WorldWideScience

Sample records for arachidonic acid release

  1. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation of arachidonic acid relea...ation. Gijon MA, Leslie CC. J Leukoc Biol. 1999 Mar;65(3):330-6. (.png) (.svg) (.html) (.csml) Show Regulati...se and cytosolic phospholipase A2activation. Authors Gij

  2. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A......23187, nerve growth factor (NGF), thapsigargin and compound 48/80. On the basis of the results obtained, a possible role for Na/H exchange in rat mast cell secretion is discussed....

  3. Differential release of eicosanoids by bradykinin, arachidonic acid and calcium ionophore A23187 in guinea-pig isolated perfused lung.

    OpenAIRE

    Bakhle, Y. S.; Moncada, S.; de Nucci, G.; Salmon, J A

    1985-01-01

    The effects of infusions of bradykinin (0.2 microM), calcium ionophore A23187 (0.5 microM) and arachidonic acid (13 microM) on the release of eicosanoids from the guinea-pig isolated perfused lung were investigated using radioimmunoassay for thromboxane B2 (TXB2), 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha), PGE2, leukotriene B4 (LTB4) and LTC4 and bioassay using the superfusion cascade. Bradykinin released more 6-oxo-PGF1 alpha than TXB2, whereas arachidonic acid and ionophore released m...

  4. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    International Nuclear Information System (INIS)

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with (14C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A2 activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents

  5. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Poulsen, Kristian Arild; Lambert, Ian H.

    2006-01-01

    secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2...

  6. Synergism between thapsigargin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate on the release of [C]arachidonic acid and histamine from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Thapsigargin is a potent skin irritating sesquiterpene lactone isolated from the roots of Thapsia garganica L. (Apiaceae). In rat peritoneal mast cells thapsigargin induced a calcium-dependent non-cytotoxic [C]arachidonic acid and histamine release. A minor amount of the released [C]arachidonic a...

  7. In vitro release of arachidonic acid metabolites, glutathione peroxidase, and oxygen-free radicals from platelets of asthmatic patients with and without aspirin intolerance.

    OpenAIRE

    Plaza, V.; J. Prat; Rosellò, J.; Ballester, E; Ramis, I; Mullol, J; Gelpí, E; Vives-Corrons, J. L.; Picado, C.

    1995-01-01

    BACKGROUND--An abnormal platelet release of oxygen-free radicals has been described in acetylsalicylic acid (aspirin)-induced asthma, a finding which might suggest the existence of an intrinsic, specific platelet abnormality of arachidonic acid metabolism in these patients. The objective of this study was to evaluate platelet arachidonic acid metabolism in asthmatic patients with or without intolerance to aspirin. METHODS--Thirty subjects distributed into three groups were studied: group 1, 1...

  8. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Science.gov (United States)

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  9. Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami.

    Science.gov (United States)

    Cambronero, J C; Rivas, F J; Borrell, J; Guaza, C

    1992-07-01

    The present work shows that the corticotropin-releasing factor (CRF)-releasing activity of interleukin-1 (IL-1) is partially inhibited by a phospholipase A2 (mepacrine) or a cyclooxygenase (indomethacin) inhibitor, but is not affected by inhibition of the lypoxygenase pathway with norhydroguaiaretic acid. These results indicate that the metabolism of arachidonic acid plays an important role as mediator of the effects of IL-1 on CRF release. It is also shown that products of the cyclooxygenase activity such as prostaglandins can stimulate CRF secretion by a direct action on the hypothalamus. Whereas PGE2 failed to induce increases on CRF release, PGF2 alpha stimulated in a dose-dependent manner (21-340 nM), the CRF release from continuous perifused hypothalami. It is suggested that PGF2 alpha could be involved as a messenger in the hypothalamic CRF secretion induced by IL-1. PMID:1619039

  10. The Property and Application of Arachidonic Acid

    Institute of Scientific and Technical Information of China (English)

    王相勤; 姚建铭; 袁成凌; 王纪; 余增亮

    2002-01-01

    Arachidonic acid (AA) is one of the most important PUFAs (polyunsaturated fatty acids) in human body. A high-yield arachidonic acid-producing strain (mortierella alpina) was selected by ion implantation (the relative content of arachidonic acid is 70.2% among all fatty acids). This paper mainly introduced the structure, distribution, source, physiologic healthcare function and application of AA.

  11. Oxygen metabolites stimulate release of high-molecular-weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism.

    OpenAIRE

    Adler, K B; Holden-Stauffer, W J; Repine, J E

    1990-01-01

    Several common pulmonary disorders characterized by mucus hypersecretion and airway obstruction may relate to increased levels of inhaled or endogenously generated oxidants (O2 metabolites) in the respiratory tract. We found that O2 metabolites stimulated release of high-molecular-weight glycoconjugates (HMG) by respiratory epithelial cells in vitro through a mechanism involving cyclooxygenase metabolism of arachidonic acid. Noncytolytic concentrations of chemically generated O2 metabolites (...

  12. LysoPC and PAF Trigger Arachidonic Acid Release by Divergent Signaling Mechanisms in Monocytes

    Directory of Open Access Journals (Sweden)

    Janne Oestvang

    2011-01-01

    Full Text Available Oxidized low-density lipoproteins (LDLs play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC. LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF receptor. Here, we report that PAF triggers a pertussis toxin- (PTX- sensitive intracellular signaling pathway leading to sequential activation of sPLA2, PLD, cPLA2, and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA2, and a second parallel PTX-sensitive pathway activating cPLA2 with concomitant activation of sPLA2, all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.

  13. Dietary arachidonic acid in perinatal nutrition

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar lev...

  14. Melittin stimulates phosphoinositide hydrolysis and placental lactogen release: Arachidonic acid as a link between phospholipase A sub 2 and phospholipase C signal-transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, P.; Handwerger, S. (Univ. of Cincinnati College of Medicine, OH (USA)); Wu, Y.Q. (Duke Univ. Medical Center, Durham, NC (USA))

    1991-01-01

    Previous investigations from this laboratory have implicated both phospholipase A{sub 2} and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A{sub 2} and the relationship between phospholipase A{sub 2} activation and phosphoinositide metabolism, the authors examined hPL and ({sup 3}H)-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and ({sup 3}H)-inositol. Mepacrine inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and ({sup 3}H)-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoionsitide metabolism and hPL release is mediated by initial activation of phospholipase A{sub 2}. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A{sub 2} activation, can act as a second messenger linking the two phospholipase pathways.

  15. Maitotoxin: Effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells

    International Nuclear Information System (INIS)

    Maitotoxin (MTX) increases formation of [3H]inositol phosphates from phosphoinositides and release of [3H]arachidonic acid from phospholipids in pheochromocytoma PC12 cells. Formation of [3H]inositol phosphates is detected within 1 min of incubation even with concentrations as low as 0.3 ng/ml (90 pm) MTX, whereas release of [3H]arachidonic acid is not detected until 20 min even with concentrations as high as 1 ng/ml (300 pm) MTX. Stimulation of arachidonic acid release can be detected at 0.03 ng/ml (9 pm) MTX, whereas 0.1 ng/ml (30 pm) MTX is the threshold for detection of phosphoinositide breakdown. Organic and inorganic calcium channel blockers, except Cd2+ and a high concentration of Mn2+, have no effect on MTX-elicited phosphoinositide breakdown, whereas inorganic blockers (e.g., Co2+, Mn2+, Cd2+), but not organic blockers (nifedipine, verapamil, diltiazem), inhibit MTX-stimulated arachidonic acid release. All calcium channel blockers, however, inhibited MTX-elicited influx of 45Ca2+ and the MTX-elicited increase in internal Ca2+ measured with fura-2 was markedly reduced by nifedipine. MTX-elicited phosphoinositide breakdown and arachidonic acid release are abolished or reduced, respectively, in the absence of extracellular calcium plus chelating agent. The calcium ionophore A23187 has little or no effect alone but, in combination with MTX, A23187 inhibits MTX-elicited phosphoinositide breakdown and enhances arachidonic acid release, the latter even in the absence of extracellular calcium. The results suggest that different sites and/or mechanisms are involved in stimulation of calcium influx, breakdown of phosphoinositides, and release of arachidonic acid by MTX

  16. Arachidonic acid assimilation by thrombocytes from white carneau pigeons

    International Nuclear Information System (INIS)

    The metabolism of arachidonic acid was investigated using thrombocyte-enriched-plasma from RBWC and WC-II white carneau pigeons, which differ genetically in their susceptibility to atherosclerosis. Thrombocytes were incubated at 42 C with [14C] arachidonate in Puck's solution. After a 1 hour labeling period the WC-II cells had taken up 69% and RBWC 77% of the [14C]arachidonate from the medium. When 8,11,14-eicosatrienoic acid or 5,8,11,14,17-eicosapentaenoic acid were added to incubation media the [14C] uptake was reduced in each type cell, with WC-II exhibiting the greatest effect. Release of [14C]molecules from cells labeled with [14]Carachidonate was studied using calcium ionophore and indomethacin. Indomethacin inhibited [14C] molecule release similarly in both RBWC and WC-II cells. Calcium ionophore was twice as effective in stimulating [14C]molecule release from WC-II than RBWC cells. Therefore, the WE-II cells (from pigeons greater in susceptibility to atherosclerosis) are more sensitive to calcium ionophore than the REWC cells

  17. The discovery and early structural studies of arachidonic acid.

    Science.gov (United States)

    Martin, Sarah A; Brash, Alan R; Murphy, Robert C

    2016-07-01

    Arachidonic acid and esterified arachidonate are ubiquitous components of every mammalian cell. This polyunsaturated fatty acid serves very important biochemical roles, including being the direct precursor of bioactive lipid mediators such as prostaglandin and leukotrienes. This 20 carbon fatty acid with four double bonds was first isolated and identified from mammalian tissues in 1909 by Percival Hartley. This was accomplished prior to the advent of chromatography or any spectroscopic methodology (MS, infrared, UV, or NMR). The name, arachidonic, was suggested in 1913 based on its relationship to the well-known arachidic acid (C20:0). It took until 1940 before the positions of the four double bonds were defined at 5,8,11,14 of the 20-carbon chain. Total synthesis was reported in 1961 and, finally, the configuration of the double bonds was confirmed as all-cis-5,8,11,14. By the 1930s, the relationship of arachidonic acid within the family of essential fatty acids helped cue an understanding of its structure and the biosynthetic pathway. Herein, we review the findings leading up to the discovery of arachidonic acid and the progress toward its complete structural elucidation. PMID:27142391

  18. Mechanism of arachidonic acid action on syntaxin-Munc18.

    Science.gov (United States)

    Connell, Emma; Darios, Frédéric; Broersen, Kerensa; Gatsby, Naomi; Peak-Chew, Sew-Yeu; Rickman, Colin; Davletov, Bazbek

    2007-04-01

    Syntaxin and Munc18 are, in tandem, essential for exocytosis in all eukaryotes. Recently, it was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by arachidonic acid, indicating that this common second messenger acts to disrupt the syntaxin-Munc18 interaction. Here, we show that arachidonic acid can stimulate syntaxin 1 alone, indicating that it is syntaxin 1 that undergoes a structural change in the syntaxin 1-Munc18 complex. Arachidonic acid is incapable of dissociating Munc18 from syntaxin 1 and, crucially, Munc18 remains associated with syntaxin 1 after arachidonic-acid-induced syntaxin 1 binding to synaptosomal-associated protein 25 kDa (SNAP25). We also show that the same principle operates in the case of the ubiquitous syntaxin 3 isoform, highlighting the conserved nature of the mechanism of arachidonic acid action. Neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) can be isolated from brain membranes in a complex with endogenous Munc18, consistent with a proposed function of Munc18 in vesicle docking and fusion.

  19. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    OpenAIRE

    Nielsen, Ole H.; Bouchelouche, Pierre N.; Dag Berild

    1992-01-01

    Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l) was as potent as the calcium ionophore A23187 (10 μmol/l) for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the de...

  20. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells

    Indian Academy of Sciences (India)

    Ralph H Schaloske; Dagmar Blaesius; Christina Schlatterer; Daniel F Lusche

    2007-12-01

    Cyclic AMP (cAMP) is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8–9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycolbis(b-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3-receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.

  1. Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease.

    OpenAIRE

    Smith, D. M.; Walsh, C E; DeChatelet, L R; Waite, M.

    1983-01-01

    The effect of the calcium ionophore A23187 on the release and metabolism of [3H]arachidonic acid was examined in normal polymorphonuclear leukocytes and those obtained from patients with chronic granulomatous disease. The ionophore A23187 which stimulates oxidative metabolism in normal polymorphonuclear leukocytes was ineffective in increasing oxidative metabolism (chemiluminescence) in polymorphonuclear leukocytes from patients with chronic granulomatous disease. However, the ionophore A2318...

  2. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Directory of Open Access Journals (Sweden)

    Ole H. Nielsen

    1992-01-01

    Full Text Available Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l was as potent as the calcium ionophore A23187 (10 μmol/l for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the decreases in radioactivity by 15.4% and 30.5%, respectively. The mechanism responsible for the release of arachidonate from cellular membranes is closely coupled to cellular calcium metabolism, and melittin was found to promote calcium entry through receptor gated calcium channels, probably due to an activation of phospholipase A2. Furthermore, a down-regulation of leukotriene B4 receptors was seen. The maximal number of binding sites per cell was reduced from a median of 1520 to 950 with melittin (1 μmol/l. The study has revealed some factors important for the inflammatory mechanisms mediated by melittin.

  3. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B;

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (arachidonate-phospholipids and preferential reesterification of the fatty acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role for...

  4. Preparation of oxygen-18-labeled lipoxygenase metabolites of arachidonic acid.

    Science.gov (United States)

    Westcott, J Y; Clay, K L; Murphy, R C

    1985-12-01

    Plasma pseudocholinesterase and porcine liver esterase were used to catalyse the incorporation of the stable isotope oxygen-18 into the carboxyl moiety of lipoxygenase metabolites of arachidonic acid. This simple method produces eicosanoid products containing two oxygen-18 atoms; but the enzymes studied were found to display large substrate specificity in the efficiencies at which oxygen-18 could be incorporated into the lipoxygenase metabolites. Furthermore, [18O2]LTB4 was found not to back exchange during in vitro incubation with human neutrophils. The methods involved for stable isotope incorporation are simple, efficient and produce highly enriched species in a short time. By varying the type of esterase, the amount of esterase or the length of incubation highly enriched species of all eicosanoids tested could be prepared. PMID:3004615

  5. Role of arachidonic acid cascade in Rhinella arenarum oocyte maturation.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Arias-Torres, Ana Josefina; Zelarayán, Liliana Isabel

    2015-08-01

    There are no studies that document the production of prostaglandins (PGs) or their role in Rhinella arenarum oocyte maturation. In this study, we analysed the effect of arachidonic acid (AA) and prostaglandins (PGs) on maturation, activation and pronuclear formation in R. arenarum oocytes. Our results demonstrated that AA was capable of inducing maturation in time-dependent and dose-dependent manner. Arachidonic acid-induced maturation was inhibited by indomethacin. PGs from AA hydrolysis, such as prostaglandin F2α (PGF2α) and, to a lesser extent, PGE2, induced meiosis resumption. Oocyte maturation in response to PGF2α was similar to that produced by progesterone (P4). Oocyte response to PGE1 was scarce. Rhinella arenarum oocyte PGF2α-induced maturation showed seasonal variation. From February to June, oocytes presented low sensitivity to PGF2α. In following periods, this response increased until a maximum was reached during October to January, a close temporal correlation with oocyte response to P4 being observed. The effect of PGF2α on maturation was verified by analysing the capacity of oocytes to activate and form pronuclei after being injected with homologous sperm. The cytological analysis of activated oocytes demonstrated the absence of cortical granules in oocytes, suggesting that PGF2α induces germinal vesicle breakdown (GVBD) and meiosis resumption up to metaphase II. In turn, oocytes matured by the action of PGF2α were able to form pronuclei after fertilization in a similar way to oocyte maturated by P4. In microinjection of mature cytoplasm experiments, the transformation of pre-maturation promoting factor (pre-MPF) to MPF was observed when oocytes were treated with PGF2α. In summary, our results illustrated the participation of the AA cascade and its metabolites in maturation, activation and pronuclei formation in R. arenarum. PMID:24964276

  6. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status

  7. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle

    OpenAIRE

    Olesen Ingrid; Haug Anna; Christophersen Olav A

    2010-01-01

    Abstract Chicken meat with reduced concentration of arachidonic acid (AA) and reduced ratio between omega-6 and omega-3 fatty acids has potential health benefits because a reduction in AA intake dampens prostanoid signaling, and the proportion between omega-6 and omega-3 fatty acids is too high in our diet. Analyses for fatty acid determination are expensive, and finding the optimal number of analyses to give reliable results is a challenge. The objective of the present study was i) to analys...

  8. Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ω-3 Fatty Acids*

    OpenAIRE

    Arnold, Cosima; Markovic, Marija; Blossey, Katrin; Wallukat, Gerd; Fischer, Robert; Dechend, Ralf; Konkel, Anne; von Schacky, Clemens; Luft, Friedrich C.; Muller, Dominik N.; Rothe, Michael; Schunck, Wolf-Hagen

    2010-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J...

  9. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid.

    OpenAIRE

    Goldman, A S; Baker, L; Piddington, R; Marx, B; Herold, R; Egler, J

    1985-01-01

    Congenital malformations now represent the largest single cause of mortality in the infant of the diabetic mother. The mechanism by which diabetes exerts its teratogenic effects is not known. This study evaluated whether arachidonic acid might be involved, a possibility raised by the role of arachidonic acid in palatal elevation and fusion, processes analogous to neural tube folding and fusion. This hypothesis was tested in two animal models of diabetic embryopathy, the in vivo pregnant diabe...

  10. Effects of arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on prolactin secretion from anterior pituitary cells

    Energy Technology Data Exchange (ETDEWEB)

    Camoratto, A.M.

    1988-01-01

    The role of two lipids, arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, as modulators or prolactin secretion has been examined. Stimulators of phospholipase A{sub 2} activity, melittin and mastoparan, were found to increase prolactin release. Melittin also caused release of previously incorporated {sup 3}H-arachidonic acid and this effect was associated with loss of radiolabel from the phospholipid fraction. Exogenous arachidonic acid also stimulated prolactin secretion. Conversely, inhibitors of phospholipase A{sub 2} activity, dibromoacetophenone and U10029A, decreased basal and stimulated prolactin release. Prolactin release could also be lowered by ETYA, BW755C and NDGA, inhibitors of arachidonic acid metabolism. In the second series of experiments the effects of the biologically active phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor, PAF) on prolactin release were examined. PAF is an ether-linked phospholipid known to stimulate granule release in a variety of cell types including both inflammatory and noninflammatory cells. PAF increased release of prolactin from dispersed rat anterior pituitary cells; stimulation was not due to cell lysis. PAF-induced prolactin release could be blocked by the dopaminergic agonists apomorphine and bromocriptine as well as by two PAF receptor antagonists, SRI 63-072 and L-652-731.

  11. Correlation between arachidonic acid oxygenation and luminol-induced chemiluminescence in neutrophils: inhibition by diethyldithiocarbamate.

    Science.gov (United States)

    Chabannes, B; Perraut, C; El Habib, R; Moliere, P; Pacheco, Y; Lagarde, M

    1997-04-01

    Neutrophils from allergic subjects were hypersensitive to stimulation by low calcium ionophore concentration (0.15 microM), resulting in an increased formation of leukotriene B4 (LTB4), 5S-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-HETE), and other arachidonic acid metabolites through the 5-lipoxygenase pathway. In parallel, luminol-dependent chemiluminescence was also higher in neutrophils from allergic patients at the basal state and after stimulation by calcium ionophore, revealing an enhancement of radical oxygen species and peroxide production. The activity of glutathione peroxidase, the main enzyme responsible for hydroperoxide reduction, was lowered in these cells. Diethyl-dithiocarbamate (DTC) induced a concentration-dependent decrease in chemiluminescence and arachidonic acid metabolism after neutrophil stimulation. These data show that the elevation of arachidonic acid metabolism in neutrophils from allergic patients is strongly correlated with oxidative status. This elevation may be the consequence of an increased cellular hydroperoxide known to activate 5-lipoxygenase (5-LOX) activity and/or an increased arachidonic acid availability, due either to phospholipase A2 (PLA2) activation or inhibition of arachidonate reesterification into phospholipids. Lowering this oxidative status was associated with a concomitant decrease of this metabolism. Our results suggest that the effect of DTC may be the consequence of an inhibition of peroxyl radical and cellular lipid hydroperoxide production. Thus, DTC may modulate arachidonic acid metabolism in neutrophils by modulating the cellular hydroperoxide level.

  12. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  13. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  14. Apparent in vivo retroconversion of dietary arachidonic to linoleic acid in essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; von Wettstein-Knowles, P.

    1986-01-01

    Essential fatty acid-deficient rats were fed ethyl [U-C]arachidonate (308 dpm/nmol) and when a decrease in the transepidermal water loss was seen, the epidermal sphingolipids, acylglucosylceramide and acylceramide were isolated. [C]Linoleic acid (approx. 130 dpm/nmol) was present in both lipid...... classes, while the substrate was only detected in the former. These results intimate that in vivo retroconversion of arachidonic to linoleic acid can be induced in the rat....

  15. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    Science.gov (United States)

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  16. Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic levels in postmenopausal women

    NARCIS (Netherlands)

    Giltay, E.J.; Duschek, E.J.J.; Katan, M.B.; Neele, S.J.; Netelenbos, J.C.; Zock, P.L.

    2004-01-01

    Estrogens may affect the essential n-6 and n-3 fatty acids arachidonic acid (AA; C20:4n-6) and docosahexaenoic acid (DHA; C22:6n-3). Therefore, we investigated the long-term effects of hormone replacement therapy and raloxifene, a selective estrogen-receptor modulator, in two randomized, double-blin

  17. Arachidonic acid reduces the stress response of gilthead seabream Sparus aurata L.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Nixon, O.; Wendelaar Bonga, S.E.

    2004-01-01

    In this study the influence of the dietary level of the fatty acid arachidonic acid (ArA, 20:4n-6) was determined on the acute stress response and osmoregulation of adult gilthead seabream Sparus aurata L. Seabream were fed a diet containing either 0.9% or 2.4% of total fatty acids as ArA for 18 day

  18. Research on Arachidonic Acid and Eicosapentaenoic Acid Anabolic Metabolism in Diasporangium sp.

    Institute of Scientific and Technical Information of China (English)

    DAI Chuan-chao; XU Yu-fen; XIA Shun-xiang; ZHAO Mo; YE Yu-cheng

    2010-01-01

    The fatty acids of a strain of Diasporangium sp.had been analyzed by using GC-MS.The fatty acids of twenty mutants were determined.Based on these results,the producing of eicosapentaenoic acid(EPA)supposed via 18∶2,18∶3,20∶3,20∶4 which all belong to ω-6 fatty acids.The ω-3 desaturation was undertaken at arachidonic acid(AA).In addition,mutant strains resulted in enhanced content of AA which could get two times more than initial strain,but no compact on EPA.

  19. Extract of a spice--omum (Trachyspermum ammi)-shows antiaggregatory effects and alters arachidonic acid metabolism in human platelets.

    Science.gov (United States)

    Srivastava, K C

    1988-07-01

    An ethereal extract of omum (Trachyspermum ammi; Hindustani: ajwan)--a frequently consumed spice--was found to inhibit platelet aggregation induced by arachidonic acid (AA), epinephrine and collagen; in this respect it was most effective against AA-induced aggregation. Inhibition of aggregation by omum could be explained by its effect on platelet thromboxane production as suggested by the following experimental observation. (i) Omum reduced TxB2 formation in intact platelet preparations from added arachidonate, and (ii) it reduced the formation of TxB2 from AA-labelled platelets after stimulation with Ca2+-ionophore A23187 by a direct action on cyclooxygenase as it did not affect the release of AA from labelled platelets. An increased formation of lipoxygenase-derived products from exogenous AA in omum-treated platelets was apparently due to redirection of AA from cyclooxygenase to the lipoxygenase pathway.

  20. Plasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation

    International Nuclear Information System (INIS)

    The present study demonstrates that rabbit aortic intimal smooth muscle cells contain the majority of their endogenous arachidonic acid mass in plasmenylethanolamine molecular species. To demonstrate the potential significance of these plasmenylethanolamines as substrates for the smooth muscle cell phospholipases that are activated during agonist stimulation, aortic rings were prelabeled with [3H]arachidonic acid and stimulated with angiotensin II. Although the specific activities of the choline and inositol glycerophospholipid pools were similar after the labeling interval, ethanolamine glycerophospholipids had a specific activity of only 20% of the specific activity of choline and inositol glycerophospholipids. Despite the marked disparity in the specific activities of these three phospholipid classes, angiotensin II stimulation resulted in similar fractional losses (35-41%) of [3H]arachidonic acid from vascular smooth muscle choline, ethanolamine, and inositol glycerophospholipid classes. Reverse-phase HPLC demonstrated that >60% of the [3H]arachidonic acid released from ethanolamine glycerophospholipids after angiotensin II stimulation originated from plasmenylethanolamine molecular species. Taken together, the results demonstrate that the major phospholipid storage depot for arachidonic acid in vascular smooth muscle cells are plasmenylethanolamine molecular species which are important substrates for the phospholipase(s) that are activated during agonist stimulation

  1. Peroxidative metabolism of arachidonic acid in the course of Lyme arthritis

    Directory of Open Access Journals (Sweden)

    Wojciech Łuczaj

    2015-09-01

    Full Text Available [b][/b]Objective. The objective of the study was measurement of serum arachidonic acid level as well as the product of its peroxidation – 8-isoPGF[sub]2[/sub][sub]α[/sub], and the activity of phospholipase A[sub]2[/sub] and PAF-acetylhydrolase that participate in releasing 8-isoPGF[sub]2α[/sub] from glycerol skeleton, and the potential designation of their role in the pathomechanism of Lyme disease (LD. Material and methods. Changes in the phospholipid arachidonic acid level and the level of 8-isoPGF[sub]2α[/sub] were determined in the plasma and urine of patients with LA (n=57 and of healthy controls (n=41. The activity of phospholipase A[sub]2[/sub] and PAF acetylhydrolase were assayed. All examined parameters were also measured in the plasma of some LA patients (n=13 after antibiotics treatment. Results. An almost 3-fold higher level of the total plasma 8-isoPGF[sub]2α[/sub] was observed in LA patients compared to the controls, while in the urine it increased over 5-fold. The plasma PLA[sub]2[/sub] activity was more than 3-fold higher in LA patients than in the healthy subjects, while PAF acetylhydrolase activity was observed to be modestly, but not significantly lower. The total 8-isoPGF[sub]2α[/sub] level in the plasma and urine of LA patients was significantly lower after antibiotics treatment. The plasma activity of PAF-AH in the LA patients was increased, while the cPLA[sub]2[/sub] activity decreased after antibiotics treatment. Conclusions. It may be suggested that in the course of LA, the level of binding 8-isoPGF[sub]2α[/sub] is significantly enhanced, and it may also be suggested that uncontrolled changes in the lipid status of some patients may make their Lyme arthritis unresponsive to antibiotics.

