A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Anderson, R W; Pember, R B; Elliott, N S
2002-10-19
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Anderson, R W; Pember, R B; Elliott, N S
2004-01-28
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the combined ALE-AMR method hinge upon the integration of traditional AMR techniques with both staggered grid Lagrangian operators as well as elliptic relaxation operators on moving, deforming mesh hierarchies. Numerical examples demonstrate the utility of the method in performing detailed three-dimensional shock-driven instability calculations.
Simulation of Steady Laser Hardening by an Arbitrary Lagrangian Eulerian Method
Geijselaers, H.J.M.; Huetink, J.
2004-01-01
One of the most practical methods for simulation of steady state thermal processing is the Arbitrary Lagrangian- Eulerian method. Each calculation step is split into two phases. In the first phase, the Lagrangian phase, the element mesh remains attached to the material. The evolution of the state va
Institute of Scientific and Technical Information of China (English)
USAMA Umer; XIE Lijing; WANG Xibin
2006-01-01
A two-dimensional finite element (FE) model for the high speed turning operations when orthogonally machining AISI H13 tool steel at 49HRC using poly crystalline cubic boron nitride(PCBN) is described. An arbitrary Lagrangian Eulerian (ALE) method has been adopted which does not need any chip separation criteria as opposed to the traditional Lagrangian approach. Through FE simulations temperature and stresses distributions are presented that could be helpful in predicting tool life and improving process parameters. The results show that high temperatures are generated along the tool rake face as compared to the shear zone temperatures due to high thermal conductivity of PCBN tools.
Towards Modeling Local Foam Drainage Using the Arbitrary Lagrangian Eulerian Method
Brandon, Andrew; Ananth, Ramagopal
2014-11-01
Liquid drainage in foams is a multi-scale, multi-dimensional phenomena that is tied directly to how well a foam performs. For example, the amount of metal within a metal foam after it solidifies affects the strength of the foam and the amount of liquid within an aqueous fire fighting foam determines how effective it is at extinguishing a fire. Liquid drainage is driven by gravity and is governed by the liquid's density and viscosity as well as the surface tension at the liquid gas interface. There are numerous one dimensional, single phase models that approximate liquid drainage by employing a global description but there are no multidimensional models that use a local description. In this presentation, I will describe an ongoing effort to develop a two dimensional, multiphase, Arbitrary Lagrangian Eulerian model for the study of local liquid drainage in foams. I will present an improved algorithm for the solution of the incompressible fluid equations in the Arbitrary Lagrangian Eulerian method, the novel method used for moving the domain in time, and results from this model development effort.
A Dynamically Adaptive Arbitrary Lagrangian-Eulerian Method for Solution of the Euler Equations
Energy Technology Data Exchange (ETDEWEB)
Anderson, R W; Elliott, N S; Pember, R B
2003-02-14
A new method that combines staggered grid arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. The novel components of the methods are driven by the need to reconcile traditional AMR techniques with the staggered variables and moving, deforming meshes associated with Lagrange based ALE schemes. We develop interlevel solution transfer operators and interlevel boundary conditions first in the case of purely Lagrangian hydrodynamics, and then extend these ideas into an ALE method by developing adaptive extensions of elliptic mesh relaxation techniques. Conservation properties of the method are analyzed, and a series of test problem calculations are presented which demonstrate the utility and efficiency of the method.
Large eddy simulation of Rayleigh-Taylor instability using the arbitrary Lagrangian-Eulerian method
Energy Technology Data Exchange (ETDEWEB)
Darlington, R
1999-12-01
This research addresses the application of a large eddy simulation (LES) to Arbitrary Lagrangian Eulerian (ALE) simulations of Rayleigh-Taylor instability. First, ALE simulations of simplified Rayleigh-Taylor instability are studied. The advantages of ALE over Eulerian simulations are shown. Next, the behavior of the LES is examined in a more complicated ALE simulation of Rayleigh-Taylor instability. The effects of eddy viscosity and stochastic backscatter are examined. The LES is also coupled with ALE to increase grid resolution in areas where it is needed. Finally, the methods studied above are applied to two sets of experimental simulations. In these simulations, ALE allows the mesh to follow expanding experimental targets, while LES can be used to mimic the effect of unresolved instability modes.
Yu, Qifeng; Pan, Tongyan
2017-03-01
Abstracts Two microscale numerical models are developed in this work using a moving-mesh approach to investigate the growth process of pitting in different iron phases and the corrosion prevention capability of polyaniline (PANi) on steels. The distributions of corrosion potential and current in the electrolyte-coating-steel system are computed to evaluate the anti-corrosion ability of PANi. The arbitrary Lagrangian-Eulerian approach was used to accomplish the continuous remesh process as was needed to simulate the dynamic growing forefront of the modeled pitting domain. Experimental validation of the numerical models was conducted using the technique of scanning kelvin probe force microscopy (SKPFM). The SKPFM-scanned surface topography and Volta potential difference exhibit comparable results to and thereby prove the numerical results. The potential distribution in the electrolyte phase of the validated models shows that the corrosion pit grows faster in the epoxy-only-coated steel than that in the PANi-primer-coated steel over the simulation time; also, the corrosion pit grows faster in the ferrite phase than in the cementite phase. The simulation results indicate that the epoxy-only coating lost its anti-corrosion capability as the coating was penetrated by electrolyte, while the PANi-based coating can still protect the steel from corrosion after the electrolyte penetration. The models developed in this work can be used to study the mechanisms of pitting corrosion as well as develop more effective corrosion prevention strategies for general metallic materials.
Ganesan, Sashikumaar
2014-01-01
An arbitrary Lagrangian--Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier--Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surfactant-dependent surface tension and dynamic contact angle. In particular, the dynamic contact angle of the droplet is defined as a function of surfactants using the nonlinear equation of state for surface tension. Further, the surface forces are included in the model using the Boussinesq-Scriven law that allows to incorporate the Marangoni effects without evaluating the gradients of surfactant concentration on the free surface. In addition to a mesh convergence study ...
Arbitrary Lagrangian-Eulerian approach in reduced order modeling of a flow with a moving boundary
Stankiewicz, W.; Roszak, R.; Morzyński, M.
2013-06-01
Flow-induced deflections of aircraft structures result in oscillations that might turn into such a dangerous phenomena like flutter or buffeting. In this paper the design of an aeroelastic system consisting of Reduced Order Model (ROM) of the flow with a moving boundary is presented. The model is based on Galerkin projection of governing equation onto space spanned by modes obtained from high-fidelity computations. The motion of the boundary and mesh is defined in Arbitrary Lagrangian-Eulerian (ALE) approach and results in additional convective term in Galerkin system. The developed system is demonstrated on the example of a flow around an oscillating wing.
An Arbitrary Lagrangian-Eulerian Discretization of MHD on 3D Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Rieben, R N; White, D A; Wallin, B K; Solberg, J M
2006-06-12
We present an arbitrary Lagrangian-Eulerian (ALE) discretization of the equations of resistive magnetohydrodynamics (MHD) on unstructured hexahedral grids. The method is formulated using an operator-split approach with three distinct phases: electromagnetic diffusion, Lagrangian motion, and Eulerian advection. The resistive magnetic dynamo equation is discretized using a compatible mixed finite element method with a 2nd order accurate implicit time differencing scheme which preserves the divergence-free nature of the magnetic field. At each discrete time step, electromagnetic force and heat terms are calculated and coupled to the hydrodynamic equations to compute the Lagrangian motion of the conducting materials. By virtue of the compatible discretization method used, the invariants of Lagrangian MHD motion are preserved in a discrete sense. When the Lagrangian motion of the mesh causes significant distortion, that distortion is corrected with a relaxation of the mesh, followed by a 2nd order monotonic remap of the electromagnetic state variables. The remap is equivalent to Eulerian advection of the magnetic flux density with a fictitious mesh relaxation velocity. The magnetic advection is performed using a novel variant of constrained transport (CT) that is valid for unstructured hexahedral grids with arbitrary mesh velocities. The advection method maintains the divergence free nature of the magnetic field and is second order accurate in regions where the solution is sufficiently smooth. For regions in which the magnetic field is discontinuous (e.g. MHD shocks) the method is limited using a novel variant of algebraic flux correction (AFC) which is local extremum diminishing (LED) and divergence preserving. Finally, we verify each stage of the discretization via a set of numerical experiments.
Sahin, Mehmet
2010-01-01
A new geometrically conservative arbitrary Lagrangian-Eulerian (ALE) formulation is presented for the moving boundary problems in the swirl-free cylindrical coordinates. The governing equations are multiplied with the radial distance and integrated over arbitrary moving Lagrangian-Eulerian quadrilateral elements. Therefore, the continuity and the geometric conservation equations take very simple form similar to those of the Cartesian coordinates. The continuity equation is satisfied exactly within each element and a special attention is given to satisfy the geometric conservation law (GCL) at the discrete level. The equation of motion of a deforming body is solved in addition to the Navier-Stokes equations in a fully-coupled form. The mesh deformation is achieved by solving the linear elasticity equation at each time level while avoiding remeshing in order to enhance numerical robustness. The resulting algebraic linear systems are solved using an ILU(k) preconditioned GMRES method provided by the PETSc librar...
Su, Xiaohui; Cao, Yuanwei; Zhao, Yong
2016-06-01
In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.
On the integration of the arbitrary Lagrangian-Eulerian concept and non-equilibrium thermodynamics
Knobbe, E.M.
2010-01-01
The aim of this treatise is to present a harmonious mathematical formulation of an explicit moving mesh method that can be used as a basis for many numerical techniques. In most cases a moving mesh is only used to include arbitrary motions and deformations of a geometry into the simulation of a phys
Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.
Suk, Heejun
2016-07-01
MT3DMS, a modular three-dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian-Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third-order total-variation-diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes.
Fluid structure interaction using an arbitrary lagrangian eulerian formulation
Garelli, Luciano
2012-01-01
Los problemas acoplados multidisciplinarios y multifísicos representan hoy en día un campo desafiante cuando se estudian cada vez problemas mas complejos que aparecen tanto en la naturaleza como en nuevas tecnologías (Ej. Magnetohidrodinámica, Microelectromecánica, Termomecánica, Interacción Fluido-Estructura, etc.). En particular, cuando se tratan problemas de interacción fluido-estructura se plantean varias preguntas, como ser el algoritmo de acople, la estrategia empleada en el movimiento...
Acoustic Streaming: An Arbitrary Lagrangian-Eulerian Perspective
Nama, Nitesh; Costanzo, Francesco
2016-01-01
We analyze acoustic streaming flows using an ALE perspective. The formulation stems from an explicit separation of time-scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacosutofluidic devices. After the formulation's exposition, we present numerical re...
Energy Technology Data Exchange (ETDEWEB)
Ames, Thomas L.; Farnsworth, Grant V.; Ketcheson, David Isaac; Robinson, Allen Conrad
2009-09-01
The modeling of solids is most naturally placed within a Lagrangian framework because it requires constitutive models which depend on knowledge of the original material orientations and subsequent deformations. Detailed kinematic information is needed to ensure material frame indifference which is captured through the deformation gradient F. Such information can be tracked easily in a Lagrangian code. Unfortunately, not all problems can be easily modeled using Lagrangian concepts due to severe distortions in the underlying motion. Either a Lagrangian/Eulerian or a pure Eulerian modeling framework must be introduced. We discuss and contrast several Lagrangian/Eulerian approaches for keeping track of the details of material kinematics.
Mixed Lagrangian-Eulerian and Eulerian Approach to Discretizing Richards' Equation
Yeh, G. T.; Tsai, C. H.
2014-12-01
This paper presents a robust, efficient numerical solution involving the use of the mixed Lagrangian-Eulerian (LE) method and the Eulerian (L) approach for three dimensional simulations of variably saturated subsurface flow that is described by Richard's equation. The LE approach with its particle tracking algorithm and/or finite element methods (FEM) were employed to discretize interior nodes while the finite element method is selected to set up algebraic equations for boundary nodes. The use of FEM for boundary nodes alleviate the difficulty in dealing with flux and gradient types of boundary conditions. Extrapolations are no longer needed to handle flux or gradient type boundary conditions. In this new mixed LE&E approach, subsurface flow in variably saturated media can be efficiently dealt with. Three examples are provided to demonstrate the efficiency of the proposed approach. First, a one-dimensional column problem is used to compare the accuracy of the mixed LE&E approach versus the traditional Eulerian approach. Second, a three-dimensional drainage problem was simulated to compare the CPU time between two approaches. Third, a three-dimensional pumping well problem was simulated. In all three examples, the mixed LE&E using relatively large time steps yielded superior results in terms of the accuracy and computational efficiency in comparison with the conventional Eulerian approach. The proposed mixed LE&E approach may contribute to the efficient numerical solutions of problems involving moving sharp fronts problems such as groundwater in real-world watersheds.
A hybrid Lagrangian-Eulerian numerical model for sea-ice dynamics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A hybrid Lagrangian-Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.
Morrison, P. J.; Andreussi, T.; Pegoraro, F.
2016-10-01
In a series of papers we have investigated general properties of equilibria and their stability in each of the Lagrangian, Eulerian, and Dynamically Accessible stability formulations of magnetohydrodynamics. In our latest work we compare and contrast stability results with these formulations for two applications: stratified convection and rotating pinch equilibrium configurations. The former example, emphasizes the role played entropy, while the later demonstrates the utility of a relabeling transformation that we introduced in our earlier work. Comparisons to classical works, in particular on interchange instability, are made. DOE DE-FG02-04ER-54742.
Andreussi, T; Pegoraro, F
2016-01-01
Because different constraints are imposed, stability conditions for dissipationless fluids and magnetofluids may take different forms when derived within the Lagrangian, Eulerian (energy-Casimir), or dynamical accessible frameworks. This is in particular the case when flows are present. These differences are explored explicitly by working out in detail two magnetohydrodynamic examples: convection against gravity in a stratified fluid and translationally invariant perturbations of a rotating magnetized plasma pinch. In this second example we show in explicit form how to perform the time-dependent relabeling introduced in Andreussi {\\it et al.}\\ [Phys.\\ Plasmas {\\bf20}, 092104 (2013)] that makes it possible to reformulate Eulerian equilibria with flows as Lagrangian equilibria in the relabeled variables. The procedures detailed in the present article provide a paradigm that can be applied to more general plasma configurations and in addition extended to more general plasma descriptions where dissipation is abse...
Andreussi, T.; Morrison, P. J.; Pegoraro, F.
2016-10-01
Because different constraints are imposed, stability conditions for dissipationless fluids and magnetofluids may take different forms when derived within the Lagrangian, Eulerian (energy-Casimir), or dynamically accessible frameworks. This is in particular the case when flows are present. These differences are explored explicitly by working out in detail two magnetohydrodynamic examples: convection against gravity in a stratified fluid and translationally invariant perturbations of a rotating magnetized plasma pinch. In this second example, we show in explicit form how to perform the time-dependent relabeling introduced in Andreussi et al. [Phys. Plasmas 20, 092104 (2013)] that makes it possible to reformulate Eulerian equilibria with flows as Lagrangian equilibria in the relabeled variables. The procedures detailed in the present article provide a paradigm that can be applied to more general plasma configurations and in addition extended to more general plasma descriptions where dissipation is absent.
Institute of Scientific and Technical Information of China (English)
杨吉忠; 毕海权; 翟婉明
2009-01-01
利用有限体积法对横风作用下列车周围的空气流场进行计算.结合车辆-轨道耦合动力学,采用任意拉格朗日-欧拉(ALE)方法处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合.以某国产客运列车为例,计算列车在20 m/s的横风作用下以160 km/h的速度运行时的动力学响应,给出列车周围的流场分布;分析了考虑与不考虑风-车之间流固耦合效应时,作用在车辆上的气动力和气动力矩的变化情况.结果表明,流固耦合效应对车体摇头力矩的影响比较大,而对于车体垂向、横向位移和加速度的影响甚微.
Energy Technology Data Exchange (ETDEWEB)
Yeh, Gour-Tsyh [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Carpenter, S.L. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences; Hopkins, P.L.; Siegel, M.D. [Sandia National Labs., Albuquerque, NM (United States)
1995-11-01
The computer program LEHGC is a Hybrid Lagrangian-Eulerian Finite-Element Model of HydroGeo-Chemical (LEHGC) Transport Through Saturated-Unsaturated Media. LEHGC iteratively solves two-dimensional transport and geochemical equilibrium equations and is a descendant of HYDROGEOCHEM, a strictly Eulerian finite-element reactive transport code. The hybrid Lagrangian-Eulerian scheme improves on the Eulerian scheme by allowing larger time steps to be used in the advection-dominant transport calculations. This causes less numerical dispersion and alleviates the problem of calculated negative concentrations at sharp concentration fronts. The code also is more computationally efficient than the strictly Eulerian version. LEHGC is designed for generic application to reactive transport problems associated with contaminant transport in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical element concentrations as a function of time and space and the chemical speciation at user-specified nodes. LEHGC Version 1.1 is a modification of LEHGC Version 1.0. The modification includes: (1) devising a tracking algorithm with the computational effort proportional to N where N is the number of computational grid nodes rather than N{sup 2} as in LEHGC Version 1.0, (2) including multiple adsorbing sites and multiple ion-exchange sites, (3) using four preconditioned conjugate gradient methods for the solution of matrix equations, and (4) providing a model for some features of solute transport by colloids.
Numerical Simulation of Friction Stir Welding by Natural Element Methods
Alfaro, I.; Fratini, L.; CUETO, Elias; Chinesta, Francisco
2009-01-01
International audience; In this work we address the problem of numerically simulating the Friction Stir Welding process. Due to the special characteristics of this welding method (i.e., high speed of the rotating pin, very large deformations, etc.) finite element methods (FEM) encounter several difficulties. While Lagrangian simulations suffer from mesh distortion, Eulerian or Arbitrary Lagrangian Eulerian (ALE) ones still have difficulties due to the treatment of convective terms, the treatm...
ALE Fractional Step Finite Element Method for Fluid-Structure Nonlinear Interaction Problem
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational procedure is developed to solve the problems of coupled motion of a structure and a viscous incompressible fluid. In order to incorporate the effect of the moving surface of the structure as well as the free surface motion, the arbitrary Lagrangian-Eulerian formulation is employed as the basis of the finite element spatial discretization. For numerical integration in time, the fraction step method is used. This method is useful because one can use the same linear interpolation function for both velocity and pressure. The method is applied to the nonlinear interaction of a structure and a tuned liquid damper. All computations are performed with a personal computer.
Simulation of extrudate swell using an extended finite element method
Choi, Young Joon; Hulsen, Martien A.
2011-09-01
An extended finite element method (XFEM) is presented for the simulation of extrudate swell. A temporary arbitrary Lagrangian-Eulerian (ALE) scheme is incorporated to cope with the movement of the free surface. The main advantage of the proposed method is that the movement of the free surface can be simulated on a fixed Eulerian mesh without any need of re-meshing. The swell ratio of an upper-convected Maxwell fluid is compared with those of the moving boundary-fitted mesh problems of the conventional ALE technique, and those of Crochet & Keunings (1980). The proposed XFEM combined with the temporary ALE scheme can provide similar accuracy to the boundary-fitted mesh problems for low Deborah numbers. For high Deborah numbers, the method seems to be more stable for the extrusion problem.
A New Method for Accurate Prediction of Ship’s Inertial Stopping Distance
Directory of Open Access Journals (Sweden)
Langxiong Gan
2013-10-01
Full Text Available This study aims to research the prediction of ship’s inertial stopping distance. Accurate prediction of a ship’s inertial stopping distance helps the duty officers to make the collision avoidance decisions effectively. In this study ship’s inertial stopping distance is calculated using the ALE (Arbitrary Lagrangian Eulerian algorithm implemented in the FLUENT code. Firstly, a method for predicting the inertial stopping distance of a floating body based on the FLUENT code is established. Then, the results calculated by the method are compared with those obtained from the empirical formulae and the physical model tests. The comparison result indicates that the proposed method is robust and can be used effectively to predict the ship’s inertial stopping distance.
Methods for simulation-based analysis of fluid-structure interaction.
Energy Technology Data Exchange (ETDEWEB)
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
Institute of Scientific and Technical Information of China (English)
XingJ.T; PriceW.G; ChenY.G
2005-01-01
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.
Photonic arbitrary waveform generator based on Taylor synthesis method.
Liao, Shasha; Ding, Yunhong; Dong, Jianji; Yan, Siqi; Wang, Xu; Zhang, Xinliang
2016-10-17
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large dispersion, which are difficult to fabricate on chip. Our scheme is compact and capable for integration with electronics.
Photonic arbitrary waveform generator based on Taylor synthesis method
DEFF Research Database (Denmark)
Liao, Shasha; Ding, Yunhong; Dong, Jianji
2016-01-01
Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...
AbuAlSaud, Moataz
2012-07-01
The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.
A novel measuring method for arbitrary optical vortex by three spiral spectra
Ni, Bo; Guo, Lana; Yue, Chengfeng; Tang, Zhilie
2017-02-01
In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex.
Method of Direct Texture Synthesis on Arbitrary Surfaces
Institute of Scientific and Technical Information of China (English)
Fu-Li Wu; Chun-Hui Mei; Jiao-Ying Shi
2004-01-01
A direct texture synthesis method on arbitrary surfaces is proposed in this paper. The idea is to recursively map triangles on surface to texture space until the surface is completely mapped. First, the surface is simplified and a tangential vector field is created over the simplified mesh. Then, mapping process searches for the most optimal texture coordinates in texture sample for each triangle, and the textures of neighboring triangles are blended on the mesh. All synthesized texture triangles are compressed to an atlas. Finally, the simplified mesh is subdivided to approach the initial surface. The algorithm has several advantages over former methods:it synthesizes texture on surface without local parameterization; it does not need partitioning surface to patches;and it does not need a particular texture sample. The results demonstrate that the new algorithm is applicable to a wide variety of texture samples and any triangulated surfaces.
An Efficient Grid Generation Method for Arbitrary Domains
Orme, Melissa; Huang, Changzheng
1997-11-01
This paper describes an efficient grid generation method for arbitrary or multiply connected domains. Our method, essentially based on the edge swapping techniques, combines the advantages of the Delaunay triangulation method and the advancing front method. The latter two methods are in popular use nowadays. But both suffer some limitations. Delaunay method generates high quality grid but grid may cut across the boundary in concave regions. Advancing front method works for general domain but may encounter difficulties where fronts have to be merged. The current method garantees the boundary integrity and attains the nice Delaunay features into the domain. This is achieved by carefully documenting the grid information so that each edge is readily identified to be inside or outside the domain; and (2) continuously swapping out those bad edges that destroy the Delaunay properties. The computer program built on this method allows users to control the grid density distribution by specifying typical grid sizes on a few chosen points. Interesting examples are demonstrated here. One of them is a circular domain with three letters APS inside. (see figure 1 and figure 2 ). Given a grid size for APS and another size for the circle, the program automatically generates a smooth triangular grid regardless of the complex multiply connected geometry.
Institute of Scientific and Technical Information of China (English)
HUANG Deshuang; CHI Zheru
2004-01-01
This paper proposes a novel recursive partitioning method based on constrained learning neural networks to find an arbitrary number (less than the order of the polynomial) of (real or complex) roots of arbitrary polynomials. Moreover, this paper also gives a BP network constrained learning algorithm (CLA) used in root-finders based on the constrained relations between the roots and the coefficients of polynomials. At the same time, an adaptive selection method for the parameter δPwith the CLA is also given.The experimental results demonstrate that this method can more rapidly and effectively obtain the roots of arbitrary high order polynomials with higher precision than traditional root-finding approaches.
Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures
Wang, John T.; Johnson, Arthur R.
2003-01-01
Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.
Zeng, X.; Scovazzi, G.
2016-06-01
We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce. In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework. The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
A new method of broadband constant beamwidth beamforming for arbitrary geometry arrays
Institute of Scientific and Technical Information of China (English)
YANG Yixin; SUN Chao; LI Bin
2001-01-01
A new method of broadband constant beamwidth beamforming for arbitrary geometry arrays is proposed. In this method, the response vector of an arbitrary geometry array is expanded into the form of sum of an infinite series, whose core function is the first kind Bessel function. The high terms of this series are truncated so that the array response vectors at different frequencies can be transformed to a reference frequency arid then the constant beamwidth beamforming vectors are ready to obtain. With these beamforming vectors, beams at different frequencies are same as the reference beam. A reference beam optimizing method based on adaptive processing is also proposed to optimize the reference beam of arbitrary geometry arrays. Computer simulation for a uniform circular array verified the effectiveness of the new method proposed.
On the Arbitrary Difference Precise Integration Method and Its Numerical Stability
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the subdomain precise integration method, the arbitrary difference precise integration method (ADPIM) is presented to solve PDEs. While retaining all the merits of the former method, ADPIM also demonstrates advantages such as the abilities of better description of physical properties of inhomogeneous media and convenient treatment of various boundary conditions. The explicit integration schemes derived by ADPIM are proved unconditionally stable.
A 3D moving mesh Finite Element Method for two-phase flows
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
Extended ALE Method for fluid-structure interaction problems with large structural displacements
Basting, Steffen; Quaini, Annalisa; Čanić, Sunčica; Glowinski, Roland
2017-02-01
Standard Arbitrary Lagrangian-Eulerian (ALE) methods for the simulation of fluid-structure interaction (FSI) problems fail due to excessive mesh deformations when the structural displacement is large. We propose a method that successfully deals with this problem, keeping the same mesh connectivity while enforcing mesh alignment with the structure. The proposed Extended ALE Method relies on a variational mesh optimization technique, where mesh alignment with the structure is achieved via a constraint. This gives rise to a constrained optimization problem for mesh optimization, which is solved whenever the mesh quality deteriorates. The performance of the proposed Extended ALE Method is demonstrated on a series of numerical examples involving 2D FSI problems with large displacements. Two-way coupling between the fluid and structure is considered in all the examples. The FSI problems are solved using either a Dirichlet-Neumann algorithm, or a Robin-Neumann algorithm. The Dirichlet-Neumann algorithm is enhanced by an adaptive relaxation procedure based on Aitken's acceleration. We show that the proposed method has excellent performance in problems with large displacements, and that it agrees well with a standard ALE method in problems with mild displacement.
A New Method for Locating Calculation of Arbitrary Spatial Straight Line or Plane in NC Machining
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In the manufacturing process, we often encounter so me location machining of space arbitrary straight lines and planes that are not on ly unparalleled but also not vertical with the machine tool spindle or the cutti ng tool. In the past, we can do the location machining through the methods of dr awing line and making level in the ordinary machine tool. In the numerical contr ol machining of the CNC machine tool and manufacturing center, however, the spac e location and angle of the arbitrary straight lines...
Method to calculate interior sound field of arbitrary-shaped closed thin shell
Institute of Scientific and Technical Information of China (English)
WU Jiuhui; CHEN Hualing; HU Xuanli
2001-01-01
The concept of covering-domain means that an arbitrary-shaped closed shell can be approached by a series of closed spherical shells. Based on it, the interior scattering sound field of the arbitrary-shaped closed shell is given. According to the reciprocity theory, the radiating sound field of the elastic surface due to the action of external force is presented. The method presented can also be used to calculate the interior sound fields of arbitraryshaped closed thin shells of which the thickness are either equal or unequal. It is verified to be correct by corresponding test.
A new studying method for safety of a train with attitude changing in side wind%基于姿态变化的列车侧风安全性研究的新方法
Institute of Scientific and Technical Information of China (English)
崔涛; 张卫华
2011-01-01
针对列车空气动力学与列车系统动力学联合同步仿真的耗时问题,提出一种新的基于Arbitrary Lagrangian Eulerian (ALE)的列车空气动力学与列车系统动力学联合仿真方法.首先,分别建立列车侧风计算流体动力学模型和列车多体系统动力学模型.然后,通过参数传递、求解控制和动态网格的使用实现列车侧风计算流体动力学和列车多体系统动力学的联合仿真,其中列车系统动力学模型不考虑轨道激励,侧风环境下列车以平衡状态逐步逼近最终平衡状态,从而以更快的计算速度得到侧风环境下列车的稳定姿态和该姿态下的气动载荷.最后将此气动载荷加载到列车多体系统动力学模型,并考虑轨道激励,进行动力学分析,评价侧风环境下列车的安全性指标.%In order to treat a time-consuming problem of synchronous simulation of aero-dynamics and dynamics of a train system, a new simulation method was proposed based on arbitrary Lagrangian Eulerian ( ALE ). Firstly, models for side-wind computational fluid dynamics and train multibody system dynamics were built, respectively. Then, the combined simulation was performed through using parameters passing, solution control and dynamic grid not considering track excitations, the final equilibrium state of the train in side-wind was approached gradually, and the steady attitude and the corresponding aerodynamic loads caused by the side-wind were computed more efficiently. Finally, the aerodynamic loads and track excitations were applied to the train multibody system, its dynamical performance and safety index were analyzed.
Directory of Open Access Journals (Sweden)
Xiaoqing Wang
2016-01-01
Full Text Available Parallel analyses about the dynamic responses of a large-scale water conveyance tunnel under seismic excitation are presented in this paper. A full three-dimensional numerical model considering the water-tunnel-soil coupling is established and adopted to investigate the tunnel’s dynamic responses. The movement and sloshing of the internal water are simulated using the multi-material Arbitrary Lagrangian Eulerian (ALE method. Nonlinear fluid–structure interaction (FSI between tunnel and inner water is treated by using the penalty method. Nonlinear soil-structure interaction (SSI between soil and tunnel is dealt with by using the surface to surface contact algorithm. To overcome computing power limitations and to deal with such a large-scale calculation, a parallel algorithm based on the modified recursive coordinate bisection (MRCB considering the balance of SSI and FSI loads is proposed and used. The whole simulation is accomplished on Dawning 5000 A using the proposed MRCB based parallel algorithm optimized to run on supercomputers. The simulation model and the proposed approaches are validated by comparison with the added mass method. Dynamic responses of the tunnel are analyzed and the parallelism is discussed. Besides, factors affecting the dynamic responses are investigated. Better speedup and parallel efficiency show the scalability of the parallel method and the analysis results can be used to aid in the design of water conveyance tunnels.
A WENO-type slope-limiter for a family of piecewise polynomial methods
Engwirda, Darren
2016-01-01
A new, high-order slope-limiting procedure for the Piecewise Parabolic Method (PPM) and the Piecewise Quartic Method (PQM) is described. Following a Weighted Essentially Non-Oscillatory (WENO)-type paradigm, the proposed slope-limiter seeks to reconstruct smooth, non-oscillatory piecewise polynomial profiles as a non-linear combination of the natural and monotone-limited PPM and PQM interpolants. Compared to existing monotone slope-limiting techniques, this new strategy is designed to improve accuracy at smooth extrema, while controlling spurious oscillations in the neighbourhood of sharp features. Using the new slope-limited PPM and PQM interpolants, a high-order accurate Arbitrary-Lagrangian-Eulerian framework for advection-dominated flows is constructed, and its effectiveness is examined using a series of one- and two-dimensional benchmark cases. It is shown that the new WENO-type slope-limiting techniques offer a significant improvement in accuracy compared to existing strategies, allowing the PPM- and PQ...
Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise.
Bahraseman, Hg; Hassani, K; Khosravi, A; Navidbakhsh, M; Espino, Dm; Fatouraee, N; Kazemi-Saleh, D
2014-07-01
Computational simulations have the potential to aid understanding of cardiovascular hemodynamics under physiological conditions, including exercise. Therefore, blood hemodynamic parameters during different heart rates, rest and exercise have been investigated, using a numerical method. A model was developed for a healthy subject. Using geometrical data acquired by echo-Doppler, a two-dimensional model of the chamber of aortic sinus valsalva and aortic root was created. Systolic ventricular and aortic pressures were applied as boundary conditions computationally. These pressures were the initial physical conditions applied to the model to predict valve deformation and changes in hemodynamics. They were the clinically measured brachial pressures plus differences between brachial, central and left ventricular pressures. Echocardiographic imaging was also used to acquire different ejection times, necessary for pressure waveform equations of blood flow during exercise. A fluid-structure interaction simulation was performed, using an arbitrary Lagrangian-Eulerian mesh. During exercise, peak vorticity increased by 14.8%, peak shear rate by 15.8%, peak cell Reynolds number by 20%, peak leaflet tip velocity increased by 47% and the blood velocity increased by 3% through the leaflets, whereas full opening time decreased by 11%. Our results show that numerical methods can be combined with clinical measurements to provide good estimates of patient-specific hemodynamics at different heart rates.
Piret, Cécile
2012-05-01
Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.
Ren, Xiaodong; Xu, Kun; Shyy, Wei
2016-07-01
This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.
Pereira, Paulo J; Moshchalkov, Victor V; Chibotaru, Liviu F
2012-11-01
We present a method for finding the condensate distribution at the nucleation of superconductivity for arbitrary polygons. The method is based on conformal mapping of the analytical solution of the linearized Ginzburg-Landau problem for the disk and uses the superconducting gauge for the magnetic potential proposed earlier. As a demonstration of the method's accuracy, we calculate the distribution of the order parameter in regular polygons and compare the obtained solutions with available numerical results. As an example of an irregular polygon, we consider a deformed hexagon and prove that its calculation with the proposed method requires the same level of computational efforts as the regular ones. Finally, we extend the method over samples with arbitrary smooth boundaries. With this, we have made simulations for an experimental sample. They have shown perfect agreement with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Carrington, David Bradley [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Monayem, A. K. M. [Univ. of New Mexico, Albuquerque, NM (United States); Mazumder, H. [Univ. of New Mexico, Albuquerque, NM (United States); Heinrich, Juan C. [Univ. of New Mexico, Albuquerque, NM (United States)
2015-03-05
A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.
A moving mesh interface tracking method for simulation of liquid-liquid systems
Charin, A. H. L. M.; Tuković, Ž.; Jasak, H.; Silva, L. F. L. R.; Lage, P. L. C.
2017-04-01
This manuscript presents a moving mesh interface tracking procedure, with a novel treatment for phase coupling. The new coupling strategy allows accurate predictions for the interface behaviour in a wide range of macroscopic properties with great potential to explore liquid-liquid systems. In this approach, governing equations are applied to each phase individually while the interface is represented by a zero-thickness surface that contemplates inter-phase jumps. These equations are described in an arbitrary Lagrangian-Eulerian finite volume framework. Computations consider the pressure-corrector PISO method. The new treatment for phase coupling incorporates the interfacial jump updates within the pressure/velocity calculations. Additionally, cell-centred values from both phases are considered when calculating convective and diffusive terms at the interface. The employment of GGI (Generalized Grid-Interface) interpolation provides conservative data mapping between surfaces for non-conformal meshes. The prediction capability of the new formulation is evaluated under different dominant effects governing interface motion. Simulated cases include gravity and capillary waves in a sloshing tank, three-dimensional drop oscillation for liquid-liquid systems and drop deformation due to shear flow. The numerical results show good agreement with analytical transient profiles of interface position. The procedure is able to successfully represent systems with similar macroscopic properties, i.e. density and viscosity ratios approaching unity, and a broad range of interfacial tensions.
A new method for calculating the scattered field by an arbitrary cross-sectional conducting cylinder
Ragheb, Hassan A.
2011-04-01
Scattering of a plane electromagnetic wave by an arbitrary cross-sectional perfectly conducting cylinder must be performed numerically. This article aims to present a new approach for addressing this problem, which is based on simulating the arbitrary cross-sectional perfectly conducting cylinder by perfectly conducting strips of narrow width. The problem is then turned out to calculate the scattered electromagnetic field from N conducting strips. The technique of solving such a problem uses an asymptotic method. This method is based on an approximate technique introduced by Karp and Russek (Karp, S.N., and Russek, A. (1956), 'Diffraction by a Wide Slit', Journal of Applied Physics, 27, 886-894.) for solving scattering by wide slit. The method is applied here for calculating the scattered field in the far zone for E-polarised incident waves (transverse magnetic (TM) with respect to z-axis) on a perfectly conducting cylinder with arbitrary cross-section. Numerical examples are introduced first for comparison to show the accuracy of the method. Other examples for well-known scattering by conducting cylinders are then introduced followed by new examples which can only be solved by numerical methods.
Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong
2015-11-01
The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.
Method of moving frames to solve the shallow water equations on arbitrary rotating curved surfaces
Chun, S.; Eskilsson, C.
