WorldWideScience

Sample records for arbitrary base fields

  1. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    Science.gov (United States)

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  2. Fractional Calculus-Based Modeling of Electromagnetic Field Propagation in Arbitrary Biological Tissue

    Directory of Open Access Journals (Sweden)

    Pietro Bia

    2016-01-01

    Full Text Available The interaction of electromagnetic fields and biological tissues has become a topic of increasing interest for new research activities in bioelectrics, a new interdisciplinary field combining knowledge of electromagnetic theory, modeling, and simulations, physics, material science, cell biology, and medicine. In particular, the feasibility of pulsed electromagnetic fields in RF and mm-wave frequency range has been investigated with the objective to discover new noninvasive techniques in healthcare. The aim of this contribution is to illustrate a novel Finite-Difference Time-Domain (FDTD scheme for simulating electromagnetic pulse propagation in arbitrary dispersive biological media. The proposed method is based on the fractional calculus theory and a general series expansion of the permittivity function. The spatial dispersion effects are taken into account, too. The resulting formulation is explicit, it has a second-order accuracy, and the need for additional storage variables is minimal. The comparison between simulation results and those evaluated by using an analytical method based on the Fourier transformation demonstrates the accuracy and effectiveness of the developed FDTD model. Five numerical examples showing the plane wave propagation in a variety of dispersive media are examined.

  3. Factoring polynomials over arbitrary finite fields

    NARCIS (Netherlands)

    Lange, T.; Winterhof, A.

    2000-01-01

    We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of

  4. Arbitrary magnetic field gradient waveform correction using an impulse response based pre-equalization technique.

    Science.gov (United States)

    Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J

    2014-01-01

    The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics

    Science.gov (United States)

    Welland, M. J.; Tenuta, E.; Prudil, A. A.

    2017-06-01

    This article describes a phase-field model for an isothermal multicomponent, multiphase system which avoids implicit interfacial energy contributions by starting from a grand potential formulation. A method is developed for incorporating arbitrary forms of the equilibrium thermodynamic potentials in all phases to determine an explicit relationship between chemical potentials and species concentrations. The model incorporates variable densities between adjacent phases, defect migration, and dependence of internal pressure on object dimensions ranging from the macro- to nanoscale. A demonstrative simulation of an overpressurized nanoscopic intragranular bubble in nuclear fuel migrating to a grain boundary under kinetically limited vacancy diffusion is shown.

  6. Heterotic string in an arbitrary background field

    International Nuclear Information System (INIS)

    Sen, A.

    1985-01-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N = 1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N = 1 supersymmetric nonlinear and N = 2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories

  7. RF sheaths for arbitrary B field angles

    Science.gov (United States)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  8. Pair production of arbitrary spin particles by electromagnetic fields

    International Nuclear Information System (INIS)

    Kruglov, S.I.

    2006-01-01

    The exact solutions of the wave equation for arbitrary spin particles in the field of the soliton-like electric impulse were obtained. The differential probability of pair production of particles by electromagnetic fields has been evaluated on the basis of the exact solutions. As a particular case, the particle pair production in the constant and uniform electric field were studied

  9. The entropy of Garfinkle-Horne dilaton black hole due to arbitrary spin fields

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yougen(沈有根)

    2002-01-01

    Using the membrane model which is based on brick wall model, we calculated the free energy and entropy of Garfinkle-Horne dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a coefficient between them.

  10. Controlling electromagnetic fields at boundaries of arbitrary geometries

    Science.gov (United States)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  11. Arbitrary spin conformal fields in (A)dS

    International Nuclear Information System (INIS)

    Metsaev, R.R.

    2014-01-01

    Totally symmetric arbitrary spin conformal fields in (A)dS space of even dimension greater than or equal to four are studied. Ordinary-derivative and gauge invariant Lagrangian formulation for such fields is obtained. Gauge symmetries are realized by using auxiliary fields and Stueckelberg fields. We demonstrate that Lagrangian of conformal field is decomposed into a sum of gauge invariant Lagrangians for massless, partial-massless, and massive fields. We obtain a mass spectrum of the partial-massless and massive fields and confirm the conjecture about the mass spectrum made in the earlier literature. In contrast to conformal fields in flat space, the kinetic terms of conformal fields in (A)dS space turn out to be diagonal with respect to fields entering the Lagrangian. Explicit form of conformal transformation which maps conformal field in flat space to conformal field in (A)dS space is obtained. Covariant Lorentz-like and de-Donder like gauge conditions leading to simple gauge-fixed Lagrangian of conformal fields are proposed. Using such gauge-fixed Lagrangian, which is invariant under global BRST transformations, we explain how the partition function of conformal field is obtained in the framework of our approach

  12. Towards the classification of conformal field theories in arbitrary dimension

    CERN Document Server

    Anselmi, D

    2000-01-01

    I identify the subclass of higher-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this subclass the domain of validity of the recently proposed formula for the irreversibility of the renormalization-group flow is suitably enhanced. The trace anomaly is quadratic in the Ricci tensor and contains a unique central charge. This implies, in particular, a relationship between the coefficient in front of the Euler density (charge a) and the stress-tensor two-point function (charge c). I check the prediction in detail in four, six and eight dimensions, and then in arbitrary dimension. In four and six dimensions there is agreement with results from the AdS/CFT correspondence. A by-product is a mathematical algorithm to construct conformal invariants.

  13. Bethe ansatz solutions of the τ{sub 2}-model with arbitrary boundary fields

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaotian; Hao, Kun; Yang, Tao [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics,Institute of Physics, Chinese Academy of Sciences,Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physical Sciences, University of Chinese Academy of Sciences,Beijing (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences,Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University,Xian 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xian 710069 (China)

    2016-11-11

    The quantum τ{sub 2}-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T−Q relation, which is based on the operator product identities among the fused transfer matrices and the asymptotic behavior of the transfer matrices. Moreover, the associated Bethe Ansatz equations are also obtained.

  14. Photonic arbitrary waveform generator based on Taylor synthesis method

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2016-01-01

    Arbitrary waveform generation has been widely used in optical communication, radar system and many other applications. We propose and experimentally demonstrate a silicon-on-insulator (SOI) on chip optical arbitrary waveform generator, which is based on Taylor synthesis method. In our scheme......, a Gaussian pulse is launched to some cascaded microrings to obtain first-, second- and third-order differentiations. By controlling amplitude and phase of the initial pulse and successive differentiations, we can realize an arbitrary waveform generator according to Taylor expansion. We obtain several typical...... waveforms such as square waveform, triangular waveform, flat-top waveform, sawtooth waveform, Gaussian waveform and so on. Unlike other schemes based on Fourier synthesis or frequency-to-time mapping, our scheme is based on Taylor synthesis method. Our scheme does not require any spectral disperser or large...

  15. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order

    OpenAIRE

    Nguyen-Xuan, H.; Liu, G. R.; Bordas, Stéphane; Natarajan, S.; Rabczuk, T.

    2013-01-01

    This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient ...

  16. Calculation of electromagnetic fields and forces in coil systems of arbitrary geometry

    International Nuclear Information System (INIS)

    Sackett, S.J.

    1975-01-01

    A computer program, EFFI, is described which calculates the electric and magnetic fields due to an arbitrary spatial distribution of current-carrying circular loops, circular arcs, and straight lines. The electric field is assumed to arise solely from the time variation of the magnetic field, and the magnetic field due to the changing electric field is assumed to be negligible. In addition, the conductor bundle elements (loops, arcs, lines) are assumed to be absent. Electric and magnetic flux lines and magnetic forces and inductances are also calculated by the program. The algorithm used in the code, which is based on a combination of direct and numerical integration using the Biot-Savart law, is discussed. The methods used to maintain accuracy in calculating fields within the conductor bundle, in particular, are detailed. Several examples are then presented to illustrate the input and output features as well as the accuracy obtained and the running time required

  17. Arbitrary scalar-field and quintessence cosmological models

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.

    2014-01-01

    The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)

  18. On the (1 + 3) threading of spacetime with respect to an arbitrary timelike vector field

    Energy Technology Data Exchange (ETDEWEB)

    Bejancu, Aurel [Kuwait University, Department of Mathematics, P.O.Box 5969, Safat (Kuwait); Calin, Constantin [Technical University ' ' Gh.Asachi' ' , Department of Mathematics, Iasi (Romania)

    2015-04-15

    We develop a newapproach on the (1 + 3) threading of spacetime (M, g) with respect to a congruence of curves defined by an arbitrary timelike vector field. The study is based on spatial tensor fields and on theRiemannian spatial connection ∇*, which behave as 3D geometric objects. We obtain new formulas for local components of the Ricci tensor field of (M, g) with respect to the threading frame field, in terms of the Ricci tensor field of ∇* and of kinematic quantities. Also, new expressions for time covariant derivatives of kinematic quantities are stated. In particular, a new form of Raychaudhuri's equation enables us to prove Lemma 6.3, which completes a well-known lemma used in the proof of the Penrose-Hawking singularity theorems. Finally, we apply the new (1 + 3) formalism to the study of the dynamics of a Kerr-Newman black hole. (orig.)

  19. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  20. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  1. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  2. General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2. Fermionic fields

    International Nuclear Information System (INIS)

    Reshetnyak, A.

    2013-01-01

    We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST–BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, (arXiv:1110.5044 [hep-th])]. Starting from a description of fermionic mixed-symmetry higher-spin fields in a flat space of any dimension in terms of an auxiliary Fock space associated with a special Poincare module, we realize a conversion of the initial operator constraint system (constructed with respect to the relations extracting irreducible Poincare-group representations) into a system of first-class constraints. To do this, we find, in first time, by means of generalized Verma module the auxiliary representations of the constraint subsuperalgebra, to be isomorphic due to Howe duality to osp(k|2k) superalgebra, and containing the subsystem of second-class constraints in terms of new oscillator variables. We suggest a universal procedure of finding unconstrained gauge-invariant Lagrangians with reducible gauge symmetries, describing the dynamics of both massless and massive fermionic fields of any spin. It is shown that the space of BRST cohomologies with a vanishing ghost number is determined only by constraints corresponding to an irreducible Poincare-group representation. As examples of the general approach, we propose a method of Lagrangian construction for fermionic fields subject to an arbitrary Young tableaux having 3 rows, and obtain a gauge-invariant Lagrangian for a new model of a massless rank-3 spin-tensor field of spin (5/2,3/2) with first-stage reducible gauge symmetries and a non-gauge Lagrangian for a massive rank-3 spin-tensor field of spin (5/2,3/2)

  3. Processes of arbitrary order in quantum electrodynamics with a pair-creating external field

    International Nuclear Information System (INIS)

    Gitman, D.M.

    1977-01-01

    Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)

  4. PCT theorem for fields with arbitrary high-energy behavior

    International Nuclear Information System (INIS)

    Luecke, W.

    1986-01-01

    A neutral scalar field A(x) is considered that has to be smeared by Fourier transforms of C/sup infinity/ functions with compact support but otherwise fulfills all the Wightman axioms, except strict local commutativity. It is shown to fulfill the PCT symmetry condition (where Ω denotes the vacuum state vector) 1 ) xxx A(x/sub n/)Ω> = 1 )Ω> if and only if 1 ) xxx A(x/sub n/)Ω> - 1 )Ω> can be represented, in a sense, as an infinite sum of derivatives of measures with supports containing no Jost points

  5. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5

  6. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    International Nuclear Information System (INIS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-01-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  7. On the electromagnetic field and the Teukolsky relations in arbitrary space-times

    International Nuclear Information System (INIS)

    Coll, B.; Ferrando, J.J.

    1985-01-01

    The relations on the electromagnetic field obtained by Teukolsky for type D, vacuum space-times are studied. The role played by the maxwellian geometry of the basic tetrad is shown. It is proved that Teukolsky relations are, generically, incomplete. Once completed, their generalization to arbitrary space-times is given [fr

  8. Differential equation for genus-two characters in arbitrary rational conformal field theories

    International Nuclear Information System (INIS)

    Mathur, S.D.; Sen, A.

    1989-01-01

    We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)

  9. Hubbard interaction in the arbitrary Chern number insulator: A mean-field study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)

    2017-05-10

    The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.

  10. Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations

    International Nuclear Information System (INIS)

    Devchand, Ch.; Ogievetsky, V.

    1996-06-01

    We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs

  11. Photodetachment electron flux of H− in combined electric and magnetic fields with arbitrary orientation

    International Nuclear Information System (INIS)

    Wang, De-hua

    2013-01-01

    Highlights: •On the basis of the semiclassical theory, the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation has been studied for the first time. •Our calculation results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. •Our studies may guide the future experimental researches in the photodetachment microscopy of some more complex negative ions in the presence of external fields. -- Abstract: On the basis of the semi-classical theory, we calculate the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation. Our results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. With the increase of the angle between the electric and magnetic field, the oscillating region in the electron flux distributions becomes smaller. In addition, we find with the increase of the detached electron's energy, the oscillating structure in the flux distributions becomes much more complicated. Therefore, the oscillation in the detached electron flux distributions can be controlled by adjusting the angle between the electric and magnetic field and the detached electron's energy. We hope that our studies may guide the future experimental researches in the photodetachment microscopy of negative ion in the presence of external fields

  12. Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-04-25

    Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d-2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.

  13. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  14. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  15. Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm

    Science.gov (United States)

    Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu

    2018-06-01

    A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.

  16. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  17. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Theoretische Natuurkunde, Vrije Universiteit Brussels and International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium); David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-10

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  18. Stopping power for arbitrary angle between test particle velocity and magnetic field

    International Nuclear Information System (INIS)

    Cereceda, Carlo; Peretti, Michel de; Deutsch, Claude

    2005-01-01

    Using the longitudinal dielectric function derived previously for charged test particles in helical movement around magnetic field lines, the numerical convergence of the series involved is found and the double numerical integrations on wave vector components are performed yielding the stopping power for arbitrary angle between the test particle velocity and magnetic field. Calculations are performed for particle Larmor radius larger and shorter than Debye length, i.e., for protons in a cold magnetized plasma and for thermonuclear α particles in a dense, hot, and strongly magnetized plasma. A strong decrease is found for the energy loss as the angle varies from 0 to π/2. The range of thermonuclear α particles as a function of the velocity angle with respect to the magnetic field is also given

  19. On the eigenvalues of S.Π for arbitrary spin in a constant magnetic field

    International Nuclear Information System (INIS)

    Jayaraman, J.; Oliveira, M.A.B. de.

    1985-01-01

    Utilizing the intimate connection of a charged particle in a nomogeneous magnetic field to that of a harmonic oscillator, it was established in a recent communication that the eigenvalue spectrum of the matrix operator S.Π for spin 1 is purely real for any intensity of the external magnetic field thereby removing a false impression to the contrary in the recent literature. Here these results are extended to arbitrary spin the reality of the eigenvalue spectrum. The case of spin 3/2 is discussed in some details and it is demonstrated that the complex eigenvalues implied the spectrum by a recent analysis of Weaver, for sufficiently intense magnetic field, when the particle number n assumes values 0 and 1 do not in fact appear at all. (Author) [pt

  20. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.

    Science.gov (United States)

    Rui, Guanghao; Chen, Jian; Wang, Xiaoyan; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-10-17

    The propagation and focusing properties of light beams continue to remain a research interest owning to their promising applications in physics, chemistry and biological sciences. One of the main challenges to these applications is the control of polarization distribution within the focal volume. In this work, we propose and experimentally demonstrate a method for generating a focused beam with arbitrary homogeneous polarization at any transverse plane. The required input field at the pupil plane of a high numerical aperture objective lens can be found analytically by solving an inverse problem with the Richard-Wolf vectorial diffraction method, and can be experimentally created with a vectorial optical field generator. Focused fields with various polarizations are successfully generated and verified using a Stokes parameter measurement to demonstrate the capability and versatility of proposed technique.

  1. Light-cone gauge approach to arbitrary spin fields, currents and shadows

    International Nuclear Information System (INIS)

    Metsaev, R R

    2014-01-01

    Totally symmetric arbitrary spin fields in AdS space, conformal fields, conformal currents, and shadow fields in flat space are studied. Light-cone gauge formulations for such fields, currents and shadows are obtained. Use of the Poincaré parametrization of AdS space and ladder operators allows us to treat fields in flat and AdS spaces on an equal footing. Light-cone gauge realization of relativistic symmetries for fields, currents and shadows is also obtained. The light-cone gauge formulation for fields is obtained by using the gauge invariant Lagrangian which is presented in terms of modified de Donder divergence, while the light-cone gauge formulation for currents and shadows is obtained by using the gauge invariant approach to currents and shadows. This allows us to demonstrate explicitly how the ladder operators entering the gauge invariant formulation of fields, currents and shadows manifest themselves in the light-cone gauge formulation for fields, currents and shadows. (paper)

  2. Fractional-calculus-based FDTD algorithm for ultrawideband electromagnetic characterization of arbitrary dispersive dielectric materials

    NARCIS (Netherlands)

    Caratelli, Diego; Mescia, Luciano; Bia, Pietro; Stukach, Oleg V.

    2016-01-01

    A novel finite-difference time-domain algorithm for modeling ultrawideband electromagnetic pulse propagation in arbitrary multirelaxed dispersive media is presented. The proposed scheme is based on a general, yet computationally efficient, series representation of the fractional derivative operators

  3. Self-consistent field theory simulations of polymers on arbitrary domains

    Energy Technology Data Exchange (ETDEWEB)

    Ouaknin, Gaddiel, E-mail: gaddielouaknin@umail.ucsb.edu [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Laachi, Nabil; Delaney, Kris [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Fredrickson, Glenn H. [Materials Research Laboratory, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080 (United States); Department of Materials, University of California, Santa Barbara, CA 93106-5050 (United States); Gibou, Frederic [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070 (United States); Department of Computer Science, University of California, Santa Barbara, CA 93106-5110 (United States)

    2016-12-15

    We introduce a framework for simulating the mesoscale self-assembly of block copolymers in arbitrary confined geometries subject to Neumann boundary conditions. We employ a hybrid finite difference/volume approach to discretize the mean-field equations on an irregular domain represented implicitly by a level-set function. The numerical treatment of the Neumann boundary conditions is sharp, i.e. it avoids an artificial smearing in the irregular domain boundary. This strategy enables the study of self-assembly in confined domains and enables the computation of physically meaningful quantities at the domain interface. In addition, we employ adaptive grids encoded with Quad-/Oc-trees in parallel to automatically refine the grid where the statistical fields vary rapidly as well as at the boundary of the confined domain. This approach results in a significant reduction in the number of degrees of freedom and makes the simulations in arbitrary domains using effective boundary conditions computationally efficient in terms of both speed and memory requirement. Finally, in the case of regular periodic domains, where pseudo-spectral approaches are superior to finite differences in terms of CPU time and accuracy, we use the adaptive strategy to store chain propagators, reducing the memory footprint without loss of accuracy in computed physical observables.

  4. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn; Wen, Shuangchun [Laboratory for Spin Photonics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-07-27

    We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.

  5. Separation of massive field equation of arbitrary spin in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2006-01-01

    The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time

  6. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    Science.gov (United States)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  7. Determination of the quality index (Q) for photon beams at arbitrary field sizes.

    Science.gov (United States)

    Sauer, Otto A

    2009-09-01

    A commonly used beam quality index (Q) for high-energy photon beams is the tissue phantom ratio (TPR20,10) for a square field of 10 x 10 cm2 and SDD of 100 cm. On some specialized radiotherapy treatment equipment such a reference collimator setting is not achievable. Likewise a flat beam profile, not explicitly required in dosimetry protocols, but certainly influences the measurement of Q, is not always produced. In this work, a method was developed in order to determine Q at any field size, especially for small and nonflattened beams. An analytical relationship was derived between TPR20,10 for arbitrary field sizes and Q [the TPR20,10 (10 x 10 cm2)] as quality index. The proposed model equation was fitted to the measured and published data in order to achieve three general fit parameters. The procedure was then tested with published data from TomoTherapy and CyperKnife treatment devices. For standard flattened photon fields, the uncertainty in Q measured at any field size using the parameters derived from this study is better than 1%. In flattening-filter free beams, the proposed procedure results in a reliable Q for any field size setting. A method is introduced and successfully tested in order to measure the beam quality under nonstandard conditions. It can be used, e.g., to get energy dependent correction factors as tabulated in dosimetry codes of practice even if standard conditions are not adjustable.

  8. Efficient Evaluation of Arbitrary Static Fields For Symplectic Particle Tracking

    CERN Document Server

    Bojtar, Lajos

    2018-01-01

    This article describes a method devised for efficient evaluation of arbitrary static magnetic and electric fields in a source free region needed for long time tracking of charged particles. Field values given on the boundary of the region of interest are reproduced inside by an arrangement of hypothetical magnetic or electric monopoles surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each monopole. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Software has been developed to test and demonstrate the method on a small particle accelerator. To our knowledge, there is no other meth...

  9. Quaternion based generalization of Chern–Simons theories in arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Alessandro D'Adda

    2017-08-01

    Full Text Available A generalization of Chern–Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.

  10. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2017-08-01

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.

  11. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Science.gov (United States)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  12. Analytical expressions for group delay in the far field from an optical fiber having an arbitrary index profile

    OpenAIRE

    Danielsen, Per Lander

    1981-01-01

    A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can be calculated with an accuracy better than 0.2 ps/(km . nm).

  13. Analytical expressions for group delay in the far field from an optical fiber having an arbitrary index profile

    DEFF Research Database (Denmark)

    Danielsen, Per Lander

    1981-01-01

    A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can...

  14. Magnetic flux density distribution in superconducting cylinders of arbitrary cross section subjected to an axial magnetic field

    Science.gov (United States)

    Fournet, G.

    1982-07-01

    We show here how the application of the critical state model allows one to determine the magnetic flux density B⃗ in each point of a superconducting cylinder with an arbitrary cross section subjected to axial magnetic fields Hz; the B = 0 boundaries of the regions occupied by the vortices are so defined. We successively consider the cases where the critical current density Jc is either isotropic (constant or an arbitrary function of B) or tensorial, which means, for our problem, the use of two components Jcx and Jcy (either constant or depending on B but Jcx/Jcy remaining constant).

  15. On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach

    International Nuclear Information System (INIS)

    Beleggia, M.; Graef, M. de

    2003-01-01

    A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given

  16. On Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2009-11-15

    Recently the paper ''Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field'' by G. C. Nayak was published [Eur. Phys. J. C. 59: 715, 2009; arXiv: 0708.2439]. Its aim is to obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum in an arbitrary time-dependent chromo-electric background field. We believe that the obtained expression is open to question. We demonstrate its inconsistency on some well-known examples. We think that this is a consequence of using the so-called ''shift theorem'' [arXiv: hep-th/0609192 ] in deriving the expression for the probability. We make some critical comments on the theorem and its applicability to the problem in question. (orig.)

  17. A characteristic based multiple balance approach for SN on arbitrary polygonal meshes

    International Nuclear Information System (INIS)

    Grove, R.E.; Pevey, R.E.

    1995-01-01

    The authors introduce a new approach for characteristic based S n transport on arbitrary polygonal meshes in XY geometry. They approximate a general surface as an arbitrary polygon and rotate to a coordinate system aligned with the direction of particle travel. They use exact moment balance equations on whole cells and subregions called slices and close the system by analytically solving the characteristic equation. The authors assume spatial functions for boundary conditions and cell sources and formulate analogous functions for outgoing edge and cell angular fluxes which exactly preserve spatial moments of the analytic solution. In principle, their approach provides the framework to extend characteristic methods formulated on rectangular grids to arbitrary polygonal meshes. The authors derive schemes based on step and linear spatial approximations. Their step characteristic scheme is mathematically equivalent to the Extended Step Characteristic (ESC) method but their approach and scheme differ in the geometry rotation and in the solution form. Their solutions are simple and permit edge-based transport sweep ordering

  18. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    Science.gov (United States)

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  19. An Exact Relation for N=1 Orientifold Field Theories with Arbitrary Superpotential

    CERN Document Server

    Armoni, Adi; Shifman, M

    2004-01-01

    We discuss a nonperturbative relation for orientifold parent/daughter pairs of supersymmetric theories with an arbitrary tree-level superpotential. We show that super-Yang-Mills (SYM) theory with matter in the adjoint representation at N-->infinity, is equivalent to a SYM theory with matter in the antisymmetric representation and a related superpotential. The gauge symmetry breaking patterns match in these theories too. The moduli spaces in the limiting case of a vanishing superpotential are also discussed. Finally we argue that there is an exact mapping between the effective superpotentials of two finite-N theories belonging to an orientifold pair.

