve sharp immersed boundaries. The numerical technique is designed to tackle the following physical phenomena encountered during impact: (1) high velocities of impact leading to large deformations of the impactor as well as targets; (2) nonlinear wave-propagation and the development of shocks in the materials; (3) modelin...

  13. Lagrangian relaxation based algorithm for trigeneration planning with storages

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto; Luh, Peter

    2008-01-01

    of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem...... an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical results based...

  14. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    Science.gov (United States)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  15. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  16. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    Science.gov (United States)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  17. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Clua, Esteban [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2011-07-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the {Lambda}-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) {approx} v{sup 5}. The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model

  18. A new gravitational N-body simulation algorithm for investigation of Lagrangian turbulence in astrophysical and cosmological systems

    International Nuclear Information System (INIS)

    Rosa, Reinaldo Roberto; Gomes, Vitor; Araujo, Amarisio; Clua, Esteban

    2011-01-01

    Full text: Turbulent-like behaviour is an important and recent ingredient in the investigation of large-scale structure formation in the observable universe. Recently, an established statistical method was used to demonstrate the importance of considering chaotic advection (or Lagrange turbulence) in combination with gravitational instabilities in the Λ-CDM simulations performed from the Virgo Consortium (VC). However, the Hubble volumes simulated from GADGET-VC algorithm have some limitations for direct Lagrangian data analysis due to the large amount of data and no real time computation for particle kinetic velocity along the dark matter structure evolution. Hence, the Lab for Computing and Applied Mathematics at INPE, Brazil, has been working for the past two years in computational environments to achieve the so-called COsmic LAgrangian TUrbulence Simulator (COLATUS) allowing N-body simulation from a Lagrangian perspective. The COLATUS prototype, as usual packages, computes gravitational forces with a hierarchical tree algorithm in combination with a local particle kinetic velocity vector in a particle-mesh scheme for long-range gravitational forces. In the present work we show preliminary simulations for 106 particles showing Lagrangian power spectra for individual particles converging to a stable power-law of S(v) ∼ v 5 . The code may be run on an arbitrary number of processors, with a restriction to powers of two. COLATUS has a potential to evaluate complex kinematics of a single particle in a simulated N-body gravitational system. However, to introduce this method as a GNU software further improvements and investigations are necessary. Then, the mapping techniques for the N-body problem incorporating radiation pressure and fluid characteristics by means of smoothed particle hydrodynamics (SPH) are discussed. Finally, we focus on the all-pairs computational kernel and its future GPU implementation using the NVIDIA CUDA programming model. (author)

  19. Truss Structure Optimization with Subset Simulation and Augmented Lagrangian Multiplier Method

    Directory of Open Access Journals (Sweden)

    Feng Du

    2017-11-01

    Full Text Available This paper presents a global optimization method for structural design optimization, which integrates subset simulation optimization (SSO and the dynamic augmented Lagrangian multiplier method (DALMM. The proposed method formulates the structural design optimization as a series of unconstrained optimization sub-problems using DALMM and makes use of SSO to find the global optimum. The combined strategy guarantees that the proposed method can automatically detect active constraints and provide global optimal solutions with finite penalty parameters. The accuracy and robustness of the proposed method are demonstrated by four classical truss sizing problems. The results are compared with those reported in the literature, and show a remarkable statistical performance based on 30 independent runs.

  20. Some Lagrangians for systems without a Lagrangian

    International Nuclear Information System (INIS)

    Nucci, M C; Leach, P G L

    2011-01-01

    We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.

  1. Calculation of fluid-structure interaction for reactor safety with the Cassiopee code

    International Nuclear Information System (INIS)

    Graveleau, J.L.; Louvet, P.D.

    1979-01-01

    The cassiopee code is an eulerian-lagrangian coupled code for computations where the hydrodynamic is coupled with structural domains. It is completely explicit. The fluid zones may be computed either in lagrangian or in eulerian coordinates; thin shells can be computed wih their flexural behaviour; elastic plastic zones must be calculated in a lagrangian way. This code is under development in Cadarache. Its purpose is to compute the hypothetical core disruptive accident of a LMFBR when lagrangian codes are not sufficient. This paper contains a description of the code and two examples of computations, one of which has been compared with experimental results

  2. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael; Gré tarsson, Jó n Tó mas; Fedkiw, Ronald

    2011-01-01

    of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving

  3. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

    Science.gov (United States)

    Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  4. Phenomenological Lagrangians

    International Nuclear Information System (INIS)

    Weinberg, S.

    1979-01-01

    The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)

  5. Lagrangian ocean analysis: Fundamentals and practices

    Science.gov (United States)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

  6. A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits

    NARCIS (Netherlands)

    Moreau, L.; Aeyels, D.

    2004-01-01

    We study the dynamical equations of nonlinear inductor-capacitor circuits. We present a novel Lagrangian description of the dynamics and provide a variational interpretation, which is based on the maximum principle of optimal control theory. This gives rise to an alternative method for deriving the

  7. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    Science.gov (United States)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  8. An improved Lagrangian relaxation and dual ascent approach to facility location problems

    DEFF Research Database (Denmark)

    Jörnsten, Kurt; Klose, Andreas

    2016-01-01

    not be reduced to the same extent as in the case of ordinary semi-Lagrangian relaxation. Hence, an effective method for optimizing the Lagrangian dual function is of utmost importance for obtaining a computational advantage from the simplified Lagrangian dual function. In this paper, we suggest a new dual ascent...... method for optimizing both the semi-Lagrangian dual function as well as its simplified form for the case of a generic discrete facility location problem and apply the method to the uncapacitated facility location problem. Our computational results show that the method generally only requires a very few...

  9. Valley method versus instanton-induced effective lagrangian up to (E/Espha)8/3

    International Nuclear Information System (INIS)

    Balitsky, I.; Schaefer, A.

    1993-01-01

    We compare the two most popular approaches to the problem of instanton-anti-instanton interaction at high energies - the valley method and the effective lagrangian approach - and use them to calculate the next-to-next-to-leading term in the expansion of the 'holy grail' function determining the cross section with baryon number violation in the standard model. (orig.)

  10. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    International Nuclear Information System (INIS)

    Schamel, Hans

    2004-01-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum--as seen in laboratory experiments--is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one

  11. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    Science.gov (United States)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D

  12. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    International Nuclear Information System (INIS)

    Aidun, John B.; Robinson, Allen C.; Weatherby, Joe R.

    1999-01-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given

  13. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available In this paper, we present the direct-substitution (DS method to study the second-harmonic generation (SHG in arbitrary one-dimensional optical superlattices (OS. Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What’s more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems. Keywords: Second-harmonic generation, Direct-substitution, Fibonacci

  14. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    Science.gov (United States)

    Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri

    2018-04-01

    In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.

  15. Development of CO2 inversion system based on the adjoint of the global coupled transport model

    Science.gov (United States)

    Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon

    2014-05-01

    We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over

  16. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    Science.gov (United States)

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ecological implications of eddy retention in the open ocean: a Lagrangian approach

    International Nuclear Information System (INIS)

    D’Ovidio, Francesco; Penna, Alice Della; Cotté, Cedric; De Monte, Silvia; Guinet, Christophe

    2013-01-01

    The repartition of tracers in the ocean’s upper layer on the scale of a few tens of kilometres is largely determined by the horizontal transport induced by surface currents. Here we consider surface currents detected from satellite altimetry (Jason and Envisat missions) and we study how surface waters may be trapped by mesoscale eddies through a semi-Lagrangian diagnostic which combines the Lyapunov approach with Eulerian techniques. Such a diagnostic identifies the regions of the ocean’s upper layer with different retention times that appear to influence the behaviour of a tagged marine predator (an elephant seal) along a foraging trip. The comparison between predator trajectory and eddy retention time suggests that water trapping by mesoscale eddies, derived from satellite altimetry, may be an important factor for monitoring hotspots of trophic interactions in the open ocean. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  18. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method

    Directory of Open Access Journals (Sweden)

    Konkol Jakub

    2017-03-01

    Full Text Available In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL and Updated Lagrangian (UL. Numerical study consists of installation process, consolidation phase and following pile static load test (SLT. The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12. The results of numerical analysis are compared with corresponding field tests and with so-called “wish-in-place” numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  19. Energy dissipation statistics along the Lagrangian trajectories in three-dimensional turbulent flows

    Science.gov (United States)

    Luo, Jian-ping; Wang, Yong-bo; Qiu, Xiang; Xia, Yu-xian; Liu, Yu-lu

    2018-02-01

    Energy dissipation rate is relevant in the turbulent phenomenology theory, such as the classical Kolmogorov 1941 and 1962 refined similarity hypothesis. However, it is extremely difficult to retrieve experimentally or numerically. In this paper, the full energy dissipation, its proxy and the pseudo-energy dissipation rate along the Lagrangian trajectories in the three-dimensional turbulent flows are examined by using a state-of-art high resolution direct numerical simulation database with a Reynolds number Re λ = 400. It is found that the energy dissipation proxy ɛ P is more correlated with the full energy dissipation rate ɛ. The corresponding correlation coefficient ρ between the velocity gradient and e shows a Gaussian distribution. Furthermore, the coarse-grained dissipation rate is considered. The cross correlation ρ is found to be increased with the increasing of the scale τ. Finally, the hierarchical structure is extracted for the full energy dissipation rate, its proxy and the pseudo one. The results show a power-law behavior in the inertial range 10 ≤ τ/ τ η ≤ 100. The experimental scaling exponent of the full energy dissipation rate is found to be h L =0.69, agrees very well with the one found for the Eulerian velocity. The experimental values for ɛ P and ɛ S are around h L = 0.78, implying a more intermittent Lagrangian turbulence. Therefore, the intermittency parameter provided by ɛ P and ɛ S will be biased.

  20. Lagrangian relaxation technique in power systems operation planning: Multipliers updating problem

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, S. [Electric Power Utility of Serbia, Belgrade (Yugoslavia)

    1995-11-01

    All Lagrangian relaxation based approaches to the power systems operation planning have an important common part: the Lagrangian multipliers correction procedure. It is the subject of this paper. Different approaches presented in the literature are discussed and an original method for the Lagrangian multipliers updating is proposed. The basic idea of this new method is to update Lagrangian multipliers trying to satisfy Khun-Tucker optimality conditions. Instead of the dual function maximization the `distance of optimality function` is defined and minimized. If Khun-Tucker optimality conditions are satisfied the value of this function is in range (-1,0); otherwise the function has a big positive value. This method called `the distance of optimality method` takes into account future changes in planning generations due to the Lagrangian multipliers updating. The influence of changes in a multiplier associated to one system constraint to the satisfaction of some other system requirements is also considered. The numerical efficiency of the proposed method is analyzed and compared with results obtained using the sub-gradient technique. 20 refs, 2 tabs

  1. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    Science.gov (United States)

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  2. Parallel MR image reconstruction using augmented Lagrangian methods.

    Science.gov (United States)

    Ramani, Sathish; Fessler, Jeffrey A

    2011-03-01

    Magnetic resonance image (MRI) reconstruction using SENSitivity Encoding (SENSE) requires regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based regularization criteria can improve image quality, but they demand computation-intensive nonlinear optimization. In this paper, we present novel methods for regularized MRI reconstruction from undersampled sensitivity encoded data--SENSE-reconstruction--using the augmented Lagrangian (AL) framework for solving large-scale constrained optimization problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization task and then convert it to a set of (equivalent) constrained problems using variable splitting. We then attack these constrained versions in an AL framework using an alternating minimization method, leading to algorithms that can be implemented easily. The proposed methods are applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., l(1)-norm of wavelet coefficients) criteria and combinations thereof. Numerical experiments with synthetic and in vivo human data illustrate that the proposed AL algorithms converge faster than both general-purpose optimization algorithms such as nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA.