2017-03-01
A novel numerical scheme is proposed to solve the shallow water equations (SWEs) on arbitrary rotating curved surfaces. Based on the method of moving frames (MMF) in which the geometry is represented by orthonormal vectors, the proposed scheme not only has the fewest dimensionality both in space and time, but also does not require either of metric tensors, composite meshes, or the ambient space. The MMF-SWE formulation is numerically discretized using the discontinuous Galerkin method of arbitrary polynomial order p in space and an explicit Runge-Kutta scheme in time. The numerical model is validated against six standard tests on the sphere and the optimal order of convergence of p + 1 is numerically demonstrated. The MMF-SWE scheme is also demonstrated for its efficiency and stability on the general rotating surfaces such as ellipsoid, irregular, and non-convex surfaces.
Institute of Scientific and Technical Information of China (English)
曾清红; 孙文俊
2014-01-01
推导了轴对称几何下的MOF（Moment of Fluid）界面重构，将其与多介质ALE方法相耦合，形成MOF-MMALE方法，并应用于多介质大变形流动问题的数值模拟研究。数值算例表明，耦合MOF界面重构的多介质ALE方法是求解多介质大变形流动问题的有效手段，并且具有很好的界面精度和分辨率。%Moment of fluid (MOF) interface reconstruction is extended to axisymmetric geometry ,and coupled with multi-material Arbitrary Lagrangian-Eulerian (MMALE) method ,called MOF-MMALE method .MOF-MMALE method is applied to multi-material large deformation fluid flow problems .The numerical examples show that MOF-MMALE method is an effective way to simulate problems of multi-material and large deformation flow with high accuracy and good interface resolution in axisymmetric ge-ometry .
Institute of Scientific and Technical Information of China (English)
LIU Yan; MAO De-kang
2006-01-01
An approach to deal with movings and collisions of arbitrary many disconti nuities in the conservative front tracking method is developed. Using this approach one may develop an "all-purposed and robust" front-tracking algorithm. The algorithm with this approach may have some inconsistency and thus will have O(1) magnitude errors in some grid cells at sometimes. Nevertheless, these errors will be eliminated by the conservation-preserving property of the front-tracking method in the following computation. Numerical examples are presented to illustrate the efficiency of the approach.
Arbitrary Difference Precise Integration Method for Solving the Seismic Wave Equation
Institute of Scientific and Technical Information of China (English)
Jia Xiaofeng; Wang Runqiu; Hu Tianyue
2004-01-01
Wave equation migration is often applied to solve seismic imaging problems. Usually, the finite difference method is used to obtain the numerical solution of the wave equation. In this paper,the arbitrary difference precise integration (ADPI) method is discussed and applied in seismic migration. The ADPI method has its own distinctive idea. When dispersing coordinates in the space domain, it employs a relatively unrestrained form instead of the one used by the conventional finite difference method. Moreover, in the time domain it adopts the sub-domain precise integration method. As a result, it not only takes the merits of high precision and narrow bandwidth, but also can process various boundary conditions and describe the feature of an inhomogeneous medium better. Numerical results show the benefit of the presented algorithm using the ADPI method.
Xiong, Jie L; Atkins, Phillip; Chew, Weng Cho
2010-01-01
In this paper, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problem is well-studied in classical computational electromagnetics. This paper demonstrates that this quantum electrodynamic phenomena can be studied using the knowledge and techniques of classical electrodynamics.
Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom
Energy Technology Data Exchange (ETDEWEB)
Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.
Level Set Projection Method for Incompressible Navier-Stokes on Arbitrary Boundaries
Williams-Rioux, Bertrand
2012-01-12
Second order level set projection method for incompressible Navier-Stokes equations is proposed to solve flow around arbitrary geometries. We used rectilinear grid with collocated cell centered velocity and pressure. An explicit Godunov procedure is used to address the nonlinear advection terms, and an implicit Crank-Nicholson method to update viscous effects. An approximate pressure projection is implemented at the end of the time stepping using multigrid as a conventional fast iterative method. The level set method developed by Osher and Sethian [17] is implemented to address real momentum and pressure boundary conditions by the advection of a distance function, as proposed by Aslam [3]. Numerical results for the Strouhal number and drag coefficients validated the model with good accuracy for flow over a cylinder in the parallel shedding regime (47 < Re < 180). Simulations for an array of cylinders and an oscillating cylinder were performed, with the latter demonstrating our methods ability to handle dynamic boundary conditions.
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
We develop a nonlocal-response generalization to the Green's function surface-integral method (GSIM), also known as the boundary-element method. This numerically efficient method can accurately describe the linear hydrodynamic nonlocal response of arbitrarily shaped plasmonic nanowires in arbitrary...... dielectric backgrounds. All previous general-purpose methods for nonlocal response are bulk methods. We also expand the possible geometries to which the usual local-response GSIM can be applied, by showing how to regularize singularities that occur in the surface integrals when the nanoparticles touch...... close to and on top of planar dielectric substrates. Especially for the latter geometry, considerable differences in extinction cross sections are found for local as compared to nonlocal response, similar to what is found for plasmonic dimer structures....
Xie, Bin; Xiao, Feng
2016-12-01
We proposed a multi-moment constrained finite volume method which can simulate incompressible flows of high Reynolds number in complex geometries. Following the underlying idea of the volume-average/point-value multi-moment (VPM) method (Xie et al. (2014) [71]), this formulation is developed on arbitrary unstructured hybrid grids by employing the point values (PV) at both cell vertex and barycenter as the prognostic variables. The cell center value is updated via an evolution equation derived from a constraint condition of finite volume form, which ensures the rigorous numerical conservativeness. Novel numerical formulations based on the local PVs over compact stencil are proposed to enhance the accuracy, robustness and efficiency of computations on unstructured meshes of hybrid and arbitrary elements. Numerical experiments demonstrate that the present numerical model has nearly 3-order convergence rate with numerical errors much smaller than the VPM method. The numerical dissipation has been significantly suppressed, which facilitates numerical simulations of high Reynolds number flows in complex geometries.
An arbitrary boundary triangle mesh generation method for multi-modality imaging
Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming
2012-03-01
Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Energy Technology Data Exchange (ETDEWEB)
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Multi-Domain Spectral Method for Initial Data of Arbitrary Binaries in General Relativity
Ansorg, M
2006-01-01
We present a multi-domain spectral method to compute initial data of binary systems in General Relativity. By utilizing adapted conformal coordinates, the vacuum region exterior to the gravitational sources is divided up into two subdomains within which the spectral expansion of the field quantities is carried out. If a component of the binary is a neutron star, a further subdomain covering the star's interior is added. As such, the method can be used to construct arbitrary initial data corresponding to binary black holes, binary neutron stars or mixed binaries. In particular, it is possible to describe a black hole component by the puncture ansatz as well as through an excision technique. First examples are given for binary black hole excision data that fulfill the requirements of the quasi-stationary framework, which combines the Conformal Thin Sandwich formulation of the constraint equations with the Isolated Horizon conditions for black holes in quasi-equilibrium. These numerical solutions were obtained t...
Jalas, S.; Dornmair, I.; Lehe, R.; Vincenti, H.; Vay, J.-L.; Kirchen, M.; Maier, A. R.
2017-03-01
Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR—or even suppress it—and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.
Jalas, Sören; Lehe, Rémi; Vincenti, Henri; Vay, Jean-Luc; Kirchen, Manuel; Maier, Andreas R
2016-01-01
Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR -- or even suppress it -- and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be prone to NCR. Here, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for efficient parallelization.
Trew, Mark L; Smaill, Bruce H; Bullivant, David P; Hunter, Peter J; Pullan, Andrew J
2005-12-01
A generalized finite difference (GFD) method is presented that can be used to solve the bi-domain equations modeling cardiac electrical activity. Classical finite difference methods have been applied by many researchers to the bi-domain equations. However, these methods suffer from the limitation of requiring computational meshes that are structured and orthogonal. Finite element or finite volume methods enable the bi-domain equations to be solved on unstructured meshes, although implementations of such methods do not always cater for meshes with varying element topology. The GFD method solves the bi-domain equations on arbitrary and irregular computational meshes without any need to specify element basis functions. The method is useful as it can be easily applied to activation problems using existing meshes that have originally been created for use by finite element or finite difference methods. In addition, the GFD method employs an innovative approach to enforcing nodal and non-nodal boundary conditions. The GFD method performs effectively for a range of two and three-dimensional test problems and when computing bi-domain electrical activation moving through a fully anisotropic three-dimensional model of canine ventricles.
Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna
Rodriguez-Fortuno, Francisco J; Griol, Amadeu; Bellieres, Laurent; Marti, Javier; Martinez, Alejandro
2015-01-01
Optical nanoantennas efficiently convert confined optical energy into free-space radiation. The polarization of the emitted radiation depends mainly on nanoantenna shape, so it becomes extremely difficult to manipulate it unless the nanostructure is physically altered. Here we demonstrate a simple way to synthetize the polarization of the radiation emitted by a single nanoantenna so that every point on the Poincar\\'e sphere becomes attainable. The nanoantenna consists of a single scatterer created on a dielectric waveguide and fed from its both sides so that the polarization of the emitted optical radiation is controlled by the amplitude and phase of the feeding signals. Our nanoantenna is created on a silicon chip using standard top-down nanofabrication tools, but the method is universal and can be applied to other materials, wavelengths and technologies. This work will open the way towards the synthesis and control of arbitrary polarization states in nano-optics.
A simple method to calculate first-passage time densities with arbitrary initial conditions
Nyberg, Markus; Ambjörnsson, Tobias; Lizana, Ludvig
2016-06-01
Numerous applications all the way from biology and physics to economics depend on the density of first crossings over a boundary. Motivated by the lack of general purpose analytical tools for computing first-passage time densities (FPTDs) for complex problems, we propose a new simple method based on the independent interval approximation (IIA). We generalise previous formulations of the IIA to include arbitrary initial conditions as well as to deal with discrete time and non-smooth continuous time processes. We derive a closed form expression for the FPTD in z and Laplace-transform space to a boundary in one dimension. Two classes of problems are analysed in detail: discrete time symmetric random walks (Markovian) and continuous time Gaussian stationary processes (Markovian and non-Markovian). Our results are in good agreement with Langevin dynamics simulations.
Institute of Scientific and Technical Information of China (English)
DU Baisong; GE Yaojun; ZHOU Zheng
2007-01-01
In this paper,an analytical method is proposed for calculating torsional constants for complicated thin-walled cross-sections with arbitrary closed or open rib stiffeners.This method uses the free torsional theory and the principle of virtual work to build goveming equilibrium equations involving unknown shear flows and twisting rate.After changing the form of the equations and combining these two unknowns into one,torsional function,which is a function of shear flow,shear modulus,and twisting rate,is included in the governing equations as only one of the unknowns.All the torsional functions can be easily obtained from these homogeneous linear equations,and torsional constants can be easily obtained from the torsional functions.The advantage of this method is that we can easily and directly obtain torsional constants from the torsional functions,rather than the more sophisticated shear flow and twisting rate calculations.Finally,a complicated thin-walled cross-section is given as a valid numerical example to verify the analytical method,which is much more accurate and simpler than the traditional finite element method.
A survey of numerical methods for shock physics applications
Energy Technology Data Exchange (ETDEWEB)
Hertel, E.S. Jr.
1997-10-01
Hydrocodes or more accurately, shock physics analysis packages, have been widely used in the US Department of Energy (DOE) laboratories and elsewhere around the world for over 30 years. Initial applications included weapons effects studies where the pressure levels were high enough to disregard the material strength, hence the term hydrocode. Over the last 30 years, Sandia has worked extensively to develop and apply advanced hydrocodes to armor/anti-armor interactions, warhead design, high explosive initiation, and nuclear weapon safety issues. The needs of the DOE have changed over the last 30 years, especially over the last decade. A much stronger emphasis is currently placed on the details of material deformation and high explosive initiation phenomena. The hydrocodes of 30 years ago have now evolved into sophisticated analysis tools that can replace testing in some situations and complement it in all situations. A brief history of the development of hydrocodes in the US will be given. The author also discusses and compares the four principal methods in use today for the solution of the conservation equations of mass, momentum, and energy for shock physics applications. The techniques discussed are the Eulerian methods currently employed by the Sandia multi-dimensional shock physics analysis package known as CTH; the element based Lagrangian method currently used by codes like DYNA; the element free Lagrangian method (also known as smooth particle hydrodynamics) used by codes like the Los Alamos code SPHINX; and the Arbitrary Lagrangian Eulerian methods used by codes like the Lawrence Livermore code CALE or the Sandia code ALEGRA.
Directory of Open Access Journals (Sweden)
SZOPOS, E.
2012-05-01
Full Text Available This paper presents an iterative method for designing FIR filters that implement arbitrary magnitude characteristics, defined by the user through a set of frequency-magnitude points (frequency samples. The proposed method is based on the non-uniform frequency sampling algorithm. For each iteration a new set of frequency samples is generated, by processing the set used in the previous run; this implies changing the samples location around the previous frequency values and adjusting their magnitude through interpolation. If necessary, additional samples can be introduced, as well. After each iteration the magnitude characteristic of the resulting filter is determined by using the non-uniform DFT and compared with the required one; if the errors are larger than the acceptable levels (set by the user a new iteration is run; the length of the resulting filter and the values of its coefficients are also taken into consideration when deciding a re-run. To demonstrate the efficiency of the proposed method a tool for designing FIR filters that match human audiograms was implemented in LabVIEW. It was shown that the resulting filters have smaller coefficients than the standard one, and can also have lower order, while the errors remain relatively small.
Directory of Open Access Journals (Sweden)
Tsugio Fukuchi
2014-06-01
Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.
Real-time arbitrary view synthesis method for ultra-HD auto-stereoscopic display
Cai, Yuanfa; Sang, Xinzhu; Duo, Chen; Zhao, Tianqi; Fan, Xin; Guo, Nan; Yu, Xunbo; Yan, Binbin
2013-08-01
An arbitrary view synthesis method from 2D-Plus-Depth image for real-time auto-stereoscopic display is presented. Traditional methods use depth image based rendering (DIBR) technology, which is a process of synthesizing "virtual" views of a scene from still or moving images and associated per-pixel depth information. All the virtual view images are generated and then the ultimate stereo-image is synthesized. DIBR can greatly decrease the number of reference images and is flexible and efficient as the depth images are used. However it causes some problems such as the appearance of holes in the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Here, reversed disparity shift pixel rendering is used to generate the stereo-image directly, and the target image won't generate holes. To avoid duplication of calculation and also to be able to match with any specific three-dimensional display, a selecting table is designed to pick up appropriate virtual viewpoints for auto-stereoscopic display. According to the selecting table, only sub-pixels of the appropriate virtual viewpoints are calculated, so calculation amount is independent of the number of virtual viewpoints. In addition, 3D image warping technology is used to translate depth information to parallax between virtual viewpoints and parallax, and the viewer can adjust the zero-parallax-setting-plane (ZPS) and change parallax conveniently to suit his/her personal preferences. The proposed method is implemented with OPENGL and demonstrated on a laptop computer with a 2.3 GHz Intel Core i5 CPU and NVIDA GeForce GT540m GPU. We got a frame rate 30 frames per second with 4096×2340 video. High synthesis efficiency and good stereoscopic sense can be obtained. The presented method can meet the requirements of real-time ultra-HD super multi-view auto-stereoscopic display.
A multi-mesh finite element method for Lagrange elements of arbitrary degree
Witkowski, Thomas
2010-01-01
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...
Khoudeir, A.; Montemayor, R.; Urrutia, Luis F.
2008-09-01
Using the parent Lagrangian method together with a dimensional reduction from D to (D-1) dimensions, we construct dual theories for massive spin two fields in arbitrary dimensions in terms of a mixed symmetry tensor TA[A1A2…AD-2]. Our starting point is the well-studied massless parent action in dimension D. The resulting massive Stueckelberg-like parent actions in (D-1) dimensions inherit all the gauge symmetries of the original massless action and can be gauge fixed in two alternative ways, yielding the possibility of having a parent action with either a symmetric or a nonsymmetric Fierz-Pauli field eAB. Even though the dual sector in terms of the standard spin two field includes only the symmetrical part e{AB} in both cases, these two possibilities yield different results in terms of the alternative dual field TA[A1A2…AD-2]. In particular, the nonsymmetric case reproduces the Freund-Curtright action as the dual to the massive spin two field action in four dimensions.
Energy Technology Data Exchange (ETDEWEB)
Manzini, Gianmarco [Los Alamos National Laboratory
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Free surface modeling of contacting solid metal flows employing the ALE formulation
Stelt, van der A.A.; Bor, T.C.; Geijselaers, H.J.M.; Akkerman, R.; Huetink, J.; Merklein, M.; Hagenah, H.
2012-01-01
In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition i
Pakdemirli, Mehmet; Boyacı, Hakan
1999-01-01
A general model of cubic and fifth order nonlinearities is considered. The linear part as well as the nonlinearities are expressed in terms of arbitrary operators. Two different versions of the method of multiple scales are used in constructing the general transient and steady-state solutions of the model: Modified Rahman-Burton method and the Reconstitution method. It is found that the usual ordering of reconstitution can be used, if at higher orders of approximation, the time scale correspo...
Cheng Min; Lu Yi Long; Yao Zhen Hua
2003-01-01
The principle of differential algebra is applied to analyse and calculate arbitrary order curvilinear-axis combined geometric-chromatic aberrations of electron optical systems. Expressions of differential algebraic form of high order combined aberrations are obtained and arbitrary order combined aberrations can be calculated numerically. As an example, a typical wide electron beam focusing system with curved optical axes named magnetic immersion lens has been studied. All the second-order and third-order combined geometric-chromatic aberrations of the lens have been calculated, and the patterns of the corresponding geometric aberrations and combined aberrations have been given as well.
A Nonconforming Arbitrary Quadrilateral Finite Element Method for Approximating Maxwell's Equations
Institute of Scientific and Technical Information of China (English)
Dongyang Shi; Lifang Pei; Shaochun Chen
2007-01-01
The main aim of this paper is to provide convergence analysis of Quasi-Wilson nonconforming finite element to Maxwell's equations under arbitrary quadrilateral meshes. The error estimates are derived, which are the same as those for conforming elements under conventional regular meshes.
Simulation of free surfaces in 3-D with the arbitrary Lagrange-Euler method
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1995-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3-D transient finite element program so as to simulate multiple fluid flows with Surfaces and interfaces of general shapes. The description of fluid interfaces includes continuity of velocity and a discontinuous...
A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries
Gatsonis, Nikolaos A.; Potami, Raffaele; Yang, Jun
2014-01-01
A smooth dissipative particle dynamics method with dynamic virtual particle allocation (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains is presented. The physical domain in SDPD-DV may contain external and internal solid boundaries of arbitrary geometries, periodic inlets and outlets, and the fluid region. The SDPD-DV method is realized with fluid particles, boundary particles, and dynamically allocated virtual particles. The internal or external solid boundaries of the domain can be of arbitrary geometry and are discretized with a surface grid. These boundaries are represented by boundary particles with assigned properties. The fluid domain is discretized with fluid particles of constant mass and variable volume. Conservative and dissipative force models due to virtual particles exerted on a fluid particle in the proximity of a solid boundary supplement the original SDPD formulation. The dynamic virtual particle allocation approach provides the density and the forces due to virtual particles. The integration of the SDPD equations is accomplished with a velocity-Verlet algorithm for the momentum and a Runge-Kutta for the entropy equation. The velocity integrator is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. For the incompressible isothermal systems considered in this work, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for gases. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatiotemporal scales. The SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes for
Directory of Open Access Journals (Sweden)
Dong Tang
2016-01-01
Full Text Available An analytical procedure for free vibration analysis of circular cylindrical shells with arbitrary boundary conditions is developed with the employment of the method of reverberation-ray matrix. Based on the Flügge thin shell theory, the equations of motion are solved and exact solutions of the traveling wave form along the axial direction and the standing wave form along the circumferential direction are obtained. With such a unidirectional traveling wave form solution, the method of reverberation-ray matrix is introduced to derive a unified and compact form of equation for natural frequencies of circular cylindrical shells with arbitrary boundary conditions. The exact frequency parameters obtained in this paper are validated by comparing with those given by other researchers. The effects of the elastic restraints on the frequency parameters are examined in detail and some novel and useful conclusions are achieved.
Indian Academy of Sciences (India)
M. A. Sharaf; M. A. Banajh; A. A. Alshaary
2007-03-01
In this paper, an efficient iterative method of arbitrary integer order of convergence ≥ 2 has been established for solving the hyperbolic form of Kepler’s equation. The method is of a dynamic nature in the sense that, moving from one iterative scheme to the subsequent one, only additional instruction is needed. Most importantly, the method does not need any prior knowledge of the initial guess. A property which avoids the critical situations between divergent and very slow convergent solutions that may exist in other numerical methods which depend on initial guess. Computational Package for digital implementation of the method is given and is applied to many case studies.
Energy Technology Data Exchange (ETDEWEB)
Preece, D.S.; Weatherby, J.R.; Attaway, S.W.; Swegle, J.W.; Matalucci, R.V.
1998-06-01
Coupled blast-structural computational simulations using supercomputer capabilities will significantly advance the understanding of how complex structures respond under dynamic loads caused by explosives and earthquakes, an understanding with application to the surety of both federal and nonfederal buildings. Simulation of the effects of explosives on structures is a challenge because the explosive response can best be simulated using Eulerian computational techniques and structural behavior is best modeled using Lagrangian methods. Due to the different methodologies of the two computational techniques and code architecture requirements, they are usually implemented in different computer programs. Explosive and structure modeling in two different codes make it difficult or next to impossible to do coupled explosive/structure interaction simulations. Sandia National Laboratories has developed two techniques for solving this problem. The first is called Smoothed Particle Hydrodynamics (SPH), a relatively new gridless method comparable to Eulerian, that is especially suited for treating liquids and gases such as those produced by an explosive. The SPH capability has been fully implemented into the transient dynamics finite element (Lagrangian) codes PRONTO-2D and -3D. A PRONTO-3D/SPH simulation of the effect of a blast on a protective-wall barrier is presented in this paper. The second technique employed at Sandia National Laboratories uses a relatively new code called ALEGRA which is an ALE (Arbitrary Lagrangian-Eulerian) wave code with specific emphasis on large deformation and shock propagation. ALEGRA is capable of solving many shock-wave physics problems but it is especially suited for modeling problems involving the interaction of decoupled explosives with structures.
New method of calculating the wakefields of a point charge in a waveguide of arbitrary cross section
Baturin, S. S.; Kanareykin, A. D.
2016-05-01
A new method for calculating the Cherenkov wakefield acting on a point charged particle passing through a longitudinally homogeneous structure lined with layer(s) of an arbitrary retarding (dielectric, resistive, or corrugated) material has been developed. In this paper we present a rigorous derivation of the expressions for the fields that are valid at the cross section of the particle on the basis of a conformal mapping method. This new formalism allows reduction of the loss factor calculation to a simple derivation of a conformal mapping function from the arbitrary cross section onto a circular disc. We generalize these results to the case of a bunch with an arbitrary transverse distribution by deriving a two-dimensional Green function at the cross section of the particle. Consequently, for the first time analytical expressions for the transverse distributions of the electric field Ez for the most commonly used cylindrical, planar and elliptical cross section geometries are found. The proposed approach significantly decreases simulation time and opens new possibilities in optimizing wakefield effects resulting from short charged particle bunches for FEL and Linear Collider applications.
Yang, Jinghao; Jia, Zhenyuan; Liu, Wei; Fan, Chaonan; Xu, Pengtao; Wang, Fuji; Liu, Yang
2016-10-01
Binocular vision systems play an important role in computer vision, and high-precision system calibration is a necessary and indispensable process. In this paper, an improved calibration method for binocular stereo vision measurement systems based on arbitrary translations and 3D-connection information is proposed. First, a new method for calibrating the intrinsic parameters of binocular vision system based on two translations with an arbitrary angle difference is presented, which reduces the effect of the deviation of the motion actuator on calibration accuracy. This method is simpler and more accurate than existing active-vision calibration methods and can provide a better initial value for the determination of extrinsic parameters. Second, a 3D-connection calibration and optimization method is developed that links the information of the calibration target in different positions, further improving the accuracy of the system calibration. Calibration experiments show that the calibration error can be reduced to 0.09%, outperforming traditional methods for the experiments of this study.
Hill, Peter; Dudson, Ben
2016-01-01
We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for $\
Institute of Scientific and Technical Information of China (English)
Zhou Qi
2012-01-01
To a large degree,language is arbitrary. But there are exceptions to prove that language is not always arbitrary. However,non-arbitrariness is itself inevitably arbitrary. In fact,arbitrariness and non-arbitrariness work together to complete a language. It seems that they contradict to each other, but they actually coexist as a whole in the same unity.
DEFF Research Database (Denmark)
Mejlbro, Leif
1997-01-01
An alternative formula for the solution of linear differential equations of order n is suggested. When applicable, the suggested method requires fewer and simpler computations than the well-known method using Wronskians....
Institute of Scientific and Technical Information of China (English)
Nazaret Dermendjian; Vincent W. Lee; Jianwen Liang(梁建文)
2003-01-01
The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied. Nunerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals (moment method). The wave displacement fields are computed by the residual mcthod for the cases of elliptic, circular, rounded-rectangular and flat-elliptic canyons. The analysis demonstrates that thc resulting surface displacemcnt depends, as in similar previous analyses, on several factors including, but not limited, to the angle of thc wedge, thc geometry of thc vertex, the frcquencies of thc incident waves, the angles of incidence, and the material properties of the media. The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L
2014-01-01
A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.
Energy Technology Data Exchange (ETDEWEB)
Merton, S.R. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)], E-mail: simon.merton@awe.co.uk; Pain, C.C. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom); Smedley-Stevenson, R.P. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Buchan, A.G.; Eaton, M.D. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom)
2008-09-15
This paper describes the development of two optimal discontinuous finite element (FE) Riemann methods and their application to the one-speed Boltzmann transport equation in the steady-state. The proposed methods optimise the amount of dissipation applied in the streamline direction. This dissipation is applied within an element using a novel Riemann FE method, which is based on an analogy between control volume discretisation methods and finite element methods when integration by parts is applied to the transport terms. In one-dimension the optimal finite element solutions match the analytical solution exactly at each outlet node. Both schemes couple elements in space via a Riemann approach. The first of the two schemes is a Petrov-Galerkin (PG) method which introduces dissipation via the equation residual. The second scheme uses a streamline diffusion stabilisation term in the discretisation. These two methods provide a discontinuous Petrov-Galerkin (DPG) scheme that can stabilise an element across the full range of radiation regimes, obtaining robust solutions with suppressed oscillation. Three basis functions in angle of particle travel have been implemented in an optimal DPG Riemann solver, which include the P{sub N} (spherical harmonic), S{sub N} (discrete ordinate) and LW{sub N} (linear octahedral wavelet) angular expansions. These methods are applied to a series of demanding two-dimensional radiation transport problems.
Numerical Method for laminar fully developed flow in arbitrary cross section of ducts
Directory of Open Access Journals (Sweden)
Beghdadi Lotfi
2015-06-01
Full Text Available The present paper deals with the approximation of the solutions of partial differential equations that describe the phenomena of heat transfer and fluid flow, using a method based on Stokes' theorem and applied an unstructured computational mesh. The thus developed method will be applied in a problem of heat transfer charactiristics of laminar fully developed flow. After developing a code for calculating quantitative tests are planned to determine the accuracy of the method by the comparison with analytical solution or other studies that are already done.
Problems and methods of calculating the Legendre functions of arbitrary degree and order
Novikova, Elena; Dmitrenko, Alexander
2016-12-01
The known standard recursion methods of computing the full normalized associated Legendre functions do not give the necessary precision due to application of IEEE754-2008 standard, that creates a problems of underflow and overflow. The analysis of the problems of the calculation of the Legendre functions shows that the problem underflow is not dangerous by itself. The main problem that generates the gross errors in its calculations is the problem named the effect of "absolute zero". Once appeared in a forward column recursion, "absolute zero" converts to zero all values which are multiplied by it, regardless of whether a zero result of multiplication is real or not. Three methods of calculating of the Legendre functions, that removed the effect of "absolute zero" from the calculations are discussed here. These methods are also of interest because they almost have no limit for the maximum degree of Legendre functions. It is shown that the numerical accuracy of these three methods is the same. But, the CPU calculation time of the Legendre functions with Fukushima method is minimal. Therefore, the Fukushima method is the best. Its main advantage is computational speed which is an important factor in calculation of such large amount of the Legendre functions as 2 401 336 for EGM2008.
Directory of Open Access Journals (Sweden)
Song Fu
2015-01-01
Full Text Available Although the uniform theory of diffraction (UTD could be theoretically applied to arbitrarilyshaped convex objects modeled by nonuniform rational B-splines (NURBS, one of the great challenges in calculation of the UTD surface diffracted fields is the difficulty in determining the geodesic paths along which the creeping waves propagate on arbitrarilyshaped NURBS surfaces. In differential geometry, geodesic paths satisfy geodesic differential equation (GDE. Hence, in this paper, a general and efficient adaptive variable step Euler method is introduced for solving the GDE on arbitrarilyshaped NURBS surfaces. In contrast with conventional Euler method, the proposed method employs a shape factor (SF ξ to efficiently enhance the accuracy of tracing and extends the application of UTD for practical engineering. The validity and usefulness of the algorithm can be verified by the numerical results.
A Unified Finite Element Method for Arbitrary Elastic and Acoustic Media
Karaoglu, H.; Bielak, J.
2011-12-01
This study reports on a mixed finite element formulation that overcomes certain limitations faced by low-order primal-based formulations. A primal-based formulation with displacement as the variable is a widely used method to solve wave-propagation problems. It has been observed, however, that its accuracy deteriorates badly with increasing contrast between the P- and S-wave velocities (a situation often referred to, inaccurately, as almost incompressible). The extreme case for this contrast is an ideal, compressible fluid medium with S-wave velocity equals to zero. This extreme case creates problems in the equations of compressible elasticity. By using a dual-based formulation, we develop a method that is robust within the entire range of an elastic solid with moderate contrast between the P- and S-wave velocities up to the limiting case of an acoustic medium for which the S-wave velocity is zero. By solving a constrained variational problem with the Lagrange-Multiplier Method, we developed the dual-based (mixed) formulation with pressure and displacement as the variables.This is similar to earlier mixed displacement-pressure formulations, except that we introduce the methodology as a global one applicable to different domains rather than being limited to certain extreme cases. The variational problem makes a wider range of interpolation functions permissible for pressure including discontinuous functions across element boundaries. We verify the method and illustrate the general principles with an application in Southern California of the 1994 Northridge earthquake. We also discuss the possible extension of the method to fluid-structure interaction problems with dry interface conditions.
FULLY NONLINEAR WAVE COMPUTATIONS FOR ARBITRARY FLOATING BODIES USING THE DELTA METHOD
Institute of Scientific and Technical Information of China (English)
Lee Tzung-hang
2003-01-01
Fully nonlinear water wave problems are solved using Eulerian-Lagrangian time stepping methods in conjunction with a desingularized approach to solve the mixed boundary value problem that arises at each time step. In the desingularized approach, the singularities generating the flow field are outside the fluid domain. This allows the singularity distribution to be replaced by isolated Rankine sources with the corresponding reduction in computational complexity and computer time. A moving boundary technique is applied to eliminate the reflection waves from limited computational boundaries. Examples of the use of the method in three-dimensions are given for the exciting forces acting on a modified wigley hull and Series 60 are presented. The numerical results show good agreements with those of experiments.
Efficient method for calculating electronic bound states in arbitrary one-dimensional quantum wells
de Aquino, V. M.; Iwamoto, H.; Dias, I. F. L.; Laureto, E.; da Silva, M. A. T.; da Silva, E. C. F.; Quivy, A. A.
2017-01-01
In the present paper it is demonstrated that the bound electronic states of multiple quantum wells structures may be calculated very efficiently by expanding their eigenstates in terms of the eigenfunctions of a particle in a box. The bound states of single and multiple symmetric or nonsymmetric wells are calculated within the single-band effective mass approximation. A comparison is then made between the results obtained for simple cases with exact calculations. We also apply our approach to a GaAs/AlGaAs multiple quantum well structure composed of forty periods each one with seven quantum wells. The method may be very useful to design narrow band quantum cascade photodetectors to work without applied bias in a photovoltaic mode. With the presented method the effects of a electric field may also be easily included which is very important if one desires study quantum well structures for application to the development of quantum cascade lasers. The advantages of the method are also presented.
Directory of Open Access Journals (Sweden)
A. V. Voroneckii
2016-01-01
Full Text Available The paper deals with various theoretical approaches to the mathematical modeling of the operating process in solid propellant ramjets (SPRJ that use highly metalized solid propellant. It introduces a new method (combustion operating law method that allows us to carry out comparative analysis of combustion efficiency in SPRJ arbitrary geometry ram-burners (RB when there is no accurate information on the combustion law of condensed fuel particles. To illustrate an application of the proposed method, mathematical modeling of the operating process was conducted for three SPRJ ram-burners with three different air intakes (AI, for which distribution fields of main parameters of gas and fuel particles have been obtained. Most complete combustion of fuel particles and the lowest level of particles buildup are registered for RB180 (180 degree angle between AIs. The results of a comparative analysis show that the relative (compared to RB180 efficiency of the particle burning process equals 0.64 and 0.6, respectively, for RB90 (90 degree angle between AIs and RB60 (60 degree angle between AIs. The proposed method may be applied to solve the most difficult problems of mathematical modeling when the optimization development of the solid propellant and ramjet structure are fulfilled simultaneously, i.e. when designers do not have the complete information about the combustion law of the condensed fuel particles.
Energy Technology Data Exchange (ETDEWEB)
Hermeline, F
2008-12-15
This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)
The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant weights
Kaymak, Vural; Kieburg, Mario; Guhr, Thomas
2014-07-01
In the past few years, the supersymmetry method has been generalized to real symmetric, Hermitian, and Hermitian self-dual random matrices drawn from ensembles invariant under the orthogonal, unitary, and unitary symplectic groups, respectively. We extend this supersymmetry approach to chiral random matrix theory invariant under the three chiral unitary groups in a unifying way. Thereby we generalize a projection formula providing a direct link and, hence, a ‘short cut’ between the probability density in ordinary space and that in superspace. We emphasize that this point was one of the main problems and shortcomings of the supersymmetry method, since only implicit dualities between ordinary space and superspace were known before. To provide examples, we apply this approach to the calculation of the supersymmetric analogue of a Lorentzian (Cauchy) ensemble and an ensemble with a quartic potential. Moreover, we consider the partially quenched partition function of the three chiral Gaussian ensembles corresponding to four-dimensional continuum quantum chromodynamics. We identify a natural splitting of the chiral Lagrangian in its lowest order into a part for the physical mesons and a part associated with source terms generating the observables, e.g. the level density of the Dirac operator.
Energy Technology Data Exchange (ETDEWEB)
MacAlpine, Sara; Deline, Chris
2015-09-15
It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.
Coco, Armando; Russo, Giovanni
2013-05-01
In this paper we present a numerical method for solving elliptic equations in an arbitrary domain (described by a level-set function) with general boundary conditions (Dirichlet, Neumann, Robin, etc.) on Cartesian grids, using finite difference discretization and non-eliminated ghost values. A system of Ni+Ng equations in Ni+Ng unknowns is obtained by finite difference discretization on the Ni internal grid points, and second order interpolation to define the conditions for the Ng ghost values. The resulting large sparse linear system is then solved by a multigrid technique. The novelty of the papers can be summarized as follows: general strategy to discretize the boundary condition to second order both in the solution and its gradient; a relaxation of inner equations and boundary conditions by a fictitious time method, inspired by the stability conditions related to the associated time dependent problem (with a convergence proof for the first order scheme); an effective geometric multigrid, which maintains the structure of the discrete system at all grid levels. It is shown that by increasing the relaxation step of the equations associated to the boundary conditions, a convergence factor close to the optimal one is obtained. Several numerical tests, including variable coefficients, anisotropic elliptic equations, and domains with kinks, show the robustness, efficiency and accuracy of the approach.
A Finite Volume ALE Method Based on Approximate Riemann Solution%基于近似Riemann解的有限体积ALE方法
Institute of Scientific and Technical Information of China (English)
贾祖朋; 蔚喜军
2007-01-01
研究二维平面坐标系和二维轴对称坐标系中四边形网格上可压缩流体力学的有限体积ALE(Arbitrary Lagrangian Eulerian)方法.数值方法采用节点中心有限体积法,数值通量采用适用于任意状态方程的HLLC(Harten-Lax-Van Leer-Collela)通量.空间二阶精度通过用WENO(weighted essentially non-oscillatory)方法对原始变量进行重构获得,时间离散采用两步显式Runge-Kutta格式.数值例子显示,方法具有良好的激波分辨能力和高精度的数值逼近能力.