  20. Two-dimensional transient far-field analysis for the excess temperature from an arbitrary source

    Energy Technology Data Exchange (ETDEWEB)

    Witten, A.J.; Long, E.C.

    1978-07-01

    An analytic solution is presented for the two-dimensional time-dependent advective diffusion equation governing the distribution of excess temperature in a river of uniform width, depth, and downstream flow. The solution is also applicable to a straight coastline with uniform longshore flow. Exact solutions are obtained for a point heat source and a particular line heat source, while an approximate representation is given for an arbitrary time-varying heat source. These solutions are incorporated into a computer program which calculates excess temperature and time rate-of-change of excess temperature in a river or coast as a result of waste heat discharged from various transient sources.

  1. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    International Nuclear Information System (INIS)

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  2. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  3. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  4. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    International Nuclear Information System (INIS)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-01-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  5. New twistorial integral formulas for massless free fields of arbitrary spin

    International Nuclear Information System (INIS)

    Cardoso, J.G.

    1991-01-01

    A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field integrals is presented. The invariant integral expressions for the spinning massless free fields are directly transcribed into the framework of twistor theory. It is then shown that the resulting twistorial field integrals can be thought of as being equivalent to the universal Penrose contour integral formulas for these fields

  6. Low-field susceptibility of classical Heisenberg chains with arbitrary and different nearest-neighbour exchange

    International Nuclear Information System (INIS)

    Cregg, P J; Murphy, K; Garcia-Palacios, J L; Svedlindh, P

    2008-01-01

    Interest in molecular magnets continues to grow, offering a link between the atomic and nanoscale properties. The classical Heisenberg model has been effective in modelling exchange interactions in such systems. In this, the magnetization and susceptibility are calculated through the partition function, where the Hamiltonian contains both Zeeman and exchange energy. For an ensemble of N spins, this requires integrals in 2N dimensions. For two, three and four spin nearest-neighbour chains these integrals reduce to sums of known functions. For the case of the three and four spin chains, the sums are equivalent to results of Joyce. Expanding these sums, the effect of the exchange on the linear susceptibility appears as Langevin functions with exchange term arguments. These expressions are generalized here to describe an N spin nearest-neighbour chain, where the exchange between each pair of nearest neighbours is different and arbitrary. For a common exchange constant, this reduces to the result of Fisher. The high-temperature expansion of the Langevin functions for the different exchange constants leads to agreement with the appropriate high-temperature quantum formula of Schmidt et al, when the spin number is large. Simulations are presented for open linear chains of three, four and five spins with up to four different exchange constants, illustrating how the exchange constants can be retrieved successfully

  7. Axisymmetric Compression of a Mohr-Coulomb Medium with Arbitrary Dilatancy, Including Free-Field Yielding

    National Research Council Canada - National Science Library

    Kendall, David

    1997-01-01

    .... It also extends the solution to include cases where particular combinations of friction angle, elastic properties, and free-field pressure cause the free field to yield before significant deformation...

  8. Extremes of random fields over arbitrary domains with application to concrete rupture stresses

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2004-01-01

    function class is studied for Gaussian processes in earlier works by the author and it has been obtained explicitly for Gaussian fields on rectangular domains in the plane. Simulation studies show that rather good predictions are obtained for sufficiently smooth wide band Gaussian processes and fields...

  9. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    Science.gov (United States)

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  10. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    International Nuclear Information System (INIS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-01-01

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI

  11. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldini, Mehdi [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft (Iran, Islamic Republic of); Jafri, Mohd Zubir Mat [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used as the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.

  12. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  13. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  14. A vertex including emission of spin fields for an arbitrary bc system

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Madsen, R.A.; Roland, K.

    1990-01-01

    We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)

  15. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  16. Microcomb-Based True-Time-Delay Network for Microwave Beamforming With Arbitrary Beam Pattern Control

    Science.gov (United States)

    Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.

    2018-06-01

    Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.

  17. Virtual reality based adaptive dose assessment method for arbitrary geometries in nuclear facility decommissioning.

    Science.gov (United States)

    Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun

    2018-05-17

    This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.

  18. Generalizing the O(N)-field theory to N-colored manifolds of arbitrary internal dimension D

    International Nuclear Information System (INIS)

    Wiese, K.J.

    1998-01-01

    We introduce a geometric generalization of the O(N)-field theory that describes N-colored membranes with arbitrary dimension D. As the O(N)-model reduces in the limit N→0 to self-avoiding polymers, the N-colored manifold model leads to self-avoiding tethered membranes. In the other limit, for inner dimension D→1, the manifold model reduces to the O(N)-field theory. We analyze the scaling properties of the model at criticality by a one-loop perturbative renormalization group analysis around an upper critical line. The freedom to optimize with respect to the expansion point on this line allows us to obtain the exponent ν of standard field theory to much better precision that the usual 1-loop calculations. Some other field theoretical techniques, such as the large N limit and Hartree approximation, can also be applied to this model. By comparison of low- and high-temperature expansions, we arrive at a conjecture for the nature of droplets dominating the 3d Ising model at criticality, which is satisfied by our numerical results. We can also construct an appropriate generalization that describes cubic anisotropy, by adding an interaction between manifolds of the same color. The two parameter space includes a variety of new phases and fixed points, some with Ising criticality, enabling us to extract a remarkably precise value of 0.6315 for the exponent ν in d=3. A particular limit of the model with cubic anisotropy corresponds to the random bond Ising problem; unlike the field theory formulation, we find a fixed point describing this system at 1-loop order. (orig.)

  19. Definition of the local fields of velocity, temperature and turbulent characteristics for axial stabilized fluid in arbitrary formed rod bundle assemblies

    International Nuclear Information System (INIS)

    Sedov, A.A.; Gagin, V.L.

    1995-01-01

    For the temperature fields in rod clads of experimental assemblies a good agreement have been got with use of prior calculations by subchannel code COBRA-IV-I, from results of which an additional information about δt/δX 3 distribution was taken. The method of definition the local fields of velocity, turbulent kinetic energy, temperature and eddy diffusivities for one-phase axial stabilized fluids in arbitrary formed rod bundle assemblies with invariable upward geometry was developed. According to this model the AGURA code was worked out to calculate local thermal hydraulic problems in combination with temperature fields in fuel rods and constructive elements of fuel assemblies. The method does not use any prior geometric scales and is based only on invariant local flow parameters: turbulent kinetic energy, velocity field deformation tensor and specific work of inner friction. Verification of this method by available experimental data showed a good agreement of calculation data and findings of velocity and t.k.e. fields, when the secondary flows have not a substantial influence to a balance of axial momentum and turbulent kinetic energy. (author)

  20. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    Science.gov (United States)

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  1. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    Directory of Open Access Journals (Sweden)

    Wilten eNicola

    2016-02-01

    Full Text Available A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF. The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks

  2. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Energy Technology Data Exchange (ETDEWEB)

    Balpande, Suresh S., E-mail: balpandes@rknec.edu [Ph.D.. Scholar, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India); Pande, Rajesh S. [Professor, Department of Electronics Engineering Shri Ramdeobaba College of Engineering & Management, Nagpur-13, (M.S.) (India)

    2016-04-13

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  3. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    Science.gov (United States)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-04-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of harvester and

  4. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    International Nuclear Information System (INIS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  5. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication

    International Nuclear Information System (INIS)

    Hu, Huan; Cunningham, Brian T; King, William P; Zhuo, Yue; Oruc, Muhammed E

    2014-01-01

    Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels using a heated atomic force microscopy (AFM) tip. The heated AFM tip deposits polymer nanowires where needed to serve as etch mask to fabricate silicon molds through one step of etching. PDMS nanofluidic channels are easily fabricated through replicate molding using the silicon molds. Various shapes of nanofluidic channels with either straight or curvilinear features are demonstrated. The width of the nanofluidic channels is 500 nm, and is determined by the deposited polymer nanowire width. The height of the channel is 400 nm determined by the silicon etching time. Ion conductance measurement on one single curvy shaped nanofluidic channel exhibits the typical ion conductance saturation phenomenon as the ion concentration decreases. Moreover, fluorescence imaging of fluid flowing through a fabricated nanofluidic channel demonstrates the channel integrity. This TBN process is seamlessly compatible with existing nanofabrication processes and can be used to achieve new types of nanofluidic devices. (paper)

  6. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    Science.gov (United States)

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  7. Free massless fields of arbitrary spin in the de Sitter space and initial data for a higher spin superalgebra

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1987-11-01

    Linearized curvatures are constructed for massless higher spin fields on the (anti-) de Sitter background. The quite uniform description for free massless fields of all integer and half-integer spins s greater than or equal to 3/2 is presented, based on these curvatures. In particular, the actions and the equations of motion are given in a simple form. The proposed linearized curvatures provide 'initial data' for determination of a non-Abelian higher spin symmetry that may correspond to a hypothetical non-trivial theory of higher spins interacting with gravity and themselves. It is noted that the conjugation law for fermion fields should be modified drastically after transition from the anti-de-Sitter geometry to the de Sitter one.

  8. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  9. Efficient eigenvalue determination for arbitrary Pauli products based on generalized spin-spin interactions

    Science.gov (United States)

    Leibfried, D.; Wineland, D. J.

    2018-03-01

    Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.

  10. Equivalent-circuit model for stacked slot-based 2D periodic arrays of arbitrary geometry for broadband analysis

    Science.gov (United States)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2018-03-01

    The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.

  11. The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the earth's magnetic field

    Science.gov (United States)

    Bell, T. F.

    1984-01-01

    A theory is presented of the nonlinear gyroresonance interaction that takes place in the magnetosphere between energetic electrons and coherent VLF waves propagating in the whistler mode at an arbitrary angle psi with respect to the earth's magnetic field B-sub-0. Particularly examined is the phase trapping (PT) mechanism believed to be responsible for the generation of VLF emissions. It is concluded that near the magnetic equatorial plane gradients of psi may play a very important part in the PT process for nonducted waves. Predictions of a higher threshold value for PT for nonducted waves generally agree with experimental data concerning VLF emission triggering by nonducted waves.

  12. Magnetohydrodynamic liquid metal flow in arbitrary three-dimensional geometries in strong, non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Buehler, L.

    1993-02-01

    Inductionless magnetohydrodynamic (MHD) flows at high Hartmann numbers are calculated by splitting the whole flow region into an inviscid core and into very thin boundary layers near channel walls. The momentum equations are linearized for high interaction parameters by neglecting inertial terms. These assumptions allow considerable simplifications of the governing equations in all subregions. In the core the general 3D equations are reduced to 2D equations by an analytical integration. The boundary conditions at channel walls are satisfied by the solution of boundary layer equations, leading to 2D equations for charge conservation in the layer. The interior of every arbitrary shaped channel is mapped by a coordinate transformation to a standard volume. The coupled 2D equations are solved numerically on the surface of this standard volume. (orig.)

  13. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two different schemes are presented for quantum teleportation of an arbitrary two-qudit state using a non-maximally four-qudit cluster state as the quantum channel. The first scheme is based on the Bell-basis measurements and the re-ceiver may probabilistically reconstruct the original state by performing proper transformation on her particles and an auxiliary two-level particle; the second scheme is based on the generalized Bell-basis measurements and the probability of successfully teleporting the unknown state depends on those measurements which are adjusted by Alice. A comparison of the two schemes shows that the latter has a smaller probability than that of the former and contrary to the former, the channel information and auxiliary qubit are not necessary for the receiver in the latter.

  14. Analytical solutions of the Schrödinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-01-01

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schrödinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  15. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  16. TWO-DIMENSIONAL STELLAR EVOLUTION CODE INCLUDING ARBITRARY MAGNETIC FIELDS. II. PRECISION IMPROVEMENT AND INCLUSION OF TURBULENCE AND ROTATION

    International Nuclear Information System (INIS)

    Li Linghuai; Sofia, Sabatino; Basu, Sarbani; Demarque, Pierre; Ventura, Paolo; Penza, Valentina; Bi Shaolan

    2009-01-01

    In the second paper of this series we pursue two objectives. First, in order to make the code more sensitive to small effects, we remove many approximations made in Paper I. Second, we include turbulence and rotation in the two-dimensional framework. The stellar equilibrium is described by means of a set of five differential equations, with the introduction of a new dependent variable, namely the perturbation to the radial gravity, that is found when the nonradial effects are considered in the solution of the Poisson equation. Following the scheme of the first paper, we write the equations in such a way that the two-dimensional effects can be easily disentangled. The key concept introduced in this series is the equipotential surface. We use the underlying cause-effect relation to develop a recurrence relation to calculate the equipotential surface functions for uniform rotation, differential rotation, rotation-like toroidal magnetic fields, and turbulence. We also develop a more precise code to numerically solve the two-dimensional stellar structure and evolution equations based on the equipotential surface calculations. We have shown that with this formulation we can achieve the precision required by observations by appropriately selecting the convergence criterion. Several examples are presented to show that the method works well. Since we are interested in modeling the effects of a dynamo-type field on the detailed envelope structure and global properties of the Sun, the code has been optimized for short timescales phenomena (down to 1 yr). The time dependence of the code has so far been tested exclusively to address such problems.

  17. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  18. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  19. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  20. Arbitrary waveform generation based on Microwave Photonics Technology for Ultrawideband applications

    OpenAIRE

    Moreno Galué, Vanessa Alejandra

    2017-01-01

    The herein presented Ph.D. dissertation finds its application niche in pulse generation for optical communication schemes, specifically for Ultrawideband (UWB) purposes. In this sense, as the requirements in terms of capacity and bandwidth per user in the field of broadband communication services continuously increase, different technological techniques such as hybrid wireless-optical approaches including UWB systems and close competitors like the Worldwide Interoperability for Microwave Acce...

  1. On the performance of arbitrary transmit selection for threshold-based receive MRC with and without co-channel interference

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2011-11-01

    The performance of multiple-antenna diversity systems in which the receiver combines signal replicas per threshold-based maximal ratio combining (MRC) and transmitter uses only a single antenna according to receive combined signal strength is studied. The impact of imperfect channel estimation and the effect of phase and time misalignments between desired and undesired signals are implicitly investigated. It is assumed that the desired signal replicas and interfering signals undergo statistically independent flat Rayleigh fading. The analysis is applicable for arbitrary transmit antenna selection, based either on receive combined signal-to-noise ratio (SNR) or receive combined signal-to-interference-plus-noise ratio (SINR). For the scenario of identical multiple-antenna channels, closed-form analytical results for the combined SNR statistics and some performance measures are first presented. The SNR-based and SINR-based selection algorithms are then employed to obtain expressions for the distribution of combined SINR and outage probability performance, which are applicable for different statistical models of interfering signals. The adopted system models herein as well as the analytical development add enhancements on many existing results, and can be used to study the performance of different architectures under various channel conditions when the implementation complexity is of interest. © 2011 IEEE.

  2. On the performance of arbitrary transmit selection for threshold-based receive MRC with and without co-channel interference

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2011-01-01

    The performance of multiple-antenna diversity systems in which the receiver combines signal replicas per threshold-based maximal ratio combining (MRC) and transmitter uses only a single antenna according to receive combined signal strength is studied. The impact of imperfect channel estimation and the effect of phase and time misalignments between desired and undesired signals are implicitly investigated. It is assumed that the desired signal replicas and interfering signals undergo statistically independent flat Rayleigh fading. The analysis is applicable for arbitrary transmit antenna selection, based either on receive combined signal-to-noise ratio (SNR) or receive combined signal-to-interference-plus-noise ratio (SINR). For the scenario of identical multiple-antenna channels, closed-form analytical results for the combined SNR statistics and some performance measures are first presented. The SNR-based and SINR-based selection algorithms are then employed to obtain expressions for the distribution of combined SINR and outage probability performance, which are applicable for different statistical models of interfering signals. The adopted system models herein as well as the analytical development add enhancements on many existing results, and can be used to study the performance of different architectures under various channel conditions when the implementation complexity is of interest. © 2011 IEEE.

  3. The generation algorithm of arbitrary polygon animation based on dynamic correction

    Directory of Open Access Journals (Sweden)

    Hou Ya Wei

    2016-01-01

    Full Text Available This paper, based on the key-frame polygon sequence, proposes a method that makes use of dynamic correction to develop continuous animation. Firstly we use quadratic Bezier curve to interpolate the corresponding sides vector of polygon sequence consecutive frame and realize the continuity of animation sequences. And then, according to Bezier curve characteristic, we conduct dynamic regulation to interpolation parameters and implement the changing smoothness. Meanwhile, we take use of Lagrange Multiplier Method to correct the polygon and close it. Finally, we provide the concrete algorithm flow and present numerical experiment results. The experiment results show that the algorithm acquires excellent effect.

  4. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    Science.gov (United States)

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  5. Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence

    International Nuclear Information System (INIS)

    Moelans, N.; Blanpain, B.; Wollants, P.

    2008-01-01

    A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations

  6. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  7. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    Science.gov (United States)

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  9. An optimization method for the distance between exits of buildings considering uncertainties based on arbitrary polynomial chaos expansion

    NARCIS (Netherlands)

    Xie, Qimiao; Wang, Jinhui; Lu, Shouxiang; Hensen, J.L.M.

    2016-01-01

    The distance between exits is an important design parameter in fire safety design of buildings. In order to find the optimal distance between exits under uncertainties with a low computational cost, the surrogate model (i.e. approximation model) of evacuation time is constructed by the arbitrary

  10. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    International Nuclear Information System (INIS)

    Chen Qichang; Wu Hongchun; Cao Liangzhi

    2008-01-01

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively

  11. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qichang; Wu Hongchun [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Cao Liangzhi [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China)], E-mail: caolz@mail.xjtu.edu.cn

    2008-10-15

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively.

  12. Generation of arbitrary vector beams

    Science.gov (United States)

    Perez-Garcia, Benjamin; López-Mariscal, Carlos; Hernandez-Aranda, Raul I.; Gutiérrez-Vega, Julio C.

    2017-08-01

    Optical vector beams arise from point to point spatial variations of the electric component of an electromagnetic field over the transverse plane. In this work, we present a novel experimental technique to generate arbitrary vec- tor beams, and provide sufficient evidence to validate their state of polarization. This technique takes advantage of the capability of a Spatial Light Modulator to simultaneously generate two components of an electromagnetic field by halving the screen of the device and subsequently recombining them in a Sagnac interferometer. Our experimental results show the versatility and robustness of this technique for the generation of vector beams.

  13. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.

    2006-01-01

    We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal

  14. Analytic formulae for the Hartree-Fock order parameter at arbitrary p/q filling factors for the 2DEG in a magnetic field

    International Nuclear Information System (INIS)

    Cabo Monte Oca, A. de.

    1994-07-01

    Analytic expressions for order parameters are given for the previously introduced general class of Hartree Fock states at arbitrary filling factors ν=p/q for odd q values. The order parameters are expressed as sums of magnetic translations eigenvalues over the filled single electron states. Simple summation formulae for the band spectra in terms of the same eigenvalues are also presented. The energy per particle at ν=1/3 is calculated for various states differing in the way of filling of the 1/3 of the orbitals. The calculated energies are not competing with the usual CDW results. However the high degree of electron overlapping allows for the next corrections to modify this situation. The discussion suggests these Hartree-Fock Slater determinants as interesting alternatives for the Tao-Thouless parent states which may correct their anomalous symmetry and correlation functions properties. (author). 28 refs

  15. Analytic computation of the quantum levels of a two-dimensional hydrogenic donor in the presence of a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Victor M.; Pino, Ramiro [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    In this article we review different techniques for computing the energy spectrum of 2 D hydrogenic donors and two-electron quantum dots in the presence of a constant, magnetic field perpendicular to the plane of the electron. We compute the 1S, 2P- and 3D- energy levels via a scaled variational mixed-bases method. We compare our results with those obtained with the shifted 1/N method. [Spanish] En el presente articulo se exhiben distintos metodos para calcular el espectro de energia de donores hidrogenicos y puntos cuanticos con dos electrones en presencia de un campo magnetico constante perpendicular al plano del electron. Se calculan los niveles de energia 1S, 2P- y 3D- con ayuda del metodo variacional de bases mixtas con escalamiento. Comparamos nuestro resultados con los obtenidos con ayuda del metodo 1/N con corrimiento.

  16. Experiments with arbitrary networks in time-multiplexed delay systems

    Science.gov (United States)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  17. The exact calculation of the e. m. field arising from the scattering of twodimensional electromagnetic waves at a perfectly conducting cylindrical surface of arbitrary shape

    NARCIS (Netherlands)

    Hoenders, B.J.

    1982-01-01

    The scattered field generated by the interaction of an incoming twodimensional electromagnetic wave with a cylindrical perfectly conducting surface is calculated. The scattered field is obtained in closed form.

  18. An arbitrary polynomial chaos-based approach to analyzing the impacts of design parameters on evacuation time under uncertainty

    NARCIS (Netherlands)

    Xie, Q.; Lu, S.; Costola, D.; Hensen, J.L.M.

    2014-01-01

    In performance-based fire protection design of buildings, much attention is paid to design parameters by fire engineers or experts. However, due to the time-consuming evacuation models, it is computationally prohibitive to adopt the conventional Monte Carlo simulation (MCS) to examine the effect of

  19. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  20. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  1. Development of a secure and cost-effective infrastructure for the access of arbitrary web-based image distribution systems

    International Nuclear Information System (INIS)

    Hacklaender, T.; Demabre, N.; Cramer, B.M.; Kleber, K.; Schneider, H.

    2004-01-01

    Purpose: To build an infrastructure that enables radiologists on-call and external users a teleradiological access to the HTML-based image distribution system inside the hospital via internet. In addition, no investment costs should arise on the user side and the image data should be sent renamed using cryptographic techniques. Materials and Methods: A pure HTML-based system manages the image distribution inside the hospital, with an open source project extending this system through a secure gateway outside the firewall of the hospital. The gateway handles the communication between the external users and the HTML server within the network of the hospital. A second firewall is installed between the gateway and the external users and builds up a virtual private network (VPN). A connection between the gateway and the external user is only acknowledged if the computers involved authenticate each other via certificates and the external users authenticate via a multi-stage password system. All data are transferred encrypted. External users get only access to images that have been renamed to a pseudonym by means of automated processing before. Results: With an ADSL internet access, external users achieve an image load frequency of 0.4 CT images per second. More than 90% of the delay during image transfer results from security checks within the firewalls. Data passing the gateway induce no measurable delay. (orig.)

  2. 3-D analysis of Maxwell's equations for cavities of arbitrary shape

    International Nuclear Information System (INIS)

    Whealton, J.H.; Chen, G.L.; McGaffey, R.W.; Raridon, R.J.; Jaeger, E.F.; Bell, M.A.; Hoffman, D.J.

    1986-03-01

    A three-dimensional analysis of cavity antennas is presented. The analysis is based on the finite difference method with a successive overrelaxation convergence scheme. This method permits the calculation of resonance frequencies and corresponding electric and magnetic fields of eigenmodes in a cavity antenna with an arbitrary shape. 12 refs., 8 figs

  3. PC-based analog signal generator for simulated detector signals and arbitrary test waveforms for testing the nuclear instruments

    International Nuclear Information System (INIS)

    Catanescu, V.