  2. Phospholipid, arachidonate and eicosanoid signaling in schizophrenia

    Directory of Open Access Journals (Sweden)

    Messamore Erik

    2016-01-01

    Full Text Available This paper reviews the potential role of arachidonic acid in the pathophysiology of schizophrenia. We discuss how abnormal levels of arachidonic acid may arise, and how dysregulation of signaling molecules derived from it have the potential to disrupt not only dopamine signaling, but numerous other physiological processes associated with the illness. Pharmacological doses of niacin stimulate the release of arachidonic acid; and arachidonic acid-derived molecules in turn dilate blood vessels in the skin. A blunted skin flush response to niacin is reliably observed among patients with schizophrenia. The niacin response abnormality may thus serve as a biomarker to identify a physiological subtype of schizophrenia associated with defective arachidonic acid-derived signaling.

  3. Dietary supplementation with arachidonic acid in tilapia (Oreochromis mossambicus) reveals physiological effects not mediated by prostaglandins.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Wendelaar Bonga, S.E.

    2004-01-01

    This study aims to clarify the role of the polyunsaturated fatty acid arachidonic acid (ArA, 20:4n-6) in the stress response of Mozambique tilapia (Oreochromis mossambicus). ArA is converted into eicosanoids, including prostaglandins, which can influence the response to stressors. Tilapia, a species

  4. Evidence for lipoxin formation by bovine polymorphonuclear leukocytes via triple dioxygenation of arachidonic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Walstra, P.; Verhagen, J.; Vermeer, M.A.; Klerks, J.P.M.; Veldink, G.A.

    1988-01-01

    Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic aci

  5. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    Science.gov (United States)

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  6. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    Science.gov (United States)

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  7. Prenatal arachidonic acid exposure and selected immune-related variables in childhood

    NARCIS (Netherlands)

    Dirix, Chantal E. H.; Hogervorst, Janneke G. F.; Rump, Patrick; Hendriks, Johannes J. E.; Bruins, Maaike; Hornstra, Gerard

    2009-01-01

    Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childho

  8. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    Science.gov (United States)

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  9. Metabolism of arachidonic acid in hamster lung microsomes is not completely inhibited by aspirin and indomethacin

    Energy Technology Data Exchange (ETDEWEB)

    Uotila, P.; Paajanen, H.; Schalin, M.; Simberg, N.

    1983-10-01

    Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

  10. Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways

    OpenAIRE

    Gomes, Ana; Fernandes, Eduarda; Silva, Artur; Santos, Clementina M.M.; Pinto, Diana; Cavaleiro, José; Lima, José Costa

    2009-01-01

    Abstract Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators. Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, a...

  11. In Vitro and In Vivo Activities of Arachidonic Acid against Schistosoma mansoni and Schistosoma haematobium▿

    OpenAIRE

    El Ridi, Rashika; Aboueldahab, Marwa; Tallima, Hatem; Salah, Mohamed; Mahana, Noha; Fawzi, Samia; Mohamed, Shadia H.; Fahmy, Omar M.

    2010-01-01

    The development of arachidonic acid (ARA) for treatment of schistosomiasis is an entirely novel approach based on a breakthrough discovery in schistosome biology revealing that activation of parasite tegument-bound neutral sphingomyelinase (nSMase) by unsaturated fatty acids, such as ARA, induces exposure of parasite surface membrane antigens to antibody binding and eventual attrition of developing schistosomula and adult worms. Here, we demonstrate that 5 mM ARA leads to irreversible killing...

  12. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane spanning proteins

    OpenAIRE

    Keith, Dove J; Eshleman, Amy J; Janowsky, Aaron

    2010-01-01

    Phospholipase A2 releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A2 stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [3H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic a...

  13. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    Science.gov (United States)

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  14. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    International Nuclear Information System (INIS)

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (14C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (3H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3

  15. Effect of the antipsoriatic drug metabolite etretin (Ro 10-1670) on UVB irradiation induced changes in the metabolism of arachidonic acid in human keratinocytes in culture

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Jansen, C.T.; Puustinen, T.

    1986-11-01

    (/sup 14/C)Arachidonic acid was avidly incorporated into human keratinocytes in culture and following exposure to UVB irradiation of 9 mJ/cm/sup 2/ (erythemally effective, EE) substantial amounts of /sup 14/C-radiolabel were released from the cells. The release of radiolabel was accompanied by a decrease in the labelling of phosphatidylethanolamine whereas the labelling of triacylglycerols and cholesteryl esters was increased. Keratinocytes produced significant amounts of prostaglandin E/sub 2/ (PGE/sub 2/) and following UVB irradiation of 9 mJ/cm/sup 2/ (EE) the formation of prostaglandin E/sub 2/ was increased. Etretin (Ro 10-1670), the active metabolite of the antipsoriatic drug etretinate (Ro 10-9359), affected significantly neither the total release of radiolabel induced by UVB nor the formation of prostaglandin E/sub 2/. However, in the presence of etretin the UVB irradiation induced transfer of (/sup 14/C)arachidonic acid into triacylglycerols and cholesteryl esters was not increased as much as in the corresponding experiments without etretin. On the basis of the present study it appears that etretin dose not interfere with the release of arachidonic acid in amounts which could be related to the therapeutic effects of the combination of retinoids with UVB irradiation (Re-UVB) in the treatment of psoriasis.

  16. The skeletal muscle arachidonic acid cascade in health and inflammatory disease.

    Science.gov (United States)

    Korotkova, Marina; Lundberg, Ingrid E

    2014-05-01

    Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.

  17. The effects of anaerobic training in serum lipids and arachidonic acid metabolites

    OpenAIRE

    GEORGIOS KIPREOS; ALEXANDRA TRIPOLITSIOTI; APOSTOLOS STERGIOULAS

    2010-01-01

    Coronary arteries are subjected daily in high shear stress and manifest atherosclerosis very early in life in comparison to other arteries in the human body. Some factors that are implicated in the evolution and progress of this process are the concentration of lipids and arachidonic acid metabolites, such prostacyclin and thromboxane. It has been reported that those who participate in aerobic activities such as walking, cycling, jogging or brisk walking might have normal values of the mentio...

  18. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis

    OpenAIRE

    Hyde, C. A. C.; Missailidis, S

    2009-01-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemopreventio...

  19. Effects of fluticasone propionate inhalation on levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gert T. Verhoeven

    2001-01-01

    Full Text Available Background: In smoking COPD patients the bronchoalveolar lavage (BAL fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA metabolites, which contribute to inflammation and an increased bronchomotor tone.

  20. Targeted Chiral Analysis of Bioactive Arachidonic Acid Metabolites Using Liquid-Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Clementina Mesaros

    2012-04-01

    Full Text Available A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID and tandem mass spectrometry (MS/MS. Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS; whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.

  1. Biochemical and pharmacological effects of dipyrone and its metabolites in model systems related to arachidonic acid cascade.

    Science.gov (United States)

    Weithmann, K U; Alpermann, H G

    1985-01-01

    The metabolites of dipyrone (metamizol, Novalgin) were compared with appropriate standard drugs for their influences on the pathways of the arachidonic acid metabolism. The drugs in this study had no significant effects on the lipoxygenase pathway in human neutrophils in vitro. The dipyrone metabolites 4-methylaminoantipyrine (MAAP) and 4-aminoantipyrine (AAP) inhibited prostaglandin synthesis in the 10(-3) to 10(-4) mol/l range thus being comparable to acetylsalicylic acid (ASA), whereas the two additional metabolites 4-acetylaminoantipyrine (AAAP) and 4-formylaminoantipyrine (FAAP) were practically inactive. This result is in accordance with the effects of the metabolites on the formation of oedema in the arthritis rat model, and supports published data showing that MAAP and AAP are the metabolites responsible for the clinical effects of dipyrone. Further systems in our study depending at least partially on the prostaglandin pathway were the release of antiaggregatory activity from rat aortae in vitro and the aggregation of human platelets induced by arachidonic acid in vitro. MAAP exhibits antiaggregatory activity (IC50 5 x 10(-6) mol/l), whereas the inhibitory effect on the vascular antiaggregatory release is much weaker. Compared to normals platelet aggregability ex vivo is enhanced in arthritic rats, but could significantly be lowered again by treatment of the rats with MAAP. A further system studied was the release of 6-keto-PGF1 alpha from rat mucosa in vitro and ex vivo. In vitro there is inhibition to be found with MAAP as well as with ASA. Ex vivo, however, dipyrone or MAAP slightly stimulates mucosal 6-keto-PGF1 alpha rather than inhibiting it, whereas ASA exerts inhibition, as expected.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Arachidonic acid needed in infant formula when docosahexaenoic acid is present.

    Science.gov (United States)

    Brenna, J Thomas

    2016-05-01

    Recently, the European Food Safety Authority asserted that arachidonic acid (ARA) is an optional nutrient for the term infant even when docosahexaenoic acid (DHA) is present. The brief rationale is based on an explicit, widespread misapplication of the concept of "essential fatty acids" to linoleic acid that implies it is uniquely required as a nutrient per se. Linoleic acid prevents acute clinical symptoms caused by polyunsaturated fatty acid-deficient diets and is the major precursor for ARA in most human diets. Experimental diets with ARA as the sole n-6 similarly prevent symptoms but at a lower energy percentage than linoleic acid and show ARA is a precursor for linoleic acid. The absence of consistent evidence of ARA benefit from randomized controlled trials is apparently an issue as well. This review highlights basic and clinical research relevant to ARA requirements as an adjunct to DHA in infancy. ARA is a major structural central nervous system component, where it rapidly accumulates perinatally and is required for signaling. Tracer studies show that ARA-fed infants derive about half of their total body ARA from dietary preformed ARA. Clinically, of the 3 cohorts of term infants studied with designs isolating the effects of ARA (DHA-only vs DHA+ARA), none considered ARA-specific outcomes such as vascular or immune function; the study with the highest ARA level showed significant neurocognitive benefit. All breastfed term infants of adequately nourished mothers consume both DHA and ARA. The burden of proof to substantially deviate from the composition of breastmilk is greater than that available from inherently empirical human randomized controlled trial evidence. Infant formulas with DHA but without ARA risk harm from suppression of ARA-mediated metabolism manifest among the many unstudied functions of ARA. PMID:27013482

  3. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    Science.gov (United States)

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  4. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Piet Habbel; Karsten H Weylandt; Katja Lichopoj; Johannes Nowak; Martin Purschke; Jing-Dong Wang; Cheng-Wei He; Daniel C Baumgart; Jing X Kang

    2009-01-01

    AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2ELISA.RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly,DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation.DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner.CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.

  5. Arachidonic and eicosapentaenoic acid metabolism in bovine neutrophils and platelets: effect of calcium ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.M.; Laegreid, W.W.; Heidel, J.R.; Straub, K.M.; Liggitt, H.D.; Silflow, R.M.; Breeze, R.G.; Leid, R.W.

    1987-09-01

    Substitution of dietary fatty acids has potential for altering the inflammatory response. The purpose of the present study was to define the metabolites of arachidonic acid (AA) and eicosapentaenoic acid (EPA) secreted by bovine peripheral blood neutrophils and platelets. High performance liquid chromatography was used to characterize cyclooxygenase and lipoxygenase metabolites secreted in response to the calcium ionophore A23187. Cells were prelabelled with /sup 3/H-AA or /sup 3/H-EPA prior to challenge with the calcium ionophore. Bovine neutrophils secreted leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) as the major metabolites of AA, as well as the corresponding leukotriene B5 (LTB5) and 5-hydroxyeicosapentaenoic acid (5-HEPE) metabolites of EPA. Peptidoleukotrienes derived from /sup 3/H-AA or /sup 3/H-EPA were not detected under these conditions. The major tritiated metabolites secreted from bovine platelets were: thromboxane A2, measured as the stable metabolite thromboxane B2 (TXB2); hydroxyheptadecatrienoic acid (HHT) and 12-HETE derived from /sup 3/H-AA; and the omega-3 analogs TXB3 and 12-HEPE, derived from /sup 3/H-EPA. Preferred substrate specificities existed amongst the AA- and EPA-derived metabolites for the intermediary enzymes involved in the arachidonic acid cascade. These findings support the hypothesis that substitution of membrane-bound AA by EPA has potential for modulation of the host inflammatory response following cellular phospholipid mobilization.

  6. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle

    Directory of Open Access Journals (Sweden)

    Olesen Ingrid

    2010-04-01

    Full Text Available Abstract Chicken meat with reduced concentration of arachidonic acid (AA and reduced ratio between omega-6 and omega-3 fatty acids has potential health benefits because a reduction in AA intake dampens prostanoid signaling, and the proportion between omega-6 and omega-3 fatty acids is too high in our diet. Analyses for fatty acid determination are expensive, and finding the optimal number of analyses to give reliable results is a challenge. The objective of the present study was i to analyse the intraclass correlation of different fatty acids in five meat samples, of one gram each, within the same chicken thigh, and ii to study individual variations in the concentrations of a range of fatty acids and the ratio between omega-6 and omega-3 fatty acid concentrations among fifteen chickens. Fifteen newly hatched broilers were fed a wheat-based diet containing 4% rapeseed oil and 1% linseed oil for three weeks. Five muscle samples from the mid location of the thigh of each chicken were analysed for fatty acid composition. The intraclass correlation (sample correlation within the same animal was 0.85-0.98 for the ratios of total omega-6 to total omega-3 fatty acids and of AA to eicosapentaenoic acid (EPA. This indicates that when studying these fatty acid ratios, one sample of one gram per animal is sufficient. However, due to the high individual variation between chicken for these ratios, a relatively high number of animals (minimum 15 are required to obtain a sufficiently high power to reveal significant effects of experimental factors (e.g. feeding regimes. The present experiment resulted in meat with a favorable concentration ratio between omega-6 and omega-3 fatty acids. The AA concentration varied from 1.5 to 2.8 g/100 g total fatty acids in thigh muscle in the fifteen broilers, and the ratio between AA and EPA concentrations ranged from 2.3 to 3.9. These differences among the birds may be due to genetic variance that can be exploited by

  7. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    Science.gov (United States)

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  8. Inability of murine peritoneal macrophages to convert linoleic acid into arachidonic acid. Evidence of chain elongation

    International Nuclear Information System (INIS)

    Various murine macrophage populations synthesize and secrete large amounts of arachidonic acid (20:4n-6) derived eicosanoids (cyclo-oxygenase and lipoxygenase products). These metabolites are known to possess a wide variety of functions with regard to the initiation and regulation of inflammation and tumorigenesis. Because the dietary intake of 20:4n-6 is usually low, tissues are largely dependent upon dietary linoleic acid (18:2n-6) as an initial unsaturated precursor for the biosynthesis of 20:4n-6. The purpose of these experiments was to determine whether resident or responsive murine macrophages possess desaturase and elongase activities capable of in vitro conversion of 18:2n-6 into 20:4n-6. Peritoneal exudate macrophages were purified by adherence and incubated in serum-free medium containing fatty acid-free BSA with [1-14C] 18:2n-6. Approximately 90 to 98% of the [14C]18:2n-6 at 4 and 16 h was recovered in phosphatidylcholine and phosphatidylethanolamine. The metabolism of [14C]18:2n-6 was determined after transesterification and separation of the 14C-fatty acid methyl esters by argentation TLC, reverse phase HPLC, and electron impact gas chromatography/mass spectrometry. Resident and responsive macrophages lacked the capacity to transform [14C]18:2n-6 into 20:4n-6. In addition, prelabeled macrophages incubated with soluble, calcium ionophore A23187 or phorbol myristate, or particulate, zymosan, membrane perturbing agents also lacked delta 6 desaturase activity. All macrophages tested were capable of elongating [14C]18:2n-6 into [14C]20:2n-6. These observations suggest that 20:4n-6, present in macrophage phospholipids, is biosynthesized elsewhere and transported to the macrophage for esterification into the phospholipids. In addition, these findings demonstrate that elongase activity is present in both the resident and responsive peritoneal macrophage

  9. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    2008-01-01

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  10. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE, CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张成武; ZviCohen; AmosRichmond

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main physiological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid, protein and total fatty acids (TFA), in this alga exposed to old culture supernatant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) were investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiological parameters. The longer the culture was exposed to OCS and the more CEAE were added into the algal culture, the more the above physiological properties were inhibited. Arachidonic acid (AA), the dominant component of fatty acids in this alga, was also seriously inhibited with respect to total TFA, AFDW of cell mass, or culture volume, due to a prebable reduction of enzymes activities catalyzing chain elongation from C18:1ω9 to AA. These results incontestably evidenced that some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhibited P. incisa growth through feedback. Hence, any efficient removal of auto-inhibitors from algal culture to decrease their bioactivity could be good for maximal production of desired products like AA.

  11. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main phy siological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid , protein and total fatty acids (TFA), in this alga exposed to old culture super natant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) wer e investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiol ogical parameters. The longer the culture was exposed to OCS and the more CEAE w ere added into the algal culture, the more the above physiological properties we re inhibited. Arachidonic acid (AA), the dominant component of fatty acids in th is alga, was also seriously inhibited with respect to total TFA, AFDW of cell ma ss, or culture volume, due to a probable reduction of enzymes activities catalyz ing chain elongation from C18:1ω9 to AA. These results incontestably evidenced t hat some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhi bited P. incisa growth through feedback. Hence, any efficient removal of aut o-i nhibitors from algal culture to decrease their bioactivity could be good for max imal production of desired products like AA.

  12. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid

  13. Release of arachidonic acid metabolites from bloodby cultivation of human amniotic fluid with oneself blood%羊水与自体血培养后刺激花生四烯酸代谢物的释放

    Institute of Scientific and Technical Information of China (English)

    杨鉴; 余艳红; 周凤琴; 钟梅

    2000-01-01

    AIM: To investigate the effect of human amniotic fluid on the release of thromboxane A2 (TXA2), prostaglandin I2 (PGI2) and Leukotriene C4 (LTC4) from blood cells. METHODS: 1 mL human amniotic fluid and 10 mL oneself blood collected from 38 - 41 weeks with cesarean section were cultured at 37℃ for 30 min, and then centrifuged. The supernatants were taken and stored at - 70℃. TXB2 and 6 - Keto - PGF1α of the supernrants were determined by radioimmunoassay and LTC4 by enzyme immunoassay. RESULTS: It was found that the levels of TXB2 and LTC4 in blood were elevated from (63.5 + 52.0) ng/L and (40.1 + 39.2) ng/L to (189.1 + 102.0) ng/L and (293.5 + 206.1) ng/L respectively ( P 0.05 ). CONCLUSION: Amniotic fluid might stimulate the release of TXA2 and LTC4 from blood, it might affect the balance of TXA2 and PGI2 in blood, which might play an important role in the pathogenesis of amniotic fluid embolism.%目的:探讨人羊水在体外刺激自体血细胞释放前列环素(PGI2)、血栓素A2(TXA2)和白三烯C4(LTC4)等花生四烯酸代谢物的作用。方法:取产妇羊水与自体血进行培养,用放射免疫分析法检测血中血栓素B2(TXB2)和6-酮前列腺素F1α(6-Keto-PGF1α)的含量,用酶联免疫法检测LTC4。结果:羊水能刺激血细胞释放TXA2和LTC4,胎粪污染的羊水作用更为明显。TXB2的含量由加羊水培养前的(63.5±52.0)ne/L增加到培养后的(189.1±l02.0)ng/L(P0.05)。结论:羊水能刺激血细胞释放花生四烯酸类生物活性物质,使其正常的平衡状态被破坏,可能与羊水栓塞的发生机理有关。

  14. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    International Nuclear Information System (INIS)

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE2, TxB2 and PGD2), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE2 inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: → We investigated how contact sensitizers modulate an inflammatory response. → We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. → Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). → Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. → New insight in the biochemical properties of sensitizers.

  15. Effect of aspirin on the metabolism of exogenous arachidonic acid in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Uotila, P.

    1984-08-01

    When human polymorphonuclear leukocytes (PMNL) were incubated with exogenous /sup 14/C-arachidonic acid (/sup 14/C-AA), both lipoxygenase and cyclo-oxygenase metabolites were detected. The amount of the 5-lipoxygenase metabolites formed, including 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), was small. The amount of other mono-HETE's (migrating in the vicinity of 12-HETE) was greater, but this was obviously mainly due to the small amount of contaminating platelets. In the presence of calcium ionophore A23187 the rate of formation of 5-HETE was increased, but the formation of other metabolites remained unchanged. When PMNL were incubated with aspirin in the presence of A23187 the formation of the cyclo-oxygenase products was decreased but that of 5-HETE was unchanged. The present study indicates that the calcium ionophore A23187 stimulates specifically the 5-lipoxygenase in human PMNL and that aspirin has no effect on the formation of the 5-lipoxygenase metabolites of arachidonic acid in human PMNL.

  16. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    Science.gov (United States)

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  17. Regulation of the arachidonic acid-stimulated respiratory burst in neutrophils by intra- cellular and extracellular calcium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The respiratory burst is an important physiological function ofthe neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.

  18. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages

    Directory of Open Access Journals (Sweden)

    Sundler Roger

    2006-05-01

    Full Text Available Abstract Background Yeast and bacteria elicit arachidonate release in macrophages, leading to the formation of leukotrienes and prostaglandins, important mediators of inflammation. Receptors recognising various microbes have been identified, but the signalling pathways are not entirely understood. Cytosolic phospholipase A2 is a major down-stream target and this enzyme is regulated by both phosphorylation and an increase in intracellular Ca2+. Potential signal components are MAP kinases, phosphatidylinositol 3-kinase and phospholipase Cγ2. The latter can undergo tyrosine phosphorylation, and Src family kinases might carry out this phosphorylation. Btk, a Tec family kinase, could also be important. Our aim was to further elucidate the role of Src family kinases and Btk. Methods Arachidonate release from murine peritoneal macrophages was measured by prior radiolabeling. Furthermore, immunoprecipitation and Western blotting were used to monitor changes in activity/phosphorylation of intermediate signal components. To determine the role of Src family kinases two different inhibitors with broad specificity (PP2 and the Src kinase inhibitor 1, SKI-1 were used as well as the Btk inhibitor LFM-A13. Results Arachidonate release initiated by either Staphylococcus aureus or yeast-derived zymosan beads was shown to depend on members of the Src kinase family as well as Btk. Src kinases were found to act upstream of Btk, phosphatidylinositol 3-kinase, phospholipase Cγ2 and the MAP kinases ERK and p38, thereby affecting all branches of the signalling investigated. In contrast, Btk was not involved in the activation of the MAP-kinases. Since the cytosolic phospholipase A2 in macrophages is regulated by both phosphorylation (via ERK and p38 and an increase in intracellular Ca2+, we propose that members of the Src kinase family are involved in both types of regulation, while the role of Btk may be restricted to the latter type. Conclusion Arachidonate release

  19. In vitro and in vivo activities of arachidonic acid against Schistosoma mansoni and Schistosoma haematobium.

    Science.gov (United States)

    El Ridi, Rashika; Aboueldahab, Marwa; Tallima, Hatem; Salah, Mohamed; Mahana, Noha; Fawzi, Samia; Mohamed, Shadia H; Fahmy, Omar M

    2010-08-01

    The development of arachidonic acid (ARA) for treatment of schistosomiasis is an entirely novel approach based on a breakthrough discovery in schistosome biology revealing that activation of parasite tegument-bound neutral sphingomyelinase (nSMase) by unsaturated fatty acids, such as ARA, induces exposure of parasite surface membrane antigens to antibody binding and eventual attrition of developing schistosomula and adult worms. Here, we demonstrate that 5 mM ARA leads to irreversible killing of ex vivo 1-, 3-, 4-, 5-, and 6-week-old Schistosoma mansoni and 9-, 10-, and 12-week-old Schistosoma haematobium worms within 3 to 4 h, depending on the parasite age, even when the worms were maintained in up to 50% fetal calf serum. ARA-mediated worm attrition was prevented by nSMase inhibitors, such as CaCl(2) and GW4869. Scanning and transmission electron microscopy revealed that ARA-mediated worm killing was associated with spine destruction, membrane blebbing, and disorganization of the apical membrane structure. ARA-mediated S. mansoni and S. haematobium worm attrition was reproduced in vivo in a series of 6 independent experiments using BALB/c or C57BL/6 mice, indicating that ARA in a pure form (Sigma) or included in infant formula (Nestle) consistently led to 40 to 80% decrease in the total worm burden. Arachidonic acid is already marketed for human use in the United States and Canada for proper development of newborns and muscle growth of athletes; thus, ARA has potential as a safe and cost-effective addition to antischistosomal therapy. PMID:20479203

  20. cPLA2alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha...... dose dependently (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules...

  1. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently...... (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules from 70...

  2. Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD.

    Science.gov (United States)

    Reynolds, T; Hartell, N A

    2001-01-22

    In cerebellar slices conjunctive pairing of parallel fibre (PF) stimulation with depolarization of Purkinje cells (PCs) induces a long-term depression (LTD) of PF synaptic transmission that spreads to unpaired PF inputs to the same cell. Inhibitors of NO synthase (7-nitro-indazole), soluble guanylate cyclase (ODQ) and PKG (KT5823) all prevented depression at each of two independent PF pathways to a single PC. Inhibition of NOS also unmasked a platelet activating factor (PAF)-mediated synaptic potentiation of possible presynaptic origin. LTD was also prevented by the phospholipase A2 inhibitor OBAA but was rescued by co-perfusion with arachidonic acid. We conclude that NO and diffusible products of phospholipase A2 metabolism are potential mediators of the spread of cerebellar plasticity at the single cell level. PMID:11201073

  3. Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

    Directory of Open Access Journals (Sweden)

    Carlos Rodrigo Camara-Lemarroy

    2012-01-01

    Full Text Available After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD. This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.