A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical Systems
Brandstetter, Gerd
The main focus of this work is on the development of a high-order Eulerian-Lagrangian finite element method for the simulation of electro-mechanical systems. The coupled problem is solved by a staggered scheme, where the mechanical motion is discretized by standard Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with embedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distortion due to large deformations, or topology changes due to contacting bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural way. Within this context we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method, which is shown to be necessary for (i) the accurate representation of the electrical gradient along nonlinear boundary features such as singular corners, and (ii) to achieve full convergence during the iterative global solution. We develop an implicit scheme based on the mid-point rule, as well as an explicit scheme based on the centered-difference method, with the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance of the proposed method is assessed for several benchmark tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order method as compared to low-order methods, and linear convergence in the iterative solution of the staggered scheme. Additionally, we investigate a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-mechanical devices excited at resonance-- as opposed to a naive time-stepping from zero initial
Energy Technology Data Exchange (ETDEWEB)
Zhang Sheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China)], E-mail: zhshaeng@yahoo.com.cn
2008-03-10
In this Letter, the Exp-function method is used to seek generalized solitonary solutions of Riccati equation. Based on the Riccati equation and its generalized solitonary solutions, new exact solutions with three arbitrary functions of the (2+1)-dimensional Broer-Kaup-Kupershmidt equations are obtained. It is shown that the Exp-function method provides a straightforward and important mathematical tool for nonlinear evolution equations in mathematical physics.
Oscillating layer thickness and vortices generated in oscillation of finite plate
Sin, V. K.; Wong, I. K.
2016-06-01
Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.
Energy Technology Data Exchange (ETDEWEB)
Dawes, Alan Sidney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-07
In this report a number of new verification test problems for multimaterial diffusion will be shown. Using them we will show that homogenization of multimaterial cells in either Arbitrary Lagrangian Eulerian (ALE) or Eulerian simulations can lead to errors in the energy flow at the interfaces. Results will be presented that show that significant improvements and predictive capability can be gained by using either a surrogate supermesh, such as Thin Mesh in FLAG, or the emerging method based on Static Condensation.
Fourment, Lionel; Guerdoux, Simon
2008-01-01
International audience; An Arbitrary Lagrangian Eulerian (ALE) formulation was developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method was utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. The proposed ALE formul...
Zhu, Junda; Liu, Haitao; Zhong, Ying
2016-05-01
Here, we report perturbative approaches to overcome the recently reported nonconvergence of the Fourier modal method (FMM) and the coordinate transformation method (C method) caused by the field hypersingularities (also called irregular field singularities) at lossless metal-dielectric arbitrary-angle edges. For the example of triangular gratings, we replace the sharp edge with a rounded edge to remove the hypersingularities at the edge. With such profile perturbations, we observe the convergence of the C method. The converged values of the diffraction efficiency are tested by the finite element method. However, with the radius of the rounded edge approaching zero, the converged values of the diffraction efficiency cannot approach a fixed value. For the example of parallelogram gratings, we smooth the sharp lamellar boundaries with a medium having a gradually varied refractive index to remove the hypersingularities. With the decrease of the width of the perturbative medium, the converged values of the diffraction efficiency can approach a fixed value for some numerical examples but cannot for other examples. For parallelogram gratings with a period much smaller than the wavelength, we surprisingly find that the FMM tends to converge despite the existence of hypersingularities, and the converged value consists well with the theoretical value given by the effective medium theory.
Institute of Scientific and Technical Information of China (English)
张解放; 刘宇陆
2003-01-01
The truncated expansion method for finding explicit and exact soliton- like solution of variable coefficient nonlinear evolution equation was described. The crucial idea of the method was first the assumption that coefficients of the truncated expansion formal solution are functions of time satisfying a set of algebraic equations, and then a set of ordinary different equations of undetermined functions that can be easily integrated were obtained. The simplicity and effectiveness of the method by application to a general variable coefficient KdV-MKdV equation with three arbitrary functions of time is illustrated.
Galley, Chad R
2009-01-01
We present a new analytical framework for describing the dynamics of a gravitational binary system with unequal masses moving with arbitrary relative velocity, taking into account the backreaction from both compact objects in the form of tidal deformation, gravitational waves and self forces. Allowing all dynamical variables to interact with each other in a self-consistent manner this formalism ensures that all the dynamical quantities involved are conserved on the background spacetime and obey the gauge invariance under general coordinate transformations that preserve the background geometry. Because it is based on a generalized perturbation theory and the important new emphasis is on the self-consistency of all the dynamical variables involved we call it a gravitational perturbation theory with self-consistent backreaction (GP-SCB). As an illustration of how this formalism is implemented we construct perturbatively a self-consistent set of equations of motion for an inspiraling gravitational binary, which d...
Liu, Qian; OuYang, Liangfei; Liang, Heng; Li, Nan; Geng, Xindu
2012-06-01
A novel thermodynamic state recursion (TSR) method, which is based on nonequilibrium thermodynamic path described by the Lagrangian-Eulerian representation, is presented to simulate the whole chromatographic process of frontal analysis using the spatial distribution of solute bands in time series like as a series of images. TSR differs from the current numerical methods using the partial differential equations in Eulerian representation. The novel method is used to simulate the nonideal, nonlinear hydrophobic interaction chromatography (HIC) processes of lysozyme and myoglobin under the discrete complex boundary conditions. The results show that the simulated breakthrough curves agree well with the experimental ones. The apparent diffusion coefficient and the Langmuir isotherm parameters of the two proteins in HIC are obtained by the state recursion inverse method. Due to its the time domain and Markov characteristics, TSR is applicable to the design and online control of the nonlinear multicolumn chromatographic systems.
Institute of Scientific and Technical Information of China (English)
崔涛; 张卫华; 孙帮成
2013-01-01
结合既有系统动力学分析方法和空气动力学研究方法,给出基于任意拉格朗日-欧拉法的高速列车与气流耦合振动的数值分析方法,包括离线耦合分析方法和在线耦合分析方法,在线耦合又可分为显式耦合分析方法和隐式耦合分析方法.介绍不同耦合分析方法在站台通过、高速交会、侧风等运行安全性方面的应用,考虑流固关系后,列车侧风安全性和交会安全性进一步降低.流固耦合数值分析方法在实例应用中得到直接或间接的验证,为高速列车流固关系研究提供1种方法和思路.%The new numeric analysis methodology based on Arbitrary Lagrangian-Eulerian(ALE) for high-speed train and airflow coupling vibration was presented by integrating the existing Finite Volume Method of Computational Fluid Dynamics and the numerical simulation method of Multi-Body Systems Dynamics.This methodology included off-line coupling and on-line coupling,and the latter included the explicit coupling method and implicit coupling method.The applications of these coupling methods in platform passing,high-speed crossing and side winds were introduced.Safety of train crossing and trains running in side winds was reduced when the coupling relationship of train system and airflow was taken into account.The methodology was verified in applications directly and indirectly.It offers a methodology and a idea for study of fluid-solid coupling relationship of high-speed trains.
Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya
2016-03-28
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H.; Iwamoto, K.; Saito, T.; Tachibana, M. [Iwate University, Iwate (Japan). Faculty of Engineering
1997-05-27
Methods to learn underground structures by utilizing the dispersion phenomenon of surface waves contained in microtremors include the frequency-wave number analysis method (the F-K method) and the spatial autocorrelation method (the SAC method). Despite the fact that the SAC method is capable of exploring structures at greater depths, the method is not utilized because of its stringent restriction in arrangement of seismometers during observation that they must be arranged evenly on the same circumference. In order to eliminate this restriction in the SAC method, a research group in the Hokuriku University has proposed an expanded spatial autocorrelation (ESAC) method. Using the concept of the ESAC method as its base, a method was realized to improve phase velocity estimation by making a simulation on an array shifted to the radius direction. As a result of the discussion, it was found that the proposed improvement method can be applied to places where waves come from a number of directions, such as urban areas. If the improvement method can be applied, the spatial autocorrelation function needs not be even in the circumferential direction. In other words, the SAC method can be applied to arbitrary arrays. 1 ref., 7 figs.
Research on a New Method for Screw Rotor Processing Using Abrasive Water Jet%基于磨料水射流的螺杆转子加工新方法研究
Institute of Scientific and Technical Information of China (English)
何雪明; 陈泽华; 武美萍; 张荣
2016-01-01
In the traditional machining processes of screw rotors,there were problems such as tool wear and high cutting heat.Abrasive water j et machining had some characteristics of no tool wear,low cutting heat and environmental protection.An abrasive water j et was introduced into the re-search of screw rotor processing,and a new method of abrasive water j et was proposed to improve the machining accuracy and efficiency of the rotors.The arbitrary Lagrangian-Eulerian method was applied to construct the rotor machining simulation model,the accuracy of simulation model was veri-fied by comparing the simulation results with the experimental data.Finally,through the analyses of the simulation results of multi axis machining of abrasive water j et,it is proved that the new machi-ning method of screw rotors has certain rationality.%螺杆转子传统加工过程中存在刀具磨损和过高切削热量等难题。为此，将具有无刀具磨损、切削热量低、绿色环保特点的磨料水射流加工方法引入螺杆转子加工研究之中，提出了磨料水射流多轴联动加工螺杆转子的新方法，以提高转子加工精度和效率。采用任意拉格朗日与欧拉方法构建了转子加工模拟模型，将模拟分析结果与实验数据进行比较，验证了模拟模型的正确性。最后，通过磨料对水射流多轴联动加工模拟结果的分析，证明了螺杆转子加工新方法的合理性。
Optical arbitrary waveform characterization using linear spectrograms.
Jiang, Zhi; Leaird, Daniel E; Long, Christopher M; Boppart, Stephen A; Weiner, Andrew M
2010-08-01
We demonstrate the first application of linear spectrogram methods based on electro-optic phase modulation to characterize optical arbitrary waveforms generated under spectral line-by-line control. This approach offers both superior sensitivity and self-referencing capability for retrieval of periodic high repetition rate optical arbitrary waveforms.
Hill, Peter; Shanahan, Brendan; Dudson, Ben
2017-04-01
We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.
Currents for Arbitrary Helicity
Dragon, Norbert
2016-01-01
Using Mackey's classification of unitary representations of the Poincar\\'e group on massles states of arbitrary helicity we disprove the claim that states with helicity |h|>=1 cannot couple to a conserved current by constructing such a current.
Energy Technology Data Exchange (ETDEWEB)
Garasi, Christopher Joseph; Haill, Thomas A.; Robinson, Allen Conrad
2003-11-01
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling magnetohydrodynamic, thermal conduction, and radiation emission effects.
Energy Technology Data Exchange (ETDEWEB)
Wong, Michael K. W.; Summers, Randall M.; Petney, Sharon Joy Victor; Luchini, Christopher Bernard; Drake, Richard Roy; Carroll, Susan K.; Hensinger, David M.; Garasi, Christopher Joseph; Robinson, Allen Conrad; Voth, Thomas Eugene; Haill, Thomas A.; Mehlhorn, Thomas Alan; Robbins, Joshua H.; Brunner, Thomas A.
2005-01-01
ALEGRA is an arbitrary Lagrangian-Eulerian multi-material finite element code used for modeling solid dynamics problems involving large distortion and shock propagation. This document describes the basic user input language and instructions for using the software.
Energy Technology Data Exchange (ETDEWEB)
Garasi, Christopher Joseph; Cochrane, Kyle Robert; Mehlhorn, Thomas Alan; Haill, Thomas A.; Summers, Randall M.; Robinson, Allen Conrad
2005-01-01
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamic, thermal conduction, and radiation emission effects.
Analytic methods for ﬁeld induced tunneling in quantum wells with arbitrary potential proﬁles
Indian Academy of Sciences (India)
S Panda; B K Panda
2001-06-01
Electric ﬁeld induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass equation in analytic methods based on three different Airy function approaches. Comparison of different Airy function methods indicates that they are identical and connected to each other by the Breit–Wigner formula.
Polarization Mode Dispersion Probability Distribution for Arbitrary Mode Coupling
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The probability distribution of the differential group delay for arbitrary mode coupling is simulated with Monte-Carlo method. Fitting the simulation results, we obtain probability distribution function for arbitrary mode coupling.
Mei, Lijie; Wu, Xinyuan
2016-10-01
In general, extended Runge-Kutta-Nyström (ERKN) methods are more effective than traditional Runge-Kutta-Nyström (RKN) methods in dealing with oscillatory Hamiltonian systems. However, the theoretical analysis for ERKN methods, such as the order conditions, the symplectic conditions and the symmetric conditions, becomes much more complicated than that for RKN methods. Therefore, it is a bottleneck to construct high-order ERKN methods efficiently. In this paper, we first establish the ERKN group Ω for ERKN methods and the RKN group G for RKN methods, respectively. We then rigorously show that ERKN methods are a natural extension of RKN methods, that is, there exists an epimorphism η of the ERKN group Ω onto the RKN group G. This epimorphism gives a global insight into the structure of the ERKN group by the analysis of its kernel and the corresponding RKN group G. Meanwhile, we establish a particular mapping φ of G into Ω so that each image element is an ideal representative element of the congruence class in Ω. Furthermore, an elementary theoretical analysis shows that this map φ can preserve many structure-preserving properties, such as the order, the symmetry and the symplecticity. From the epimorphism η together with its section φ, we may gain knowledge about the structure of the ERKN group Ω via the RKN group G. In light of the theoretical analysis of this paper, we obtain high-order structure-preserving ERKN methods in an effective way for solving oscillatory Hamiltonian systems. Numerical experiments are carried out and the results are very promising, which strongly support our theoretical analysis presented in this paper.
Tailleux, Remi
2010-01-01
In order to help achieve a future better understanding of the role of internal energy in turbulent stratified fluids, a new method is proposed for constructing Boussinesq models that conserve energy exactly, and that are endowed with a fully internally consistent description of thermodynamics.
Energy Technology Data Exchange (ETDEWEB)
Ghomshei, Mansour Mohieddin; Abbasi, Vahid [Islamic Azad University, Alborz (Iran, Islamic Republic of)
2013-04-15
In this paper, a finite element formulation is developed for analyzing the axisymmetric thermal buckling of FGM annular plates of variable thickness subjected to thermal loads generally distributed nonuniformly along the plate radial coordinate. The FGM assumed to be isotropic with material properties graded in the thickness direction according to a simple power-law in terms of the plate thickness coordinate, and has symmetry with respect to the plate midplane. At first, the pre-buckling plane elasticity problem is developed and solved using the finite element method, to determine the distribution of the pre-buckling in-plane forces in terms of the temperature rise distribution. Subsequently, based on Kierchhoff plate theory and using the principle of minimum total potential energy, the weak form of the differential equation governing the plate thermal stability is derived, then by employing the finite element method, the stability equations are solved numerically to evaluate the thermal buckling load factor. Convergence and validation of the presented finite element model are investigated by comparing the numerical results with those available in the literature. Parametric studies are carried out to cover the effects of parameters including thickness-to-radius ratio, taper parameter and boundary conditions on the thermal buckling load factor of the plates.
Xue, Kan-Hao; Miao, Xiang-Shui
2016-01-01
The LDA-1/2 method expands Slater's half occupation technique to infinite solid state materials by introducing a self-energy potential centered at the anions to cancel the energy associated with electron-hole self-interaction. To avoid an infinite summation of long-ranged self-energy potentials they must be trimmed at a variationally-defined cutoff radius. The method has been successful in predicting accurate band gaps for a large number of elementary and binary semiconductors. Nevertheless, there has been some confusion regarding carbon and silicon, both in the cubic diamond structure, which require different ionizations of the valence charge, 1/2 for carbon and 1/4 for silicon respectively, to yield band gaps in agreement with experimental data. We here analyze the spatial distribution of the valence electrons of these two materials to conclude that in silicon and in carbon LDA-1/4 and LDA-1/2, respectively, must be adopted for the proper cancellation of the self-energies. Such analysis should be applied to...
de Tullio, M. D.; Pascazio, G.
2016-11-01
A versatile numerical method is presented to predict the fluid-structure interaction of bodies with arbitrary thickness immersed in an incompressible fluid, with the aim of simulating different biological engineering applications. A direct-forcing immersed boundary method is adopted, based on a moving-least-squares approach to reconstruct the solution in the vicinity of the immersed surface. A simple spring-network model is considered for describing the dynamics of deformable structures, so as to easily model and simulate different biological systems that not always may be described by simple continuum models, without affecting the computational time and simplicity of the overall method. The fluid and structures are coupled in a strong way, in order to avoid instabilities related to large accelerations of the bodies. The effectiveness of the method is validated by means of several test cases involving: rigid bodies, either falling in a quiescent fluid, fluttering or tumbling, or transported by a shear flow; infinitely thin elastic structures with mass, such as a two-dimensional flexible filament and, concerning three-dimensional cases, a flapping flag and an inverted flag in a free stream; finally, a three-dimensional model of a bio-prosthetic aortic valve opening and closing under a pulsatile flowrate. A very good agreement is obtained in all the cases, comparing with available experimental data and numerical results obtained by different methods. In particular, the method is shown to be second-order accurate by means of a mesh-refinement study. Moreover, it is able to provide results comparable with those of sharp direct-forcing approaches, and can manage high pressure differences across the surface, still obtaining very smooth hydrodynamic forces.
Arbitrary Spin Galilean Oscillator
Hagen, C R
2014-01-01
The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.
Mutual inductance calculation method of arbitrary space positioned coils%任意空间位置线圈的互感计算方法
Institute of Scientific and Technical Information of China (English)
谢岳; 潘伟玲
2016-01-01
磁耦合谐振式无线电能传输技术通过空间分离线圈之间的电磁耦合实现电能的无线传递，耦合线圈尺寸的不同和相对位置的变化会引起线圈间的互感变化，继而影响无线电能传输系统的特性。以常见的矩形截面空心线圈为分析对象，对任意空间位置线圈间互感的计算方法进行研究，通过纽曼公式和细分求和法推导了互感的理论计算公式，为静态和动态无线电能传输系统的设计提供支持。在耦合线圈具有不同轴向距离、径向偏距及旋转角度等空间位置情况下，公式编程计算和实验测量结果都具有一致性，证明了计算方法的正确性。%The magnetic coupling resonant wireless power transfer technology realizes the power transfer wirelessly by means of electromagnetic coupling between space-separated coils .The different sizes and relative position change of coupling coils may cause the mutual inductance magnitude variation ,which can thereby influence the performance of wireless power transfer system .Taking the common rectangular cross section air-core coils as the analysis object ,the calculation method of mutual inductance between arbitrary space positioned coils was researched and the relevant theoretical formula was derived based on Neumann equation and method of subdivision and superposition .The calculation formula can give the support to the design of both static and dynamic wireless power transfer systems .The correctness of the proposed calcu-lation method was proved by the consistency of the experimental results and the formula programming cal-culation results under the condition of different space positions such as different axial distances ,radial dis-tances and rotation angles between the coupling coils .
Zhao, Qiang; Dong, Zhiwei
2016-11-01
We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. The results of numerical simulation of pulsed laser ablation are presented. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.
Simulation of a viscous fluid spreading by a bidimensional shallow water model
Di Martino, Bernard; Paoli, Jean-Martin; Simonnet, Pierre; 10.1016/j.apm.2011.01.015
2011-01-01
In this paper we propose a numerical method to solve the Cauchy problem based on the viscous shallow water equations in an horizontally moving domain. More precisely, we are interested in a flooding and drying model, used to modelize the overflow of a river or the intrusion of a tsunami on ground. We use a non conservative form of the two-dimensional shallow water equations, in eight velocity formulation and we build a numerical approximation, based on the Arbitrary Lagrangian Eulerian formulation, in order to compute the solution in the moving domain.
Lagrangian continuum dynamics in ALEGRA.
Energy Technology Data Exchange (ETDEWEB)
Wong, Michael K. W.; Love, Edward
2007-12-01
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
Numerical simulation of fluid flow in a reheating furnace with multi-swirling-burners
Institute of Scientific and Technical Information of China (English)
Baowei Li; Zengwu Zhao; Yike Li; Wenfei Wu; Daqiang Cang
2003-01-01
A general numerical simulating program for three-dimensional (3-D) and time-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developed based upon an arbitrary Lagrangian-Eulerian scheme (ALE) with the finite volume method. The parameters of fluid flow in a reheating furnace with multi-swirling-burners was calculated and the 3-D velocity distributions were obtained. The design of the burners was optimized for forming better swirling flow. The simulation shows that the fluid flow in the reheating furnace with the optimized burners is reasonable.
Simulation numérique du soudage par frottement malaxage
Guerdoux, Simon
2007-01-01
This work presents the development of a numerical tool. An Arbitrary Lagrangian Eulerian (ALE) formulation is implemented in the 3D FORGE3® F.E. software to simulate the different stages of the Friction Stir Welding (FSW) process. A splitting method is utilized:a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) nodal and P0 variables ar...
Energy Technology Data Exchange (ETDEWEB)
Heinze, Stefan
2008-04-18
In the present dissertation different classes of quantum mechanical many body systems are investigated numerically and analytically considering symmetries in the formalism of second quantization. All algebraic ideas which are neccessary to develop a numerical computer code which is able to calculate the eigenvalues and eigenstates of a very general quantum many body hamiltonian are explained. The two most crucial problems are branching rules and the calculation of isoscalar factors. Methods are presented to solve these problems numerically for the general case. The most important point is the calculation of isoscalar factors with a nonrecursive method and without any numerical error. All presented ideas were implemented in the program '' ArbModel''. With this very flexible computer code at hand, systems of identical particles were investigated in general. General formulas were derived for the presence of dynamical symmetry. Weaker conditions are neccessary for the conservation of the so called seniority quantum number. This situation is called partial dynamical symmetry. These conditions were investigated in detail. Althouth other authors have previously investigated this problem, some new cases were discovered and new conditions could be derived. Most surprisingly, cases were found in which the seniority quantum number is generally broken except for some specific states. These states are solvable and formulae for their energies are presented. All analytically derived results were checked with ''ArbModel''. As further applications for the code, two selected models with distinguishable particles are investigated. The predictions of a very new theory, which connects quantum phase transitions and exceptional points, are verified with the sd-Interacting-Boson-Model 1 (sd-IBM1) and a very high particle number. For the Interacting-Boson-Fermion-Model a selected dynamical symmetry was investigated. The branching rules for this Bose
Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
Institute of Scientific and Technical Information of China (English)
DAI Xiaoying; YANG Zhang; ZHOU Aihui
2008-01-01
Based on a linear finite element space, two symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions are constructed and analyzed. Some relationships between the finite element method and the finite difference method are addressed, too.
Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on a linear finite element space,two symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions are constructed and analyzed.Some relationships between the finite element method and the finite difference method are addressed,too.
Application of the VOF method based on unstructured quadrilateral mesh
Institute of Scientific and Technical Information of China (English)
JI Chun-ning; SHI Ying
2008-01-01
To simulate two-dimensional free-surface flows with complex boundaries directly and accurately, a novel VOF (Volume-of-fluid) method based on unstructured quadrilateral mesh is presented. Without introducing any complicated boundary treatment or artificial diffusion, this method treated curved boundaries directly by utilizing the inherent merit of unstructured mesh in fitting curves. The PLIC (Piecewise Linear Interface Calculation) method was adopted to obtain a second-order accurate linearized reconstruction approximation and the MLER (Modified Lagrangian-Eulerian Re-map) method was introduced to advect fluid volumes on unstructured mesh. Moreover, an analytical relation for the interface's line constant vs. the volume clipped by the interface was developed so as to improve the method's efficiency. To validate this method, a comprehensive series of large straining advection tests were performed. Numerical results provide convincing evidences for the method's high volume conservative accuracy and second-order shape error convergence rate. Also, a dramatic improvement on computational accuracy over its unstructured triangular mesh counterpart is checked.
On Arbitrary Phases in Quantum Amplitude Amplification
Hoyer, P
2000-01-01
We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.
The Interpretation of Saussure’s Arbitrariness
Institute of Scientific and Technical Information of China (English)
王艳
2015-01-01
According to Saussure,The arbitrary nature of language is"first principle of linguistic".With the development of cognitive science,some exaggerate the importance of iconicity;some even suggest iconicity should replace arbitrariness.What leads to this extreme view is the misunderstanding of arbitrariness.The paper aims at advocating an overall and objective view towards the arbitrary nature of language,putting forward that arbitrariness and iconicity are not incompatible but complementary.
Representing Arbitrary Boosts for Undergraduates.
Frahm, Charles P.
1979-01-01
Presented is a derivation for the matrix representation of an arbitrary boost, a Lorentz transformation without rotation, suitable for undergraduate students with modest backgrounds in mathematics and relativity. The derivation uses standard vector and matrix techniques along with the well-known form for a special Lorentz transformation. (BT)
Conformal array design on arbitrary polygon surface with transformation optics
Deng, Li; Wu, Yongle; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang
2016-06-01
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Conformal array design on arbitrary polygon surface with transformation optics
Directory of Open Access Journals (Sweden)
Li Deng
2016-06-01
Full Text Available A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Institute of Scientific and Technical Information of China (English)
姚贞光; 刘巧芳
2014-01-01
无论是在实体足球比赛还是智能体机器人足球比赛中，近距离的任意球破门收益率较高。研究智能体足球机器人比赛的任意球轨迹修正和优化控制问题，进而指导足球训练提高任意球得分率。提出一种基于灰色靶关联分析的智能体任意球轨迹修正方法，首先对整个机器人足球的环境态势和球员行为体选择进行模型构建，然后给出了灰色靶关联分析的任意球轨迹修正算法，进行球体着力点和应力点的适应值分析，构建基于灰色靶关联分析的任意球应力衰减特性分析模型，指导任意球轨迹修正，最后在智能体足球世界杯3D仿真平台进行实验验证了算法的优越性能。实验结果得出，采用该算法能有效指导任意球发球着力点控制，优化任意球的攻击轨迹，提高智能体机器人足球的任意球进球成功率，预测和控制精度提高。%Either in the real football game or agent in the robot soccer competition, a free kick near distance and higher rate is perfect. Correction of arbitrary ball trajectory is researched for intelligent robot soccer competition and the optimal con⁃trol problem, and then guide the football training is proposed to improve the kick rate. A correction method of grey correla⁃tion analysis of agent is proposed based on arbitrary trajectory of the ball, first to the robot soccer environment situation and player behavior selection of model construction, and then gives the ball trajectory analysis of grey correlation algorithm, sphere to point and stress value analysis, construction of arbitrary ball analysis the grey target association based on the stress analysis model attenuation characteristics, guiding the ball trajectory correction, finally verify the superior perfor⁃mance of the algorithm in intelligent football World Cup in 3D simulation platform. Experimental results show that, the algo⁃rithm can effectively guide the
Institute of Scientific and Technical Information of China (English)
周岱; 何涛; 刘光众
2013-01-01
The combined interface boundary condition (CIBC) method has been developed as a remedy for time lag inherent in the loosely-coupled partitioned algorithm,whose correction terms for interfacial velocity and traction are introduced at two sequential time steps with a coupling parameter ω that plays an important part in the stability and accuracy of the coupled fluid-structure interaction system.However the structural traction rate that appears explicitly in the traction correction is estimated based on the solution of the structural subsystem,thus this handling needs the structural traction before it is corrected.In this paper a new formulation for the CIBC method is proposed to repair the foregoing inconvenience.The structural traction rate is removed via reformulating its correction term simply.Finally our new CIBC corrections request the structural traction no more,and are tuned by the ratio ω/△t that is served as the coupling parameter.The characteristic-based split (CBS) scheme is used to solve incompressible Navier-Stokes equations from the arbitrary Lagrangian-Eulerian viewpoint while the equation of rigid-body dynamics is solved by Newmark-β method.The moving submesh approach is performed for the fluid mesh deformation.For respecting geometric conservation law,a mass source term is implanted into the CBS scheme on the moving mesh.The rotational fluid-rigid body interaction is tested to validate the proposed methodology after discussing several numerical details.The obtained results are in good agreement with the existing data and some famous features of flow phenomena are exposed successfully.%针对流固耦合问题该文提出了一种改进结合界面边界条件方法,即通过重构界面修正公式,完全消除未经修正的拖曳力,引入新的耦合参数ω/△t以考虑时间步的影响.基于任意拉格朗日-欧拉有限元方法和弱耦合算法求解流固耦合系统.采用CBS(Characteristic-Based Split)稳定化流体有限元算
Arbitrary Bending Plasmonic Light Waves
Epstein, Itai
2013-01-01
We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation, and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and non-paraxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field-scanning-optical-microscope.
Arbitrary bending plasmonic light waves.
Epstein, Itai; Arie, Ady
2014-01-17
We demonstrate the generation of self-accelerating surface plasmon beams along arbitrary caustic curvatures. These plasmonic beams are excited by free-space beams through a two-dimensional binary plasmonic phase mask, which provides the missing momentum between the two beams in the direction of propagation and sets the required phase for the plasmonic beam in the transverse direction. We examine the cases of paraxial and nonparaxial curvatures and show that this highly versatile scheme can be designed to produce arbitrary plasmonic self-accelerating beams. Several different plasmonic beams, which accelerate along polynomial and exponential trajectories, are demonstrated both numerically and experimentally, with a direct measurement of the plasmonic light intensity using a near-field scanning optical microscope.
Institute of Scientific and Technical Information of China (English)
楼云锋; 杨颜志; 金先龙
2014-01-01
In order to study the seismic response of shallow diversion tunnel considering sloshing amplitude of the water, an analytical model of tunnel-soil-fluid is proposed taking account of nonlinear material behavior of soil, viscoelastic artificial boundary, the effective rigidity ratios and fluid-solid coupling. Firstly, the hoop, radial and axial structural rigidities of tunnel lining are obtained by numerical rigidity reduction tests. Furthermore, the orthotropic material is used in tunnel lining model. As an application, the seismic responses of a project of large-diameter parallel diversion tunnels, which is one of the key projects in Shanghai, are calculated using the multi-material arbitrary Lagrangian-Eulerian (ALE) method. The equivalent density method is then used to validate the established simulation model. Finally, two seismic input modes, the uniform and nonuniform excitations, are involved in the seismic analyses of the tunnel-soil-fluid system. The numerical results show that under horizontal earthquake excitation the influence of fluid on tunnel's displacement is small;however, the influences of fluid on both stress and deformation of the section are great. The tunnel moment are always focused on the position of the tunnel 45° cross-hatched. Comparing with the uniform seismic input, the results show that the nonuniform excitation can remarkably increase both displacement and deformation responses of the tunnel.%为研究浅埋输水隧道内部流体对隧道地震响应的影响，考虑黏弹性人工边界、土壤的非线性、隧道结构刚度有效率及流-固耦合作用，建立了双线隧道-土体-流体相互耦合作用的力学模型。通过刚度折减试验得到衬砌环环向、径向、轴向刚度，进而引入正交各向异性连续材料作为衬砌材料模型。采用基于任意拉格朗日-欧拉（ALE）描述法的流-固耦合方法，对上海某大直径双线输水隧道在流体作用下的地震响应进行了
Gomez-Sousa, Hipolito; Martinez-Lorenzo, Jose Angel; Arias-Acuña, Marcos
2015-01-01
This paper presents a new method, based on the well-known method of moments (MoM), for the numerical electromagnetic analysis of scattering and radiation from metallic or dielectric structures, or both structure types in the same simulation, that are in contact with other metallic or dielectric structures. The proposed method for solving the MoM junction problem consists of two separate algorithms, one of which comprises a generalization for bodies in contact of the surface integral equation (SIE) formulations. Unlike some other published SIE generalizations in the field of computational electromagnetics, this generalization does not require duplicating unknowns on the dielectric separation surfaces. Additionally, this generalization is applicable to any ordinary single-scatterer SIE formulations employed as baseline. The other algorithm deals with enforcing boundary conditions and Kirchhoff's Law, relating the surface current flow across a junction edge. Two important features inherent to this latter algorit...
Wavefunctions for Particles with Arbitrary Spin
Institute of Scientific and Technical Information of China (English)
HUANG Shi-Zhong; RUAN Tu-Nan; WU Ning; ZHENG Zhi-Peng
2002-01-01
By solving rigorously the relativistic wave equations derived bom Bargmann-Wigner equation for arbitrary spin, the relativistic w avefunctions in momentum representation for particles with arbitrary spin are deduced.
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.
Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant
Hanada, Masanori; Honma, Yoshinori; Nishimura, Jun; Shiba, Shotaro; Yoshida, Yutaka
2012-01-01
We show that the ABJM theory, which is a N=6 superconformal U(N)\\times U(N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy, and confirm the N^{3/2} scaling in the M-theory limit predicted from the gravity side. We also find that the previously proposed analytical formula needs to be corrected by an additional term at each order of the string coupling expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.
Wright, Louise; Robinson, Stephen P; Humphrey, Victor F
2009-03-01
This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies.
High order methods for incompressible fluid flow: Application to moving boundary problems
Energy Technology Data Exchange (ETDEWEB)
Bjoentegaard, Tormod
2008-04-15
Fluid flows with moving boundaries are encountered in a large number of real life situations, with two such types being fluid-structure interaction and free-surface flows. Fluid-structure phenomena are for instance apparent in many hydrodynamic applications; wave effects on offshore structures, sloshing and fluid induced vibrations, and aeroelasticity; flutter and dynamic response. Free-surface flows can be considered as a special case of a fluid-fluid interaction where one of the fluids are practically inviscid, such as air. This type of flows arise in many disciplines such as marine hydrodynamics, chemical engineering, material processing, and geophysics. The driving forces for free-surface flows may be of large scale such as gravity or inertial forces, or forces due to surface tension which operate on a much smaller scale. Free-surface flows with surface tension as a driving mechanism include the flow of bubbles and droplets, and the evolution of capillary waves. In this work we consider incompressible fluid flow, which are governed by the incompressible Navier-Stokes equations. There are several challenges when simulating moving boundary problems numerically, and these include - Spatial discretization - Temporal discretization - Imposition of boundary conditions - Solution strategy for the linear equations. These are some of the issues which will be addressed in this introduction. We will first formulate the problem in the arbitrary Lagrangian-Eulerian framework, and introduce the weak formulation of the problem. Next, we discuss the spatial and temporal discretization before we move to the imposition of surface tension boundary conditions. In the final section we discuss the solution of the resulting linear system of equations. (Author). refs., figs., tabs
electrode of an arbitrary shape
Directory of Open Access Journals (Sweden)
P. A. Krutitskii
1999-01-01
Full Text Available A problem on electric current in a semiconductor film from an electrode of an arbitrary shape is studied in the presence of a magnetic field. This situation describes the Hall effect, which indicates the deflection of electric, current from electric field in a semiconductor. From mathematical standpoint we consider the skew derivative problem for harmonic functions in the exterior of an open arc in a plane. By means of potential theory the problem is reduced to the Cauchy singular integral equation and next to the Fredholm equation of the 2nd kind which is uniquely solvable. The solution of the integral equation can be computed by standard codes by discretization and inversion of the matrix. The uniqueness and existence theorems are formulated.
Arbitrary Inequality in Reputation Systems
Frey, Vincenz; van de Rijt, Arnout
2016-12-01
Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.
Surface waves on arbitrary vertically-sheared currents
Smeltzer, Benjamin K
2016-01-01
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of arbitrary depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past in 2D, and we herein extend and apply it to 3D problems. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving Fourier transformations in the horizontal plane. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between a concave down profile when compared to a constant shear profile with equal depth-averaged vorticity. New insight is given concerning the nature of extra spurious solution...
Synthesizing arbitrary two-photon polarization mixed states
Wei, T C; Branning, D; Goldbart, P M; James, D F V; Jeffrey, E; Kwiat, P G; Mukhopadhyay, S; Peters, N A; Wei, Tzu-Chieh; Altepeter, Joseph B.; Branning, David; Goldbart, Paul M.; Jeffrey, Evan; Kwiat, Paul G.; Mukhopadhyay, Swagatam; Peters, Nicholas A.
2005-01-01
Two methods for creating arbitrary two-photon polarization pure states are introduced. Based on these, four schemes for creating two-photon polarization mixed states are proposed and analyzed. The first two schemes can synthesize completely arbitrary two-qubit mixed states, i.e., control all 15 free parameters: Scheme I requires several sets of crystals, while Scheme II requires only a single set, but relies on decohering the pump beam. Additionally, we describe two further schemes which are much easier to implement. Although the total capability of these is still being studied, we show that they can synthesize all two-qubit Werner states, maximally entangled mixed states, Collins-Gisin states, and arbitrary Bell-diagonal states.
Universal properties of Fermi gases in arbitrary dimensions
DEFF Research Database (Denmark)
Valiente, Manuel; T. Zinner, Nikolaj; Molmer, Klaus
2012-01-01
We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations...... for the Fermi gas. Three-dimensional scattering under very general conditions of transversal confinement is described by an effectively reduced-dimensional scattering length, which we show depends on the three-dimensional scattering length in a universal way. Our formula for non-integer dimensions interpolates...