  3. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    Science.gov (United States)

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  4. The direct Discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids

    Science.gov (United States)

    Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong

    2015-11-01

    The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.

  5. Eulerian-Lagrangian simulation of non-isothermal gas-solid flows: particle-turbulence interactions in pipe flows; Simulation eulerienne-lagrangienne d'ecoulements gaz-solide non isothermes: interactions particules-turbulence, application aux ecoulements en conduite

    Energy Technology Data Exchange (ETDEWEB)

    Chagras, V.

    2004-03-15

    The aim of this work is to contribute to the numerical modeling of turbulent gas-solid flows in vertical or horizontal non isothermal pipes, which can be found in many industrial processes (pneumatic transport, drying, etc). The model is based on an Eulerian-Lagrangian approach allowing a fine description of the interactions between the two phases (action of the fluid upon the particles (dispersion), action of the particles upon the fluid (two way coupling) and between particles (collisions)), more or less influential according to the characteristics of the flow. The influence of the gas phase turbulence on the particle motion is taken into account using a non-isotropic dispersion model, which allows the generation of velocity and temperature fluctuations of the fluid seen by the particles. The numerical developments brought to the model for vertical and horizontal pipe flow have been validated by comparison with available experimental results from the literature. The sensitivity tests highlight the influence of the dispersion model, collisions and turbulence modulation (direct and non direct modifications ) on the dynamic and thermal behavior of the suspension. The model is able to predict the heat exchanges in the presence of particles for a wide range of flows in vertical and horizontal pipes. However numerical problems still exist in two-way coupling for very small particles and loading ratios above one. This is related to the problems encountered when modeling the coupling terms between the two phases (parameters C{sub {epsilon}}{sub 2} and C{sub {epsilon}}{sub 3} ) involved in the turbulence dissipation balance. (author)

  6. An arbitrary curvilinear-coordinate method for particle-in-cell modeling

    International Nuclear Information System (INIS)

    Fichtl, C A; Finn, J M; Cartwright, K L

    2012-01-01

    A new approach to kinetic simulation of plasmas in complex geometries, based on the particle-in-cell (PIC) simulation method, is explored. In the two-dimensional (2D) electrostatic version of our method, called the arbitrary curvilinear-coordinate PIC method, all essential PIC operations are carried out in 2D on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit modified leapfrog integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear-coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes. (paper)

  7. Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method

    Energy Technology Data Exchange (ETDEWEB)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France)

    2016-12-15

    This work deals with a numerical method for solving a mean-field type control problem with congestion. It is the continuation of an article by the same authors, in which suitably defined weak solutions of the system of partial differential equations arising from the model were discussed and existence and uniqueness were proved. Here, the focus is put on numerical methods: a monotone finite difference scheme is proposed and shown to have a variational interpretation. Then an Alternating Direction Method of Multipliers for solving the variational problem is addressed. It is based on an augmented Lagrangian. Two kinds of boundary conditions are considered: periodic conditions and more realistic boundary conditions associated to state constrained problems. Various test cases and numerical results are presented.

  8. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    International Nuclear Information System (INIS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2011-01-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.

  9. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    Directory of Open Access Journals (Sweden)

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  10. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation

    Directory of Open Access Journals (Sweden)

    Badis Haddag

    2016-08-01

    Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.

  11. Interface tracking for 2D hydrodynamics

    International Nuclear Information System (INIS)

    Bezard, Fabienne

    1997-01-01

    The aim of this work is to explore new methods to numerically simulate the evolution of interfaces between immiscible fluids in the context of the dynamics of compressible and non-viscous fluids. The methods currently available, to our knowledge, to deal with this type of problem are based on the Lagrange coordinates (that is to say, that follow the material in its displacements) or on the Euler coordinates (fixed during the time). In the case of Eulerian coordinates, the simplest methods involve so-called 'mixing' meshes (that is, containing several fluids). The study that is presented is based on an Eulerian method with Lagrangian interface tracking. This avoids the introduction of any model of mesh of mixture. This method combines some advantages of the previously mentioned methods, notably the precision of the Lagrangian follow-up and the robustness of the Eulerian schemes. This report describes only the algorithms of displacement and regularization of the interface, by clearly presenting the geometry around the interface. These algorithms will then be coupled with the resolution of two-dimensional hydrodynamic equations to solve multi-fluid problems. Some numerical results are proposed to illustrate the good behavior of the interface tracking algorithm [fr

  12. Study on Differential Algebraic Method of Aberrations up to Arbitrary Order for Combined Electromagnetic Focusing Systems

    Institute of Scientific and Technical Information of China (English)

    CHENG Min; TANG Tiantong; YAO Zhenhua; ZHU Jingping

    2001-01-01

    Differential algebraic method is apowerful technique in computer numerical analysisbased on nonstandard analysis and formal series the-ory. It can compute arbitrary high order derivativeswith excellent accuracy. The principle of differentialalgebraic method is applied to calculate high orderaberrations of combined electromagnetic focusing sys-tems. As an example, third-order geometric aberra-tion coefficients of an actual combined electromagneticfocusing system were calculated. The arbitrary highorder aberrations are conveniently calculated by dif-ferential algebraic method and the fifth-order aberra-tion diagrams are given.

  13. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)

    M.Chen

    2005-01-01

    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  14. Dispersion of pollutants in a street canyon and street intersection under traffic-induced flow and turbulence using a low Re k-{epsilon} model

    Energy Technology Data Exchange (ETDEWEB)

    Jicha, M.; Katolicky, J.; Pospisil, J. [Brno University of Technology (Czech Republic). Faculty of Mechanical Engineering

    2002-07-01

    A 3-D Eulerian-Lagrangian approach to moving vehicles is presented that takes into account the traffic-induced flow rate and turbulence. The method is applied to pollutant dispersion in an individual street canyon and a system of two street canyons forming a perpendicular intersection. The approach is based on computational fluid dynamics (CFD) calculations using a Eulerian approach for continuous phase and a Lagrangian approach for moving vehicles. The wind speed was assigned values of 4, 7 and 12 m/s. One-way and two-way traffic with different traffic rates per lane is considered. In the case of the intersection, a longitudinal wind direction was assumed. Predictions show differences in the pollutant dispersion in the case of one-way and two-way traffic. (author)

  15. Propagation of the nonlinear plastic stress waves in semi-infinite bar

    Directory of Open Access Journals (Sweden)

    Edward Włodarczyk

    2017-03-01

    Full Text Available This paper presents the propagation longitudinal nonlinear plastic stress in thin semi-infinite rod or in wire. The rod is characterized by a nonlinear strain hardening model within the scope a plastic strain. The modulus of strain hardening is a decreasing function of the strain. The frontal bar end is suddenly launching to the velocity V, and subsequently moves with this one. General solution of this boundary value problem of the Lagrangian coordinate (material description and of the Eulerian one (spatial description has been presented. There has been carried out the physical interpretation of the obtained results by means of Lagrangian and Eulerian methods. The results of this paper may be utilized in scientific researches and in engineering practice.

  16. Derivation of the Hall and extended magnetohydrodynamics brackets

    Energy Technology Data Exchange (ETDEWEB)

    D' Avignon, Eric C., E-mail: cavell@physics.utexas.edu; Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-06-15

    There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this paper, we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process, we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.

  17. Lagrangian mixed layer modeling of the western equatorial Pacific

    Science.gov (United States)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  18. Effective Lagrangian of QED

    International Nuclear Information System (INIS)

    Kaminski, J.Z.

    1981-01-01

    A renormalization group equation for the effective Lagrangian of QED is obtained. Starting from this equation, perturbation theory for the renormalization group equation (PTRGE) is developed. The results are in full agreement with the standard perturbation theory. Conjecturing that the asymptotic effective coupling constant is finite, the effective Lagrangian for a strong magnetic field is obtained, which is proportional to the Maxwellian Lagrangian. For the asymptotically free theories the situation is diametrically opposed to QED. In these cases the effective Lagrangian of the Yang-Mills system tends to infinity for very strong external Yang-Mills fields. (Auth.)

  19. Acoustic Radiation Pressure

    Science.gov (United States)

    Cantrell, John H.

    2018-01-01

    The theoretical foundation of acoustic radiation pressure in plane wave beams is reexamined. It is shown from finite deformation theory and the Boltzmann-Ehrenfest Adiabatic Principle that the Brillouin stress tensor (BST) is the radiation stress in Lagrangian coordinates (not Eulerian coordinates) and that the terms in the BST are not the momentum flux density and mean excess Eulerian stress but are simply contributions to the variation in the wave oscillation period resulting from changes in path length and true wave velocity, respectively, from virtual variations in the strain. It is shown that the radiation stress in Eulerian coordinates is the mean Cauchy stress (not the momentum flux density, as commonly assumed) and that Langevin's second relation does not yield an assessment of the mean Eulerian pressure, since the enthalpy used in the traditional derivations is a function of the thermodynamic tensions - not the Eulerian pressure. It is shown that the transformation between Lagrangian and Eulerian quantities cannot be obtained from the commonly-used expansion of one of the quantities in terms of the particle displacement, since the expansion provides only the difference between the value of the quantity at two different points in Cartesian space separated by the displacement. The proper transformation is obtained only by employing the transformation coefficients of finite deformation theory, which are defined in terms of the displacement gradients. Finite deformation theory leads to the result that for laterally unconfined, plane waves the Lagrangian and Eulerian radiation pressures are equal with the value (1/4)(2K) along the direction of wave propagation, where (K) is the mean kinetic energy density, and zero in directions normal to the propagation direction. This is contrary to the Langevin result that the Lagrangian radiation pressure in the propagation direction is equal to (2K) and the BST result that the Eulerian radiation pressure in that direction

  20. The Lagrangians and Hamiltonians of damped coupled vibrations

    International Nuclear Information System (INIS)

    Ding Guangtao; Gan Huilan; Zheng Xianfeng; Cui Zhifeng

    2012-01-01

    In this paper, the analytical mechanization of two kinds of damped coupled vibrations is studied. First, by use of coordinate transformations the equations of motion are transformed into the self-ad- joint form. Secondly, the Lagrangians are obtained according to Engels method. Finally the Lagrangians and Hamiltonians of the original equations are deduced by using the inverse transformation. (authors)

  1. Computer prediction of subsurface radionuclide transport: an adaptive numerical method

    International Nuclear Information System (INIS)

    Neuman, S.P.

    1983-01-01

    Radionuclide transport in the subsurface is often modeled with the aid of the advection-dispersion equation. A review of existing computer methods for the solution of this equation shows that there is need for improvement. To answer this need, a new adaptive numerical method is proposed based on an Eulerian-Lagrangian formulation. The method is based on a decomposition of the concentration field into two parts, one advective and one dispersive, in a rigorous manner that does not leave room for ambiguity. The advective component of steep concentration fronts is tracked forward with the aid of moving particles clustered around each front. Away from such fronts the advection problem is handled by an efficient modified method of characteristics called single-step reverse particle tracking. When a front dissipates with time, its forward tracking stops automatically and the corresponding cloud of particles is eliminated. The dispersion problem is solved by an unconventional Lagrangian finite element formulation on a fixed grid which involves only symmetric and diagonal matrices. Preliminary tests against analytical solutions of ne- and two-dimensional dispersion in a uniform steady state velocity field suggest that the proposed adaptive method can handle the entire range of Peclet numbers from 0 to infinity, with Courant numbers well in excess of 1

  2. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel

    International Nuclear Information System (INIS)

    Kalteh, Mohammad; Abbassi, Abbas; Saffar-Avval, Majid; Harting, Jens

    2011-01-01

    In this paper, laminar forced convection heat transfer of a copper-water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.