  4. Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

    Science.gov (United States)

    Camara-Lemarroy, Carlos Rodrigo; Gonzalez-Moreno, Emmanuel Irineo; Guzman-de la Garza, Francisco Javier; Fernandez-Garza, Nancy Esthela

    2012-01-01

    After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD). This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA) derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise. PMID:22997489

  5. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    Science.gov (United States)

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema.

  6. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer.

    NARCIS (Netherlands)

    Siezen, Christine L E; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Kram, Nicolien R; Doeselaar, Marina van; Kranen, Henk J van

    2006-01-01

    The objective of this study on colorectal cancer was to investigate the associations between SNPs in the genes involved in the arachidonic acid (AA)-pathway, their haplotypes and colorectal cancer. Moreover, interactions between SNPs and fish consumption were considered. In this study, a total of 50

  7. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    Science.gov (United States)

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema. PMID:7480214

  8. Colorectal adenoma risk is modified by the interplay between polymorphisms in arachidonic acid pathway genes and fish consumption.

    NARCIS (Netherlands)

    Siezen, C.L.; Leeuwen, A.I. van; Kram, N.R.; Luken, M.E.; Kranen, H.J. van; Kampman, E.

    2005-01-01

    Associations between polymorphisms in genes (SNPs) involved in the arachidonic acid (AA) pathway and colorectal adenomas have been investigated in a Dutch case control study including 384 cases and 403 polyp-free controls. Twenty-one polymorphisms in seven candidate genes were studied and a potentia

  9. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  10. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    International Nuclear Information System (INIS)

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with [3H]arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of [3H]free fatty acids. These effects were attenuated in Ca2+-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca2+ with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of [3H]free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca2+ influx and that at least 80% of the [3H]free fatty acid accumulation required calcium

  11. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  12. Arachidonate metabolism in bovine gallbladder muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  13. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wu; Jiacheng Yan; Xiaojun Ji; Xin Zhang; Jingsheng Shang; Lina Sun; Lujing Ren; He Huang

    2015-01-01

    Mortierel a alpina has been considered as the most effective producer of arachidonic acid (ARA)-rich oil. It was found that several methods could improve the percentage of ARA in total lipids successful y, as they activated the desaturation system on the endoplasmic reticulum. Additionally, in M. alpina the ARA exists in several forms, such as triacylglycerol (TAG), and diacylglycerol (DAG). These forms are caused by different acyltransferases and they determine the nutrient value of the microbial oil. However, few works revealed de-tailed fatty acid distribution among lipid classes, which to some extent impeded the accurate regulation in ARA accumulation. Herein, this paper gives information on the accumulation process of main lipid classes and the changes of fatty acid composition in these lipids during ARA accumulation period in M. alpina. The result dem-onstrates that TAG was the dominant component of the total lipids, and it is the main form for ARA storage. The ARA enrichment stage occurred during 168–192 h when the amount of total lipids maintained steady. Further analysis indicated that the newly formed ARA-TAG might come from the incorporation and modification of sat-urated and monounsaturated fatty acids in other lipid classes. This work could be helpful for further optimization of ARA-rich TAG production.

  14. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Meng YANG; Wen-xie XU; Xing-lan LI; Hui-ying XU; Jia-bin SUN; Bin MEI; Hai-feng ZHENG; Lian-hua PIAO; De-gang XING; Zhai-liu LI

    2005-01-01

    Aim: To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (IKCa) in gastric myocytes. Methods: Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. Results: Hyposmotic membrane stretch and AA increased both IK(Ca) and spontaneous transient outward currents significantly.Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in IK(Ca). The hyposmotic membrane stretch-induced increase in IK(Ca) was significantly suppressed by dimethyleicosadienoic acid (100 μmol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in IK(Ca). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in IK(Ca) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in IK(Ca); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in IK(Ca). Conclusion:Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca2+ influx, which triggers Ca2+-induced Ca2+ release and elicits activation of IK(Ca) in gastric antral circular myocytes of the guinea pig.

  15. [ANALYSIS OF ARACHIDONIC ACID RELATIVE CONTENT CHANGES IN ERYTHROCYTES AND PLATELETS PHOSPHOLIPIDS MEMBRANES FEATURES IN CORONARY HEART DISEASE WITH ATRIAL FIBRILLATION PATIENTS].

    Science.gov (United States)

    Lizogub, V G; Zavalska, T V; Merkulova, I O; Bryuzgina, T S

    2015-01-01

    Erythrocytes and platelets phospholipid membranes fatty acid spectrum was detected in coronary heart disease and atrial fibrillation patients and in patients with coronary heart disease without atrial fibrillation. 87 patients were investigated. Significant decrease in the arachidonic acid relative content in coronary heart disease patients compared with healthy individuals was related. As well as a significant decrease in the arachidonic acid relative content in coronary heart disease and atrial fibrillation patients compared with coronary heart disease patients without atrial fibrillation was related too. These dates may indicate that decreasing relative content arachidonic acid can be possible pathogenetic link in the development of arrhythmias.

  16. Effects of arachidonic acid on ATP-sensitive K+ current in murine colonic smooth muscle cells.

    Science.gov (United States)

    Jun, Jae Yeoul; Yeum, Cheol Ho; Park, Yoo Whan; Jang, In Youb; Kong, In Deok; Sim, Jae Hoon; So, Insuk; Kim, Ki Whan; You, Ho Jin

    2002-09-01

    The effects of arachidonic acid (AA) and the mechanism through which it modulates ATP-sensitive K+ (K(ATP)) currents were examined in single smooth muscle cells of murine proximal colon. In the current-clamping mode, AA and glibenclamide induced depolarization of membrane potential. Using 0.1 mM ATP and 140 mM K+ solution in the pipette and 90 mM K+ in the bath solution at a -80 mV of holding potential, pinacidil activated the glibenclamide-sensitive inward current. The potential of these currents was reversed to near the equilibrium potential of K+ by 60 mM K+ in the bath solution. AA inhibited K(ATP) currents in a dose-dependent manner. This inhibition was not changed when 1 mM GDPbetaS was present in the pipette. Chelerythrine, protein kinase C inhibitor, did not block the AA effects. Superoxide dismutase and metabolic inhibitors (indomethacin and nordihydroguaiacretic acid) of AA did not affect the AA-induced inhibition. Eicosatetraynoic acid, a nonmetabolizable analogue of AA, inhibited the K(ATP) currents. These results suggest that AA-induced inhibition of K(ATP) currents is not mediated by G-protein or protein kinase C activation. The inhibitory action is likely to be a possible mechanism of AA-induced membrane depolarization. PMID:12396031

  17. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    Science.gov (United States)

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  18. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Science.gov (United States)

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  19. Differential effect of arachidonic acid on the vasoactive intestinal peptide receptor/effector system in rat prostatic epithelium during sexual maturation.

    Science.gov (United States)

    Carmena, M J; Hueso, C; Solano, R M; Prieto, J C

    1992-01-01

    The effects of alterations in the membrane lipid environment on vasoactive intestinal peptide (VIP) binding and VIP-stimulated cyclic AMP accumulation have been analyzed by arachidonic acid treatment of prostatic epithelial cells from rats at puberty and maturity, two critical developmental periods with characteristic lipidic and androgenic statuses. Treating cells with 0.1 mM arachidonic acid for 15 min at 37 degrees C increased the affinity of VIP receptors and the potency of the neuropeptide (up to five times) in the formation of cyclic AMP at maturity, but not at puberty. The average plasma membrane fluidity (as measured by fluorescence polarization of diphenylhexatriene) remained unmodified after arachidonic acid treatment of cells. The modifications observed in mature rats were specific for the VIP receptor/effector system, since cyclic AMP stimulation by isoproterenol or forskolin was not affected by cell treatment with arachidonic acid. These results are compatible with the existence of a particular lipidic microdomain surrounding the VIP receptor in the cell membrane that would be altered by exposure to arachidonic acid (either directly or through conversion of arachidonic acid to its metabolites, as suggested by experiments on inhibition of the arachidonic acid cascade). This would make it possible for the activation of protein kinase C to phosphorylate VIP receptors in cells from mature rats, but not in those from pubertal animals with a very different membrane lipid composition (as suggested by the corresponding values of membrane fluidity and transition temperature).

  20. A New Model to Study the Role of Arachidonic Acid in Colon Cancer Pathophysiology.

    Science.gov (United States)

    Fan, Yang-Yi; Callaway, Evelyn; M Monk, Jennifer; S Goldsby, Jennifer; Yang, Peiying; Vincent, Logan; S Chapkin, Robert

    2016-09-01

    A significant increase in cyclooxygenase 2 (COX2) gene expression has been shown to promote cylcooxygenase-dependent colon cancer development. Controversy associated with the role of COX2 inhibitors indicates that additional work is needed to elucidate the effects of arachidonic acid (AA)-derived (cyclooxygenase and lipoxygenase) eicosanoids in cancer initiation, progression, and metastasis. We have recently developed a novel Fads1 knockout mouse model that allows for the investigation of AA-dependent eicosanoid deficiency without the complication of essential fatty acid deficiency. Interestingly, the survival rate of Fads1-null mice is severely compromised after 2 months on a semi-purified AA-free diet, which precludes long-term chemoprevention studies. Therefore, in this study, dietary AA levels were titrated to determine the minimal level required for survival, while maintaining a distinct AA-deficient phenotype. Null mice supplemented with AA (0.1%, 0.4%, 0.6%, 2.0%, w/w) in the diet exhibited a dose-dependent increase (P colon. In subsequent experiments, null mice supplemented with 0.6% AA diet were injected with a colon-specific carcinogen (azoxymethane) in order to assess cancer susceptibility. Null mice exhibited significantly (P cancer prevention studies and (ii) that AA content in the colonic epithelium modulates colon cancer risk. Cancer Prev Res; 9(9); 750-7. ©2016 AACR. PMID:27339171

  1. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    Science.gov (United States)

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  2. The effects of xanthoangelol E on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit.

    Science.gov (United States)

    Fujita, T; Sakuma, S; Sumiya, T; Nishida, H; Fujimoto, Y; Baba, K; Kozawa, M

    1992-08-01

    The effects of a new chalcone derivative, xanthoangelol E, isolated from Angelica keiskei Koidzumi, on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit were examined. When gastric antral mucosal slices were incubated with xanthoangelol E (0.05-1.0 mM), there was no significant effect on the production of prostaglandin (PG) E2, PGF2 alpha and their metabolites. On the other hand, this compound inhibited effectively the production of thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid from exogenous arachidonic acid in platelets, and the concentration required for 50% inhibition (IC50) was approximately 5 microM. The formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid was also reduced by this drug (IC50, 50 microM). These results suggest that xanthoangelol E has the potential to modulate arachidonic acid metabolism in platelets and that this action may participate in some pharmacological effect of the plant.

  3. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug.

    Directory of Open Access Journals (Sweden)

    Daniel H Lopez

    Full Text Available BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS: The analogue of arachidonic acid (AA, 2-hydroxy-arachidonic acid (2OAA, was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method and iNOS (Western blot were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE: These findings demonstrate the potential of 2OAA as a NSAID.

  4. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  5. Hydroxyurea Therapy Mobilises Arachidonic Acid from Inner Cell Membrane Aminophospholipids in Patients with Homozygous Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    A. A. Daak

    2011-01-01

    Full Text Available The cytotoxic compound hydroxyurea (HU is effective therapy for sickle cell disease. However, its effect on unsaturated membrane lipids is unknown. Red cell fatty acids were investigated in HU-treated (n=19 and HU-untreated (n=17 sickle cell patients and controls (n=20. The HU-treated compared with the HU-untreated patients had lower arachidonic (AA acid level in ethanolamine, physphoglycerids (EPG (22.9±1.2   versus   24.0±1.1%,  P<0.05 serine SPG (22.13±2.2   versus   24.9±2.3%,  P<0.01 phosphoglycerides. The treated patients and controls had comparable levels of docosahexaenoic (DHA and total n-3 fatty acids in EPG and choline phosphoglycerides (CPG. In contrast, the untreated group had significantly (P<0.05 lower DHA and total n-3 compared with the controls in EPG (2.7±0.4   versus   3.2±0.6% and 4.6±0.5   versus   5.2±0.7% and CPG (0.7±0.2   versus   1.0±0.2% and 1.2±0.2   versus   1.4±0.3. HU is known to activate cytosolic phospholipase A2 and cyclooxygenase 2, and from this study, it appears to induce mobilisation of AA from the inner cell membrane EPG and SPG. Hence, eicosanoids generated from the released AA may play a role in clinical improvements which occur in HU-treated patients.

  6. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Jensen, B.;

    1989-01-01

    Dietary long-chain n-3 fatty acids (FA) may prolong gestation by inhibiting formation of prostaglandins from arachidonic acid. FA were quantified in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and total lipids (TL) of red cells sampled during pregnancy from 29 Faroese women. The ratio...

  7. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects.

    Science.gov (United States)

    Altinbas, Burcin; Topuz, Bora Burak; İlhan, Tuncay; Yilmaz, Mustafa Sertac; Erdost, Hatice; Yalcin, Murat

    2014-08-01

    The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions.

  8. The effects of anaerobic training in serum lipids and arachidonic acid metabolites

    Directory of Open Access Journals (Sweden)

    GEORGIOS KIPREOS

    2010-01-01

    Full Text Available Coronary arteries are subjected daily in high shear stress and manifest atherosclerosis very early in life in comparison to other arteries in the human body. Some factors that are implicated in the evolution and progress of this process are the concentration of lipids and arachidonic acid metabolites, such prostacyclin and thromboxane. It has been reported that those who participate in aerobic activities such as walking, cycling, jogging or brisk walking might have normal values of the mentioned chemical substances. On the other hand, it is reported that the effects of anaerobic and strength activities has negative effects on the vascular endothelium, which is essential for the maintenance of hemostatic balance and the local regulation of vascular tone.Therefore, even although extensive research has been conducted in this field, there are crucial gaps in our knowledge. Consequently, the purpose of this brief review is to describe what is known about the effects of anaerobic activities in which the competitive athletes have participated on the following blood parameters: Total cholesterol, triglycerides, high density lipoprotein cholesterol (HDL - C, low density lipoproteins cholesterol (LDL - C, prostacyclin & thromboxane.

  9. Intestinal zinc transport: influence of streptozotocin-induced diabetes, insulin and arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.K.; Mooradian, A.D.

    1988-01-01

    The influence of arachidonic acid (AA) on the zinc flux rates of jejunal segments, isolated from streptozotocin-induced diabetic rats injected with saline or with insulin, was investigated using an Ussing chamber technique. Although the zinc flux rates from mucose-to-serosa (J/sub ms/) of normal rats were inhibited by addition of 5 ..mu..M AA to the jejunal segment bathing medium, AA had no effect on the J/sub ms/ of diabetic rats either with or without insulin treatment. Induction of diabetes also significantly reduces J/sub ms/, but 3 day insulin treatment did not reverse this effect. Addition of AA to the serosal side did not significantly alter the zinc flux rate from serosa-to-mucosa (J/sub sm/) in either control, diabetic or diabetic rats treated with insulin. The net zinc absorption rate (J/sub net/) of jejunal segments was decreased in diabetic rats compared to controls, but normalization of blood glucose with 3 day insulin treatment did not increase J/sub net/. Addition of AA was associated with a tendency to increase zinc uptake capacity. This change reached statistical significance in insulin treated diabetic rats. Short-circuit current (I/sub sc/) for diabetic rats was increased compared to controls but addition of AA to the mucosal side bathing medium decreased I/sub sc/ in all groups. 32 references, 3 figures, 1 table.

  10. Combination Therapy of PPAR Ligands and Inhibitors of Arachidonic Acid in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jordi Tauler

    2008-01-01

    Full Text Available Lung cancer is the leading cause of cancer death in the United States and five-year survival remains low. Numerous studies have shown that chronic inflammation may lead to progression of carcinogenesis. As a result of inflammatory stimulation, arachidonic acid (AA metabolism produces proliferation mediators through complex and dynamic interactions of the products of the LOX/COX enzymes. One important mediator in the activation of the AA pathways is the nuclear protein PPAR. Targeting LOX/COX enzymes and inducing activation of PPAR have resulted in significant reduction of cell growth in lung cancer cell lines. However, specific COX-inhibitors have been correlated with an increased cardiovascular risk. Clinical applications are still being explored with a novel generation of dual LOX/COX inhibitors. PPAR activation through synthetic ligands (TZDs has revealed a great mechanistic complexity since effects are produced through PPAR-dependent and -independent mechanisms. Furthermore, PPAR could also be involved in regulation of COX-2. Overexpression of PPAR has reported to play a role in control of invasion and differentiation. Exploring the function of PPAR, in this new context, may provide a better mechanistic model of its role in cancer and give an opportunity to design a more efficient therapeutic approach in combination with LOX/COX inhibitors.

  11. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  12. The metabolism of arachidonic acid in isolated perfused fetal and neonatal rabbit lungs

    International Nuclear Information System (INIS)

    The developmental pattern of fetal and neonatal rabbit lungs to metabolize arachidonic acid (AA) to different cyclo-oxygenase products was studied in isolated rabbit lungs, which were perfused with Krebs bicarbonate buffer. 14C-AA (66 nmol) was injected into the pulmonary circulation and the nonrecirculating perfusion effluent was collected for four minutes. About ten per cent of the injected radioactivity was found in the 0-4 min perfusion effluent. The metabolites of AA in the effluent were analyzed by thin layer chromatography. The major metabolites of AA were PGE2 and its 15-keto-derivates, but also PGF2 alpha and its 15-keto-derivates, TXB2 and 6-keto-PGF1 alpha were found in the effluent. The most drastic developmental change was the increase in the amount of 15-keto-metabolites of PGE2 from late fetal period to the lungs of one day old rabbits (1.8 fold increase between birth and first postnatal day). Smaller changes were detected in the amounts of other cyclo-oxygenase products

  13. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron

    2011-01-01

    Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as "hubs", thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular "hubs", including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.

  14. Effects of a low birthweight infant formula containing human milk levels of docosahexaenoic and arachidonic acids.

    Science.gov (United States)

    Koletzko, B; Edenhofer, S; Lipowsky, G; Reinhardt, D

    1995-08-01

    Long-chain (LC) polyunsaturated fatty acids (PUFA) (LCP) are considered conditionally essential nutrients for low birth weight infants (LBWI). Therefore, enrichment of LBWI formulae with metabolites both linoleic (omega-6) and alpha-linolenic (omega-3) acids at levels typical for human milk has been recommended. However, previous feeding trials with LCP-enriched formulae evaluated only a dietary supplementation with omega-3 LCP from fish oils alone or with both omega-3 and omega-6 LCP at levels considerably lower than usual human milk contents. We studied the effects of an LBWI formula providing the major omega-3 and omega-6 LCP, docosahexaenoic and arachidonic acids, in amounts similar to those in average human milk. Twenty-seven LBWIs were enrolled in this study when they tolerated full enteral feeding (> or = 130 ml milk/kg/day). Infants either received their own mother's milk (n = 8, birthweight 1218 +/- 146 g, gestational age 30.2 +/- 1.5 weeks, mean +/- SD) fortified with protein and minerals (FM-85, Nestle Ag, Munchen, Germany; dosage 5 g/100 ml milk) or were randomly assigned to blinded batches of an LBWI formula (Prematil, Milupa AG, Friedrichsdorf, Germany) without LCP (n = 10, 1280 +/- 229 g, 31.1 +/- 3.1 weeks) or with LCP (n = 9, 1253 +/- 334 g, 30.4 +/- 3.3 wks.). During the study period of 21 days, the three feeding groups did not differ in growth and feeding tolerances as assessed by occurrence of gastric residuals, spitting, or abdominal distention; however, firms stools were noted more frequently in the two formula groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effect of Arachidonic Acid on the Rate of Oxygen Consumption in Isolated Cardiomyocytes from Intact Rats and Animals with Ischemic or Diabetic Injury to the Heart.

    Science.gov (United States)

    Egorova, M V; Kutsykova, T V; Afanas'ev, S A; Popov, S V

    2015-12-01

    We studied the rate of oxygen consumption by isolated cardiomyocytes from intact rats and animals with experimental myocardial infarction or streptozotocin-induced diabetes mellitus. The measurements were performed in standard incubation medium under various conditions of oxygenation and after addition of arachidonic acid (20 μmol/liter). Under normoxic conditions, arachidonic acid improves respiration of cardiomyocytes from intact animals, but reduces this parameter in cells isolated from animals with pathologies. The intensity of O2 consumption by cardiomyocytes from intact rats and animals with pathologies was shown to decrease during hypoxia. Addition of arachidonic acid aggravated inhibition of respiration for cardiomyocytes from intact rats and specimens with myocardial infarction, but had no effect in diabetes mellitus. The effect of arachidonic acid on oxygen consumption rate is probably mediated by a nonspecific mechanism realized at the mitochondrial level.

  16. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  17. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2007-01-01

    Evidence confirms that polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid, DHA are involved in growth as well in pigmentation of marine fish larvae. In the present study we examined the performance of common sole larvae reared...... to increased dietary ARA content. However, pigmentation was not affected by inclusion levels of EPA or DHA when ARA was high. This, and no relation between DHA: EPA or ARA: EPA ratios and pigmentation and only a weak relation to ARA: DHA ratio, advocate for that it is the absolute concentration of ARA...

  18. Eugenol: a dual inhibitor of platelet-activating factor and arachidonic acid metabolism.

    Science.gov (United States)

    Saeed, S A; Simjee, R U; Shamim, G; Gilani, A H

    1995-07-01

    Eugenol is an active principal and responsible for several pharmacological activities of clove oil. We studied the effects of eugenol on human platelet aggregation, arachidonic acid (AA) and platelet-activating factor (PAF) metabolism and in vivo effects on AA and PAF-induced shock in rabbits. Eugenol strongly inhibited PAF-induced platelet aggregation with lesser effect against AA and collegen. The IC(50) values were against AA: 31 ± 0.5; collagen: 64 ± 0.7 and PAF 7 ± 0.2 μM (n=9) respectively. In addition, eugenol stimulated PAF-acetylhydrolase activity suggesting that inhibition of PAF could be due to its inactivation to lyso-PAF. Pretreatment of rabbits with eugenol (50-100 mg/kg) prevented the lethal effects of intravenous PAF (11 μgg/kg) or AA (2 mg/kg) in a dose-dependent fashion. The protective effects of eugenol in the rabbits, however, were more pronounced against PAF-induced mortality (100% protection). In addition, eugenol also inhibited AA metabolism via cyclooxygenase and lipoxygenase pathways in human platelets. Both the production of thromboxane-A(2) and 12-hydroxy-eicosatetraenoic acid was inhibited by eugenol in a concentration-related manner (30-120 μM). In vivo, eugenol (50-100 mg/kg; i.p.) inhibited carrageenan-induced rat paw oedema (P < 0.001). In this test, eugenol was 5 times more potent than aspirin. These results provide evidence that eugenol acts as a dual antagonist of AA and PAF. PMID:23196096

  19. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish

    Science.gov (United States)

    Koussoroplis, Apostolos-Manuel; Bec, Alexandre; Perga, Marie-Elodie; Koutrakis, Emmanuil; Bourdier, Gilles; Desvilettes, Christian

    2011-02-01

    The transfer of fatty acids (FAs) in the food web of a Mediterranean lagoon was studied using FA compositional patterns across several trophic levels. The structure of the food web was inferred from C and N stable isotopes values and an isotope mixing model was used in order to estimate the relative contribution of the different potential food sources to the biomass of consumers. Bidimensional plots of FA composition of food web components against their δ 15N values indicated a general trend of increasing proportions of highly unsaturated fatty acids (HUFAs) with increasing trophic levels while the proportions of saturated fatty acids (SAFAs) and 18-carbon polyunsaturated fatty acids (PUFAs) decreased. Using the relative contributions of food sources to consumers and their FA compositions, a model was built in order to estimate the PUFA composition of consumer mixed diets which was compared to consumer PUFA profiles. The latter allowed the identification of the PUFAs which were mostly enriched/retained in consumer lipids. There was a surprisingly high retention of arachidonic acid (ARA), a trend which challenges the idea of low ARA needs in marine fish and suggests the important physiological role of this essential FA for fish in estuarine environments.

  20. Influence of dietary linoleic acid intake with different fat intakes on arachidonic acid concentrations in plasma and platelet lipids and eicosanoid biosynthesis in female volunteers

    OpenAIRE

    Adam, Olaf; Wolfram, G.; Zöllner, N.

    2003-01-01

    Background/Aim: N-6 fatty acids are considered to promote diseases prevalent in industrialized countries and characterized by an increased eicosanoid biosynthesis from arachidonic acid (AA). We investigated the impact of the linoleic acid (LA) intake on AA levels in humans. Methods: Six healthy female volunteers (age range 2334 years) were given liquid formula diets (LFD) devoid of AA for 6 weeks, providing a constant intake of zero energy% (LFD 0: protein 15%, carbohydrates 85%) or 20 energy...

  1. 内皮源性缩血管因子花生四烯酸代谢物的作用多样性%Diversity of endothelium-derived vasocontracting factors--arachidonic acid metabolites

    Institute of Scientific and Technical Information of China (English)

    KURAHASHI Kazuyoshi; NISHIHASHI Tsuyoshi; TRANDAFIR Cristina Corina; WANG Ai-Min; MURAKAMI Shizuka; JI Xu

    2003-01-01

    Vascular endothelium releases vasocontracting and/or vasorelaxing substances. Here, we report the diversity of endothelium-derived vasocontracting factors (EDCFs), arachidonic acid metabolites, and discuss the pathophysiological significance. In the canine basilar artery and the rabbit intrapulmonary artery, acetylcholine-induced contractions (Ach-induced EDC) are due to endothelial thromboxane A2 (TXA2) (TXA2-type). The Ach-induced EDC in the rabbit coronary artery is due to endothelial leukotrienes (LTs) (LTs-type). In addition, in the rat coronary artery, nicotine and noradrenaline (Nad)-induced EDCs are due to endothelial COX-metabolites (COX metabolite-type). These arachidonic acid metabolites derived from endothelium (activation by vasoactive substances including Ach, Nad and nicotine) cause a contraction of vascular smooth muscle cells and may disturb the local circulation. These EDCFs (TXA2, LTs and COX-metabolites) may be involved in the pathophysiology of cardiovascular immuno-inflammatory diseases.