    1999-01-01

    This work is performed in cooperation with IAEA-Vienna as a project, proposed as part of Agency's C o-ordinated Research Programme of Development of Computer-based Troubleshooting Tools and Instruments. A convenient way for testing and calibrating modern scientific equipment is to connect the test instruments to a personal computer to get additional feasibilities. This way, all settings for test, measurement and data acquisition functions are done by means of PC and are controlled by software drivers. This multifunctional spectrometric pulse generator is able to characterize different parts of high-resolution nuclear spectroscopy chain (preamplifier, amplifier, analog to digital converter, multichannel analyzer) as well as the whole chain. For this it generates periodic or random pulses with shape, time and amplitude specifications controlled by PC. Characteristics such as integral linearity, differential linearity, dead time, rate channel shifting and others will be easily determined. The block diagram of the multifunctional spectrometric generator is shown. The main sections are: PC-interface, control registers and command generation; PC-controlled periodic and random logic pulse oscillators; PC-controlled delay and width of periodic or random logic pulses; constant and ultra-linear ramp references for spectrometric pulse generation; generation of the tail and flat top pulses with PC-controlled amplitude and decay time; semi-gaussian pulse generation, polarity inverter and output amplifier. The specifications for generated signal correspond to: shape, time specifications and amplitude size. (author)

  4. Minority game with arbitrary cutoffs

    Science.gov (United States)

    Johnson, N. F.; Hui, P. M.; Zheng, Dafang; Tai, C. W.

    1999-07-01

    We study a model of a competing population of N adaptive agents, with similar capabilities, repeatedly deciding whether to attend a bar with an arbitrary cutoff L. Decisions are based upon past outcomes. The agents are only told whether the actual attendance is above or below L. For L∼ N/2, the game reproduces the main features of Challet and Zhang's minority game. As L is lowered, however, the mean attendances in different runs tend to divide into two groups. The corresponding standard deviations for these two groups are very different. This grouping effect results from the dynamical feedback governing the game's time-evolution, and is not reproduced if the agents are fed a random history.

  5. Projection operator and propagator for an arbitrary integral spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    Based on the solution of the Bargmann-Wigner equation for an arbitrary integral spin, a direct derivation of the projection operator and propagator for an arbitrary integral spin is presented. The explicit form for the spin projection operators constructed by Behrends and Fronsdal is confirmed. The commutation rules and a general expression for the Feynman propagator for a free particle of arbitrary integral spin are deduced

  6. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  7. Derivation, evidence and physical validity of a weighted beam-zone method for dose determination in blocked photon fields of arbitrary shape

    International Nuclear Information System (INIS)

    Glaeser, L.; Quast, U.

    1981-01-01

    A simple, practical procedure for dose determination at any point of an arbitrarily shaped field has been derived: Square-field photon beams are sectioned into a set of pyramid-shell-like parts (beam zones), nested into each other around the smallest realizable square field, of different sizes but with equal dose contributions (thus weighted) with respect to a central dose reference point. The dose at any reference point in an irregular field can be determined simply by counting the number of non-shielded dose-contributing zones (or zone fractions), leading to the associated order of square-field size (with the same number of zones), the equivalent field with known dose. For experimental evidence of the validity of the weighted beam-zone method, measurements were carried out with different high-energy photon beams with one or more beam zones shielded by absorbing blocks. Measurements were made at points in unshielded and shielded parts of the field, on and off the beam axis and at different depths in a phantom. Calculations and measurements were compared. While relative depth doses were shown to be equal to within +-2% over a range of 5 cm ahead of and behind the dose reference point, the absolute dose deviations were within +-4%. The sources of error were analysed. They were mainly determined by scattered radiation from the beam limiting device and the partial shielding deriving from the shielding blocks. The same errors also occur in most of the known methods of dose calculation in irregular fields. (author)

  8. Solution of the linearised Vlasov equation for collisionless plasmas evolving in external fields of arbitrary spatial and time dependence: Pt. 2

    International Nuclear Information System (INIS)

    Skarka, V.; Coveney, P.V.

    1990-01-01

    We solve perturbatively the linearised Vlasov equation describing inhomogeneous collisionless plasmas evolving in time-dependent external fields. The method employs an explicitly time-dependent formalism and is facilitated by the used of diagrammatic techniques. It leads to a straightforward algorithm for computing the contribution to the solution, order by order in the external field. In the previous paper we provided the solution to first order; higher orders are described in the present paper. (author)

  9. Duality for massive spin two theories in arbitrary dimensions

    International Nuclear Information System (INIS)

    Gonzalez, B.; Urrutia, L.F.; Khoudeir, A.; Montemayor, R.

    2008-01-01

    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor T A[B 1 B 2 ...B D-2 ] , without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.

  10. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  11. On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part I: Analytical approach

    International Nuclear Information System (INIS)

    Tandon, S.; Beleggia, M.; Zhu, Y.; De Graef, M.

    2004-01-01

    A Fourier space formalism based on the shape amplitude of a particle is used to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. We provide a list of explicit shape amplitudes for important particle shapes, among others: the sphere, the cylindrical tube, an arbitrary polyhedral shape, a truncated paraboloid, and a cone truncated by a spherical cap. In Part I of this two-part paper, an analytical representation of the demagnetization tensor field for particles with cylindrical symmetry is provided, as well as expressions for the magnetostatic energy and the volumetric demagnetization factors

  12. Solving stochastic inflation for arbitrary potentials

    International Nuclear Information System (INIS)

    Martin, Jerome; Musso, Marcello

    2006-01-01

    A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case

  13. Three-Party Quantum State Sharing of an Arbitrary Unknown Two-Qubit State Based on Entanglement Swapping and Bell-State Measurements

    International Nuclear Information System (INIS)

    Yuan Hao; Song Jun; Hou Kui; Hu Xiaoyuan; Shi Shouhua; Han Lianfang

    2009-01-01

    We propose a scheme for sharing an arbitrary unknown two-qubit state among three parties by using a four-qubit cluster-class state and a Bell state as a quantum channel. With a quantum controlled phase gate (QCPG) operation and a local unitary operation, any one of the two agents has the access to reconstruct the original state if he/she collaborates with the other one, whilst individual agent obtains no information. As all quantum resource can be used to carry the useful information, the intrinsic efficiency of qubits approaches the maximal value. Moreover, the present scheme is more feasible with present-day technique.

  14. Microwave power divider with arbitrary distribution ratio

    International Nuclear Information System (INIS)

    Gu Pengda; Geng Zheqiao; Cui Yanyan; Syratchev, I.

    2004-01-01

    As is well known, the EM field of TE11 mode at the wall of the circular waveguide changes as sine (or cosine) function azimuthally. So when we attach two perpendicular waveguides to the wall of the circular waveguide and rotate them around the axis of the waveguide, authors can distribute the input power between the two waveguides with arbitrary distribution proportion. The authors have designed a new power divider following this idea. The 3D electromagnetic simulation software HFSS is used in the design. And a new type circular TE11 mode launcher is developed. (author)

  15. Conformal array design on arbitrary polygon surface with transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: wuyongle138@gmail.com [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  16. Conformal array design on arbitrary polygon surface with transformation optics

    International Nuclear Information System (INIS)

    Deng, Li; Hong, Weijun; Zhu, Jianfeng; Peng, Biao; Li, Shufang; Wu, Yongle

    2016-01-01

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  17. Study on the relationship between stress intensity factor and J integral for mixed mode crack with arbitrary inclination based on SBFEM

    International Nuclear Information System (INIS)

    Zhu, C L; Li, J B; Lin, G; Zhong, H

    2010-01-01

    The J integral and the stress intensity factor (SIF) K are both important research objects of fracture mechanics, and are often employed to establish criteria for crackpropagation. The relationship between them has always been a research hotspot. In this paper, the SIF can be obtained conveniently by the scaled boundary finite element method (SBFEM) due to the fact that analytical solution can be obtained along the radial direction for stress singularity problems. The J integral can be solved analytically using the formulae between J and K for mixed mode crack with arbitrary inclination in elastic materials. Moreover, the J integral values obtained by this method are more accurate and convenient than by its definition. Factors that affect the accuracy of SIF and J integral, such as the distance between the crack and outer boundary, size of the discretized elements and partition of the domain into super-elements, are examined.

  18. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  19. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  20. Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups

    DEFF Research Database (Denmark)

    Cramer, Ronald; Fehr, Serge

    2002-01-01

    A black-box secret sharing scheme for the threshold access structure T t,n is one which works over any finite Abelian group G. Briefly, such a scheme differs from an ordinary linear secret sharing scheme (over, say, a given finite field) in that distribution matrix and reconstruction vectors...... are defined over ℤ and are designed independently of the group G from which the secret and the shares are sampled. This means that perfect completeness and perfect privacy are guaranteed regardless of which group G is chosen. We define the black-box secret sharing problem as the problem of devising......, for an arbitrary given T t,n , a scheme with minimal expansion factor, i.e., where the length of the full vector of shares divided by the number of players n is minimal. Such schemes are relevant for instance in the context of distributed cryptosystems based on groups with secret or hard to compute group order...

  1. Arbitrary function generator for APS injector synchrotron correction magnets

    International Nuclear Information System (INIS)

    Despe, O.D.

    1991-01-01

    The APS injector synchrotron has eighty correction magnets around its circumference to provide the vernier field changes required for beam orbit correction during acceleration. The arbitrary function generator (AFG) design is based on scanning out encoded data from a semi-conductor memory, a first-in-first-out (FIFO) device. The data input consists of a maximum of 20 correction values specified within the acceleration window. Additional points between these values are then linearly interpolated to create a uniformly spaced 1000 data-point function stored in the FIFO. Each point, encoded as a 3-bit value is scanned out in synchronism with the injection pulse and used to clock the up/down counter driving the DAC. The DAC produces the analog reference voltage used to control the magnet current. 1 ref., 4 figs

  2. Adding control to arbitrary unknown quantum operations

    Science.gov (United States)

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  3. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  4. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  5. Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio

    Science.gov (United States)

    Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao

    2016-11-01

    In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.

  6. Simulating an arbitrary number of flavors of dynamical overlap fermions

    International Nuclear Information System (INIS)

    DeGrand, T.; Schaefer, S.

    2006-05-01

    We present a set of related Hybrid Monte Carlo methods to simulate an arbitrary number of dynamical overlap fermions. Each fermion is represented by a chiral pseudo-fermion field. The new algorithm reduces critical slowing down in the chiral limit and for sectors of nontrivial topology. (Orig.)

  7. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    Science.gov (United States)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  8. Arbitrary Inequality in Reputation Systems

    Science.gov (United States)

    Frey, Vincenz; van de Rijt, Arnout

    2016-12-01

    Trust is an essential condition for exchange. Large societies must substitute the trust traditionally provided through kinship and sanctions in small groups to make exchange possible. The rise of internet-supported reputation systems has been celebrated for providing trust at a global scale, enabling the massive volumes of transactions between distant strangers that are characteristic of modern human societies. Here we problematize an overlooked side-effect of reputation systems: Equally trustworthy individuals may realize highly unequal exchange volumes. We report the results of a laboratory experiment that shows emergent differentiation between ex ante equivalent individuals when information on performance in past exchanges is shared. This arbitrary inequality results from cumulative advantage in the reputation-building process: Random initial distinctions grow as parties of good repute are chosen over those lacking a reputation. We conjecture that reputation systems produce artificial concentration in a wide range of markets and leave superior but untried exchange alternatives unexploited.

  9. Hose instability at arbitrary conductivity

    International Nuclear Information System (INIS)

    Lee, E.P.

    1975-01-01

    A model is developed for studying the dynamics of a low-current, highly relativistic beam propagating in a conducting medium. Here the conductivity (sigma) is of arbitrary magnitude, the usual assumption being that the scale beam radius (a) is small compared with the magnetic skin length (4 π sigma a 2 /c). A dispersion formula for the hose instability is derived for the case of uniform sigma and Bennett current profile J/sub b/(r) varies as (a 2 + r 2 ) -2 . The peak growth rate at fixed laboratory position, maximized with respect to sigma as well as driver frequency, is approximately 0.465 c/a. This growth rate is realized when 4 π sigma a/c = √12/5. (U.S.)

  10. Arbitrariness of geometry and the aether

    International Nuclear Information System (INIS)

    Browne, P.F.

    1976-01-01

    As emphasized by Milne, an observer ultimately depends on the transmission and reception of light signals for the measurement of natural lengths and periods remote from his world point. The laws of geometry which are obeyed when these lengths and periods are plotted on a space--time depend, inevitably, on assumptions concerning the dependence of light velocity on the spatial and temporal coordinates. A convention regarding light velocity fixes the geometry, and conversely. However, the convention of flat space--time implies nonintegrable ''radar distances'' unless the concept of coordinate-dependent units of measure is employed. Einstein's space--time has the advantage of admitting a special reference system R with respect to which the aether fluid is at rest and the total gravitational field vanishes. A holonomic transformation from R to another reference system R belonging to the same space--time introduces a nonpermanent gravitational field and holonomic aether motion. A nonholonomic transformation from R to a reference system R* which belongs to a different space--time introduces a permanent gravitational field and nonholonomic aether motion. The arbitrariness of geometry is expressed by extending covariance to include the latter transformation. By means of a nonholonomic (or units) transformation it is possible, with the aid of the principle of equivalence, to obtain the Schwarzschild and de Sitter metrics from the Newtonian fields that would arise in a flat space--time description. Some light is thrown on the interpretation of cosmological models

  11. A pulse generator of arbitrary shaped waveform

    International Nuclear Information System (INIS)

    Jiang Jiayou; Chen Zhihao

    2011-01-01

    The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)

  12. Field-based systems and advanced diagnostics

    International Nuclear Information System (INIS)

    Eryurek, E.

    1998-01-01

    Detection and characterization of anomalies in an industrial plant provide improved plant availability and plant efficiency thus yielding increased economic efficiency. Traditionally, detection of process anomalies is done at a high-level control system through various signal validation methods. These signal validation techniques rely on data from transmitters, which measure related process variables. Correlating these signals and deducing anomalies often is a very time consuming and a difficult task. Delays in detecting these anomalies can be costly during plant operation. Conventional centralized approaches also suffer from their dependence on detailed mathematical models of the processes. Smart field devices have the advantage of providing the necessary information directly to the control system as anomalies develop during operation of the processes enabling operators to take necessary steps to either prevent an unnecessary shut down before the problem becomes serious or schedule maintenance on the problematic loop. Fisher-Rosemount's PlantWeb TM architecture addresses 'Enhanced Measurement, Advanced Diagnostics and Control in the Field'. PlantWeb TM builds open process management systems by networking intelligent field devices, scalable control and systems platforms, and integrated modular software. A description of PlantWeb TM and how it improves various process conditions and reduces operating cost of a plant as well as a high level description of 'Enhanced Measurement, Advanced Diagnostics and Control in the Field', will be provided in this paper. PlantWeb TM is the trademark for Fisher-Rosemount's new field-based architecture that uses emerging technologies to utilize the power of intelligent field devices and deliver critical process and equipment information to improve plant performance. (author)

  13. Discrete phase space based on finite fields

    International Nuclear Information System (INIS)

    Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.

    2004-01-01

    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space

  14. Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2010-06-01

    Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.

  15. Perceptually stable regions for arbitrary polygons.

    Science.gov (United States)

    Rocha, J

    2003-01-01

    Zou and Yan have recently developed a skeletonization algorithm of digital shapes based on a regularity/singularity analysis; they use the polygon whose vertices are the boundary pixels of the image to compute a constrained Delaunay triangulation (CDT) in order to find local symmetries and stable regions. Their method has produced good results but it is slow since its complexity depends on the number of contour pixels. This paper presents an extension of their technique to handle arbitrary polygons, not only polygons of short edges. Consequently, not only can we achieve results as good as theirs for digital images, but we can also compute skeletons of polygons of any number of edges. Since we can handle polygonal approximations of figures, the skeletons are more resilient to noise and faster to process.

  16. New light field camera based on physical based rendering tracing

    Science.gov (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  17. Trace maps for arbitrary substitution sequences

    International Nuclear Information System (INIS)

    Avishai, Y.

    1993-01-01

    The discovery of quasi-crystals and their 1-dimensional modeling have led to a deep mathematical study of Schroedinger operators with an arbitrary deterministic potential sequence. In this work we address this problem and find trace maps for an arbitrary substitution sequence. our trace maps have lower dimensionality than those of Kolar and Nori, which make them quite attractive for actual applications. (authors)

  18. Laboratory and field based evaluation of chromatography ...

    Science.gov (United States)

    The Monitor for AeRosols and GAses in ambient air (MARGA) is an on-line ion-chromatography-based instrument designed for speciation of the inorganic gas and aerosol ammonium-nitrate-sulfate system. Previous work to characterize the performance of the MARGA has been primarily based on field comparison to other measurement methods to evaluate accuracy. While such studies are useful, the underlying reasons for disagreement among methods are not always clear. This study examines aspects of MARGA accuracy and precision specifically related to automated chromatography analysis. Using laboratory standards, analytical accuracy, precision, and method detection limits derived from the MARGA chromatography software are compared to an alternative software package (Chromeleon, Thermo Scientific Dionex). Field measurements are used to further evaluate instrument performance, including the MARGA’s use of an internal LiBr standard to control accuracy. Using gas/aerosol ratios and aerosol neutralization state as a case study, the impact of chromatography on measurement error is assessed. The new generation of on-line chromatography-based gas and particle measurement systems have many advantages, including simultaneous analysis of multiple pollutants. The Monitor for Aerosols and Gases in Ambient Air (MARGA) is such an instrument that is used in North America, Europe, and Asia for atmospheric process studies as well as routine monitoring. While the instrument has been evaluat

  19. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  20. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  1. The exact equation of motion of a simple pendulum of arbitrary amplitude: a hypergeometric approach

    International Nuclear Information System (INIS)

    Qureshi, M I; Rafat, M; Azad, S Ismail

    2010-01-01

    The motion of a simple pendulum of arbitrary amplitude is usually treated by approximate methods. By using generalized hypergeometric functions, it is however possible to solve the problem exactly. In this paper, we provide the exact equation of motion of a simple pendulum of arbitrary amplitude. A new and exact expression for the time of swinging of a simple pendulum from the vertical position to an arbitrary angular position θ is given by equation (3.10). The time period of such a pendulum is also exactly expressible in terms of hypergeometric functions. The exact expressions thus obtained are used to plot the graphs that compare the exact time period T(θ 0 ) with the time period T(0) (based on simple harmonic approximation). We also compare the relative difference between T(0) and T(θ 0 ) found from the exact equation of motion with the usual perturbation theory estimate. The treatment is intended for graduate students, who have acquired some familiarity with the hypergeometric functions. This approach may also be profitably used by specialists who encounter during their investigations nonlinear differential equations similar in form to the pendulum equation. Such nonlinear differential equations could arise in diverse fields, such as acoustic vibrations, oscillations in small molecules, turbulence and electronic filters, among others.

  2. Garbage-free reversible constant multipliers for arbitrary integers

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2013-01-01

    We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...

  3. A novel measuring method for arbitrary optical vortex by three spiral spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Bo [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Guo, Lana [School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Yue, Chengfeng [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie, E-mail: tangzhl@scnu.edu.cn [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-26

    In this letter, the topological charge of non-integer vortices determined by three arbitrary spiral spectra is theoretically demonstrated for the first time. Based on the conclusion, a novel method to measure non-integer vortices is presented. This method is applicable not only to arbitrary non-integer vortex but also to arbitrary integer vortex. - Highlights: • Different non-integer vortices cannot have three spiral spectra is demonstrated. • Relationship between the non-integer topological charge and the spiral spectra is presented. • Topological charge of non-integer vortices can be determined by three arbitrary spiral spectra.

  4. Simulation of drift dynamics of arbitrary carrier distributions in complex semiconductor detectors

    CERN Document Server

    De Castro Manzano, Pablo

    2014-01-01

    An extensible open-source C++ software for the simulation of elec- trons and holes drift in semiconductor detectors of complex geometries has been developed in order to understand transient currents and charge collection efficiencies of arbitrary charge distributions. The simulation is based on Ramo’s theorem formalism to obtain induced currents in the electrodes. Efficient open source C++ numerical libraries are used to ob- tain the electric and weighting field using finite-element methods and to simulate the carrier transport. A graphical user interface is also provided. The tool has already been proved useful to model laser induced transient currents

  5. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  6. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  7. Functional methods for arbitrary densities in curved spacetime

    International Nuclear Information System (INIS)

    Basler, M.

    1993-01-01

    This paper gives an introduction to the technique of functional differentiation and integration in curved spacetime, applied to examples from quantum field theory. Special attention is drawn on the choice of functional integral measure. Referring to a suggestion by Toms, fields are choosen as arbitrary scalar, spinorial or vectorial densities. The technique developed by Toms for a pure quadratic Lagrangian are extended to the calculation of the generating functional with external sources. Included are two examples of interacting theories, a self-interacting scalar field and a Yang-Mills theory. For these theories the complete set of Feynman graphs depending on the weight of variables is derived. (orig.)

  8. Field microcomputerized multichannel γ ray spectrometer based on notebook computer

    International Nuclear Information System (INIS)

    Jia Wenyi; Wei Biao; Zhou Rongsheng; Li Guodong; Tang Hong

    1996-01-01

    Currently, field γ ray spectrometry can not rapidly measure γ ray full spectrum, so a field microcomputerized multichannel γ ray spectrometer based on notebook computer is described, and the γ ray full spectrum can be rapidly measured in the field

  9. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  10. Sensitivity-based virtual fields for the non-linear virtual fields method

    Science.gov (United States)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  11. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    International Nuclear Information System (INIS)

    Hernaski, C.A.; Vargas-Paredes, A.A.; Helayel-Neto, J.A.

    2009-01-01

    Full text. Massive gravity has been an issue of particular interest since the early days of Quantum Gravity. More recently, in connection with models based on brane-world scenarios, the discussion of massive gravitons is drawing a great deal of attention, in view of the possibility of their production at LHC and the feasibility of detection of quantum gravity effects at the TeV scale. In this paper, we reassess a particular R 2 -type gravity action in D dimensions, recently studied by Nakasone and Oda, taking now torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is non-propagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions. To make this we construct a complete basis of operators that projects the degrees of freedom of the dynamical fields of the model in their irreducible spin decomposition. The outcome is that we find a set of Lagrangians with a massive graviton that, in D=4, reproduce those already studied in the literature. (author)

  12. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    International Nuclear Information System (INIS)

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  13. Holographic reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Recent studies have shown that it is possible to measure a sound field using acousto-optic tomography. Theacousto-optic effect, i.e., the interaction between sound and light, can be used to measure an arbitrary soundfield by scanning it with a laser Doppler vibrometer (LDV) over an aperture; This...

  14. The arbitrary order design code Tlie 1.0

    International Nuclear Information System (INIS)

    Zeijts, J. van; Neri, Filippo

    1993-01-01

    We describe the arbitrary order charged particle transfer map code TLIE. This code is a general 6D relativistic design code with a MAD compatible input language and among others implements user defined functions and subroutines and nested fitting and optimization. First we describe the mathematics and physics in the code. Aside from generating maps for all the standard accelerator elements we describe an efficient method for generating nonlinear transfer maps for realistic magnet models. We have implemented the method to arbitrary order in our accelerator design code for cylindrical current sheet magnets. We also have implemented a self-consistent space-charge approach as in CHARLIE. Subsequently we give a description of the input language and finally, we give several examples from productions run, such as cases with stacked multipoles with overlapping fringe fields. (Author)

  15. An arbitrary curvilinear-coordinate method for particle-in-cell modeling

    International Nuclear Information System (INIS)

    Fichtl, C A; Finn, J M; Cartwright, K L

    2012-01-01

    A new approach to kinetic simulation of plasmas in complex geometries, based on the particle-in-cell (PIC) simulation method, is explored. In the two-dimensional (2D) electrostatic version of our method, called the arbitrary curvilinear-coordinate PIC method, all essential PIC operations are carried out in 2D on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit modified leapfrog integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear-coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes. (paper)

  16. Antenna Correlation From Input Parameters for Arbitrary Topologies and Terminations

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Andersen, Jørgen Bach; Pedersen, Gert Frølund

    2012-01-01

    The spatial correlation between pairs of antennas in a system comprised of N RF ports is found by extending the N × N scattering matrix to (N + 1)×(N + 1) spatial scattering matrix, where the extra space dimension accounts for the reference port patterns. The lossless property of the spatial...... scattering matrix in a 3D uniform field is employed for expressing the spatial correlation between the port patterns at arbitrary complex terminations merely from the reference scattering parameters and the complex terminations without any far-field calculation....