  3. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    Directory of Open Access Journals (Sweden)

    Domingues M. O.

    2013-12-01

    Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.

  4. An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.

    Science.gov (United States)

    Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua

    2015-01-01

    Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.

  5. Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model

    International Nuclear Information System (INIS)

    Bouttier, J; Francesco, P Di; Guitter, E

    2007-01-01

    We introduce Eulerian maps with blocked edges as a general way to implement statistical matter models on random maps by a modification of intrinsic distances. We show how to code these dressed maps by means of mobiles, i.e. decorated trees with labelled vertices, leading to a closed system of recursion relations for their generating functions. We discuss particular solvable cases in detail, as well as various applications of our method to several statistical systems such as spanning trees on quadrangulations, mutually excluding particles on Eulerian triangulations or the Ising model on quadrangulations

  6. Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Bradley Wright.; Robinson, Allen C

    2014-01-01

    Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.

  7. Simulations of MHD flows with moving interfaces

    CERN Document Server

    Gerbeau, J F; Le Bris, C

    2003-01-01

    We report on the numerical simulation of a two-fluid magnetohydrodynamics problem arising in the industrial production of aluminium. The motion of the two non-miscible fluids is modeled through the incompressible Navier-Stokes equations coupled with the Maxwell equations. Stabilized finite elements techniques and an arbitrary Lagrangian-Eulerian formulation (for the motion of the interface separating the two fluids) are used in the numerical simulation. With a view to justifying our strategy, details on the numerical analysis of the problem, with a special emphasis on conservation and stability properties and on the surface tension discretization, as well as results on tests cases are provided. Examples of numerical simulations of the industrial case are eventually presented.

  8. Hamiltonian Cycles on Random Eulerian Triangulations

    DEFF Research Database (Denmark)

    Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard

    1998-01-01

    . Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...

  9. Analysis of Seismic Sloshing of Coolant in the ELSY-LFR

    International Nuclear Information System (INIS)

    Barrera, G.; Dinoi, P.; Cercos, J.; Gonzalez, L.; Guerrero, A.; Beltran, F.; Moreno, A.

    2013-01-01

    The seismically induced sloshing in the ELSY-LFR reactor vessel with and without seismic isolators at the base of the reactor building are studied. The approach is to compare the results given by three different methodologies. In the first method, a detailed model has been developed using the commercial code FLUENT. The methodology is CFD (Computational Fluid Dynamics). The goal is to obtain the evolution of the free surfaces of molten lead in the complex 3D geometry of the vessel with internals. No fluid-structure interaction is considered during the seismic shaking. The second approach is based on the commercial code ABAQUS, using the ALE methodology (Arbitrary Lagrangian Eulerian). The purpose is to obtain the same results as with FLUENT. However, ABAQUS allows the study of the fluid structure interaction within the same computational model. In the third approach, the same simulation has been performed using the SPH (Smoothed Particle Hydrodynamics) method, a non-classical particle based Lagrangian numerical procedure which allows extremely large displacements at the fluid surfaces. A comparative study of the three different solutions has been carried out, in order to assess the capabilities and limitations of each method. The work has been carried out within the SILER project, a EU funded R and D project included in the 7th Framework Programme.

  10. Analysis of Seismic Sloshing of Coolant in the ELSY-LFR

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, G.; Dinoi, P.; Cercos, J.; Gonzalez, L.; Guerrero, A.; Beltran, F.; Moreno, A.

    2013-07-01

    The seismically induced sloshing in the ELSY-LFR reactor vessel with and without seismic isolators at the base of the reactor building are studied. The approach is to compare the results given by three different methodologies. In the first method, a detailed model has been developed using the commercial code FLUENT. The methodology is CFD (Computational Fluid Dynamics). The goal is to obtain the evolution of the free surfaces of molten lead in the complex 3D geometry of the vessel with internals. No fluid-structure interaction is considered during the seismic shaking. The second approach is based on the commercial code ABAQUS, using the ALE methodology (Arbitrary Lagrangian Eulerian). The purpose is to obtain the same results as with FLUENT. However, ABAQUS allows the study of the fluid structure interaction within the same computational model. In the third approach, the same simulation has been performed using the SPH (Smoothed Particle Hydrodynamics) method, a non-classical particle based Lagrangian numerical procedure which allows extremely large displacements at the fluid surfaces. A comparative study of the three different solutions has been carried out, in order to assess the capabilities and limitations of each method. The work has been carried out within the SILER project, a EU funded R and D project included in the 7th Framework Programme.

  11. Time-Discrete Higher-Order ALE Formulations: Stability

    KAUST Repository

    Bonito, Andrea

    2013-01-01

    Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.

  12. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramis, Rafael, E-mail: rafael.ramis@upm.es

    2017-02-01

    A new one-dimensional hydrodynamic algorithm, specifically developed for Inertial Confinement Fusion (ICF) applications, is presented. The scheme uses a fully conservative Lagrangian formulation in planar, cylindrical, and spherically symmetric geometries, and supports arbitrary equations of state with separate ion and electron components. Fluid equations are discretized on a staggered grid and stabilized by means of an artificial viscosity formulation. The space discretized equations are advanced in time using an implicit algorithm. The method includes several numerical parameters that can be adjusted locally. In regions with low Courant–Friedrichs–Lewy (CFL) number, where stability is not an issue, they can be adjusted to optimize the accuracy. In typical problems, the truncation error can be reduced by a factor between 2 to 10 in comparison with conventional explicit algorithms. On the other hand, in regions with high CFL numbers, the parameters can be set to guarantee unconditional stability. The method can be integrated into complex ICF codes. This is demonstrated through several examples covering a wide range of situations: from thermonuclear ignition physics, where alpha particles are managed as an additional species, to low intensity laser–matter interaction, where liquid–vapor phase transitions occur.

  13. Coupled fluid-structure method for pressure suppression analysis

    International Nuclear Information System (INIS)

    McMaster, W.H.; Norris, D.M. Jr.; Goudreau, G.L.

    1979-01-01

    We have coupled an incompressible Eulerian hydrodynamic algorithm to a Lagrangian finite-element shell algorithm for the analysis of pressure suppression in boiling water reactors. The computer program calculates loads and structural response from air and steam blowdown and the oscillating condensation of steam bubbles in a water pool. The fluid, structure, and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The foundation of the program is the semi-implicit, two-dimensional SOLA algorithm. The shell structure algorithm uses conventional thin-shell theory with transverse shear. The finite-element spatial discretization employs piecewise-linear interpolation functions and one-point quadrature applied to conical frustra. We use the Newmark implicit time-integration method implemented as a one-step module. The algorithms are strongly coupled in the iteration loop using the iterated pressure in the fluid to drive the structure. The coupling algorithm requires normal velocity compatibility at the fluid-structure interface and incompressibility of the computational Eulerian zone overlaid by the structure. This is accomplished by iterating on the pressure field which is applied to the structure during each iteration until both conditions are satisfied

  14. Fluid structure interaction with sloshing

    International Nuclear Information System (INIS)

    Belytschko, T.B.; Liu, W.K.

    1983-01-01

    In this paper, three different formulations for fluid-structure interaction with sloshing are discussed. When the surface displacements are large, the problems are nonlinear, and Arbitrary Lagrangian Eulerian (ALE) methods and direct time integration are most appropriate. Explicit direct time integration has the disadvantage of a limited time-step whereas implicit method has the disadvantage of nonconvergence and high computational cost. A mixed time method which employs E-mE (explicit-multiple explicit) integration for obtaining the velocity and free surface displacement and I-mI (implicit-multiple implicit) integration for obtaining the pressure is described. An iterative solution procedure is used to enhance the efficiency of the implicit solution procedure as well as to reduce the computer storage. For linear problems, the surface wave effects can be approximated by a perturbation method on the body force term if the surface displacements are small. Furthermore, if the fluid can be idealized as inviscid, incompressible and irrotational, the pressure, velocity, and free surface displacement variables can be eliminated via a velocity potential formulation. (orig.)

  15. Path integral solutions of the master equation. [Lagrangian function, Ehrenfest-type theorem, Cauchy method, inverse functions

    Energy Technology Data Exchange (ETDEWEB)

    Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica

    1978-08-21

    The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.

  16. An Augmented Lagrangian Method for the Optimal H∞ Model Order Reduction Problem

    Directory of Open Access Journals (Sweden)

    Hongli Yang

    2017-01-01

    Full Text Available This paper treats the computational method of the optimal H∞ model order reduction (MOR problem of linear time-invariant (LTI systems. Optimal solution of MOR problem of LTI systems can be obtained by solving the LMIs feasibility coupling with a rank inequality constraint, which makes the solutions much harder to be obtained. In this paper, we show that the rank inequality constraint can be formulated as a linear rank function equality constraint. Properties of the linear rank function are discussed. We present an iterative algorithm based on augmented Lagrangian method by replacing the rank inequality with the linear rank function. Convergence analysis of the algorithm is given, which is distinct to the now available heuristic methods. Numerical experiments for the MOR problems of continuous LTI system illustrate the practicality of our method.

  17. Micro-CT image reconstruction based on alternating direction augmented Lagrangian method and total variation.

    Science.gov (United States)

    Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David

    2013-01-01

    Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  19. An adaptive meshfree method for phase-field models of biomembranes. Part II: A Lagrangian approach for membranes in viscous fluids

    OpenAIRE

    Peco, C.; Rosolen, A.; Arroyo, M.

    2013-01-01

    We present a Lagrangian phase-field method to study the low Reynolds number dynamics of vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables are the phase-field and the fluid velocity, here we exploit the fact that the phasefield tracks a material interface to reformulate the problem in terms of the Lagrangian motion of a background medium, containing both the biomembrane and the fluid. We discretize the equations in space with maximum-entr...

  20. Effects of Nozzle Diameter on Diesel Spray Flames: A numerical study using an Eulerian Stochastic Field Method

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2017-01-01

    The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated ignit...... serve as an important tool for the simulation of spray flames in marine diesel engines, where fuel injectors with different nozzle diameters are applied for pilot and main injections.......The present numerical study aims to assess the performance of an Eulerian Stochastic Field (ESF) model in simulating spray flames produced by three fuel injectors with different nozzle diameters of 100 μm, 180 μm and 363 μm. A comparison to the measurements shows that although the simulated...... ignition delay times are consistently overestimated, the relative differences remain below 28%. Furthermore, the change of the averaged pressure rise with respect to the variation of nozzle diameter is captured by the model. The simulated flame lift-off lengths also agree with the measurements...

  1. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  2. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  3. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  4. Investigation on the Use of a Multiphase Eulerian CFD solver to simulate breaking waves

    DEFF Research Database (Denmark)

    Tomaselli, Pietro D.; Christensen, Erik Damgaard

    2015-01-01

    investigation on a CFD model capable of handling this problem. The model is based on a solver, available in the open-source CFD toolkit OpenFOAM, which combines the Eulerian multi-fluid approach for dispersed flows with a numerical interface sharpening method. The solver, enhanced with additional formulations...