  2. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    Science.gov (United States)

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  3. Arachidonic Acid and Cerebral Ischemia Risk: A Systematic Review of Observational Studies

    Directory of Open Access Journals (Sweden)

    Mai Sakai

    2014-11-01

    Full Text Available Background: Arachidonic acid (ARA is a precursor of various lipid mediators. ARA metabolites such as thromboxane A2 cause platelet aggregation and vasoconstriction, thus may lead to atherosclerotic disease. It is unclear whether dietary ARA influences the ARA-derived lipid mediator balance and the risk for atherosclerotic diseases, such as cerebral ischemia. Considering the function of ARA in atherosclerosis, it is reasonable to focus on the atherothrombotic type of cerebral ischemia risk. However, no systematic reviews or meta-analyses have been conducted to evaluate the effect of habitual ARA exposure on cerebral ischemia risk. We aimed to systematically evaluate observational studies available on the relationship between ARA exposure and the atherothrombotic type of cerebral ischemia risk in free-living populations. Summary: The PubMed database was searched for articles registered up to June 24, 2014. We designed a PubMed search formula as follows: key words for humans AND brain ischemia AND study designs AND ARA exposure. Thirty-three articles were reviewed against predefined criteria. There were 695 bibliographies assessed from the articles that included both ARA and cerebral ischemia descriptions. Finally, we identified 11 eligible articles and categorized them according to their reporting and methodological quality. We used the Strengthening the Reporting of Observational Studies in Epidemiology Statement (STROBE checklist to score the reporting quality. The methodological quality was qualitatively assessed based on the following aspects: subject selection, ARA exposure assessment, outcome diagnosis, methods for controlling confounders, and statistical analysis. We did not conduct a meta-analysis due to the heterogeneity among the studies. All eligible studies measured blood ARA levels as an indicator of exposure. Our literature search did not identify any articles that evaluated dietary ARA intake and tissue ARA as assessments of

  4. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system

    Directory of Open Access Journals (Sweden)

    Sarkadi-Nagy Eszter A

    2005-06-01

    Full Text Available Abstract Background Docosahexaenoic acid (DHA and arachidonic acid (ARA are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. Methods Baboons were randomized into a breastfed (B and four formula-fed groups: term, no DHA/ARA (T-; term, DHA/ARA supplemented (T+; preterm, no DHA/ARA (P-; preterm and DHA/ARA supplemented (P+. At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. Results DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. Conclusion 1 DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2 DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3 supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA.

  5. Altered Arachidonic Acid Cascade Enzymes in Postmortem Brain from Bipolar Disorder Patients

    OpenAIRE

    Kim, Hyung-Wook; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2009-01-01

    Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that AA cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex fro...

  6. Dietary fatty acids and the stress response of fish : arachidonic acid in seabream and tilapia

    NARCIS (Netherlands)

    Anholt, Rogier Daniël van

    2004-01-01

    A key factor in the production of fish in commercial aquaculture is the optimization of the artificial diets, not only to achieve optimal growth, but also to maximize fish health. Evidence is accumulating that dietary lipids, particularly the fatty acid composition, can have a direct effect on the f

  7. Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation.

    Science.gov (United States)

    Meng, Hu; Liu, Ying; Lai, Luhua

    2015-08-18

    Inflammation and other common disorders including diabetes, cardiovascular disease, and cancer are often the result of several molecular abnormalities and are not likely to be resolved by a traditional single-target drug discovery approach. Though inflammation is a normal bodily reaction, uncontrolled and misdirected inflammation can cause inflammatory diseases such as rheumatoid arthritis and asthma. Nonsteroidal anti-inflammatory drugs including aspirin, ibuprofen, naproxen, or celecoxib are commonly used to relieve aches and pains, but often these drugs have undesirable and sometimes even fatal side effects. To facilitate safer and more effective anti-inflammatory drug discovery, a balanced treatment strategy should be developed at the biological network level. In this Account, we focus on our recent progress in modeling the inflammation-related arachidonic acid (AA) metabolic network and subsequent multiple drug design. We first constructed a mathematical model of inflammation based on experimental data and then applied the model to simulate the effects of commonly used anti-inflammatory drugs. Our results indicated that the model correctly reproduced the established bleeding and cardiovascular side effects. Multitarget optimal intervention (MTOI), a Monte Carlo simulated annealing based computational scheme, was then developed to identify key targets and optimal solutions for controlling inflammation. A number of optimal multitarget strategies were discovered that were both effective and safe and had minimal associated side effects. Experimental studies were performed to evaluate these multitarget control solutions further using different combinations of inhibitors to perturb the network. Consequently, simultaneous control of cyclooxygenase-1 and -2 and leukotriene A4 hydrolase, as well as 5-lipoxygenase and prostaglandin E2 synthase were found to be among the best solutions. A single compound that can bind multiple targets presents advantages including low

  8. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    Energy Technology Data Exchange (ETDEWEB)

    Bito, L.Z.; Klein, E.M.

    1982-05-01

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species.

  9. Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle

    OpenAIRE

    1992-01-01

    The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)- 2-methylp...

  10. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, A.; Cottam, G.L.

    1987-05-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

  11. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    Science.gov (United States)

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity.

  12. Evaluation of a subchronic (13-week) oral toxicity study, preceded by an in utero exposure phase, with arachidonic acid oil derived from Mortierella alpina in rats

    NARCIS (Netherlands)

    Hempenius, R.A.; Lina, B.A.R.; Haggitt, R.C.

    2000-01-01

    Arachidonic acid oil (ARA-oil) derived from the fungus Mortierella alpina for use in infant nutrition was tested in a subchronic (13-week) oral toxicity study in rats, preceded by an in utero exposure phase. The ARA-oil was administered as admixture to the rodent diet at dose levels of 3000 ppm, 15,

  13. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  14. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania) : targets for infant formulae close to our ancient diet?

    NARCIS (Netherlands)

    Kuipers, RS; Fokkema, MR; Smit, EN; van der Meulen, J; Boersma, ER; Muskiet, FAJ

    2005-01-01

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the

  15. Arachidonic acid metabolism in TNS-induced chronic and immunologic enteritis in rats, and the effect of 5-ASA

    Directory of Open Access Journals (Sweden)

    F. J. Zijlstra

    1993-01-01

    Full Text Available Inflammation of the rat distal intestine was induced by intradermal sensitization and subsequent multiple intrajejunal challenge with the hapten 2,4,6-trinitrobenzenesulphonic acid (TNBS via an implanted catheter. The time course of the inflammatory reaction was followed by determination of the enteritis score and measurement of in vitro eicosanoid formation of homogenates of the gut after 0, 1, 2, 4, 7, 14 and 21 days of local daily challenge with 0.08% TNBS. There was a small initial increase of eicosanoid formation, reached at days 1 and 2, followed by a significant increase in metabolism of arachidonic acid on day 21. Although at day 1 a four-fold increase in inflammation score was reached, no further significant changes were observed during the following 3 weeks. The greatest increase in metabolite formation was observed in prostanoids TxB2, PGE2. and PGD2 and the 5-lipoxygenase product LTC4, whereas minor changes were found for LTB4 and other lipoxygenase products such as 12- and 15-HETE. The formation of these metabolites was already inhibited by low-dose 5-aminosalicylic acid (5-ASA, given orally twice daily during the 3 weeks challenge period, while the enteritis score was affected dosedependently.

  16. Determination of Eicosapentaenoic, Docosahexaenoic, and Arachidonic Acids in Human Plasma by High-Performance Liquid Chromatography with Electrochemical Detection.

    Science.gov (United States)

    Kotani, Akira; Watanabe, Mizuki; Yamamoto, Kazuhiro; Kusu, Fumiyo; Hakamata, Hideki

    2016-01-01

    A high-performance liquid chromatography with electrochemical detection (HPLC-ECD) system was developed for the simultaneous determination of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) in human plasma. In the present HPLC-ECD system, EPA, DHA, and AA were separated using a reverse-phase C30 column and detected based on the voltammetric reduction of 3,5-di-tert-butyl-1,2-benzoquinone (DBBQ). Chromatographic peak areas were proportional to the concentration of EPA, DHA, and AA from 0.75 μM to 0.1 mM (r > 0.998). The concentrations of EPA, DHA, and AA in plasma from healthy human subjects after overnight fasting were determined, and the ratio of EPA to AA was obtained by the present HPLC-ECD method, which required 40 μL of human plasma and a simple procedure of sample preparation using diethyl ether extraction. Moreover, changes in EPA, DHA, and AA concentrations in a human subject were monitored before and after fish oil supplement administration by the present HPLC-ECD system. PMID:27682409

  17. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  18. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death.

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  19. Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand.

    Science.gov (United States)

    Hosoya, Shoichi; Arunpairojana, Vullapa; Suwannachart, Chatrudee; Kanjana-Opas, Akkharawit; Yokota, Akira

    2006-12-01

    Three strains of gliding bacteria, 24(T), 62 and 71, isolated from a marine sponge and algae from the southern coastline of Thailand, were studied using a polyphasic approach to clarify their taxonomic positions. A phylogenetic analysis based on 16S rRNA gene sequences showed that the three isolates formed a distinct lineage within the family 'Saprospiraceae' of the phylum Bacteroidetes and were related to members of the genus Saprospira. The G+C contents of the isolates were in the range 38-39 mol%. The major respiratory quinone was MK-7. The predominant cellular fatty acids were 20 : 4omega6c (arachidonic acid), 16 : 0 and iso-17 : 0. On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA-DNA hybridization data and 16S rRNA gene sequences, the isolates represent a novel species of a novel genus, for which the name Aureispira marina gen. nov., sp. nov. is proposed. The type strain of Aureispira marina is 24(T) (=IAM 15389(T)=TISTR 1719(T)).

  20. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    Science.gov (United States)

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. PMID:26767978

  1. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Motoko Maekawa

    Full Text Available Prepulse inhibition (PPI is a compelling endophenotype (biological markers for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs, arachidonic acid (ARA and/or docosahexaenoic acid (DHA, to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1 an independent model animal, Pax6 (+/- rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2 methylazoxymethanol acetate (an anti-proliferative drug elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks when the drug was given at the juvenile stage (4-5 weeks; (3 administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4 raising Pax6 (+/- pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.

  2. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    Science.gov (United States)

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. PMID:26335394

  3. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  4. Metabolism of arachidonic acid in 1 yr old New Zealand white (NZW) and watanabe heritable hyperlipidemic (WHHL) rabbit aortas

    International Nuclear Information System (INIS)

    This study was designed to characterize the metabolism of arachidonic acid (AA) in normal and atherosclerotic aortas. Segments of aortas were obtained from 1 yr old NZW rabbits, and WHHL rabbits, a genetic model of athero-sclerosis resembling familial hypercholesterolemia. Aortas were incubated at 370C for 15 min with 14C-AA (5 x 10-5M) during stimulation by A23187. The media was extracted using octadecylsilica columns and resolved into metabolites by reverse-phase HPLC. Prostaglandins (PGs) were identified by comigration of 14C-metabolites with standards. The monoxygenated metabolites of AA (HETEs) were resolved by normal-phase HPLC, and their structures confirmed by GC-MS. In extracts from NZW and WHHL aortas, approximately 14% and 6% of the total radioactivity was converted to PGs and HETEs, respectively. The major PG produced by NZW and WHHL aortas was 6-keto PGF/sub 1α/ with lesser amounts of PGE2. Similarly, NZW and WHHL aortas produced primarily 12- and 15-HETE with lesser amounts of 11-, 9-, 8-, and 5-HETE. There were no qualitative differences between NZW and WHHL aortas in PG and HETE production. Therefore, despite extensive atherosclerosis in aortas of WHHL rabbits, the vessels maintain the ability to synthesize PGs and HETEs

  5. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Sánchez-Calvo

    Full Text Available Nitro-arachidonic acid (NO2-AA is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II produces an increase in reactive oxygen species (ROS production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells. Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-, nitric oxide (●NO, inducible nitric oxide synthase (NOS2 expression, peroxynitrite (ONOO- and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH and ATP synthase (ATPase were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II-induced renal disease.

  6. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  7. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid.

    Science.gov (United States)

    Kothapalli, Kumar S D; Ye, Kaixiong; Gadgil, Maithili S; Carlson, Susan E; O'Brien, Kimberly O; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S; Joshi, Kalpana S; Gu, Zhenglong; Keinan, Alon; Brenna, J Thomas

    2016-07-01

    Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529

  8. Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Science.gov (United States)

    Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  9. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Banta, G.;

    2008-01-01

    Dietary manipulations of arachidonic acid, ARA and eicosapentaenoic acid, EPA may have an influence on pigmentation in common sole larvae (Solea solea L., Linnaeus 1758) which may be related to a "pigmentation window". This is a specific period in the larval ontogeny where nutritional factors...

  10. Effect of some saturated and unsaturated fatty acids on prostaglandin biosynthesis in washed human blood platelets from (1-/sup 14/ C)arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.; Awasthi, K.K.; Lindegard, P.; Tiwari, K.P.

    1982-03-01

    The effects of some saturated (lauric, palmitic and stearic) an unsaturated (linoleic, gamma-linolenic, alpha-linolenic and oleic) fatty acids at 0.1. 0.25 and 0.5 mM concentrations on the in vitro metabolization of (1-14 C) arachidonic acid by washed human blood platelets have been studied. Effects of these fatty acids were studied with intact as well as lysed platelet preparations. With intact platelet preparations it was found that (i) all unsaturated fatty acids enhanced the biosynthesis of TxB2, PGE2, PGD2 and PGF2 alpha, (ii) unsaturated fatty acids reduced the formation of HHT and HETE with the exception of oleic acid which showed very little effect, (iii) unsaturated fatty acids reduced the formation of MDA, whereas palmitic and stearic acids increased its formation and (iv) all unsaturated fatty acids reduced the synthesis of prostaglandin endoperoxides. These results support our previous observations where effects of fatty acids were examined at higher concentrations (10). At 0.1 mM FA concentration, inconsistent results were obtained. With lysed platelet preparations all cyclooxygenase products were reduced in presence of unsaturated fatty acids, whereas HETE formation was reduced only in presence of linoleic and gamma-linolenic acids. Electron micrographs of washed platelet suspensions were obtained with untreated platelet preparations and platelet preparations treated with 0.25 and 0.5 mM linoleic acid concentrations. The results are discussed in the light of a possible soap-like effect of FA salt on platelets.

  11. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  12. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations.

    Directory of Open Access Journals (Sweden)

    Eduardo O De Souza

    Full Text Available The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents.Thirty strength-trained males (age: 20.4 ± 2.1 yrs were randomly divided into two groups: ARA or placebo (i.e. CTL. Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA, muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old were pre-fed with either ARA or water (CTL for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise.Lean body mass (2.9%, p<0.0005, upper-body strength (8.7%, p<0.0001, and peak power (12.7%, p<0.0001 increased only in the ARA group. For the animal trial, GSK-β (Ser9 phosphorylation (p<0.001 independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041 were different in ARA-fed versus CTL rats.Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.

  13. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    Science.gov (United States)

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  14. How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome

    Directory of Open Access Journals (Sweden)

    Roberts Matthew A

    2006-04-01

    Full Text Available Introduction Herein, we expand our previous work on the effects of long chain polyunsaturated fatty acids (LC-PUFA on the murine hepatic transcriptome using novel statistical and bioinformatic approaches for evaluating microarray data. The analyses focuses on key differences in the transcriptomic response that will influence metabolism following consumption of FUNG (rich in 20:4n6, FISH (rich in 20:5n3, 22:5n3, and 22:6n3 and COMB, the combination of the two. Results Using a variance-stabilized F-statistic, 371 probe sets (out of 13 K probe sets in the Affymetrix Mu11K chip set were changed by dietary treatment (P Conclusion Distinct transcriptomic, signaling cascades, and predicted affects on murine liver metabolism have been elucidated for 20:4n6-rich dietary oils, 22:6n3-rich oils, and a surprisingly distinct set of genes were affected by the combination of the two. Our results emphasize that the balance of dietary n6 and n3 LC-PUFA provided for infants and in nutritional and neutraceutical applications could have profoundly different affects on metabolism and cell signaling, beyond that previously recognized.

  15. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  16. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Arachidonic acid cytochrome P-450 (CYP) hydroxylase 4A isoforms, including 4A1, 4A2, 4A3 and 4A8 in the rat kidney, catalyze arachidonic acid to produce 19/20-Hydroxyeicosatetraenoic acids (20-HETE), a biologically active metabolite, which plays an important role in the regulation of blood pressure. However, controversial results have been reported regarding the exact role of 20-HETE on blood pressure. In the present study, we used recombinant adenoassociated viral vector (rAAV) to deliver CYP 4A1 cDNA and antisense 4A1 cDNA into Sprague-Dawley (SD) rats and spontaneously hypertensive rats (SHR), respectively, to investigate the effects of long-term modifications of blood pressure and the potential for gene therapy of hypertension. The mean systolic pressure increased by 14.2±2.5 mm Hg in rAAV.4A1-treated SD rats and decreased by 13.7±2.2 mm Hg in rAAV.anti4A1-treated SHR rats 5 weeks after the injection compared with controls and these changes in blood pressure were maintained until the experiments ended at 24weeks. In 4A1 treated animals CYP4A was overexpressed in various tissues, but preferentially in the kidney at both mRNA and protein levels. In anti-4A1-treated SHR, CYP4A mRNA in various tissues was probed, especially in kidneys,but 4A1 protein expression was almost completely inhibited. These results suggest that arachidonic acid CYP hydroxylases contribute not only to the maintenance of normal blood pressure but also to the development of hypertension.rAAV-mediated anti4A administration strategy has the potential to be used as targeted gene therapy in human hypertension by blocking expression of CYP 4A in kidneys.

  17. The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar)

    OpenAIRE

    Oxley, Anthony; Jolly, Cecile; Eide, Torunn; Jordal, Ann-Elise O.; Svardal, Asbjørn Martin; Olsen, Rolf Erik

    2010-01-01

    A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined ...

  18. FATTY ACIDS PROFILE IN A HIGH CELL DENSITY CULTURE OF ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA) EXPOSED TO HIGH PFD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong photon flux density [PFD, 2400 μEmol/(m2*s)]. Sixteen fatty acids were identified by gas chromatography showing that AA was the dominant fatty acid (33%-41%) followedby linoleic acid (17%-21%). AA content was closely investigated with respect tototal fatty acids (TFA), ash free dry weight (AFDW) of cell mass as well as total culture content. These parameters were influenced significantly in a similar manner by culture growth phase, i.e., slightly decreasing in the lag period, gradually increasing in the logarithmic phase, becoming maximal at the early stationary phase, starting to decrease at the late stationary phase, sharply dropping at the decline phase. The increase in AA per culture volume during the logarithmic phase was not only associated with the increase in AFDW but also connected with a corresponding increase in AA/TFA, TFA/AFDW as well as AA/AFDW. The sharp decrease in AA content of the culture during the decline phase was mainly due to the decrease in AA/TFA, TFA/AFDW and AA/AFDW, although AFDW declined only a smallextent. Maximal AA concentration, obtained at the early stationary phase, was 900 mg/L culture volume, and the average daily net increase of AA during 9 days logarithmic growth was 1.7 g/(m2*day). Therefore, harvesting prior to the declinephase in a batch culture, or at steady state in continuous culture mode seems best for high AA production. The latter possibility was also further confirmed bycontinuous culture with 5 gradients of harvesting rate. ``

  19. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A;

    2002-01-01

    secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate...

  20. The effect of non-steroidal anti-inflammatory drugs on the metabolism of /sup 14/C-arachidonic acid by human gingival tissue in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-09-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with /sup 14/C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam.

  1. Arachidonic acid production from cane molasses by Mortierella alpina%利用甘蔗糖蜜发酵生产花生四烯酸的研究

    Institute of Scientific and Technical Information of China (English)

    彭超; 黄和; 纪晓俊; 刘欣; 聂志奎; 邓中涛

    2013-01-01

    Arachidonic acid (ARA) fermentation by Mortierella alpina was carried out using cane molasses.Several different preparation methods were investigated to evaluate the optimal process of cane molasses method.The results indicated that sulfuric acid process was the best method.The cultivation parameters were as follows:reducing sugar concentration 80 g/L,nitrogen resource concentration 6 g/L,inoculum density 20%,initial pH 6.0,and cultivation temperature 25 ℃.The resultant dry cell weight,total lipid content,arachidonic acid yield,and sugar utilization were 28.5 g/L,11.7 g/L,3.68 g/L,and 94.5%,respectively.%通过培养高山被孢霉利用糖蜜来发酵生产花生四烯酸(ARA),研究了不同甘蔗糖蜜预处理方法对ARA发酵生产的影响.研究表明:H2S04法是最利于ARA发酵生产的糖蜜预处理方法.利用预处理的甘蔗糖蜜发酵生产ARA,通过单因素实验设计,确定了最优的培养条件,包括初始还原糖80 g/L,N源6g/L,接种量20%,初始pH6.0和培养t温度25℃,在此条件下发酵,干细胞质量、油脂含量、ARA产量和糖利用率分别达到28.5 g/L、11.7g/L、3.68 g/L和94.5%.

  2. Influence of dietary arachidonic acid combined with light intensity and tank colour on pigmentation of common sole (Solea solea L.) larvae

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2010-01-01

    Supplementation of dietary arachidonic acid (ARA) is known to cause hypopigmentation in common sole larvae (Solea solea L.). This study examined a possible link between dietary ARA supplementation - light intensity and tank colour on pigment defects in common sole larvae. Larval tissue ARA and...... prostaglandin PGE(2) content increased significantly when fed Artemia enriched by a fish oil emulsion supplemented with 24% dietary ARA during premetamorphosis (until 11 days post hatch, dph) as compared to larvae fed on Artemia enriched by a fish oil based emulsion. More than 90% of all larvae in groups...... treated with the ARA supplemented emulsion during premetamorphosis showed partly or complete dorsal hypopigmentation. There were no significant effects of light intensity or tank background colour in combination with ARA on malpigmentation. Larval hypopigmentation was below 10% in the groups not treated...

  3. Acetyl eugenol, a component of oil of cloves (Syzygium aromaticum L.) inhibits aggregation and alters arachidonic acid metabolism in human blood platelets.

    Science.gov (United States)

    Srivastava, K C; Malhotra, N

    1991-01-01

    In continuation of our studies with the oil of cloves--a common kitchen spice and a crude drug for home medicine--we have isolated yet another active component identified as acetyl eugenol (AE); the earlier reported active component being eugenol. The isolated material (IM) was found to be a potent platelet inhibitor; IM abolished arachidonate (AA)-induced aggregation at ca. 12 microM, a concentration needed to abolish the second phase of adrenaline-induced aggregation. Chemically synthesized acetyl eugenol showed similar effects on AA- and adrenaline-induced aggregation. A dose-dependent inhibition of collagen-induced aggregation was also observed. AE did not inhibit either calcium ionophore A23187- or thrombin-induced aggregation. Studies on aggregation and ATP release were done using whole blood (WB). AA-induced aggregation in WB was abolished at 3 micrograms/ml (14.6 microM) which persisted even after doubling the concentration of AA. ATP release was inhibited. Inhibition of aggregation appeared to be mediated by a combination of two effects: reduced formation of thromboxane and increased generation of 12-lipoxygenase product (12-HPETE). These effects were observed by exposing washed platelets to (14C)AA or by stimulating AA-labelled platelets with ionophore A23187. Acetyl eugenol inhibited (14C)TxB2 formation in AA-labelled platelets on stimulation with thrombin. AE showed no effect on the incorporation of AA into platelet phospholipids. PMID:2011614

  4. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zheng, Hao; Yu, Wei; Chai, Hongyan [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390,USA (United States); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yue, Jiang; Peng, Renxiu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  5. Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant's immune system early in life.

    Science.gov (United States)

    Richard, Caroline; Lewis, Erin D; Field, Catherine J

    2016-05-01

    Long-chain polyunsaturated fatty acids (LCPUFA), especially the balance between arachidonic (AA) and docosahexaenoic (DHA) acids are known to have important immunomodulatory roles during the postnatal period when the immune system is rapidly developing. AA and DHA are required in infant formula in many countries but are optional in North America. The rationale for adding these LCPUFA to full-term formula is based on their presence in breast milk and randomized controlled studies that suggest improved cognitive function in preterm infants, but results are more variable in full-term infants. Recently, the European Food Safety Authority has proposed, based on a lack of functional evidence, that AA is not required in infant formula for full-term infants during the first year of life but DHA should remain mandatory. The purpose of this review is to review the evidence from epidemiological and intervention studies regarding the essentiality of AA and DHA in the postnatal infant and maternal diet (breast-feeding) for the immune system development early in life. Although studies support the essentiality of DHA for the immune system development, more research is needed to rule out the essentiality of AA. Nevertheless, intervention studies have demonstrated improvement in many markers of immune function in infants fed formula supplemented with AA and DHA compared with unsupplemented formula, which appears to consistently result in beneficial health outcomes including reduction in the risk of developing allergic and atopic disease early in life. PMID:27138971

  6. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury.

    Science.gov (United States)

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  7. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  8. Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF(2α) in engineered Escherichia coli.

    Science.gov (United States)

    Kanamoto, Hirosuke; Takemura, Miho; Ohyama, Kanji

    2011-08-01

    Prostaglandins (PGs) are important local messenger molecules in many tissues and organs of animals including human. For applications in medicine and animal care, PGs are mostly purified from animal tissues or chemically synthesized. To generate a clean, reliable, and inexpensive source for PGs, we have now engineered expression of a suitable cyclooxygenase gene in Escherichia coli and achieved production levels of up to 2.7 mg l(-1) PGF(2α). The cyclooxygenase gene cloned from the red alga Gracilaria vermiculophylla appears to be fully functional without any eukaryotic modifications in E. coli. A crude extract of the recombinant E. coli cells is able to convert in vitro the substrate arachidonic acid (AA) to PGF(2α). Furthermore, these E. coli cells produced PGF(2α) in a medium supplemented with AA and secreted the PGF(2α) product. To our knowledge, this is the first report of the functional expression of a cyclooxygenase gene and concomitant production of PGF(2α) in E. coli. The successful microbial synthesis of PGs with reliable yields promises a novel pharmaceutical tool to produce PGF(2α) at significantly reduced prices and greater purity.