  17. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  18. A sheath model for arbitrary radiofrequency waveforms

    Science.gov (United States)

    Turner, M. M.; Chabert, Pascal

    2012-10-01

    The sheath is often the most important region of a rf plasma, because discharge impedance, power absorption and ion acceleration are critically affected by the behaviour of the sheath. Consequently, models of the sheath are central to any understanding of the physics of rf plasmas. Lieberman has supplied an analytical model for a radio-frequency sheath driven by a single frequency, but in recent years interest has been increasing in radio-frequency discharges excited by increasingly complex wave forms. There has been limited success in generalizing the Lieberman model in this direction, because of mathematical complexities. So there is essentially no sheath model available to describe many modern experiments. In this paper we present a new analytical sheath model, based on a simpler mathematical framework than that of Lieberman. For the single frequency case, this model yields scaling laws that are identical in form to those of Lieberman, differing only by numerical coefficients close to one. However, the new model may be straightforwardly solved for arbitrary current waveforms, and may be used to derive scaling laws for such complex waveforms. In this paper, we will describe the model and present some illustrative examples.

  19. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  20. Influence of magnetic field on swap operation in Heisenberg XXZ model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Zhang Guofeng, E-mail: gf1978zhang@buaa.edu.c [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2009-05-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  1. Influence of magnetic field on swap operation in Heisenberg XXZ model

    International Nuclear Information System (INIS)

    Liu Jia; Zhang Guofeng; Chen Ziyu

    2009-01-01

    Swap operation based on a two-qubit Heisenberg XXZ model under a uniform magnetic field in arbitrary direction and magnitude is investigated. It is shown that swap gate can be implemented on some conditions and its feasibility is established.

  2. Engineering arbitrary pure and mixed quantum states

    International Nuclear Information System (INIS)

    Pechen, Alexander

    2011-01-01

    Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

  3. Ocean Wave Simulation Based on Wind Field.

    Directory of Open Access Journals (Sweden)

    Zhongyi Li

    Full Text Available Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  4. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    Science.gov (United States)

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  5. Acoustic invisibility cloaks of arbitrary shapes for complex background media

    Science.gov (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2016-04-01

    We report on the theoretical investigation of the acoustic cloaks working in complex background media in this paper. The constitutive parameters of arbitrary-shape cloaks are derived based on the transformation acoustic theory and coordinate transformation technique. The detailed analysis of boundaries conditions and potential applications of the cloaks are also presented in our work. To overcome the difficulty of achieving the materials with ideal parameters in nature, concentric alternating layered isotropic materials is adopted to approximate the required properties of the cloak. Theoretical design and excellent invisibility are demonstrated by numerical simulations. The inhomogeneous medium and arbitrary-shape acoustic cloaks grow closer to real application and may be a new hot spot in future.

  6. Quantum teleportation of an arbitrary superposition of atomic states

    Institute of Scientific and Technical Information of China (English)

    Chen Qiong; Fang Xi-Ming

    2008-01-01

    This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.

  7. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  8. Measurability of non-abelium gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, D.D.; Obukhov, Yu.N.

    New estimations of the accuracy of measurement of non-abeliar gauge field components are obtained on the base of qualitative analysis of the test body equations of motion. They generalize the Bohr and Rosenfeld results on the measurability of an electomagnetic field for the case of an arbitrary gauge group.

  9. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  10. Monadic Maps and Folds for Arbitrary Datatypes

    NARCIS (Netherlands)

    Fokkinga, M.M.

    Each datatype constructor comes equiped not only with a so-called map and fold (catamorphism), as is widely known, but, under some condition, also with a kind of map and fold that are related to an arbitrary given monad. This result follows from the preservation of initiality under lifting

  11. Accelerating flight: Edge with arbitrary acceleration

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2011-11-01

    Full Text Available This study concludes the possession of a theoretical framework for arbitrary manoeuvre which allows us to keep an eye on transformations. In the theory, relative frame equations are useful in guiding us in what to look for. The code...

  12. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    DEFF Research Database (Denmark)

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  13. A no-go theorem for the consistent quantization of the massive gravitino on Robertson-Walker spacetimes and arbitrary spin 3/2 fields on general curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul; Makedonski, Mathias [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2011-06-15

    We first introduce a set of conditions which assure that a free spin (3)/(2) field with m{>=}0 can be consistently ('unitarily') quantized on all four-dimensional curved spacetimes, i.e. also on spacetimes which are not assumed to be solutions of the Einstein equations. We discuss a large - and, as we argue, exhaustive - class of spin (3)/(2) field equations obtained from the Rarita-Schwinger equation by the addition of non-minimal couplings and prove that no equation in this class fulfils all sufficient conditions. Afterwards, we investigate the situation in supergravity, where the curved background is usually assumed to satisfy the Einstein equations and, hence, detailed knowledge on the spacetime curvature is available. We provide a necessary condition for the unitary quantization of a spin (3)/(2) Majorana field and prove that this condition is not met by supergravity models in four-dimensional Robertson-Walker spacetimes if local supersymmetry is broken. Our proof is model-independent as we merely assume that the gravitino has the standard kinetic term. (orig.)

  14. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    Science.gov (United States)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  15. Randomness and arbitrary coordination in the reactive ultimatum game

    Science.gov (United States)

    da Silva, Roberto; Valverde, Pablo; Lamb, Luis C.

    2016-07-01

    Darwin's theory of evolution - as introduced in game theory by Maynard Smith - is not the only important evolutionary aspect in an evolutionary dynamics, since complex interdependencies, competition, and growth should be modeled by, for example, reactive aspects. In the ultimatum game, the reciprocity and the fifty-fifty partition seems to be a deviation from rational behavior of the players under the light of Nash equilibrium. Such equilibrium emerges, for example, from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version of the game, the proposers are able to improve their proposals by adding a value thus making fairer proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a fundamental aspect: they reflect their actions according to value of the offers. Recently, a reactive version of the ultimatum game where acceptance occurs with fixed probability was proposed. In this paper, we aim at exploring this reactive version of the ultimatum game where the acceptance by players depends on the offer. In order to do so, we analyze two situations: (i) mean field and (ii) we consider players inserted within the networks with arbitrary coordination. We then show that the reactive aspect, here studied, thus far not analyzed in the evolutionary game theory literature can unveil an essential feature for the convergence to fifty-fifty split. Moreover we also analyze populations under four different polices ranging from a highly conservative to a moderate one, with respect to the decision in changing the proposal based on acceptances. We show that the idea of gaining less more times added to the reciprocity of the players is highly relevant to the concept of ;healthy; societies population bargaining.

  16. Arbitrary Phase Vocoders by means of Warping

    Directory of Open Access Journals (Sweden)

    Gianpaolo Evangelista

    2013-08-01

    Full Text Available The Phase Vocoder plays a central role in sound analysis and synthesis, allowing us to represent a sound signal in both time and frequency, similar to a music score – but possibly at much finer time and frequency scales – describing the evolution of sound events. According to the uncertainty principle, time and frequency are not independent variables so that any time-frequency representation is the result of a compromise between time and frequency resolutions, the product of which cannot be smaller than a given constant. Therefore, finer frequency resolution can only be achieved with coarser time resolution and, similarly, finer time resolution results in coarser frequency resolution.While most of the conventional methods for time-frequency representations are based on uniform time and uniform frequency resolutions, perception and physical characteristics of sound signals suggest the need for nonuniform analysis and synthesis. As the results of psycho-acoustic research show, human hearing is naturally organized in nonuniform frequency bands. On the physical side, the sounds of percussive instruments as well as piano in the low register, show partials whose frequencies are not uniformly spaced, as opposed to the uniformly spaced partial frequencies found in harmonic sounds. Moreover, the different characteristics of sound signals at the onset transients with respect to stationary segments suggest the need for nonuniform time resolution. In the effort to exploit the time-frequency resolution compromise at its best, a tight time-frequency suit should be tailored to snuggly fit the sound body.In this paper we overview flexible design methods for phase vocoders with nonuniform resolutions. The methods are based on remapping the time or the frequency axis, or both, by employing suitable functions acting as warping maps, which locally change the characteristics of the time-frequency plane. As a result, the sliding windows may have time dependent

  17. Introducing Field-Based Geologic Research Using Soil Geomorphology

    Science.gov (United States)

    Eppes, Martha Cary

    2009-01-01

    A field-based study of soils and the factors that influence their development is a strong, broad introduction to geologic concepts and research. A course blueprint is detailed where students design and complete a semester-long field-based soil geomorphology project. Students are first taught basic soil concepts and to describe soil, sediment and…

  18. Invisibility cloaks with arbitrary geometries for layered and gradually changing backgrounds

    International Nuclear Information System (INIS)

    Li, C; Yao, K; Li, F

    2009-01-01

    Cloaks with arbitrary geometries are proposed which can make objects invisible in inhomogeneous backgrounds. The general and explicit expressions of the complex permittivity and permeability tensors are derived for cloaks embedded in layered and gradually changing media. The inner and the outer boundaries of the cloaks can be non-conformal with arbitrary shapes, which considerably improve the flexibility of the cloak applications. The interactions of electromagnetic waves with irregular cloaks are studied based on numerical simulations. The influences of the cloaked and uncloaked perfect electric conductor (PEC) cylinders upon the scattering fields of the multilayered backgrounds are quantitatively evaluated. The effect of loss on the cloaking performance has also been investigated. It is verified that cloaks with ideal parameters can smoothly deflect and guide the incoming beams to propagate around the shielded regions without disturbing the beams when they return to the inhomogeneous backgrounds. Therefore, the objects in the shielded region can be effectively invisible to the corresponding backgrounds. The performance of lossy cloaks will degrade with comparatively large power reduction of the transmitted beams.

  19. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    Science.gov (United States)

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  20. Field emitters with low turn on electric field based on carbon fibers

    International Nuclear Information System (INIS)

    Wang Qilong; Mu Hui; Zhang Xiaobing; Lei Wei; Wang Jinchan; Zhao Hongping

    2007-01-01

    Field emitters of vertical carbon fibers on a silicon substrate are fabricated by catalytic chemical vapor deposition. After an ageing process of 150 min, field emission measurement of the fibers is carried out in a vacuum chamber with a base pressure of 5.0 x 10 -4 Pa. The experimental results display that field emission performance of the carbon fibers depends strongly on the vacuum level during the experiments. After the field emission measurement, damage to the carbon fiber field emitters is observed from the scanning electron microscopic images

  1. Radiofrequency fields: Bases for exposure limits

    Energy Technology Data Exchange (ETDEWEB)

    Paolo Vecchia [Department of Technologies and Health National Institute of Health, Rome (Italy)

    2006-07-01

    Several biological effects have been reported at exposure levels below the threshold for thermal effects, but most of them require independent confirmation before being accepted as established. However, no seems to have relevant implications for human health. Precautionary measures should be based on a cost/benefit analysis, and be proportionate on one side to the risk they aim at preventing and on the other side to actions taken in other areas to prevent comparable risks. (N.C.)

  2. Radiofrequency fields: Bases for exposure limits

    International Nuclear Information System (INIS)

    Paolo Vecchia

    2006-01-01

    Several biological effects have been reported at exposure levels below the threshold for thermal effects, but most of them require independent confirmation before being accepted as established. However, no seems to have relevant implications for human health. Precautionary measures should be based on a cost/benefit analysis, and be proportionate on one side to the risk they aim at preventing and on the other side to actions taken in other areas to prevent comparable risks. (N.C.)

  3. Active Learning Using Arbitrary Binary Valued Queries

    Science.gov (United States)

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  4. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  5. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  6. Charged particles in external electromagnetic fields

    International Nuclear Information System (INIS)

    Giovannini, N.P.D.

    1976-01-01

    The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential

  7. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    using PEBP (Phosphatidylethanolamine binding protein, a kinase inhibitor with multiple partners. Conclusions An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.

  8. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    protein), a kinase inhibitor with multiple partners. An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.

  9. Double phi-Step theta-Scanning Technique for Spherical Near-Field Antenna Measurements

    DEFF Research Database (Denmark)

    Laitinen, Tommi

    2008-01-01

    Probe-corrected spherical near-field antenna measurements with an arbitrary probe set certain requirements on an applicable scanning technique. The computational complexity of the general high-order probe correction technique for an arbitrary probe, that is based on the Phi scanning, is O(N4...... a specific double Phi-step thetas scanning technique for spherical near-field antenna measurements. This technique not only constitutes an alternative spherical scanning technique, but it also enables formulating an associated probe correction technique for arbitrary probes with the computational complexity...

  10. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong

    2005-01-01

    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value

  11. Progress on a Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    CERN Document Server

    Bassi, Gabriele; Warnock, Robert L

    2005-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding). The time evolution of the phase space distribution is determined by solving the Vlasov-Maxwell equations in the time domain. This provides lower numerical noise than the macroparticle method, and allows the study of emittance degradation and microbunching in bunch compressors. We calculate the fields excited by the bunch in the lab frame using a formula simpler than that based on retarded potentials.* We have developed an algorithm for solving the Vlasov equation in the beam frame using arc length as the independent variable and our method of local characteristics (discretized Perron-Frobenius operator).We integrate in the interaction picture in the hope that we can adopt a fixed grid. The distribution function will be represented by B-splines, in a scheme preserving positivity and normalization of the distribution. The transformation between l...

  12. The factorized F-matrices for arbitrary U(1)(N-1) integrable vertex models

    International Nuclear Information System (INIS)

    Martins, M.J.; Pimenta, R.A.; Zuparic, M.

    2012-01-01

    We discuss the F-matrices associated to the R-matrix of a general N-state vertex model whose statistical configurations encode N-1U(1) symmetries. The factorization condition is shown for arbitrary weights being based only on the unitarity property and the Yang-Baxter relation satisfied by the R-matrix. Focusing on the N=3 case we are able to conjecture the structure of some relevant twisted monodromy matrix elements for general weights. We apply this result providing the algebraic expressions of the domain wall partition functions built up in terms of the creation and annihilation monodromy fields. For N=3 we also exhibit a R-matrix whose weights lie on a del Pezzo surface and have a rather general structure.

  13. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  14. Supersymmetric quantum mechanics and the index theorem for arbitrary Lorentz irreps

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Twisk, S.

    1987-05-01

    A new formalism is presented for the derivation of index theorems from the supersymmetric quantum mechanics of the Dirac operator, based on a discrete approximation to the path integral. Operator ordering in H (i..gamma..sup(..mu..)Dsub(..mu..))/sup 2/ dictates the form of the action, and the N ..-->.. infinity limit yields the correct form of the index theorem for the U(1) anomaly. It is established that internal degrees of freedom may be represented by fermions and/or bosons. In the purely gravitational case, the bosonic formulation yields a generating function for the contribution to the anomaly for spinor fields carrying arbitrary irreps (1/2A,1/2B) of the local SO(4) group.

  15. Supersymmetric quantum mechanics and the index theorem for arbitrary Lorentz irreps

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Twisk, S.

    1987-01-01

    A new formalism is presented for the derivation of index theorems from the supersymmetric quantum mechanics of the Dirac operator, based on a discrete approximation to the path integral. Operator ordering in H (iγsup(μ)Dsub(μ)) 2 dictates the form of the action, and the N → infinity limit yields the correct form of the index theorem for the U(1) anomaly. It is established that internal degrees of freedom may be represented by fermions and/or bosons. In the purely gravitational case, the bosonic formulation yields a generating function for the contribution to the anomaly for spinor fields carrying arbitrary irreps (1/2A,1/2B) of the local SO(4) group. (author)

  16. Broadband computation of the scattering coefficients of infinite arbitrary cylinders.

    Science.gov (United States)

    Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier

    2012-07-01

    We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.

  17. Modelling magnetic laminations under arbitrary starting state and flux waveform

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Ragusa, Carlo

    2005-01-01

    A numerical model able to predict the behaviour of a magnetic sheet under arbitrary supply conditions has been developed. The electromagnetic field problem is formulated in terms of an electric vector potential, which provides the magnetic field strength evolution. The hysteretic behaviour of the material is represented through the dynamic Preisach model where the activation law of the bi-state operators is modified in order to guarantee a smooth response. The problem has been solved through a time step procedure using the fixed Point technique for handling nonlinearity. The model has been validated by comparison with suitable experiments and it is applied to the investigation of the influence of the materials' starting state on the magnetic behaviour

  18. Totally asymmetric exclusion processes with particles of arbitrary size

    CERN Document Server

    Lakatos, G

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or ...

  19. Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.

    Science.gov (United States)

    Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui

    2017-04-06

    In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.

  20. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  1. Shrinking an arbitrary object as one desires using metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang

    2011-05-01

    Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.

  2. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  3. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  4. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  5. External Mask Based Depth and Light Field Camera

    Science.gov (United States)

    2013-12-08

    External mask based depth and light field camera Dikpal Reddy NVIDIA Research Santa Clara, CA dikpalr@nvidia.com Jiamin Bai University of California...passive depth acquisition technology is illustrated by the emergence of light field camera companies like Lytro [1], Raytrix [2] and Pelican Imaging

  6. ANALYTIC WORD RECOGNITION WITHOUT SEGMENTATION BASED ON MARKOV RANDOM FIELDS

    NARCIS (Netherlands)

    Coisy, C.; Belaid, A.

    2004-01-01

    In this paper, a method for analytic handwritten word recognition based on causal Markov random fields is described. The words models are HMMs where each state corresponds to a letter; each letter is modelled by a NSHP­HMM (Markov field). Global models are build dynamically, and used for recognition

  7. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  8. Clausius entropy for arbitrary bifurcate null surfaces

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2014-01-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)

  9. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    Science.gov (United States)

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  10. Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    International Nuclear Information System (INIS)

    Warnock, R

    2004-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch

  11. Wigner Functions for Arbitrary Quantum Systems.

    Science.gov (United States)

    Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae

    2016-10-28

    The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.

  12. Path integrals for arbitrary canonical transformations

    International Nuclear Information System (INIS)

    Oliveira, L.A.R. de.

    1980-01-01

    Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt

  13. Arbitrary layer tomographic method and apparatus

    International Nuclear Information System (INIS)

    Kato, H.; Ishida, M.

    1984-01-01

    Many two-dimensional X-ray projection distribution images obtained by exposing an object to X-rays in various directions are once stored in positions different from one another in a stimulable phosphor sheet or respectively in many stimulable phosphor sheets. The stimulable phosphor sheet or sheets are then scanned with stimulating rays, and the light emitted thereby from the stimulable phosphor sheet or sheets is photoelectrically read out to obtain electric signals representing the X-ray projection distribution images. The electric signals are processed to obtain a tomographic image of an arbitrary tomographic layer of the object

  14. Fabrication of longitudinally arbitrary shaped fiber tapers

    Science.gov (United States)

    Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2018-02-01

    We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.

  15. Coordinate transformations make perfect invisibility cloaks with arbitrary shape

    International Nuclear Information System (INIS)

    Yan Wei; Yan Min; Ruan Zhichao; Qiu Min

    2008-01-01

    By investigating wave properties at cloak boundaries, invisibility cloaks with arbitrary shape constructed by general coordinate transformations are confirmed to be perfectly invisible to the external incident wave. The differences between line transformed cloaks and point transformed cloaks are discussed. The fields in the cloak medium are found analytically to be related to the fields in the original space via coordinate transformation functions. At the exterior boundary of the cloak, it is shown that no reflection is excited even though the permittivity and permeability do not always have a perfectly matched layer form, whereas at the inner boundary, no reflection is excited either, and in particular no field can penetrate into the cloaked region. However, for the inner boundary of any line transformed cloak, the permittivity and permeability in a specific tangential direction are always required to be infinitely large. Furthermore, the field discontinuity at the inner boundary always exists; the surface current is induced to make this discontinuity self-consistent. A point transformed cloak does not experience such problems. The tangential fields at the inner boundary are all zero, implying that no field discontinuity exists

  16. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  17. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  18. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  19. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  20. The Sugawara generators at arbitrary level

    International Nuclear Information System (INIS)

    Gebert, R.W.; Koepsell, K.; Nicolai, H.

    1996-04-01

    We construct an explicit representation of the Sugawara generators for arbitrary level in terms of the homogeneous Heisenberg subalgebra, which generalizes the well-known expression at level 1. This is achieved by employing a physical vertex operator realization of the affine algebra at arbitrary level, in contrast to the Frenkel-Kac-Segal construction which uses unphysical oscillators and is restricted to level 1. At higher level, the new operators are transcendental functions of DDF oscillators unlike the quadratic expressions for the level-1 generators. An essential new feature of our construction is the appearance, beyond level 1, of new types of poles in the operator product expansions in addition to the ones at coincident points, which entail (controllable) non-localities in our formulas. We demonstrate the utility of the new formalism by explicitly working out some higher-level examples. Our results have important implications for the problem of constructing explicit representations for higher-level root spaces of hyperbolic Kac-Moody algebras, and E 10 in particular. (orig.)

  1. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    Science.gov (United States)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution

  2. Fourier method for modeling slanted lamellar gratings of arbitrary end-surface shapes in conical mounting.

    Science.gov (United States)

    Li, Lifeng

    2015-10-01

    An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.

  3. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: wlyang@nwu.edu.cn [Institute of Modern Physics, Northwest University, Xian 710069 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived.

  4. Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions

    International Nuclear Information System (INIS)

    Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2013-01-01

    Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–Q relation and the Bethe ansatz equations are derived

  5. A probability measure for random surfaces of arbitrary genus and bosonic strings in 4 dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We define a probability measure describing random surfaces in R D , 3≤D≤13, parametrized by compact Riemann surfaces of arbitrary genus. The measure involves the path space measure for scalar fields with exponential interaction in 2 space time dimensions. We show that it gives a mathematical realization of Polyakov's heuristic measure for bosonic strings. (orig.)

  6. Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun

    2007-01-01

    We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.

  7. Modelling of subsonic COIL with an arbitrary magnetic modulation

    Science.gov (United States)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  8. Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits

    International Nuclear Information System (INIS)

    Warnock, R.; Bassi, G.; Ellison, J.A.

    2006-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp

  9. Development of field-wide risk based remediation objectives for an aging oil field : Devon Canada Swan Hills Field

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.; North, C.; Leighton-Boyce, G. [WorleyParsons Komex, Calgary, AB (Canada); Moore, D. [Devon Canada Corp., Calgary, AB (Canada)

    2006-07-01

    The development of field-wide risk based remediation objectives for the aging Devon Canada Swan Hills oil field was examined along with the key components of the closure strategy. These included source removal to the extent practical, long term monitoring, and achievable risk-based remedial objectives that were appropriate to the remote boreal forest setting of the Swan Hills field. A two stage approach was presented. The first stage involved a field wide background framework which included defining areas of common physical and ecological setting and developing appropriate exposure scenarios. The second stage involved site-specific risk assessments which included adjusting for site-specific conditions and an early demonstration project to prove the concept. A GIS approach was used to identify areas of common physical and ecological setting including: physiography; surface water; land use; vegetation ecozones; surficial and bedrock geology; and water well use. Species lists were compiled for vegetation, terrestrial wildlife (mammals, birds, amphibians), and aquatic species (fish and invertebrates). Major contaminant sources, problem formulation, vegetation bioassays, invertebrate bioassays, black spruce emergence, and guideline development were other topics covered during the presentation. Last, a summary of progress was presented. A field-wide review and development of risk zones and site-specific risk assessment has been completed. A regulatory review is underway. tabs., figs.