  5. High Order Semi-Lagrangian Advection Scheme

    Science.gov (United States)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  6. Numerical Study of Correlation of Fluid Particle Acceleration and Turbulence Intensity in Swirling Flow

    Directory of Open Access Journals (Sweden)

    Nan Gui

    2015-01-01

    Full Text Available Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation ur.m.sE~C(aLφ between the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads to the increase of the exponent φ and the trajectory-conditioned correlation coefficient ρ(aL,uE and results in a weak power-law augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

  7. 有理Runge-Kutta法を用いたSemi-Lagrangian海洋モデルの開発

    OpenAIRE

    上原, 克人; Uehara, Katsuto

    1997-01-01

    A new Semi-Lagrangian scheme using Rational Runge-Kutta method (RKSL scheme)is developed for reduced-gravity ocean model. It is superior to Semi-Implicit/Semi-Lagrangian (SISL) scheme in handling lateral boundaries, whereas it can take longer time-step than usual external Eulerian schemes. To evaluate this new scheme, experiments simulating the mid-depth circulation of the Mediterranean outflow region in the eastern North Atlantic were made by using the RKSL scheme, the SISL scheme, and cente...

  8. Modelling of a rod bundle under viscous and uncompressible flow by porous media. Applied to nuclear reactor core

    International Nuclear Information System (INIS)

    Ricciardi, Guillaume; Collard, Bruno; Bellizzi, Sergio; Cochelin, Bruno

    2007-01-01

    This study is about the safety of nuclear reactor core submitted to seismic loading. In order to reduce the incertitude margin of the present day codes we propose to develop a numerical code including the non linear behavior of the fluid/structure coupling. The challenge of this work is to find out a tractable model taking the structure complexity into account. In this paper we model the nuclear reactor core mechanical behavior including the dynamics of both fuel assemblies of fluid. Each rod bundle is considered as a deformable porous media, so the velocity field of the fluid and the displacement field of the structure are defined in the whole domain space. Fluid part and structure part are in a first time considered separately, and in second time, the two parts are coupled. The motion equations of the structure are obtained by a Lagrangian formulation, and to allow the fluid structure coupling, the motion equations of the fluid are obtained by an Arbitrary Lagrangian Eulerian formulation. The finite elements method is applied to spatially discretize the equations. Simulations have been performed to analyze the influence of the fluid and structure characteristics, phenomena observed by the experience have been reproduced qualitatively. (author)

  9. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    Science.gov (United States)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  10. Some remarks on the derivability of linear nonconservative systems from a Lagrangian

    International Nuclear Information System (INIS)

    Bahar, L.Y.; Kwatny, H.G.

    1980-01-01

    In this paper the linearization of the equations governing the behavior of large-scale interconnected electric power systems is carried out. It is shown that the perturbed equations of motion represent a linear, nonconservative dynamical system with arbitrary parameter matrices. Simplified conditions for the derivability of such systems from a Lagrangian are given. First integrals are derived when a certain commutativity relation is satisfied. It is shown that previously obtained results can be recovered as special cases of the present development. An example in which independent energy-like integrals are obtained by utilizing the results of this paper is given. Finally, a remark contained in a previous paper by the authors is clarified

  11. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  12. Flux-corrected transport principles, algorithms, and applications

    CERN Document Server

    Löhner, Rainald; Turek, Stefan

    2012-01-01

    Many modern high-resolution schemes for Computational Fluid Dynamics trace their origins to the Flux-Corrected Transport (FCT) paradigm. FCT maintains monotonicity using a nonoscillatory low-order scheme to determine the bounds for a constrained high-order approximation. This book begins with historical notes by J.P. Boris and D.L. Book who invented FCT in the early 1970s. The chapters that follow describe the design of fully multidimensional FCT algorithms for structured and unstructured grids, limiting for systems of conservation laws, and the use of FCT as an implicit subgrid scale model. The second edition presents 200 pages of additional material. The main highlights of the three new chapters include: FCT-constrained interpolation for Arbitrary Lagrangian-Eulerian methods, an optimization-based approach to flux correction, and FCT simulations of high-speed flows on overset grids. Addressing students and researchers, as well as CFD practitioners, the book is focused on computational aspects and contains m...

  13. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  14. A new Lagrangian method for real gases at supersonic speed

    Science.gov (United States)

    Loh, C. Y.; Liou, Meng-Sing

    1992-01-01

    With the renewed interest in high speed flights, the real gas effect is of theoretical as well as practical importance. In the past decade, upwind splittings or Godunov-type Riemann solutions have received tremendous attention and as a result significant progress has been made both in the ideal and non-ideal gas. In this paper, we propose a new approach that is formulated using the Lagrangian description, for the calculation of supersonic/hypersonic real gas inviscid flows. This new formulation avoids the grid generation step which is automatically obtained as the solution procedure marches in the 'time-like' direction. As a result, no remapping is required and the accuracy is faithfully maintained in the Lagrangian level. In this paper, we give numerical results for a variety of real gas problems consisting of essential elements in high speed flows, such as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations for flows in a generic inlet and nozzle are presented.

  15. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  16. Low-energy phenomenological chiral Lagrangians

    International Nuclear Information System (INIS)

    Cavopol, A.V.

    1987-01-01

    We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model

  17. Quadratic Lagrangians and Legendre transformation

    International Nuclear Information System (INIS)

    Magnano, G.

    1988-01-01

    In recent years interest is grown about the so-called non-linear Lagrangians for gravitation. In particular, the quadratic lagrangians are currently believed to play a fundamental role both for quantum gravity and for the super-gravity approach. The higher order and high degree of non-linearity of these theories make very difficult to extract physical information out of them. The author discusses how the Legendre transformation can be applied to a wide class of non-linear theories: it corresponds to a conformal transformation whenever the Lagrangian depends only on the scalar curvature, while it has a more general form if the Lagrangian depends on the full Ricci tensor

  18. A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seok Yun; Yoon, Joon Yong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Chul Kyu [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Shin, Myung Seob [Korea Intellectual Property Office(KIPO), Daejeon (Korea, Republic of)

    2016-06-15

    This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

  19. Euler-Lagrangian Model of Particle Motion and Deposition Effects in Electro-Static Fields based on OpenFoam

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available In order to study the powder coating process of metal substrates, a comprehensive, numerical 3D Eulerian-LaGrangian model, featuring two particle sub-models, has been developed. The model considers the effects of electro-static, fluid-dynamic and gravity forces. The code has been implemented in C++ within the open source CFD platform OpenFoam®, is transient in nature with respect to the applied LaGrangian particle implementation and the electro-static field calculation and is stationary regarding fluid-dynamic phenomena. Qualitative validation of the developed solver has already been achieved by comparison to simple coating experiments and will hereby be presented alongside a thorough description of the model itself. Upon combining knowledge of the relevant dimensionless groups and the numerical model, a dimensionless chart, representing all possible states of coating, was populated with comprehensive, exemplary cases, which are shown here as well.

  20. Regularization of Hamilton-Lagrangian guiding center theories

    International Nuclear Information System (INIS)

    Correa-Restrepo, D.; Wimmel, H.K.

    1985-04-01

    The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)

  1. Lagrangian submanifolds and dynamics on Lie algebroids

    International Nuclear Information System (INIS)

    Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo

    2005-01-01

    In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)

  2. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  3. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  4. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  5. Hamiltonian formulation of inviscid flows with free boundaries

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.; Brown, R.; Yang, Y.M.

    1988-01-01

    The formulation of the Hamiltonian structures for inviscid fluid flows with material free surfaces is presented in both the Lagrangian specification, where the fundamental Poisson brackets are canonical, and in the Eulerian specification, where the dynamics is given in noncanonical form. The noncanonical Eulerian brackets are derived explicitly from the canonical Lagrangian brackets. The Eulerian brackets are, with the exception of a single term at each material free surface separating flows in different phases, identical to those for isentropic flow of a compressible, inviscid fluid. The dynamics of the free surface is located in the Hamiltonian and in the definition of the Eulerian variables of mass density, rho(x, t), momentum density, M(x,t) [which is rho times the fluid velocity v(x,t)], and the specific entropy, σ(x,t). The boundary conditions for the Eulerian variables and the evolution equations for the free surfaces come from the Euler equations of the flow. This construction provides a unified treatment of inviscid flows with any number of free surfaces

  6. Weyl's Lagrangian in teleparallel form

    International Nuclear Information System (INIS)

    Burnett, James; Vassiliev, Dmitri

    2009-01-01

    The Weyl Lagrangian is the massless Dirac Lagrangian. The dynamical variable in the Weyl Lagrangian is a spinor field. We provide a mathematically equivalent representation in terms of a different dynamical variable - the coframe (an orthonormal tetrad of covector fields). We show that when written in terms of this dynamical variable, the Weyl Lagrangian becomes remarkably simple: it is the wedge product of axial torsion of the teleparallel connection with a teleparallel lightlike element of the coframe. We also examine the issues of U(1)-invariance and conformal invariance. Examination of the latter motivates us to introduce a positive scalar field (equivalent to a density) as an additional dynamical variable; this makes conformal invariance self-evident.

  7. Understanding spatial and temporal behavior of sea spray droplets in the marine atmospheric boundary layer using an Eulerian-Lagrangian model

    Science.gov (United States)

    Nissanka, I. D.; Richter, D. H.

    2017-12-01

    Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models

  8. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  9. Anisotropies in magnetic field evolution and local Lyapunov exponents

    International Nuclear Information System (INIS)

    Tang, X.Z.; Boozer, A.H.

    2000-01-01

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates

  10. An Invariant-Preserving ALE Method for Solids under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Christon, Mark A [Los Alamos National Laboratory

    2012-07-17

    We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore

  11. New finite volume methods for approximating partial differential equations on arbitrary meshes

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-12-01

    This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)

  12. Lagrangian multiforms and multidimensional consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lobb, Sarah; Nijhoff, Frank [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-10-30

    We show that well-chosen Lagrangians for a class of two-dimensional integrable lattice equations obey a closure relation when embedded in a higher dimensional lattice. On the basis of this property we formulate a Lagrangian description for such systems in terms of Lagrangian multiforms. We discuss the connection of this formalism with the notion of multidimensional consistency, and the role of the lattice from the point of view of the relevant variational principle.

  13. Computational Magnetohydrodynamics of General Materials in Generalized Coordinates and Applications to Laser-Target Interactions

    Science.gov (United States)

    MacGillivray, Jeff T.; Peterkin, Robert E., Jr.

    2003-10-01

    We have developed a multiblock arbitrary coordinate Hydromagnetics (MACH) code for computing the time-evolution of materials of arbitrary phase (solid, liquid, gas, and plasma) in response to forces that arise from material and magnetic pressures. MACH is a single-fluid, time-dependent, arbitrary Lagrangian-Eulerian (ALE) magnetohydrodynamic (MHD) simulation environment. The 2 1/2 -dimensional MACH2 and the parallel 3-D MACH3 are widely used in the MHD community to perform accurate simulation of the time evolution of electrically conducting materials in a wide variety of laboratory situations. In this presentation, we discuss simulations of the interaction of an intense laser beam with a solid target in an ambient gas. Of particular interest to us is a laser-supported detonation wave (blast wave) that originates near the surface of the target when the laser intensity is sufficiently large to vaporize target material within the focal spot of the beam. Because the MACH3 simulations are fully three-dimensional, we are able to simulate non-normal laser incidence. A magnetic field is also produced from plasma energy near the edge of the focal spot.

  14. "Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.

    Science.gov (United States)

    Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian

    2015-10-23

    We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.

  15. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    International Nuclear Information System (INIS)

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-01

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.