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
Mikitik, Grigorii P.; Brandt, Ernst Helmut
2000-01-01
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and out-of-plane anisotropy of flux-line pinning is considered, in an external magnetic field normal to its plane. It is shown that the general three-dimensional critical state problem for this superconductor reduces to the two-dimensional problem of an infinitely thin sample of the same shape but with a modified induction dependence of the critical sheet current. The methods of solving the latter problem are well known...
Fast 2-D DOA Estimation Method in Transformed Domain with Arbitrary Arrays%适用任意阵列的变换域二维波达角快速估计算法
Institute of Scientific and Technical Information of China (English)
闫锋刚; 金铭; 乔晓林
2013-01-01
MUSIC(Multiple Signal Classification)算法是波达角(the Dirction of Arrival,DOA)估计的经典算法之一,但其在二维DOA估计中因需进行二维谱峰搜索而计算量十分巨大.为降低MUSIC算法的计算量,本文在引入变换域DOA概念的基础上提出了一种能够适用于任意阵列结构的二维DOA快速估计算法,即变换域MUSIC(transformed domain-MUSIC,TD-MUSIC)算法.理论分析和仿真实验表明:该算法不但将空间谱峰搜索的范围减小一半而且具有更低维度的噪声子空间,因而其计算量远小于MUSIC算法.同时,新算法具有比MUSIC更高的空间分辨率.%As one of the most popular techniques for direction-of-arrival(DOA)estimation,the multiple signal classification (MUSIC)algorithm has a tremendous computational complexity for 2-D DOA estimation problems,which is mainly caused by an involved 2-D spectral search step.To reduce the complexity,a new algorithm named the transformed domain MUSIC(TD-MUSIC)for fast 2-D DOA estimation with arbitrary arrays is presented by this work based on a new concept of the transformed domain DOA.It is shown by theoretical analysis and experiment results that TD-MUSIC not only realizes a compression for the spectral search region,but also has a dimension-reduced noise subspace and hence,it requires much lower complexity than the standard MUSIC.Moreover,the new method also shows an improved resolution as compared to MUSIC.
Numerical simulation of generalized Langevin equation with arbitrary correlated noise.
Lü, Kun; Bao, Jing-Dong
2005-12-01
A generalized Langevin equation with arbitrary correlated noise and associated frequency-dependent friction is simulated, which can lead to anomalous diffusion. The algorithm is realized by using the Fourier transform technique to generate noise and the stochastic Runge-Kutta method to solve the whole equation. Application to an acoustic phonon model, initial preparation-dependent ballistic diffusion, is shown.
Probabilistic Teleportation of an Arbitrary n-Particle Entangled State
Institute of Scientific and Technical Information of China (English)
XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying
2005-01-01
A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.
Energy Technology Data Exchange (ETDEWEB)
Garasi, Christopher Joseph; Cochrane, Kyle Robert; Mehlhorn, Thomas Alan; Haill, Thomas A.; Brunner, Thomas A.; Summers, Randall M.; Robinson, Allen Conrad
2005-02-01
ALEGRA is an arbitrary Lagrangian-Eulerian finite element code that emphasizes large distortion and shock propagation in inviscid fluids and solids. This document describes user options for modeling resistive magnetohydrodynamics, thermal conduction, and radiation transport effects, and two material temperature physics.
Spherical Gravitating Systems of Arbitrary Dimension
Das, A
2001-01-01
We study spherically symmetric solutions to the Einstein field equations under the assumption that the space-time may possess an arbitrary number of spatial dimensions. The general solution of Synge is extended to describe systems of any dimension. Arbitrary dimension analogues of known four dimensional solutions are also presented, derived using the above scheme. Finally, we discuss the requirements for the existence of Birkhoff's theorems in space-times of arbitrary dimension with or without matter fields present. Cases are discussed where the assumptions of the theorem are considerably weakened yet the theorem still holds. We also discuss where the weakening of certain conditions may cause the theorem to fail.
Positive Gravitattional Energy in Arbitrary Dimensions
Choquet-Bruhat, Yvonne
2011-01-01
We present a streamlined, complete proof, valid in arbitrary space dimension $n$, and using only spinors on the oriented Riemannian space $(M^{n};g),$ of the positive energy theorem in General Relativity.
THE EIGENVALUE PERTURBATION BOUND FOR ARBITRARY MATRICES
Institute of Scientific and Technical Information of China (English)
Wen Li; Jian-xin Chen
2006-01-01
In this paper we present some new absolute and relative perturbation bounds for the eigenvalue for arbitrary matrices, which improves some recent results. The eigenvalue inclusion region is also discussed.
Bistatic synthetic aperture radar imaging for arbitrary flight trajectories.
Yarman, Can Evren; Yazici, Birsen; Cheney, Margaret
2008-01-01
In this paper, we present an analytic, filtered backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR). We consider a BISAR system where a scene of interest is illuminated by electromagnetic waves that are transmitted, at known times, from positions along an arbitrary, but known, flight trajectory and the scattered waves are measured from positions along a different flight trajectory which is also arbitrary, but known. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We use microlocal analysis to develop the FBP-type reconstruction method. We analyze the computational complexity of the numerical implementation of the method and present numerical simulations to demonstrate its performance.
Oger, G.; Marrone, S.; Le Touzé, D.; de Leffe, M.
2016-05-01
This paper addresses the accuracy of the weakly-compressible SPH method. Interpolation defects due to the presence of anisotropic particle structures inherent to the Lagrangian character of the Smoothed Particle Hydrodynamics (SPH) method are highlighted. To avoid the appearance of these structures which are detrimental to the quality of the simulations, a specific transport velocity is introduced and its inclusion within an Arbitrary Lagrangian Eulerian (ALE) formalism is described. Unlike most of existing particle disordering/shifting methods, this formalism avoids the formation of these anisotropic structures while a full consistency with the original Euler or Navier-Stokes equations is maintained. The gain in accuracy, convergence and numerical diffusion of this formalism is shown and discussed through its application to various challenging test cases.
A multi-material CCALE-MOF approach in cylindrical geometry
Friess, Marie Billaud; Galera, Stephane; Maire, Pierre-Henri; Shashkov, Mikhail
2011-01-01
In this paper we present recent developments concerning a Cell-Centered Arbitrary Lagrangian Eulerian (CCALE) strategy using the Moment Of Fluid (MOF) interface reconstruction for the numerical simulation of multi-material compressible fluid flows on general unstructured grids in cylindrical geometries. Especially, our attention is focused here on the following points. First, we propose a new formulation of the scheme used during the Lagrangian phase in the particular case of axisymmetric geometries. Then, the MOF method is considered for multi-interface reconstruction in cylindrical geometry. Subsequently, a method devoted to the rezoning of polar meshes is detailed. Finally, a generalization of the hybrid remapping to cylindrical geometries is presented. These explorations are validated by mean of several test cases that clearly illustrate the robustness and accuracy of the new method.
ALE simulation of Rayleigh-Taylor instability
Energy Technology Data Exchange (ETDEWEB)
Anbarlooei, H.R. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Mazaheri, K. [Univ. of Tarbiyat Modares, Dept. of Mechanical Engineering, Tehran, (Iran, Islamic Republic of)]. E-mail: Kiumars@modares.ac.ir; Bidabadi, M. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of)
2004-07-01
This paper investigates the use of an Arbitrary Lagrangian-Eulerian (ALE) technique for the simulation of a single mode Rayleigh-Taylor instability. A compatible Lagrangian algorithm is used on a simply connected quadrilateral grid in Lagrangian Phase. This algorithm includes subzonal pressures, which are used to control spurious grid motion, and an edge centered artificial viscosity. We use Reference Jacobians optimization based rezone algorithm in the rezoning phase of ALE method. Also a second order sign preserving method is used for remapping. To force monotonocity in remapping phase a Repair algorithm is used. Finally, for remapping of nodal variables we used a second order transformer to transfer these data to cell centers. It is shown that the usage of these algorithms for an ALE method can improve the simulation of a single mode Rayleigh-Taylor Instability. (author)
Institute of Scientific and Technical Information of China (English)
骆寒冰; 张智; 王辉
2013-01-01
合理预报船首局部结构砰击载荷及其结构应力响应是船舶结构设计人员所重点关心的问题。文章针对某钢制三维加筋板楔形体入水砰击问题，考虑其水弹性效应，采用ALE显式有限元方法开展了数值预报工作。数值模拟的入水加速度、加筋板结构的纵骨和横梁上应力响应等结果与模型实验的时域结果进行了比较，吻合较好。文中还讨论了数值模拟的并行计算效率问题。%Design against slamming loads of the bow structures is the concern of ship designers and re-searchers from the view point of strength. An explicit finite element code using the Arbitrary Lagrangian-Eulerian (ALE) algorithm is applied to study the hydroelastic impact of one 3D free drop wedge with stiff-ened panels. The motion, stress responses on longitudinal stiffeners and transverse webs are obtained. The numerical results are compared and validated with experimental ones in time domain, obtaining very good a-greement. The efficiency of the parallel computing is discussed.
Energy Technology Data Exchange (ETDEWEB)
Gwo, J.P.; Jardine, P.M. [Oak Ridge National Lab., TN (United States); Yeh, G.T. [Pennsylvania State Univ., University Park, PA (United States) Department of Civil and Environmental Engineering; Wilson, G.V. [Tennessee Univ., Knoxville, TN (United States). Dept. of Plant and Soil Science
1995-04-01
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoretical background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.
Analysis and numerical simulation of dynamic effect on rock under high pressure water jet
Institute of Scientific and Technical Information of China (English)
LI Xiao-hong; SI Hu; WANG Dan-dan
2008-01-01
Based on continuum mechanics and rock dynamics, analyzed the micro-structure damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on nonlinear finite element and Arbitrary Lagrangian-Eulerian(ALE) method. The dynamic effect impacted on rock under high pressure water jet was simulated by the dynamic contact method. The propagation of stress wave in rock was numerically simulated at different impacting velocity. The results show that the propagation velocity of stress wave is proportional to the impacting velocity of high pressure water jet. The faster the impacting velocity is, the quicker the comedown of stress wave.
Axial Anomaly in Lattice Abelian Gauge Theory in Arbitrary Dimensions
Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
1999-01-01
Axial anomaly of lattice abelian gauge theory in hyper-cubic regular lattice in arbitrary even dimensions is investigated by applying the method of exterior differential calculus. The topological invariance, gauge invariance and locality of the axial anomaly determine the explicit form of the topological part. The anomaly is obtained up to a multiplicative constant for finite lattice spacing and can be interpreted as the Chern character of the abelian lattice gauge theory.
Electromagnetic Fields Radiated by a Circular Loop with Arbitrary Current
Salem, Mohamed A
2014-01-01
We present a rigorous approach to compute the electromagnetic fields radiated by a thin circular loop with arbitrary current. We employ a polar transmission representation along with a Kontorovich-Lebedev transform to derive integral representations of the field in the interior and exterior regions of a sphere circumscribing the loop. The convergence of the obtained expressions is discussed and comparison with full-wave simulation and other methods are shown.
Statistical Reconstruction of arbitrary spin states of particles: root approach
Bogdanov, Yu. I.
2005-01-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multi-parametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mec...
Identification of DVT diseases using numerical simulations.
Simão, M; Ferreira, J M; Mora-Rodriguez, J; Ramos, H M
2016-10-01
This research provides useful insights for better diagnosis and understanding the vein blockage induced by a deep venous thrombosis and the occurrence of reverse flow in human veins, allowing a proper detection of serious diseases related to deep venous insufficiency. An arbitrary Lagrangian-Eulerian formulation is used in a coupled model (i.e. fluid and structure equations solved together), considering two domains, specifically the blood flow and the flexible structures (i.e. vein and valves). Computational fluid dynamics mathematical model based on finite element method, with special elements and boundary characterization, is addressed to find the best solution. This research presents a novel model to study the interaction between non-Newtonian laminar fluid flows, the blood, within nonlinear structures, the vein walls. Simulation results are validated using in vivo echo-Doppler measurements.
Energy Technology Data Exchange (ETDEWEB)
Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis
2013-12-01
We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.
Institute of Scientific and Technical Information of China (English)
LEI Zuo-sheng; GUO Jia-hong; REN Zhong-ming
2013-01-01
A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field.The Arbitrary Lagrangian-Eulerian (ALE) method and weak form constraint boundary condition are introduced in this model for implementation of the surface tension and electromagnetic force on liquid droplet free surface.The results of the numerical calculations indicate the appearance of various regimes of oscillation.It is found that according to the magnetic field frequency various types of oscillation modes may be found.The oscillation is originated from an instability phenomenon.The stability diagram of liquid metal droplet in the parameter space of magnetic frequency and magnetic flux density is determined numerically.The diagram is very similar to that found in the so-called parametric instability.
Direct Numerical Simulation of Particle Migration in a Simple Shear Flow
Institute of Scientific and Technical Information of China (English)
LV Hong; TANG Sheng-Li; ZHOU Wen-Ping
2011-01-01
@@ Motion of a rectangular particle in a two-dimensional vertical shear flow of Newtonian fluid and viscoelastic fluid with different parameters is studied using the finite element arbitrary Lagrangian-Eulerian domain method.The results show that the centerline of the channel is a stable equilibrium position for the neutrally buoyant rectangular particle in a vertical shear flow.Inertia causes the particle to migrate towards the centerline of the channel.In addition, a critical elasticity number exists.When the elasticity number is below the critical value,the rectangular particle migrates to the centerline; otherwise the centerline of the channel is apparently no longer a global attractor of trajectories of the particle.
Time-discrete higher order ALE formulations: a priori error analysis
Bonito, Andrea
2013-03-16
We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds\\' quadrature. They involve a mild restriction on the time steps for the practical Runge-Kutta-Radau methods of any order. The key ingredients are the stability results shown earlier in Bonito et al. (Time-discrete higher order ALE formulations: stability, 2013) along with a novel ALE projection. Numerical experiments illustrate and complement our theoretical results. © 2013 Springer-Verlag Berlin Heidelberg.
Propagation of electromagnetic waves through magnetized plasmas in arbitrary gravitational fields
Breuer, R; Ehlers, J.
1981-01-01
A generalized JWBK-method for high-frequency waves traveling through inhomogeneous, moving plasmas imbedded in arbitrary relativistic gravitational fields is reported. In particular, a generalization of the standard formula for Faraday rotation is given.
Superoscillations with arbitrary polynomial shape
Chremmos, Ioannis; Fikioris, George
2015-07-01
We present a method for constructing superoscillatory functions the superoscillatory part of which approximates a given polynomial with arbitrarily small error in a fixed interval. These functions are obtained as the product of the polynomial with a sufficiently flat, bandlimited envelope function whose Fourier transform has at least N-1 continuous derivatives and an Nth derivative of bounded variation, N being the order of the polynomial. Polynomials of arbitrarily high order can be approximated if the Fourier transform of the envelope is smooth, i.e. a bump function.
Delivering sound energy along an arbitrary convex trajectory.
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-10-15
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory.
Universal properties of Fermi gases in arbitrary dimensions
Valiente, Manuel; Molmer, Klaus
2012-01-01
We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations for the Fermi gas, which serve as dimensional interpolation/extrapolation formulae in between integer dimensions. We show that, under very general conditions, effective reduced-dimensional scattering lengths due to transversal confinement depend on the original three-dimensional scattering length in a universal way. As a direct consequence, we find that confinement-induced resonances occur in all dimensions different from D=2, without any need to solve the associated multichannel scattering problem. Finally, we show that reduced-dimensional contacts --- related to the tails of the momentum distributions --- are connected to the actual three-dimensional contact through a correction factor of purely geometric origin.
On 4 D, =1 massless gauge superfields of arbitrary superhelicity
Gates, S. James; Koutrolikos, Konstantinos
2014-06-01
We present an alternative method of exploring the component structure of an arbitrary super-helicity (integer Y = s, or half odd integer Y = s+1 /2 for any integer s) irreducible representation of the Super-Poincaré group. We use it to derive the component action and the SUSY transformation laws. The effectiveness of this approach is based on the equations of motion and their properties, like the Bianchi identities. These equations are generated by the superspace action when it is expressed in terms of prepotentials. For that reason we reproduce the superspace action for arbitrary superhelicity, using unconstrained superfields. The appropriate, to use, superfields are dictated by the representation theory of the group and the requirement that there is a smooth limit between the massive and massless case.
Estimating False Discovery Proportion Under Arbitrary Covariance Dependence
Fan, Jianqing; Gu, Weijie
2011-01-01
Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging under arbitrary dependence. In the current paper, we propose a novel method based on principal factor approximation, which successfully subtracts the common dependence and weakens significantly the correlation structure, to deal with an arbitrary dependence structure. We derive an approximate expression for false discovery proportion (FDP) in large scale multiple testing when a common threshold is used and provide a consistent estimate of realized FDP. This result has important applications in controlling FDR and FDP. Our estimate of realized FDP compares favorably with Efron (2007)'s approach, as demonstrated in the sim...
Institute of Scientific and Technical Information of China (English)
WANG Shao-Kai; REN Ji-Gang; PENG Cheng-Zhi; JIANG Shuo; WANG Xiang-Bin
2007-01-01
We report a method to realize the arbitrary inverse unitary transformation imposed by a single-mode fibre on photon's polarization by the succession of two quarter-wave plates and a half-wave plate. The process of realization by polarization state vector. The method is meaningful in quantum communication experiment such as quantum teleportation, in which an unknown arbitrary quantum state should be kept to be unchanged in the case of using a single-mode fibre for time delay.
Institute of Scientific and Technical Information of China (English)
骆寒冰; 吴景健; 王珊; 徐慧
2012-01-01
局部砰击载荷是在船舶首部结构设计时重点关注的问题.文章基于显式有限元方法,选用任意拉格朗日-欧拉算法(ALE),针对某30°二维楔形刚体入水砰击问题,开展了数值预报工作.针对模型网格密度开展了收敛性分析.数值预报的加速度、砰击压力等时域结果与已公开发表的模型实验的结果进行了比较,吻合非常好.鉴于在微机上数值计算时间比较长的问题,文中探讨了并行计算技术在模拟中的应用.%Design against slamming loads is the concern of ship designers from the view point of strengths. An explicit finite element code is applied to study the impact of one rigid wedge subject to water entry using the Arbitrary Lagrangian-Eulerian (ALE) algorithm. The numerical results are compared and validated with experimental slamming acceleration and pressures in time domain, obtaining very good agreement. A convergence study for mesh density is carried out. Parallel computing technology is applied to improve the computing efficiency, which is one important issue arising in simulation when personal computers are used before.
Transverse vibrations of arbitrary non-uniform beams
Institute of Scientific and Technical Information of China (English)
郭树起; 杨绍普
2014-01-01
Free and steady state forced transverse vibrations of non-uniform beams are investigated with a proposed method, leading to a series solution. The obtained series is verified to be convergent and linearly independent in a convergence test and by the non-zero value of the corresponding Wronski determinant, respectively. The obtained solution is rigorous, which can be reduced to a classical solution for uniform beams. The proposed method can deal with arbitrary non-uniform Euler-Bernoulli beams in principle, but the methods in terms of special functions or elementary functions can only work in some special cases.
Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness
Matt, Michael Andreas
2012-01-01
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron
On the Distance between Three Arbitrary Points
Directory of Open Access Journals (Sweden)
Parin Chaipunya
2013-01-01
Full Text Available We point out some equivalence between the results in (Sedghi et al., 2012 and (Khamsi, 2010. Then, we introduce the notion of a general distance between three arbitrary points and study some of its properties. In the final section, some fixed point results are proposed.
Potentials of Arbitrary Forces with Fractional Derivatives
Rabei, Eqab M.; Alhalholy, Tareq S.; Rousan, Akram
The Laplace transform of fractional integrals and fractional derivatives is used to develop a general formula for determining the potentials of arbitrary forces: conservative and nonconservative in order to introduce dissipative effects (such as friction) into Lagrangian and Hamiltonian mechanics. The results are found to be in exact agreement with Riewe's results of special cases. Illustrative examples are given.
Monadic Maps and Folds for Arbitrary Datatypes
Fokkinga, Maarten
1994-01-01
Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting
Automatic Shape Control of Triangular B-Splines of Arbitrary Topology
Institute of Scientific and Technical Information of China (English)
Ying He; Xian-Feng Gu; Hong Qin
2006-01-01
Triangular B-splines are powerful and flexible in modeling a broader class of geometric objects defined over arbitrary, non-rectangular domains. Despite their great potential and advantages in theory, practical techniques and computational tools with triangular B-splines are less-developed. This is mainly because users have to handle a large number of irregularly distributed control points over arbitrary triangulation. In this paper, an automatic and efficient method is proposed to generate visually pleasing, high-quality triangular B-splines of arbitrary topology. The experimental results on several real datasets show that triangular B-splines are powerful and effective in both theory and practice.
Arbitrary Phase Vocoders by means of Warping
Directory of Open Access Journals (Sweden)
Gianpaolo Evangelista
2013-08-01
Full Text Available The Phase Vocoder plays a central role in sound analysis and synthesis, allowing us to represent a sound signal in both time and frequency, similar to a music score – but possibly at much finer time and frequency scales – describing the evolution of sound events. According to the uncertainty principle, time and frequency are not independent variables so that any time-frequency representation is the result of a compromise between time and frequency resolutions, the product of which cannot be smaller than a given constant. Therefore, finer frequency resolution can only be achieved with coarser time resolution and, similarly, finer time resolution results in coarser frequency resolution.While most of the conventional methods for time-frequency representations are based on uniform time and uniform frequency resolutions, perception and physical characteristics of sound signals suggest the need for nonuniform analysis and synthesis. As the results of psycho-acoustic research show, human hearing is naturally organized in nonuniform frequency bands. On the physical side, the sounds of percussive instruments as well as piano in the low register, show partials whose frequencies are not uniformly spaced, as opposed to the uniformly spaced partial frequencies found in harmonic sounds. Moreover, the different characteristics of sound signals at the onset transients with respect to stationary segments suggest the need for nonuniform time resolution. In the effort to exploit the time-frequency resolution compromise at its best, a tight time-frequency suit should be tailored to snuggly fit the sound body.In this paper we overview flexible design methods for phase vocoders with nonuniform resolutions. The methods are based on remapping the time or the frequency axis, or both, by employing suitable functions acting as warping maps, which locally change the characteristics of the time-frequency plane. As a result, the sliding windows may have time dependent
A constructive approach for finding arbitrary roots of polynomials by neural networks.
Huang, De-Shuang
2004-03-01
This paper proposes a constructive approach for finding arbitrary (real or complex) roots of arbitrary (real or complex) polynomials by multilayer perceptron network (MLPN) using constrained learning algorithm (CLA), which encodes the a priori information of constraint relations between root moments and coefficients of a polynomial into the usual BP algorithm (BPA). Moreover, the root moment method (RMM) is also simplified into a recursive version so that the computational complexity can be further decreased, which leads the roots of those higher order polynomials to be readily found. In addition, an adaptive learning parameter with the CLA is also proposed in this paper; an initial weight selection method is also given. Finally, several experimental results show that our proposed neural connectionism approaches, with respect to the nonneural ones, are more efficient and feasible in finding the arbitrary roots of arbitrary polynomials.
Scattering matrix of arbitrary tight-binding Hamiltonians
Ramírez, C.; Medina-Amayo, L. A.
2017-03-01
A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.
Quantum fidelity for arbitrary Gaussian states
Banchi, Leonardo; Pirandola, Stefano
2015-01-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Acoustic Casimir Pressure for Arbitrary Media
Barcenas, J; Esquivel-Sirvent, R
2004-01-01
In this paper we derive a general expression for the acoustic Casimir pressure between two parallel slabs made of arbitrary materials and whose acoustic reflection coefficients are not equal. The formalism is based on the calculation of the local density of modes using a Green's function approach. The results for the Casimir acoustic pressure are generalized to a sphere/plate configuration using the proximity theorem
Snake beam: a paraxial arbitrary focal line
Rosen, Joseph; Yariv, Amnon
1995-01-01
The creation of paraxial arbitrary focal lines by a Fourier computer-generated hologram is demonstrated. The desired focal line is represented by a series of connected straight line segments, each of which is implemented by a radial harmonic function located on a different radial portion of the entire hologram. Each subhologram is multiplied by appropriate linear and quadratic phase functions and is shifted by some distance from the center. The two phase factors determine the location of each...
Loading Arbitrary Knowledge Bases in Matrix Browser
2009-01-01
This paper describes the work done on Matrix Browser, which is a recently developed graphical user interface to explore and navigate complex networked information spaces. This approach presents a new way of navigating information nets in windows explorer like widget. The problem on hand was how to export arbitrary knowledge bases in Matrix Browser. This was achieved by identifying the relationships present in knowledge bases and then by forming the hierarchies from this data and these hierarc...
Statistical Reconstruction of arbitrary spin states of particles: root approach
Bogdanov, Y I
2005-01-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multi-parametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.
Quantum tomography of arbitrary spin states of particles: root approach
Bogdanov, Yu. I.
2006-05-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.
Arbitrary precision composite pulses for NMR quantum computing.
Alway, William G; Jones, Jonathan A
2007-11-01
We discuss the implementation of arbitrary precision composite pulses developed using the methods of Brown et al. [K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences, Phys. Rev. A 70 (2004) 052318]. We give explicit results for pulse sequences designed to tackle both the simple case of pulse length errors and the more complex case of off-resonance errors. The results are developed in the context of NMR quantum computation, but could be applied more widely.
Arbitrary Finite-time Tracking Control for Magnetic Levitation Systems
Directory of Open Access Journals (Sweden)
Xuan-Toa Tran
2014-10-01
Full Text Available In this paper, an arbitrary finite-time tracking control (AFTC method is developed for magnetic levitation systems with uncertain dynamics and external disturbances. By introducing a novel augmented sliding- mode manifold function, the proposed method can eliminate the singular problem in traditional terminal sliding-mode control, as well as the reaching-phase problem. Moreover, the tracking errors can reach the reference value with faster convergence and better tracking precision in arbitrarily determined finite time. In addition, a fuzzy-arbitrary finite-time tracking control (F- AFTC scheme that combines a fuzzy technique with AFTC to enhance the robustness and sliding performance is also proposed. A fuzzy logic system is used to replace the discontinuous control term. Thus, the chattering phenomenon is resolved without degrading the tracking performance. The stability of the closed-loop system is guaranteed by the Lyapunov theory. Finally, the effectiveness of the proposed methods is illustrated by simulation and experimental study in a real magnetic levitation system.
Institute of Scientific and Technical Information of China (English)
王海红; 郭城
2012-01-01
针对双曲型积分微分方程问题,研究了非协调任意四边形H1-Galerkin混合有限元方法.在半离散格式下,利用所选单元本身的特点,在不需要Ritz-Volterra投影的情况下得到了与传统协调混合有限元方法相同的误差估计.%A nonconforming arbitrary quadrilateral H1 -Galerkin mixed finite element method for hyperbolic type integro-differential equations problem was studied. By use of the characteristic of the chosen finite elements, the same error estimates as in the traditional conforming mixed finite elements methods were derived in semi-discrete formulation without using Ritz-Volterra projection.
Description of the spin structure function g_1 at arbitrary $x$ and arbitrary Q^2
Ermolaev, B I; Troyan, S I
2007-01-01
The explicit expressions describing the structure function g_1 at arbitrary x and Q^2 are obtained. In the first place, they combine the well-known DGLAP expressions for g_1 with the total resummation of leading logarithms of x, which makes possible to cover the kinematic region of arbitrary x and large Q^2. In order to cover the small-Q^2 region the shift Q^2 -> Q^2 + mu^2 in the large-Q^2 expressions for g_1 is suggested and values of mu are estimated. The expressions obtained do not require singular factors x^{-a} in the fits for initial parton densities.
Global Gravity Inversion of Bodies with Arbitrary Shape
Tricarico, Pasquale
2013-01-01
Gravity inversion allows us to constrain the interior mass distribution of a planetary body using the observed shape, rotation, and gravity. Traditionally, techniques developed for gravity inversion can be divided into Monte Carlo methods, matrix inversion methods, and spectral methods. Here we employ both matrix inversion and Monte Carlo in order to explore the space of exact solutions, in a method which is particularly suited for arbitrary shape bodies. We expand the mass density function using orthogonal polynomials, and map the contribution of each term to the global gravitational field generated. This map is linear in the density terms, and can be pseudo-inverted in the under-determined regime using QR decomposition, to obtain a basis of the affine space of exact interior structure solutions. As the interior structure solutions are degenerate, assumptions have to be made in order to control their properties, and these assumptions can be transformed into scalar functions and used to explore the solutions ...
*-Regular Leavitt Path Algebras of Arbitrary Graphs
Institute of Scientific and Technical Information of China (English)
Gonzalo ARANDA PINO; Kulumani RANGASWAMY; Lia VA(S)
2012-01-01
If K is a field with involution and E an arbitrary graph,the involution from K naturally induces an involution of the Leavitt path algebra LK(E).We show that the involution on LK(E) is proper if the involution on K is positive-definite,even in the case when the graph E is not necessarily finite or row-finite.It has been shown that the Leavitt path algebra LK(E) is regular if and only if E is acyclic.We give necessary and sufficient conditions for LK(E) to be *-regular (i.e.,regular with proper involution).This characterization of *-regularity of a Leavitt path algebra is given in terms of an algebraic property of K,not just a graph-theoretic property of E.This differs from the.known characterizations of various other algebraic properties of a Leavitt path algebra in terms of graphtheoretic properties of E alone.As a corollary,we show that Handelman's conjecture (stating that every *-regular ring is unit-regular) holds for Leavitt path algebras.Moreover,its generalized version for rings with local units also continues to hold for Leavitt path algebras over arbitrary graphs.
固定网格的数值流形方法研究%STUDY ON NUMERICAL MANIFOLD METHOD WITH FIXED MESHES
Institute of Scientific and Technical Information of China (English)
苏海东
2011-01-01
The numerical simulations of large deformations of continuums lead to the choice of an appropriate kinematical description. In classical viewpoints, Lagrangian and Eulerian description approaches are alternatives. Lagrangian approach tracks material particles, allowing for a clear delineation of boundaries of material.However, meshes that adhere to material are easy to be distorted, inducing a poor accuracy or even computation failure. On the other hand, Eulerian approach is very attractive in the point that fixed meshes will never be distorted, but it suffers from the complexities of handling moving boundaries and convective terms of Eulerian governing equations. Thus ALE (Arbitrary Lagrangian-Eulerian) method, which is reported to take advantages of Lagrangian and Eulerian approaches to a certain extent by allowing motions of meshes, is developed in recent years. Nevertheless, how to devise a good mesh motion algorithm is a great burden to the user, and convective terms are still involved.This paper presents a novel method, numerical manifold method (NMM) with fixed mathematical meshes,for short, fixed-mesh NMM, for analyzing pure geometric non-linear problems. Making well use of the fact that mathematical meshes are independent of material boundaries in NMM, this method is based on the Lagrangian description approach, but using fixed meshes. It has the virtues of both Lagrangian description approach and Eulerian description approach, avoiding mesh distortion of the former, and complexities of handling moving boundaries and convection items of the latter.Following the time steps, equations of NMM for large deformations are adopted in this paper, providing an easy way to implement fixed-mesh NMM. There are only two special factors to consider: after each time step is completed, deformed material boundaries are intersected with fixed mathematical meshes to generate new manifold elements; initial stress loads are handled in a proper way, which is most important to
Double layers and double wells in arbitrary degenerate plasmas
Akbari-Moghanjoughi, M.
2016-06-01
Using the generalized hydrodynamic model, the possibility of variety of large amplitude nonlinear excitations is examined in electron-ion plasma with arbitrary electron degeneracy considering also the ion temperature effect. A new energy-density relation is proposed for plasmas with arbitrary electron degeneracy which reduces to the classical Boltzmann and quantum Thomas-Fermi counterparts in the extreme limits. The pseudopotential method is employed to find the criteria for existence of nonlinear structures such as solitons, periodic nonlinear structures, and double-layers for different cases of adiabatic and isothermal ion fluids for a whole range of normalized electron chemical potential, η0, ranging from dilute classical to completely degenerate electron fluids. It is observed that there is a Mach-speed gap in which no large amplitude localized or periodic nonlinear excitations can propagate in the plasma under consideration. It is further revealed that the plasma under investigation supports propagation of double-wells and double-layers the chemical potential and Mach number ranges of which are studied in terms of other plasma parameters. The Mach number criteria for nonlinear waves are shown to significantly differ for cases of classical with η0 0 regimes. It is also shown that the localized structure propagation criteria possess significant dissimilarities for plasmas with adiabatic and isothermal ions. Current research may be generalized to study the nonlinear structures in plasma containing positrons, multiple ions with different charge states, and charged dust grains.
Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.
Casals, Marc; Ottewill, Adrian
2012-09-14
Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.
ABJM Wilson Loops in Arbitrary Representations
Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi
2013-01-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries
Directory of Open Access Journals (Sweden)
Jingjing Yang
2010-06-01
Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.
Quantization Noise Shaping on Arbitrary Frame Expansions
Directory of Open Access Journals (Sweden)
Boufounos Petros T
2006-01-01
Full Text Available Quantization noise shaping is commonly used in oversampled A/D and D/A converters with uniform sampling. This paper considers quantization noise shaping for arbitrary finite frame expansions based on generalizing the view of first-order classical oversampled noise shaping as a compensation of the quantization error through projections. Two levels of generalization are developed, one a special case of the other, and two different cost models are proposed to evaluate the quantizer structures. Within our framework, the synthesis frame vectors are assumed given, and the computational complexity is in the initial determination of frame vector ordering, carried out off-line as part of the quantizer design. We consider the extension of the results to infinite shift-invariant frames and consider in particular filtering and oversampled filter banks.
ABJM Wilson loops in arbitrary representations
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Discrete Equilibrium Sampling with Arbitrary Nonequilibrium Processes
Hamze, Firas
2015-01-01
We present a novel framework for performing statistical sampling, expectation estimation, and partition function approximation using \\emph{arbitrary} heuristic stochastic processes defined over discrete state spaces. Using a highly parallel construction we call the \\emph{sequential constraining process}, we are able to simultaneously generate states with the heuristic process and accurately estimate their probabilities, even when they are far too small to be realistically inferred by direct counting. After showing that both theoretically correct importance sampling and Markov chain Monte Carlo are possible using the sequential constraining process, we integrate it into a methodology called \\emph{state space sampling}, extending the ideas of state space search from computer science to the sampling context. The methodology comprises a dynamic data structure that constructs a robust Bayesian model of the statistics generated by the heuristic process subject to an accuracy constraint, the posterior Kullback-Leibl...
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Broadband computation of the scattering coefficients of infinite arbitrary cylinders.
Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier
2012-07-01
We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.
Projection Operator and Propagator for an Arbitrary Integral Spin
Institute of Scientific and Technical Information of China (English)
黄时中; 阮图南; 吴宁; 郑志鹏
2002-01-01
Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced.
采用DSP技术适用于任意色散媒质的FDTD方法研究%Frequency-Dependent FDTD Method Using DSP for Arbitrary Dispersive Media
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new frequency dependent finite difference time domain (FD-FDTD) method using digital signal processing (DSP) is proposed.The dispersive media is characterized as an infinite-impulse response (IIR) filter, directly leading to FDTD equations. The representation of a dispersive medium is therefore converted to a problem of digital fIR design. It is shown that the numerical results are consistent with analytic solution.
Block Hadamard measurement matrix with arbitrary dimension in compressed sensing
Liu, Shaoqiang; Yan, Xiaoyan; Fan, Xiaoping; Li, Fei; Xu, Wen
2017-01-01
As Hadamard measurement matrix cannot be used for compressing signals with dimension of a non-integral power-of-2, this paper proposes a construction method of block Hadamard measurement matrix with arbitrary dimension. According to the dimension N of signals to be measured, firstly, construct a set of Hadamard sub matrixes with different dimensions and make the sum of these dimensions equals to N. Then, arrange the Hadamard sub matrixes in a certain order to form a block diagonal matrix. Finally, take the former M rows of the block diagonal matrix as the measurement matrix. The proposed measurement matrix which retains the orthogonality of Hadamard matrix and sparsity of block diagonal matrix has highly sparse structure, simple hardware implements and general applicability. Simulation results show that the performance of our measurement matrix is better than Gaussian matrix, Logistic chaotic matrix, and Toeplitz matrix.