  10. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  11. Dipole-magnet field models based on a conformal map

    Directory of Open Access Journals (Sweden)

    P. L. Walstrom

    2012-10-01

    Full Text Available In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D. The field for all space outside of the pole pieces is given by a single (complex analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An

  12. Development of a 2-D Simplified P3 FEM Solver for Arbitrary Geometry Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Joo, Han Gyu [Seoul National University, Seoul (Korea, Republic of)

    2010-10-15

    In the calculation of power distributions and multiplication factors in a nuclear reactor, the Finite Difference Method (FDM) and the nodal methods are primarily used. These methods are, however, limited to particular geometries and lack general application involving arbitrary geometries. The Finite Element Method (FEM) can be employed for arbitrary geometry application and there are numerous FEM codes to solve the neutron diffusion equation or the Sn transport equation. The diffusion based FEM codes have the drawback of inferior accuracy while the Sn based ones require a considerable computing time. This work here is to seek a compromise between these two by employing the simplified P3 (SP3) method for arbitrary geometry applications. Sufficient accuracy with affordable computing time and resources would be achieved with this choice of approximate transport solution when compared to full FEM based Pn or Sn solutions. For now only 2-D solver is considered

  13. ABJM Wilson loops in arbitrary representations

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Honda, Masazumi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  14. 4d fermionic superstrings with arbitrary twists

    International Nuclear Information System (INIS)

    Antoniadis, I.; Bachas, C.

    1988-01-01

    We present the rules for systematically constructing all consistent four-dimensional string theories, using free world-sheet fermions which pick up arbitrary phases when parallel transported around the string. These rules are necessary and sufficient for multi-loop modular invariance. They lead to theories with general Z N (GSO-type) projections, whose merits for model-building we discuss. We classify all boundary conditions yielding massless space-time spinors. We show that, in contrast to the case of only real 2d fermions, all possible realizations of world-sheet supersymmetry are now allowed. This opens the way for the construction of a new class of supersymmetric string models. (orig.)

  15. ABJM Wilson loops in arbitrary representations

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-06-01

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  16. Arbitrary spin fermions on the lattice

    International Nuclear Information System (INIS)

    Bullinaria, J.A.

    1985-01-01

    Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out

  17. Totally asymmetric exclusion processes with particles of arbitrary size

    International Nuclear Information System (INIS)

    Lakatos, Greg; Chou, Tom

    2003-01-01

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d ≥ 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results

  18. Totally asymmetric exclusion processes with particles of arbitrary size

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Greg; Chou, Tom [Department of Biomathematics and Institute for Pure and Applied Mathematics, UCLA, Los Angeles, CA 90095 (United States)

    2003-02-28

    The steady-state currents and densities of a one-dimensional totally asymmetric exclusion process (TASEP) with particles that occlude an integer number (d) of lattice sites are computed using various mean-field approximations and Monte Carlo simulations. TASEPs featuring particles of arbitrary size are relevant for modelling systems such as mRNA translation, vesicle locomotion along microtubules and protein sliding along DNA. We conjecture that the nonequilibrium steady-state properties separate into low-density, high-density, and maximal current phases similar to those of the standard (d = 1) TASEP. A simple mean-field approximation for steady-state particle currents and densities is found to be inaccurate. However, we find local equilibrium particle distributions derived from a discrete Tonks gas partition function yield apparently exact currents within the maximal current phase. For the boundary-limited phases, the equilibrium Tonks gas distribution cannot be used to predict currents, phase boundaries, or the order of the phase transitions. However, we employ a refined mean-field approach to find apparently exact expressions for the steady-state currents, boundary densities, and phase diagrams of the d {>=} 1 TASEP. Extensive Monte Carlo simulations are performed to support our analytic, mean-field results.

  19. Velocity Analysis Using Nonhyperbolic Move-Out in Anisotropic Media of Arbitrary Symmetry: Synthetic and Field Data Studies Analyse de vitesse par correction non hyperbolique des indicatrices dans les milieux anisotropes de symétrie arbitraire : étude sur des données synthétiques et réelles

    Directory of Open Access Journals (Sweden)

    Tabti H.

    2006-12-01

    Full Text Available A robust method for estimating the interval parameters (i. e. the normal move-out velocity Vnmo and the anisotropy parameter h of horizontally layered transversely isotropic media from reflected P-waves data has been recently proposed by Alkhalifah (1997 based on move-out equation from Tsvankin and Thomsen (1994. The method, tested on synthetic and field data, is based first on semblance analysis on nonhyberbolic (i. e. long spread move-out for the estimation of the effective parameters, and then on a layer stripping process. Sayers and Ebrom (1997 recently proposed another nonhyperbolic traveltime equation and a corresponding interval velocity analysis which can be used for azimuthally anisotropic layered media. The method was tested on synthetic and physical model data in homogeneous anisotropic media of various symmetry. Here we propose a generalization of the method proposed by Alkhalifah, which can deal with arbitrary, but moderately (i. e. anisotropy strength of roughly 20%, anisotropic layered media. The parametrization is a natural extension of the parametrization used by the previous author and based on generalized Thomsen's parameters (Thomsen, 1986 proposed by Mensch and Rasolofosaon (1997. The method is first applied to synthetic data on a six layer model of contrasted anisotropy (type and magnitude. The robustness of the method is demonstrated. All the interval parameters (here Vnmo and the horizontal velocity Vh are estimated with reasonable errors (typically Une méthode fiable, permettant d'estimer les paramètres d'intervalle (i. e. la vitesse de normal move-outVnmo et le paramètre d'anisotropie h dans les milieux tabulaires transversalement isotropes à partir des ondes P réfléchies, a été proposée récemment par Alkhalifah (1997. Elle est basée sur l'équation du temps de trajet réfléchi développée par Tsvankin et Thomsen (1994. Cette méthode, testée sur des données synthétiques et expérimentales, consiste en

  20. A ferrofluid based artificial tactile sensor with magnetic field control

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Naletova, V.A., E-mail: naletova@imec.msu.ru [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zeidis, I., E-mail: igor.zeidis@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany)

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  1. A ferrofluid based artificial tactile sensor with magnetic field control

    International Nuclear Information System (INIS)

    Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-01-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  2. A cavitation model based on Eulerian stochastic fields

    Science.gov (United States)

    Magagnato, F.; Dumond, J.

    2013-12-01

    Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  3. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  4. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  5. An Arbitrary Benchmark CAPM: One Additional Frontier Portfolio is Sufficient

    OpenAIRE

    Ekern, Steinar

    2008-01-01

    First draft: July 16, 2008 This version: October 7, 2008 The benchmark CAPM linearly relates the expected returns on an arbitrary asset, an arbitrary benchmark portfolio, and an arbitrary MV frontier portfolio. The benchmark is not required to be on the frontier and may be non-perfectly correlated with the frontier portfolio. The benchmark CAPM extends and generalizes previous CAPM formulations, including the zero beta, two correlated frontier portfolios, riskless augmented frontier, an...

  6. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    International Nuclear Information System (INIS)

    Hua Ting-Ting; Guo Yu-Feng; Yu Ying; Jian Tong; Yao Jia-Fei; Sheu Gene

    2013-01-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here. (interdisciplinary physics and related areas of science and technology)

  7. Analytical models of lateral power devices with arbitrary vertical doping profiles in the drift region

    Science.gov (United States)

    Hua, Ting-Ting; Guo, Yu-Feng; Yu, Ying; Gene, Sheu; Jian, Tong; Yao, Jia-Fei

    2013-05-01

    By solving the 2D Poisson's equation, analytical models are proposed to calculate the surface potential and electric field distributions of lateral power devices with arbitrary vertical doping profiles. The vertical and the lateral breakdown voltages are formulized to quantify the breakdown characteristic in completely-depleted and partially-depleted cases. A new reduced surface field (RESURF) criterion which can be used in various drift doping profiles is further derived for obtaining the optimal trade-off between the breakdown voltage and the on-resistance. Based on these models and the numerical simulation, the electric field modulation mechanism and the breakdown characteristics of lateral power devices are investigated in detail for the uniform, linear, Gaussian, and some discrete doping profiles along the vertical direction in the drift region. Then, the mentioned vertical doping profiles of these devices with the same geometric parameters are optimized, and the results show that the optimal breakdown voltages and the effective drift doping concentrations of these devices are identical, which are equal to those of the uniform-doped device, respectively. The analytical results of these proposed models are in good agreement with the numerical results and the previous experimental results, confirming the validity of the models presented here.

  8. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  9. Fowler Nordheim theory of carbon nanotube based field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Shama; Kumar, Avshish [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Samina [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), New Delhi (India); Husain, Mushahid, E-mail: mush_reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (Central University), New Delhi (India)

    2017-01-15

    Field emission (FE) phenomena are generally explained in the frame-work of Fowler Nordheim (FN) theory which was given for flat metal surfaces. In this work, an effort has been made to present the field emission mechanism in carbon nanotubes (CNTs) which have tip type geometry at nanoscale. High aspect ratio of CNTs leads to large field enhancement factor and lower operating voltages because the electric field strength in the vicinity of the nanotubes tip can be enhanced by thousand times. The work function of nanostructure by using FN plot has been calculated with reverse engineering. With the help of modified FN equation, an important formula for effective emitting area (active area for emission of electrons) has been derived and employed to calculate the active emitting area for CNT field emitters. Therefore, it is of great interest to present a state of art study on the complete solution of FN equation for CNTs based field emitter displays. This manuscript will also provide a better understanding of calculation of different FE parameters of CNTs field emitters using FN equation.

  10. Enabling full field physics based OPC via dynamic model generation

    Science.gov (United States)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-03-01

    As EUV lithography marches closer to reality for high volume production, its peculiar modeling challenges related to both inter- and intra- field effects has necessitated building OPC infrastructure that operates with field position dependency. Previous state of the art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7nm and 5nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of EPE errors. The introduction of Dynamic Model Generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through field. DMG allows unique models for EMF, apodization, aberrations, etc to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  11. Location Fingerprint Extraction for Magnetic Field Magnitude Based Indoor Positioning

    Directory of Open Access Journals (Sweden)

    Wenhua Shao

    2016-01-01

    Full Text Available Smartphone based indoor positioning has greatly helped people in finding their positions in complex and unfamiliar buildings. One popular positioning method is by utilizing indoor magnetic field, because this feature is stable and infrastructure-free. In this method, the magnetometer embedded on the smartphone measures indoor magnetic field and queries its position. However, the environments of the magnetometer are rather harsh. This harshness mainly consists of coarse-grained hard/soft-iron calibrations and sensor electronic noise. The two kinds of interferences decrease the position distinguishability of the magnetic field. Therefore, it is important to extract location features from magnetic fields to reduce these interferences. This paper analyzes the main interference sources of the magnetometer embedded on the smartphone. In addition, we present a feature distinguishability measurement technique to evaluate the performance of different feature extraction methods. Experiments revealed that selected fingerprints will improve position distinguishability.

  12. powerbox: Arbitrarily structured, arbitrary-dimension boxes and log-normal mocks

    Science.gov (United States)

    Murray, Steven G.

    2018-05-01

    powerbox creates density grids (or boxes) with an arbitrary two-point distribution (i.e. power spectrum). The software works in any number of dimensions, creates Gaussian or Log-Normal fields, and measures power spectra of output fields to ensure consistency. The primary motivation for creating the code was the simple creation of log-normal mock galaxy distributions, but the methodology can be used for other applications.

  13. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. (Auth.)

  14. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2015-01-01

    We propose and demonstrate an optical arbitrary waveformgenerator and high-order photonic differentiator based on a four-tap finiteimpulse response (FIR) silicon-on-insulator (SOI) on-chip circuit. Based onamplitude and phase modulation of each tap controlled by thermal heaters,we obtain several...

  15. Fuzzy logic based ELF magnetic field estimation in substations

    International Nuclear Information System (INIS)

    Kosalay, I.

    2008-01-01

    This paper examines estimation of the extremely low frequency magnetic fields (MF) in the power substation. First, the results of the previous relevant research studies and the MF measurements in a sample power substation are presented. Then, a fuzzy logic model based on the geometric definitions in order to estimate the MF distribution is explained. Visual software, which has a three-dimensional screening unit, based on the fuzzy logic technique, has been developed. (authors)

  16. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, David

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a

  17. Professor: A motorized field-based phenotyping cart

    Science.gov (United States)

    An easy-to-customize, low-cost, low disturbance, motorized proximal sensing cart for field-based high-throughput phenotyping is described. General dimensions, motor specifications, and a remote operation application are given. The cart, named Professor, supports mounting multiple proximal sensors an...

  18. New unified field theory based on the conformal group

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-10-01

    Based on a six-dimensional generalization of Maxwell's equations, a new unified theory of the electromagnetic and gravitational field is developed. Additional space-time coordinates are interpreted only as mathematical tools in order to obtain a linear realization of the four-dimensional conformal group.

  19. Image-based thresholds for weeds in maize fields

    DEFF Research Database (Denmark)

    Asif, Ali; Streibig, Jens Carl; Christensen, Svend

    2015-01-01

    in some parts of the field and if late germinating weeds do not affect yield, it may not be necessary the spray such places from an economic point of view. Consequently, it makes sense to develop weed control thresholds for patch spraying, based on weed cover early in the growing season. In Danish maize...

  20. Helical undulator based on partial redistribution of uniform magnetic field

    Science.gov (United States)

    Balal, N.; Bandurkin, I. V.; Bratman, V. L.; Fedotov, A. E.

    2017-12-01

    A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  1. Helical undulator based on partial redistribution of uniform magnetic field

    Directory of Open Access Journals (Sweden)

    N. Balal

    2017-12-01

    Full Text Available A new type of helical undulator based on redistribution of magnetic field of a solenoid by ferromagnetic helix has been proposed and studied both in theory and experiment. Such undulators are very simple and efficient for promising sources of coherent spontaneous THz undulator radiation from dense electron bunches formed in laser-driven photo-injectors.

  2. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  3. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  4. Volume-based Representation of the Magnetic Field

    CERN Document Server

    Amapane, N; Drollinger, V; Karimäki, V; Klyukhin, V; Todorov, T

    2005-01-01

    Simulation and reconstruction of events in high-energy experiments require the knowledge of the value of the magnetic field at any point within the detector. The way this information is extracted from the actual map of the magnetic field and served to simulation and reconstruction applications has a large impact on accuracy and performance in terms of speed. As an example, the CMS high level trigger performs on-line tracking of muons within the magnet yoke, where the field is discontinuous and largely inhomogeneous. In this case the high level trigger execution time is dominated by the time needed to access the magnetic field map.For this reason, an optimized approach for the access to the CMS field was developed, based on a dedicated representation of thedetector geometry. The detector is modeled in terms of volumes, constructed in such a way that their boundaries correspond to the fiel d discontinuities due to changes in the magnetic permeability of the materials. The field within each volume is therefore c...

  5. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  6. [Electormagnetic field of the mobile phone base station: case study].

    Science.gov (United States)

    Bieńkowski, Paweł; Zubrzak, Bartłomiej; Surma, Robert

    2011-01-01

    The paper presents changes in the electromagnetic field intensity in a school building and its surrounding after the mobile phone base station installation on the roof of the school. The comparison of EMF intensity measured before the base station was launched (electromagnetic background measurement) and after starting its operation (two independent control measurements) is discussed. Analyses of measurements are presented and the authors also propose the method of the electromagnetic field distribution adjustment in the area of radiation antennas side lobe to reduce the intensity of the EMF level in the base station proximity. The presented method involves the regulation of the inclination. On the basis of the measurements, it was found that the EMF intensity increased in the building and its surroundings, but the values measured with wide margins meet the requirements of the Polish law on environmental protection.

  7. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  8. Ionization waves of arbitrary velocity driven by a flying focus

    Science.gov (United States)

    Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.

    2018-03-01

    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.

  9. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  10. Faithful teleportation with arbitrary pure or mixed resource states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Mingjing; Fei Shaoming; Wang Zhixi [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Li Zongguo [College of Science, Tianjin University of Technology, Tianjin 300191 (China); Lijost Xianqing, E-mail: zhaomingjingde@126.com [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany)

    2011-05-27

    We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |{phi}) in C{sup d} with an entangled resource {rho} in C{sup m} otimes C{sup d} and C{sup d} otimes C{sup n} are derived. It is shown that for {rho} in C{sup m} otimes C{sup d}, {rho} must be a maximally entangled state, while for {rho} in C{sup d} otimes C{sup n}, {rho} must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.

  11. COSY INFINITY, a new arbitrary order optics code

    International Nuclear Information System (INIS)

    Berz, M.

    1990-01-01

    The new arbitrary order particle optics and beam dynamics code COSY INFINITY is presented. The code is based on differential algebraic (DA) methods. COSY INFINITY has a full structured object oriented language environment. This provides a simple interface for the casual or novice user. At the same time, it offers the advanced user a very flexible and powerful tool for the utilization of DA. The power and generality of the environment is perhaps best demonstrated by the fact that the physics routines of COSY INFINITY are written in its own input language. The approach also facilitates the implementation of new features because special code generated by a user can be readily adopted to the source code. Besides being very compact in size, the code is also very fast, thanks to efficiently programmed elementary DA operations. For simple low order problems, which can be handled by conventional codes, the speed of COSY INFINITY is comparable and in certain cases even higher

  12. Photonic arbitrary waveform generation applicable to multiband UWB communications.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.

  13. Faithful teleportation with arbitrary pure or mixed resource states

    International Nuclear Information System (INIS)

    Zhao Mingjing; Fei Shaoming; Wang Zhixi; Li Zongguo; Lijost Xianqing

    2011-01-01

    We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |φ) in C d with an entangled resource ρ in C m otimes C d and C d otimes C n are derived. It is shown that for ρ in C m otimes C d , ρ must be a maximally entangled state, while for ρ in C d otimes C n , ρ must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.

  14. Contextually in a Peres—Mermin square using arbitrary operators

    International Nuclear Information System (INIS)

    Laversanne-Finot, A; Ketterer, A; Coudreau, T; Milman, P; Barros, M R; Walborn, S P; Keller, A

    2016-01-01

    The contextuality of quantum mechanics can be shown by the violation of inequalities based on measurements of well chosen observables. These inequalities have been designed separately for both discrete and continuous variables. Here we unify both strategies by introducing general conditions to demonstrate the contextuality of quantum mechanics from measurements of observables of arbitrary dimensions. Among the consequences of our results is the impossibility of having a maximal violation of contextuality in the Peres-Mermin scenario with discrete observables of odd dimensions. In addition, we show how to construct a large class of observables with a continuous spectrum enabling the realization of contextuality tests both in the Gaussian and non-Gaussian regimes. (paper)

  15. Quantum control mechanism analysis through field based Hamiltonian encoding

    International Nuclear Information System (INIS)

    Mitra, Abhra; Rabitz, Herschel

    2006-01-01

    Optimal control of quantum dynamics in the laboratory is proving to be increasingly successful. The control fields can be complex, and the mechanisms by which they operate have often remained obscure. Hamiltonian encoding (HE) has been proposed as a method for understanding mechanisms in quantum dynamics. In this context mechanism is defined in terms of the dominant quantum pathways leading to the final state of the controlled system. HE operates by encoding a special modulation into the Hamiltonian and decoding its signature in the dynamics to determine the dominant pathway amplitudes. Earlier work encoded the modulation directly into the Hamiltonian operators. This present work introduces the alternative scheme of field based HE, where the modulation is encoded into the control field and not directly into the Hamiltonian operators. This distinct form of modulation yields a new perspective on mechanism and is computationally faster than the earlier approach. Field based encoding is also an important step towards a laboratory based algorithm for HE as it is the only form of encoding that may be experimentally executed. HE is also extended to cover systems with noise and uncertainty and finally, a hierarchical algorithm is introduced to reveal mechanism in a stepwise fashion of ever increasing detail as desired. This new hierarchical algorithm is an improvement over earlier approaches to HE where the entire mechanism was determined in one stroke. The improvement comes from the use of less complex modulation schemes, which leads to fewer evaluations of Schroedinger's equation. A number of simulations are presented on simple systems to illustrate the new field based encoding technique for mechanism assessment

  16. Propagation of waves from an arbitrary shaped surface-A generalization of the Fresnel diffraction integral

    Science.gov (United States)

    Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.

    2018-04-01

    Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.

  17. Electron plasma oscillations at arbitrary Debye lengths

    International Nuclear Information System (INIS)

    Lehnert, B.

    1990-12-01

    A solution is presented for electron plasma oscillation in a thermalized homogeneous plasma, at arbitrary ratios between the Debye length λ D and the perturbation wave length λ. The limit λ D D >> λ corresponds to the free-streaming limit of strong kinetic phase-mixing due to large particle excursions. A strong large Debye distance (LDD) effect already appears when λ D > approx λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small as compared to the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The analysis further shows that a representation in terms of normal model of the form exp(-iωt) leads to amplitude factors of these modes which are related to each other and which depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as being independent of each other. (au)

  18. Universal sequence map (USM of arbitrary discrete sequences

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2002-02-01

    Full Text Available Abstract Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM, is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR. The latter enables the representation of 4 unit type sequences (like DNA as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules.

  19. Bianchi surfaces: integrability in an arbitrary parametrization

    International Nuclear Information System (INIS)

    Nieszporski, Maciej; Sym, Antoni

    2009-01-01

    We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.

  20. Electromagnetic complementary media with arbitrary geometries and non-conformal boundaries

    Science.gov (United States)

    Liu, Guochang; Li, Chao; Chen, Chao; Fang, Guangyou

    2014-06-01

    A generalized folded transformation procedure is presented for the space with arbitrary shapes. General expressions for the constitute parameters of complementary media are deduced, which can be readily applied to design complementary media based transformation optics devices (CMTOD) with arbitrary shapes. It's no longer limited to the situation when the inner and outer boundaries of the CMTOD are conformal or similar shapes, and can be available for the non-conformal situations. Three kinds of CMTOD are designed and studied, which involves a super-lens, an external cloak that hides object outside the cloaking shell, and an illusion optics device that transforms one object to another. Full-wave simulations are carried out to validate the proposed approach. The generalization introduced here makes a step forward for the flexible design of CMTOD with arbitrary geometries.

  1. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  2. 3D reconstruction based on light field images

    Science.gov (United States)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  3. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    Science.gov (United States)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  4. Non-Bell-pair quantum channel for teleporting an arbitrary two-qubit state

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang

    2007-01-01

    Recently, Yeo and Chua [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502] gave a protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entangled state, which is not reducible to a pair of Bell state. Here, we present a 'transformation operator' to give a criterion for faithful teleportation of an arbitrary two-qubit state via a four-qubit entangled state. The theoretical explanations of some quantum channels are given in term of transformation operators. The relation between the transformation operators and the Bell base measurement is also obtained. Furthermore, a new four-qubit entangled state quantum channel is presented

  5. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  6. Resonant Magnetic Field Sensors Based On MEMS Technology

    Directory of Open Access Journals (Sweden)

    Elías Manjarrez

    2009-09-01

    Full Text Available Microelectromechanical systems (MEMS technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  7. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  8. A Web-Based Information System for Field Data Management

    Science.gov (United States)

    Weng, Y. H.; Sun, F. S.

    2014-12-01

    A web-based field data management system has been designed and developed to allow field geologists to store, organize, manage, and share field data online. System requirements were analyzed and clearly defined first regarding what data are to be stored, who the potential users are, and what system functions are needed in order to deliver the right data in the right way to the right user. A 3-tiered architecture was adopted to create this secure, scalable system that consists of a web browser at the front end while a database at the back end and a functional logic server in the middle. Specifically, HTML, CSS, and JavaScript were used to implement the user interface in the front-end tier, the Apache web server runs PHP scripts, and MySQL to server is used for the back-end database. The system accepts various types of field information, including image, audio, video, numeric, and text. It allows users to select data and populate them on either Google Earth or Google Maps for the examination of the spatial relations. It also makes the sharing of field data easy by converting them into XML format that is both human-readable and machine-readable, and thus ready for reuse.