  16. Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

    Directory of Open Access Journals (Sweden)

    Huan-huan Wang

    2016-03-01

    Full Text Available This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.

  17. Lagrangian cobordism and tropical curves

    OpenAIRE

    Sheridan, Nick; Smith, Ivan

    2018-01-01

    We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstructions to and constructions of cobordisms; in particular, we give examples of symplectic tori in which the cobordism group has no non-trivial cobordism relations between pairwise distinct fibres, and ones in which the degree zero fibre cobordism gr...

  18. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  19. Renormalization and effective lagrangians

    International Nuclear Information System (INIS)

    Polchinski, J.

    1984-01-01

    There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)

  20. Functional integral for non-Lagrangian systems

    CERN Document Server

    Kochan, Denis

    2010-01-01

    A novel functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The new approach, which we call "stringy quantization," is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force $-\\kappa[\\dot{q}]^A$. Results for $A = 1$ are compared with those obtained in the approaches by Caldirola-Kanai, Bateman and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.

  1. Turbulent response in a stochastic regime

    International Nuclear Information System (INIS)

    Molvig, K.; Freidberg, J.P.; Potok, R.; Hirshman, S.P.; Whitson, J.C.; Tajima, T.

    1981-06-01

    The theory for the non-linear, turbulent response in a system with intrinsic stochasticity is considered. It is argued that perturbative Eulerian theories, such as the Direct Interaction Approximation (DIA), are inherently unsuited to describe such a system. The exponentiation property that characterizes stochasticity appears in the Lagrangian picture and cannot even be defined in the Eulerian representation. An approximation for stochastic systems - the Normal Stochastic Approximation - is developed and states that the perturbed orbit functions (Lagrangian fluctuations) behave as normally distributed random variables. This is independent of the Eulerian statistics and, in fact, we treat the Eulerian fluctuations as fixed. A simple model problem (appropriate for the electron response in the drift wave) is subjected to a series of computer experiments. To within numerical noise the results are in agreement with the Normal Stochastic Approximation. The predictions of the DIA for this mode show substantial qualitative and quantitative departures from the observations

  2. Lagrangian viscoelastic flow computations using a generalized molecular stress function model

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    2002-01-01

    A new finite element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represents a further development of the 3D Lagrangian integral method (3D-LIM) from a Rivlin...

  3. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    Science.gov (United States)

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal

  4. Lagrangian averaging with geodesic mean.

    Science.gov (United States)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  5. Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Schaft, Arjan J. van der

    The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems

  6. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  7. Asymptotic shape of the region visited by an Eulerian walker.

    Science.gov (United States)

    Kapri, Rajeev; Dhar, Deepak

    2009-11-01

    We study an Eulerian walker on a square lattice, starting from an initial randomly oriented background using Monte Carlo simulations. We present evidence that, for a large number of steps N , the asymptotic shape of the set of sites visited by the walker is a perfect circle. The radius of the circle increases as N1/3, for large N , and the width of the boundary region grows as Nalpha/3, with alpha=0.40+/-0.06 . If we introduce stochasticity in the evolution rules, the mean-square displacement of the walker, approximately approximately N2nu, shows a crossover from the Eulerian (nu=1/3) to a simple random-walk (nu=1/2) behavior.

  8. Grid studies for the simulation of resolved structures in an Eulerian two-fluid framework

    Energy Technology Data Exchange (ETDEWEB)

    Gauss, Friederike, E-mail: f.gauss@hzdr.de; Lucas, Dirk; Krepper, Eckhard

    2016-08-15

    Highlights: • Elaborated Eulerian two-fluid methods may predict multiphase flow with large differences in interfacial length scales. • A study on the grid requirements of resolved structures in such two-fluid methods is presented. • The two-fluid results are only little dependent on the grid size. • The results justify the resolved treatment of flow structures covering only few grid cells. • A grid-dependent limit between resolved an modeled structures may be established. - Abstract: The influence of the grid size on the rise velocity of a single bubble simulated with an Eulerian two-fluid method is investigated. This study is part of the development of an elaborated Eulerian two-fluid framework, which is able to predict complex flow phenomena as arising in nuclear reactor safety research issues. Such flow phenomena cover a wide range of interfacial length scales. An important aspect of the simulation method is the distinction into small flow structures, which are modeled, and large structures, which are resolved. To investigate the requirements on the numerical grid for the simulation of such resolved structures the velocity of rising gas bubbles is a good example since theoretical values are available. It is well known that the rise velocity of resolved bubbles is clearly underestimated in a one-fluid approach if they span over only few numerical cells. In the present paper it is shown that in the case of the two-fluid model the bubble rise velocity depends only slightly on the grid size. This is explained with the use of models for the gas–liquid interfacial forces. Good approximations of the rise velocity and the bubble shape are obtained with only few grid points per bubble diameter. This result justifies the resolved treatment of flow structures, which cover only few grid cells. Thus, a limit for the distinction into resolved and modeled structures in the two-fluid context may be established.

  9. Euler's fluid equations: Optimal control vs optimization

    International Nuclear Information System (INIS)

    Holm, Darryl D.

    2009-01-01

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  10. Fracture mechanics applied to the machining of brittle materials

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  11. Comparability of slack water and Lagrangian flow respirometry methods for community metabolic measurements.

    Directory of Open Access Journals (Sweden)

    Emily C Shaw

    Full Text Available Coral reef calcification is predicted to decline as a result of ocean acidification and other anthropogenic stressors. The majority of studies predicting declines based on in situ relationships between environmental parameters and net community calcification rate have been location-specific, preventing accurate predictions for coral reefs globally. In this study, net community calcification and production were measured on a coral reef flat at One Tree Island, Great Barrier Reef, using Lagrangian flow respirometry and slack water methods. Net community calcification, daytime net photosynthesis and nighttime respiration were higher under the flow respirometry method, likely due to increased water flow relative to the slack water method. The two methods also varied in the degrees to which they were influenced by potential measurement uncertainties. The difference in the results from these two commonly used methods implies that some of the location-specific differences in coral reef community metabolism may be due to differences in measurement methods.

  12. A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation

    Directory of Open Access Journals (Sweden)

    Alexander Efremov

    2014-01-01

    Full Text Available A parallel implementation of a method of the semi-Lagrangian type for the advection equation on a hybrid architecture computation system is discussed. The difference scheme with variable stencil is constructed on the base of an integral equality between the neighboring time levels. The proposed approach allows one to avoid the Courant-Friedrichs-Lewy restriction on the relation between time step and mesh size. The theoretical results are confirmed by numerical experiments. Performance of a sequential algorithm and several parallel implementations with the OpenMP and CUDA technologies in the C language has been studied.

  13. Eulerian Multiphase Population Balance Model of Atomizing, Swirling Flows

    Directory of Open Access Journals (Sweden)

    Narayana P. Rayapati

    2011-06-01

    Full Text Available An Eulerian/Eulerian multiphase flow model coupled with a population balance model is used as the basis for numerical simulation of atomization in swirling flows. The objective of this exercise is to develop a methodology capable of predicting the local point-wise drop size distribution in a spray, such as would be measured by the Phase Doppler Particle Analyzer (PDA. Model predictions are compared to experimental measurements of particle size distributions in an air-blast atomizer spray to demonstrate good qualitative and quantitative agreement. It is observed that the dependence of velocity on drop size inherent in a multiphase description of the drop cloud appears necessary to capture some features of the experimental data. Using this model, we demonstrate the relative contributions of secondary atomization and transport to the variation observed in the downstream spray drop size distribution.

  14. Engineering arbitrary pure and mixed quantum states

    International Nuclear Information System (INIS)

    Pechen, Alexander

    2011-01-01

    Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

  15. Equilibrium Eulerian approach for predicting the thermal field of a dispersion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, J. [University of Illinois, Urbana-Champaign, IL (United States). Center for Simulation of Advanced Rockets; Balachandar, S. [University of Illinois, Urbana-Champaign, IL (United States). Dept. of Theoretical and Applied Mechanics

    2005-02-01

    The equilibrium Eulerian method [J. Ferry, S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int. J. Multiphase Flow 27 (7) (2001) 1199-1226] provides an accurate approximation to the velocity field of sufficiently small dispersed particles in a turbulent fluid. In particular, it captures the important physics of particle response to turbulent flow, such as preferential concentration and turbophoresis. It is therefore employed as an efficient alternative to solving a PDE to determine the particle velocity field. Here we explore two possible extensions of this method to determine the particle temperature field accurately and efficiently, as functions of the underlying fluid velocity and temperature fields. Both extensions are theoretically shown to be highly accurate for asymptotically small particles. Their behavior for finite-size particles is assessed in a DNS of turbulent channel flow (Re{sub {tau}} = 150) with a passive temperature field (Pr = 1). Here it is found that although the order of accuracy of the two extensions is the same, the constant factor by which one is superior to the other can be quite large, so the less accurate extension is appropriate only in the case of a very small mechanical-to-thermal response time ratio. (Author)

  16. Simulating Ice Shelf Response to Potential Triggers of Collapse Using the Material Point Method

    Science.gov (United States)

    Huth, A.; Smith, B. E.

    2017-12-01

    Weakening or collapse of an ice shelf can reduce the buttressing effect of the shelf on its upstream tributaries, resulting in sea level rise as the flux of grounded ice into the ocean increases. Here we aim to improve sea level rise projections by developing a prognostic 2D plan-view model that simulates the response of an ice sheet/ice shelf system to potential triggers of ice shelf weakening or collapse, such as calving events, thinning, and meltwater ponding. We present initial results for Larsen C. Changes in local ice shelf stresses can affect flow throughout the entire domain, so we place emphasis on calibrating our model to high-resolution data and precisely evolving fracture-weakening and ice geometry throughout the simulations. We primarily derive our initial ice geometry from CryoSat-2 data, and initialize the model by conducting a dual inversion for the ice viscosity parameter and basal friction coefficient that minimizes mismatch between modeled velocities and velocities derived from Landsat data. During simulations, we implement damage mechanics to represent fracture-weakening, and track ice thickness evolution, grounding line position, and ice front position. Since these processes are poorly represented by the Finite Element Method (FEM) due to mesh resolution issues and numerical diffusion, we instead implement the Material Point Method (MPM) for our simulations. In MPM, the ice domain is discretized into a finite set of Lagrangian material points that carry all variables and are tracked throughout the simulation. Each time step, information from the material points is projected to a Eulerian grid where the momentum balance equation (shallow shelf approximation) is solved similarly to FEM, but essentially treating the material points as integration points. The grid solution is then used to determine the new positions of the material points and update variables such as thickness and damage in a diffusion-free Lagrangian frame. The grid does not store

  17. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  18. Tracking Lagrangian trajectories in position–velocity space

    International Nuclear Information System (INIS)

    Xu, Haitao

    2008-01-01

    Lagrangian particle-tracking algorithms are susceptible to intermittent loss of particle images on the sensors. The measured trajectories are often interrupted into short segments and the long-time Lagrangian statistics are difficult to obtain. We present an algorithm to connect the segments of Lagrangian trajectories from common particle-tracking algorithms. Our algorithm tracks trajectory segments in the six-dimensional position and velocity space. We describe the approach to determine parameters in the algorithm and demonstrate the validity of the algorithm with data from numerical simulations and the improvement of long-time Lagrangian statistics on experimental data. The algorithm has important applications in measurements with high particle seeding density and in obtaining multi-particle Lagrangian statistics

  19. Lagrangian descriptors in dissipative systems.

    Science.gov (United States)

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  20. Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds

    Science.gov (United States)

    Onishi, Ryo; Kunishima, Yuichi

    2017-11-01

    We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).