  9. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  10. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kellom Matthew

    2012-05-01

    Full Text Available Abstract Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS, stimulates rat brain arachidonic acid (AA metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h and a high-dose (250 ng/h of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase, and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.

  11. Inhibition of protein kinase B by Palmitate in the insulin signaling of HepG2 cells and the preventive effect of Arachidonic acid on insulin resistance

    Institute of Scientific and Technical Information of China (English)

    XIA Yanzhi; WAN Xuedong; DUAN Qiuhong; HE Shansu; WANG Ximing

    2007-01-01

    Elevated plasma levels of free fatty acids(FFAs)may contribute to insulin resistance (IR)that is characteristic of type 2 diabetes mellitus.In this study,we investigated the effects of two fatty acids,palmitate(PA)and arachidonic acid (AA)on glycogenesis under insulin signaling in HepG2cells,a transformed hepatic carcinoma cell line.In the presence of 200 μmol of palmitate,insulin(10-7 mol/L)stimulation of glycogenesis was inhibited,as evidenced by increased glucose in the medium and decreased intracellular glycogen.Wortmannin(WM),a specific inhibitor of PI3K,dramatically decreased the amount of intracellular glycogen in cells without PA incubation.However,glycogen in PA treated cells was not significantly changed by WM,indicating that PA may also act on PI3K.Interestingly,AA restored the effects of WM inhibition on glycogenesis in PA cells.Western blot analysis demonstrated that PA in the absence of WM increased phosphorylated glycogen synthase(inactive form of GS)and decreased phosphorylated protein kinase B(active form of PKB),causing a reduction of intracellular glycogen.AA,however,reversed the effects of PA on GS and PKB.Furthermore,inhibition of protein kinase C(PKC)by a specific inhibitor chelerythrine chloride (CC)abolished the inhibitory efrect of PA on glycogen synthesis by decreasing phosphorylated GS and increasing phosphorylated PKB.However,the effect of CC in the presence of PA disappeared when AA was also present.Our results suggest that there is a disruption of the insulin signaling pathway between PKB and GS when the cells were exposed to PA,contributing to IR.PA may also interrupt the PKC signaling pathway.In contrast,AA could rescue glycogenesis impaired by PA.

  12. High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog parathyroid cells through the mediation of arachidonic acid cascade.

    Directory of Open Access Journals (Sweden)

    Yukio Okada

    Full Text Available Elevation of extracellular Ca(2+ concentration induces intracellular Ca(2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+ signaling in frog parathyroid cells and show that Ca(2+-activated Cl(- channels are activated by intracellular Ca(2+ increase through an inositol 1,4,5-trisphophate (IP(3-independent pathway. High extracellular Ca(2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50 ∼6 mM. The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+-induced and Ca(2+ dialysis-induced currents reversed at the equilibrium potential of Cl(- and were inhibited by niflumic acid (a specific blocker of Ca(2+-activated Cl(- channel. Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+-induced current, suggesting the change of intracellular Cl(- concentration in a few minutes. Extracellular Ca(2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP. All blockers for phospholipase C, diacylglycerol (DAG lipase, monoacylglycerol (MAG lipase and lipoxygenase inhibited extracellular Ca(2+-induced current. IP(3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG, arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S-HPETE dialysis increased the conductance identical to extracellular Ca(2+-induced conductance. These results indicate that high extracellular Ca(2+ raises intracellular Ca(2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(- conductance.

  13. Vitamin A and arachidonic acid altered the skeletal mineralization in Atlantic cod (Gadus morhua) larvae without any interactions on the transcriptional level.

    Science.gov (United States)

    Lie, Kai Kristoffer; Kvalheim, Karen; Rasinger, Josef Daniel; Harboe, Torstein; Nordgreen, Andreas; Moren, Mari

    2016-01-01

    The main object of this study was to evaluate the impact of different levels of vitamin A (VA) and arachidonic acid (ARA) in relation to eicosapentaenoic acid (EPA) on mineralization and gene expression in Atlantic cod larvae (Gadus morhua). First-feeding larvae were fed enriched rotifers from start-feeding until 29 days post hatch (dph). Larvae in four tanks were fed one of the following diets: control (EPA/ARA ratio: 15.8, 0.9μg VA g(-1)), control+VA (EPA/ARA ratio: 15.8, 7.8μg VA g(-1)), High ARA (EPA/ARA ratio: 0.9, 1.5μg VA g(-1)) or High ARA+VA (EPA/ARA ratio: 0.9, 12.0μg VA g(-1)). Larvae fed High ARA+VA were shorter at 29dph compared to the other groups and had significantly less mineralized bones when comparing larvae of similar size, showing interaction effects between VA and ARA. Although transcriptomic analysis did not reveal any interaction effects, a higher number of genes were differentially expressed in the high ARA fed larvae compared to control+VA fed larvae. Furthermore, bglap1, bglap2 and col10a1 were all down-regulated in larvae fed High ARA-diets and to a greater extent than larvae fed VA supplemented diet, indicating an additive effect on mineralization. In conclusion, this study showed that the dietary increase in ARA and VA altered the skeletal metabolism during larval development, most likely through signaling pathways specific for each nutrient rather than an interaction. The present study also demonstrates that VA could affect the larval response to ARA, even within the accepted non-toxic/non-deficient range.

  14. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  15. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    Science.gov (United States)

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  16. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    Science.gov (United States)

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  17. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    Science.gov (United States)

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  18. The application of arachidonic acid in dairy products%花生四烯酸在乳制品中的应用

    Institute of Scientific and Technical Information of China (English)

    詹现璞; 吕银德; 赵俊芳

    2009-01-01

    花生四烯酸(AA)是一种人体必需的多不饱和脂肪酸,是人体生长因子,影响婴幼儿大脑和神经发育.AA具有改善记忆力和视力、调节血脂和血糖、降低血清胆固醇、预防心血管疾病、辅助抑制肿瘤、预防癌变、神经功能调节等作用.人体自身不能合成AA,必需从食物补充才能满足机体代谢的需要,牛乳是人体补充营养物质的载体,而AA在牛乳中几乎不存在,所以在牛乳中强化AA已显得非常必要.本文介绍了AA添加带配方奶粉中的工艺流程和操作要点;AA应用于纯牛奶中的工艺流程和操作要点;开发富含AA酸牛奶的生产工艺和操作要点;开发富含AA乳饮料的工艺流程和操作要点.研究发现,AA在酸牛奶和乳饮料中的应用将是新的发展趋势,富含AA的乳制品将会给企业带来巨大的经济效益和社会效益.%Arachidonic acid(AA)is an essential polyunsaturated fatty acids for human.It is a human growth factor,which can greatly affect infant brain and neurological development.AA can improve the memory and vision,regulate blood lipids and blood sugar,reduce cholesterol,and prevent cardiovascular disease and cancer.AA can not be synthesized by human body,it can only be obtained through food.Milk contains rich nutrients except AA,so AA fortified milk has become necessary.In this paper,the formula and process for adding AA into milk has been studied.It is found that AA in the acidophilus milk and milk drinks will be the new trend of dairy products.AA enrichment products will bring enormous economic and social benefits.

  19. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from...... the skin were determined. The results indicate that re-establishment of a low trans-epidermal water loss was associated with incorporation of linolenate into the two epidermal sphingolipids. Supplementation with columbinate resulted in relatively high amounts of this fatty acid in the investigated...

  20. Enrichment of Arachidonic Acid from Microbial Oil by Molecular Distillation%分子蒸馏技术富集微生物油脂中花生四烯酸

    Institute of Scientific and Technical Information of China (English)

    董宏祯; 夏金梅; 汤培平; 许建中; 许晨

    2012-01-01

    对分子蒸馏富集微生物油脂中花生四烯酸进行了研究.实验过程中微生物油脂预先进行皂化和甲酯化反应,制得混脂肪酸甲酯,作为分子蒸馏原料,考察了多种分离工艺参数对花生四烯酸纯度和产率的影响.结果表明,操作压力1.0 Pa,蒸馏温度80℃,刮膜器转速150 r/min,冷凝温度10℃,进料速度1.5 mL/min条件下,产品的纯度和产率分别达到67.48%和85.86%.%The enrichment of arachidonic acid from microbial oil by molecular distillation was studied. The molecular distillation feed was prepared by saponifioation of microbial oil,followed by the methyl esterification. The effects of operation pressure,distillation temperature,agitated speed,cool temperature and feed flow rate on the refining of arachidonic acid were investigated. The results showed that the mass fraction and the yield of arachidonic acid could reach 67. 48% and 85. 86%,respectively,under the operation pressure of 1. 0 Pa,distillation temperature of 80 ℃,agitated speed of 150 r/min,cool temperature of 10℃ and feed flow rate of 1. 5 mL/min.

  1. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  2. The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Oxley, Anthony; Jolly, Cecile; Eide, Torunn; Jordal, Ann-Elise O; Svardal, Asbjørn; Olsen, Rolf-Erik

    2010-03-01

    A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined pre- (0 h) and post- (1 h) acute stress for blood parameters and intestinal bioactive lipidic mediators of inflammation (prostaglandins). Plasma cortisol responses were greatest in the FMFO group, while 80 % PP and 70 % VO fish exhibited increased plasma chloride concentrations. The n-3:n-6 PUFA ratio in intestinal glycerophospholipids from 70 % VO groups significantly decreased in both proximal and distal regions due to elevated levels of 18 : 2n-6 and the elongation/desaturation products 20 : 2n-6 and 20 : 3n-6. Increases in n-6 PUFA were not concomitant with increased AA, although the AA:EPA ratio did vary significantly. The 40 % PP and 70 % VO diet produced the highest intestinal AA:EPA ratio proximally, which coincided with a trend in elevated levels of PGF2alpha, PGE2 and 6-keto-PGF1alpha in response to stress. PGE2 predominated over PGF2alpha and 6-keto-PGF1alpha (stable metabolite of PGI2) with comparable concentrations in both intestinal regions. Cyclo-oxygenase-2 (COX-2) mRNA expression was an order of magnitude higher in distal intestine, compared with proximal, and was significantly up-regulated following stress. Furthermore, the 80 % PP and 70 % VO diet significantly amplified proximal COX-2 induction post-stress. Results demonstrate that high replacements with plant-derived dietary ingredients can enhance COX-2 induction and synthesis of pro-inflammatory eicosanoids in the intestine of salmon in response to acute physiological stress. PMID:19943982

  3. Cell Signaling and Neurotoxicity: 3H-Arachidonic acid release (Phospholipase A2) in cerebellar granule neurons

    Science.gov (United States)

    Cell signaling is a complex process which controls basic cellular activities and coordinates actions to maintain normal cellular homeostasis. Alterations in signaling processes have been associated with neurological diseases such as Alzheimer's and cerebellar ataxia, as well as, ...

  4. Irradiation of human skin by short wavelength ultraviolet radiation (100--290 nm) (u.v.C): increased concentrations of arachidonic acid and prostaglandines E2 and F2alpha.

    Science.gov (United States)

    Camp, R D; Greaves, M W; Hensby, C N; Plummer, N A; Warin, A P

    1978-08-01

    1. Human abdominal skin was irradiated with six times the minimal erythema dose of ultraviolet C (100--290 nm) radiation. Erythema appeared at 3 h, was of moderate degree by 6 h and was maximal at 12--24 h. It was reduced at 48 h and by 72 h had disappeared. 2. A suction bulla technique was used for the recovery of exudate from normal and inflamed skin at 6, 18, 24 and 48 h after irradiation. 3. Prostaglandin-like activity, estimated by bioassay, showed maximum increase at 18 h, when erythema was also maximum. PGF 2alpha, measured by both radioimmunoassay and by combined gas-liquid chromatography--gas spectrometry, followed a similar time course then fell to normal, or near normal, levels at 48 h. 4. Prostaglandin E2 and arachidonic acid concentrations, measured by gas chromatography--mass spectrometry, were maximally raised at 18--24 h. At 48 h, when some erythema was still present, though reduced, prostaglandin E2 concentrations were still raised above control values. 5. The results provide direct evidence in support of the view that the erythma following irradiation of human skin by u.v.C involves activation of arachidonic acid metabolism. However, the relationship between the erythema and increased prostaglandin activity is not fully understood.

  5. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Kobayashi, Yuji

    2012-04-01

    Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction.

  6. [Therapeutic effects of larger doses of arachidonic acid added to DHA on social impairment and its relation to alterations of polyunsaturated fatty acids in individuals with autism spectrum disorders].

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Onishi, Masako

    2011-06-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and docosahexaenoic acid (DHA) may play key roles in brain network maturation. ARA plays an important role in signal transduction related to neuronal maturation. This study aims to evaluate the efficacy of supplementing with larger doses of ARA added to DHA in a double-blind, placebo-controlled 16-week trial. To confirm findings observed in the placebo-controlled trial, an additional 16-week open-label study was further conducted. To examine the relationship between the efficacy of the supplementation regimen and alterations in PUFAs levels, we examined plasma levels of PUFAs. We used the Social Responsiveness Scale (SRS) and the Aberrant Behavior Checklist-Community (ABC) to estimate psychotic symptoms. Repeated measures ANOVA revealed that this supplementation significantly improved SRS-measured communication as well as ABC-measured social withdrawal during the placebo-controlled trial. The treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: 0.87 vs. 0.44; social withdrawal: 0.88 vs. 0.54). At the end of the placebo-controlled trial, there was a significant difference in the change in plasma ARA levels from the baseline and a trend towards a significant difference in plasma ARA levels between the two groups. The open-label study was not powered to detect significant improvements in the outcome measures or significant differences in plasma ARA levels. The present clinical trials suggest that supplementation with larger ARA doses added to DHA improves social impairment in individuals with ASD via ARA-induced upregulation of neuronal functioning. PMID:21800702

  7. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Kobayashi, Yuji

    2012-04-01

    Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction. PMID:22370992

  8. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve;

    2010-01-01

    and eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA......) significantly increased beta-oxidation of EPA in HPCs, but only marginally elevated the oxidation of AA in HPCs and the oxidation of both fatty acids in KCs; 2) decreased the esterification, but did not alter the preferential incorporation of AA into glycerolipids; and 3) alleviated the significant competitive...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...

  9. Synthesis of (9Z, 12E-, (9E, 12Z-[1-14C]-linoleic acid, (9Z, 12Z, 15E-, (9E, 12Z, 15Z-[1-14C]-linolenic acid and (5Z, 8Z, 11Z, 14E-[1-14C]-arachidonic acid

    Directory of Open Access Journals (Sweden)

    Enard, Thierry

    1996-04-01

    Full Text Available Trans polyunsaturated fatty acids are produced in vegetable oils during heat treatment (240-250 °C.ln order to study the metabolic pathway of 9c, 12t and 9t, 12c linoleic acid and 9c, 12c, 15t and 9t, 12c, 15c linolenic acid, these products were prepared labelled with carbon 14 in the carboxylic position. 5c, 8c, 11c, 14t-Arachidonic acid was also labelled on the carboxylic position with carbon 14 in order to study its physiological effects. To introduce the labelling (E-bromo precursors with a 17 carbons chain or a 19 carbon chain were needed. The different syntheses were done by elongation steps and creation of cis double bonds via highly stereospecific Wittig reactions. The radioactive carbon atom was introduced from [14C]-potassium cyanide. The final radioactive fatty acids had a specific activity greater than 50 mCi/mmol and a radioactive purity better than 99 % for linoleic and linolenic and better than 98.6 % for arachidonic acid.

  10. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    Science.gov (United States)

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

  11. Capture and release of acid-gasses with acid-gas binding organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  12. Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling

    Directory of Open Access Journals (Sweden)

    Milad Fathi

    2013-01-01

    Full Text Available This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin in different concentrations (0.1, 0.25, and 0.5% were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models were used to describe the release and kinetic modeling in gastrointestinal solution (GIS. Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.

  13. Cadmium Release in Contaminated Soils due to Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-Mei

    2004-01-01

    There is limited information on the release behavior of heavy metals from natural soils by organic acids. Thus,cadmium release,due to two organic acids (tartrate and citrate) that are common in the rhizosphere,from soils polluted by metal smelters or tailings and soils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at a low concentration (≤6mmol L-1 for tartrate and ≤0.5 mmol L-1 for citrate) inhibited Cd release,whereas the presence of organic acids in high concentrations (≥2 mmol L-1 for citrate and ≥15 mmol L-1 for tartrate)apparently promoted Cd release. Under the same conditions,the Cd release in naturally polluted soils was less than that of artificially contaminated soils. Additionally,as the initial pH rose from 2 to 8 in the presence of citrate,a sequential valley and then peak appeared in the Cd release curve,while in the presence of tartrate the Cd release steadily decreased.In addition,Cd release was clearly enhanced as the electrolyte concentration of KNO3 or KC1 increased in the presence of 2 mmol L-1 tartrate. Moreover,a higher desorption of Cd was shown with the KC1 electrolyte compared to KNO3 for the same concentration levels. This implied that the bioavailability of heavy metals could be promoted with the addition of suitable types and concentrations of organic acids as well as reasonable field conditions.

  14. Nanoporous Silicified Phospholipids and Application to Controlled Glycolic Acid Release

    Directory of Open Access Journals (Sweden)

    Kang SangHwa

    2008-01-01

    Full Text Available Abstract This work demonstrates the synthesis and characterization of novel nanoporous silicified phospholipid bilayers assembled inorganic powders. The materials are obtained by silicification process with silica precursor at the hydrophilic region of phospholipid bilayers. This process involves the co-assembly of a chemically active phospholipids bilayer within the ordered porosity of a silica matrix and holds promise as a novel application for controlled drug release or drug containers with a high level of specificity and throughput. The controlled release application of the synthesized materials was achieved to glycolic acid, and obtained a zero-order release pattern due to the nanoporosity.

  15. Acidic preparations of platelet concentrates release bone morphogenetic protein-2.

    OpenAIRE

    Wahlström, Ola; Linder, Cecilia; Kalén, Anders; Magnusson, Per

    2008-01-01

    BACKGROUND AND PURPOSE: Growth factors released from platelets have potent effects on fracture and wound healing. The acidic tide of wound healing, i.e. the pH within wounds and fractures, changes from acidic pH to neutral and alkaline pH as the healing process progresses. We investigated the influence of pH on lysed platelet concentrates regarding the release of growth factors. MATERIAL AND METHODS: Platelet concentrates free of leukocyte components were lysed and incubated in buffers with p...

  16. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    Science.gov (United States)

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  17. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  18. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  19. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Science.gov (United States)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  20. Ion-beam-mutation breeding of an arachidonic acid biosynthesis microorganism and its industrial fermentation control%微生物油脂花生四烯酸产生菌离子束诱变和发酵调控

    Institute of Scientific and Technical Information of China (English)

    余增亮; 王纪; 袁成凌; 黄青; 冯慧云; 贡国鸿; 郑之明; 姚建铭

    2012-01-01

    某些微生物是高质量油脂的生产者.微生物油脂不仅有益健康,而且是生物柴油潜在的油脂来源.中国是个油脂资源缺乏的国家,开发微生物源油脂具有重要的意义.本文以产油微生物——高山被孢霉菌为出发菌,以单细胞油脂多不饱和脂肪酸产率为筛选目标,采用二步离子束诱变-筛选的策略,获得了高产菌株.研究了高产菌株的营养需求,创建了重复利用提油后的残体(菌粕)合成微生物油脂的技术.针对丝状真菌高密度发酵的传能和传质问题,研制了6×50和4×200m3大容量专用反应器组,单位发酵容积生物量达38.2g/L(发酵液)、油脂20.67g/L.其中具有重要生理活性的花生四烯酸产率最高达9.89 g/L,平均为8.97g/L.花生四烯酸提取和精炼后的残油转化为生物柴油,主要指标达到国家生物柴油标准.%Some microorganisms in nature produce high-quality oils. These oils provide nutritional benefits to human health, and can be potential sources of biodiesel. Developing microorganism-derived oils, also known as single-cell oils, is particularly important for China because of the shortage of oil resources. We have bred a high-yielding, polyunsaturated fatty acids (PUFCs)-producing strain from the fungi Mortierelia alpine by using a two-step strategy of ion-beam-mutation breeding and PUFCs productivity screening. We further studied the nutritional requirements of this new strain, and developed a technique that recycles the fungi residues, after oil extraction, into fermentation substrates. A biomass of 38.2 g/L, 20.67 g/L of which were oils, was reached in the 6x50 m3 and 4x200 m3 high-capacity reactors, designed for mycelial fungus fermentation at high-density, with optimized energy and mass transmission efficiency. Among the oils, the content of the physiologically active arachidonic acid reached 9.89 g/L at the highest level and 8.97 g/L on average. Residual oils, after arachidonic acid

  1. Release of Soil Nonexchangeable K by Organic Acids

    Institute of Scientific and Technical Information of China (English)

    ZHUYONG-GUAN; LUOJIA-XIAN

    1993-01-01

    The amounts of soil nonexchangeable K extracted with 0.01mL/L oxalic acid and citric acid solutions and that with boiling 1mL/L HNO3 for ten minutes were remarkably significantly correlated with each other,and the amount extracted with the oxalic acid solution was higher than that with the citric acid solution.The soil nonexchangeable K release was comprised of two first-order kinetic processes.The faster one was ascribed to the interlayer K in outer sphere,while the slower one to that in inner sphere.The rate constants of the soil nonexchageable K were significantly correlated with the amounts of nonexchangeable K ex tracted with boiling 1mL/L HNO3 for ten minutes.Study on the fitness of different kinetic equations indicated that the first-order,parabolic diffusion and zero-order equations could all describe the release of soil nonexchangeable K well,but Elovich equation was not suitable to describe it.

  2. THE EFFECT OF ACIDIC EXCIPIENTS ON THE RELEASE OF WEAKLY BASIC DRUGS FROM THE PROGRAMMED RELEASE MEGALOPOROUS SYSTEM

    NARCIS (Netherlands)

    VANDERVEEN, C; BUITENDIJK, H; LERK, CF

    1991-01-01

    Weakly basic drugs such as ketanserin and mianserin exhibit strongly pH-dependent solubilities. Incorporated in the programmed release megaloporous system, these drugs showed pH-dependent release profiles. The strongly inhibited release rates in neutral media compared to acidic media, could be raise

  3. Interfacial Fast Release Layer in Monodisperse Poly (lactic-co-glycolic acid) Microspheres Accelerates the Drug Release.

    Science.gov (United States)

    Wu, Jun; Zhao, Xiaoli; Yeung, Kelvin W K; To, Michael K T

    2016-01-01

    Understanding microstructural evolutions of drug delivery devices during drug release process is essential for revealing the drug release mechanisms and controlling the drug release profiles. In this study, monodisperse poly (lactic-co-glycolic acid) microspheres in different diameters were fabricated by microfluidics in order to find out the relationships between the microstructural evolutions and the drug release profiles. It was found that poly (lactic-co-glycolic acid) microspheres underwent significant size expansion which took place from the periphery to the center, resulting in the formation of interfacial fast release layers. At the same time, inner pores were created and the diffusion rate was increased so that the early stage drug release was accelerated. Due to the different expansion rates, small poly (lactic-co-glycolic acid) microspheres tendered to follow homogeneous drug release while large poly (lactic-co-glycolic acid) microspheres tendered to follow heterogeneous drug release. This study suggests that the size expansion and the occurrence of interfacial fast release layer were important mechanisms for early stage drug release of poly (lactic-co-glycolic acid) microspheres.

  4. Dexamethasone blocks arachidonate biosynthesis in isolated hepatocytes and cultured hepatoma cells

    International Nuclear Information System (INIS)

    The effect of dexamethasone on the incorporation and conversion of [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid in isolated hepatocytes and in hepatoma tissue culture (HTC) cells was studied. In both kinds of cells, no changes in the exogenous acid incorporation were found when the hormone was added to the incubation media at 0.1 or 0.2 mM concentration, while the biosynthesis of arachidonic acid was significantly depressed. The effect on the biosynthesis was faster in isolated normal liver cells (60 min) than in tumoral cells (120 min) and reached an inhibition of ca. 50% after 3 hr of treatment. The addition of cycloheximide (10(-6) M) also caused a marked decrease in the biosynthesis of this polyunsaturated fatty acid, but when dexamethasone was added to the media simultaneously with cycloheximide, a synergistic action was not observed. The results obtained show that protein synthesis would be involved in the modulation of the biosynthesis of arachidonic acid by glucocorticoids. The changes in the delta 5 desaturation of labeled 20:3 omega 6 to arachidonic acid correlated with changes in the fatty acid composition in isolated cells

  5. PLA2 - a major regulator of volume-sensitive taurine release in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Lambert, I. H.

    2006-01-01

    -lipoxygenase (5-LO) system is prevented by the 5-LO inhibitor ETH 615-139 and is reduced under hypertonic conditions. Exposure to the amphiphilic bee venom peptide melittin, which has no effect on the kinetic properties of PLA2 but promotes substrate replenishment, induces release of arachidonic acid and...

  6. Prostaglandin E2 release from dermis regulates sodium permeability of frog skin epithelium

    DEFF Research Database (Denmark)

    Rytved, Klaus A.; Brodin, Birger; Nielsen, Robert

    1995-01-01

    Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium.......Arachidonic acid, cAMP, epithelium, frog skin, intracellular calcium, prostaglandin E*U2, sodium transport, tight epithelium....

  7. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    Directory of Open Access Journals (Sweden)

    J. O. Woo

    2014-01-01

    Full Text Available Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.

  8. Membrane sialic acid influences basophil histamine release by interfering with calcium dependence

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Skov, P S;

    1987-01-01

    The influence of the cell membrane content of sialic acid on basophil histamine release was examined in vitro in allergic patients and normal controls. Enzymatical removal of sialic acid enhanced histamine release induced by allergen and anti-IgE, whereas an increase in membrane sialic acid content...

  9. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin.