  9. Resonant Magnetic Field Sensors Based On MEMS Technology

    Science.gov (United States)

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  10. Near-field scanning optical microscopy based nanostructuring of glass

    International Nuclear Information System (INIS)

    Chimmalgi, A; Hwang, D J; Grigoropoulos, C P

    2007-01-01

    Nanofabrication, at lateral resolutions beyond the capability of conventional optical lithography techniques, is demonstrated here. Femtosecond laser was used in conjunction with Near-field Scanning Optical Microscopes (NSOMs) to nanostructure thin metal films. Also, the possibility of using these nanostructured metal films as masks to effectively transfer the pattern to the underlying substrate by wet etching process is shown. Two different optical nearfiled processing schemes were studied for near-field nanostructuring. In the first scheme, local field enhancement in the near-field of a scanning probe microscope (SPM) probe tip irradiated with femtosecond laser pulses was utilized (apertureless NSOM mode) and as a second approach, femtosecond laser beam was spatially confined by cantilevered NSOM fiber tip (apertured NOSM mode). The minimized heat- and shock-affected areas introduced during ultrafast laser based machining process, allows processing of even high conductivity thin metal films with minimized formation of any interfacial compounds between the metal films and the underlying substrate. Potential applications of this method may be in the fields of nanolithography, nanofluidics, nanoscale chemical and gas sensors, high-density data storage, nano-opto-electronics, as well as biotechnology related applications

  11. Detailed field test of yaw-based wake steering

    DEFF Research Database (Denmark)

    Fleming, P.; Churchfield, M.; Scholbrock, A.

    2016-01-01

    production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental......This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power...... design and setup. All data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy’s Atmosphere to Electrons Data Archive and Portal....

  12. Geodynamics branch data base for main magnetic field analysis

    Science.gov (United States)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  13. Magnetic Field Effect in Conjugated Molecules-Based Devices

    Science.gov (United States)

    2017-10-23

    line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes” Org . Electron. 15, 3076 (2014). (AOARD-14-4012...2. “The origins in the transformation of ambipolar to n-type pentacene-based organic field-effect transistors” Org . Electron. 15, 1759 (2014...shell nanoparticles doped PEDOT:PSS hole-transporter. Org . Electron. : Phys. Mater. Appl. 33, 221-226 (2016). 5. Huang, X., Wang, K. Yi, C., Meng, T

  14. Near-field acoustic imaging based on Laplacian sparsity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Daudet, Laurent

    2016-01-01

    We present a sound source identification method for near-field acoustic imaging of extended sources. The methodology is based on a wave superposition method (or equivalent source method) that promotes solutions with sparse higher order spatial derivatives. Instead of promoting direct sparsity......, and the validity of the wave extrapolation used for the reconstruction is examined. It is shown that this methodology can overcome conventional limits of spatial sampling, and is therefore valid for wide-band acoustic imaging of extended sources....

  15. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: liwei-b09@mails.gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Department of Physics, Beihang University, Beijing 100191 (China); Gong Shoushu [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Chen Ziyu [Department of Physics, Beihang University, Beijing 100191 (China); Zhao Yang [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Su Gang, E-mail: gsu@gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China)

    2010-05-31

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  16. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    International Nuclear Information System (INIS)

    Li Wei; Gong Shoushu; Chen Ziyu; Zhao Yang; Su Gang

    2010-01-01

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  17. Generation of Arbitrary Pure States for Three-dimensional Motion of a Trapped Ion

    International Nuclear Information System (INIS)

    Li Dachuang; Dong Ping; Cao Zhuoliang; Wang Xianping; Yang Ming

    2010-01-01

    In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. A covariant form of the Maxwell's equations in four-dimensional spaces with an arbitrary signature

    International Nuclear Information System (INIS)

    Lukac, I.

    1991-01-01

    The concept of duality in the four-dimensional spaces with the arbitrary constant metric is strictly mathematically formulated. A covariant model for covariant and contravariant bivectors in this space based on three four-dimensional vectors is proposed. 14 refs

  19. TaylUR 3, a multivariate arbitrary-order automatic differentiation package for Fortran 95

    International Nuclear Information System (INIS)

    Hippel, G.M. von

    2009-09-01

    The new version of TaylUR is based on a completely new core, which now is able to compute the numerical values of all of a complex-valued function's partial derivatives up to an arbitrary order, including mixed partial derivatives. (orig.)

  20. Local field effects and metamaterials based on colloidal quantum dots

    International Nuclear Information System (INIS)

    Porvatkina, O V; Tishchenko, A A; Strikhanov, M N

    2015-01-01

    Metamaterials are composite structures that exhibit interesting and unusual properties, e.g. negative refractive index. In this article we consider metamaterials based on colloidal quantum dots (CQDs). We investigate these structures taking into account the local field effects and theoretically analyze expressions for permittivity and permeability of metamaterials based on CdSe CQDs. We obtain inequality describing the conditions when material with definite concentration of CQDs is metamaterial. Also we investigate how the values of dielectric polarizability and magnetic polarizability of CQDs depend on the dots radius and properties the material the quantum dots are made of. (paper)

  1. EM Scattering by a Conducting Sphere Coated with a Uniaxial Layer under Arbitrary Illumination Angle in a Fixed Laboratory Frame

    Directory of Open Access Journals (Sweden)

    C.M.Tse

    2011-12-01

    Full Text Available Under a fixed laboratory frame, the electromagnetic theory of the scattering of a plane wave of arbitrary polarizations incidence from arbitrary angles by a uniaxial anisotropic medium was obtained for the first time, and could be solved analytically from an eigensystem determined by a uniaxial anisotropic medium. By applying the boundary conditions at respective interfaces of the coated spherical structure, the unknown expansion coefficients can be obtained from the incident field and the electromagnetic fields in the anisotropic medium, and from the scattered field. Not only did the numerical results demonstrate the validity of our proposed theory but this paper shall also provide discussions in relation to some general cases (under arbitrary incident angles of bistatic radar cross section.

  2. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    Science.gov (United States)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  3. A generalized transformation to convert an arbitrary perfect electric conductor into another arbitrary dielectric object

    International Nuclear Information System (INIS)

    Huang Lujun; Zhou Daming; Wang Jian; Li Guanhai; Li Zhifeng; Chen Xiaoshuang; Lu Wei

    2011-01-01

    A generalized transformation is proposed to design an illusion device. The device can reshape an arbitrarily shaped perfect electrical conductor (PEC) into another dielectric object with arbitrary geometry. Such a device can evolve into an ideal invisibility cloak with non-conformal boundaries if the virtual space is filled with air. Furthermore, the validity of our proposed transformation is confirmed by two specific devices. One is to convert a regular polygonal PEC cylinder into a circular dielectric cylinder. Another one is to reshape a circular PEC cylinder into a regular polygonal dielectric cylinder.

  4. Particle Based Modeling of Electrical Field Flow Fractionation Systems

    Directory of Open Access Journals (Sweden)

    Tonguc O. Tasci

    2015-10-01

    Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.

  5. Identification of Arbitrary Zonation in Groundwater Parameters using the Level Set Method and a Parallel Genetic Algorithm

    Science.gov (United States)

    Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.

    2017-12-01

    Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.

  6. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  7. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  8. Construction method of QC-LDPC codes based on multiplicative group of finite field in optical communication

    Science.gov (United States)

    Huang, Sheng; Ao, Xiang; Li, Yuan-yuan; Zhang, Rui

    2016-09-01

    In order to meet the needs of high-speed development of optical communication system, a construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate ( BER) is 10-6, in the same simulation environment, the net coding gain ( NCG) of the proposed QC-LDPC(3 780, 3 540) code with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this paper can be well applied in optical communication systems.

  9. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Xiao-Mei [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Oevguen, Ali [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Country Unknown)

    2017-09-15

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing. (orig.)

  10. The effect of the Gauss-Bonnet term on Hawking radiation from arbitrary dimensional black brane

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Saavedra, Joel; Oevguen, Ali

    2017-01-01

    We investigate the probabilities of the tunneling and the radiation spectra of massive spin-1 particles from arbitrary dimensional Gauss-Bonnet-Axions (GBA) Anti-de Sitter (AdS) black branes, via using the WKB approximation to the Proca spin-1 field equation. The tunneling probabilities and Hawking temperature of the arbitrary dimensional GBA AdS black brane is calculated via the Hamilton-Jacobi approach. We also compute the Hawking temperature via the Parikh-Wilczek tunneling approach. The results obtained from the two methods are consistent. In our setup, the Gauss-Bonnet (GB) coupling affects the Hawking temperature if and only if the momentum of the axion fields is non-vanishing. (orig.)

  11. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  12. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz

    2014-03-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. These geometric metrics do not consider the flow magnitude, an important physical property of the flow. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness, which provides a complementary view on flow structure compared to the traditional topological-skeleton-based approaches. Robustness enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory, has fewer boundary restrictions, and so can handle more general cases. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. © 2014 IEEE.

  13. Silicon-based metallic micro grid for electron field emission

    International Nuclear Information System (INIS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  14. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  15. Systematics of higher-spin gauge fields

    International Nuclear Information System (INIS)

    de Wit, B.; Freedman, D.Z.

    1980-01-01

    Free-field theories for symmetric tensor and tensor-spinor gauge fields have recently been obtained which describe massless particles of arbitrary integer or half-integer spin. An independent discussion of these field theories is given here, based on a hierarchy of generalized Christoffel symbols with simple gauge transformation properties. The necessity of certain constraints on gauge fields and parameters is easily seen. Wave equations and Lagrangians are expressed in terms of the Christoffel symbols, and the independent modes of the system are counted in covariant gauges. Minimal-coupling inconsistency and a combined system of higher-spin boson gauge fields interacting with relativistic particles is discussed

  16. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  17. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  18. Phase field approaches of bone remodeling based on TIP

    Science.gov (United States)

    Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel

    2016-01-01

    The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of

  19. Synthesis of arbitrary Fock states via conditional measurement on beam splitters

    International Nuclear Information System (INIS)

    Escher, B.M.; Baseia, B.; Avelar, A.T.

    2005-01-01

    In a previous work [Opt. Commun. 138, 71 (1997)] a scheme was proposed to create traveling fields in the Fock state |2 J >. Here we show how to extend this result to arbitrary Fock states. The procedure combines one-photon states impinging on a sequence of distinct beam splitters, each one associated with a (zero detection) single-photon photodetector, with optimization of the success probability to get the desired state. Advantages and disadvantages of this scheme are discussed

  20. New Hamiltonians for loop quantum cosmology with arbitrary spin representations

    Science.gov (United States)

    Ben Achour, Jibril; Brahma, Suddhasattwa; Geiller, Marc

    2017-04-01

    In loop quantum cosmology, one has to make a choice of SU(2) irreducible representation in which to compute holonomies and regularize the curvature of the connection. The systematic choice made in the literature is to work in the fundamental representation, and very little is known about the physics associated with higher spin labels. This constitutes an ambiguity of which the understanding, we believe, is fundamental for connecting loop quantum cosmology to full theories of quantum gravity like loop quantum gravity, its spin foam formulation, or cosmological group field theory. We take a step in this direction by providing here a new closed formula for the Hamiltonian of flat Friedmann-Lemaître-Robertson-Walker models regularized in a representation of arbitrary spin. This expression is furthermore polynomial in the basic variables which correspond to well-defined operators in the quantum theory, takes into account the so-called inverse-volume corrections, and treats in a unified way two different regularization schemes for the curvature. After studying the effective classical dynamics corresponding to single and multiple-spin Hamiltonians, we study the behavior of the critical density when the number of representations is increased and the stability of the difference equations in the quantum theory.

  1. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    Science.gov (United States)

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  2. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. For the Kern County earthquake the derived base corner accelerations, including the effect of rotation show generally fair agreement with the spectra computed from the Hollywood storage corner record. For the San Fernando earthquake the agreement between the spectra computed from derived base corner accelerations and that computed from the actual basement corner record is not as good as that for the Kern County earthquake. These limited studies admittedly are hardly a sufficient basis on which to form a judgment, but these differences noted probably can be attributed in part to foundation distortion, building feedback, distance between measurement points, and soil structure interaction; it was not possible to take any of these factors into account in these particular calculations

  3. Generation of Synthetic Turbulence in Arbitrary Domains

    DEFF Research Database (Denmark)

    Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels

    2009-01-01

    A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used......-spectra a realization of a velocity field is determined by factorization and Fourier transform as in the Sandia method....

  4. Finite anticanonical transformations in field-antifield formalism

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A.; Tyutin, Igor V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2015-06-15

    We study the role of arbitrary (finite) anticanonical transformations in the field-antifield formalism and the gauge-fixing procedure based on the use of these transformations. The properties of the generating functionals of the Green functions subjected to finite anticanonical transformations are considered. (orig.)

  5. Mixed Field Modification of Thermally Cured Castor Oil Based Polyurethanes

    International Nuclear Information System (INIS)

    Mortley, A.

    2006-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanatee (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of accumulated doses (0.0-3.0 MGy) produced by the mixed ionizing field of the SLOWPOKE-2 research reactor. The physico-mechanical properties of COPU, unirradiated and irradiated, were characterized by mechanical tests. Increased bond formation resulting from radiation-induced crosslinking was confirmed by favorable increases in mechanical properties and by solid-state 13 C -NMR and FTIR spectra

  6. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  7. Geometrical critical phenomena on a random surface of arbitrary genus

    International Nuclear Information System (INIS)

    Duplantier, B.; Kostov, I.K.

    1990-01-01

    The statistical mechanics of self-avoiding walks (SAW) or of the O(n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum Δ L , L ≥ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line 'watermelon' exponents Δ L of the O(n) model on a random surface. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This provides a proof, in the presence of a fluctuating metric, of a result conjectured earlier in the standard plane. From this, the value of the string susceptibility γ str (H,c) is extracted for a random surface of arbitrary genus H, bearing a field theory of central charge c, or equivalently, embedded in d=c dimensions. Lastly, by enumerating spanning trees on a random lattice, we solve the similar problem of hamiltonian walks on the (fluctuating) Manhattan covering lattice. We also obtain new results for dilute trees on a random surface. (orig./HSI)

  8. GOCE gravity field simulation based on actual mission scenario

    Science.gov (United States)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  9. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  10. Arbitrary Deprivation of an Unregistered Credit Provider's Right to ...

    African Journals Online (AJOL)

    Arbitrary Deprivation of an Unregistered Credit Provider's Right to Claim Restitution of Performance Rendered Opperman v Boonzaaier (24887/2010) 2012 ZAWCHC 27 (17 April 2012) and National Credit Regulator v Opperman 2013 2 SA 1 (CC)

  11. Highly air stable passivation of graphene based field effect devices.

    Science.gov (United States)

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  12. PREDICTIVE POTENTIAL FIELD-BASED COLLISION AVOIDANCE FOR MULTICOPTERS

    Directory of Open Access Journals (Sweden)

    M. Nieuwenhuisen

    2013-08-01

    Full Text Available Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

  13. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties

    International Nuclear Information System (INIS)

    Reid, M. T. Homer; White, Jacob; Johnson, Steven G.

    2011-01-01

    We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  14. Closed description of arbitrariness in resolving quantum master equation

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A., E-mail: batalin@lpi.ru [P.N. Lebedev Physical Institute, Leninsky Prospect 53, 119 991 Moscow (Russian Federation); Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Av. 36, 634050 Tomsk (Russian Federation)

    2016-07-10

    In the most general case of the Delta exact operator valued generators constructed of an arbitrary Fermion operator, we present a closed solution for the transformed master action in terms of the original master action in the closed form of the corresponding path integral. We show in detail how that path integral reduces to the known result in the case of being the Delta exact generators constructed of an arbitrary Fermion function.

  15. Computer Based Procedures for Field Workers - FY16 Research Activities

    International Nuclear Information System (INIS)

    Oxstrand, Johanna; Bly, Aaron

    2016-01-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven job aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages - Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to

  16. Computer Based Procedures for Field Workers - FY16 Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven job aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages – Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to

  17. Vision Sensor-Based Road Detection for Field Robot Navigation

    Directory of Open Access Journals (Sweden)

    Keyu Lu

    2015-11-01

    Full Text Available Road detection is an essential component of field robot navigation systems. Vision sensors play an important role in road detection for their great potential in environmental perception. In this paper, we propose a hierarchical vision sensor-based method for robust road detection in challenging road scenes. More specifically, for a given road image captured by an on-board vision sensor, we introduce a multiple population genetic algorithm (MPGA-based approach for efficient road vanishing point detection. Superpixel-level seeds are then selected in an unsupervised way using a clustering strategy. Then, according to the GrowCut framework, the seeds proliferate and iteratively try to occupy their neighbors. After convergence, the initial road segment is obtained. Finally, in order to achieve a globally-consistent road segment, the initial road segment is refined using the conditional random field (CRF framework, which integrates high-level information into road detection. We perform several experiments to evaluate the common performance, scale sensitivity and noise sensitivity of the proposed method. The experimental results demonstrate that the proposed method exhibits high robustness compared to the state of the art.

  18. Massive graviton on arbitrary background: derivation, syzygies, applications

    International Nuclear Information System (INIS)

    Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von

    2015-01-01

    We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a ''reference metric' which is present in the non perturbative formulation. We show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized

  19. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-01-01

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index κ increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  20. An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem

    Science.gov (United States)

    Hosheleva, Olga

    1997-01-01

    How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.

  1. Rocket to Creativity: A Field Experience in Problem-Based and Project-Based Learning

    Science.gov (United States)

    Dole, Sharon F.; Bloom, Lisa A.; Doss, Kristy Kowalske

    2016-01-01

    This article reports the impact of a field experience in problem-based (PBL) and project-based learning (PjBL) on in-service teachers' conceptions of experiential learning. Participants had been enrolled in a hybrid class that included an online component in which they learned about PBL and PjBL, and an experiential component in which they…

  2. Dispersion characteristics of planar grating with arbitrary grooves for terahertz Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Cao, Miaomiao; Li, Ke; Liu, Wenxin; Wang, Yong

    2015-01-01

    In this paper, a novel method of getting the dispersion relations in planar grating with arbitrary grooves for terahertz Smith-Purcell radiation is investigated analytically. The continuous profile of the groove is approximately replaced by a series of rectangular steps. By making use of field matches method and the continuity of transverse admittance, the universal dispersion equation for grating with arbitrarily shaped grooves is derived. By solving the dispersion equation in presence of electron beam, the growth rate is obtained directly and the dependence on beam parameters is analyzed. Comparisons of the dispersion characteristics among some special groove shapes have been made by numerical calculation. The results show that the rectangular-step approximation method provides a novel approach to obtain the universal dispersion relation for grating with arbitrary grooves for Smith-Purcell radiation

  3. Quantum electrodynamics of particles with arbitrary spin

    International Nuclear Information System (INIS)

    Green, H.S.

    1978-01-01

    A generalization of quantum electrodynamics is developed for particles of higher spin, with careful attention to the requirements of consistency, causality, unitarity and renormalizability. It is shown that field equations studied previously by the author are expressible in arbitrarily many different forms, which are equivalent in the absence of electromagnetic interactions, but not when electromagnetic coupling is introduced in a gauge-invariant way. A form is chosen which satisfies the requirements of casuality. It is shown how to define a particle density, which is positive-definite in the subspace spanned by solutions of the field equation, and satisifies a Lorentz-invariant conservation law. The quantization and renormalization of the resulting electrodynamics is studied, and is found to require only minor modifications of the existing theory for particles of spin 1/2

  4. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2014-09-01

    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  5. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    Science.gov (United States)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  6. Using the Agent-Based Modeling in Economic Field

    Directory of Open Access Journals (Sweden)

    Nora Mihail

    2006-12-01

    Full Text Available The last ten years of the XX century has been the witnesses of the apparition of a new scientific field, which is usually defined as the study of “Complex adaptive systems”. This field, generic named Complexity Sciences, shares its subject, the general proprieties of complex systems across traditional disciplinary boundaries, with cybernetics and general systems theory. But the development of Complexity Sciences approaches is determined by the extensive use of Agent-Based-Models (ABM as a research tool and an emphasis on systems, such as markets, populations or ecologies, which are less integrated or “organized” than the ones, such as companies and economies, intensively studied by the traditional disciplines. For ABM, a complex system is a system of individual agents who have the freedom to act in ways that are not always totally predictable, and whose actions are interconnected such that one agent’s actions changes the context (environment for other agents. These are many examples of such complex systems: the stock market, the human body immune system, a business organization, an institution, a work-team, a family etc.

  7. Image-based Exploration of Large-Scale Pathline Fields

    KAUST Repository

    Nagoor, Omniah H.

    2014-05-27

    While real-time applications are nowadays routinely used in visualizing large nu- merical simulations and volumes, handling these large-scale datasets requires high-end graphics clusters or supercomputers to process and visualize them. However, not all users have access to powerful clusters. Therefore, it is challenging to come up with a visualization approach that provides insight to large-scale datasets on a single com- puter. Explorable images (EI) is one of the methods that allows users to handle large data on a single workstation. Although it is a view-dependent method, it combines both exploration and modification of visual aspects without re-accessing the original huge data. In this thesis, we propose a novel image-based method that applies the concept of EI in visualizing large flow-field pathlines data. The goal of our work is to provide an optimized image-based method, which scales well with the dataset size. Our approach is based on constructing a per-pixel linked list data structure in which each pixel contains a list of pathlines segments. With this view-dependent method it is possible to filter, color-code and explore large-scale flow data in real-time. In addition, optimization techniques such as early-ray termination and deferred shading are applied, which further improves the performance and scalability of our approach.

  8. Efficient Spectral Power Estimation on an Arbitrary Frequency Scale

    Directory of Open Access Journals (Sweden)

    F. Zaplata

    2015-04-01

    Full Text Available The Fast Fourier Transform is a very efficient algorithm for the Fourier spectrum estimation, but has the limitation of a linear frequency scale spectrum, which may not be suitable for every system. For example, audio and speech analysis needs a logarithmic frequency scale due to the characteristic of a human’s ear. The Fast Fourier Transform algorithms are not able to efficiently give the desired results and modified techniques have to be used in this case. In the following text a simple technique using the Goertzel algorithm allowing the evaluation of the power spectra on an arbitrary frequency scale will be introduced. Due to its simplicity the algorithm suffers from imperfections which will be discussed and partially solved in this paper. The implementation into real systems and the impact of quantization errors appeared to be critical and have to be dealt with in special cases. The simple method dealing with the quantization error will also be introduced. Finally, the proposed method will be compared to other methods based on its computational demands and its potential speed.

  9. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin

    2013-10-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  10. IMAGE SEGMENTATION BASED ON MARKOV RANDOM FIELD AND WATERSHED TECHNIQUES

    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆

    2002-01-01

    This paper presented a method that incorporates Markov Random Field(MRF), watershed segmentation and merging techniques for performing image segmentation and edge detection tasks. MRF is used to obtain an initial estimate of x regions in the image under process where in MRF model, gray level x, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The process needs an initial segmented result. An initial segmentation is got based on K-means clustering technique and the minimum distance, then the region process in modeled by MRF to obtain an image contains different intensity regions. Starting from this we calculate the gradient values of that image and then employ a watershed technique. When using MRF method it obtains an image that has different intensity regions and has all the edge and region information, then it improves the segmentation result by superimpose closed and an accurate boundary of each region using watershed algorithm. After all pixels of the segmented regions have been processed, a map of primitive region with edges is generated. Finally, a merge process based on averaged mean values is employed. The final segmentation and edge detection result is one closed boundary per actual region in the image.