  1. Structure of pheomenological lagrangians for broken supersymmetry

    International Nuclear Information System (INIS)

    Uematsu, T.; Zachos, C.K.

    1982-01-01

    We consider the explicit connection between linear representations of supersymetry and the non-linear realizations associated with the generic effective lagrangians of the Volkov-Akulov type. We specify and illustrate a systematic approach for deriving the appropriate phenomenological lagrangian by transforming a pedagogical linear model, in which supersymmetry is broken at the tree level, into its corresponding non-linear lagrangian, in close analogy to the linear sigma model of pion dynamics. We discuss the significance and some properties of such phenomenological lagrangians. (orig.)

  2. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    Science.gov (United States)

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  3. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    Science.gov (United States)

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  4. A Lagrangian-dependent metric space

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1989-08-01

    A generalized Lagrangian-dependent metric of the static isotropic spacetime is derived. Its behaviour should be governed by imposing physical constraints allowing to avert the pathological features of gravity at the strong field domain. This would restrict the choice of the Lagrangian form. (author). 10 refs

  5. S-equivalents lagrangians in generalized mechanics

    International Nuclear Information System (INIS)

    Negri, L.J.; Silva, Edna G. da.

    1985-01-01

    The problem of s-equivalent lagrangians is considered in the realm of generalized mechanics. Some results corresponding to the ordinary (non-generalized) mechanics are extended to the generalized case. A theorem for the reduction of the higher order lagrangian description to the usual order is found to be useful for the analysis of generalized mechanical systems and leads to a new class of equivalence between lagrangian functions. Some new perspectives are pointed out. (Author) [pt

  6. A regularized vortex-particle mesh method for large eddy simulation

    Science.gov (United States)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  7. The anomalous chiral Lagrangian of order p6

    International Nuclear Information System (INIS)

    Bijnens, J.; Talavera, P.

    2002-01-01

    We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order p 6 . The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of N f light flavors, 23 terms for three and 5 for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well. (orig.)

  8. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  9. Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    2018-06-01

    Full Text Available Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. In these methods, a moisture volume is assigned to each particle, which is then advected by the wind flow. Usual Lagrangian methods consider this volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial moisture volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. In this case, the tracer volume drag must be taken into account. Equations have been implemented and moisture convection was taken into account for both Lagrangian and inertial models. We apply these methods to evaluate the intense atmospheric rivers that devastated (i the Pacific Northwest region of the US and (ii the western Iberian Peninsula with flooding rains and intense winds in early November 2006 and 20 May 1994, respectively. We note that the usual Lagrangian method underestimates moisture availability in the continent, while active tracers achieve more realistic results.

  10. Numerical studies of unsteady coherent structures and transport in two-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Hesthaven, J.S.

    1995-08-01

    The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.

  11. SIERRA Multimechanics Module: Aria User Manual – Version 4.40

    Energy Technology Data Exchange (ETDEWEB)

    Notz, Patrick K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Subia, Samuel Ramirez [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hopkins, Matthew M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moffat, Harry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Okusanya, Tolulope O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-02

    Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton’s method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic ℎ-adaptivity and dynamic load balancing are some of Aria’s more advanced capabilities. Aria is based upon the Sierra Framework.

  12. A Discrete Approach to Meshless Lagrangian Solid Modeling

    Directory of Open Access Journals (Sweden)

    Matthew Marko

    2017-07-01

    Full Text Available The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with smooth particle applied mechanics by having the solid particles apply stresses expected with Hooke’s law, as opposed to using a smoothing function for neighboring solid particles. This method has been tested successfully with a bar in tension, compression, and shear, as well as a disk compressed into a flat plate, and the numerical model consistently matched the analytical Hooke’s law as well as Hertz contact theory for all examples. The solid modeling numerical method was then built into a 2-D model of a pressure vessel, which was tested with liquid water particles under pressure and simulated with smoothed particle hydrodynamics. This simulation was stable, and demonstrated the feasibility of Lagrangian specification modeling for fluid–solid interactions.

  13. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    Science.gov (United States)

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  14. An immersed boundary method for the interaction of turbulence with particles of arbitrary shape

    Science.gov (United States)

    Wang, Shizhao; Vanella, Marcos; Balaras, Elias

    2014-11-01

    In this work we present a computational scheme applicable to turbulence/particle interactions, targeting applications involving millions of particles of arbitrary shape. Immersed boundary methods have been frequently applied in simulating such problems, but are usually confined to spherical particles. Extension to rigid/deformable particles of arbitrary shape introduces significant challenges in achieving parallel efficiency. The proposed method is based on the moving least squares immersed boundary approach (Vanella & Balaras, J. Comput. Physics, 228(18), 6617, 2009) on uniform and adaptive block-structured grids. We will present a novel parallelization strategy based on a master/slave model: the processor on which a body/structure resides is designated the master processor, while all the processors that contain at least one block overlapping with the body are designated the slaves. As the particle moves through the fluid, its blocks association and therefore the participating processors change. Effective ways of replicating the mesh metadata on all processors will be discussed. Results for homogeneous turbulence interacting with spherical and ellipsoidal particles and comparisons with experimental results will be given.

  15. Unit physics performance of a mix model in Eulerian fluid computations

    Energy Technology Data Exchange (ETDEWEB)

    Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

    2011-01-25

    In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

  16. Euler's fluid equations: Optimal control vs optimization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2009-11-23

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  17. Level Set Projection Method for Incompressible Navier-Stokes on Arbitrary Boundaries

    KAUST Repository

    Williams-Rioux, Bertrand

    2012-01-12

    Second order level set projection method for incompressible Navier-Stokes equations is proposed to solve flow around arbitrary geometries. We used rectilinear grid with collocated cell centered velocity and pressure. An explicit Godunov procedure is used to address the nonlinear advection terms, and an implicit Crank-Nicholson method to update viscous effects. An approximate pressure projection is implemented at the end of the time stepping using multigrid as a conventional fast iterative method. The level set method developed by Osher and Sethian [17] is implemented to address real momentum and pressure boundary conditions by the advection of a distance function, as proposed by Aslam [3]. Numerical results for the Strouhal number and drag coefficients validated the model with good accuracy for flow over a cylinder in the parallel shedding regime (47 < Re < 180). Simulations for an array of cylinders and an oscillating cylinder were performed, with the latter demonstrating our methods ability to handle dynamic boundary conditions.

  18. Uncertainty propagation analysis applied to volcanic ash dispersal at Mt. Etna by using a Lagrangian model

    Science.gov (United States)

    de'Michieli Vitturi, Mattia; Pardini, Federica; Spanu, Antonio; Neri, Augusto; Vittoria Salvetti, Maria

    2015-04-01

    Volcanic ash clouds represent a major hazard for populations living nearby volcanic centers producing a risk for humans and a potential threat to crops, ground infrastructures, and aviation traffic. Lagrangian particle dispersal models are commonly used for tracking ash particles emitted from volcanic plumes and transported under the action of atmospheric wind fields. In this work, we present the results of an uncertainty propagation analysis applied to volcanic ash dispersal from weak plumes with specific focus on the uncertainties related to the grain-size distribution of the mixture. To this aim, the Eulerian fully compressible mesoscale non-hydrostatic model WRF was used to generate the driving wind, representative of the atmospheric conditions occurring during the event of November 24, 2006 at Mt. Etna. Then, the Lagrangian particle model LPAC (de' Michieli Vitturi et al., JGR 2010) was used to simulate the transport of mass particles under the action of atmospheric conditions. The particle motion equations were derived by expressing the Lagrangian particle acceleration as the sum of the forces acting along its trajectory, with drag forces calculated as a function of particle diameter, density, shape and Reynolds number. The simulations were representative of weak plume events of Mt. Etna and aimed to quantify the effect on the dispersal process of the uncertainty in the particle sphericity and in the mean and variance of a log-normal distribution function describing the grain-size of ash particles released from the eruptive column. In order to analyze the sensitivity of particle dispersal to these uncertain parameters with a reasonable number of simulations, and therefore with affordable computational costs, response surfaces in the parameter space were built by using the generalized polynomial chaos technique. The uncertainty analysis allowed to quantify the most probable values, as well as their pdf, of the number of particles as well as of the mean and

  19. Coherent Lagrangian swirls among submesoscale motions.

    Science.gov (United States)

    Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G

    2018-03-05

    The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.

  20. Construction of a Roe linearization for the ideal MHD equations

    International Nuclear Information System (INIS)

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  1. Development of a numerical simulation method for melting/solidification and dissolution/precipitation phenomena. 1. Literature survey for computer program design

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki

    2004-04-01

    Survey research of numerical methods for melting/solidification and dissolution/precipitation phenomena was performed to determine the policy for a simulation program development. Melting/solidification and dissolution/ precipitation have been key issues for feasibility evaluation of several techniques applied in the nuclear fuel cycle processes. Physical models for single-component melting/solidification, two-component solution solidification or precipitation by cooling and precipitation by electrolysis, which are moving boundary problems, were made clear from the literature survey. The transport equations are used for thermal hydraulic analysis in the solid and the liquid regions. Behavior of the solid-liquid interface is described by the heat and mass transfer model. These physical models need to be introduced into the simulation program. The numerical methods for the moving boundary problems are categorized into two types: interface tracking method and interface capturing method. Based on the classification, performance of each numerical method was evaluated. The interface tracking method using the Lagrangian moving mesh requires relatively complicated algorithm. The algorithm has high accuracy for predicting the moving interface. On the other hand, the interface capturing method uses the Eulerian fixing mesh, leading to simple algorithm. Prediction accuracy of the method is relatively low. The extended finite element method classified as the interface capturing method can predict the interface behavior accurately even though the Eulerian fixing mesh is used. We decided to apply the extended finite element method to the simulation program. (author)

  2. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S.I. [National Fusion Research Center, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)]. E-mail: paksunil@dreamwiz.com; Chang, K.S. [Department of Aerospace Engineering, KAIST, Daejeon (Korea, Republic of)]. E-mail: kschang@kaist.ac.kr

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  3. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    International Nuclear Information System (INIS)

    Pak, S.I.; Chang, K.S.

    2006-01-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements

  4. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    Science.gov (United States)

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  5. A new method for the treatment of impact and penetration problems

    International Nuclear Information System (INIS)

    Bung, H.; Galon, P.; Lepareux, M.; Combescure, A.

    1993-01-01

    While analyzing the safety of nuclear plants, special attention should be paid to the problem of projectile impacts on certain structures. In some cases, the strains undergone by these structures can be important enough to perforate them. The Finite Element Method is a well suited tool to take into account the complexity of the geometries, the non linear behaviour laws, the contact modelling in the study of such problems. The Lagrangian algorithm is in its essence relatively simple and well suited for impact problems between solids. But it has drawbacks when the mesh is subject to large deformations and distorsions. One or various remeshing are thus required during the computation. The Eulerian or Euler-Lagrange formulation helps avoid these large distorsions but is more difficult to set up and present difficulties when the boundary conditions are of Lagrangian kind (for example a free surface). To solve these problems frequently encountered during collision between two structures, a new algorithm was developed in the PLEXUS code of Castem system: this algorithm enables to treat solid/solid or solid/fluid contacts, using for one body an updated lagrangian formulation, the other one being represented by a 'marble cluster' the cohesion of which is ensured by an interaction law acting on the cluster particles. The motion of the different particles is no longer hindered by the mesh distorsion: the marble connectivity is calculated throughout the computation according to the local state of the structure

  6. Alternative kinetic energy metrics for Lagrangian systems

    Science.gov (United States)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  7. Direct method for measuring and witnessing quantum entanglement of arbitrary two-qubit states through Hong-Ou-Mandel interference

    Science.gov (United States)

    Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel

    2017-02-01

    We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.