APPROXIMATE SOLUTION FOR THIN PLATES CONSTRAINED AT ARBITRARY POINTS
Institute of Scientific and Technical Information of China (English)
1998-01-01
The energy variational formula based on the principle of minimum potential energy is proposed for the plates constrained at arbitrary points. As an instance, the orthotropic large deflection rectangular thin plates with four free edges and transverse displacement constraints under uniform transverse load are discussed. The generalized Fourier series are used as the trial functions of the transverse displacement and the stress function to establish the essential equations, which are linearized by means of the incremental method of load and displacement constraint. In the end of the paper, several computational results are compared with the former literature. Moreover, one typical example is demonstrated through advanced experimental technique. The result shows the accuracy is satisfied well.
Gyrokinetic theory for arbitrary wavelength electromagnetic modes in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Qin, H.; Tang, W.M.; Rewoldt, G.
1997-10-15
A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfven eigenmode (TAE) modes, and the drift modes, can be recovered from this system. The inclusion of most of the interesting physical factors into a single framework enables one to look at many familiar modes simultaneously and thus to study the modifications of and the interactions between them in a systematic way. Especially, the authors are able to investigate self-consistently the kinetic MHD phenomena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods and a newly developed computer algebra package for vector analysis in general coordinate system are utilized in the analytical derivation. In tokamak geometries, a 2D finite element code has been developed and tested. In this paper, they present the basic theoretical formalism and some of the preliminary results.
Morlino, G; Vietri, M
2007-01-01
A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in (Vietri 2003) and (Blasi & Vietri 2005}. We use this method and somewhat extend it in order to include the effect of a large scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scattering on spectra and anisotropies of the distribution function of the accelerated particles.
Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube
DEFF Research Database (Denmark)
Szabo, Peter; Rallison, J.M.; Hinch, E.J.
1997-01-01
The flow of a FENE-fluid through a 4:1:4 constriction in a tube is computed by a split Lagrangian-Eulerian finite element method. In steady flow it is found that the upstream vortex grows with increasing Deborah number, while the downstream vortex diminishes and disappears. The steady pressure drop...
Research on Fractal-Scanning Path for Arbitrary Boundary Layer in Layered Manufacturing
Institute of Scientific and Technical Information of China (English)
阳佳; 宾鸿赞; 等
2002-01-01
The fractal curve is proposed as a novel scanning-path used in Layered Manufacturing.Aiming at a limitation that the fractal curve can only fill a square region,a method is developed to realize the trimming of fractal curve in arbitrary boundary layer by means of undging intersection points between parameterized arbitrary boundary and a FASS(space-filling,self-avoiding,simple and self-similar)fractal curve.Accordingly,the related algorithm concerning with determining intersection points has been investigated according to the recursion reature of the fractal curve,and in the process of the fractal curve traversed,the rule of udging intersection points is ascertained as well,so that the laser-scanning beam can “walk” along the fractal curve inside the desired boundary,and arbitrary contour components are fabricated.
Expansion of Arbitrary Electromagnetic Fields in Terms of Vector Spherical Wave Functions
Moreira, W L; Garbos, M K; Euser, T G; Russell, P St J; Cesar, C L
2010-01-01
Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of an electromagnetic plane-wave, generalizing his analysis to the case of an arbitrary incident wave has proved elusive. This is due to the presence of certain radially-dependent terms in the equation for the beam-shape coefficients of the expansion of the electromagnetic fields in terms of vector spherical wave functions. Here we show for the first time how these terms can be canceled out, allowing analytical expressions for the beam shape coefficients to be found for a completely arbitrary incident field. We give several examples of how this new method, which is well suited to numerical calculation, can be used. Analytical expressions are found for Bessel beams and the modes of rectangular and cylindrical metallic waveguides. The results are highly relevant for speeding up calculation of the radiation forces acting on small spherical particles placed in an arbitrary electromagnetic field, fo...
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Gonoskov, Ivan; Marklund, Mattias
2016-05-01
We propose and develop a general method of numerical calculation of the wave function time evolution in a quantum system which is described by Hamiltonian of an arbitrary dimensionality and with arbitrary interactions. For this, we obtain a general n-order single-step propagator in closed-form, which could be used for the numerical solving of the problem with any prescribed accuracy. We demonstrate the applicability of the proposed approach by considering a quantum problem with non-separable time-dependent Hamiltonian: the propagation of an electron in focused electromagnetic field with vortex electric field component.
A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry.
Koch, C; Poggio, T
1985-02-01
We present an efficient algorithm for solving the one-dimensional cable equation in the Laplace (frequency) domain for an arbitrary linear membrane. This method, a reformulation and extension of the geometrical calculus developed by Butz and Cowan (1974), solves for the transfer impedance between any two points in a branched cable structure of arbitrary geometry (but without loops) by the repetitive application of four simple equations. Such an algorithm is used to analyze the electrical behaviour of nerve cells with highly branched dendritic trees. The algorithm can be implemented using a language such as C, PASCAL or LISP and runs on small machines.
GA BASED SYNTHESIS OF SATELLITE-BORNE MULTI-BEAM PLANAR ARRAY WITH ARBITRARY GEOMETRY
Institute of Scientific and Technical Information of China (English)
Jin Jun; Wang Huali; Zhu Wenming; Liu Yunzhi
2006-01-01
A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can overcome premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary geometry and can realize good sidelobe suppression at the same time.
Institute of Scientific and Technical Information of China (English)
许飞; 谢海芬
2014-01-01
对单摆运动进行了讨论。通过对单摆进行能量分析，得出了单摆角频率与角度的关系式，然后运用微元法，推导出了单摆的理论周期公式。计算结果表明，所得到的单摆运动周期的理论公式与展开公式符合得很好。%The simple pendulum motion is discussed. The relation between angle frequency and angle of the pendulum is given through the energy analysis of the pendulum,and the theoretical period formula of simple pendulum is derived using the differential method. The calculation results show that the theoretical formula of the period of simple pendulum movement and Taylor expansion formula are in good agreement.
Solving Nonlinear Euler Equations with Arbitrary Accuracy
Dyson, Rodger W.
2005-01-01
A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.
Competitive epidemic spreading over arbitrary multilayer networks
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI1SI2S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
Understanding rigid body motion in arbitrary dimensions
Leyvraz, Francois
2014-01-01
Why would anyone wish to generalize the already unappetizing subject of rigid body motion to an arbitrary number of dimensions? At first sight, the subject seems to be both repellent and superfluous. The author will try to argue that an approach involving no specifically three-dimensional constructs is actually easier to grasp than the traditional one and might thus be generally useful to understand rigid body motion both in three dimensions and in the general case. Specific differences between the viewpoint suggested here and the usual one include the following: here angular velocities are systematically treated as antisymmetric matrices, a symmetric tensor $I$ quite different from the moment of inertia tensor plays a central role, whereas the latter is shown to be a far more complex object, namely a tensor of rank four. A straightforward way to define it is given. The Euler equation is derived and the use of Noether's theorem to obtain conserved quantities is illustrated. Finally the equation of motion for ...
The Shock and Vibration Digest. Volume 12, Number 11,
1980-11-01
used ture During a HCDA exclusively, whereas for the fluid transient, Lagrangian, R.F. Kulak Eulerian, and arbitrary Lagrangian-Eulerian (quasi-Eulerian...13, 1979, 19 pp (1979) action problems in HCDA analysis. CON F-790802-70 42 -4, Key Words: Interaction: structure-fluid, Nuclear reactors, T. Ikushima...July 1978) ruptive Accident ( HCDA ) is presented. During this accident the sodium above the core is propelled upward until it im- Key Words: Columns
Gurson's Model: ALE Formulation and Strain Localization
da Cunda, Luiz A. B.; Creus, Guillermo J.
2007-05-01
This paper presents a brief review of Gurson's damage model, employed to describes the strength degradation in ductile metals submitted to large plastic deformations. The damage model is applied using finite elements and an Arbitrary Lagrangian-Eulerian formulation (ALE), to ensure a better quality to the finite elements mesh. The study of the combined application of ALE and Gurson approach to damage modeling and strain localization is the object of this paper.
Including Arbitrary Antenna Patterns in Microwave Imaging of Buried Objects
DEFF Research Database (Denmark)
Meincke, Peter; Kim, Oleksiy S.; Lenler-Eriksen, Hans-Rudolph
2004-01-01
A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra......A linear inversion scheme for microwave imaging of buried objects is presented in which arbitrary antennas are accounted for through their plane-wave transmitting and receiving spectra...
Direction of arrival estimation of coherent sources based on arbitrary plane arrays
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation and MUSIC algorithm are used to realize the azimuth estimation of coherent sources, which improved the DOA estimation performance greatly. According to the computer simulation, its validity is confirmed.
Optical and electric properties of dynamic holographic gratings with arbitrary contrast
DEFF Research Database (Denmark)
Kukhtarev, Nickolai; Buchhave, Preben; Lyuksyutov, Sergei
1997-01-01
An analytical solution of the photoconductive material equations for dynamic holographic gratings of arbitrary contrast has been obtained. A method of measuring high-contrast correlation functions has been suggested and tested experimentally. Good agreement with the analytical expression for the ...
Digital simulation of an arbitrary stationary stochastic process by spectral representation
DEFF Research Database (Denmark)
Yura, Harold T.; Hanson, Steen Grüner
2011-01-01
to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does...
On several families of elliptic curves with arbitrary large Selmer groups
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper,we calculate the ()-Selmer groups S()(E/Q) and S()(E/Q) of elliptic curves y2 = x(x + εpD)(x + εqD) via the descent method.In particular,we show that the Selmer groups of several families of such elliptic curves can be arbitrary large.
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…
The Prediction of the Work of Friction Force on the Arbitrary Path
Matehkolaee, Mehdi Jafari; Majidian, Kourosh
2013-01-01
In this paper we have calculated the work of friction force on the arbitrary path. In our method didn't use from energy conservative conceptions any way. The distinction of this procedure is that at least do decrease measurement on the path once. Thus we can forecast the amount of work of friction force without information about speed of…
Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions
Cao, Junpeng; Shi, Kangjie; Wang, Yupeng
2013-01-01
With the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the $XXX$ spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated $T-Q$ relation and the Bethe ansatz equations are derived.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T-Q relation and the Bethe ansatz equations are derived.
On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry
Energy Technology Data Exchange (ETDEWEB)
Gräfe, Markus; Heilmann, René; Nolte, Stefan; Szameit, Alexander, E-mail: alexander.szameit@uni-jena.de [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena (Germany)
2015-05-04
We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.
Fiurasek, J; Cerf, N J; Fiurasek, Jaromir; Garcia-Patron, Raul; Cerf, Nicolas J.
2005-01-01
We propose a scheme for the conditional generation of arbitrary finite superpositions of (squeezed) Fock states in a single mode of a traveling optical field. The suggested setup requires only a source of squeezed states, beam splitters, strong coherent beams, and photodetectors with single-photon sensitivity. The method does not require photodetectors with a high efficiency nor with a single-photon resolution.
Arbitrary Shape Deformation in CFD Design
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
Institute of Scientific and Technical Information of China (English)
胡鹏; 何钢; 徐佳炜; 刘瑞峰; 朱红
2016-01-01
为研究刚性机器人脚的形状对其在软土中沉陷特性的影响,以MAT147材料作为土壤本构模型,采用多物质ALE方法对刚性脚在土壤中的沉陷过程进行数值模拟.分别对刚性脚脚底有无孔洞对软土的应力分布和流动状态的影响进行了分析,结果表明,脚部在沉陷过程中,最大有效应力分布在脚底部边缘的正下方区域,刚性脚轮廓外围土壤的应力由大到小沿脚部轮廓向外发散.孔洞改变了脚部正下方土壤的应力分布,与无孔洞脚相比,带孔洞脚底正下方土壤应力在孔洞周围呈环形分布,深度方向上的应力分布相对均匀.孔洞还改变了土壤的流动状态,使得流向脚底部的土壤增多,密度增大,对脚部防陷有积极影响.对不同孔洞半径大小对刚性脚在软土中沉陷特性的影响也进行了比较,结果表明,相等底面积情况下,随着孔洞半径的增大,十字形凹陷处的应力也增大,脚底两倍圆孔半径范围内的应力分布越均匀,而对侧面土壤影响较小;孔洞半径影响了脚底土壤的流动状态,速度方向随着半径的增大由竖直向下变为竖直向上,土壤流速与孔的半径大小呈正相关,而同等压力情况下沉陷深度与孔洞半径大小呈负相关.%In order to analyze the influence of rigid foot's geometry shape of legged robot on the sinking process in soft soil, it uses MAT 147 material as the constitutive model of soil and realizes the dynamic simulation of rigid foot′s sinking process with Multi Material Arbitrary Lagrangian Eulerian ( MM-ALE) method.It obtains the influ-ence of holes at the bottom of rigid foot on the stress distributions and flow trend of soft soil.The results show that the maximum effective stress of soil concentrates at the bottom of the rigid foot near the edge and the effective stress divergs outwardly along the foot contour.Comparing to the foot with no holes, the holes at the bottom of foot change the stress
A Computational Method for Wings of Arbitrary Planform.
1984-12-01
wing is considered variable with discrete values at the specified grid points. h3. nir -= difference equations are utilizedl to determine these discrete...separate circulation functions, one non-dimenstonai with respect to semi-span and fr-ee =, Cream velocity, and one non-dimensional with respect to mean...mapping points on the wing from the physical (xy)-plane to corresponding points in the ’o )-plane and - ice versa. Fig. 4 depicts a uni-orm rectangular
Yang-Mills Instanton Sheaves with Arbitrary Topological Charges
Lai, Sheng-Hong; Lai, I-Hsun
2016-01-01
We use a set of ADHM 3-instanton data to systematically construct a class of SU(2) Yang-Mills instanton solutions with arbitrary topological charges. Moreover, by using the biquaternion calculation with biconjugation operation developed recently, these new ADHM data are used to construct a class of SL(2,C) Yang-Mills instanton sheaves on CP^3 with arbitrary topological charges k greater than 3. This result extends the previous construction of Yang-Mills 2-instanton sheaves to arbitrary higher k-instanton sheaves.
Microwave beam power transmission at an arbitrary range
Pinero, L. R.; Christian, J. L., Jr.; Acosta, R. J.
1992-01-01
The power transfer efficiency between two circular apertures at an arbitrary range is obtained numerically. The apertures can have generally different sizes and arbitrary taper illuminations. The effects of distance and taper illumination on the transmission efficiency are investigated for equal size apertures. The result shows that microwave beam power is more effective at close ranges, namely distances less than 2D(exp 2)/lambda. Also shown was the power transfer efficiency increase with taper illumination for close range distances. A computer program was developed for calculating the power transfer efficiency at an arbitrary range.
Teleportation of an arbitrary mixture of diagonal states of multiqudit
Institute of Scientific and Technical Information of China (English)
Du Qian-Hua; Lin Xiu-Min; Chen Zhi-Hua; Lin Gong-Wei; Chen Li-Bo; Gu Yong-Jian
2008-01-01
This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.
Feynman propagator for an arbitrary half-integral spin
Institute of Scientific and Technical Information of China (English)
黄时中; 张鹏飞; 阮图南; 祝玉灿; 郑志鹏
2003-01-01
Based on the solution to Bargmann-Wigner equation for a particle with arbitrary half-integral spin, a direct derivation of the projection operator and propagator for a particle with arbitrary half-integral spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed and simplified, the general commutation rules and Feynman propagator with additional non-covariant terms for a free particle with arbitrary half-inteRzal spin are derived, and explicit expressions for the propagators for spins 3/2, 5/2 and 7/2 are provided.
Efficient Spectral Power Estimation on an Arbitrary Frequency Scale
Directory of Open Access Journals (Sweden)
F. Zaplata
2015-04-01
Full Text Available The Fast Fourier Transform is a very efficient algorithm for the Fourier spectrum estimation, but has the limitation of a linear frequency scale spectrum, which may not be suitable for every system. For example, audio and speech analysis needs a logarithmic frequency scale due to the characteristic of a human’s ear. The Fast Fourier Transform algorithms are not able to efficiently give the desired results and modified techniques have to be used in this case. In the following text a simple technique using the Goertzel algorithm allowing the evaluation of the power spectra on an arbitrary frequency scale will be introduced. Due to its simplicity the algorithm suffers from imperfections which will be discussed and partially solved in this paper. The implementation into real systems and the impact of quantization errors appeared to be critical and have to be dealt with in special cases. The simple method dealing with the quantization error will also be introduced. Finally, the proposed method will be compared to other methods based on its computational demands and its potential speed.
Modeling of amorphous carbon structures with arbitrary structural constraints.
Jornada, F H; Gava, V; Martinotto, A L; Cassol, L A; Perottoni, C A
2010-10-06
In this paper we describe a method to generate amorphous structures with arbitrary structural constraints. This method employs the simulated annealing algorithm to minimize a simple yet carefully tailored cost function (CF). The cost function is composed of two parts: a simple harmonic approximation for the energy-related terms and a cost that penalizes configurations that do not have atoms in the desired coordinations. Using this approach, we generated a set of amorphous carbon structures spawning nearly all the possible combinations of sp, sp(2) and sp(3) hybridizations. The bulk moduli of this set of amorphous carbons structures was calculated using Brenner's potential. The bulk modulus strongly depends on the mean coordination, following a power-law behavior with an exponent ν = 1.51 ± 0.17. A modified cost function that segregates carbon with different hybridizations is also presented, and another set of structures was generated. With this new set of amorphous materials, the correlation between the bulk modulus and the mean coordination weakens. The method proposed can be easily modified to explore the effects on the physical properties of the presence of hydrogen, dangling bonds, and structural features such as carbon rings.
A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape
Marple, Gary; Gillman, Adrianna; Veerapaneni, Shravan
2015-01-01
This paper presents a new boundary integral equation (BIE) method for simulating particulate and multiphase flows through periodic channels of arbitrary smooth shape in two dimensions. The authors consider a particular system---multiple vesicles suspended in a periodic channel of arbitrary shape---to describe the numerical method and test its performance. Rather than relying on the periodic Green's function as classical BIE methods do, the method combines the free-space Green's function with a small auxiliary basis, and imposes periodicity as an extra linear condition. As a result, we can exploit existing free-space solver libraries, quadratures, and fast algorithms, and handle a large number of vesicles in a geometrically complex channel. Spectral accuracy in space is achieved using the periodic trapezoid rule and product quadratures, while a first-order semi-implicit scheme evolves particles by treating the vesicle-channel interactions explicitly. New constraint-correction formulas are introduced that prese...
ON QUADRATURE FORMULAE FOR SINGULAR INTEGRALS OF ARBITRARY ORDER
Institute of Scientific and Technical Information of China (English)
杜金元
2004-01-01
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
Energy Technology Data Exchange (ETDEWEB)
Buchan, Andrew G., E-mail: andrew.buchan@imperial.ac.uk [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Merton, Simon R. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom); Pain, Christopher C. [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Smedley-Stevenson, Richard P. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom)
2011-05-15
In this paper a method for resolving the various boundary conditions (BCs) for the first order Boltzmann transport equation (BTE) is described. The approach has been formulated to resolve general BCs using an arbitrary angular approximation method within any weighted residual finite element formulation. The method is based on a Riemann decomposition which is used to decompose the particles' angular dependence into in-coming and out-going information through a surface. This operation recasts the flux into a Riemann space which is used directly to remove any incoming information, and thus satisfy void boundary conditions. The method is then extended by its coupling with a set of mapping operators that redirect the outgoing flux to form incoming images resembling other specified boundary conditions. These operators are based on Galerkin projections and are defined to enable reflective and diffusive (white) BCs to be resolved. A small number of numerical examples are then presented to demonstrate the method's ability in resolving void, reflective and white BCs. These examples have been chosen in order to show the method working for arbitrary angled surfaces. Furthermore, as the method has been designed for an arbitrary angular approximation, both S{sub N} and P{sub N} calculations are presented.
Closed description of arbitrariness in resolving quantum master equation
Directory of Open Access Journals (Sweden)
Igor A. Batalin
2016-07-01
Full Text Available In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A
2016-01-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
Closed description of arbitrariness in resolving quantum master equation
Energy Technology Data Exchange (ETDEWEB)
Batalin, Igor A., E-mail: batalin@lpi.ru [P.N. Lebedev Physical Institute, Leninsky Prospect 53, 119 991 Moscow (Russian Federation); Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation)
2016-07-10
In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.
SOME SMALL DEVIATION THEOREMS FOR ARBITRARY CONTINUOUS RANDOM SEQUENCE
Institute of Scientific and Technical Information of China (English)
Wang Zhongzhi
2007-01-01
Let (Xn)n∈N be a sequence of arbitrary continuous random variables, by the notion of relative entropy h(μ)μ(ω) as a measure of dissimilarity between probability measure μ and reference measure (μ), the explicit, general bounds for the partial sums of arbitrary continuous random variables under suitable conditions are developed. The argument uses the known and elementary lemma of convergence for likelihood ratio.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Energy Technology Data Exchange (ETDEWEB)
Cao, Miaomiao, E-mail: mona486@yeah.net; Li, Ke, E-mail: like3714@163.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-03-15
In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation.
Generation of Synthetic Turbulence in Arbitrary Domains
DEFF Research Database (Denmark)
Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels
2009-01-01
A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used...... because of the very high requirements for computer memory. In the present method the auto- and cross-correlation in all three directions is computed from analytical or empirical expressions and the auto- and cross-spectra are determined by using the Wiener-Khinchin relation. From the auto- and cross...
Integrated photonic power divider with arbitrary power ratios.
Xu, Ke; Liu, Lu; Wen, Xiang; Sun, Wenzhao; Zhang, Nan; Yi, Ningbo; Sun, Shang; Xiao, Shumin; Song, Qinghai
2017-02-15
Integrated optical power splitters are one of the fundamental building blocks in photonic integrated circuits. Conventional multimode interferometer-based power splitters are widely used as they have reasonable footprints and are easy to fabricate. However, it is challenging to realize arbitrary split ratios, especially for multi-outputs. In this Letter, an ultra-compact power splitter with a QR code-like nanostructure is designed by a nonlinear fast search method. The highly functional structure is composed of a number of freely designed square pixels with the size of 120×120 nm which could be either dielectric or air. The light waves are scattered by a number of etched squares with optimized locations, and the scattered waves superimpose at the outputs with the desired power ratio. We demonstrate 1×2 splitters with 1:1, 1:2, and 1:3 split ratios, and a 1×3 splitter with the ratio of 1:2:1. The footprint for all the devices is only 3.6×3.6 μm. Well-controlled split ratios are measured for all the cases. The measured transmission efficiencies of all the splitters are close to 80% over 30 nm wavelength range.
All passive photonic power divider with arbitrary split ratio
Xu, Ke; Wen, Xiang; Sun, Wenzhao; Zhang, Nan; Yi, Ningbo; Sun, Shang; Xiao, Shumin; Song, Qinghai
2016-01-01
Integrated optical power splitter is one of the fundamental building blocks in photonic integrated circuits (PIC). Conventional multimode interferometer based power splitter is widely used as it has reasonable footprint and is easy to fabricate. However, it is challenging to realize arbitrary split ratio especially for multi-outputs. In this work, an ultra-compact power splitter with a QR code-like nanostructure is designed by a nonlinear fast search method (FSM). The highly functional structure is composed of a number of freely designed square pixels with the size of 120nm x 120nm which could be either dielectric or air. The lightwaves are scattered by a number of etched squares with optimized locations and the scattered waves superimpose at the outputs with the desired power ratio. We demonstrate 1x2 splitters with 1:1, 1:2, 1:3 split ratios and a 1x3 splitter with the ratio of 1:2:1. The footprint for all the devices is only 3.6umx3.6 um. Well-controlled split ratios are measured for all the cases. The mea...
Constructing reference metrics on multicube representations of arbitrary manifolds
Lindblom, Lee; Taylor, Nicholas W.; Rinne, Oliver
2016-05-01
Reference metrics are used to define the differential structure on multicube representations of manifolds, i.e., they provide a simple and practical way to define what it means globally for tensor fields and their derivatives to be continuous. This paper introduces a general procedure for constructing reference metrics automatically on multicube representations of manifolds with arbitrary topologies. The method is tested here by constructing reference metrics for compact, orientable two-dimensional manifolds with genera between zero and five. These metrics are shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which converges toward zero as the numerical resolution is increased). These reference metrics can be made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics constructed here. These smoothing evolutions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar curvatures (at the level of numerical truncation error).
Arbitrary axisymmetric steady streaming: Flow, force and propulsion
Spelman, Tamsin A
2015-01-01
A well-developed method to induce mixing on microscopic scales is to exploit flows generated by steady streaming. Steady streaming is a classical fluid dynamics phenomenon whereby a time-periodic forcing in the bulk or along a boundary is enhanced by inertia to induce a non-zero net flow. Building on classical work for simple geometrical forcing and motivated by the complex shape oscillations of elastic capsules and bubbles, we develop the mathematical framework to quantify the steady streaming of a spherical body with arbitrary axisymmetric time-periodic boundary conditions. We compute the flow asymptotically for small-amplitude oscillations of the boundary in the limit where the viscous penetration length scale is much smaller than the body. In that case, the flow has a boundary layer structure and the fluid motion is solved by asymptotic matching. Our results, presented in the case of no-slip boundary conditions and extended to include the motion of vibrating free surfaces, recovers classical work as parti...
Quasilossless acoustic transmission in an arbitrary pathway of a network
Dai, Hongqing; Liu, Tingting; Xia, Baizhan; Yu, Dejie
2017-02-01
Acoustic metamaterials have exhibited extraordinary potential for manipulating the propagation of sound waves. To date, it has been a challenge to control the propagation of a sound wave through arbitrary pathways in a network. Here, we design a symmetry-breaking, cross-shaped metamaterial comprising Helmholtz resonant cells and a square column. The square column is eccentrically arranged. The sound wave can be transmitted in a quasilossless manner through the channels along the eccentric direction with compressed spaces, which breaks through the general transmission phenomenon. This exotic propagation characteristic is verified by the band structure and the mode of the metamaterial. Two acoustic networks, including a 2 ×2 network and an 8 ×8 network, demonstrate the quasilossless propagation of the sound wave along various arbitrarily shaped pathways, which include a Great Wall shape, a stairway shape, and a serpentine shape, by reconfiguring the eccentric directions. This ability opens up a new method for routing sound waves and exhibits promising applications ranging from acoustic communication to energy transmission.
ONE-DIMENSIONAL CONSOLIDATION OF LAYERED AND VISCO-ELASTIC SOILS UNDER ARBITRARY LOADING
Institute of Scientific and Technical Information of China (English)
蔡袁强; 徐长节; 袁海明
2001-01-01
Based on the layered visco-elastic soil model, according to the Terzaghi' s one dimensional consolidation theory, by the method of Laplace transform and matrix transfer technique, the problems about the consolidation of layered and saturated visco-elastic soils under arbitrary loading were solved. Through deductions, the general solution, in the terms of layer thickness, the modulus and the coefficients of permeability and Laplacian transform' s parameters was obtained. The strain and deformation of the layered and satu rated visco-elastic soils under arbitrary loading can be calculated by Laplace inversion. Ac cording to the results of several numerical examples, the consolidation of visco-elastic soils lags behind that of elastic soils. The development of effective stress and the displacement is vibrant process under cyclic loading. Finally, an engineering case is studied and the results prove that the methods are very effective.
Direct calculation of the lattice Green function with arbitrary interactions for general crystals.
Yasi, Joseph A; Trinkle, Dallas R
2012-06-01
Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.
Atomic and field dynamics in the time-dependent Jaynes-Cummings model with arbitrary detuning
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
We propose a general numerical method for solving the time -dependent Jaynes-Cummings model with arbitrary detuning by integrating relate d groups of coupled equations using Runge-Kutta numerical technique. The atomic and field dynamics such as evolution of atomic population inversion and second -order correlation function of photons are studied in case of different detunin g. The results show that the field tends to exhibit bunching effect due to the I ncreasing of detuning.
Bethe ansatz solution of the $\\tau_2$-model with arbitrary boundary fields
Xu, Xiaotian; Yang, Tao; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie
2016-01-01
The quantum $\\tau_2$-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T-Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.
On the solutions of the $Z_n$-Belavin model with arbitrary number of sites
Hao, Kun; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-01-01
The periodic $Z_n$-Belavin model on a lattice with an arbitrary number of sites $N$ is studied via the off-diagonal Bethe Ansatz method (ODBA). The eigenvalues of the corresponding transfer matrix are given in terms of an unified inhomogeneous $T-Q$ relation. In the special case of $N=nl$ with $l$ being also a positive integer, the resulting $T-Q$ relation recovers the homogeneous one previously obtained via algebraic Bethe Ansatz.
Self-forces on static bodies in arbitrary dimensions
Harte, Abraham I; Taylor, Peter
2016-01-01
We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-perturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different in different dimensions, however. These limits are defined and evaluated, resulting in simple "regularization algorithms" which can be used in concrete calculations. In these limits, self-interaction is shown to be progressively less important in higher numbers of dimensions; it generically competes in magnitude with increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be relatively large in $1+1$ and $2+1$ dimensions. Our motivations for this work are twofold: First, no previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments presented by different authors have resulted in conflicting conclusions. Second,...
Quark-gluon vertex in arbitrary gauge and dimension
Davydychev, A I; Saks, L
2001-01-01
One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.
Efficient Decoding of Partial Unit Memory Codes of Arbitrary Rate
Wachter-Zeh, Antonia; Bossert, Martin
2012-01-01
Partial Unit Memory (PUM) codes are a special class of convolutional codes, which are often constructed by means of block codes. Decoding of PUM codes may take advantage of existing decoders for the block code. The Dettmar--Sorger algorithm is an efficient decoding algorithm for PUM codes, but allows only low code rates. The same restriction holds for several known PUM code constructions. In this paper, an arbitrary-rate construction, the analysis of its distance parameters and a generalized decoding algorithm for PUM codes of arbitrary rate are provided. The correctness of the algorithm is proven and it is shown that its complexity is cubic in the length.
Feynman propagator for an arbitrary half-integral spin
Institute of Scientific and Technical Information of China (English)
黄时中; 张鹏飞; 阮图南; 祝玉灿; 郑志鹏
2003-01-01
Based on the solution to Bargmann-Wigner equation for a particle with arbitrary half-integral spin, a directderivation of the projection operator and propagator for a particle with arbitrary half-integral spin is worked out. Theprojection operator constructed by Behrends and Fronsdal is re-deduced and confirmed and simplified, the generalcommutation rules and Feynman propagator with additional non-covariant terms for a free particle with arbitraryhalf-integral spin are derived, and explicit expressions for the propagators for spins 3/2, 5/2 and 7/2 are provided.
Probabilistic teleportation of an arbitrary three-particle state
Institute of Scientific and Technical Information of China (English)
Lin Xiu; Li Hong-Cai
2005-01-01
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
Probabilistic teleportation of an arbitrary pure state of two atoms
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun
2007-01-01
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
直升机桨叶鸟撞试验方法的数值模拟%Numerical simulation of bird impact on helicopter blade
Institute of Scientific and Technical Information of China (English)
林长亮; 王浩文; 陈仁良
2012-01-01
由于直升机旋翼的工作特点,使得全尺寸旋翼鸟撞试验很难进行,而在飞行器结构抗鸟撞的设计过程中,鸟撞试验是最终、最有效的检验方法,因此开展直升机桨叶鸟撞试验研究十分必要.采用Arbitrary Lagrangian Eulerian (ALE)流固耦合方法分别对旋转状态的桨叶鸟撞以及端部受集中载荷作用的静止状态桨叶鸟撞进行了数值模拟,通过数值模拟结果对比,发现两种状态下桨叶的动态响应结果很接近,说明采用集中载荷替代离心载荷的静态鸟撞试验可以较好地模拟旋转状态下桨叶鸟撞试验,从而为直升机动部件鸟撞试验研究提供理论依据.%The bird impact test for full-size rotor is difficult because of working characteristics of the helicopter rotor. However, in the design process of crashworthy aircraft structure, bird impact test is the ultimate and the most effective verification method. Therefore it is quite necessary to study the test method for bird impact on helicopter blade. Arbitrary Lagrangian Eulerian (ALE) fluid-solid coupling method was adopted to simulate bird impact on rotating blade as well as on stationary one whose end was under concentrated loads, respectively. After comparison of numerical simulation results, it was found that dynamic response of blade under the above two states is quite approximate. This shows that static bird impact test adopting centralized loads instead of centrifugal ones can better simulate the test of bird impact on rotating blade, thus providing a reference method for research of bird impact on helicopter rotor.
GREEN＇S FUNCTION AND EFFECTIVE ELASTIC STIFFNESS TENSOR FOR ARBITRARY AGGREGATES OF CUBIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
HuangMojia; ZhengChaomei
2004-01-01
A closed but approximate formula of Green's function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe's formula and Synge's contour integral through numerical integration. As an application of Green's function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.
Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process
Park, J. B.
2012-01-01
A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes. The short pulse nature of a femtosecond laser on a graphene/copper sheet enables fabrication of high-resolution graphene patterns. Thanks to the scale up, fast, direct writing, multi-scale with high resolution, and reliable process characteristics, it can be an alternative pathway to the multi-step photolithography methods for printing arbitrary graphene patterns on desired substrates. We also demonstrate transparent strain devices without expensive photomasks and multi-step patterning process. © 2012 American Institute of Physics.
Block-Z X Z synthesis of an arbitrary quantum circuit
De Vos, A.; De Baerdemacker, S.
2016-11-01
Given an arbitrary 2w×2w unitary matrix U , a powerful matrix decomposition can be applied, leading to four different syntheses of a w -qubit quantum circuit performing the unitary transformation. The demonstration is based on a recent theorem by H. Führ and Z. Rzeszotnik [Linear Algebra Its Appl. 484, 86 (2015), 10.1016/j.laa.2015.06.019] generalizing the scaling of single-bit unitary gates (w =1 ) to gates with arbitrary value of w . The synthesized circuit consists of controlled one-qubit gates, such as negator gates and phasor gates. Interestingly, the approach reduces to a known synthesis method for classical logic circuits consisting of controlled not gates in the case that U is a permutation matrix.
Time-Discrete Higher-Order ALE Formulations: Stability
Bonito, Andrea
2013-01-01
Arbitrary Lagrangian Eulerian (ALE) formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. This arbitrary extension has no effect on the stability of the PDE but may influence that of a discrete scheme. We examine this critical issue for higher-order time stepping without space discretization. We propose time-discrete discontinuous Galerkin (dG) numerical schemes of any order for a time-dependent advection-diffusion-model problem in moving domains, and study their stability properties. The analysis hinges on the validity of the Reynold\\'s identity for dG. Exploiting the variational structure and assuming exact integration, we prove that our conservative and nonconservative dG schemes are equivalent and unconditionally stable. The same results remain true for piecewise polynomial ALE maps of any degree and suitable quadrature that guarantees the validity of the Reynold\\'s identity. This approach generalizes the so-called geometric conservation law to higher-order methods. We also prove that simpler Runge-Kutta-Radau methods of any order are conditionally stable, that is, subject to a mild ALE constraint on the time steps. Numerical experiments corroborate and complement our theoretical results. © 2013 Society for Industrial and Applied Mathematics.
Solution of the quasispecies model for an arbitrary gene network
Tannenbaum, Emmanuel; Shakhnovich, Eugene I.
2004-08-01
In this paper, we study the equilibrium behavior of Eigen’s quasispecies equations for an arbitrary gene network. We consider a genome consisting of N genes, so that the full genome sequence σ may be written as σ=σ1σ2⋯σN , where σi are sequences of individual genes. We assume a single fitness peak model for each gene, so that gene i has some “master” sequence σi,0 for which it is functioning. The fitness landscape is then determined by which genes in the genome are functioning and which are not. The equilibrium behavior of this model may be solved in the limit of infinite sequence length. The central result is that, instead of a single error catastrophe, the model exhibits a series of localization to delocalization transitions, which we term an “error cascade.” As the mutation rate is increased, the selective advantage for maintaining functional copies of certain genes in the network disappears, and the population distribution delocalizes over the corresponding sequence spaces. The network goes through a series of such transitions, as more and more genes become inactivated, until eventually delocalization occurs over the entire genome space, resulting in a final error catastrophe. This model provides a criterion for determining the conditions under which certain genes in a genome will lose functionality due to genetic drift. It also provides insight into the response of gene networks to mutagens. In particular, it suggests an approach for determining the relative importance of various genes to the fitness of an organism, in a more accurate manner than the standard “deletion set” method. The results in this paper also have implications for mutational robustness and what C.O. Wilke termed “survival of the flattest.”