  11. Individual based and mean-field modeling of direct aggregation

    KAUST Repository

    Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese

    2013-01-01

    We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.

  12. Synthesis Of Ultrasound Field Sources Based on Phase Screen Approximation

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2018-01-01

    Full Text Available Here is proposed the method for synthesizing the sources of an acoustic field on the basis of an approximation of the phase screen. The technology of manufacturing ultrasonic phased arrays providing the formation of a field of a given distribution is proposed. An experimental setup has been developed for the formation of a vortex field at a distance of 10 cm.

  13. The direct Discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids

    Science.gov (United States)

    Yang, Xiaoquan; Cheng, Jian; Liu, Tiegang; Luo, Hong

    2015-11-01

    The direct discontinuous Galerkin (DDG) method based on a traditional discontinuous Galerkin (DG) formulation is extended and implemented for solving the compressible Navier-Stokes equations on arbitrary grids. Compared to the widely used second Bassi-Rebay (BR2) scheme for the discretization of diffusive fluxes, the DDG method has two attractive features: first, it is simple to implement as it is directly based on the weak form, and therefore there is no need for any local or global lifting operator; second, it can deliver comparable results, if not better than BR2 scheme, in a more efficient way with much less CPU time. Two approaches to perform the DDG flux for the Navier- Stokes equations are presented in this work, one is based on conservative variables, the other is based on primitive variables. In the implementation of the DDG method for arbitrary grid, the definition of mesh size plays a critical role as the formation of viscous flux explicitly depends on the geometry. A variety of test cases are presented to demonstrate the accuracy and efficiency of the DDG method for discretizing the viscous fluxes in the compressible Navier-Stokes equations on arbitrary grids.

  14. TLS FIELD DATA BASED INTENSITY CORRECTION FOR FOREST ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    J. Heinzel

    2016-06-01

    Full Text Available Terrestrial laser scanning (TLS is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

  15. Field-Based Experiential Learning Using Mobile Devices

    Science.gov (United States)

    Hilley, G. E.

    2015-12-01

    Technologies such as GPS and cellular triangulation allow location-specific content to be delivered by mobile devices, but no mechanism currently exists to associate content shared between locations in a way that guarantees the delivery of coherent and non-redundant information at every location. Thus, experiential learning via mobile devices must currently take place along a predefined path, as in the case of a self-guided tour. I developed a mobile-device-based system that allows a person to move through a space along a path of their choosing, while receiving information in a way that guarantees delivery of appropriate background and location-specific information without producing redundancy of content between locations. This is accomplished by coupling content to knowledge-concept tags that are noted as fulfilled when users take prescribed actions. Similarly, the presentation of the content is related to the fulfillment of these knowledge-concept tags through logic statements that control the presentation. Content delivery is triggered by mobile-device geolocation including GPS/cellular navigation, and sensing of low-power Bluetooth proximity beacons. Together, these features implement a process that guarantees a coherent, non-redundant educational experience throughout a space, regardless of a learner's chosen path. The app that runs on the mobile device works in tandem with a server-side database and file-serving system that can be configured through a web-based GUI, and so content creators can easily populate and configure content with the system. Once the database has been updated, the new content is immediately available to the mobile devices when they arrive at the location at which content is required. Such a system serves as a platform for the development of field-based geoscience educational experiences, in which students can organically learn about core concepts at particular locations while individually exploring a space.

  16. Development of a secure and cost-effective infrastructure for the access of arbitrary web-based image distribution systems; Entwicklung einer sicheren und kostenguenstigen Infrastruktur zum Zugriff auf beliebige webbasierte Bildverteilungssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Hacklaender, T.; Demabre, N.; Cramer, B.M. [Klinik fuer Radiologie, HELIOS-Klinikum Wuppertal (Germany); Kleber, K.; Schneider, H. [VISUS Technology Transfer GmbH, Bochum (Germany)

    2004-08-01

    Purpose: To build an infrastructure that enables radiologists on-call and external users a teleradiological access to the HTML-based image distribution system inside the hospital via internet. In addition, no investment costs should arise on the user side and the image data should be sent renamed using cryptographic techniques. Materials and Methods: A pure HTML-based system manages the image distribution inside the hospital, with an open source project extending this system through a secure gateway outside the firewall of the hospital. The gateway handles the communication between the external users and the HTML server within the network of the hospital. A second firewall is installed between the gateway and the external users and builds up a virtual private network (VPN). A connection between the gateway and the external user is only acknowledged if the computers involved authenticate each other via certificates and the external users authenticate via a multi-stage password system. All data are transferred encrypted. External users get only access to images that have been renamed to a pseudonym by means of automated processing before. Results: With an ADSL internet access, external users achieve an image load frequency of 0.4 CT images per second. More than 90% of the delay during image transfer results from security checks within the firewalls. Data passing the gateway induce no measurable delay. (orig.)

  17. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  18. Design Guidance for Computer-Based Procedures for Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, the U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying

  19. Unambiguous formalism for higher order Lagrangian field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris

    2009-01-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  20. Isotope specific arbitrary material flow meter

    Science.gov (United States)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  1. Automated aberration correction of arbitrary laser modes in high numerical aperture systems

    OpenAIRE

    Hering, Julian; Waller, Erik H.; Freymann, Georg von

    2016-01-01

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture...

  2. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  3. Eigenvalues of relaxed toroidal plasmas of arbitrary sharp edged cross sections. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Relaxed (force-free) toroidal plasmas described by the equations cur 1 B={mu}B, and grad {mu}=O (B is the magnetic field) induces interest in nuclear fusion. Its solution is perceived to describe the gross of the reversed field pinch (RFP), spheromak configuration, current limitation in toroidal plasmas, and others. The parameter {mu} plays an important roll in relaxed states. It cannot exceed the smallest eigenvalue {mu} (min), and that for a toroidal discharge there is a maximum toroidal current which is connected to this value. The values of{mu} were calculated numerically, using the methods of collocation points, for toroids of arbitrary aspect ratio {alpha} ({alpha} = R/a, ratio of major/minor radii of tokamak) and arbitrary curved cross-sections (circle, ellipse, cassini, and D-shaped). The aim of present work is to prove the applicability of the numerical methods for calculating the eigenvalues for toroidal plasmas having sharp edged cross sections and arbitrary aspect ratio. The lowest eigenvalue {mu} (min), satisfy the boundary condition {beta} .n = O (or RB. = O) for which the toroidal flux are calculated. These are the zero field eigenvalues of the equation cur 1 b={mu}B. The poloidal magnetic field lines corresponding to different cross sections are shown by plotting the boundary condition B.n=O. The plots showed good fulfillment of the boundary condition along the whole boundaries of different cross sections. Dependence of eigenvalues {mu}a on aspect ratio {alpha} is also obtained. Several runs of the programme with various wave numbers K showed that {mu}a is very insensitive to the choice of K. 8 figs.

  4. The impact of approximations and arbitrary choices on geophysical images

    Science.gov (United States)

    Valentine, Andrew P.; Trampert, Jeannot

    2016-01-01

    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the

  5. Arbitrary-step randomly delayed robust filter with application to boost phase tracking

    Science.gov (United States)

    Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2018-04-01

    The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.

  6. The sewing technique and correlation functions on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Di Vecchia, P.

    1989-01-01

    We describe in the case of free bosonic and fermionic theories the sewing procedure, that is a very convenient way for constructing correlation functions of these theories on an arbitrary Riemann surface from their knowledge on the sphere. The fundamental object that results from this construction is the N-point g-loop vertex. It summarizes the information of all correlation functions of the theory on an arbitrary Riemann surface. We then check explicitly the bosonization rules and derive some useful formulas. (orig.)

  7. Stabilization at almost arbitrary points for chaotic systems

    International Nuclear Information System (INIS)

    Huang, C.-S.; Lian, K.-Y.; Su, C.-H.; Wu, J.-W.

    2008-01-01

    We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low

  8. Probabilistic teleportation of an arbitrary pure state of two atoms

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun

    2007-01-01

    In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.

  9. Probabilistic teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    Lin Xiu; Li Hong-Cai

    2005-01-01

    A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.

  10. Hadrons of arbitrary spin and heavy quark symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.; Koerner, J.G.

    1993-11-01

    We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs

  11. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  12. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  13. Rocket to Creativity: A Field Experience in Problem-Based and Project-Based Learning

    Directory of Open Access Journals (Sweden)

    Sharon F. Dole

    2016-11-01

    Full Text Available The purpose of this article is to examine the impact of a field experience in problem-based (PBL and project-based learning (PjBL on pre-service and in-service teachers’ conceptions of experiential learning. In our study, participants had been enrolled in a hybrid class that included an online component in which they learned about PBL and PjBL and an experiential component in which they facilitated PBL and PjBL with children in grades 1-9 during a one-week field experience on a university campus. The goal of the field experience is for teachers to change their practice from didactic to inquiry and to promote critical and creative thinking in their students. We used a case study method that involved data derived from six different sources: online structured interviews, follow-up telephone interviews, discussion board posts, reflections, course feedback, and observations. The main theme that emerged from the data analysis was the critical role the field experience played in applying theory to practice. Sub-themes included understanding the process of implementing PBL and PjBL, mastering the logistics of PBL and PjBL, becoming facilitators, and collaborating with partners. Results showed that the field experience gave the teachers the “courage” to experiment with a student-centered methodology.

  14. Near Field Communication-based telemonitoring with integrated ECG recordings.

    Science.gov (United States)

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  15. Ultraviolet refractometry using field-based light scattering spectroscopy

    Science.gov (United States)

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  16. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong

    2017-02-07

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth\\'s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  17. Topological sensitivity based far-field detection of elastic inclusions

    Directory of Open Access Journals (Sweden)

    Tasawar Abbas

    2018-03-01

    Full Text Available The aim of this article is to present and rigorously analyze topological sensitivity based algorithms for detection of diametrically small inclusions in an isotropic homogeneous elastic formation using single and multiple measurements of the far-field scattering amplitudes. A L2-cost functional is considered and a location indicator is constructed from its topological derivative. The performance of the indicator is analyzed in terms of the topological sensitivity for location detection and stability with respect to measurement and medium noises. It is established that the location indicator does not guarantee inclusion detection and achieves only a low resolution when there is mode-conversion in an elastic formation. Accordingly, a weighted location indicator is designed to tackle the mode-conversion phenomenon. It is substantiated that the weighted function renders the location of an inclusion stably with resolution as per Rayleigh criterion. 2000 MSC: 35R30, 35L05, 74B05, 47A52, 65J20, Keywords: Inverse elastic scattering, Elasticity imaging, Topological derivative, Resolution analysis, Stability analysis

  18. Power output of field-based downhill mountain biking.

    Science.gov (United States)

    Hurst, Howard Thomas; Atkins, Stephen

    2006-10-01

    The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.

  19. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth's orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  20. Entanglement of the valence-bond-solid state on an arbitrary graph

    International Nuclear Information System (INIS)

    Xu Ying; Korepin, Vladimir E

    2008-01-01

    The Affleck-Kennedy-Lieb-Tasaki (AKLT) spin interacting model can be defined on an arbitrary graph. We explain the construction of the AKLT Hamiltonian. Given certain conditions, the ground state is unique and known as the valence-bond-solid (VBS) state. It can be used in measurement-based quantum computation as a resource state instead of the cluster state. We study the VBS ground state on an arbitrary connected graph. The graph is cut into two disconnected parts: the block and the environment. We study the entanglement between these two parts and prove that many eigenvalues of the density matrix of the block are zero. We describe a subspace of eigenvectors of the density matrix corresponding to non-zero eigenvalues. The subspace is the degenerate ground states of some Hamiltonian which we call the block Hamiltonian

  1. Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry

    Science.gov (United States)

    Lissaman, P. B. S.

    1973-01-01

    An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.

  2. Digital processing with single electrons for arbitrary waveform generation of current

    Science.gov (United States)

    Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa

    2018-03-01

    We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.

  3. The stresses and displacements in cylindrical shells subject to arbitrary temperature distribution

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    The paper begins with a statement of a reciprocal theorem in thermoelasticity based on a generalization of Betti's Reciprocal Theorem. This is followed by application to the solution of a simply supported thin walled cylindrical shell subject to arbitrary three-dimensional temperature distribution T(x,y,z). The usefulness of the theorem resides in the fact that existing solutions in elasticity may be used to obtain solutions of thermoelastic problems. This characteristic is of great importance, particularly when the temperature distribution is arbitrary, as is often the case in practise, and cannot be expressed in functional form; thus rendering solution of the thermoelastic equations very difficult. With solutions of a wide range of problems in elasticity in existence, application of the thermoelastic theorem is the key to solution of a broad class of problems in thermoelasticity, problems that cannot be solved by the classic process. (Auth.)

  4. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  5. Angular quadrature generator for neutron transport SN calculations in slab geometry with arbitrary arithmetic precision

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Oliveira, Francisco B.S.; Barros, Ricardo C.

    2003-01-01

    We present in this paper a multiplatform computational code to calculate elements of Gauss-Legendre angular quadrature sets of arbitrary order used in slab-geometry discrete ordinates (S N ) formulation of neutron transport equation. In the code, the values can be computed with arbitrary arithmetic precision based on the approach of exact computing floating-point numbers. Calculation routines have been developed in the common language ANSI C using standard compiler gcc and the libraries of the open code GMP (GNU Multi precision Library). The code has a graphical interface in order to facilitate user interaction and numerical results analysis. The code architecture allows it to run on different platforms such as Unix, Linux and Windows. Numerical results and performance measures are also given. (author)

  6. Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabrication

    Science.gov (United States)

    Zhao, Yiping; Jansen, Henri; de Boer, Meint; Berenschot, Erwin; Bouwes, Dominique; Gironès, Miriam; Huskens, Jurriaan; Tas, Niels

    2010-09-01

    Edge lithography in combination with fluorine-based plasma etching is employed to avoid the dependence on crystal orientation in single crystal silicon to create monolithic nanoridges with arbitrary contours. This is demonstrated by using a mask with circular structures and Si etching at cryogenic temperature with SF6+O2 plasma mixtures. Initially, the explored etch recipe was used with Cr as the masking material. Although nanoridges with perfect vertical sidewalls have been achieved, Cr causes severe sidewall roughness due to line edge roughness. Therefore, an SU-8 polymer is used instead. Although the SU-8 pattern definition needs further improvement, we demonstrate the possibility of fabricating Si nanoridges of arbitrary contours providing a width below 50 nm and a height between 25 and 500 nm with smooth surface finish. Artifacts in the ridge profile are observed and are mainly caused by the bird's beak phenomenon which is characteristic for the used LOCOS process.

  7. Generation of an arbitrary concatenated Greenberger-Horne-Zeilinger state with single photons

    Science.gov (United States)

    Chen, Shan-Shan; Zhou, Lan; Sheng, Yu-Bo

    2017-02-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new kind of logic-qubit entangled state, which may have extensive applications in future quantum communication. In this letter, we propose a protocol for constructing an arbitrary C-GHZ state with single photons. We exploit the cross-Kerr nonlinearity for this purpose. This protocol has some advantages over previous protocols. First, it only requires two kinds of cross-Kerr nonlinearities to generate single phase shifts  ±θ. Second, it is not necessary to use sophisticated m-photon Toffoli gates. Third, this protocol is deterministic and can be used to generate an arbitrary C-GHZ state. This protocol may be useful in future quantum information processing based on the C-GHZ state.

  8. Asynchronous Distributed Execution of Fixpoint-Based Computational Fields

    DEFF Research Database (Denmark)

    Lluch Lafuente, Alberto; Loreti, Michele; Montanari, Ugo

    2017-01-01

    . Computational fields are a key ingredient of aggregate programming, a promising software engineering methodology particularly relevant for the Internet of Things. In our approach, space topology is represented by a fixed graph-shaped field, namely a network with attributes on both nodes and arcs, where arcs...

  9. On Chudnovsky-Based Arithmetic Algorithms in Finite Fields

    OpenAIRE

    Atighehchi, Kevin; Ballet, Stéphane; Bonnecaze, Alexis; Rolland, Robert

    2015-01-01

    Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. We give an example with the finite field ${\\mathbb F}_{16^{13}}$.

  10. Campus-Based Geographic Learning: A Field Oriented Teaching Scenario

    Science.gov (United States)

    Jennings, Steven A.; Huber, Thomas P.

    2003-01-01

    The use of field classes and the need for university master planning are presented as a way to enhance learning. This field-oriented, goal-oriented approach to learning is proposed as a general model for university-level geographic education. This approach is presented for physical geography classes, but could also be applied to other subdivisions…

  11. The squeezing properties in the Jaynes-Cummings model with arbitrary intensity-dependent coupling

    International Nuclear Information System (INIS)

    Rhui-Hua, X.; Dun-Huan, L.; Gong-Ou, X.

    1996-01-01

    It is studied the squeezing properties of the atom and the radiation field in arbitrary intensity-dependent-coupling Jaynes-Cummings model when it is restricted to the following initial condition: the atom in its coherent state and the field in the vacuum state. The influence of virtual-photon processes on the atomic squeezing predicted by the Jaynes-Cummings model (JCM) has been examined. The relationship between the field and atomic squeezing in the resonant multi-photon JCM has been discussed. The symmetry between the field and atomic squeezing (SFAS) has been exposed in the resonant vacuum one-photon JCM, and the influence of non-resonant interaction and virtual-photon processes on the SFAS has also been discussed

  12. Bearing Fault Classification Based on Conditional Random Field

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2013-01-01

    Full Text Available Condition monitoring of rolling element bearing is paramount for predicting the lifetime and performing effective maintenance of the mechanical equipment. To overcome the drawbacks of the hidden Markov model (HMM and improve the diagnosis accuracy, conditional random field (CRF model based classifier is proposed. In this model, the feature vectors sequences and the fault categories are linked by an undirected graphical model in which their relationship is represented by a global conditional probability distribution. In comparison with the HMM, the main advantage of the CRF model is that it can depict the temporal dynamic information between the observation sequences and state sequences without assuming the independence of the input feature vectors. Therefore, the interrelationship between the adjacent observation vectors can also be depicted and integrated into the model, which makes the classifier more robust and accurate than the HMM. To evaluate the effectiveness of the proposed method, four kinds of bearing vibration signals which correspond to normal, inner race pit, outer race pit and roller pit respectively are collected from the test rig. And the CRF and HMM models are built respectively to perform fault classification by taking the sub band energy features of wavelet packet decomposition (WPD as the observation sequences. Moreover, K-fold cross validation method is adopted to improve the evaluation accuracy of the classifier. The analysis and comparison under different fold times show that the accuracy rate of classification using the CRF model is higher than the HMM. This method brings some new lights on the accurate classification of the bearing faults.

  13. Concept of fractional parentage for arbitrary molecular point groups

    International Nuclear Information System (INIS)

    Koenig, E.; Kremer, S.

    1977-01-01

    The method of fractional parentage is extended to the general case of mixed configurations in arbitrary nonsimply reducible groups, G is contained in SO(3). Particular attention is devoted to the calculation of coefficients of fractional parentage (CFP) and expressions are provided for the matrix elements of F and G type operators between N electron functions. 29 references

  14. Effective Hamiltonian for 2-dimensional arbitrary spin Ising model

    International Nuclear Information System (INIS)

    Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)

    1983-08-01

    The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)

  15. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  16. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    Science.gov (United States)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  17. Unveiling Reality of the Mind: Cultural Arbitrary of Consumerism

    Science.gov (United States)

    Choi, Su-Jin

    2012-01-01

    This paper discusses the cultural arbitrary of consumerism by focusing on a personal realm. That is, I discuss what consumerism appeals to and how it flourishes in relation to our minds. I argue that we need to unveil reality of the mind, be aware of ourselves in relation to the perpetuation of consumerism, in order to critically intervene in the…

  18. On the entropy of random surfaces with arbitrary genus

    International Nuclear Information System (INIS)

    Kostov, I.K.; Krzywicki, A.

    1987-01-01

    We calculate the susceptibility critical exponent γ for Polyakov random surfaces with arbitrary genus, using the Liouville theory to one-loop order. Some rigorous results obtained for special dimensionalities in a discrete version of the model are also noted. In all cases γ grows linearly with the genus of the surface. (orig.)

  19. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  20. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  1. Directional Positive Selection on an Allele of Arbitrary Dominance

    OpenAIRE

    Teshima, Kosuke M.; Przeworski, Molly

    2006-01-01

    Most models of positive directional selection assume codominance of the beneficial allele. We examine the importance of this assumption by implementing a coalescent model of positive directional selection with arbitrary dominance. We find that, for a given mean fixation time, a beneficial allele has a much weaker effect on diversity at linked neutral sites when the allele is recessive.

  2. Dynamics of number systems computation with arbitrary precision

    CERN Document Server

    Kurka, Petr

    2016-01-01

    This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .

  3. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  4. SEM based CARMA time series modeling for arbitrary N

    NARCIS (Netherlands)

    Oud, J.H.L.; Völkle, M.C.; Driver, C.C.

    2018-01-01

    This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be

  5. SEM Based CARMA Time Series Modeling for Arbitrary N.

    Science.gov (United States)

    Oud, Johan H L; Voelkle, Manuel C; Driver, Charles C

    2018-01-01

    This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be presented in which a single panel model (T = 41 time points) is estimated for a sample of N = 1,000 individuals as well as for samples of N = 100 and N = 50 individuals, followed by estimating 100 separate models for each of the one-hundred N = 1 cases in the N = 100 sample. Furthermore, we will demonstrate how to test the difference between the full panel model and each N = 1 model by means of a subject-group-reproducibility test. Finally, the proposed analyses will be applied in an empirical example, in which the relationships between mood at work and mood at home are studied in a sample of N = 55 women. All analyses are carried out by ctsem, an R-package for continuous time modeling, interfacing to OpenMx.

  6. Projective measurement onto arbitrary superposition of weak coherent state bases

    DEFF Research Database (Denmark)

    Izumi, Shuro; Takeoka, Masahiro; Wakui, Kentaro

    2018-01-01

    One of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e. a superposition of classical states. Recently this highly nontrivial quantum state and i...

  7. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  8. Gauge invariant Lagrangian formulation of massive higher spin fields in (A)dS3 space

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.

    2012-01-01

    We develop the frame-like formulation of massive bosonic higher spin fields in the case of three-dimensional (A)dS space with the arbitrary cosmological constant. The formulation is based on gauge invariant description by involving the Stueckelberg auxiliary fields. The explicit form of the Lagrangians and the gauge transformation laws are found. The theory can be written in terms of gauge invariant objects similar to the massless theories, thus allowing us to hope to use the same methods for investigation of interactions. In the massive spin 3 field example we are able to rewrite the Lagrangian using the new the so-called separated variables, so that the study of Lagrangian formulation reduces to finding the Lagrangian containing only half of the fields. The same construction takes places for arbitrary integer spin field as well. Further working in terms of separated variables, we build Lagrangian for arbitrary integer spin and write it in terms of gauge invariant objects. Also, we demonstrate how to restore the full set of variables, thus receiving Lagrangian for the massive fields of arbitrary spin in the terms of initial fields.

  9. Analysis of circular fibers with an arbitrary index profile by the Galerkin method.

    Science.gov (United States)

    Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia

    2004-01-01

    We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.

  10. Quantum simulation of spin models on an arbitrary lattice with trapped ions

    International Nuclear Information System (INIS)

    Korenblit, S; Kafri, D; Campbell, W C; Islam, R; Edwards, E E; Monroe, C; Gong, Z-X; Lin, G-D; Duan, L-M; Kim, J; Kim, K

    2012-01-01

    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin–spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how the appropriate design of laser fields can provide for arbitrary multidimensional spin–spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently available trap technology and is scalable to levels where the classical methods of simulation are intractable. (paper)

  11. Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence

    International Nuclear Information System (INIS)

    Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y

    2011-01-01

    In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.