  8. Analysis of circular fibers with an arbitrary index profile by the Galerkin method.

    Science.gov (United States)

    Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia

    2004-01-01

    We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.

  9. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre

    2008-01-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  10. Lagrangian fractional step method for the incompressible Navier--Stokes equations on a periodic domain

    International Nuclear Information System (INIS)

    Boergers, C.; Peskin, C.S.

    1987-01-01

    In the Lagrangian fractional step method introduced in this paper, the fluid velocity and pressure are defined on a collection of N fluid markers. At each time step, these markers are used to generate a Voronoi diagram, and this diagram is used to construct finite-difference operators corresponding to the divergence, gradient, and Laplacian. The splitting of the Navier--Stokes equations leads to discrete Helmholtz and Poisson problems, which we solve using a two-grid method. The nonlinear convection terms are modeled simply by the displacement of the fluid markers. We have implemented this method on a periodic domain in the plane. We describe an efficient algorithm for the numerical construction of periodic Voronoi diagrams, and we report on numerical results which indicate the the fractional step method is convergent of first order. The overall work per time step is proportional to N log N. copyright 1987 Academic Press, Inc

  11. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  12. Meaning of the BRS Lagrangian theory

    International Nuclear Information System (INIS)

    Cheng, H.; Tsai, E.

    1989-01-01

    A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not, strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian theory and those in the physical theory is explicitly given. We also show that one may obtain matrix elements of gauge-invariant operators in the physical theory by calculating corresponding ones in the BRS Lagrangian theory. The formulas which equate such matrix elements are called correspondence formulas. The correspondence formula for the S matrix enables us to equate the scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered unnecessary. This treatment can be applied to various gauge field theories and the examples of the pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out

  13. Hamilton-Jacobi equations and brane associated Lagrangians

    International Nuclear Information System (INIS)

    Baker, L.M.; Fairlie, D.B.

    2001-01-01

    This article seeks to relate a recent proposal for the association of a covariant Field Theory with a string or brane Lagrangian to the Hamilton-Jacobi formalism for strings and branes. It turns out that since in this special case, the Hamiltonian depends only upon the momenta of the Jacobi fields and not the fields themselves, it is the same as a Lagrangian, subject to a constancy constraint. We find that the associated Lagrangians for strings or branes have a covariant description in terms of the square root of the same Lagrangian. If the Hamilton-Jacobi function is zero, rather than a constant, then it is in in one dimension lower, reminiscent of the 'holographic' idea. In the second part of the paper, we discuss properties of these Lagrangians, which lead to what we have called 'Universal Field Equations', characteristic of covariant equations of motion

  14. A coherent structure approach for parameter estimation in Lagrangian Data Assimilation

    Science.gov (United States)

    Maclean, John; Santitissadeekorn, Naratip; Jones, Christopher K. R. T.

    2017-12-01

    We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parameters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection.

  15. Numerical modelling of the atmospheric transport, chemical tranformations and deposition of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G; Schneider, B; Eppel, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik; Grassl, H [Hamburg Univ. (Germany, F.R.). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.); Iverfeldt, A [Swedish Environmental Research Inst., Goeteborg (Sweden); Misra, P K; Bloxam, R; Wong, S [Ontario Ministry of the

    1990-01-01

    Based on recent progress in the understanding of mercury chemistry and biogeochemistry and on the availability of mercury emission data bases this study makes an attempt to model the atmospheric transport of mercury, its chemical transformations in the atmosphere, and the fluxes of mercury to and from the earth's surface by means of an EMEP-type Lagrangian trajectory model for Europe and an Eulerian grid model (ADOM) for North America. Preliminary results with a simplified mercury chemistry scheme in the comprehensive Eulerian model and with a linear chemistry in the Lagrangian model show reasonable agreement with observed mercury concentrations in air and precipitation. (orig.) With 3 figs., 4 tabs.

  16. On representations of Higher Spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation

    International Nuclear Information System (INIS)

    Burdík, C; Reshetnyak, A

    2012-01-01

    We derive non-linear commutator HS symmetry algebra, which encode unitary irreducible representations of AdS group subject to Young tableaux Y(s 1 ,..., s k ) with κ ≥ 2 rows on d-dimensional anti-de-Sitter space. Auxiliary representations for specially deformed non-linear HS symmetry algebra in terms of generalized Verma module in order to additively convert a subsystem of second-class constraints in the HS symmetry algebra into one with first-class constraints are found explicitly for the case of HS fields for κ = 2 Young tableaux. The oscillator realization over Heisenberg algebra for obtained Verma module is constructed. The results generalize the method of auxiliary representations construction for symplectic sp(2κ) algebra used for mixed-symmetry HS fields on a flat spaces and can be extended on a case of arbitrary HS fields in AdS-space. Gauge-invariant unconstrained reducible Lagrangian formulation for free bosonic HS fields with generalized spin (s 1 , s 2 ) is derived.

  17. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  18. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    Science.gov (United States)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  19. Lagrangian and Hamiltonian dynamics

    CERN Document Server

    Mann, Peter

    2018-01-01

    An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...

  20. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    Science.gov (United States)

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  1. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    International Nuclear Information System (INIS)

    Krause, Katharina; Klopper, Wim

    2016-01-01

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian

  2. A Chiang-type lagrangian in CP^2

    Science.gov (United States)

    Cannas da Silva, Ana

    2018-03-01

    We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.

  3. Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-11-01

    Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)

  4. A new proposal for Lagrangian correlation coefficient

    International Nuclear Information System (INIS)

    Altinsoy, N.; Tugrul, A.B.

    2002-01-01

    The statistical description of dispersion in turbulent flow was first considered by Taylor (Proc. London Math. Soc. 20 (1921) 196) and the statistical properties of the field were determined by Lagrangian correlation coefficient R L (τ). Frenkiel (Adv. Appl. Mech. 3 (1953) 61) has proposed several simple forms for R L (τ). Some workers have investigated for a proper form of the Lagrangian correlation coefficient. In this work, a new proposal for the Lagrangian correlation coefficient is proposed and discussed. It can be written in general form with the one of the Frenkiel's (Adv. Appl. Mech. 3 (1953) 61) Lagrangian correlation coefficient. There is very satisfactory agreement between the new correlation and the experiment

  5. A two pressure-velocity approach for immersed boundary methods in three dimensional incompressible flows

    International Nuclear Information System (INIS)

    Sabir, O; Ahmad, Norhafizan; Nukman, Y; Tuan Ya, T M Y S

    2013-01-01

    This paper describes an innovative method for computing fluid solid interaction using Immersed boundary methods with two stage pressure-velocity corrections. The algorithm calculates the interactions between incompressible viscous flows and a solid shape in three-dimensional domain. The fractional step method is used to solve the Navier-Stokes equations in finite difference schemes. Most of IBMs are concern about exchange of the momentum between the Eulerian variables (fluid) and the Lagrangian nodes (solid). To address that concern, a new algorithm to correct the pressure and the velocity using Simplified Marker and Cell method is added. This scheme is applied on staggered grid to simulate the flow past a circular cylinder and study the effect of the new stage on calculations cost. To evaluate the accuracy of the computations the results are compared with the previous software results. The paper confirms the capacity of new algorithm for accurate and robust simulation of Fluid Solid Interaction with respect to pressure field

  6. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  7. Lagrangian ocean analysis : Fundamentals and practices

    NARCIS (Netherlands)

    van Sebille, Erik; Deleersnijder, E.L.C.; Heemink, A.W.; Griffies, Stepehn M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Authors, More

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several

  8. Lagrangian ocean analysis : Fundamentals and practices

    NARCIS (Netherlands)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H.A.M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades,

  9. Lagrangian properties of particles in turbulence

    NARCIS (Netherlands)

    Toschi, F.; Bodenschatz, E.

    2009-01-01

    The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of

  10. Lagrangian finite element formulation for fluid-structure interaction and application

    International Nuclear Information System (INIS)

    Hautfenne, M.H.

    1983-01-01

    The aim of this communication is to present a new finite element software (FLUSTRU) for fluid-structure interaction in a lagrangian formulation. The stiffness and damping matrices of the fluid are computed from the governing laws of the medium: the fluid is supposed to be viscous and compressible (Stokes' equations). The main problem stated by the lagrangian formulation of the fluid is the presence of spurious free-vibration modes (zero energy modes) in the fluid. Those modes are generated by the particular form of the matrix. These spurious modes have been examined and two particular methods to eliminate them have been developed: industrial applications prove the efficiency of the proposed methods. (orig./GL)

  11. Interpretation of the lime column penetration test

    International Nuclear Information System (INIS)

    Liyanapathirana, D S; Kelly, R B

    2010-01-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  12. Perturbative effect of heavy particles in an effective-Lagrangian approach

    International Nuclear Information System (INIS)

    Hagiwara, T.; Nakazawa, N.

    1981-01-01

    An effective-Lagrangian approach is summarized to estimate the perturbative effect of heavy-mass particles in the leading-logarithmic approximation: the logarithmic corrections to mass-suppressed amplitudes are given in a concise form. We apply the formalism to a simplified model with two scalar fields where one is heavy and the other is light. We derive an effective Lagrangian by calculating heavy-particle one-loop diagrams. Solving renormalization-group equations derived from the effective Lagrangian by light-particle one-loop corrections, we obtain logarithmic corrections to the mass-suppressed amplitudes. The results are confirmed by explicit two-loop calculation in the full theory, up to order O((1/M 2 )1nM 2 ), where M is a heavy scalar mass. It is found that the boundary condition for solving the renormalization-group equations must be specified by the renormalization at the heavy-particle mass. It must also be emphasized that in an effective-Lagrangian approach minimal subtraction is not a proper method of renormalization. The necessity to adopt the conventional momentum-shell subtraction is stressed. Several applications of this formalism are also mentioned

  13. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Tharkabhushanam, Sri Harsha

    2009-01-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously

  14. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  15. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    Science.gov (United States)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial

  16. Methods to Load Balance a GCR Pressure Solver Using a Stencil Framework on Multi- and Many-Core Architectures

    Directory of Open Access Journals (Sweden)

    Milosz Ciznicki

    2015-01-01

    Full Text Available The recent advent of novel multi- and many-core architectures forces application programmers to deal with hardware-specific implementation details and to be familiar with software optimisation techniques to benefit from new high-performance computing machines. Extra care must be taken for communication-intensive algorithms, which may be a bottleneck for forthcoming era of exascale computing. This paper aims to present a high-level stencil framework implemented for the EULerian or LAGrangian model (EULAG that efficiently utilises multi- and many-cores architectures. Only an efficient usage of both many-core processors (CPUs and graphics processing units (GPUs with the flexible data decomposition method can lead to the maximum performance that scales the communication-intensive Generalized Conjugate Residual (GCR elliptic solver with preconditioner.

  17. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  18. Development and validation of an Eulerian model towards the simulation of fuel injection in internal combustion engines; Developpement et validation d'un modele eulerien en vue de la simulation des jets de carburants dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Truchot, B.