SCATTERING OF PLANE SH-WAVE BY A CYLINDRICAL HILL OF ARBITRARY SHAPE
Institute of Scientific and Technical Information of China (English)
曹欣荣; 宋天舒; 刘殿魁
2001-01-01
The problems of scattering of plane SH-wave by a cylindrical hill of arbitrary shape is studied based on the methods of conjunction and division of solution zone. The scattering wave function is given by using the complex variable and conformal mapping methods. The conjunction boundary conditions are satisfied. Furthermore appling orthogonal function expanding technique, the problems can finally be summarized into the solution of a series of infinite algebraic equations. At last, numerical results of surface displacements of a cylindrical arc hill and of a semi-ellipse hill are obtained. And those computational results are compared with the results of finite element method (FEM).
Effects of a Premixed Layer on the Richtmyer-Meshkov Instability
Institute of Scientific and Technical Information of China (English)
TIAN Bao-Lin; ZHANG Xin-Ting; QI Jin; WNG Shuang-Hu
2011-01-01
The effects of a premixed layer on the Richmyer-Meshkov instability (RMI) are studied by setting a density gradient for the first shocked fluid in the RMI problems.The RMI with initial density gradients are simulated by using a high resolution arbitrary Lagrangian-Eulerian method.The effects of density gradient and gradient width are analyzed on the basis of the simulation results for the shock from a light fluid to a heavy fluid and for the shock from a heavy fluid to a light fluid.Overall,the premixed layer can suppress the perturbation growth,and the detailed effects are different depending on the detailed premixed configuration.The width of the premixed layer has a very light influence on the perturbation,while the density gradient has quite a significant effect on two kinds of RMIs.The instability of a material interface under an acceleration by an incident shock was predicted theoretically by Richtmyer in 1960.Ten years later,Meshkov confirmed experimentally Richtmyer's prediction.Since then,this interfacial instability has been referred as the Richtmyer-Meshkov instability (RMI).[1-11] Such instabilities are observed in supernovae explosions and inertial confinement fusion (ICF),and are thus of great importance to science and technology.Extensive theoretical and experimental studies of the RM instability have been carried out in the last three decades.With the advent of computer technology and increasing computing power,numerical studies of the RM instability have become very common.%The effects of a premixed layer on the Richmyer-Meshkov instability (RMI) are studied by setting a density gradient for the first shocked fluid in the RMI problems. The RMI with initial density gradients are simulated by using a high resolution arbitrary Lagrangian-Eulerian method. The effects of density gradient and gradient width are analyzed on the basis of the simulation results for the shock from a light fluid to a heavy fluid and for the shock from a heavy fluid to a light
Bisimulation on Markov Processes over Arbitrary Measurable Spaces
DEFF Research Database (Denmark)
Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand
2014-01-01
We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea...
Quantum electrodynamics with arbitrary charge on a noncommutative space
Institute of Scientific and Technical Information of China (English)
ZHOU Wan-Ping; CAI Shao-Hong; LONG Zheng-Wen
2009-01-01
Using the Seiberg-Witten map,we obtain a quantum electrodynamics on a noncommutative space,which has arbitrary charge and keep the gauge invariance to at the leading order in theta.The one-loop divergence and Compton scattering are reinvestigated.The uoncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics.
Epistemic Analysis of Strategic Games with Arbitrary Strategy Sets
Apt, K.R.; Samet, D.
2007-01-01
We provide here an epistemic analysis of arbitrary strategic games based on the possibility correspondences. Such an analysis calls for the use of transfinite iterations of the corresponding operators. Our approach is based on Tarski’s Fixpoint Theorem and applies both to the notions of rationalizab
Epistemic Analysis of Strategic Games with Arbitrary Strategy Sets
Apt, Krzysztof R
2007-01-01
We provide here an epistemic analysis of arbitrary strategic games based on the possibility correspondences. Such an analysis calls for the use of transfinite iterations of the corresponding operators. Our approach is based on Tarski's Fixpoint Theorem and applies both to the notions of rationalizability and the iterated elimination of strictly dominated strategies.
Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism
Choi, Su-Jin
2012-01-01
This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…
Subleading soft theorem in arbitrary dimension from scattering equations
Schwab, Burkhard U W
2014-01-01
We investigate the new soft graviton theorem recently proposed in arXiv:1404.4091. We use the CHY formula to prove this universal formula for both Yang-Mills theory and gravity scattering amplitudes at tree level in arbitrary dimension.
Zero Cycles on Certain Surfaces in Arbitrary Characteristic
Indian Academy of Sciences (India)
G V Ravindra
2006-02-01
Let be a field of arbitrary characteristic. Let be a singular surface defined over with multiple rational curve singularities and suppose that the Chow group of zero cycles of its normalisation $\\overline{S}$ is finite dimensional. We give numerical conditions under which the Chow group of zero cycles of is finite dimensional.
Dynamics of number systems computation with arbitrary precision
Kurka, Petr
2016-01-01
This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .
Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups
DEFF Research Database (Denmark)
Cramer, Ronald; Fehr, Serge
2002-01-01
. A recent example is secure general multi-party computation over black-box rings. In 1994 Desmedt and Frankel have proposed an elegant approach to the black-box secret sharing problem based in part on polynomial interpolation over cyclotomic number fields. For arbitrary given T t,n with 0
Canonical Quantum Teleportation of Two-Particle Arbitrary State
Institute of Scientific and Technical Information of China (English)
HAO Xiang; ZHU Shi-Qun
2005-01-01
The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.
The impact of approximations and arbitrary choices on geophysical images
Valentine, A.P.; Trampert, J.A.
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical
A general higher-order remap algorithm for ALE calculations
Energy Technology Data Exchange (ETDEWEB)
Chiravalle, Vincent P [Los Alamos National Laboratory
2011-01-05
A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.
Gomez, Raul; Gomez, Sandra; Marquina, Ma. Luisa
2004-03-01
Most of the Mechanics and Mathematics for Physicists books ignore the problem of obtaining the isochrone (tautochrone) curve in the uniform gravitational field of Earth. A noticeable exception is Arfken's^1 book, which uses the Laplace transform formalism and the convolution theorem to resolve the problem. Through an adequate change of variable, the Laplace transform can be extended in such a way as to be able to apply the convolution theorem. The tautachrone problem for an arbitrary potential energy function can then be resolved. Moreover, the inverse problem of finding the potential function associated with a given arbitrary trajectory can also be established. It is worth noting that the same results can also be obtained using a less known formalism of fractional derivatives ^2. ^1G. Arfken, Mathematical Methods for Physicists. Academic Press (1970) pp 713. ^2Eduardo Flores. The tautochrone under arbitrary potentials using fractional derivatives, Am. J. Phys. 67 (1999) 718-722.
Directory of Open Access Journals (Sweden)
V. D. Stashuk
2013-12-01
Full Text Available The theorem which allows to define the magnitude order of determinant at which value of arbitrary quantity of elements grows infinitely is proved. The method of the analysis of electric circuits after closing and breaking of arbitrary quantity of branches is developed, using only one of matrixes of parameters (conductivities or resistance the initial circuit. Circuit analysis examples after closing of branch are given, using a matrix of conductivities of the initial circuit. Generally when closing arbitrary number of nodal couples theorem application also allows to find potentials of all nodes and currents of all branches, closed branches inclusively. For this purpose it is necessary to the appropriate elements of determinant on which required values are calculated, to add with a due sign of value of y and to pass to a limit, having applied the theorem. If the matrix of Z - parameters of the initial circuit is set, it is possible to receive dual results, using the proved theorem.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper is based on the fundamental loading model of pure bending and the analytical model of a circular beam element with arbitrary initial deflection. The L.W. Guo solution is modified and generalized according to the elastic theory, and the analytical solution for the stress of the beam element with arbitrary initial deflection under pure bending is derived. Using yield theory of edge strength, an expression for the safety margin of one point in the arbitrary curved beam under pure bending (ACPB) is built. This paper modifies the model for weak points of service structures and establishes a foundation for safe design and inspection of imperfect structures. Also, according to the theory of the method of advanced first-order second-moment(AFOSM), this paper derives an expression for the reliability index of one point in ACPB. Lastly, it modifies the solution for weak points by solving the minimal reliability index.
Institute of Scientific and Technical Information of China (English)
冯国胜; 武寄洲; 王晓锋; 郑宁宣; 李玉清; 马杰; 肖连团; 贾锁堂
2015-01-01
We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers.
Diamond, D. H.; Heyns, P. S.; Oberholster, A. J.
2016-12-01
The measurement of instantaneous angular speed is being increasingly investigated for its use in a wide range of condition monitoring and prognostic applications. Central to many measurement techniques are incremental shaft encoders recording the arrival times of shaft angular increments. The conventional approach to processing these signals assumes that the angular increments are equidistant. This assumption is generally incorrect when working with toothed wheels and especially zebra tape encoders and has been shown to introduce errors in the estimated shaft speed. There are some proposed methods in the literature that aim to compensate for this geometric irregularity. Some of the methods require the shaft speed to be perfectly constant for calibration, something rarely achieved in practice. Other methods assume the shaft speed to be nearly constant with minor deviations. Therefore existing methods cannot calibrate the entire shaft encoder geometry for arbitrary shaft speeds. The present article presents a method to calculate the shaft encoder geometry for arbitrary shaft speed profiles. The method uses Bayesian linear regression to calculate the encoder increment distances. The method is derived and then tested against simulated and laboratory experiments. The results indicate that the proposed method is capable of accurately determining the shaft encoder geometry for any shaft speed profile.
Grassani, Davide; Galli, Matteo; Bajoni, Daniele
2014-04-15
We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than 1° at λ=632.8 nm, which corresponds to a precision in the optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless, and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry, and quantum optical experiments.
Isochronous Liénard-type nonlinear oscillators of arbitrary dimensions
Indian Academy of Sciences (India)
Ajey K Tiwari; A Durga Devi; R Gladwin Pradeep; V K Chandrasekar
2015-11-01
In this paper, we briefly present an overview of the recent developments made in identifying/generating systems of Liénard-type nonlinear oscillators exhibiting isochronous properties, including linear, quadratic and mixed cases and their higher-order generalizations. There exists several procedures/methods in the literature to identify/generate isochronous systems. The application of local as well as nonlocal transformations and -modified Hamiltonian method in identifying and generating systems exhibiting isochronous properties of arbitrary dimensions is also discussed in detail. The identified oscillators include singular and nonsingular Hamiltonian systems and PT-symmetric systems.
Active stabilization of a Michelson interferometer at an arbitrary phase with sub-nm resolution
Grassani, Davide; Bajoni, Daniele
2013-01-01
We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than one degree at $\\lambda = 632.8$ nm, which corresponds to an optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry and quantum optical experiments.
Grassani, Davide; Galli, Matteo; Bajoni, Daniele
2014-04-01
We report on the active stabilization of a Michelson interferometer at an arbitrary phase angle with a precision better than one degree at $\\lambda = 632.8$ nm, which corresponds to an optical path difference between the two arms of less than 1 nm. The stabilization method is ditherless and the error signal is computed from the spatial shift of the interference pattern of a reference laser, measured in real-time with a CCD array detector. We discuss the usefulness of this method for nanopositioning, optical interferometry and quantum optical experiments.
Robbins, Joshua; Voth, Thomas
2007-06-01
The eXtended Finite Element Method (X-FEM) is a finite element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static mesoscale material failure to dendrite growth. Here we adapt the recent advances of Benson et al. [2] and Belytchko et al. [3] to model shock loading of polycrystalline material. Through several demonstration problems we evaluate the method for modeling the shock response of polycrystalline materials at the mesoscale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries. ([1] N. Moes, J. Dolbow, J and T. Belytschko, 1999,``A finite element method for crack growth without remeshing,'' International Journal for Numerical Methods in Engineering, 46, 131-150. [2] E. Vitali, and D. J. Benson, 2006, ``An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations,'' International Journal for Numerical Methods in Engineering, 67, 1420-1444. [3] J-H Song, P. M. A. Areias and T. Belytschko, 2006, ``A method for dynamic crack and shear band propagation with phantom nodes,'' International Journal for Numerical Methods in Engineering, 67, 868-893.)
Greene, Patrick; Schofield, Sam; Nourgaliev, Robert
2016-11-01
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin (DG) projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. The method retains the excellent smoothing capabilities of condition number relaxation, while providing a method for clustering mesh cells near regions of interest. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Creating arbitrary quantum vibrational states in a carbon nanotube
Wang, Heng; Burkard, Guido
2016-11-01
We theoretically study the creation of single- and multiphonon Fock states and arbitrary superpositions of quantum phonon states in a nanomechanical carbon nanotube (CNT) resonator. In our model, a doubly clamped CNT resonator is initialized in the ground state, and a single electron is trapped in a quantum dot which is formed by an electric gate potential and brought into the magnetic field of a micromagnet. The preparation of arbitrary quantum phonon states is based on the coupling between the mechanical motion of the CNT and the electron spin which acts as a nonlinearity. We assume that electrical driving pulses with different frequencies are applied on the system. The quantum information is transferred from the spin qubit to the mechanical motion by the spin-phonon coupling, and the electron spin qubit can be reset by the single-electron spin resonance. We describe Wigner tomography which can be applied at the end to obtain the phase information of the prepared phonon states.
Massive "spin-2" theories in arbitrary $D \\ge 3$ dimensions
Dalmazi, D; Mendonça, E L
2014-01-01
Here we show that in arbitrary dimensions $D\\ge 3$ there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in $D=3$ and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in $D=3$ where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor $e_{[\\mu\
On Black-Brane Instability In an Arbitrary Dimension
Kol, B; Kol, Barak; Sorkin, Evgeny
2004-01-01
The black-hole black-string system is known to exhibit critical dimensions and therefore it is interesting to vary the spacetime dimension $D$, treating it as a parameter of the system. We derive the large $D$ asymptotics of the critical, i.e. marginally stable, string following an earlier numerical analysis. For a background with an arbitrary compactification manifold we give an expression for the critical mass of a corresponding black brane. This expression is completely explicit for ${\\bf T}^n$, the $n$ dimensional torus of an arbitrary shape. An indication is given that by employing a higher dimensional torus, rather than a single compact dimension, the total critical dimension above which the nature of the black-brane black-hole phase transition changes from sudden to smooth could be as low as $D\\leq 11$.
Quantum teleportation of an arbitrary superposition of atomic states
Institute of Scientific and Technical Information of China (English)
Chen Qiong; Fang Xi-Ming
2008-01-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Correlation Function and Generalized Master Equation of Arbitrary Age
2007-11-02
Correlation function and generalized master equation of arbitrary age Paolo Allegrini,1 Gerardo Aquino,2,* Paolo Grigolini,2,3,4 Luigi Palatella,5...P.O. Box 311427, Denton, Texas 76203-1427, USA 3Dipartimento di Fisica dell’Università di Pisa and INFM, Via Buonarroti 2, 56127 Pisa, Italy 4Istituto...dei Processi Chimico Fisici del CNR Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy 5Dipartimento di Fisica and Istituto dei Sistemi
On Casimir Forces for Media with Arbitrary Dielectric Properties
Mochán, W L; Esquivel-Sirvent, R
2002-01-01
We derive an expression for the Casimir force between slabs with arbitrary dielectric properties characterized by their reflection coefficients. The formalism presented here is applicable to media with a local or a non-local dielectric response, an infinite or a finite width, inhomogeneous dissipative, etc. Our results reduce to the Lifshitz formula for the force between semi-infinite dielectric slabs by replacing the reflection coefficients by the Fresnel amplitudes.
Arbitrary waveform generator to improve laser diode driver performance
Fulkerson, Jr, Edward Steven
2015-11-03
An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.
Irreducible Cartesian tensors of highest weight, for arbitrary order
Mane, S. R.
2016-03-01
A closed form expression is presented for the irreducible Cartesian tensor of highest weight, for arbitrary order. Two proofs are offered, one employing bookkeeping of indices and, after establishing the connection with the so-called natural tensors and their projection operators, the other one employing purely coordinate-free tensor manipulations. Some theorems and formulas in the published literature are generalized from SO(3) to SO(n), for dimensions n ≥ 3.
Probabilistic Teleportation of an Arbitrary Two-particle State
Institute of Scientific and Technical Information of China (English)
顾永建; 郑亦庄; 郭光灿
2001-01-01
A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2017-04-01
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.
DEFF Research Database (Denmark)
Yura, Harold; Hanson, Steen Grüner
2012-01-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the......Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set...... with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative...
Energy Technology Data Exchange (ETDEWEB)
Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-06-21
A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.
STUDY FOR STREAMLINE OF ARBITRARY SHAPED HOMOGENEOUS RESERVOIRS WITH IMPERMEABLE BARRIERS
Institute of Scientific and Technical Information of China (English)
YIN Hong-jun; FU Chun-quan; HE Ying-fu
2006-01-01
The steady-state flow mathematical model of arbitrary shaped homogeneous reservoirs with impermeable barrier is constructed in this paper. By using Boundary Element Method (BEM), the mathematical model is solved. And a streamline generating technique is presented. The figures of streamlines are plotted and analyzed considering the effect of complex boundary and impermeable barriers. Through analyzing, it indicates that the size, shape and orientation of impermeable barriers have various degree of influence on the streamlines. So, if there are impermeable barriers in reservoir according to the geological materials, the influence of impermeable barriers must be considered when adjusting flood pattern and injection strategy.
A quasi-analytical model for nanowire FETs with arbitrary polygonal cross section
De Michielis, L.; Selmi, L.; Ionescu, A. M.
2010-09-01
In this work a quasi-analytical physical model has been developed for the prediction of the potential in SiNW devices with arbitrary polygonal cross section. The model is then extended to the transport direction; a method for the calculation of the natural channel length has been proposed and validated by means of 2D and 3D numerical device simulations. With the results based on the proposed model it is possible to compare nanowires with cross sections of different shape and predict the minimum technological gate length able to assure immunity to the SCEs.
Interference of two pulse-like spatial beams with arbitrary transverse separation
Flórez, Jefferson; Álvarez, Juan-Rafael; Calderón-Losada, Omar; José Salazar-Serrano, Luis; Valencia, Alejandra
2016-12-01
We report the observation of interference in position and transverse momentum variables between two parallel-propagating Gaussian beams separated by an arbitrary distance. This resembles the Alford and Gold effect that has been reported for the time-frequency degree of freedom, and constitutes a method for spatial intensity shaping of light beams. We observe this interference by using a tunable beam displacer, which plays the role of a Michelson interferometer for the transverse spatial variables. Additionally, we employ the interference pattern as a function of the separation between the beams to determine the spatial coherence length of the original beam.
Institute of Scientific and Technical Information of China (English)
HE Yuanan; LI Rui; HE Zuoyong
2001-01-01
An improved reconstructing field method for measuring sound reflection coefficient of a large impedance surface at arbitrary incident angles is proposed in this paper. In order to get the reflection coefficient by the Spatial Transformation of Sound Fields (STSF), the complex pressure on two parallel plashes near by the material surface or the reflection surface must be measured. By the acoustic intensity measurement, the phases of complex pressure on two parallel planes are given. The results of the numerical simulations are shown that the error due to the finite size of the measurement area, and it may be reduced by using a dipole sound source.
Terrain following of arbitrary surfaces using a high intensity LED proximity sensor
Energy Technology Data Exchange (ETDEWEB)
Baker, J.E.
1992-01-01
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely a priori unknown, real-time robotic system. 7 refs.
H-infinity filtering for discrete-time switched linear systems under arbitrary switching
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper is concerned with the problem of H-infinity filtering for discrete-time switched linear systems under arbitrary switching laws.New sufficient conditions for the solvability of the problem are given via switched quadratic Lyapunov functions.Based on Finsler's lemma,two sets of slack variables with special structure are introduced to provide extra degrees of freedom in optimizing the guaranteed H-infinity performance.Compared to the existing methods,the proposed one has better performances and less...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
By using Schwarz alternating method, this paper presents asimplified alternating algorithm for the problems of two holes having arbitrary shapes and arrangements in an isotropic homogeneous linear elastic infinite region, and obtains stress and displacement fields for random times of iteration. After precision analysis it is found that the results for twenty times of iteration are of very high precision, and those with higher precision can be acquired if the iteration solving is further conducted. The comparison of the results from FEM further proves the reliability of the simplified alternating algorithm presented by this paper.
Institute of Scientific and Technical Information of China (English)
SunYongsheng; MengXujun
1990-01-01
Schroedinger's wave equation is solved in Thomas-Fermi potential including the self-interaction modification of elctrons for arbitrary matter density and temperature,In order to describe relativistic effects,the mass-velocity correction,the Darwin correction and the spin-orbit coupling terms are included in the wave equation.Calculations are presented for the Fe26 and Rb37 atoms at a few temperatures and matter densities.Comparisons of present results with other more accurate one[9] are given in Table.The data obtained by the present method are not bad.
Institute of Scientific and Technical Information of China (English)
Kun Ma; Junchang Li; Zebin Fan; Jinbin Gui; Yingxiong Qin; Qiguang Zheng
2005-01-01
@@ Based on the calculation formulas of heat treatment temperature field for an arbitrary incident laser intensity distribution, the transformation intensity distribution of CO2 laser beam passing an integrating mirror is studied theoretically and experimentally. The derived formulas are applied in laser heat treatment research which is transformed by optical system, and the theoretical calculation results are compared with experimental results. It is shown that the formulas can be used to calculate the laser heat treatment temperature field accurately, and the calculation speed is obviously faster than the numerical calculation methods with the same precision. The calculation software can be used to select proper experiment parameters.
Arbitrary Steady-State Solutions with the K-epsilon Model
Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.
2006-01-01
Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.
A multi-dimensional finite volume cell-centered direct ALE solver for hydrodynamics
Clair, G.; Ghidaglia, J.-M.; Perlat, J.-P.
2016-12-01
In this paper we describe a second order multi-dimensional scheme, belonging to the class of direct Arbitrary Lagrangian-Eulerian (ALE) methods, for the solution of non-linear hyperbolic systems of conservation law. The scheme is constructed upon a cell-centered explicit Lagrangian solver completed with an edge-based upwinded formulation of the numerical fluxes, computed from the MUSCL-Hancock method, to obtain a full ALE formulation. Numerical fluxes depend on nodal grid velocities which are either set or computed to avoid most of the mesh problems typically encountered in purely Lagrangian simulations. In order to assess the robustness of the scheme, most results proposed in this paper have been obtained by computing the grid velocities as a fraction of the Lagrangian nodal velocities, the ratio being set before running the test case. The last part of the paper describes preliminary results about the triple point test case run in the ALE framework by computing the grid velocities with the fully adaptive Large Eddy Limitation (L.E.L.) method proposed in [1]. Such a method automatically computes the grid velocities at each node defining the mesh from the local characteristics of the flow. We eventually discuss the advantages and the drawback of the coupling.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Moffat, Harry K.; Noble, David R.; Notz, Patrick K.; Subia, Samuel Ramirez
2007-04-01
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes the incompressible Navier-Stokes equations, energy transport equation, species transport equations, nonlinear elastic solid mechanics, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods, fully-coupled Picard's method, and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based on the Sierra Framework.
Li, Yanming; Nan, Bin; Zhu, Ji
2015-06-01
We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Adams, M L; Yang, B; Zika, M R
2005-07-15
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Optimal O(1 Bilateral Filter with Arbitrary Spatial and Range Kernels Using Sparse Approximation
Directory of Open Access Journals (Sweden)
Shengdong Pan
2014-01-01
Full Text Available A number of acceleration schemes for speeding up the time-consuming bilateral filter have been proposed in the literature. Among these techniques, the histogram-based bilateral filter trades the flexibility for achieving O(1 computational complexity using box spatial kernel. A recent study shows that this technique can be leveraged for O(1 bilateral filter with arbitrary spatial and range kernels by linearly combining the results of multiple-box bilateral filters. However, this method requires many box bilateral filters to obtain sufficient accuracy when approximating the bilateral filter with a large spatial kernel. In this paper, we propose approximating arbitrary spatial kernel using a fixed number of boxes. It turns out that the multiple-box spatial kernel can be applied in many O(1 acceleration schemes in addition to the histogram-based one. Experiments on the application to the histogram-based acceleration are presented in this paper. Results show that the proposed method has better accuracy in approximating the bilateral filter with Gaussian spatial kernel, compared with the previous histogram-based methods. Furthermore, the performance of the proposed histogram-based bilateral filter is robust with respect to the parameters of the filter kernel.
SIERRA Multimechanics Module: Aria User Manual – Version 4.40
Energy Technology Data Exchange (ETDEWEB)
Notz, Patrick K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Subia, Samuel Ramirez [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hopkins, Matthew M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moffat, Harry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Okusanya, Tolulope O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-05-02
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton’s method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic ℎ-adaptivity and dynamic load balancing are some of Aria’s more advanced capabilities. Aria is based upon the Sierra Framework.
Solution of mixed convection heat transfer from isothermal in-line fins
Khalilollahi, Amir
1993-11-01
Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.
ALE-Phase-field simulations of floating particles
Yue, Pengtao
2015-11-01
In this talk, we will present a hybrid Arbitrary-Lagrangian-Eulerian(ALE)-Phase-Field method for the direct numerical simulation of multiphase flows where fluid interfaces, moving rigid particles, and moving contact lines coexist. Practical applications include Pickering emulsions, froth flotation, and biolocomotion at fluid interface. An ALE algorithm based on the finite element method and an adaptive moving mesh is used to track the moving boundaries of rigid particles. A phase-field method based on the same moving mesh is used to capture the fluid interfaces; meanwhile, the Cahn-Hilliard diffusion automatically takes care of the stress singularity at the moving contact line when a fluid interface intersects a solid surface. To fully resolve the diffuse interface, mesh is locally refined at the fluid interface. All the governing equations, i.e., equations for fluids, interfaces, and particles, are solved implicitly in a unified variational framework. In the end we will present some recent results on the water entry problem and the capillary interaction between floating particles (a.k.a. the Cheerios effect), with a focus on the effect of contact-line dynamics.
Directory of Open Access Journals (Sweden)
Davtyan A.V.
2014-09-01
Full Text Available In present paper is considered the problem of penetration of the pressure in an isotropic elastic half-plane, boundary of which has the rigid support moving with arbitrary velocity. Solution of the plane problem is sought by method of integral transforms Laplace, Fourier and by method of the convolutions. Partial problems about a shock wave propagating along the boundary half-plane are solved. The stress intensity factors, stress on the line of contact is calculated.
Generalized BRST symmetry for arbitrary spin conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2015-05-11
We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.
Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations
Koskinen, Pekka
2016-09-01
A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.
A Novel Memory Compress Algorithm for Arbitrary Waveform Generator
Institute of Scientific and Technical Information of China (English)
吕铁良; 仇玉林
2000-01-01
A memory compress algorithm for 12-bit Arbitrary Waveform Generator (AWG) is presented and optimized. It can compress waveform memory for a sinusoid to 16× 13hits with a Spurious-Free Dynamic Range (SFDR) 90.7dBc (1/1890 of uncompressed memory at the same SFDR) and to 8× 12bits with a SFDR 79dBc. Its hardware cost is six adders and two multipliers. Exploiting this memory compress technique makes it possible to build a high performance AWG on a chip.
Spin-base invariance of fermions in arbitrary dimensions
Lippoldt, Stefan
2015-05-01
The concept of spin-base invariance is extended to arbitrary integer dimension d ≥2 . Explicit formulas for the spin connection as a function of the Dirac matrices are found. We disclose the hidden spin-base invariance of the vielbein formalism and give a detailed motivation for this symmetry from first principles. The common Lorentz symmetric gauge for the vielbein is constructed for the Dirac matrices, even for metrics which are not linearly connected. Under certain criteria, it constitutes the simplest possible gauge, demonstrating why this gauge is so useful.
Spin-base invariance of Fermions in arbitrary dimensions
Lippoldt, Stefan
2015-01-01
The concept of spin-base invariance is extended to arbitrary integer dimension $d \\geq 2$. Explicit formulas for the spin connection as a function of the Dirac matrices are found. We disclose the hidden spin-base invariance of the vielbein formalism and give a detailed motivation for this symmetry from first principles. The common Lorentz symmetric gauge for the vielbein is constructed for the Dirac matrices, even for metrics which are not linearly connected. Under certain criteria, it constitutes the simplest possible gauge, demonstrating why this gauge is so useful.
Antenna Correlation From Input Parameters for Arbitrary Topologies and Terminations
DEFF Research Database (Denmark)
Alrabadi, Osama; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2012-01-01
The spatial correlation between pairs of antennas in a system comprised of N RF ports is found by extending the N × N scattering matrix to (N + 1)×(N + 1) spatial scattering matrix, where the extra space dimension accounts for the reference port patterns. The lossless property of the spatial scat...... scattering matrix in a 3D uniform field is employed for expressing the spatial correlation between the port patterns at arbitrary complex terminations merely from the reference scattering parameters and the complex terminations without any far-field calculation....
Controlling Electromagnetic Fields at Boundaries of Arbitrary Geometries
Teo, Jonathon Yi Han; Molardi, Carlo; Genevet, Patrice
2015-01-01
Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realise coatings to achieve exotic effects like optical illusions and anomalous diffraction behaviour. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.
Controlling electromagnetic fields at boundaries of arbitrary geometries
Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice
2016-08-01
Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.
Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems
Kapela, Tomasz; Simó, Carles
2017-03-01
We set up a methodology for computer assisted proofs of the existence and the KAM stability of an arbitrary periodic orbit for Hamiltonian systems. We give two examples of application for systems with two and three degrees of freedom. The first example verifies the existence of tiny elliptic islands inside large chaotic domains for a quartic potential. In the 3-body problem we prove the KAM stability of the well-known figure eight orbit and two selected orbits of the so called family of rotating eights. Some additional theoretical and numerical information is also given for the dynamics of both examples.
A generalization of the Virasoro algebra to arbitrary dimensions
Energy Technology Data Exchange (ETDEWEB)
Gurau, Razvan, E-mail: rgurau@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada)
2011-11-21
Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.
Restriction Theorem for Principal bundles in Arbitrary Characteristic
DEFF Research Database (Denmark)
Gurjar, Sudarshan
2015-01-01
The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...
Teleportation of an arbitrary three-particle state
Institute of Scientific and Technical Information of China (English)
陈立冰
2002-01-01
We propose two schemes for teleporting an arbitrary three-particle state. In the first scheme, a two-particle state and a three-particle entangled state (both non-maximally entangled states) are used as quantum channels, while in the second scheme, three non-maximally entangled particle pairs are employed as quantum channels. We show that teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations. Their success probabilities and the classical communication costs are different.
Application of arbitrary waveform generator for noise radar
Lukin, Konstantin A.; Zemlyaniy, Oleg V.; Vyplavin, Pavlo L.; Palamarchuk, Volodymyr P.
2011-10-01
The approach, when the waveforms of different types are exploited in the same radar (waveform diversity) requires new-generation sources of initial signals. For generating of different types of waveforms in the same radar we suggest using Arbitrary Waveform Generator, that allows output any type of pre-programmed signal in real time. We have carried out preliminary experimental tests of the stepped-delay mode of UHF-band radar evaluation kit. The series of experimental testing shows efficiency AWG application in radar with variety of sounding waveforms.
Quantum-state anomaly detection for arbitrary errors using a machine-learning technique
Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki
2016-10-01
The accurate detection of small deviations in given density matrice is important for quantum information processing, which is a difficult task because of the intrinsic fluctuation in density matrices reconstructed using a limited number of experiments. We previously proposed a method for decoherence error detection using a machine-learning technique [S. Hara, T. Ono, R. Okamoto, T. Washio, and S. Takeuchi, Phys. Rev. A 89, 022104 (2014), 10.1103/PhysRevA.89.022104]. However, the previous method is not valid when the errors are just changes in phase. Here, we propose a method that is valid for arbitrary errors in density matrices. The performance of the proposed method is verified using both numerical simulation data and real experimental data.
Mitri, F G
2016-04-01
One of the fundamental theorems in (optical, acoustical, quantum, gravitational) wave scattering is the optical theorem for plane waves, which relates the extinction cross-section to the forward scattering complex amplitude function. In this analysis, the optical theorem is extended for the case of 3D-beams of arbitrary character in a cylindrical coordinates system for any angle of incidence and any scattering angle. Generalized analytical expressions for the extinction, absorption, scattering cross-sections and efficiency factors are derived in the framework of the scalar resonance scattering theory for an object of arbitrary shape. The analysis reveals the presence of an interference scattering cross-section term, which describes interference between the diffracted or specularly reflected inelastic (Franz) waves with the resonance elastic waves. Moreover, an alternate expression for the extinction cross-section, which relates the resonance cross-section with the scattering cross-section for an impenetrable object, is obtained, suggesting an improved method for particle characterization. Cross-section expressions are also derived for known acoustical wavefronts centered on the object, defined as the on-axis case. The extended optical theorem in cylindrical coordinates can be applied to evaluate the extinction efficiency from any object of arbitrary geometry placed on or off the axis of the incident beam. Applications in acoustics, optics, and quantum mechanics should benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by many particles, as well as the radiation force and torque.
Hertz-Mindlin problem for arbitrary oblique 2D loading: General solution by memory diagrams
Aleshin, V.; Van Den Abeele, K.
2012-01-01
In this paper we present a new general solution to the fundamental problem of frictional contact of two elastic spheres, also known as the Hertz-Mindlin (HM) problem. The description of spheres in contact is a central topic in contact mechanics. It became a foundation of many applications, such as the friction of rough surfaces and the mechanics of granular materials and rocks, etc. Moreover, it serves as a theoretical background in modern nonlinear acoustics and elasticity, e.g. seismology and nondestructive testing. However, despite many efforts, a rigorous analytical solution for the general case when arbitrary normal and tangential forces are present is still missing, mainly because the traction distribution within the contact zone is convoluted and hardly tractable, even under relatively simple external action. Here, accepting a number of traditional limitations such as 2D loading and the existence of a functional dependence between normal and tangential forces, we propose an original way of replacing the complex traction distributions by simple graphical counterparts called memory diagrams, and we formulate a procedure that enables initiating and maintaining these memory diagrams following an arbitrary loading history. For each memory diagram, the solution can be expressed by closed-form analytical formulas that we have derived using known techniques suggested by Mindlin, Deresiewicz, and others. So far, to the best of our knowledge, arbitrary loading histories have been treated only numerically. Implementation of the proposed memory diagram method provides an easy-to-use computer-assisted analytical solution with a high level of generality. Examples and results illustrate the variety and richness of effects that can be encountered in a geometrically simple system of two contacting spheres.
Institute of Scientific and Technical Information of China (English)
HONG Taehyup; KIM Chang Nyung
2011-01-01
The effects of implantation angles of Bileaflet Mechanical Heart Valves (BMHVs) on the blood flow and the leaflet motion are investigated in this paper.The physiological blood flow interacting with the moving leaflets ofa BMHV is simulated with a strongly coupled implicit Fluid-Structure Interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in Fluent.BMHVs are widely used to be implanted to replace the diseascd heart valves,but the patients would suffer from some complications such as hemolysis,platelet activation,tissue overgrowth and device failure.These complications are closely related to both the flow characteristics near the valves and the leaflet dynamics.The currentnumerical model is validated against a previous experimental study.The numerical results show that as the rotation angle of BMHV is increased the degree of asymmetry of the blood flow and the leaflet motion is increased,which may lead to an unbalanced force acting on the BMHVs.This study shows the applicability of the FSI model for the interaction between the blood flow and the leaflet motion in BMHVs.
Failure Prediction in Bulk Metal Forming Process
Directory of Open Access Journals (Sweden)
Ameen Topa
2014-01-01
Full Text Available An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE and smooth particle hydrodynamics (SPH formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation. However ALE method was able to pinpoint the location of the flaws.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Hu, Bin; Kieweg, Sarah
2011-11-01
Many complex fluids of interest exhibit viscoelastic hehavior. Polymeric drug delivery vehicles, such as anti-HIV topical microbicides, are among these fluids. For the optimal design of microbicides, the combined effect of shear-thinning and elastic behavior on the gravity-driven spreading of viscoelastic fluids is studied. We develop a 2D model to simulate the fluids spreading down an incline using ANSYS POLYFLOW software package. Arbitrary Lagrangian-Eulerian (ALE) method combined with Lagrangian remeshing is applied to track the moving free surface of fluids during spreading. Adaptive meshing method is used to generate high quality mesh for the remeshing process. Based on an elastic viscous split stress (EVSS) approach, several differential viscoelastic constitutive models are studied to investigate the combined effect of shear-thinning and elastic behavior. Mesh convergence test and constant volume check are studied to verify the new model. Moreover, the new model with zero elasticity is compared with previous studies of Newtonian and power-law fluids.
An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.
Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying
2013-09-01
Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.