    Science.gov (United States)

    Gabboun, N H; Najib, N M; Ibrahim, H G; Assaf, S

    2001-01-01

    Release of salicylic acid, diclofenac acid, diclofenac diethylamine and diclofenac sodium, from lyotropic structured systems, namely; neat and middle liquid crystalline phases, across mid-dorsal hairless rat skin into aqueous buffer were studied. Release results were compared with those from the isotropic systems. The donor systems composed of the surfactant polyoxyethylene (20) isohexadecyl ether, HCl buffer of pH 1 or distilled water and the specific drug. High performance liquid chromatography (HPLC) methods were used to monitor the transfer of the drugs across the skin barrier. Results indicated that the rate-determining step in the transport process was the release of the drug from the specified donor system. Further, apparent zero order release was demonstrated with all systems. Except for diclofenac sodium, drug fluxes decreased as the donor medium changed from isotropic to anisotropic. The decrease in fluxes was probably due to the added constrains on the movement of drug molecules. By changing the anisotropic donor medium from neat to middle phase, drug flux decreased in case of salicylic acid and diclofenac sodium. In the mean time, flux increased in case of the diethylamine salt and appeared nearly similar in case of diclofenac acid. Rates of drug transfer across the skin from the anisotropic donors seemed to be largely controlled by the entropy contribution to the transport process. The type and extent of drug-liquid crystal interactions probably influenced the latter.

  10. Release of brain amino acids during hyposmolar stress and energy deprivation.

    Science.gov (United States)

    Haugstad, T S; Langmoen, I A

    1996-04-01

    The release of 10 amino acids from rat hippocampal slices during exposure to hyposmotic stress or energy deprivation was measured by high-performance liquid chromatography. Exposing the slices to hyposmotic stress by lowering extracellular NaCl caused a 10-fold release of taurine (p alanine release (p isoelectric point) and hydropathy indexes. Energy deprivation increased the permissivity in the following order: acidic > neutral > basic. Among neutral amino acids, permissivity increased with increasing hydrophobicity. These results indicate that the mechanisms of amino acid release are different during cerebral ischemia and hyposmotic stress. PMID:8829565

  11. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    OpenAIRE

    Shifeng Li; Yanming Shen; Min Xiao; Dongbin Liu; Lihui Fan; Zhigang Zhang

    2014-01-01

    Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA) and indole-3-butyric acid (IBA) simultaneous intercalated MgAl-layered double hydroxides (LDHs) was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilaye...

  12. Domestication of the high-sugar-tolerant Mortierella alpina on arachidonic acid (ARA) production%花生四烯酸产生菌高山被孢霉的高糖驯化研究

    Institute of Scientific and Technical Information of China (English)

    曾思钰; 凌雪萍; 张长杰; 卢英华

    2012-01-01

    [目的]提高花生四烯酸(Arachidonic acid,ARA)产量,克服ARA产生菌高山被孢霉(Mortierella alpina)在长期的保存及使用过程中易受到外界条件影响发生退化,从而导致菌种耗糖量降低、影响菌种摄入营养的能力和不利于工业化生产的缺点.[方法]首先采用固体培养基驯化,将菌种逐级涂布于梯度高糖PDA平板(含糖量分别为2%、5%、7%、10%和15%)培养,挑选经固体驯化后能耐受10%高糖浓度平板的菌种,转接到两种含不同氮源的梯度高糖(含糖量分别为3%、4%、5%和6%)液体培养基中进行驯化,最后对驯化后的菌种进行2L发酵罐放大实验.[结果]当培养基中以酵母粉为氮源时,驯化后菌体的最高耗糖量由3 g/(L·d)提高到12 g/(L·d);当培养基中以玉米浆为氮源时,驯化后菌体的最高耗糖量由7 g/(L·d)提高到12 g/(L·d).摇瓶驯化实验结果表明以玉米浆为氮源驯化的菌种发酵效果较好,发酵罐实验结果显示菌体生物量为50 g/L,总油脂为18 g/L,目的产物ARA产量为8g/L.相比未驯化之前的发酵结果,生物量和总油脂含量提高了近3倍,ARA产量提高了近4倍.[结论]经过高糖驯化,菌种的耗糖能力得到提高,生物量、总油脂及ARA的产量也都有所增加,从而可以使菌种在保存和使用过程中不易退化,保持稳定.%[Objective] In order to improve arachidonia acid (ARA) production, and prevent the degeneration of ARA-producing strain Mortierella alpina in long-term culture preservation and cultivation, which could lead to low consumption rate of substrates like carbon source. [Methods] Mortierella alpina strain was first domesticated in high-sugar PDA plate with gradient sugar content (2%, 5%, 7%, 10% and 15%). The strain which grew better in the solid medium containing 10% sugar was then selected and transferred to two liquid high-sugar media with different nitrogen sources to domesticate. The gradient sugar

  13. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids

    Institute of Scientific and Technical Information of China (English)

    XU Ren-kou; ZHU Yong-guan; David Chittleborough

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by Iow-molecular-weight organic acids.Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with PKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearrly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  14. Milk in the island of Chole [Tanzania] is high in lauric, myristic, arachidonic and docosahexaenoic acids, and low in linoleic acid - Reconstructed diet of infants born to our ancestors living in tropical coastal regions

    NARCIS (Netherlands)

    Kuipers, Remko S.; Smit, Ella N.; van der Meulen, Jan; Dijck-Brouwer, D. A. Janneke; Boersma, E. Rudy; Muskiet, Frits A. J.

    2007-01-01

    Background: We need information on the diet on which our genes evolved. Objective: We studied the milk fatty acid [FA] composition of mothers living in the island of Chole [Tanzania, Indian Ocean]. These mothers have high intakes of boiled marine fish and coconut, and consume plenty amount of fruits

  15. Inhibitors of the cytochrome P-450 enzymes block the secretagogue-induced release of corticotropin in mouse pituitary tumor cells.

    OpenAIRE

    Luini, A G; Axelrod, J

    1985-01-01

    A mouse pituitary tumor cell line (AtT-20) releases corticotropin (ACTH) in response to a number of secretagogues, including corticotropin-releasing factor (CRF), beta-adrenergic agents, N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2 cAMP), and potassium. The stimulation of ACTH secretion induced by the secretagogues can be blocked by inhibitors of the enzymes that generate (phospholipase A2) and metabolize (lipoxygenase and epoxygenase) arachidonic acid. The phospholipase A2 block...

  16. Influence of Citric Acid on the Metal Release of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Mazinanian, N.; Wallinder, I. Odnevall; Hedberg, Y. S. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm (Sweden)

    2015-08-15

    Knowledge of how metal releases from the stainless steels used in food processing applications and cooking utensils is essential within the framework of human health risk assessment. A new European standard test protocol for testing metal release in food contact materials made from metals and alloys has recently been published by the Council of Europe. The major difference from earlier test protocols is the use of citric acid as the worst-case food simulant. The objectives of this study were to assess the effect of citric acid at acidic, neutral, and alkaline solution pH on the extent of metal release for stainless steel grades AISI 304 and 316, commonly used as food contact materials. Both grades released lower amounts of metals than the specific release limits when they were tested according to test guidelines. The released amounts of metals were assessed by means of graphite furnace atomic absorption spectroscopy, and changes in the outermost surface composition were determined using X-ray photoelectron spectroscopy. The results demonstrate that both the pH and the complexation capacity of the solutions affected the extent of metal release from stainless steel and are discussed from a mechanistic perspective. The outermost surface oxide was significantly enriched in chromium upon exposure to citric acid, indicating rapid passivation by the acid. This study elucidates the effect of several possible mechanisms, including complex ion- and ligand-induced metal release, that govern the process of metal release from stainless steel under passive conditions in solutions that contain citric acid.

  17. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters.

    Science.gov (United States)

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-01

    The purpose of this work was to develop a family of cross-linked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as "bioactive" and "resorbable" and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.

  18. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation

    OpenAIRE

    Basselin, Mireille; Kim, Hyung-Wook; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Robert C. Murphy; Farias, Santiago E.

    2010-01-01

    Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a l...

  19. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    Science.gov (United States)

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  20. Intestinal release and uptake of phenolic antioxidant diferulic acids

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Kroon, P A; Williamson, G;

    2001-01-01

    -linked to cell wall polysaccharides and cannot be absorbed in this form. This study provides the first evidence that diferulic acids can be absorbed via the gastrointestinal tract. The 5-5-, 8-O-4-, and 8-5-diferulic acids were identified in the plasma of rats after oral dosing with a mixture of the three acids...

  1. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  2. Wheat-Exuded Organic Acids Influence Zinc Release from Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. A. MAQSOOD; S. HUSSAIN; T. AZIZ; M. ASHRAF

    2011-01-01

    Rhizosphere drives plant uptake of sparingly soluble soil zinc (Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes (Sehar-06 and Vatan),Zn fractious in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties; their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-efficient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.

  3. Effect of Propofol on Glutamate and γ-aminobutyric Acid Release from Rat Hippocampal Synaptosomes

    Institute of Scientific and Technical Information of China (English)

    SHANG You; YAO Shanglong; ZENG Yinming; LIU Hongliang; CAO Junli

    2005-01-01

    To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca2+were added from aCSF. The release of glutamate and GABA were evoked by 20μmol/L veratridine or 30 mmol/L KCl. The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 and 300 μmol/L propofol significantly inhibited veratridine-evoked Ca2+-dependent release of glutamate and GABA (P<0.01 or P<0.05). However, propofol showed no effect on elevated KCl-evoked Ca2+-dependent release of glutamate and GABA (P>0.05). Veratridine or elevated KCl evoked Ca2+ -independent release of glutamate and GABA was not affected significantly by propofol (P>0.05). Propofol could inhibit Ca2+-dependent release of glutamate and GABA. However, it has no effect on the Ca2+-independent release ofglutamate and GABA.

  4. pH-independent release of propranolol hydrochloride from HPMC-based matrices using organic acids

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and purpose of the study: Propranolol HCl, a widely used drug in the treatment of cardiac arrhythmias and hypertension, is a weak basic drug with pH-dependent solubility that may show release problems from sustained release dosage forms at higher pH of small intestine. This might decrease drug bioavailability and cause variable oral absorption. Preparation of a sustained release matrix system with a pH-independent release profile was the aim of the present study. Methods: Three types of organic acids namely tartaric, citric and fumaric acid in the concentrations of 5, 10 and 15 % were added to the matrices prepared by hydroxypropyl methylcellulose (HPMC and dicalcium phosphate. The drug release studies were carried out at pH 1.2 and pH 6.8 separately and mean dissolution time (MDT as well as similarity factor (¦2 were calculated for all formulations. Results and discussion: It was found that incorporation of 5 and 10 % tartaric acid in tablet formulations with 30 % HPMC resulted in a suitable pH-independent release profiles with significant higher ¦2 values (89.9 and 87.6 respectively compared to acid free tablet (58.03. The other two acids did not show the desirable effects. It seems that lower pKa of tartaric acid accompanied by its higher solubility were the main factors in the achievement of pH-independent release profiles.

  5. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  6. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle

    International Nuclear Information System (INIS)

    Local exposure of the hindquarter of the rat to 15Gy of gamma-radiation resulted, 4-6h after irradiation, in increased release of amino acids by the isolated, perfused hindquarter preparation, 70% of which is skeletal muscle. This increase in release involves not only alanine and glutamine, but also those amino acids not metabolized by muscle and, therefore, released in proportion to their occurrence in muscle proteins. Because metabolic parameters and content of energy-rich phosphate compounds in muscle remain unchanged, it is unlikely that general cellular damage is the underlying cause of the radiation-induced increase in amino acid release. The findings strongly favour the hypothesis that increased availability of amino acids results from enhanced protein break-down in skeletal muscle which has its onset shortly after irradiation. This radiation-induced disturbance in protein metabolism might be one of the pathogenetic factors in the aetiology of radiation myopathy. (author)

  7. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release

    NARCIS (Netherlands)

    Bisschop, PH; Ackermans, MT; Endert, E; Ruiter, AFC; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2002-01-01

    Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose-response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (R-a) of palmitate was measured by infus

  8. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    OpenAIRE

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J.; Gribble, Fiona M.; Reimann, Frank

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from t...

  9. Does gastric acid release plasma somatostatin in man?

    OpenAIRE

    Lucey, M.R.; Wass, J A; Fairclough, P D; O'Hare, M; Kwasowski, P; Penman, E; Webb, J.; Rees, L H

    1984-01-01

    Food and insulin hypoglycaemia raise plasma concentrations of somatostatin. Both also stimulate gastric acid secretion but it is not clear whether gastric acid itself has any effect on somatostatin secretion. We, therefore, studied the effect on plasma concentrations of somatostatin of infusion of 0.1 N HC1 into the stomach and duodenum of healthy subjects. Plasma somatostatin did not rise with a small dose of HC1 given intragastrically (15 mmol) or intraduodenally (4 mmol). After an intraduo...

  10. Subchronic (13-week) oral toxicity study, preceded by an in utero exposure phase, with arachidonate-enriched triglyceride oil (SUNTGA40S) in rats

    NARCIS (Netherlands)

    Lina, B.A.R.; Wolterbeek, A.P.M.; Suwa, Y.; Fujikawa, S.; Ishikura, Y.; Tsuda, S.; Dohnalek, M.

    2006-01-01

    Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA) and docosahexaenoic acid (DHA) are natural constituents found in human milk, fish oil or egg yolk. Until recently, infant formulas, though providing the essential fatty acid precursors for these PUFAs, did not contain preformed ARA

  11. Recognition and Release of Nalidixic Acid Using Uniformly Sized -Imprinted Nanospheres: Methacrylic Acid to Methyl Methacrylate Different Mole Ratios

    Directory of Open Access Journals (Sweden)

    Mehdi Forouzani

    2013-01-01

    Full Text Available In the presence of imprinting molecules of Nalidixic acid, uniformly sized molecularly imprinted polymers (MIPs in nanometer range were synthesized. The MIPs were successfully prepared by precipitation polymerization using methacrylic acid (MAA and methyl methacrylate (MMA as functional monomers at different mole ratios. The effect of combination of MAA-to-MMA on the morphology, binding, recognition and release behaviors of the final particles were studied. The produced polymers were characterized by differential scanning calorimetry and their morphology was precisely examined by scanning electron microscopy. We obtained very uniform imprinted nanospheres with diameter of 120- 180 nm. Among the MIP nanospheres the MIPs using combination of MAA and MMA showed nanospheres with lowest mean diameter (120 nm and the highest selectivity factor (9.7. The adsorption properties of Nalidixic acid in acetonitrile for imprinted nanospheres were evaluated by equilibrium rebinding experiments. Results from binding experiments proved that MIPs exhibit specific affinity to Nalidixic acid in contrast to control polymers and this performance was affected by pH of loading solution and. Moreover, release experiments showed the controlled release of Nalidixic acid in longtime period. The loaded Nalidixic acid was released from the imprinted nanospheres within the 140 h.

  12. Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled release.

    Science.gov (United States)

    Liu, Changkun; Wu, Yiguang; Zhao, Liyan; Huang, Xinzheng

    2015-01-01

    The acetylsalicylic acid-acylated chitosan (ASACTS) with high degree of substitution (DS) was successfully synthesized, and characterized with FTIR, (1)H NMR and elemental analysis methods. The optimum synthesis conditions were obtained which gave the highest DS (about 60%) for ASACTS. Its drug release experiments were carried out in simulated gastric and intestine fluids. The results show that the drugs in the form of acetylsalicylic acid (ASA) and salicylic acid (SA) were released in a controlled manner from ASACTS only in simulated gastric fluid. The release profile can be best fitted with logistic and Weibull model. The research results reveal that ASACTS can be a potential polymeric drug for the controlled release of ASA and SA in the targeted gastric environment.

  13. Sandwich Structure-like Meshes Fabricated via Electrospinning for Controllable Release of Zoledronic Acid

    Institute of Scientific and Technical Information of China (English)

    LU Jian; LIU Jian-guo; SONG Xiao-feng; CHEN Xue-si; WU Xiao-dong

    2011-01-01

    Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals.

  14. Effect of Oxalic Acid on Potassium Release from Typical Chinese Soils and Minerals

    Institute of Scientific and Technical Information of China (English)

    TU Shu-Xin; GUO Zhi-Fen; SUN Jin-He

    2007-01-01

    Oxalic acid plays an important role in improving the bioavailability of soil nutrients. Batch experiments were employed to examine the influences of oxalic acid on extraction and release kinetics of potassium (K) from soils and minerals along with the adsorption and desorption of soil K+. The soils and minerals used were three typical Chinese soils, black soil (Mollisol), red soil (Ultisol), and calcareous alluvial soil (Entisol), and four K-bearing minerals, biotite, phlogopite, muscovite, and microcline. The results showed that soil K extracted using 0.2 mol L-1 oxalic acid was similar to that using 1 mol L-1 boiling HNO3. The relation between K release (y) and concentrations of oxalic acid (c) could be best described logarithmically as y=a+blogc, while the best-fit kinetic equation of K release was y=a +b√t, where a and b are the constants and t is the elapsed time. The K release for minerals was ranked as biotite> phlogopite>> muscovite> microcline and for soils it was in the order: black soil> calcareous alluvial soil> red soil. An oxalic acid solution with low pH was able to release more K from weathered minerals and alkaline soils. Oxalic acid decreased the soil K+ adsorption and increased the soil K+ desorption, the effect of which tended to be greater at lower solution pH, especially in the red soil.

  15. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Manuel Häuser

    2015-12-01

    Full Text Available Nanoparticles (NP of poly(lactic-co-glycolic acid (PLGA represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA nanoparticles are coated by polyelectrolytes using the layer-by-layer self-assembly technique, employing poly(acrylic acid (PAA as a pH-sensitive component and poly(diallyldimethylammonium chloride (PDADMAC as the releasable polycation. The pH during multilayer deposition plays a major role and influences the titration curve of the layer system. The pH-tunability of PAA is intensively investigated with regard to the pH region, in which the particle system becomes uncharged. The isoelectric point can be shifted by employing suitable deposition pH values. The release is investigated by quantitative 1H NMR, yielding a pH-dependent release curve. A release of PDADMAC is initiated by a decrease of the pH value. The released amount of polymer, as quantified by 1H NMR analysis, clearly depends on the pH value and thus on the state of deprotonation of the pH-sensitive PAA layer. Subsequent incubation of the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative.

  16. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid.

    Science.gov (United States)

    Barman, Shrabani; Mukhopadhyay, Sourav K; Behara, Krishna Kalyani; Dey, Satyahari; Singh, N D Pradeep

    2014-05-28

    Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.

  17. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  18. FadD is required for utilization of endogenous fatty acids released from membrane lipids.

    Science.gov (United States)

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M

    2011-11-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth.

  19. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    Science.gov (United States)

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.

  20. Swelling and Drug Release Characteristics of Poly (methacrylic acid-co-poloxamer) hydrogels

    Institute of Scientific and Technical Information of China (English)

    XUHui; LINYan-nan; DINGPing-tian; TIANMei-juan; ZHENGJun-min

    2003-01-01

    Poly (methacrylie acid co-poloxamer) hydrogel networks were synthesized by free-radical solution polymerization, and the dynamic swelling and in vitro release properties of model drugs, dextromethorphan hydrobromide (DMP) and vitamin B12 (VB12) were studied. These gels exhibited pH-dependant swelling and sustained drug release properties, and the water uptake rate and drug release rate in neutral or basic media were higher than that in acidic media. The results showed that the water uptake followed non-Fickian or zero order process in neutral or basic media, and the release of model drugs from hydrogels of appropriate composition was of zero order kinetics over a period of several hours.

  1. In vitro release and antibacterial activity of poly(oleic/linoleic acid dimer:sebacic acid)-gentamicin

    Institute of Scientific and Technical Information of China (English)

    YANGXiu-Fen; ZHOUZhi-Bin; 等

    2003-01-01

    AIM:To investigate whether poly(oleic/linoleic acid dimer:sebacic acid)-getamicin[Poly(OAD/LOAD:SA)-gentamicin]delivery system was useful to treat chronic osteomyelitis.METHODS:Drug delivery system consisted of gentamicin sufate dispersed in a copolymer containing oleic/linoleic acid dimer(OAD/LOAD)and sebacic acid(SA)in a 1:1 weight ration.The gentamicin releast from[Poly(OAD/LOAD:SA)-gentamicin]was tested in water 0.9% saline,and phosphate buffer 0.1mol/L,RESULTS:The gentamicin concentration peak was found on d2,then slowly decreased.considerable amout of gentamicin was still released on d 50.From d 2 o d 50,the gentamicin concentration in the releasing fluids was from 59 to 42128-fold and 1.8 to 1314-fold of the MIC for Staphylococcus aureus and Escherichia coli,respectively.Staphylococcus aureus and Escherichia coli were strongly inhibited by the releasing fluids for 50d.The gentamicin release and anti-bacterial activity in the three media were similar.only in 0.1mol/L phosphate buffer,from d 2 to 14 it was lower.CONCLUSION:Poly(OAD/LOAD:SA)-gentamicin was useful to treat chronic osteomyelitis.

  2. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    OpenAIRE

    F. Casellas; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; J. R. Malagelada

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can...

  3. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  4. Release Kinetic in Yogurt from Gallic Acid Microparticles with Chemically Modified Inulin.

    Science.gov (United States)

    García, Paula; Vergara, Cristina; Robert, Paz

    2015-10-01

    Gallic acid (GA) was encapsulated with native (NIn), cross-linked (CIn) and acetylated (AIn) inulin by spray-drying. Inulin microparticles were characterized by encapsulation efficiency (EE) and their release profile in yogurt. The EE was significantly higher for GA-CIn (98%) compared with GA-NIn (81%) and GA-AIn (77%) microparticles, showing the effect of the modification of inulin on interaction of GA-polymer. GA release profile data in yogurt for GA-CIn, GA-NIn and GA-AIn were fitted to Peppas and Higuchi models in order to obtain the GA release rate constant. Although the GA release rate constants were significantly different among systems, these differences were slight and the GA release was fast (80% inulin-systems did not control GA release in yogurt. The mechanism of GA release followed a Fickian diffusion and relaxation of chains for all microparticles. According to the release profile, these microparticles would be best suited for use in instant foods.

  5. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    Science.gov (United States)

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers. PMID:25492016

  6. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    Science.gov (United States)

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers.

  7. The effect of humic acids on the element release from high level waste glass

    International Nuclear Information System (INIS)

    Eu and Am doped glasses were interacted with synthetic interstitial clay water (SiC) and corresponding reference leachant, humic acids free interstitial solution (IS) to investigate the influence of humic acids on the leaching behavior of the waste glass. Static leach tests were carried out at 40 C and 90 C. The release of the lanthanide Eu and the actinide Am from the glass was obviously enhanced by the presence of humic acids. The leaching of transition elements, Fe and Ti strongly depends on the humic acids concentration. The leaching of glass matrix components, Al and B was also influenced by the concentrations of humic acids. However, humic acids have little effect on the leaching of glass matrix element Si

  8. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  9. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  10. Photolabile protection for amino acids: studies on the release from novel benzoquinolone cages.

    Science.gov (United States)

    Fonseca, Andrea S C; Soares, Ana M S; Gonçalves, M Sameiro T; Costa, Susana P G

    2015-12-01

    The synthesis of a novel fused nitrogen heterocycle, benzoquinolone, for evaluation as a photocleavable protecting group is described for the first time by coupling to model amino acids (alanine, phenylalanine and glutamic acid). Conversion of the phenylalanine ester conjugate to the thionated derivative was accomplished by reaction with Lawesson's reagent. Photocleavage studies of the carbonyl and thiocarbonyl benzoquinolone conjugates in various solvents and at different wavelengths (300, 350 and 419 nm) showed that the most interesting result was obtained at 419 nm for the thioconjugate, revealing that the presence of the thiocarbonyl group clearly improved the photolysis rates, giving practicable irradiations times for the release of the amino acids (less than 1 min).

  11. RELEASE OF INTROGENOUS SUBSTANCES BY BREWER'S YEAST. 3. SHOCK EXCRETION OF AMINO ACIDS.

    Science.gov (United States)

    LEWIS, M J; PHAFF, H J

    1964-06-01

    Lewis, M. J. (University of California, Davis), and H. J. Phaff. Release of nitrogenous substances by brewers' yeast. III. Shock excretion of amino acids. J. Bacteriol. 87:1389-1396. 1964.-When Saccharomyces carlsbergensis (two strains) and S. cerevisiae (one strain) were grown in static culture and the harvested, washed cells were suspended in a solution of glucose, amino acids were suddenly released and then rapidly reabsorbed in a space of about 2 hr. The phenomenon of amino acid release, which was termed shock excretion, varied in intensity with the strain of yeast and was shown to be dependent on the size of the pool of free amino acids within the cells. Shock excretion was independent of osmotic pressure of the suspending medium, but required the presence of a fermentable sugar. d-Galactose and maltose caused shock excretion only when yeast was previously adapted to these sugars. Limiting glucose concentrations prevented reabsorption of amino acids, and a further decrease in glucose concentration also limited excretion. Shock excretion was strikingly reduced when the temperature of the suspending medium was lowered.

  12. Controlled Release of 5-Aminosalicylic Acid (5-ASA from New Biodegradable Polyurethanes

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2010-03-01

    Full Text Available Segmented polyurethanes containing azo aromatic groups in the main chain were synthesized by reaction of 3,3'-azobis(6-hydroxybenzoic acid (ABHB, 5-[4-(hydroxyphenylazo] salicylic acid (HPAS, and 5-[1-hydroxynaphthylazo] salicylic acid (HNAS with hexamethylenediisocyanate (HDI. All synthesized monomers and polymers were characterized by elemental analysis, FTIR, 1H-NMR spectra, TGA and DSC analysis. All the synthesized azo polymers showed good thermal stability and the onset decomposition temperature of all these polymers was found to be above 195 ºC under nitrogen atmosphere.The release of 5-ASA under physiological conditions (pH = 7.8 and pH = 1.5 was investigated at body temperature (37 ºC. The release rate of 5-ASA increased with increasing pH (i.e., 7.8 > 1.5.

  13. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia

    Institute of Scientific and Technical Information of China (English)

    Peilong Lu; Dan Ma; Yuling Chen; Yingying Guo; Guo-Qiang Chen; Haiteng Deng; Yigong Shi

    2013-01-01

    Bacteria,exemplified by enteropathogenic Escherichia coli (E.coli),,rely on elaborate acid resistance systems to survive acidic environment (such as the stomach).Comprehensive understanding of bacterial acid resistance is important for prevention and clinical treatment.In this study,we report a previously uncharacterized type of acid resistance system in E.coli that relies on L-glutamine (Gln),one of the most abundant food-borne free amino acids.Upon uptake into E.coli,Gln is converted to L-glutamate (Glu) by the acid-activated glutaminase YbaS,with concomitant release of gaseous ammonia.The free ammonia neutralizes proton,resulting in elevated intracellular pH under acidic environment.We show that YbaS and the amino acid antiporter GadC,which exchanges extracellular Gln with intracellular Glu,together constitute an acid resistance system that is sufficient for E.coli survival under extremely acidic environment.