    2005-12-15

    The objective of this work is to develop an Eulerian two phase model to improve the prediction of fuel injection in internal combustion engines, particularly the dense liquid zone close to the nozzle. Lagrangian models, usually used in engine simulations, are based on the assumption of dispersed two phase flows with low liquid volume fraction, which is not fulfilled in the case of direct injection engine technology. Different Eulerian approaches are available in the literature. Physical phenomena that occur near the nozzle and characteristics of each model lead to the choice of a two fluids two pressures model. Several open terms appear in the equations of the model: exchange between the two phases and turbulent correlations. Closures of exchange terms are based on the spherical droplets hypothesis while a RANS approach is adopted to close turbulent correlations. This model has been integrated in the IFP CFD code, IFP-C3D. Several numerical tests and analytical validations (for single and two phase flows) have been then carried out in order to check the correct implementation of equations and the predictivity of the model and closures. Modifications in the turbulent model of the gas have required validations in both the gas phase (flow behind a sudden enlargement) and the liquid phase (pure liquid injection). A two phase mixing layer has been then used to validate the whole model. Finally, injection tests have been achieved under realistic conditions (similar to those encountered in automotive engines) in order to check the feasibility of engine computations using the developed Eulerian approach. These tests have also allowed to check the compatibility of this approach with the specificities of engine simulations (especially mesh movement). (author)

  19. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.

    Science.gov (United States)

    Karimi, Alireza; Razaghi, Reza; Navidbakhsh, Mahdi; Sera, Toshihiro; Kudo, Susumu

    2016-05-01

    In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. The results revealed a peak stress of 135.70kPa brought about by detonation upsurge on the cornea at the distance of 25cm. The highest von Mises stresses were observed on the sclera (267.3kPa), whereas the lowest one was seen on the vitreous body (0.002kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye. Copyright © 2016 Elsevier Ltd

  20. Study of parachute inflation process using fluid–structure interaction method

    Directory of Open Access Journals (Sweden)

    Yu Li

    2014-04-01

    Full Text Available A direct numerical modeling method for parachute is proposed firstly, and a model for the star-shaped folded parachute with detailed structures is established. The simplified arbitrary Lagrangian–Eulerian fluid–structure interaction (SALE/FSI method is used to simulate the inflation process of a folded parachute, and the flow field calculation is mainly based on operator splitting technique. By using this method, the dynamic variations of related parameters such as flow field and structure are obtained, and the load jump appearing at the end of initial inflation stage is captured. Numerical results including opening load, drag characteristics, swinging angle, etc. are well consistent with wind tunnel tests. In addition, this coupled method can get more space–time detailed information such as geometry shape, structure, motion, and flow field. Compared with previous inflation time method, this method is a completely theoretical analysis approach without relying on empirical coefficients, which can provide a reference for material selection, performance optimization during parachute design.

  1. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  2. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    Science.gov (United States)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  3. A functional LMO invariant for Lagrangian cobordisms

    DEFF Research Database (Denmark)

    Cheptea, Dorin; Habiro, Kazuo; Massuyeau, Gwénaël

    2008-01-01

    Lagrangian cobordisms are three-dimensional compact oriented cobordisms between once-punctured surfaces, subject to some homological conditions. We extend the Le–Murakami–Ohtsuki invariant of homology three-spheres to a functor from the category of Lagrangian cobordisms to a certain category...... of Jacobi diagrams. We prove some properties of this functorial LMO invariant, including its universality among rational finite-type invariants of Lagrangian cobordisms. Finally, we apply the LMO functor to the study of homology cylinders from the point of view of their finite-type invariants....

  4. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    Science.gov (United States)

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  5. Light-cone gauge approach to arbitrary spin fields, currents and shadows

    International Nuclear Information System (INIS)

    Metsaev, R R

    2014-01-01

    Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone gauge formulations for such fields, currents and shadows are obtained. Use of the Poincaré parametrization of AdS space and ladder operators allows us to treat fields in flat and AdS spaces on an equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents and shadows is also obtained. The light-cone gauge formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of modified de Donder divergence, while the light-cone gauge formulation for currents and shadows is obtained by using the gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how the ladder operators entering the gauge invariant formulation of fields, currents and shadows manifest themselves in the light-cone gauge formulation for fields, currents and shadows. (paper)

  6. Remarks on gauge variables and singular Lagrangians

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.

    1977-01-01

    The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)

  7. Numerical methods for Lagrangian hydrodynamics applied to inertial fusion

    International Nuclear Information System (INIS)

    Maire, P.H.; Breil, J.; Galera, S.; Schurtz, G.

    2009-01-01

    CHIC is a code of Lagrangian hydrodynamics and implosion that has been developed since 2003 for the simulation of plasma experiments concerning inertial fusion. The transport of electron energy is assured with the Spitzer-Harm diffusion model with flux limiter. The propagation of the laser beams inside the plasma is computed by an algorithm of 3-dimensional beam launching that takes into account refraction as well as collisional absorption. The self-generated transverse magnetic fields are assessed by a magnetohydrodynamics model that stems from a generalized Ohm's law. The coupling with electron energy transport is assured with Braginskii conduction model. The validation of this code has been performed with various plasma experiments. (A.C.)

  8. Computational simulation of a non-newtonian model of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos

    2005-12-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.

  9. Lagrangian of superfluid 3He

    International Nuclear Information System (INIS)

    Theodorakis, S.

    1988-01-01

    This paper presents a phenomenological Lagrangian that fully describes the dynamics of any homogeneous phase of superfluid 3 He, unitary or not, omitting relaxation. This Lagrangian is built by using the concept of a local SO(3) x SO(3) x U(1) symmetry. The spin and angular momentum play the role of gauge fields. We derive the Leggett equations for spin and orbital dynamics from the equations of motion, for both the A and the B phase. This Lagrangian not only enables us to describe both the spin and orbital dynamics of superfluid 3 He in a unified fashion, but can also be used for finding the dynamics in any experimental situation. Furthermore, it can describe the dynamics of the magnitude, as well as of the orientation of the order parameter, and thus it can be used to describe the dynamics of the A-B phase transition

  10. A Unified Spectro-Geometric-Ritz Method for Vibration Analysis of Open and Closed Shells with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2016-01-01

    Full Text Available This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.

  11. K-FIX, Transient 2 Phase Flow Hydrodynamic in 2-D Planar or Cylindrical Geometry, Eulerian Method

    International Nuclear Information System (INIS)

    Rivard, W. C.; Torrey, M. D.

    1980-01-01

    1 - Description of problem or function: The transient dynamics of two- dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds. Each phase is described in terms of its own density, velocity, and temperature. Separate sets of field equations govern the gas and liquid phase dynamics. The six field equations for the two phases couple through mass, momentum, and energy exchange. 2 - Method of solution: The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively using a point relaxation technique without linearizing the equations, thus eliminating the need for numerous derivative terms. Solutions can be obtained in one and two space dimensions in plane geometry and in cylindrical geometry with axial symmetry and zero azimuthal velocity. Solutions in spherical geometry can also be obtained in one space dimension. The geometric region of interest is divided into many finite-sized, space-fixed zones called cells which form the computing mesh. In plane geometry the cells are rectangular cylinders, in cylindrical geometry they are toroids with rectangular cross section, and in spherical geometry they are spherical shells

  12. Lagrangian model of conformal invariant interacting quantum field theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1976-01-01

    A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3

  13. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries.

    Science.gov (United States)

    Tan, Zhi-Zhong

    2015-05-01

    We develop a general recursion-transform (R-T) method for a two-dimensional resistor network with a zero resistor boundary. As applications of the R-T method, we consider a significant example to illuminate the usefulness for calculating resistance of a rectangular m×n resistor network with a null resistor and three arbitrary boundaries, a problem never solved before, since Green's function techniques and Laplacian matrix approaches are invalid in this case. Looking for the exact calculation of the resistance of a binary resistor network is important but difficult in the case of an arbitrary boundary since the boundary is like a wall or trap which affects the behavior of finite network. In this paper we obtain several general formulas of resistance between any two nodes in a nonregular m×n resistor network in both finite and infinite cases. In particular, 12 special cases are given by reducing one of the general formulas to understand its applications and meanings, and an integral identity is found when we compare the equivalent resistance of two different structures of the same problem in a resistor network.

  14. Lagrangian motion, coherent structures, and lines of persistent material strain.

    Science.gov (United States)

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  15. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  16. EVA – a non-linear Eulerian approach for assessment of health-cost externalities of air pollution

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Frohn, Lise Marie; Nielsen, Jytte Seested

    2006-01-01

    of the emissions. External cost estimates based on the Eulerian approach, on the other hand, are in mutual conformity. The existence of non-linear dynamics and possible thresholds, both in the atmospheric modelling and in the dose-response functions for health effects, need further attention and should......Integrated models which are used to account for the external costs of air pollution have to a considerable extent ignored the non-linear dynamics of atmospheric science. In order to bridge the gap between economic analysis and environmental modelling an integrated model EVA, based on a Eulerian...... for the final external cost estimates of the Eulerian approach is explored. Uncertainties in the health costs estimates are endemic in particular for mortality, but in order to achieve a common baseline the approach recommended by the OECD has been employed for the valuation part. This approach implies the use...

  17. Hamiltonian and Lagrangian flows on center manifolds with applications to elliptic variational problems

    CERN Document Server

    Mielke, Alexander

    1991-01-01

    The theory of center manifold reduction is studied in this monograph in the context of (infinite-dimensional) Hamil- tonian and Lagrangian systems. The aim is to establish a "natural reduction method" for Lagrangian systems to their center manifolds. Nonautonomous problems are considered as well assystems invariant under the action of a Lie group ( including the case of relative equilibria). The theory is applied to elliptic variational problemson cylindrical domains. As a result, all bounded solutions bifurcating from a trivial state can be described by a reduced finite-dimensional variational problem of Lagrangian type. This provides a rigorous justification of rod theory from fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working in classical mechanics, dynamical systems, elliptic variational problems, and continuum mechanics. It begins with the elements of Hamiltonian theory and center manifold reduction in order to make the methods accessible to non-specialists,...

  18. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a special Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  19. On the canonical treatment of Lagrangian constraints

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    2001-01-01

    The canonical treatment of dynamic systems with manifest Lagrangian constraints proposed by Berezin is applied to concrete examples: a specific Lagrangian linear in velocities, relativistic particles in proper time gauge, a relativistic string in orthonormal gauge, and the Maxwell field in the Lorentz gauge

  20. Fast Lagrangian relaxation for constrained generation scheduling in a centralized electricity market

    International Nuclear Information System (INIS)

    Ongsakul, Weerakorn; Petcharaks, Nit

    2008-01-01

    This paper proposes a fast Lagrangian relaxation (FLR) for constrained generation scheduling (CGS) problem in a centralized electricity market. FLR minimizes the consumer payment rather than the total supply cost subject to the power balance, spinning reserve, transmission line, and generator operating constraints. FLR algorithm is improved by new initialization of Lagrangian multipliers and adaptive adjustment of Lagrangian multipliers. The adaptive subgradient method using high quality initial feasible multipliers requires much less number of iterations to converge, leading to a faster computational time. If congestion exists, the alleviating congestion index is proposed for congestion management. Finally, the unit decommitment is performed to prevent excessive spinning reserve. The FLR for CGS is tested on the 4 unit and the IEEE 24 bus reliability test systems. The proposed uniform electricity price results in a lower consumer payment than system marginal price based on uniformly fixed cost amortized allocation, non-uniform price, and electricity price incorporating side payment, leading to a lower electricity price. In addition, observations on objective functions, pricing scheme comparison and interpretation of Lagrangian multipliers are provided. (author)