Optimized detection of steering via linear criteria for arbitrary-dimensional states
Zheng, Yu-Lin; Zhen, Yi-Zheng; Cao, Wen-Fei; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2017-03-01
Einstein-Podolsky-Rosen (EPR) steering, as a new form of nonlocality, stands between entanglement and Bell nonlocality, implying promising applications for quantum information tasks. The problem of detecting EPR steering plays an important role in characterization of quantum nonlocality. Despite some significant progress, one still faces a practical issue: how to detect EPR steering in an experimentally friendly fashion. Resorting to an EPR steering inequality, one is required to apply a strategy as efficiently as possible for any selected measurement settings on the two subsystems, one of which may not be trusted. Inspired by the recent powerful linear criteria proposed by Saunders et al. [D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, Nat. Phys. 6, 845 (2010)., 10.1038/nphys1766], we present an optimized method of certifying steering for an arbitrary-dimensional state in a cost-effective manner. We provide a practical way to signify steering via only a few settings to optimally violate the steering inequality. Our method leads to steering detections in a highly efficient way, and can be performed with any number of settings, for an arbitrary bipartite mixed state, which can reduce experimental overheads significantly.
Acoustic quasi-lossless transmission in arbitrary pathway of network
Dai, Hongqing; Xia, Baizhan; Yu, Dejie
2016-01-01
Acoustic metamaterials have exhibited extraordinary possibilities to manipulate the propagation of the sound wave. Up to now, it is still a challenge to control the propagation of the sound wave in an arbitrary pathway of a network. Here, we design a symmetry breaking cross-shape metamaterial comprised of Helmholtz resonant cells and a square column. The square column is eccentrically arranged. The sound wave can quasi-lossless transmit through channels along the eccentric direction with compressed spaces, which breaks through the general transmission phenomenon. This exotic propagation characteristic is verified by the band structure and the mode of the metamaterial. Two acoustic networks, including a 2x2 network and an 8x8 network, show that the sound wave can quasi-lossless propagate along various arbitrary pathways, such as the Great Wall shape, the stair step shape and the serpentine shape, by reconfiguring eccentric directions. This ability opens up a new venue to route the sound wave and exhibits promi...
Arbitrary optical frequency synthesis traced to an optical frequency comb
Cai, Zihang; Zhang, Weipeng; Yang, Honglei; Li, Yan; Wei, Haoyun
2016-11-01
An arbitrary optical frequency synthesizer with a broad tuning range and high frequency accuracy is presented. The system includes an external cavity diode laser (ECDL) as the output laser, an Erbium-doped optical frequency comb being a frequency reference, and a control module. The optical frequency from the synthesizer can be continuously tuned by the large-scale trans-tooth switch and the fine intra-tooth adjustment. Robust feedback control by regulating the current and PZT voltage enables the ECDL to phase-lock to the Erbium-doped optical frequency comb, therefore to keep stable frequency output. In the meanwhile, the absolute frequency of the synthesizer is determined by the repetition rate, the offset frequency and the beat frequency. All the phase lock loops in the system are traced back to a Rubidium clock. A powerful and friendly software is developed to make the operation convenient by integrating the functions of frequency setting, tuning, tracing, locking and measuring into a LabVIEW interface. The output frequency tuning span and the uncertainty of the system are evaluated as >6 THz and <3 kHz, respectively. The arbitrary optical frequency synthesizer will be a versatile tool in diverse applications, such as synthetic wavelength based absolute distance measurement and frequency-stabilized Cavity Ring-Down Spectroscopy.
Lifshitz black holes with arbitrary dynamical exponent in Horndeski theory
Bravo-Gaete, Moises
2013-01-01
In arbitrary dimensions, we consider a particular Horndeski action given by the Einstein-Hilbert Lagrangian with a cosmological constant term, while the source part is described by a real scalar field with its usual kinetic term together with a nonminimal kinetic coupling. For this model, whose field equations are of second-order, we report a class of Lifshitz black hole solutions with arbitrary dynamical exponents z. The solutions depend on a unique constant of integration with a scalar field that can not be switched off, and the signs of the coupling constants must be fixed in a precise way. In the second part, we show that this model also supports Lifshitz black hole solutions with a time-dependent scalar field only for a special value of the dynamical exponent z=1/3. In this case, the configuration has an additional constant of integration which allows to leave free the signs of the coupling constants. Remarkably, in three dimensions, there are no restrictions on the dynamical exponent, and Lifshitz black...
Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model
Esmaeili, Mohammad; Macnab, Chris
2017-01-01
This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401
Evaluation of the Eulerian-Lagrangian spray atomisation (ELSA) in spray simulations
Hoyas, S.; Pastor Enguídanos, José Manuel; KHUONG, ANH DUNG; MOMPÓ LABORDA, JUAN MANUEL; Ravet, Frederic
2011-01-01
Many approaches have been used to simulate the spray structure especially in modelling fuel sprays, i.e., Eulerian, Lagrangian, Lagrangian- Eulerian, Eulerian-Eulerian and Eulerian-Lagrangian approaches. The present study uses an Eulerian-Lagrangian spray atomisation (ELSA) method which is an integrated model for capturing the whole spray evolution starting directly from injector nozzle still the end. Our goal in this study is to evaluate the ELSA model which is implementing into the commerci...
Ibañez, Diego Rodríguez; Gómez-Pedrero, José A; Alonso, Jose; Quiroga, Juan A
2016-03-21
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.
Analysis of arbitrary defects in photonic crystals by use of the source-model technique.
Ludwig, Alon; Leviatan, Yehuda
2004-07-01
A novel method derived from the source-model technique is presented to solve the problem of scattering of an electromagnetic plane wave by a two-dimensional photonic crystal slab that contains an arbitrary defect (perturbation). In this method, the electromagnetic fields in the perturbed problem are expressed in terms of the field due to the periodic currents obtained from a solution of the corresponding unperturbed problem plus the field due to yet-to-be-determined correction current sources placed in the vicinity of the perturbation. Appropriate error measures are suggested, and a few representative structures are presented and analyzed to demonstrate the versatility of the proposed method and to provide physical insight into waveguiding and defect coupling mechanisms typical of finite-thickness photonic crystal slabs.
Efficient and exact sampling of simple graphs with given arbitrary degree sequence
Del Genio, Charo I; Toroczkai, Zoltan; Bassler, Kevin E
2010-01-01
Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or, alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-tracking or rejections. Using a central limit theorem-based reasonin...
Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator
Solís-Prosser, M A; Varga, J J M; Rebón, L; Ledesma, S; Iemmi, C; Neves, L
2013-01-01
Spatial qudits are D-dimensional ($D\\geq 2$) quantum systems carrying information encoded in the discretized transverse momentum and position of single photons. We present a proof-of-principle demonstration of a method for preparing arbitrary pure states of such systems by using a single phase-only spatial light modulator (SLM). The method relies on the encoding of the complex transmission function corresponding to a given spatial qudit state onto a preset diffraction order of a phase-only grating function addressed at the SLM. Fidelities of preparation above 94% were obtained with this method, which is simpler, less costly, and more efficient than those that require two SLMs for the same purpose.
Directory of Open Access Journals (Sweden)
Badis Haddag
2016-08-01
Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.
Wollny, Ines; Hartung, Felix; Kaliske, Michael
2016-05-01
In order to gain a deeper knowledge of the interactions in the coupled tire-pavement-system, e.g. for the future design of durable pavement structures, the paper presents recent results of research in the field of theoretical-numerical asphalt pavement modeling at material and structural level, whereby the focus is on a realistic and numerically efficient computation of pavements under rolling tire load by using the finite element method based on an Arbitrary Lagrangian Eulerian (ALE) formulation. Inelastic material descriptions are included into the ALE frame efficiently by a recently developed unsplit history update procedure. New is also the implementation of a viscoelastic cohesive zone model into the ALE pavement formulation to describe the interaction of the single pavement layers. The viscoelastic cohesive zone model is further extended to account for the normal pressure dependent shear behavior of the bonding layer. Another novelty is that thermo-mechanical effects are taken into account by a coupling of the mechanical ALE pavement computation to a transient thermal computation of the pavement cross-section to obtain the varying temperature distributions of the pavement due to climatic impact. Then, each ALE pavement simulation considers the temperature dependent asphalt material model that includes elastic, viscous and plastic behavior at finite strains and the temperature dependent viscoelastic cohesive zone formulation. The temperature dependent material parameters of the asphalt layers and the interfacial layers are fitted to experimental data. Results of coupled tire-pavement computations are presented to demonstrate potential fields of application.
LES of Gas Exchange in IC Engines
Directory of Open Access Journals (Sweden)
Mittal V.
2013-10-01
Full Text Available As engine technologies become increasingly complex and engines are driven to new operating points, understanding transient phenomena is important to ensure reliable engine operation. Unlike Reynolds Averaged Navier-Stokes (RANS studies that only provide cycle-averaged information, Large Eddy Simulation (LES studies are capable of simulating cycle-to-cycle dynamics. In this work, a finite difference based structured methodology for LES of IC engines is presented. This structured approach allows for an efficient mesh generation process and provides potential for higher order numerical accuracy. An efficient parallel scalable block decomposition is done to overcome the challenges associated with the low ratio of fluid elements to overall mesh elements. The motion of the valves and piston is handled using a dynamic cell blanking approach and the Arbitrary Lagrangian Eulerian (ALE method, respectively. Modified three-dimensional Navier-Stokes Characteristic Boundary Conditions (NSCBC are used in the simulation to prescribe conditions in the manifolds. The accuracy of the simulation framework is validated using various canonical configurations. Flow bench simulations of an axisymmetric configuration and an actual engine geometry are done with the LES methodology. Simulations of the gas exchange in an engine under motored conditions are also performed. Overall, good agreement is obtained with experiments for all the cases. Therefore, this framework can be used for LES of engine simulations. In the future, reactive LES simulations will be performed using this framework.
Guerdoux, Simon; Fourment, Lionel
2007-05-01
An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.
Ebrahimi, Mohsen; Abbaspour, Madjid
2015-01-01
The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.
Mehryan, S. A. M.; Ghalambaz, Mohammad; Ismael, Muneer A.; Chamkha, Ali J.
2017-02-01
This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (105-108), Hartmann number (0-200) and the orientation of the magnetic field (0-180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity.
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Numerical Simulation for Blast Analysis of Insulating Glass in a Curtain Wall
Deng, Rong-bing; Jin, Xian-long
2010-04-01
This article presents a three-dimensional numerical simulation method for blast response calculation of insulating glass in a curtain wall based on multi-material arbitrary Lagrangian-Eulerian (ALE) formulation and high-performance computer. The whole analytical model consists of explosion, air, curtain wall system, and ground. In particular, detailed components including insulating glass panels, aluminum column, silicone sealant, and other parts in the curtain wall are set up in terms of actual size and actual assembly. This model takes account of the coupling between blast and structure, nonlinear material behavior, brittle failure of glass material, and non-reflecting boundary definition. Final calculation has been performed on the Dawning 4000A supercomputer using the finite-element code LS-DYNA 971 MPP. The propagation of shock wave in air and blast-structure interaction is quite well estimated by numerical calculation. The damage regions of outer and inner glass are reproduced in the numerical simulations, which are in agreement with the experimental observations. The result provides a global understanding of insulating glass panels under blast loading in the curtain wall system. It may be generated to supplement experimental studies for developing appropriate design guidelines for curtain wall systems as well.
Fluid-structure interaction analysis of the flow through a stenotic aortic valve
Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes
2009-11-01
In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.
Ditching Simulation of Air and Space Vehicles
Patel, Mahesh; Mouillet, Jean-Baptiste; Burkhalter, Drew; Robert, Adrien; Schwoertzig, Thierry
2014-06-01
The impact on water of an aircraft or a re-entry space vehicle is a very complex event and considered as an important issue for the air and space industry. To ensure the safety of the crew and to limit the risks of loss of the vehicle, a prediction of its structural behaviour under various ditching configurations must be performed. Structural tests are very costly and must be limited in scale or number, so numerical simulations may be of great help for this purpose.Numerical simulations aim to predict the trajectory of the vehicle under impact, the pressure repartition on the body, structural stress, possible damages to the structure and occupant 'g' levels during impact. Physically, two types of configurations involving different phenomenon can be identified, vertical impacts and impacts with high horizontal components, where air entrapment, ventilation and cavitations can be the dimensioning factors.The purpose of this paper is to give an overview of the features of ALE (Arbitrary Lagrangian-Eulerian) transient dynamic explicit simulation methods to perform such simulations. This paper details analysis of the critical simulation parameters, fluid dynamic calculations, CPU and model size reduction techniques, Fluid-Structure contact modelling, examples of such simulations, correlation to physical tests using Explicit Finite Element based code RADIOSS from Altair Engineering. Two examples of re-entry and ditching numerical simulation are discussed in this paper with comparisons to physical test data.
PIV validation of blood-heart valve leaflet interaction modelling.
Kaminsky, R; Dumont, K; Weber, H; Schroll, M; Verdonck, P
2007-07-01
The aim of this study was to validate the 2D computational fluid dynamics (CFD) results of a moving heart valve based on a fluid-structure interaction (FSI) algorithm with experimental measurements. Firstly, a pulsatile laminar flow through a monoleaflet valve model with a stiff leaflet was visualized by means of Particle Image Velocimetry (PIV). The inflow data sets were applied to a CFD simulation including blood-leaflet interaction. The measurement section with a fixed leaflet was enclosed into a standard mock loop in series with a Harvard Apparatus Pulsatile Blood Pump, a compliance chamber and a reservoir. Standard 2D PIV measurements were made at a frequency of 60 bpm. Average velocity magnitude results of 36 phase-locked measurements were evaluated at every 10 degrees of the pump cycle. For the CFD flow simulation, a commercially available package from Fluent Inc. was used in combination with inhouse developed FSI code based on the Arbitrary Lagrangian-Eulerian (ALE) method. Then the CFD code was applied to the leaflet to quantify the shear stress on it. Generally, the CFD results are in agreement with the PIV evaluated data in major flow regions, thereby validating the FSI simulation of a monoleaflet valve with a flexible leaflet. The applicability of the new CFD code for quantifying the shear stress on a flexible leaflet is thus demonstrated.
Directory of Open Access Journals (Sweden)
Mohsen Ebrahimi
2015-01-01
Full Text Available The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1 the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2 the undulating mechanism has some limitations to produce high thrust forces; (3 the undulating foil shows a lower power consumption and higher efficiency; (4 changing the Reynolds number (Re in a constant St affects the performance of the oscillations; and (5 there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.
Fluid Structure Interaction Simulations of Pediatric Ventricular Assist Device Operation
Long, Chris; Marsden, Alison; Bazilevs, Yuri
2011-11-01
Pediatric ventricular assist devices (PVADs) are used for mechanical circulatory support in children with failing hearts. They can be used to allow the heart to heal naturally or to extend the life of the patient until transplant. A PVAD has two chambers, blood and air, separated by a flexible membrane. The air chamber is pressurized, which drives the membrane and pumps the blood. The primary risk associated with these devices is stroke or embolism from thrombogenesis. Simulation of these devices is difficult due to a complex coupling of two fluid domains and a thin membrane, requiring fluid-structure interaction modeling. The goal of this work is to accurately simulate the hemodynamics of a PVAD. We perform FSI simulations using an Arbitrary Lagrangian-Eulerian (ALE) finite element framework to account for large motions of the membrane and the fluid domains. The air, blood, and membrane are meshed as distinct subdomains, and a method for non-matched discretizations at the fluid-structure interface is presented. The use of isogeometric analysis to model the membrane mechanics is also discussed, and the results of simulations are presented.
Energy Technology Data Exchange (ETDEWEB)
Schunk, Peter Randall; Cairncross, Richard A. (Drexel University, Philadelphia, PA); Madasu, S. (Drexel University, Philadelphia, PA)
2004-03-01
This report summarizes research advances pursued with award funding issued by the DOE to Drexel University through the Presidential Early Career Award (PECASE) program. Professor Rich Cairncross was the recipient of this award in 1997. With it he pursued two related research topics under Sandia's guidance that address the outstanding issue of fluid-structural interactions of liquids with deformable solid materials, focusing mainly on the ubiquitous dynamic wetting problem. The project focus in the first four years was aimed at deriving a predictive numerical modeling approach for the motion of the dynamic contact line on a deformable substrate. A formulation of physical model equations was derived in the context of the Galerkin finite element method in an arbitrary Lagrangian/Eulerian (ALE) frame of reference. The formulation was successfully integrated in Sandia's Goma finite element code and tested on several technologically important thin-film coating problems. The model equations, the finite-element implementation, and results from several applications are given in this report. In the last year of the five-year project the same physical concepts were extended towards the problem of capillary imbibition in deformable porous media. A synopsis of this preliminary modeling and experimental effort is also discussed.
Simulations of blood flow in patient-specific aortic dissections with a deformable wall model
Baeumler, Kathrin; Vedula, Vijay; Sailer Karmann, Anna; Marsden, Alison; Fleischmann, Dominik
2016-11-01
Aortic dissection is a life-threatening condition in which blood penetrates into the vessel wall, creating a second flow channel, often requiring emergency surgical repair. Up to 50% of patients who survive the acute event face late complications like aortic dilatation and eventual rupture. Prediction of late complications, however, remains challenging. We therefore aim to perform accurate and reliable patient-specific simulations of blood flow in aortic dissections, validated by 4D-Flow MRI. Among other factors, this is a computational challenge due to the compliance of the vessel walls and the large degree of membrane deformation between the two flow channels. We construct an anatomic patient-specific model from CT data including both flow channels and the membrane between them. We then run fluid structure interaction simulations using an arbitrary Lagrangian-Eulerian (ALE) formulation within a multiscale variational framework, employing stabilized finite element methods. We compare hemodynamics between a rigid and a deformable wall model and examine membrane dynamics and pressure differences between the two flow channels. The study focuses on the computational and modeling challenges emphasizing the importance of employing a deformable wall model for aortic dissections.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-14
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc(-0.5), and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Numerical simulation of particle dynamics at a fluid interface
Yue, Pengtao
2016-11-01
Particles straddling a fluid interface exhibit rich dynamics due to the coexistence of moving boundaries, fluid interfaces, and moving contact lines. For instance, as a particle falls onto a liquid surface, it may sink, float, or even bounce off depending on a wide range of parameters. To better understand the dynamics of such a multiphase system, we develop a finite-element based arbitrary Lagrangian-Eulerian-phase-field method. The governing equations for particles and fluids are solved in a unified variational framework that satisfies an energy law. We first validate our code by computing three problems found in literature: sinking of a horizontal cylinder through an air-water interface, sinking of a sphere through an air-oil interface at small Reynolds numbers, and bouncing of a sphere after its normal impact onto an air-water interface. Our numerical results show good agreements with experimental data. We then investigate the effect of wetting properties, including static contact angle, slip length, and wall energy relaxation, on particle dynamics at the fluid interface. This work is supported by NSF DMS-1522604.
Nilfouroushan, F.; Pysklywec, R.; Cruden, S.
2009-05-01
Cohesionless or very low cohesion granular materials are widely used in analogue/physical models to simulate brittle rocks in the upper crust. Selection of materials with appropriate cohesion values in such models is important for the simulation of the dynamics of brittle rock deformation in nature. Uncertainties in the magnitude of cohesion (due to measurement errors, extrapolations at low normal stresses, or model setup) in laboratory experiments can possibly result in misinterpretation of the styles and mechanisms of deformation in natural fold-and thrust belts. We ran a series of 2-D numerical models to investigate systematically the effect of cohesion uncertainties on the evolution of models of fold-and-thrust belts. The analyses employ SOPALE, a geodynamic code based on the arbitrary Lagrangian-Eulerian (ALE) finite element method. Similar to analogue models, the material properties of sand and transparent silicone (PDMS) are used to simulate brittle and viscous behaviors of upper crustal rocks. The suite of scaled brittle and brittle-viscous numerical experiments have the same initial geometry but the cohesion value of the brittle layers is increased systematically from 0 to 100 Pa. The stress and strain distribution in different sets of models with different cohesion values are compared and analyzed. The kinematics and geometry of thrust wedges including the location and number of foreland- and hinterland- verging thrust faults, pop-up structures, tapers and topography are also explored and their sensitivity to cohesion value is discussed.
Lee, Chi-Seung; Cho, Jin-Rae; Kim, Wha-Soo; Noh, Byeong-Jae; Kim, Myung-Hyun; Lee, Jae-Myung
2013-03-01
In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.
Steady-state and dynamic models for particle engulfment during solidification
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Coupling fluid-structure interaction with phase-field fracture
Wick, Thomas
2016-12-01
In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.
Takagaki, Naohisa; Kurose, Ryoichi; Kimura, Atsushi; Komori, Satoru
2016-11-01
The mass transfer across a sheared gas-liquid interface strongly depends on the Schmidt number. Here we investigate the relationship between mass transfer coefficient on the liquid side, kL, and Schmidt number, Sc, in the wide range of 0.7 ≤ Sc ≤ 1000. We apply a three-dimensional semi direct numerical simulation (SEMI-DNS), in which the mass transfer is solved based on an approximated deconvolution model (ADM) scheme, to wind-driven turbulence with mass transfer across a sheared wind-driven wavy gas-liquid interface. In order to capture the deforming gas-liquid interface, an arbitrary Lagrangian-Eulerian (ALE) method is employed. Our results show that similar to the case for flat gas-liquid interfaces, kL for the wind-driven wavy gas-liquid interface is generally proportional to Sc‑0.5, and can be roughly estimated by the surface divergence model. This trend is endorsed by the fact that the mass transfer across the gas-liquid interface is controlled mainly by streamwise vortices on the liquid side even for the wind-driven turbulence under the conditions of low wind velocities without wave breaking.
Explicit learning of arbitrary and non-arbitrary action-effect relations in adults and 4-year-olds
Directory of Open Access Journals (Sweden)
Stephan Alexander eVerschoor
2012-02-01
Full Text Available Ideomotor theories claim that carrying out a movement that produces a perceivable effect creates a bidirectional association between the two, which can be used by action control processes to retrieve the associated action by anticipating its outcome. Indeed, previous implicit-learning studies have shown that practice renders novel but action-contingent stimuli effective retrieval cues of the action they used to follow, suggesting that experiencing sequences of actions and effects creates bidirectional action-effect associations. We investigated whether action-effect associations are also acquired under explicit-learning conditions and whether familiar action-effect relations (such as between a trumpet and a trumpet sound are learned the same way as novel, arbitrary relations are. We also investigated whether these factors affect adults and 4-year-old children equally. Our findings suggest that explicit learning produces the same bidirectional action-effect associations as implicit learning does, that non-arbitrary relations improve performance without affecting learning per se, and that adults and young children show equivalent performance—apart from the common observation that children have greater difficulty to withstand stimulus-induced action tendencies.
Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.
Hsieh, Tzu H; Keh, Huan J
2010-10-01
An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.
Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams
Latychevskaia, Tatiana; Fink, Hans-Werner
2016-05-01
It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method.
Sensing and reconstruction of arbitrary light-in-flight paths by a relativistic imaging approach
Laurenzis, Martin; Klein, Jonathan; Bacher, Emmanuel; Metzger, Nicolas; Christnacher, Frank
2016-10-01
Transient light imaging is an emerging technology and interesting sensing approach for fundamental multidisciplinary research ranging from computer science to remote sensing. Recent developments in sensor technologies and computational imaging has made this emerging sensing approach a candidate for next generation sensor systems with rapidly increasing maturity but still relay on laboratory technology demonstrations. At ISL, transient light sensing is investigated by time correlated single photon counting (TCSPC). An eye-safe shortwave infrared (SWIR) TCSPC setup, consisting of an avalanche photodiode array and a pulsed fiber laser source, is used to investigate sparsely scattered light while propagating through air. Fundamental investigation of light in light are carried out with the aim to reconstruct the propagation path of arbitrary light paths. Light pulses are observed in light at various propagation angles and distances. As demonstrated, arbitrary light paths can be distinguished due to a relativistic effect leading to a distortion of temporal signatures. A novel method analyzing the time difference of arrival (TDOA) is carried out to determine the propagation angle and distance with respect to this relativistic effect. Based on our results, the performance of future laser warning receivers can be improved by the use of single photon counting imaging devices. They can detect laser light even when the laser does not directly hit the sensor or is passing at a certain distance.
Institute of Scientific and Technical Information of China (English)
徐志杰
2012-01-01
We present a rigorous homogenization approach for elcient computation of a class of physical problems in a one-dimensional periodic heterogeneous material. This material is represented by a spatially periodic array of unit cells with a length of More specifically, the method is applied to the diffusion, heat conduction, and wave propagation problems. Heterogeneous materials can have arbitrary position-dependent continuous or discontinuous materials properties （for example heat conductivity） within the unit cell. The final effective model includes both effective properties at the leading order and high-order contributions due to the microscopic heterogeneity. A dimensionless heterogeneity parameter ~ is defined to represent high-order contributions, shown to be in the range of [-1/12, 0], and has a universal expression for all three problems. Both effective properties and heterogeneity parameter 13 are independent oft, the microscopic scale of heterogeneity. The homogenized solution describing macroscopic variations can be obtained from the effective model. Solution with sub-unit-cell accuracy can be constructed based on the homogenized solution and its spatial derivatives. The paper represents a general approach to obtain the effective model for arbitrary periodic heterogeneous materials with position-dependent properties.
Filimonov, M. Yu.
2016-12-01
An analytical method for representation of solutions of nonlinear partial differential equations in the form of special series with recurrently computed coefficients is presented. The coefficients recurrent obtaining from linear differential equations is achieved by specificity of the considered equations. It turns out that due to the functional arbitrariness which possibly is contained in special series, one can prove global convergence of the constructed series to solution of considered nonlinear partial differential equations.
Contextually in a Peres—Mermin square using arbitrary operators
Laversanne-Finot, A.; Ketterer, A.; Barros, M. R.; Walborn, S. P.; Coudreau, T.; Keller, A.; Milman, P.
2016-03-01
The contextuality of quantum mechanics can be shown by the violation of inequalities based on measurements of well chosen observables. These inequalities have been designed separately for both discrete and continuous variables. Here we unify both strategies by introducing general conditions to demonstrate the contextuality of quantum mechanics from measurements of observables of arbitrary dimensions. Among the consequences of our results is the impossibility of having a maximal violation of contextuality in the Peres-Mermin scenario with discrete observables of odd dimensions. In addition, we show how to construct a large class of observables with a continuous spectrum enabling the realization of contextuality tests both in the Gaussian and non-Gaussian regimes.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding
Lau, Hoi-Kwan; Plenio, Martin B.
2016-09-01
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.
Lau, Hoi-Kwan; Plenio, Martin B
2016-09-02
Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.
Capacity of arbitrary-order orbital angular momentum multiplexing system
Zhao, Yaqin; Zhong, Xin; Ren, Guanghui; He, Shengyang; Wu, Zhilu
2017-03-01
Arbitrary-order orbital angular momentum multiplexing (AOAMM) systems utilize OAM modes with both integer and fractional topological charges which are non-orthogonal. In this paper, the transmission matrix and the capacity per unit bandwidth, i.e., the spectral efficiency (SE) of an AOAMM system is derived based on the spatial cross correlations of the OAM submodes under different aperture conditions. The results show that in limited apertures, the SEs of AOAMM systems increase dramatically as the interval of two adjacent OAM submodes decreases by losing orthogonality. AOAMM systems are effective choices for satisfying the explosive growth of the communication requirements. This paper provides insight into the selection of spatially multiplexing approaches and the design of interference mitigation techniques for AOAMM systems with increased SEs.
Dielectric function of a collisional plasma for arbitrary ionic charge
Nersisyan, H B; Andreev, N E; Matevosyan, H H
2013-01-01
Simple model for the dielectric function of a completely ionized plasma with an arbitrary ionic charge, that is valid for the long-wavelength, high-frequency perturbations is derived using approximate solution of a linearized Fokker-Planck kinetic equation for electrons with a Landau collision integral. The model accounts for both the electron-ion collisions and the collisions of the subthermal (cold) electrons with thermal ones. The relative contribution of the latter collisions into dielectric function is treated phenomenologically introducing some parameter $\\varkappa $ which is chosen in such a way to get well-known expression for stationary electric conductivity in low-frequency region and fulfill requirement of vanishing contribution of electron-electron collisions at high frequency region. This procedure ensures the applicability of our model in the wide ranges of plasma parameters as well as the frequency of the electromagnetic radiation. Unlike interpolation formula proposed earlier by Brantov \\emph{...
General Analytical Solutions of Scalar Field Cosmology with Arbitrary Potential
Dimakis, N; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T; Terzis, Petros A
2016-01-01
We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a FLRW metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. The case for both spatially flat and non flat are studied first in the presence of only the scalar field and subsequently with the addition of non interacting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.
Arbitrary mechanical system description by a symbolic line
Dmitrochenko, O.; Mikkola, A.; Olshevskiy, A.
2016-04-01
A single-line symbolic notation is proposed for description of an arbitrary multibody system. The kinematics is represented by a sequence of elementary transformations, each of those being marked by a reserved alphabetic character. Force and constraint links between the bodies are also defined by reserved characters. The parameters of the system, such as identifiers of degrees of freedom, inertia parameters and others, are assigned default names if not specified. However, user-defined names, parameters and functions can be placed instead if needed. The proposed description in its shortest form is suitable for academic purpose to identify only the essential properties of a multibody system. In an extended form, by explicit mentioning names of variables and parameters and other data like initial conditions, this description can serve as input data for a multibody analysis software. Lots of examples from the academic area and technical applications are given to show the applicability of the description.
Agile high resolution arbitrary waveform generator with jitterless frequency stepping
Reilly, Peter T. A.; Koizumi, Hideya
2010-05-11
Jitterless transition of the programmable clock waveform is generated employing a set of two coupled direct digital synthesis (DDS) circuits. The first phase accumulator in the first DDS circuit runs at least one cycle of a common reference clock for the DDS circuits ahead of the second phase accumulator in the second DDS circuit. As a phase transition through the beginning of a phase cycle is detected from the first phase accumulator, a first phase offset word and a second phase offset word for the first and second phase accumulators are calculated and loaded into the first and second DDS circuits. The programmable clock waveform is employed as a clock input for the RAM address controller. A well defined jitterless transition in frequency of the arbitrary waveform is provided which coincides with the beginning of the phase cycle of the DDS output signal from the second DDS circuit.
Three-loop vacuum integrals with arbitrary masses
Freitas, Ayres
2016-01-01
Three-loop vacuum integrals are an important building block for the calculation of a wide range of three-loop corrections. Until now, only results for integrals with one and two independent mass scales are known, but in the electroweak Standard Model and many extensions thereof, one often encounters more mass scales of comparable magnitude. For this reason, a numerical approach for the evaluation of three-loop vacuum integrals with arbitrary mass pattern is proposed here. Concretely, one can identify a basic set of three master integral topologies. With the help of dispersion relations, each of these can be transformed into one-dimensional or, for the most complicated case, two-dimensional integrals in terms of elementary functions, which are suitable for efficient numerical integration.
Calculating fusion neutron energy spectra from arbitrary reactant distributions
Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.
2016-02-01
The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.
Stimulator with arbitrary waveform for auditory evoked potentials
Energy Technology Data Exchange (ETDEWEB)
Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)
2007-11-15
The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.
Growing Multiplex Networks with Arbitrary Number of Layers
Fotouhi, Babak
2015-01-01
This paper focuses on the problem of growing multiplex networks. Currently, the results on the inter-layer degree distribution of growing multiplex networks present in the literature pertain to the case of two layers, and are confined to the special case of homogeneous growth. In the present paper, we obtain closed-form solutions for the inter-layer degree distribution of heterogeneously growing multilayer networks with arbitrary number of layers in the steady state. Heterogeneous growth means that each incoming node establishes different numbers of links in different layers. We first briefly consider the problem for two layers: we consider the cases of preferential attachment and uniform attachment separately, and we obtain closed-form expressions for the inter-layer degree distribution and expected degree distributions in each layer. Then for both attachment schemes, we generalize the problem to $M$ layers, and provide solutions for the joint degree distribution across all layers.
Arbitrary spin conformal fields in (A)dS
Metsaev, R R
2014-01-01
Totally symmetric arbitrary conformal spin fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate explicitly that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. Explicit interrelation between Poincar\\'e basis conformal fields and (A)dS basis conformal fields is obtained. Covariant Lorentz-like and de-Donder like gauge conditions considerably simplifying the Lagrangian of conformal fields are proposed. Using such gauge conditions, we explain how the partition function of conformal field is obtained in the framework of our approach.
Frenkel electron on an arbitrary electromagnetic background and magnetic Zitterbewegung
Deriglazov, Alexei A
2014-01-01
We present Lagrangian which implies both necessary constraints and dynamical equations for position and spin of relativistic spin one-half particle. The model is consistent for any value of magnetic moment $\\mu$ and for arbitrary electromagnetic background. Our equations coincide with those of Frenkel in the approximation in which the latter have been obtained by Frenkel. Transition from approximate to exact equations yields two structural modifications of the theory. First, Frenkel condition on spin-tensor turns into the Pirani condition. Second, canonical momentum is no more proportional to velocity. Due to this, even when $\\mu=1$ (Frenkel case), the complete and approximate equations predict different behavior of spinning particle. The difference of momentum from velocity means extra contribution into spin-orbit interaction. To estimate the contribution, we found exact solution to complete equations for the case of uniform magnetic field. While BMT electron moves around the circle, our particle experiences...
Single-mode squeezing in arbitrary spatial modes
Semmler, Marion; Chille, Vanessa; Gabriel, Christian; Banzer, Peter; Aiello, Andrea; Marquardt, Christoph; Leuchs, Gerd
2016-01-01
As the generation of squeezed states of light has become a standard technique in laboratories, attention is increasingly directed towards adapting the optical parameters of squeezed beams to the specific requirements of individual applications. It is known that imaging, metrology, and quantum information may benefit from using squeezed light with a tailored transverse spatial mode. However, experiments have so far been limited to generating only a few squeezed spatial modes within a given setup. Here, we present the generation of single-mode squeezing in Laguerre-Gauss and Bessel-Gauss modes, as well as an arbitrary intensity pattern, all from a single setup using a spatial light modulator (SLM). The degree of squeezing obtained is limited mainly by the initial squeezing and diffractive losses introduced by the SLM, while no excess noise from the SLM is detectable at the measured sideband. The experiment illustrates the single-mode concept in quantum optics and demonstrates the viability of current SLMs as fl...
Electron with arbitrary pseudo-spins in multilayer graphene
Institute of Scientific and Technical Information of China (English)
Worasak Prarokijjak; Bumned Soodchomshom
2015-01-01
Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.
Totally asymmetric exclusion processes with particles of arbitrary size
Lakatos, G
2003-01-01
The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...
Classical resolution of black hole singularities in arbitrary dimension
Bazeia, D; Olmo, Gonzalo J; Rubiera-Garcia, D; Sanchez-Puente, A
2015-01-01
A metric-affine approach is employed to study higher-dimensional modified gravity theories involving different powers and contractions of the Ricci tensor. It is shown that the field equations are \\emph{always} second-order, as opposed to the standard metric approach, where this is only achieved for Lagrangians of the Lovelock type. We point out that this property might have relevant implications for the AdS/CFT correspondence in black hole scenarios. We illustrate these aspects by considering the case of Born-Infeld gravity in $d$ dimensions, where we work out exact solutions for electrovacuum configurations. Our results put forward that black hole singularities in arbitrary dimensions can be cured in a purely classical geometric scenario governed by second-order field equations.
Leader Election for Anonymous Asynchronous Agents in Arbitrary Networks
Dereniowski, Dariusz
2012-01-01
We study the problem of leader election among mobile agents operating in an arbitrary network modeled as an undirected graph. Nodes of the network are unlabeled and all agents are identical. Hence the only way to elect a leader among agents is by exploiting asymmetries in their initial positions in the graph. Agents do not know the graph or their positions in it, hence they must gain this knowledge by navigating in the graph and share it with other agents to accomplish leader election. This can be done using meetings of agents, which is difficult because of their asynchronous nature: an adversary has total control over the speed of agents. When can a leader be elected in this adversarial scenario and how to do it? We give a complete answer to this question by characterizing all initial configurations for which leader election is possible and by constructing an algorithm that accomplishes leader election for all configurations for which this can be done.
Ma, Yanyuan
2013-09-01
We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice. © 2013 American Statistical Association.
Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure
Yatsyna, Vasyl; Bakker, Daniël J.; Salén, Peter; Feifel, Raimund; Rijs, Anouk M.; Zhaunerchyk, Vitali
2016-09-01
We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N -methylacetamide molecules in the mid-IR spectral range of 1000 - 1800 cm-1 , utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N -methylacetamide are measured in the full amide I-III range.