  14. Acacia-gelatin microencapsulated liposomes: preparation, stability, and release of acetylsalicylic acid.

    Science.gov (United States)

    Dong, C; Rogers, J A

    1993-01-01

    Liposomes of dipalmitoylphosphatidylcholine (DPPC) containing acetylsalicylic acid (ASA) have been microencapsulated by acacia-gelatin using the complex coacervation technique as a potential oral drug delivery system. The encapsulation efficiency of ASA was unaltered by the microencapsulation process. The stability of the microencapsulated liposomes in sodium cholate solutions at pH 5.6 was much greater than the corresponding liposomes. The optimum composition and conditions for stability and ASA release were 3.0% acacia-gelatin and a 1- to 2-hr formaldehyde hardening time. Approximately 25% ASA was released in the first 6 hr from microencapsulated liposomes at 23 degrees C and the kinetics followed matrix-controlled release (Q varies; is directly proportional to t1/2). At 37 degrees C, this increased to 75% released in 30 min followed by a slow constant release, likely due to lowering of the phase transition temperature of DPPC by the acacia-gelatin to near 37 degrees C. At both temperatures, the release from control liposomes was even more rapid. Hardening times of 4 hr and an acacia-gelatin concentration of 5% resulted in a lower stability of liposomes and a faster release of ASA. It is concluded that under appropriate conditions the microencapsulation of liposomes by acacia-gelatin may increase their potential as an oral drug delivery system. PMID:8430052

  15. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid-Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray.

    Science.gov (United States)

    Wang, Miaomiao; Wang, Yuanwen; Omari-Siaw, Emmanuel; Wang, Shengli; Zhu, Yuan; Xu, Ximing

    2016-08-01

    In this study, using the coaxial electrospray method, we prepared submicron particles of the water-soluble drug shikimic acid (SA) with polylactic acid (PLA) as a polymer, to reduce the burst release and enhance the oral bioavailability. In vitro release study performed in HCl solution (pH 1.2) showed that the coaxial electrospray submicron particles could reduce burst release effect and presented a sustained release profile, compared with free SA and the particles prepared by electrospray method. The absorption of SA in the intestinal tract, studied using an in situ perfusion method in rats, also revealed jejunum as the main absorptive segment followed by duodenum and ileum. Moreover, the SA-loaded particles greatly enhanced the absorption of SA in the tested intestinal segments. The intestinal absorption rate was not enhanced with increasing drug concentration (5-15 μg/mL) which suggested that active transport or facilitated diffusion could play vital role in SA absorption. In addition, the SA-loaded PLA coaxial electrospray particle exhibited a prolonged plasma circulation with enhanced bioavailability after oral administration. In all, the coaxial electrospray technique could provide notable advantages for the oral delivery of SA, thereby enhancing its clinical application.

  16. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    Directory of Open Access Journals (Sweden)

    Wen-Hao Wei

    2015-03-01

    Full Text Available Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD chemical conjugate with different degree of substitution (DS of deoxycholic acid (DOCA were prepared. The degree of substitution (DS was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX as the model drug. The human cervical cancer (HeLa cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE, which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy.

  17. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits

    OpenAIRE

    Xiao, Yang; LI, LAI-LAI; Guo, Jing-Jing; XU, WEN-PING; Wang, Yan-Yan; Wang, Yi

    2014-01-01

    This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was signifi...

  18. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    Science.gov (United States)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2015-12-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  19. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    Science.gov (United States)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2016-10-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  20. Ibuprofen-loaded poly(lactic-co-glycolic acid films for controlled drug release

    Directory of Open Access Journals (Sweden)

    Pang JM

    2011-04-01

    Full Text Available Jianmei Pang1, Yuxia Luan1, Feifei Li1, Xiaoqing Cai1, Jimin Du2, Zhonghao Li31School of Pharmaceutical Science, Shandong University, Jinan, Shandong Province, PR China; 2School of Chemistry and Chemical Engineering, Anyang Normal University, Henan Province, PR China; 3School of Materials Science and Engineering, Shandong University, Jinan, Shandong Province, PR ChinaAbstract: Ibuprofen- (IBU loaded biocompatible poly(lactic-co-glycolic acid (PLGA films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.Keywords: ibuprofen, controlled release, poly(lactic-co-glycolic acid, films

  1. Asynchronous Reductive Release of Iron and Organic Carbon from Hematite-Humic Acid Complexes

    Science.gov (United States)

    Adhikari, D.; Poulson, S.; Sumaila, S.; Dynes, J.; McBeth, J. M.; Yang, Y.

    2015-12-01

    Association with solid-phase iron plays an important role in the accumulation and stabilization of soil organic matter (SOM). Ferric minerals are subject to redox reactions, which can compromise the stability of iron-bound SOM. To date, there is limited information available concerning the fate of iron-bound SOM during redox reactions. In this study, we investigated the release kinetics of hematite-bound organic carbon (OC) during the abiotic reduction of hematite-humic acid (HA) complexes by dithionite, as an analog for the fate of iron-bound SOM in natural redox reactions. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to examine the ratio of the aromatic, phenolic and carboxylic/imide functional groups of the adsorbed OC before and after reduction. Our results indicate that the reductive release of iron obeyed first-order kinetics with release rate constants of 6.67×10-3 to 13.0×10-3 min-1. The iron-bound OC was released rapidly during the initial stage with release rate constants of 0.011 to 1.49 min-1, and then became stable with residual fractions of 4.6% to 58.2% between 120 and 240 min. The release rate of aromatic OC was much faster than for the non-aromatic fraction of HA, and 90% of aromatic OC was released within the first hour for most samples. The more rapid release of aromatic OC was attributed to its potential distribution on the outer layer because of steric effects and the possible reduction of quinoids. Our findings show that in the reductive reaction the mobilization of iron-bound organic carbon was asynchronous with the reduction of iron, and aromatic carbon was released more readily than other organic components. This study illustrates the importance of evaluating the stability of iron-bound SOM, especially under aerobic-anaerobic transition conditions.

  2. Microbial release of 2,4-dichlorophenyl bound to humic acid or incorporated during humification

    International Nuclear Information System (INIS)

    The microbial release of 14C-labeled 2,4-dichlorophenol (DCP) bound to synthetic and natural humic materials or polymerized by enzymes was investigated to evaluate the possibility of future adverse effects if binding or polymerization is used for decontamination purposes. After 12 wk of incubation with microorganisms obtained from a forest soil, the amounts of substances released into the media were very small (maximum 2.2% of the initially bound 14C) without regard to the kind of the polymer into which 14C-DCP was incorporated. Most of the radioactivity (46.2 to 80.8%) remained bound to the precipitated humic materials or in the DCP-polymer (90.1 to 97.0%). Certain amounts of the released substances evolved in the form of 14CO2 (1.0 to 9.4% from humic materials and 0 to 0.5% from a DCP-polymer). The rate of mineralization differed depending on the type of DCP binding - surface-bound or incorporated during synthesis of humic acid - and on the kind of polymer to which 14C-DCP was attached. The release into the media and 14CO2 evolution for synthetic and natural humic acids was essentially the same. When only DCP was present in the growth medium, the formation of 14CO2 was less than from a DCP-humic acid complex; this may indicate that 14CO2 from a DCP-humic acid complex originated mostly from DCP derivatives. The data obtained for DCP did not provide any evidence for a delayed pollution problem associated with polymerization or binding of xenobiotics to humic acids

  3. Intracellular release of rapamycin from poly (lactic acid) nanospheres modifies autophagy.

    Science.gov (United States)

    Nagata, Junpei; Matsui, Makoto; Tabata, Yasuhiko

    2016-09-01

    The objective of this study is to investigate the autophagy activity of cells by the intracellular release of rapamycin (Rapa) of an autophagy inducer. Rapa was incorporated into nanospheres of poly (lactic-co-glycolic acid) (PLGA) for the controlled release of Rapa. Rapa was released from the PLGA nanospheres incorporating rapamycin (Rapa-PLGA-NS) with time while the Rapa-PLGA-NS were hydrolytically degraded. When human hepatocellular carcinoma (HepG2) cells were incubated with the Rapa-PLGA-NS, the Rapa-PLGA-NS were internalized, and the intracellular concentration was maintained over four days, indicating the intracellular Rapa release. The microtubule-associated protein 1 light chain (LC3) of an autophagy marker was significantly high for the Rapa-PLGA-NS group compared with the free Rapa group even after four days incubation. In addition, intracellular harmful ubiquitinated proteins were degraded by the intracellular release of Rapa even after four days incubation in contrast to free Rapa. It is concluded that the intracellular Rapa release is effective in modulating the autophagy activity over a longer time period. PMID:27320771

  4. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    Science.gov (United States)

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  5. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    Science.gov (United States)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.; Glass, Leslie L.; Schoonjans, Kristina; Holst, Jens J.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber–mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  6. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne;

    2015-01-01

    BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic......) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  7. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe3O4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  8. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  9. Controlled Release of Doxorubicin from Doxorubicin/γ-Polyglutamic Acid Ionic Complex

    Directory of Open Access Journals (Sweden)

    Bhavik Manocha

    2010-01-01

    Full Text Available Formation of drug/polymer complexes through ionic interactions has proven to be very effective for the controlled release of drugs. The stability of such drug/polymer ionic complexes can be greatly influenced by solution pH and ionic strength. The aim of the current work was to evaluate the potential of γ-polyglutamic acid (γ-PGA as a carrier for the anticancer drug, Doxorubicin (DOX. We investigated the formation of ionic complexes between γ-PGA and DOX using scanning electron microscopy, spectroscopy, thermal analysis, and X-ray diffraction. Our studies demonstrate that DOX specifically interacts with γ-PGA forming random colloidal aggregates and results in almost 100% complexation efficiency. In vitro drug release studies illustrated that these complexes were relatively stable at neutral pH but dissociates slowly under acidic pH environments, facilitating a pH-triggered release of DOX from the complex. Hydrolytic degradation of γ-PGA and DOX/γ-PGA complex was also evaluated in physiological buffer. In conclusion, these studies clearly showed the feasibility of γ-PGA to associate cationic drug such as DOX and that is may serve as a new drug carrier for the controlled release of DOX in malignant tissues.

  10. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol.

    Science.gov (United States)

    Castro, D O; Tabary, N; Martel, B; Gandini, A; Belgacem, N; Bras, J

    2016-12-01

    Current investigations deal with new surface functionalization strategy of nanocrystalline cellulose-based substrates to impart active molecule release properties. In this study, cellulose nanocrystals (CNC) were surface-functionalized with β-cyclodextrin (β-CD) using succinic acid (SA) and fumaric acid (FA) as bridging agents. The main objective of this surface modification performed only in aqueous media was to obtain new active materials able to release antibacterial molecules over a prolonged period of time. The reactions were conducted by immersing the CNC film into a solution composed of β-CD, SA and FA, leading to CNC grafting. The materials were characterized by infrared spectroscopy (FT-IR), Quartz crystal microbalance-dissipation (QCM-D), AFM and phenolphthalein (PhP) was used to determine the efficiency of CNC grafting with β-CD. The results indicated that β-CD was successfully attached to the CNC backbone through the formation of ester bonds. Furthermore, carvacrol was entrapped by the attached β-CD and a prolonged release was confirmed. In particular, CNC grafted to β-CD in the presence of FA was selected as the best solution. The antibacterial activity and the controlled release were studied for this sample. Considerably longer bacterial activity against B. subtilis was observed for CNC grafted to β-CD compared to CNC and CNC-FA, confirming the promising impact of the present strategy. PMID:27612798

  11. Impact of Montmorillonite and Calcite on Release and Adsorption of Cyanobacterial Fatty Acids at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Liu Deng; Yang Xiaofen; Wang Hongmei; Li Jihong; Su Nian

    2008-01-01

    Minerals might act as important sorbents of sedimentary organic matter and reduce biodegradation, which favors the formation of hydrocarbon source rocks in the earth's history. Since most organic matter is degraded during the sinking process, at ambient temperature, it is important to investigate the adsorption capacity of different minerals during this process, to assess the organic loss from primary productivity to sedimentary organic matter. In this study, montmorillonite and calcite have been selected to study the impact of different minerals on the release, adsorption, and deposition of cyanobacterial (Synechococcus elonpata) fatty acids (FAs) at ambient temperature. Gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) have been utilized to detect the variation in fatty acids. Primary results suggest that minerals have a different impact on dissolved organic matter. Montmorillonite can specifically enhance the release of fatty acids from cyanobacterial cells by lowering the pH values of the solution. The adsorption of the dissolved organic matter by montmorillonite will also be enhanced under a lower pH value. Conjunction of fatty acids with montmorillonite to form a complex will favor the sinking and preservation of these organics. Selective adsorption is observed among fatty acids with different carbon numbers. In contrast, calcite does not show any impact on the release and adsorption of organic matter even though it is reportedly capable of acting as a catalyst during the transformation of organic matter at high temperature. The primary data bridge a link between primary productivity and sedimentary organic matter, suggesting the relative importance of claystoncs in the formation of hydrocarbon source rocks in the earth's history.

  12. Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers

    Directory of Open Access Journals (Sweden)

    Lyndon Jones

    2012-04-01

    Full Text Available The purpose of this study was to determine the effect of the covalent incorporation of hyaluronic acid (HA into conventional hydrogel and hydrogels containing silicone as models for contact lens materials on the uptake and release of the fluoroquinolone antibiotic ciprofloxacin and the anti-inflammatory steroid dexamethasone phosphate. A 3 mg/mL ciprofloxacin solution (0.3% w/v and a 1 mg/mL dexamethasone phosphate solution (0.1% was prepared in borate buffered saline. Three hydrogel material samples (pHEMA; pHEMA TRIS; DMAA TRIS were prepared with and without the covalent incorporation of HA of molecular weight (MW 35 or 132 kDa. Hydrogel discs were punched from a sheet of material with a uniform diameter of 5 mm. Uptake kinetics were evaluated at room temperature by soaking the discs for 24 h. Release kinetics were evaluated by placing the drug-loaded discs in saline at 34 °C in a shaking water bath. At various time points over 6–7 days, aliquots of the release medium were assayed for drug amounts. The majority of the materials tested released sufficient drug to be clinically relevant in an ophthalmic application, reaching desired concentrations for antibiotic or anti-inflammatory activity in solution. Overall, the silicone-based hydrogels (pHEMA TRIS and DMAA TRIS, released lower amounts of drug than the conventional pHEMA material (p < 0.001. Materials with HA MW132 released more ciprofloxacin compared to materials with HA MW35 and lenses without HA (p < 0.02. Some HA-based materials were still releasing the drug after 6 days.

  13. Polyunsaturated fatty acids and inflammation

    OpenAIRE

    Calder Philip C

    2004-01-01

    The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites) and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and ...

  14. Interleukin-2 stimulates osteoclastic activity: Increased acid production and radioactive calcium release

    International Nuclear Information System (INIS)

    Recombinant human interleukin-2 (IL-2) was studied to determine effects on acid production by individual osteoclasts in situ on mouse calvarial bones. This analysis was performed using a microspectrofluorimetric technique to quantify acid production in individual cells. Radioactive calcium release was determined using calvarial bones in a standard tissue culture system. This allowed us to correlate changes in acid production with a measure of bone resorption. IL-2 stimulated acid production and bone resorbing activity. Both effects were inhibited by calcitonin. No stimulation of bone resorption occurred when IL-2-containing test media was incubated with a specific anti-IL-2 antibody and ultrafiltered. Our data demonstrated a correlation between acid production and bone resorbing activity in mouse calvaria exposed to parathyroid hormone (PTH). The data obtained from cultured mouse calvaria exposed to IL-2 demonstrated similar stimulatory effects to those seen during PTH exposure. These data suggest that calvaria exposed to IL-2 in vitro have increased osteoclastic acid production corresponding with increased bone resorption. (author)

  15. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants.

    Science.gov (United States)

    Zhang, Feng; Meng, Fan; Lubach, Joseph; Koleng, Joseph; Watson, N A

    2016-08-01

    The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of

  16. Association between polymorphisms of arachidonate 12-lipoxygenase (ALOX12 and schizophrenia in a Korean population

    Directory of Open Access Journals (Sweden)

    Park Jin

    2010-07-01

    Full Text Available Abstract Arachidonic acid (AA, an essential polyunsaturated fatty acid, is one of the major components of neural membranes, which show an altered phospholipid composition in schizophrenia. Arachidonate 12-lipoxygenase (ALOX12, an important enzyme, metabolizes AA to 12-HPETE, which affects catecholamine synthesis. However, research has yet to show the genetic association between ALOX12 and schizophrenia. Therefore, we investigated single nucleotide polymorphisms (SNP of the ALOX12 gene in schizophrenia, recruiting patients with schizophrenia (n = 289 and normal controls (n = 306 from a Korean population. We selected three SNPs (rs1126667, rs434473, and rs1042357 of the ALOX12 gene and genotyped them by direct sequencing. We reviewed the schizophrenic patients' medical records and assessed them clinically using the Brief Psychiatric Rating Scale (BPRS, the Scale for the Assessment of Negative Symptoms (SANS, and the Operational Criteria Checklist (OPCRIT. Then we statistically analyzed the genetic associations between the SNPs and schizophrenia, finding a genetic association between both rs1126667 and rs1042357 and schizophrenia, in the recessive model (p = 0.015 and 0.015, respectively. We also found an association between rs434473 and negative symptoms, defined through a factor analysis of the OPCRIT data (p = 0.040. Consequently, we suggest that SNPs of the ALOX12 gene might be associated with schizophrenia and negative symptoms in this Korean population. These weak positives require additional study.

  17. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  18. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    Science.gov (United States)

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself. PMID:27017266

  19. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels.

    Science.gov (United States)

    Ribeiro, Jéssica C Bigaski; Granato, Daniel; Masson, Maria Lucia; Andriot, Isabelle; Mosca, Ana Carolina; Salles, Christian; Guichard, Elisabeth

    2016-09-15

    The food industry is investigating new technological applications of lactobionic acid (LBA). In the current work, the effect of lactobionic acid on the acidification of dairy gels (pH 5.5 and 6.2), rheological properties using a double compression test, sodium mobility using (23)Na NMR technique and aroma release using headspace GC-FID were studied. Our results showed that it is possible to use LBA as an alternative to glucono-δ-lactone (GDL) for the production of dairy gels with a controlled pH value. Small differences in the rheological properties and in the amount of aroma volatile organic compounds that were released in the vapour phase, but no significant difference in the sodium ion mobility were obtained. The gels produced with LBA were less firm and released less volatile aroma compounds than the gels produced with GDL. The gels at pH 6.2 were firmer than those at pH 5.5 and had a more organised structure around the sodium ions. PMID:27080885

  20. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    Science.gov (United States)

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  1. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    Science.gov (United States)

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  2. Inhibition of bleomycin-induced pulmonary fibrosis by nordihydroguaiaretic acid. The role of alveolar macrophage activation and mediator production.

    OpenAIRE

    Phan, S. H.; Kunkel, S L

    1986-01-01

    The role of alveolar macrophage activation and release of mediators remains unclear. In this study, this role is examined with respect to the effects of relatively selective inhibitors of arachidonate metabolism on the pathogenesis of pulmonary fibrosis. CBA/J mice were administered bleomycin (0.037 units) endotracheally to induce pulmonary fibrosis. Daily intraperitoneal injections of a lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA) inhibited pulmonary fibrosis in a dose-dependent ...

  3. Exposure or release of ferulic acid from wheat aleurone: impact on its antioxidant capacity.

    Science.gov (United States)

    Rosa, Natalia N; Dufour, Claire; Lullien-Pellerin, Valérie; Micard, Valérie

    2013-12-01

    The relationship between the aleurone cell integrity and the exposure or release of bioavailable ferulic acid (FA) with the antioxidant capacity of aleurone in in vitro and under simulated gastric conditions was explored. The antioxidant capacity of aleurone was increased by around 2-fold when its median particle size was reduced to under 50 μm. The opening of aleurone cells increased the physical exposure of FA bound to the insoluble polysaccharides, which seemed to be responsible of the increased antioxidant capacity. Synergistic combination of xylanase and feruloyl esterase was found to be the most efficient enzymatic treatment releasing up to 86% of total FA in bioaccessible forms. This enzymatic treatment significantly enhanced the radical scavenging activity of aleurone by up to 4-fold, which overlapped the overall antioxidant potential estimated from the total content of FA in aleurone. The improvement in the antioxidant capacity of aleurone was also observed in the simulated gastric digestion by inhibition of lipid oxidation.

  4. Effect of arachidonic acid supplementation and cyclooxygenase/lipoxygenase inhibition on the development of early bovine embryos Influência do ácido araquidónico e da inibição da ciclo-oxigenase ou lipo-oxigenase no desenvolvimento inicial de embriões bovinos

    Directory of Open Access Journals (Sweden)

    Rosa Maria Pereira

    2006-04-01

    Full Text Available The effect of arachidonic acid (AA cascade on bovine embryo development in a granulosa cell co-culture system was studied. Arachidonic acid (100 µM was supplemented from 1-cell to 8-16 cell block stage (first three days of co-culture and from 1-cell to hatching. Specific cyclooxygenase (indomethacin, 28 µM and lipoxygenase (nordihydroguaiaretic acid - NDGA, 28 µM inhibitors were used from 1-cell to 8-16 cell block stage with AA. Embryo development was assessed by cleavage, day 7-day 8 and hatched embryo rates and by measuring growth rates through development stages found in days 7-10 of culture (day 0 = insemination day. Embryo quality was scored at day 8. A 6.5-10.4% increase on cleavage rate after AA supplementation was found. This AA supplementation from 1-cell to hatching delayed embryo growth rate beyond day 7 and a reduction on hatching rate was detected. When AA supplementation was restricted to the first three days of co-culture those negative effects were overcome. Also, indomethacin and NDGA prevented the positive effect of AA and induced a significant reduction on cleavage, respectively. NDGA further decreased day 7 embryo rate and quality. Results suggest that AA has a two-phase action on bovine embryos, promoting early development and impairing embryo growth from day 7 onwards and hatching rates. Both cyclooxygenase and lipoxygenase were found to be important pathways to promote cleavage.Estudou-se a influência da cascata do ácido araquidónico (AA no desenvolvimento de embriões bovinos produzidos in vitro em co-cultura com células da granulosa. Os embriões foram suplementados com AA (100 µM desde o estádio de 1 célula até 8-16 células (primeiros três dias de co-cultura ou até a eclosão. Introduziram-se inibidores específicos da ciclo-oxigenase (indometacina, 28 µM e da lipo-oxigenase (ácido nordihidroguaiarético - NDGA, 28 µM, juntamente com o ácido araquidónico, desde o estádio de 1 célula até 8-16 c

  5. Effect of molecular weight and glass transition on relaxation and release behaviour of poly(DL-lactic acid) tablets

    NARCIS (Netherlands)

    Steendam, R.; Van Steenbergen, M.J.; Hennink, W.E.; Frijlink, H.W.; Lerk, C.F.

    2001-01-01

    Different molecular weight grades of poly(DL-lactic acid) were applied as release controlling excipients in tablets for oral drug administration. The role of molecular weight and glass transition in the mechanism of water-induced volume expansion and drug release of PDLA tablets was investigated. Mo

  6. Release of anti-restenosis drugs from poly(ethylene oxide)-poly (DL-lactic-co-glycolic acid) nanoparticles

    NARCIS (Netherlands)

    Zweers, Miechel L. T.; Engbers, Gerard H. M.; Grijpma, Dirk W.; Feijen, Jan

    2006-01-01

    Dexamethasone- or rapamycin-loaded nanoparticles based on poly(ethylene oxide) and poly(DL-lactic-co-glycolic acid) block copolymers (PEO-PLGA) were prepared without additional stabilizer using the salting-out method. A fast release of drug in PBS (PH 7.4) at 37 degrees C resulting in 100% release w

  7. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles

    NARCIS (Netherlands)

    Zweers, Miechel L.T.; Engbers, Gerard H.M.; Grijpma, Dirk W.; Feijen, Jan

    2006-01-01

    Dexamethasone- or rapamycin-loaded nanoparticles based on poly(ethylene oxide) and poly(dl-lactic-co-glycolic acid) block copolymers (PEO-PLGA) were prepared without additional stabilizer using the salting-out method. A fast release of drug in PBS (pH 7.4) at 37 °C resulting in 100% release within 5

  8. Release of Ciprofloxacin-HCl and Dexamethasone Phosphate by Hyaluronic Acid Containing Silicone Polymers

    OpenAIRE

    Lyndon Jones; Elizabeth Joyce; Heather Sheardown; Miriam Heynen; Andrea Weeks; Alex Hui; Darrene Nguyen

    2012-01-01

    The purpose of this study was to determine the effect of the covalent incorporation of hyaluronic acid (HA) into conventional hydrogel and hydrogels containing silicone as models for contact lens materials on the uptake and release of the fluoroquinolone antibiotic ciprofloxacin and the anti-inflammatory steroid dexamethasone phosphate. A 3 mg/mL ciprofloxacin solution (0.3% w/v) and a 1 mg/mL dexamethasone phosphate solution (0.1%) was prepared in borate buffered saline. Three hydrogel mater...

  9. Acacetin inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available An excessive release of glutamate is considered to be a molecular mechanism associated with several neurological diseases that causes neuronal damage. Therefore, searching for compounds that reduce glutamate neurotoxicity is necessary. In this study, the possibility that the natural flavone acacetin derived from the traditional Chinese medicine Clerodendrum inerme (L. Gaertn is a neuroprotective agent was investigated. The effect of acacetin on endogenous glutamate release in rat hippocampal nerve terminals (synaptosomes was also investigated. The results indicated that acacetin inhibited depolarization-evoked glutamate release and cytosolic free Ca(2+ concentration ([Ca(2+]C in the hippocampal nerve terminals. However, acacetin did not alter synaptosomal membrane potential. Furthermore, the inhibitory effect of acacetin on evoked glutamate release was prevented by the Cav2.2 (N-type and Cav2.1 (P/Q-type channel blocker known as ω-conotoxin MVIIC. In a kainic acid (KA rat model, an animal model used for excitotoxic neurodegeneration experiments, acacetin (10 or 50 mg/kg was administrated intraperitoneally to the rats 30 min before the KA (15 mg/kg intraperitoneal injection, and subsequently induced the attenuation of KA-induced neuronal cell death and microglia activation in the CA3 region of the hippocampus. The present study demonstrates that the natural compound, acacetin, inhibits glutamate release from hippocampal synaptosomes by attenuating voltage-dependent Ca(2+ entry and effectively prevents KA-induced in vivo excitotoxicity. Collectively, these data suggest that acacetin has the therapeutic potential for treating neurological diseases associated with excitotoxicity.