  12. Magnetic-field gradiometer based on ultracold collisions

    Science.gov (United States)

    Wasak, Tomasz; Jachymski, Krzysztof; Calarco, Tommaso; Negretti, Antonio

    2018-05-01

    We present a detailed analysis of the usefulness of ultracold atomic collisions for sensing the strength of an external magnetic field as well as its spatial gradient. The core idea of the sensor, which we recently proposed in Jachymski et al. [Phys. Rev. Lett. 120, 013401 (2018), 10.1103/PhysRevLett.120.013401], is to probe the transmission of the atoms through a set of quasi-one-dimensional waveguides that contain an impurity. Magnetic-field-dependent interactions between the incoming atoms and the impurity naturally lead to narrow resonances that can act as sensitive field probes since they strongly affect the transmission. We illustrate our findings with concrete examples of experimental relevance, demonstrating that for large atom fluences N a sensitivity of the order of 1 nT/√{N } for the field strength and 100 nT/(mm √{N }) for the gradient can be reached with our scheme.

  13. 2D Vector Field Simplification Based on Robustness

    KAUST Repository

    Skraba, Primoz; Wang, Bei; Chen, Guoning; Rosen, Paul

    2014-01-01

    Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification

  14. Hooking the geographer in children with field-based studies

    Energy Technology Data Exchange (ETDEWEB)

    Krall, F; Sorgman, M I; Uhlenberg, D M

    1978-03-01

    Survey report:Field studies of environmental subjects are helpful in understanding the relationship between humans and their environment. Geography provides an interdisciplinary approach through which elementary children can gain this understanding. Suggested field studies revolve around the school grounds, communities, and homes of the children involved. Projects include studies of natural communities, human communities, solid wastes, and energy conservation. The projects are designed to stimulate broader inquiry by the children. (4 references)

  15. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  16. Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    International Nuclear Information System (INIS)

    Billo, M.; D'Adda, A.; Provero, P.

    2000-01-01

    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U(1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U(1) N . By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon

  17. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  18. Conformal blocks related to the R-R states in the c^=1 superconformal field theories

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Suchanek, Paulina

    2008-01-01

    We derive an explicit form of the family of four-point Neveu-Schwarz blocks with c^=1, external weights Δi=(1)/(8) and arbitrary intermediate weight Δ. The derivation is based on analytic properties of correlation functions of Ramond fields in the free superscalar theory.

  19. A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Brunskog, Jonas

    2018-01-01

    This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the ...

  20. Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Ceresole, A.; Huang Chaoshang

    1990-01-01

    A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)

  1. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Urban, Alexander

    2012-01-01

    Electronic structure calculations based on Kohn-Sham density-functional theory (DFT) allow the accurate prediction of chemical bonding and materials properties. Due to the high computational demand DFT calculations are, however, restricted to structures containing at most several hundreds of atoms, i.e., to length scales of a few nanometers. Though, many processes of technological relevance, for example in the field of nanoelectronics, are governed by phenomena that occur on a slightly larger length scale of up to 100 nanometers, which corresponds to tens of thousands of atoms. The semiempirical Slater-Koster tight-binding (TB) method makes it feasible to calculate the electronic structure of such large systems. In contrast to first-principles-based DFT, which is universally applicable to almost all chemical species, the TB method is based on parametrized models that are usually specialized for a particular application or for one certain class of compounds. Usually the model parameters (Slater-Koster tables) are empirically adjusted to reproduce either experimental reference data (e.g., geometries, elastic constants) or data from first-principles methods such as DFT. The construction of a new TB model is therefore connected with a considerable effort that is often contrasted by a low transferability of the parametrization. In this thesis we develop a systematic methodology for the derivation of accurate and transferable TB models from DFT calculations. Our procedure exploits the formal relationship between the two methods, according to which the TB total energy can be understood as a direct approximation of the Kohn--Sham energy functional. The concept of our method is different to previous approaches such as the DFTB method, since it allows to extract TB parameters from converged DFT wave functions and Hamiltonians of arbitrary reference structures. In the following the different subjects of this thesis are briefly summarized. We introduce a new technique for the

  2. Place-Based Care Ethics: A Field Philosophy Pedagogy

    Science.gov (United States)

    Goralnik, Lissy; Dobson, Tracy; Nelson, Michael Paul

    2014-01-01

    In this paper we argue for the need for a thoughtful and intentional pedagogy in experiential environmental learning that educates for empathetic relationships with humans, nonhuman others, and natural systems, or field philosophy. After discussing the tensions in various ecofeminist perspectives, we highlight relevant ecofeminist ideas and thread…

  3. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the

  4. The development of simple field based procedures for extraction of ...

    African Journals Online (AJOL)

    Field and laboratory experiments were conducted to develop procedures for extracting volatiles from the vine of Adenia cissampeloides which could effect the highest yield at the lowest extraction costs and also could be produced at the cottage industry level. The participatory rural appraisal technique was used to ensure ...

  5. Agent-based modelling of shifting cultivation field patterns, Vietnam

    DEFF Research Database (Denmark)

    Jepsen, Martin Rudbeck; Leisz, S.; Rasmussen, K.

    2006-01-01

    Shifting cultivation in the Nghe An Province of Vietnam's Northern Mountain Region produces a characteristic land-cover pattern of small and larger fields. The pattern is the result of farmers cultivating either individually or in spatially clustered groups. Using spatially explicit agent...

  6. Magnetic field sensor based on asymmetric inverse Wiedemann effect

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Malátek, M.; Dvořák, M.

    2008-01-01

    Roč. 142, č. 2 (2008), s. 468-473 ISSN 0924-4247 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic field sensor * inverse Wiedemann effect * off-diagonal magnetoimpedance * amorphous ribbon Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.724, year: 2008

  7. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan

    2017-01-01

    We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volum...

  8. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  9. The arbitrary l continuum states of the hyperbolic molecular potential

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Gao-Feng, E-mail: fgwei_2000@163.com [School of Physics and Mechatronics Engineering, Xi' an University of Arts and Science, Xi' an 710065 (China); Chen, Wen-Li, E-mail: physwlchen@163.com [Department of Basic Science, Xi' an Peihua University, Xi' an 710065 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2014-06-27

    Within the framework of partial-wave method, we study in this Letter the arbitrary l continuum states of the Schrödinger equation with the hyperbolic molecular potential in terms of an improved approximation to the centrifugal term. We present the normalized radial wave functions and obtain analytical formula of phase shifts. In addition, the corresponding bound states are also discussed by studying the analytical properties of the scattering amplitude. We calculate the energy spectra and scattering phase shifts by the improved, previous approximations and the accurate methods, respectively and find that the improved approximation is better than the previous one since the present results are in better agreement with the accurate ones. - Highlights: • The hyperbolic potential with arbitrary l state is solved. • Improved approximation to centrifugal term is used. • Phase shift formula is derived analytically. • Accurate results are compared with the present results.

  10. Fast RBF OGr for solving PDEs on arbitrary surfaces

    Science.gov (United States)

    Piret, Cécile; Dunn, Jarrett

    2016-10-01

    The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.

  11. Quantum optical arbitrary waveform manipulation and measurement in real time.

    Science.gov (United States)

    Kowligy, Abijith S; Manurkar, Paritosh; Corzo, Neil V; Velev, Vesselin G; Silver, Michael; Scott, Ryan P; Yoo, S J B; Kumar, Prem; Kanter, Gregory S; Huang, Yu-Ping

    2014-11-17

    We describe a technique for dynamic quantum optical arbitrary-waveform generation and manipulation, which is capable of mode selectively operating on quantum signals without inducing significant loss or decoherence. It is built upon combining the developed tools of quantum frequency conversion and optical arbitrary waveform generation. Considering realistic parameters, we propose and analyze applications such as programmable reshaping of picosecond-scale temporal modes, selective frequency conversion of any one or superposition of those modes, and mode-resolved photon counting. We also report on experimental progress to distinguish two overlapping, orthogonal temporal modes, demonstrating over 8 dB extinction between picosecond-scale time-frequency modes, which agrees well with our theory. Our theoretical and experimental progress, as a whole, points to an enabling optical technique for various applications such as ultradense quantum coding, unity-efficiency cavity-atom quantum memories, and high-speed quantum computing.

  12. Matrix superpotentials and superintegrable systems for arbitrary spin

    International Nuclear Information System (INIS)

    Nikitin, A G

    2012-01-01

    A countable set of quantum superintegrable systems for arbitrary spin is solved explicitly using tools of supersymmetric quantum mechanics. It is shown that these systems (introduced by Pronko (2007 J. Phys. A: Math. Theor. 40 13331)) are special cases of models with shape invariant effective potentials that have recently been classified in Nikitin and Karadzhov (2011 J. Phys. A: Math. Theor. 44 305204, 2011 J. Phys. A: Math. Theor. 44 445202). (paper)

  13. Compound words prompt arbitrary semantic associations in conceptual memory

    OpenAIRE

    Boutonnet, Bastien; McClain, Rhonda; Thierry, Guillaume

    2014-01-01

    Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness ...

  14. Probabilistic Teleportation of an Arbitrary Two-particle State

    Institute of Scientific and Technical Information of China (English)

    顾永建; 郑亦庄; 郭光灿

    2001-01-01

    A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.

  15. On Babinet's principle and diffraction associated with an arbitrary particle.

    Science.gov (United States)

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  16. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    OpenAIRE

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-01-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and ...

  17. Arbitrary beam control using passive lossless metasurfaces enabled by orthogonally polarized custom surface waves

    Science.gov (United States)

    Kwon, Do-Hoon; Tretyakov, Sergei A.

    2018-01-01

    For passive, lossless impenetrable metasurfaces, a design technique for arbitrary beam control of receiving, guiding, and launching is presented. Arbitrary control is enabled by a custom surface wave in an orthogonal polarization such that its addition to the incident (input) and the desired scattered (output) fields is supported by a reactive surface impedance everywhere on the reflecting surface. Such a custom surface wave (SW) takes the form of an evanescent wave propagating along the surface with a spatially varying envelope. A growing SW appears when an illuminating beam is received. The SW amplitude stays constant when power is guided along the surface. The amplitude diminishes as a propagating wave (PW) is launched from the surface as a leaky wave. The resulting reactive tensor impedance profile may be realized as an array of anisotropic metallic resonators printed on a grounded dielectric substrate. Illustrative design examples of a Gaussian beam translator-reflector, a probe-fed beam launcher, and a near-field focusing lens are provided.

  18. Electric field calculations in brain stimulation based on finite elements

    DEFF Research Database (Denmark)

    Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel

    2013-01-01

    The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation...... of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized...... the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh...

  19. Megagauss Magnetic Field Sensors Based on Ag2Te

    International Nuclear Information System (INIS)

    Stephen Mitchen; Allen L. Johnson; John W. Farley

    2006-01-01

    Pulsed power machines capable of producing tremendous energy face various diagnostic and characterizing challenges. Such devices, which may produce 10 - 100MAs, have traditionally relied on Faraday rotation and Rogowski coil technology for time-varying current measurements. Faraday rotation requires a host of costly optical components, including fibers, polarizers, retarders, lasers, and detectors, as well as setup, alignment, and time-consuming post-processing to unwrap the time-dependent current signal. Rogowski coils face potential problems such as physical distortion to the sensor itself due to the tremendous strain caused by magnetically induced pressures, which is proportional to the magnetic field squared (B2). Electrical breakdown in the intense field region is also a major concern. Other related challenges include, but are not limited to, bandwidth and inductance limitations and susceptibility issues related to electrical magnetic interference (EMI)

  20. Effective arithmetic in finite fields based on Chudnovsky's multiplication algorithm

    OpenAIRE

    Atighehchi , Kévin; Ballet , Stéphane; Bonnecaze , Alexis; Rolland , Robert

    2016-01-01

    International audience; Thanks to a new construction of the Chudnovsky and Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized, while maintaining a low number of bilinear multiplications.À partir d'une nouvelle construction de l'algorithme de multiplication de Chudnovsky et Chudnovsky, nous concevons des algorithmes ef...

  1. A Field-Based Aquatic Life Benchmark for Conductivity in ...

    Science.gov (United States)

    This report adapts the standard U.S. EPA methodology for deriving ambient water quality criteria. Rather than use toxicity test results, the adaptation uses field data to determine the loss of 5% of genera from streams. The method is applied to derive effect benchmarks for dissolved salts as measured by conductivity in Central Appalachian streams using data from West Virginia and Kentucky. This report provides scientific evidence for a conductivity benchmark in a specific region rather than for the entire United States.

  2. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.

    Science.gov (United States)

    Kalliokoski, Tuomo; Ronkko, Toni; Poso, Antti

    2008-06-01

    Algorithms were developed for ligand-based virtual screening of molecular databases. FieldChopper (FC) is based on the discretization of the electrostatic and van der Waals field into three classes. A model is built from a set of superimposed active molecules. The similarity of the compounds in the database to the model is then calculated using matrices that define scores for comparing field values of different categories. The method was validated using 12 publicly available data sets by comparing the method to the electrostatic similarity comparison program EON. The results suggest that FC is competitive with more complex descriptors and could be used as a molecular sieve in virtual screening experiments when multiple active ligands are known.

  3. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  4. Near field ice detection using infrared based optical imaging technology

    Science.gov (United States)

    Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas

    2018-02-01

    If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.

  5. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  6. A compact, multichannel, and low noise arbitrary waveform generator.

    Science.gov (United States)

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  7. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  8. A compact, multichannel, and low noise arbitrary waveform generator

    International Nuclear Information System (INIS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-01-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation

  9. Arbitrary waveform modulated pulse EPR at 200 GHz

    Science.gov (United States)

    Kaminker, Ilia; Barnes, Ryan; Han, Songi

    2017-06-01

    We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.

  10. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  11. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.

    Science.gov (United States)

    Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E

    2013-09-01

    Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    International Nuclear Information System (INIS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-01-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  13. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  14. Regional cooperation based on multilateral international agreements in nuclear field

    International Nuclear Information System (INIS)

    Valcic, I.

    1996-01-01

    Multilateral international agreements have defined the framework of behavior and cooperation in various fields and aspects of peaceful use of nuclear energy. Thus, obligations have been defined in the following areas: nonproliferation of nuclear weapons, physical protection of nuclear material, liability for nuclear damage, nuclear safety, early notification about a nuclear accident and assistance in case of nuclear accident. Obligations regarding radioactive waste management should be defined soon. This paper gives a review of obligations from particular agreements with a special emphasis on those which are being realized through mutual cooperation of concerned countries and are important for safe use of nuclear energy. (author)

  15. Methodological bases of innovative training of specialists in nanotechnology field

    Directory of Open Access Journals (Sweden)

    FIGOVSKY Oleg Lvovich

    2016-10-01

    Full Text Available The performance of innovative training system aimed at highly intellectual specialists in the area of nanotechnologies for Kazakhstan’s economy demands establishment and development of nanotechnological market in the country, teaching of innovative engineering combined with consistent research, integration of trained specialists with latest technologies and sciences at the international level. Methodological aspects of training competitive specialists for nanotechnological field are specific. The paper presents methodological principles of innovative training of specialists for science-intensive industry that were realized according to grant given by the Ministry of Education and Science of the Republic of Kazakhstan.

  16. Low Emittance Gun Project based on Field Emission

    CERN Document Server

    Ganter, Romain; Dehler, M; Gobrecht, Jens; Gough, Chris; Ingold, Gerhard; Leemann, Simon C; Shing-Bruce-Li, Kevin; Paraliev, Martin; Pedrozzi, Marco; Raguin, Jean Yves; Rivkin, Leonid; Schlott, Volker; Sehr, Harald; Streun, Andreas; Wrulich, Albin F; Zelenika, Sasa

    2004-01-01

    The design of an electron gun capable of producing beam emittance one order of magnitude lower than current technology would reduce considerably the cost and size of a free electron laser emitting at 0.1nm. Field emitter arrays (FEAs) including a gate and a focusing layer are an attractive technology for such high brightness sources. Electrons are extracted from micrometric tips thanks to voltage pulses between gate and tips. The focusing layer should then reduce the initial divergence of each emitted beamlets. This FEA will be inserted in a high gradient diode configuration coupled with a radiofrequency structure. In the diode part very high electric field pulses (several hundreds of MV/m) will limit the degradation of emittance due to space charge effect. This first acceleration will be obtained with high voltage pulses (typically a megavolt in a few hundred of nanoseconds) synchronized with the low voltage pulses applied to the FEA (typically one hundred of volts in one nanosecond at frequency below kilohe...

  17. Development of a Layered Conditional Random Field Based ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-12-01

    Dec 1, 2014 ... The recent denial of service attacks on major Internet sites has shown that no open ..... of a single record, which further degrades attack detection accuracy. ... distributed intrusion detection framework based on mobile agents.

  18. Inverted base pavements : new field test and design catalogue.

    Science.gov (United States)

    2014-01-01

    The current economic situation has severely affected the US road infrastructure and funding has become : inadequate for either maintenance or future growth. : The inverted base pavement structure is a promising alternative to achieve high quality roa...

  19. Context-Based Assessment: Creating Opportunities for Resonance between Classroom Fields and Societal Fields

    Science.gov (United States)

    Bellocchi, Alberto; King, Donna T.; Ritchie, Stephen M.

    2016-01-01

    There is on-going international interest in the relationships between assessment instruments, students' understanding of science concepts and context-based curriculum approaches. This study extends earlier research showing that students can develop connections between contexts and concepts--called "fluid transitions"--when studying…

  20. Propagation functions in pseudoparticle fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Carlitz, R.D.; Creamer, D.B.; Lee, C.

    1978-01-01

    The Green's functions for massless spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corrresponding Green's functions of scalar particles. Simple, explicit algebraic expressions are constructed for the scalar Green's functions of isospin-1/2 and isospin-1 particles in the self-dual field of a configuration of n pseudoparticles described by 5n arbitrary parameters

  1. Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.

    Science.gov (United States)

    Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A

    2006-05-15

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.

  2. Resonance-sum model for Reggeization in the scattering of particles with arbitrary spin

    International Nuclear Information System (INIS)

    King, M.J.; Durand, L.; Wali, K.C.

    1976-01-01

    Using a field-theoretic description of nonzero-spin particles, center-of-mass helicity amplitudes have been obtained which correspond to pole terms in four-particle reactions with arbitrary-spin external particles. Construction of a van Hove-Durand--type model starting from these helicity amplitudes (which have a well specified kinematic structure in the field-theoretic description) is discussed. Special attention has been paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear trajectories is known to produce parity doubling. One cannot have a pure fermion Regge pole unaccompanied by cuts. This conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering in boson-fermion scattering and theoretical considerations such as dual bootstrap models

  3. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  4. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  5. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    International Nuclear Information System (INIS)

    Kimlin, M.G.; Parisi, A.V.

    1999-01-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car. (author)

  6. Ultraviolet radiation penetrating vehicle glass: a field based comparative study

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.

    1999-04-01

    The solar UV transmitted through automobile glass was measured in the field in two cars using a spectroradiometer. The two cars were identical except that one of the cars had all of the windows (except the windshield) tinted. The measured spectral erythemal UV on a horizontal plane with the windows fully closed was reduced in the tinted car by a factor of 42 when compared with the erythemal UV measured in the untinted car. The ambient UVA irradiances at various locations within four different makes of car and a tractor were also measured with a broad band UVA hand-held meter. The average normalized daily UVA exposure (measured with a broad band UVA meter) was 1.3 times higher in a large family sedan when compared with that in a small hatchback and the UVA exposure in a car with tinted windows was 3.8 times less than in a similar untinted car.

  7. Arbitrary Chern number generation in the three-band model from momentum space

    International Nuclear Information System (INIS)

    Lee, Soo-Yong; Go, Gyungchoon; Han, Jung Hoon; Park, Jin-Hong

    2015-01-01

    A simple, general rule for generating a three-band model with arbitrary Chern numbers is given. The rule is based on the idea of monopole charge-changing unitary operations and can be realized by two types of simple unitary operations on the original Hamiltonian. A pair of monopole charges are required to produce desired topological numbers in the three-band model. The set of rules presented here offers a way to produce lattice models of any desired Chern numbers for three-sublattice situations. (author)

  8. Multi-particle phase space integration with arbitrary set of singularities in CompHEP

    International Nuclear Information System (INIS)

    Kovalenko, D.N.; Pukhov, A.E.

    1997-01-01

    We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep. html (orig.)

  9. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    Science.gov (United States)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  10. Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak

    International Nuclear Information System (INIS)

    Wu Qun; Zhang Kuang; Meng Fanyi; Li Lewei

    2009-01-01

    Arbitrary N-sided regular polygonal cylindrical cloaks are proposed and designed based on the coordinate transformation theory. First, the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks are derived, then there are some full-wave simulations of the cloaks that are composed of inhomogeneous and anisotropic metamaterials, which will bend incoming electromagnetic waves and guide them to propagate around the inner region; such electromagnetic waves will return to their original propagation directions without distorting the waves outside the polygonal cloak. The results of full-wave simulations validate the general expressions of constitutive tensors of the N-sided regular polygonal cylindrical cloaks we derived.

  11. Flexible implementation of the Ensemble Model with arbitrary order of moments

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, W. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D 64289 Darmstadt (Germany)]. E-mail: ackermann@temf.tu-darmstadt.de; Weiland, T. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstrasse 8, D 64289 Darmstadt (Germany)]. E-mail: thomas.weiland@temf.tu-darmstadt.de

    2006-03-01

    The Ensemble Model takes advantage of an approach to express the phase space particle distribution function in terms of the first, second and higher order moments instead of considering individual particles. Based on a new flexible implementation, an arbitrary number of orders can be processed and automatically converted into proper update equations for the simulation program V-Code. In this paper the influence of the introduction of higher order moments on the beam dynamics simulation is investigated. The achievable accuracy and the numerical efforts are compared with the ones obtained from the lower order calculations.

  12. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  13. Community-Based Field Experiences in Teacher Education: Possibilities for a Pedagogical Third Space

    Science.gov (United States)

    Hallman, Heidi L.

    2012-01-01

    The present article discusses the importance of community-based field experiences as a feature of teacher education programs. Through a qualitative case study, prospective teachers' work with homeless youth in an after-school initiative is presented. Framing community-based field experiences in teacher education through "third space" theory, the…

  14. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  15. Field efficacy of inorganic carrier based formulations of Serratia ...

    African Journals Online (AJOL)

    On the basis of the result of this experiment, it can be recommended that vermiculite (80 g/100 g of product) based formulation of S. entomophila AB2 applied at 3.6 qt hec-1 in sesame could be an effective measure of lepidopteron pest control as well as biofertilizer for qualitative and quantitative increase of sesame.

  16. Validity of selected cardiovascular field-based test among Malaysian ...

    African Journals Online (AJOL)

    Based on emerge obese problem among Malaysian, this research is formulated to validate published tests among healthy female adult. Selected test namely; 20 meter multi-stage shuttle run, 2.4km run test, 1 mile walk test and Harvard Step test were correlated with laboratory test (Bruce protocol) to find the criterion validity ...

  17. Interviewing Practicing Administrators: An Underutilized Field Based Instructional Strategy.

    Science.gov (United States)

    Joachim, Pat; Klotz, Jack

    Reform of educational administrator preparation programs has received substantial attention from scholars over the past 15 years. Their works stress the importance of a strong knowledge base, problem-centered learning, and a renewed emphasis on affective development. A trend away from managerial, authoritarian leadership styles and toward…

  18. Conformal blocks related to the R-R states in the c-circumflex=1 superconformal field theories

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Suchanek, Paulina; Jaskolski, Zbigniew

    2008-01-01

    We derive an explicit form of the family of four-point Neveu-Schwarz blocks with c-circumflex=1, external weights Δ i =(1/8) and arbitrary intermediate weight Δ. The derivation is based on analytic properties of correlation functions of Ramond fields in the free superscalar theory

  19. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography

    Science.gov (United States)

    Phillips, Jeffrey

    2014-01-01

    A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.

  20. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    Science.gov (United States)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.