A General Model for Representing Arbitrary Unsymmetries in Various Types of Network Analysis
DEFF Research Database (Denmark)
Rønne-Hansen, Jan
1997-01-01
When dealing with unsymmetric faults various proposals have been put forward. In general they have been characterized by specific treatment of the single fault in accordance with the structure and impedances involved. The model presented is based on node equations and was originally developed for...... complicated fault situation which has not been treated before for traditional transient stability analysis...... for transient stability studies in order to allow for an arbitrary fault representation as seen from the positive sequence network. The method results in impedances -or admittances-combining the negative sequence and zero sequence representation for the symmetrical network with the structure and electrical...... constants of the unsymmetry involving one or more buses. These impedances are introduced in the positive sequence network in the nodes involved in the unsymmetrical conditions. In addition the model can be used for static fault current analysis and presents also in this connection a general method...
The Blume-Emery-Griffiths neural network: dynamics for arbitrary temperature
Bollé, D.; Blanco, J. Busquets; Shim, G. M.; Verbeiren, T.
2004-01-01
The parallel dynamics of the fully connected Blume-Emery-Griffiths neural network model is studied for arbitrary temperature. By employing a probabilistic signal-to-noise approach, a recursive scheme is found determining the time evolution of the distribution of the local fields and, hence, the evolution of the order parameters. A comparison of this approach is made with the generating functional method, allowing to calculate any physical relevant quantity as a function of time. Explicit analytic formula are given in both methods for the first few time steps of the dynamics. Up to the third time step the results are identical. Some arguments are presented why beyond the third time step the results differ for certain values of the model parameters. Furthermore, fixed-point equations are derived in the stationary limit. Numerical simulations confirm our theoretical findings.
Progress on a Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits
Bassi, Gabriele; Warnock, Robert L
2005-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding). The time evolution of the phase space distribution is determined by solving the Vlasov-Maxwell equations in the time domain. This provides lower numerical noise than the macroparticle method, and allows the study of emittance degradation and microbunching in bunch compressors. We calculate the fields excited by the bunch in the lab frame using a formula simpler than that based on retarded potentials.* We have developed an algorithm for solving the Vlasov equation in the beam frame using arc length as the independent variable and our method of local characteristics (discretized Perron-Frobenius operator).We integrate in the interaction picture in the hope that we can adopt a fixed grid. The distribution function will be represented by B-splines, in a scheme preserving positivity and normalization of the distribution. The transformation between l...
Mendoza, Carlos I; Santamaría-Holek, I
2009-01-28
We propose a simple and general model accounting for the dependence of the viscosity of a hard sphere suspension at arbitrary volume fractions. The model constitutes a continuum-medium description based on a recursive-differential method where correlations between the spheres are introduced through an effective volume fraction. In contrast to other differential methods, the introduction of the effective volume fraction as the integration variable implicitly considers interactions between the spheres of the same recursive stage. The final expression for the viscosity scales with this effective volume fraction, which allows constructing a master curve that contains all the experimental situations considered. The agreement of our expression for the viscosity with experiments at low- and high-shear rates and in the high-frequency limit is remarkable for all volume fractions.
Visualising three-dimensional volumetric data with an arbitrary coordinate system
Taylor, Rhys
2016-01-01
Astronomical data does not always use Cartesian coordinates. Both all-sky observational data and simulations of rotationally symmetric systems, such as accretion and protoplanetary discs, may use spherical polar or other coordinate systems. Standard displays rely on Cartesian coordinates, but converting non-Cartesian data into Cartesian format causes distortion of the data and loss of detail. I here demonstrate a method using standard techniques from computer graphics that avoids these problems with 3D data in arbitrary coordinate systems. The method adds minimum computational cost to the display process and is suitable for both realtime, interactive content and producing fixed rendered images and videos. Proof-of-concept code is provided which works for data in spherical polar coordinates.
Visualizing Three-dimensional Volumetric Data with an Arbitrary Coordinate System
Taylor, R.
2017-02-01
Astronomical data does not always use Cartesian coordinates. Both all-sky observational data and simulations of rotationally symmetric systems, such as accretion and protoplanetary disks, may use spherical polar or other coordinate systems. Standard displays rely on Cartesian coordinates, but converting non-Cartesian data into Cartesian format causes distortion of the data and loss of detail. Here, I demonstrate a method using standard techniques from computer graphics that avoids these problems with three-dimensional data in arbitrary coordinate systems. The method adds minimum computational cost to the display process and is suitable for both realtime, interactive content, and producing fixed rendered images and videos. Proof-of-concept code is provided which works for data in spherical polar coordinates.
Maric, Tomislav; Bothe, Dieter
2013-01-01
A new parallelized unsplit geometrical Volume of Fluid (VoF) algorithm with support for arbitrary unstructured meshes and dynamic local Adaptive Mesh Refinement (AMR), as well as for two and three dimensional computation is developed. The geometrical VoF algorithm supports arbitrary unstructured meshes in order to enable computations involving flow domains of arbitrary geometrical complexity. The implementation of the method is done within the framework of the OpenFOAM library for Computational Continuum Mechanics (CCM) using the C++ programming language with modern policy based design for high program code modularity. The development of the geometrical VoF algorithm significantly extends the method base of the OpenFOAM library by geometrical volumetric flux computation for two-phase flow simulations. For the volume fraction advection, a novel unsplit geometrical algorithm is developed, which inherently sustains volume conservation utilizing unique Lagrangian discrete trajectories located in the mesh points. ...
Institute of Scientific and Technical Information of China (English)
LIN Jian-guo; XIE Zhi-hua; ZHOU Jun-tao
2007-01-01
Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the scheme are studied by the Fourier analysis.Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node, the proposed scheme is explicit and can achieve arbitrary order of accuracy in space. Application examples for the convectiondiffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given. It is found that the proposed compact scheme is not only simple to implement and economical to use, but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.
DEFF Research Database (Denmark)
Carretta, Y.; Boman, R.; Bech, Jakob Ilsted
2017-01-01
This paper presents a numerical investigation of microscopic lubricant flows from the cavities to the plateaus of the surface roughness of metal sheets during forming processes. This phenomenon, called micro-plasto-hydrodynamic (MPH) lubrication, was observed experimentally in various situations...... at the microscopic scale. These simulations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism. In this paper, this methodology is used to study plane strip drawing. The numerical model is able to predict the onset of lubricant escape and the amount of lubricant flowing...... on the plateaus. Numerical results exhibit good agreement with experimental measurements....
Periodic Boundary Conditions in the ALEGRA Finite Element Code
Energy Technology Data Exchange (ETDEWEB)
AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.
1999-11-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing
DEFF Research Database (Denmark)
Carretta, Y.; Bech, Jakob Ilsted; Legrand, N.
2017-01-01
This paper presents a new finite element model capable of predicting the onset of micro-plasto-hydrodynamic (MPH) lubrication and the amount of lubricant escaping from surface pockets in metal forming.The present approach is divided in two steps. First, a simulation at the macroscopic level...... is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism.The developed...
Energy Technology Data Exchange (ETDEWEB)
Knap, J; McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T
2006-06-22
We describe the results of a Scaled-Thermal-Explosion-eXperiment (STEX) for LX-10 (94.7 % HMX, 5.3 % Viton A) confined in an AerMet 100 (iron-cobalt-nickel alloy) tube with reinforced end caps. The experimental measurements are compared with predictions of an Arbitrary-Lagrangian-Eulerian (ALE3D) computer model. ALE3D is a three-dimensional multi-physics computer code capable of solving coupled equations describing thermal, mechanical and chemical behavior of materials. In particular, we focus on the processes linked to fracture and fragmentation of the AerMet tube driven by the LX-10 deflagration.
Flapping hydrofoil performance at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Pedro, G.; Suleman, A.; Djilali, N. [Univ. of Victoria, Dept. of Mechanical Engineering, Victoria, British Columbia (Canada)]. E-mail: gpedro@uvic.ca; suleman@uvic.ca; ndjilali@uvic.ca
2003-07-01
This paper relates the study of unsteady flow past oscillating hydrofoils at low Reynolds numbers using a computational fluid dynamics research code based on structured grids. The solver utilizes an explicit, time-stepping algorithm with an Arbitrary Lagrangian-Eulerian formulation to account for mesh movement. The viscous flow past a NACA0012 hydrofoil at various pitching and heaving frequencies and other design parameters is simulated. The effect of these parameters on thrust, power and efficiency is studied along with flow field visualisations to account for these variations. (author)
Developing a Learning Algorithm-Generated Empirical Relaxer
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Wayne [Univ. of Colorado, Boulder, CO (United States). Dept. of Applied Math; Kallman, Josh [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Toreja, Allen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallagher, Brian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiang, Ming [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Laney, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-03-30
One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.
Meshing Highly Regular Structures: The Case of Super Carbon Nanotubes of Arbitrary Order
Directory of Open Access Journals (Sweden)
Christian Schröppel
2015-01-01
Full Text Available Mesh generation is an important step in many numerical methods. We present the “Hierarchical Graph Meshing” (HGM method as a novel approach to mesh generation, based on algebraic graph theory. The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGM method is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGM algorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.
Battistel, O A
2002-01-01
A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of the calculations due to the divergent character is still present. We show that by using the symmetry properties as a guide to search for the (compulsory) choices in such a way as to avoid ambiguities, a deep and clear understanding of the role of regularization methods emerges. Requiring then an universal point of view for the problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifications of most intriguing aspect of the perturbative calculations in quantum field theory: the triangle anomalies.
Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands
Directory of Open Access Journals (Sweden)
I. Prudyus
2014-12-01
Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.
Althaus, Ernst; Caprara, Alberto; Lenhof, Hans-Peter; Reinert, Knut
2002-01-01
Multiple sequence alignment is one of the dominant problems in computational molecular biology. Numerous scoring functions and methods have been proposed, most of which result in NP-hard problems. In this paper we propose for the first time a general formulation for multiple alignment with arbitrary gap-costs based on an integer linear program (ILP). In addition we describe a branch-and-cut algorithm to effectively solve the ILP to optimality. We evaluate the performances of our approach in terms of running time and quality of the alignments using the BAliBase database of reference alignments. The results show that our implementation ranks amongst the best programs developed so far.
Coupling dynamic analysis of a liquid-filled spherical container subject to arbitrary excitation
Institute of Scientific and Technical Information of China (English)
Jing Lü; Shimin Wang; Tianshu Wang
2012-01-01
Using spherical coordinates,the coupling nonlinear dynamic system of a liquid-filled spherical tank,which can be excited discretionarily,is deduced by the H-O variational principle,and the viscous damping is introduced via the liquid dissipation function.The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation.Normal differential equations are obtained through the Galerkin method.An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation.The fixed and slosh masses,as well as the spring and damping constants,are determined in such a way as to satisfy the principle of equivalence.Numerical simula tions illustrate the theoretical results in this paper as well.
Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping
2015-12-01
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.
Solving the Helmholtz equation for membranes of arbitrary shape: numerical results
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias CUICBAS, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Physics Department, University of Texas at El Paso, El Paso, TX (United States)], E-mail: paolo.amore@gmail.google.com
2008-07-04
I calculate the modes of vibration of membranes of arbitrary shape using a collocation approach based on little sinc functions. The matrix representation of the PDE obtained using this method is explicit and does not require the calculation of integrals. To illustrate the virtues of this approach, I have considered a large number of examples, part of them are taken from the literature, and part of them new. When possible, I have tested the accuracy of these results by comparing them with the exact results (when available) or with results from the literature. In particular, in the case of the L-shaped membrane, the first example discussed in the paper, I show that it is possible to extrapolate the results obtained with different grid sizes to obtain highly precise results. Finally, I also show that the present collocation technique can be easily combined with conformal mapping to provide numerical approximations to the energies which quite rapidly converge to the exact results.
Institute of Scientific and Technical Information of China (English)
Wang Teng; Wang Kuihua; Xie Kanghe
2001-01-01
The vibration problem of a pile of arbitrary segments with variable modulus under exciting force is established, in which the influence of the soil under pile toe and the surroundings is taken into account. With Laplace transforms, the transmit functions for velocity and displacement of pile are derived. Furthermore, in terms of the convolution theorem and inversed Laplace transform, an analytical solution for the time domain response of a pile subjected to a semi-sine impulse is developed,which is the theoretical basis of the sonic method in pile integrity testing. Based on the solution, the vibration properties of pile with sharp or continuous modulus are studied. The validity of this approach is verified through fidd dynamic tests on some engineering piles. It shows that the theoretical prediction and the response of the pile are in good agreement.
Garrido, M C; Ruiz, A; 10.1613/jair.533
2011-01-01
This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard prob...
Incremental deformation analysis of shell and corrugated diaphragm based on arbitrary configuration
Institute of Scientific and Technical Information of China (English)
Xuefeng He; Jue Zhang; Huijun Chen; Jing Fang
2005-01-01
With respect to an arbitrary configuration of a deformed structure, two sets of incremental equations are proposed for the deformation analysis of revolution shells and diaphragms loaded by both lateral pressures and the initial stresses produced in manufacturing. These general equations can be reduced to the simplified Koiter's Reissner-Meissner-Reissner (RMR) equations and the simplified Reissner's equations, when the initial stresses are set to zero.They can also be deduced to the total Lagrange form or the updated Lagrange form, respectively, as the structure is specified as the un-deformed or the former-deformed configurations. These incremental equations can be easily transformed into finite difference forms and solved by common numerical solvers of ordinary differential equations. Some numerical examples are presented to show the applications of the incremental equations to the deep shell of revolution and the corrugated diaphragms used in microelectronical mechanical system (MEMS). The results are in good agreement with those from finite element method (FEM).
Polarizabilities of an annular cut in the wall of an arbitrary thickness
Kurennoy, S. S.
1996-07-01
The electric and magnetic polarizabilities of an aperture are its important characteristics in the theory of aperture coupling and diffraction of EM waves. The beam coupling impedances due to a small discontinuity on the chamber wall of an accelerator can also be expressed in terms of the polarizabilities of the discontinuity. The polarizabilities are geometrical factors which can be found by solving a static (electric or magnetic) problem. However, they are known in an explicit analytical form only for a few simple-shaped discontinuities, such as an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall of an arbitrary thickness are studied using a combination of analytical, variational and numerical methods. The results are applied to estimate the coupling impedances of button-type beam position monitors.
Polarizabilities of an annular cut in the wall of an arbitrary thickness
Kurennoy, S S
1995-01-01
The electric and magnetic polarizabilities of an aperture are its important characteristics in the theory of aperture coupling and diffraction of EM waves. The beam coupling impedances due to a small discontinuity on the chamber wall of an accelerator can also be expressed in terms of the polarizabilities of the discontinuity. The polarizabilities are geometrical factors which can be found by solving a static (electric or magnetic) problem. However, they are known in an explicit analytical form only for a few simple-shaped discontinuities, such as an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall of an arbitrary thickness are studied using a combination of analytical, variational and numerical methods. The results are applied to estimate the coupling impedances of button-type beam position monitors.
Wave-front reconstruction without twin-image blurring by two arbitrary step digital holograms.
Chen, Gu L; Lin, Ching Yang; Yau, Hon Fai; Kuo, Ming Kuei; Chang, Chi Ching
2007-09-03
We discuss a novel approach for numerical wave-front reconstruction which utilizes arbitrary phase step digital holography. Our experimental results demonstrate that only two digital holograms and a simple estimation procedure are required for twin-image suppression, and for numerical reconstruction. One advantage of this approach is its simplicity. Only one estimate equation needs be applied. In addition the optical system can be constructed from inexpensive, generally available elements. Another advantage is the effectiveness of the method. The tolerance of the estimated value is less than 1% different than the actual value. This means that the quality of the reconstructed image is superior. This novel approach should make the application of digital holography easier and more widely available.
SIMULATION OF SURFACE HEATING FOR ARBITRARY SHAPE’S MOVING BODIES/SOURCES BY USING R-FUNCTIONS
Directory of Open Access Journals (Sweden)
Sergiy Plankovskyy
2016-12-01
Full Text Available The purpose of this article is to propose an efficient algorithm for determining the place of an action of a heat source with a given motion law for a body of an arbitrary shape using methods of analytical geometry. The solution to this problem is an important part of a modeling of a laser, plasma, ion beam treatment. In addition, it can also be used for mass transfer problems, such as simulation of coating, sputtering, painting etc. The problem is solved by the method of R-functions to define the shape of the test body and the heat source and the analytical determination zone shadowing. As an example, we consider the problem of using the method of ion cleaning parameters optimization considering temperature limitations. Application of the R-functions can significantly reduce the amount of computation with usage of the ray tracing algorithm. The numerical realization of the proposed method requires an accurate creation of a numerical mesh. The best results in terms of accuracy of determination the scope of the source can be expected when applying adaptive tunable meshes. In case of integration of the R-functions into the CAD system, the use of the proposed method would be simple enough. The proposed method allows to determine the range of the source by the expression, which is constructed only once for the body and the source of arbitrary geometric shapes moving in any law. This distinguishes the proposed approach against all known algorithms for ray tracing. The proposed method can also be used for time-dependent multisource with arbitrary shapes, which move in different directions.
Deterministic gathering of anonymous agents in arbitrary networks
Dieudonné, Yoann
2011-01-01
A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node. Agents are anonymous (identical), execute the same deterministic algorithm and move in synchronous rounds along links of the network. Which configurations are gatherable and how to gather all of them deterministically by the same algorithm? We give a complete solution of this gathering problem in arbitrary networks. We characterize all gatherable configurations and give two universal deterministic gathering algorithms, i.e., algorithms that gather all gatherable configurations. The first algorithm works under the assumption that an upper bound n on the size of the network is known. In this case our algorithm guarantees gathering with detection, i.e., the existence of a round for any gatherable configuration, such that all agents are at the same node and all declare that gathering is accomplished. If no upper bound on the size of the network i...
Monomial geometric programming with an arbitrary fuzzy relational inequality
Directory of Open Access Journals (Sweden)
E. Shivanian
2015-11-01
Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.
General description of circularly symmetric Bessel beams of arbitrary order
Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Mädler, Lutz
2016-11-01
A general description of circularly symmetric Bessel beams of arbitrary order is derived in this paper. This is achieved by analyzing the relationship between different descriptions of polarized Bessel beams obtained using different approaches. It is shown that a class of circularly symmetric Davis Bessel beams derived using the Hertz vector potentials possesses the same general functional dependence as the aplanatic Bessel beams generated using the angular spectrum representation (ASR). This result bridges the gap between different descriptions of Bessel beams and leads to a general description of circularly symmetric Bessel beams, such that the Davis Bessel beams and the aplanatic Bessel beams are merely the two simplest cases of an infinite number of possible circularly symmetric Bessel beams. Additionally, magnitude profiles of the electric and magnetic fields, the energy density and the Poynting vector are displayed for Bessel beams in both paraxial and nonparaxial cases. The results presented in this paper provide a fresh perspective on the description of Bessel beams and cast some insights into the light scattering and light-matter interactions problems in practice.
Quantum entanglement swapping of two arbitrary biqubit pure states
Xie, ChuanMei; Liu, YiMin; Chen, JianLan; Yin, XiaoFeng; Zhang, ZhanJun
2016-10-01
In this paper, the issue of swapping quantum entanglements in two arbitrary biqubit pure states via a local bipartite entangledstate projective measure in the middle node is studied in depth, especially with regard to quantitative aspects. Attention is mainly focused on the relation between the measure and the final entanglement obtained via swapping. During the study, the entanglement of formation (EoF) is employed as a quantifier to characterize and quantify the entanglements present in all involved states. All concerned EoFs are expressed analytically; thus, the relation between the final entanglement and the measuring state is established. Through concrete analyses, the measure demands for getting a certain amount of a final entanglement are revealed. It is found that a maximally entangled final state can be obtained from any two given initial entangled states via swapping with a certain probability; however, a peculiar measure should be performed. Moreover, some distinct properties are revealed and analyzed. Such a study will be useful in quantum information processes.
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-09-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
The Casimir effect for fields with arbitrary spin
Energy Technology Data Exchange (ETDEWEB)
Stokes, Adam; Bennett, Robert, E-mail: r.bennett@leeds.ac.uk
2015-09-15
The Casimir force arises when a quantum field is confined between objects that apply boundary conditions to it. In a recent paper we used the two-spinor calculus to derive boundary conditions applicable to fields with arbitrary spin in the presence of perfectly reflecting surfaces. Here we use these general boundary conditions to investigate the Casimir force between two parallel perfectly reflecting plates for fields up to spin-2. We use the two-spinor calculus formalism to present a unified calculation of well-known results for spin-1/2 (Dirac) and spin-1 (Maxwell) fields. We then use our unified framework to derive new results for the spin-3/2 and spin-2 fields, which turn out to be the same as those for spin-1/2 and spin-1. This is part of a broader conclusion that there are only two different Casimir forces for perfectly reflecting plates—one associated with fermions and the other with bosons.
Analytical solutions for elastic binary nanotubes of arbitrary chirality
Jiang, Lai; Guo, Wanlin
2016-12-01
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
ELECTRON COOLING SIMULATION FOR ARBITRARY DISTRIBUTION OF ELECTRONS
Energy Technology Data Exchange (ETDEWEB)
SIDORIN,A.; SMIRNOV, A.; FEDOTOV, A.; BEN-ZVI, I.; KAYRAN, D.
2007-09-10
Typically, several approximations are being used in simulation of electron cooling process, for example, density distribution of electrons is calculated using an analytical expression and distribution in the velocity space is assumed to be Maxwellian in all degrees of freedom. However, in many applications, accurate description of the cooling process based on realistic distribution of electrons is very useful. This is especially true for a high-energy electron cooling system which requires bunched electron beam produced by an Energy Recovery Linac (Em). Such systems are proposed, for instance, for RHIC and electron - ion collider. To address unique features of the RHIC-I1 cooler, new algorithms were introduced in BETACOOL code which allow us to take into account local properties of electron distribution as well as calculate friction force for an arbitrary velocity distribution. Here, we describe these new numerical models. Results based on these numerical models are compared with typical approximations using electron distribution produced by simulations of electron bunch through ERL of RHIC-II cooler.
Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images
Lang, Dustin; Hogg, David W.; Mierle, Keir; Blanton, Michael; Roweis, Sam
2010-05-01
We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing—not even the image scale—is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.
Displaying CFD Solution Parameters on Arbitrary Cut Planes
Pao, S. Paul
2008-01-01
USMC6 is a Fortran 90 computer program for post-processing in support of visualization of flows simulated by computational fluid dynamics (CFD). The name "USMC6" is partly an abbreviation of "TetrUSS - USM3D Solution Cutter," reflecting its origin as a post-processor for use with USM3D - a CFD program that is a component of the Tetrahedral Unstructured Software System and that solves the Navier-Stokes equations on tetrahedral unstructured grids. "Cutter" here refers to a capability to acquire and process solution data on (1) arbitrary planes that cut through grid volumes, or (2) user-selected spheroidal, conical, cylindrical, and/or prismatic domains cut from within grids. Cutting saves time by enabling concentration of post-processing and visualization efforts on smaller solution domains of interest. The user can select from among more than 40 flow functions. The cut planes can be trimmed to circular or rectangular shape. The user specifies cuts and functions in a free-format input file using simple and easy-to-remember keywords. The USMC6 command line is simple enough that the slicing process can readily be embedded in a shell script for assembly-line post-processing. The output of USMC6 is a data file ready for plotting.
Special relativity with an arbitrary limiting velocity of particle
Parvan, A S
2012-01-01
It is shown that a generalized special theory of relativity (GSTR) with an arbitrary limiting velocity of particle different or equal to the speed of light in vacuum can be constructed from the canonical equation of the 4-dimensional hyperboloid of revolution. In particular, when the limiting velocity equals the speed of light, the special theory of relativity (STR), which corresponds to the equation of the equilateral hyperboloid of revolution, is recovered. The (generalized) Lorentz transformations were obtained. It was established that the rest mass of a space-like particle is real. Our results strongly suggest that the muon neutrino in the OPERA experiment is most likely a time-like or a light-like superluminal particle, whose limiting velocity may exceed the speed of light in vacuum, rather than a superluminal space-like particle (tachyon) with a speed limit equal to speed of light for which the rest mass $mc^{2}=117.1^{+11.0}_{-10.5}$ MeV.
Holographic Flavor Transport in Arbitrary Constant Background Fields
Ammon, Martin; O'Bannon, Andy
2009-01-01
We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a...
Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions
Bowler, R; Britton, J W; Sawyer, B C; Amini, J
2013-01-01
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of $\\pm$10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and de...
Totally asymmetric exclusion processes with particles of arbitrary size
Energy Technology Data Exchange (ETDEWEB)
Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)
2003-02-28
The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.
Massive graviton on arbitrary background: derivation, syzygies, applications
Bernard, Laura; von Strauss, Mikael
2015-01-01
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a "reference metric" which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background fi...
Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts
Ren, Zhengyong; Chen, Chaojian; Pan, Kejia; Kalscheuer, Thomas; Maurer, Hansruedi; Tang, Jingtian
2017-03-01
During the last 15 years, more attention has been paid to derive analytic formulae for the gravitational potential and field of polyhedral mass bodies with complicated polynomial density contrasts, because such formulae can be more suitable to approximate the true mass density variations of the earth (e.g., sedimentary basins and bedrock topography) than methods that use finer volume discretization and constant density contrasts. In this study, we derive analytic formulae for gravity anomalies of arbitrary polyhedral bodies with complicated polynomial density contrasts in 3D space. The anomalous mass density is allowed to vary in both horizontal and vertical directions in a polynomial form of λ =ax^m+by^n+cz^t, where m, n, t are nonnegative integers and a, b, c are coefficients of mass density. First, the singular volume integrals of the gravity anomalies are transformed to regular or weakly singular surface integrals over each polygon of the polyhedral body. Then, in terms of the derived singularity-free analytic formulae of these surface integrals, singularity-free analytic formulae for gravity anomalies of arbitrary polyhedral bodies with horizontal and vertical polynomial density contrasts are obtained. For an arbitrary polyhedron, we successfully derived analytic formulae of the gravity potential and the gravity field in the case of m≤ 1, n≤ 1, t≤ 1, and an analytic formula of the gravity potential in the case of m=n=t=2. For a rectangular prism, we derive an analytic formula of the gravity potential for m≤ 3, n≤ 3 and t≤ 3 and closed forms of the gravity field are presented for m≤ 1, n≤ 1 and t≤ 4. Besides generalizing previously published closed-form solutions for cases of constant and linear mass density contrasts to higher polynomial order, to our best knowledge, this is the first time that closed-form solutions are presented for the gravitational potential of a general polyhedral body with quadratic density contrast in all spatial
Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State
Institute of Scientific and Technical Information of China (English)
QIAN Xue-Min; FANG Jian-Xing; ZHU Shi-Qun; XI Yong-Jun
2005-01-01
The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.
Energy Technology Data Exchange (ETDEWEB)
Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
Directory of Open Access Journals (Sweden)
Shilin Chen
1994-01-01
Full Text Available An exact and direct modeling technique is proposed for modeling of rotor-bearing systems with arbitrary selected degrees-of-freedom. This technique is based on the combination of the transfer and dynamic stiffness matrices. The technique differs from the usual combination methods in that the global dynamic stiffness matrix for the system or the subsystem is obtained directly by rearranging the corresponding global transfer matrix. Therefore, the dimension of the global dynamic stiffness matrix is independent of the number of the elements or the substructures. In order to show the simplicity and efficiency of the method, two numerical examples are given.
Institute of Scientific and Technical Information of China (English)
HAO San-Ru; HOU Bo-Yu; XI Xiao-Qiang; YUE Rui-Hong
2003-01-01
In the paper we generalize the standard teleportation to the conclusive teleportation case which can teleportan arbitrary d-dimensional N-particle unknown state via the partially entangled quantum channel. We show that onlyif the quantum channel satisfies a constraint condition can the most general d-dimensional N-particle unknown state beperfect conclusively teleported. We also present a method for optimal conclusively teleportation of the N-particle statesand for constructing the joint POVM which can discern the quantum states on the sender's (Alice's) side. Two typicalexamples are given so that one can see how our method works.
Institute of Scientific and Technical Information of China (English)
Yingqin Luo; Ming Hong; Yuan Liu
2015-01-01
In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more and more important. Frequency, especially the fundamental frequency, has been considered as an important factor in vibration problem. In this paper, a calculation method of the fundamental frequency of arbitrary laminated plates under various boundary conditions is proposed. The vibration differential equation of the laminated plates is established at the beginning of this paper and the frequency formulae of specialty orthotropic laminated plates under various boundary conditions and antisymmetric angle-ply laminated plates with simply-supported edges are investigated. They are proved to be correct. Simple algorithm of the fundamental frequency for multilayer antisymmetric and arbitrary laminated plates under various boundary conditions is studied by a series of typical examples. From the perspective of coupling, when the number of laminated plates layersN > 8–10, some coupling influence on the fundamental frequency can be neglected. It is reasonable to use specialty orthotropic laminated plates with the same thickness but less layers to calculate the corresponding fundamental frequency of laminated plates. Several examples are conducted to prove correctness of this conclusion. At the end of this paper, the influence of the selected number of layers of specialty orthotropic laminates on the fundamental frequency is investigated. The accuracy and complexity are determined by the number of layers. It is necessary to use proper number of layers of special orthotropic laminates with the same thickness to simulate the fundamental frequency in different boundary conditions.
Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin
2017-02-01
This paper exploits an error tracking control method for overhead crane systems for which the error trajectories for the trolley and the payload swing can be pre-specified. The proposed method does not require that the initial payload swing angle remains zero, whereas this requirement is usually assumed in conventional methods. The significant feature of the proposed method is its superior control performance as well as its strong robustness over different or uncertain rope lengths, payload masses, desired positions, initial payload swing angles, and external disturbances. Owing to the same attenuation behavior, the desired error trajectory for the trolley for each traveling distance is not needed to be reset, which is easy to implement in practical applications. By converting the error tracking overhead crane dynamics to the objective system, we obtain the error tracking control law for arbitrary initial payload swing angles. Lyapunov techniques and LaSalle's invariance theorem are utilized to prove the convergence and stability of the closed-loop system. Simulation and experimental results are illustrated to validate the superior performance of the proposed error tracking control method.
Beyond rational imitation: learning arbitrary means actions from communicative demonstrations.
Király, Ildikó; Csibra, Gergely; Gergely, György
2013-10-01
The principle of rationality has been invoked to explain that infants expect agents to perform the most efficient means action to attain a goal. It has also been demonstrated that infants take into account the efficiency of observed actions to achieve a goal outcome when deciding whether to reenact a specific behavior or not. It is puzzling, however, that they also tend to imitate an apparently suboptimal unfamiliar action even when they can bring about the same outcome more efficiently by applying a more rational action alternative available to them. We propose that this apparently paradoxical behavior is explained by infants' interpretation of action demonstrations as communicative manifestations of novel and culturally relevant means actions to be acquired, and we present empirical evidence supporting this proposal. In Experiment 1, we found that 14-month-olds reenacted novel arbitrary means actions only following a communicative demonstration. Experiment 2 showed that infants' inclination to reproduce communicatively manifested novel actions is restricted to behaviors they can construe as goal-directed instrumental acts. The study also provides evidence that infants' reenactment of the demonstrated novel actions reflects epistemic motives rather than purely social motives. We argue that ostensive communication enables infants to represent the teleological structure of novel actions even when the causal relations between means and end are cognitively opaque and apparently violate the efficiency expectation derived from the principle of rationality. This new account of imitative learning of novel means shows how the teleological stance and natural pedagogy--two separate cognitive adaptations to interpret instrumental versus communicative actions--are integrated as a system for learning socially constituted instrumental knowledge in humans.
Randomness and arbitrary coordination in the reactive ultimatum game
da Silva, Roberto; Valverde, Pablo; Lamb, Luis C.
2016-07-01
Darwin's theory of evolution - as introduced in game theory by Maynard Smith - is not the only important evolutionary aspect in an evolutionary dynamics, since complex interdependencies, competition, and growth should be modeled by, for example, reactive aspects. In the ultimatum game, the reciprocity and the fifty-fifty partition seems to be a deviation from rational behavior of the players under the light of Nash equilibrium. Such equilibrium emerges, for example, from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version of the game, the proposers are able to improve their proposals by adding a value thus making fairer proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a fundamental aspect: they reflect their actions according to value of the offers. Recently, a reactive version of the ultimatum game where acceptance occurs with fixed probability was proposed. In this paper, we aim at exploring this reactive version of the ultimatum game where the acceptance by players depends on the offer. In order to do so, we analyze two situations: (i) mean field and (ii) we consider players inserted within the networks with arbitrary coordination. We then show that the reactive aspect, here studied, thus far not analyzed in the evolutionary game theory literature can unveil an essential feature for the convergence to fifty-fifty split. Moreover we also analyze populations under four different polices ranging from a highly conservative to a moderate one, with respect to the decision in changing the proposal based on acceptances. We show that the idea of gaining less more times added to the reciprocity of the players is highly relevant to the concept of "healthy" societies population bargaining.
Massive graviton on arbitrary background: derivation, syzygies, applications
Energy Technology Data Exchange (ETDEWEB)
Bernard, Laura [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); Deffayet, Cédric [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France); IHES, Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette (France); Strauss, Mikael von [UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, GReCO,98bis boulevard Arago, F-75014 Paris (France)
2015-06-23
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a “reference metric' which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.
The impact of approximations and arbitrary choices on geophysical images
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the
Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji
2015-06-01
We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.
Holt, J. Birch; Kelly, Michael D.
1990-01-01
Plasma spraying methods of forming exoergic structures and coatings, as well as exoergic structures produced by such methods, are provided. The methods include the plasma spraying of reactive exoergic materials that are capable of sustaining a combustion synthesis reaction onto a flat substrate or into molds of arbitrary shape and igniting said plasma sprayed materials, either under an inert gas pressure or not, to form refractory materials of varying densities and of varying shapes.
Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology
Jackson, Justin Patrick
This dissertation develops a framework to address centralized and distributed constrained task assignment and task scheduling problems. This framework is used to prove properties of these problems that can be exploited, develop effective solution algorithms, and to prove important properties such as correctness, completeness and optimality. The centralized task assignment and task scheduling problem treated here is expressed as a vehicle routing problem with the goal of optimizing mission time subject to mission constraints on task precedence and agent capability. The algorithm developed to solve this problem is able to coordinate vehicle (agent) timing for task completion. This class of problems is NP-hard and analytical guarantees on solution quality are often unavailable. This dissertation develops a technique for determining solution quality that can be used on a large class of problems and does not rely on traditional analytical guarantees. For distributed problems several agents must communicate to collectively solve a distributed task assignment and task scheduling problem. The distributed task assignment and task scheduling algorithms developed here allow for the optimization of constrained military missions in situations where the communication network may be incomplete and only locally known. Two problems are developed. The distributed task assignment problem incorporates communication constraints that must be satisfied; this is the Communication-Constrained Distributed Assignment Problem. A novel distributed assignment algorithm, the Stochastic Bidding Algorithm, solves this problem. The algorithm is correct, probabilistically complete, and has linear average-case time complexity. The distributed task scheduling problem addressed here is to minimize mission time subject to arbitrary predicate mission constraints; this is the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem. The Optimal Distributed Non-sequential Backtracking Algorithm
Projection Operator and Propagator for an Arbitrary Half-Integral Spin
Institute of Scientific and Technical Information of China (English)
黄时中; 阮图南; 吴宁; 郑志鹏
2003-01-01
Based on the solution to Bargmann-Wigner equation for an arbitrary half-integral spin, a direct derivation of the projection operator and propagator for an arbitrary half-integral spin is presented. The projection operator constructed by Behrends and Fronsdal is confirmed and simplified. The commutation rules and a general expression for the Feynman propagator for a free particle with arbitrary half-integral spin are deduced. Explicit expressions for the propagators for spins 3/2, 5/2 and 7/2 are provided.
Distillation of GHZ State from Multiple Copies of Arbitrary W-Class State
Institute of Scientific and Technical Information of China (English)
WU Qin; WU Chun-Wang; FANG Mao-Fa; CHEN Ping-Xing; LI Shao-Xin; LI Cheng-Zu; LI Ying; HU Yao-Hua
2008-01-01
W. Dür et al. have shown that it is impossible to obtain a GHZ state from one copy of arbitrary W-class (2000) 062314]. In our paper, the more general case is carefully investigated. We first show that, with a supply of two copies of arbitrary W-class state, we can always construct an explicit procedure to distill a GHZ state with a nonzero probability. Then based on this result, a simple procedure for distilling GHZ state from n copies of arbitrary W-class state is presented. Finaily, we briefly discuss the applications.