  10. Whole Blood Platelet Aggregation and Release Reaction Testing in Uremic Patients

    Directory of Open Access Journals (Sweden)

    Jay Zeck

    2013-01-01

    Full Text Available Background. Platelet function analysis utilizing platelet-rich plasma and optical density based aggregometry fails to identify patients at risk for uremia associated complications. Methods. We employed whole blood platelet aggregation analysis based on impedance as well as determination of ATP release from platelet granules detected by a chemiluminescence method. Ten chronic kidney disease (CKD stage 4 or 5 predialysis patients underwent platelet evaluation. Our study aims to evaluate this platform in this patient population to determine if abnormalities could be detected. Results. Analysis revealed normal aggregation and ATP release to collagen, ADP, and high-dose ristocetin. ATP release had a low response to arachidonic acid (0.37 ± 0.26 nmoles, reference range: 0.6–1.4 nmoles. Platelet aggregation to low-dose ristocetin revealed an exaggerated response (20.9 ± 18.7 ohms, reference range: 0–5 ohms. Conclusions. Whole blood platelet analysis detected platelet dysfunction which may be associated with bleeding and thrombotic risks in uremia. Diminished ATP release to arachidonic acid (an aspirin-like defect in uremic patients may result in platelet associated bleeding. An increased aggregation response to low-dose ristocetin (a type IIb von Willebrand disease-like defect is associated with thrombus formation. This platelet hyperreactivity may be associated with a thrombotic diathesis as seen in some uremic patients.

  11. Gossypol-cross-linked boronic acid-modified hydrogels: a functional matrix for the controlled release of an anticancer drug.

    Science.gov (United States)

    Heleg-Shabtai, Vered; Aizen, Ruth; Orbach, Ron; Aleman-Garcia, Miguel Angel; Willner, Itamar

    2015-02-24

    Anticancer drug gossypol cross-links phenylboronic acid-modified acrylamide copolymer chains to form a hydrogel matrix. The hydrogel is dissociated in an acidic environment (pH 4.5), and its dissociation is enhanced in the presence of lactic acid (an α-hydroxy carboxylic acid) as compared to formic acid. The enhanced dissociation of the hydrogel by lactic acid is attributed to the effective separation of the boronate ester bridging groups through the formation of a stabilized complex between the boronic acid substituent and the lactic acid. Because lactic acid exists in cancer cells in elevated amounts and the cancer cells' environment is acidic, the cross-linked hydrogel represents a stimuli-responsive matrix for the controlled release of gossypol. The functionality is demonstrated and characterized by rheology and other spectroscopic means. PMID:25664656

  12. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast. PMID:14759156

  13. Effect of Thiopental Sodium on the Release of Glutamate and γ-aminobutyric Acid from Rats Prefrontal Cortical Synaptosomes

    Institute of Scientific and Technical Information of China (English)

    刘红亮; 姚尚龙

    2004-01-01

    To investigate the effect of thiopental sodium on the release of glutamate and γ-aminobutyric acid (GABA) from synaptosomes in the prefrontal cortex, synaptosomes were made, the spontaneous release and the evoked release by 30 mmol/L KCl or 20 μmol/L veratridine of glutamate and GABA were performed under various concentrations of thiopental sodium (10-300μmol/L), glutamate and GABA concentrations were determined by reversed-phase high-performance liquid chromatography. Our results showed that spontaneous release and evoked release of glutamate were significantly inhibited by 30μmol/L, 100 μmol/L and 300 μmol/L thiopental sodium, IC50 of thiopental sodium was 25.8±2.3 μmol/L for the spontaneous release, 23.4±2.4 μmol/L for KClevoked release, and 24.3±1.8 μmol/L for veratridine-evoked release. But GABA spontaneous release and evoked release were unaffected. The study showed that thiopental sodium with clinically related concentrations could inhibit the release of glutamate, but had no effect on the release of GABA from rats prefrontal cortical synaptosomes.

  14. Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi, E-mail: nidhiandhariya@gmail.com [Thapar University, School of Physics and Materials Science (India); Upadhyay, Ramesh [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India); Mehta, Rasbindu [Maharaja Krishnakumarsinhji Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India)

    2013-01-15

    Targeting tumors by means of their vascular endothelium is a promising strategy, which utilizes targets that are easily accessible, stable, and do not develop resistance against therapeutic agents. Folate receptor is a highly specific tumor marker, frequently over expressed in cancer tumors. In the present study, an active drug delivery system, which can effectively target cancer cells by means of folate receptor-mediated endocytosis, have ability to escape from opsonization and capability of magnetic targeting to withstand the drag force of the body fluid have been designed and synthesized. The core of the drug delivery system is of mono-domain magnetic particles of magnetite. Magnetite nanoparticles are shielded with PEG, which prevents their phagocytosis by reticuloendothelial system. These PEG shielded magnetite nanoparticles are further decorated with an antitumor receptor-folic acid and loaded with an antineoplastic agent doxorubicin. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 52 % of drug load and can release doxorubicin over a sustained period of 7 days. The control and sustained release over a period of several days may find its practical utilities in chemotherapy where frequent dosing is not possible.

  15. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  16. Controlled release and enhanced antibacterial activity of salicylic acid by hydrogen bonding with chitosan☆

    Institute of Scientific and Technical Information of China (English)

    Zujin Yang; Yanxiong Fang; Hongbing Ji

    2016-01-01

    Microcapsules of salicylic acid (SA) with chitosan were prepared by spray drying method. Various analytical methods were used to characterize the nature of microcapsules. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions between chitosan and SA. Particle size analysis showed that the average size of microcapsules ranged from 2 to 20μm. Scanning electron microscopy (SEM) studies indicated that the microspheres were spherical and had a relatively smooth surface. Microbiological assay of antibacterial activity for SA and its microcapsules was measured using different bacterial strains. It was found that the antibacterial activity of SA was improved after the formation of microcapsules. The in vitro release profile showed that the microcapsules could control SA release from 1 h to 4 h. Kinetic studies revealed that the release pattern follows Korsmeyer–Peppas mechanism. Enhanced antibacterial activity of the SA micro-capsules was attributed to the synergistic effects of intermolecular hydrogen-bonding interactions N–H⋯O and O–H⋯O_C between SA and chitosan. It was also confirmed by quantum chemical calculation.

  17. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  18. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    Science.gov (United States)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  19. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    Directory of Open Access Journals (Sweden)

    Jurkić Lela Munjas

    2013-01-01

    Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  20. [Absolute bioavailability of a special sustained-release acetylsalicylic acid formulation].

    Science.gov (United States)

    Lücker, P W; Swoboda, M; Wetzelsberger, N

    1989-03-01

    Absolute Bioavailability of a Special Acetylsalicylic Acid Sustained Release Formulation. The absolute bioavailability of an acetylsalicylic acid (ASA) sustained release formulation (Contrheuma retard), containing 300 mg ASA as initial dose and 350 mg in a retard formulation, was determined in comparison to a standard ASA solution for intravenous administration in a two-treatment, two-period cross-over trial with 6 healthy male volunteers by comparing the areas under the plasma-fluctuation-time curves of the primary metabolite. In addition, it was examined by comparison of the mean times after administration of both formulations, whether the test formulation meets the requirements of a sustained release formulation. The investigations led to the following results: The absolute bioavailability of the test formulation was 95%. The statistical comparison of the areas under the concentration-time courses allowed no decision (neither for equivalence nor difference). The maximal concentration of SA after intravenous administration of the standard formulation was reached after 0.4 h on an average and amounted to 62 micrograms/ml. After oral administration of the test formulation, a mean concentration maximum of 28 micrograms/ml was calculated, which had been reached after about 2 h. The differences are statistically significant. The mean time for SA was 6 h after the standard formulation, whereas after administration of the test compound, a mean of 11.5 h was calculated. 24 h following administration, the concentration of SA was 1.3 micrograms/ml after intravenous administration of the standard formulation and 5.5 micrograms/ml after administration of the test formulation. These differences, too, are statistically significant. From the comparison of the mean time for SA, a retard factor of 1.9 was calculated. PMID:2757664

  1. Enhancement of mononuclear procoagulant activity by platelet 12-hydroxyeicosatetraenoic acid.

    OpenAIRE

    Lorenzet, R; Niemetz, J; Marcus, A J; Broekman, M J

    1986-01-01

    Platelets induce generation of procoagulant tissue factor activity (TFa) by mononuclear leukocytes, and also enhance the TFa induced by endotoxin. Our present investigation demonstrated that arachidonic acid, which by itself had no effect on mononuclear TFa, greatly enhanced platelet-induced TFa. The effect was concentration dependent for both platelets and arachidonate (1-20 microM); other fatty acids tested were inactive. The enhancing effect of arachidonate was more pronounced if platelets...

  2. Ethacrynic acid inhibition of histamine release from rat mast cells: effect on cellular ATP levels and thiol groups

    DEFF Research Database (Denmark)

    Johansen, Torben

    1983-01-01

    The experiments concerned the effect of ethacrynic acid (0.5 mM) on the adenosine triphosphate (ATP) content of rat mast cells and the effect on histamine release induced by the ionophore A23187 (10 microM). Ethacrynic acid decreased the ATP level of the cells in presence of antimycin A and glucose...

  3. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid

    Indian Academy of Sciences (India)

    K Kumari; P P Kundu

    2008-04-01

    Interpenetrating polymer network (IPN) beads consisting of chitosan–glutamic acid were prepared for in vitro study of controlled release of chlorpheniramine maleate (CPM). A viscous solution of chitosan–glutamic acid was prepared in 2% acetic acid solution, extruded as droplets through a syringe to alkali–methanol solution and the precipitated beads were crosslinked using glutaraldehyde solution. Swelling and drug release studies were carried out. Transport of release medium through the semi-IPN depended upon its pH and extent of crosslinking. The structural and morphological studies of beads were carried out by using a scanning electron microscope (SEM). The larger surface area of beads as well as their ease of handling makes them ideal agents of controlled release.

  4. Inhibition of release of taurine and excitatory amino acids in ischemia and neuroprotection.

    Science.gov (United States)

    Kimelberg, Harold K; Nestor, Nestor B; Feustel, Paul J

    2004-01-01

    Volume regulated anion channels (VRAC) have been extensively studied in purified single cell systems like cell cultures where they can be activated by cell swelling. This provides a convenient way of analyzing mechanisms and will likely lead to the holy grails of the field, namely the nature or natures of the volume sensor and the nature or natures of VRACs. Important reasons for such an understanding are that these channels are ubiquitous and have important physiological functions which under pathological conditions convert to deleterious effects. Here we summarize data showing the involvement of VRACs in ischemia-induced release of excitatory amino acids (EAAs) in a rat model of global ischemia. Using microdialysis studies we found that reversal of the astrocytic glutamate transporter and VRACs contribute about equally to the large initial release of EAAs and together account for around 80% of the total release. We used the very potent VRAC blocker, tamoxifen, to see if such inhibition of EAA release via VRACs led to significant neuroprotection. Treatment in the focal rat MCA occlusion model led to around 80% reduction in infarct size with an effective post initiation of ischemia therapeutic window of three hours. However, the common problem of other effects for even the most potent inhibitors pertains here, as tamoxifen has other, potentially neuroprotective, effects. Thus it inhibits nitrotyrosine formation, likely due to its inhibition of nNOS and reduction of peroxynitrite formation. Although tamoxifen cannot therefore be used as a test of the "VRAC-excitotxicity" hypothesis it may prove successful for translation of basic stroke research to the clinic because of its multiple targets.

  5. Effect of Organic Acids and Protons on Release of Non-Exchangeable NH4+ in Flooded Paddy Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Song; SHAO Xing-Hua; LIN Xian-Yong; H. W. SCHERER

    2005-01-01

    In a model experiment, which imitated the rhizosphere of rice, the effect of organic acids (oxalic acid, citric acid) and protons on the release of non-exchangeable NH4+ and the resin adsorption of N was studied in a paddy soil, typical for Zhejiang Province, China. Oxalic and citric acids under low pH conditions, in combination with proton secretion, favored the mobilization of NH4+ ions and increased resin adsorption of N. The release of non-exchangeable NH4+ was associated with less formation of iron oxides. These could coat clay minerals and thus hinder the diffusion of NH4+ ions out of the interlayer. Protons enhanced the release of NH4+, and then they could enter the wedge zones of the clay minerals and displace non-exchangeable NH4+ ions.

  6. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    Science.gov (United States)

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.

  7. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    Science.gov (United States)

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  8. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance

    Indian Academy of Sciences (India)

    Giulia Bernardini; Federico Chellini; Bruno Frediani; Adriano Spreafico; Annalisa Santucci

    2015-03-01

    In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.

  9. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent

    Directory of Open Access Journals (Sweden)

    Hussein MZ

    2011-07-01

    Full Text Available Mohd Zobir Hussein1,2, Samer Hasan Al Ali2, Zulkarnain Zainal2, Muhammad Nazrul Hakim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, 2Department of Chemistry, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: An ellagic acid (EA–zinc layered hydroxide (ZLH nanohybrid (EAN was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8′ position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host–guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.Keywords: ellagic acid, nonaqueous solution, ZnO, zinc-layered hydroxide, viability test

  10. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    Science.gov (United States)

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment. PMID:27137808

  11. Encapsulation of Folic Acid in Zeolite Y for Controlled Release via Electric Field.

    Science.gov (United States)

    Paradee, Nophawan; Sirivat, Anuvat

    2016-01-01

    Zeolite Y/alginate hydrogel was used as a drug carrier/matrix for an electrophoresis transdermal drug delivery system. Folic acid (FA) as a model drug was loaded into the zeolite Y/alginate hydrogel via an ion-exchange process. The effects of cross-linking ratio, Si/Al ratio, electric field strength, and electrode polarity were investigated with respect to the release mechanism and diffusion coefficient (D) of FA using a modified Franz-diffusion cell. The FA was released from the matrix through the diffusion-controlled mechanism or Fickian diffusion because the diffusion scaling exponent value of FA was close to the value of 0.5. The D increased with an increasing cross-linking ratio and Si/Al ratio due to the mesh-size-promoting and the aluminum-content effects. The electric field strength enhanced the D of FA from the anode-FA electroreplusion. In addition, the D of FA could be varied by the electro-attractive or electro-repulsive force between the positively charged FA and the charged electrode depending on whether cathode or anode was placed on the drug matrix. Thus, the fabricated zeolite/hydrogel is of great potential to be used in an electrically controlled transdermal drug delivery system where drug diffusion can be precisely activated and controlled at the time of application.

  12. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    Science.gov (United States)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  13. The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics

    DEFF Research Database (Denmark)

    Chakraborti, Michelle; Jackson, John K.; Plackett, David;

    2012-01-01

    /clay complexes in poly(lactic-co-glycolic acid) films resulted in a reduced burst phase of release and a slow continuous release for many weeks with effective antimicrobial amounts of VAN and SF released at later time points. Layered double hydroxide clays may be useful for controlled release applications...

  14. Fast Release of Sulfosalicylic Acid from Polymer Implants Consisting of Regenerated Cellulose/γ-Ferric Oxide/Polypyrrole

    OpenAIRE

    Nargis A. Chowdhury; John Robertson; Ahmed Al-Jumaily; Ramos, Maximiano V.

    2014-01-01

    This work presents a comparative study on the rate of drug release from implantable matrices induced by electric and magnetic fields separately for better biomedical applications. The matrices were prepared by coating γ-ferric oxide dispersed regenerated cellulose film by polypyrrole doped with sulfosalicylic acid as an anti-inflammatory drug. The drug release mechanisms were studied under both the electric and the magnetic fields separately in an acetate buffer solution with pH 5.5 and tempe...

  15. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease

    OpenAIRE

    1992-01-01

    Human immunodeficiency virus (HIV) infection of brain macrophages and astroglial proliferation are central features of HIV-induced central nervous system (CNS) disorders. These observations suggest that glial cellular interactions participate in disease. In an experimental system to examine this process, we found that cocultures of HIV-infected monocytes and astroglia release high levels of cytokines and arachidonate metabolites leading to neuronotoxicity. HIV-1ADA-infected monocytes cocultur...

  16. Xanthurenic acid distribution, transport, accumulation and release in the rat brain.

    Science.gov (United States)

    Gobaille, Serge; Kemmel, Véronique; Brumaru, Daniel; Dugave, Christophe; Aunis, Dominique; Maitre, Michel

    2008-05-01

    Tryptophan metabolism through the kynurenine pathway leads to several neuroactive compounds, including kynurenic and picolinic acids. Xanthurenic acid (Xa) has been generally considered as a substance with no physiological role but possessing toxic and apoptotic properties. In the present work, we present several findings which support a physiological role for endogenous Xa in synaptic signalling in brain. This substance is present in micromolar amounts in most regions of the rat brain with a heterogeneous distribution. An active vesicular synaptic process inhibited by bafilomycin and nigericin accumulates xanthurenate into pre-synaptic terminals. A neuronal transport, partially dependant on adenosine 5'-triphosphate (ATP), sodium and chloride ions exists in NCB-20 neurons which could participate in the clearance of extracellular xanthurenate. Both transports (neuronal and vesicular) are greatly enhanced by the presence of micromolar amounts of zinc ions. Finally, electrical in vivo stimulation of A10-induced Xa release in the extracellular spaces of the rat prefrontal cortex. This phenomenon is reproduced by veratrine, K+ ions and blocked by EGTA and tetrodotoxin. These results strongly argue for a role for Xa in neurotransmission/neuromodulation in the rat brain, thus providing the existence of specific Xa receptors. PMID:18182052

  17. Controlled release of drug and better bioavailability using poly(lactic acid-co-glycolic acid) nanoparticles.

    Science.gov (United States)

    Pandey, Sanjeev K; Patel, Dinesh K; Maurya, Akhilendra K; Thakur, Ravi; Mishra, Durga P; Vinayak, Manjula; Haldar, Chandana; Maiti, Pralay

    2016-08-01

    Tamoxifen (Tmx) embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Tmx) is prepared to evaluate its better DNA cleavage potential, cytotoxicity using Dalton's lymphoma ascite (DLA) cells and MDA-MB231 breast cancer cells. PLGA-Tmx nanoparticles are prepared through emulsified nanoprecipitation technique with varying dimension of 17-30nm by changing the concentrations of polymer, emulsifier and drug. Nanoparticles dimension are measured through electron and atomic force microscopy. Interactions between tamoxifen and PLGA are verified through spectroscopic and calorimetric methods. PLGA-Tmx shows excellent DNA cleavage potential as compared to pure Tmx raising better bioavailability. In vitro cytotoxicity studies indicate that PLGA-Tmx reduces DLA cells viability up to ∼38% against ∼15% in pure Tmx. Hoechst stain is used to detect apoptotic DLA cells through fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGA-Tmx vis-à-vis pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis. Hence, the sustained release kinetics of PLGA-Tmx nanoparticles shows much better anticancer efficacy through enhanced DNA cleavage potential and nuclear fragmentation and, thereby, reveal a novel vehicle for the treatment of cancer. PMID:27112980

  18. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    International Nuclear Information System (INIS)

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides

  19. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jing [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Ying [Department of Environmental Science, East China Normal University, Shanghai 200241 (China); Chen, Shengwen [School of Urban Development and Environment Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Liu, Chaonan; Zhu, Yongqiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Weiping, E-mail: wliu@zju.edu.cn [MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Natural Research and Environmental Sciences, Zhejiang University, Hangzhou 310058 (China)

    2014-01-15

    Highlights: •The first study on enantioselective oxidative stress and toxin release from Microcystis aeruginosa. •Provide information for the R-enantiomer poses more oxidative stress than the S-enantiomer. •Lifecycle analysis of chiral pollutants needs more attention in environmental assessment. -- Abstract: Enantioselective oxidative stress and toxin release from Microcystis aeruginosa after exposure to the chiral herbicide diclofop acid were investigated. Racemic diclofop acid, R-diclofop acid and S-diclofop acid induced reactive oxygen species (ROS) generation, increased the concentration of malondialdehyde (MDA), enhanced the activity of superoxide dismutase (SOD) and triggered toxin release in M. aeruginosa to varying degrees. The increase in MDA concentration and SOD activity in M. aeruginosa occurred sooner after exposure to diclofop acid than when the cyanobacteria was exposed to either the R- and the S-enantiomer. In addition, enantioselective toxicity of the enantiomers was observed. The R-enantiomer trigged more ROS generation, more SOD activity and more toxin synthesis and release in M. aeruginosa cells than the S-enantiomer. Diclofop acid and its R-enantiomer may collapse the transmembrane proton gradient and destroy the cell membrane through lipid peroxidation and free radical oxidation, whereas the S-enantiomer did not demonstrate such action. R-diclofop acid inhibits the growth of M. aeruginosa in the early stage, but ultimately induced greater toxin release, which has a deleterious effect on the water column. These results indicate that more comprehensive study is needed to determine the environmental safety of the enantiomers, and application of chiral pesticides requires more direct supervision and training. Additionally, lifecycle analysis of chiral pollutants in aquatic system needs more attention to aide in the environmental assessment of chiral pesticides.

  20. Poly(DL-lactic acid) as a direct compression excipient in controlled release tablets - Part I. Compaction behaviour and release characteristics of poly(DL-lactic acid) matrix tablets

    NARCIS (Netherlands)

    Steendam, R; Lerk, CF

    1998-01-01

    High-molecular weight poly(DL-lactic acid) (PDLA, M-v 85000) was applied as a direct compression excipient in controlled release tablets. PDLA powders with good flowing properties were obtained by milling pre-cooled PDLA granules. Apparent yield pressure values ranged from 44 to 71 MPa for tablettin

  1. Eicosanoid release as laboratory indicator of biocompatibility.

    Science.gov (United States)

    Mahiout, A; Jörres, A; Schultze, G; Meinhold, H; Kessel, M

    1989-06-01

    Biocompatibility evaluation of extracorporeal devices requires the establishment of sensitive indicators of blood cells/surface interactions. Among others, arachidonic acid derivatives, such as prostaglandins and thromboxanes, play an important role in the cell control systems. Hence, the release of eicosanoids during blood exposure to dialyzer membranes was investigated. Experiments included in vitro incubation of human blood with flat membranes (FM), as well as ex vivo perfusion of hollow fiber membranes (HFM) with blood from healthy volunteers in single-pass fashion. In both models, a significant release of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) was detected. In addition, the amount of eicosanoid release depended on the type of membrane tested. After a 10-min FM incubation with fresh blood, plasma concentrations of TXB2 and PGE2 were pronounced by polycarbonate when compared to Cuprophan and polyacrylonitrile. During 10 min of open loop perfusion of HFM, polymethylmethacrylate was the most active biomaterial, whereas the reactivity of Cuprophan was significantly lower. Among HFM, Hemophan was by far the less active. These results indicate that the release of eicosanoids represents a sensitive parameter of blood cells/membrane reactivity. Thus, the question arises as to whether or not the extracorporeal process of cyclooxygenase activity could contribute to the clinical side effects of chronical hemodialysis.

  2. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Ma, Xiangdong; Ding, Chun; Jia, Li, E-mail: jiali@scnu.edu.cn

    2015-03-03

    Highlights: • PDA@Fe{sub 3}O{sub 4} were prepared and applied for efficient extraction of DNA from pathogens. • The DNA capture and release by PDA@Fe{sub 3}O{sub 4} was pH-induced. • The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for DNA was 161 mg g{sup −1}. • PDA@Fe{sub 3}O{sub 4} based MSPE was combined with PCR and CE for rapid detection of pathogens. - Abstract: Polydopamine functionalized magnetic nanoparticles (PDA@Fe{sub 3}O{sub 4}) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for genomic DNA can reach 161 mg g{sup −1}. The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe{sub 3}O{sub 4}. The extracted DNA with high quality (A{sub 260}/A{sub 280} = 1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe{sub 3}O{sub 4} based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol–chloroform extraction methods in yield of DNA. The developed PDA@Fe{sub 3}O{sub 4} based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk.

  3. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • PDA@Fe3O4 were prepared and applied for efficient extraction of DNA from pathogens. • The DNA capture and release by PDA@Fe3O4 was pH-induced. • The adsorption capacity of PDA@Fe3O4 for DNA was 161 mg g−1. • PDA@Fe3O4 based MSPE was combined with PCR and CE for rapid detection of pathogens. - Abstract: Polydopamine functionalized magnetic nanoparticles (PDA@Fe3O4) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe3O4 for genomic DNA can reach 161 mg g−1. The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe3O4. The extracted DNA with high quality (A260/A280 = 1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe3O4 based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol–chloroform extraction methods in yield of DNA. The developed PDA@Fe3O4 based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk

  4. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.

    Science.gov (United States)

    Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O

    2015-01-01

    Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.

  5. Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith.

    Science.gov (United States)

    Jiang, Kankan; Li, Lulu; Long, Liangkun; Ding, Shaojun

    2016-05-01

    Two separate temperature and time ranges were respectively conducted for optimizing release of p-coumaric acid and enzymatic saccharification of sorghum pith by NaOH pretreatment using response surface methodology. Two desirable pretreatment conditions were selected as follows: 37°C, 2% NaOH and 12h, and 100°C, 1.75% NaOH and 37min in the low and high temperature ranges, respectively. Under these conditions, the enzymatic glucose yields were 85.6% and 90.4% respectively, whereas p-coumaric acid yields were 95.1% and 98.1% respectively. The final recovery of esterified p-coumaric acid reached 82.8% and 87.4% respectively after further separation with HP-20 resin. Interestingly, strong linear correlations exist between p-coumaric acid release with glucan saccharification yield and lignin dissolution. These results indicate that sorghum pith could be an attractive source for natural p-coumaric acid and efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith can be achieved by mild NaOH pretreatment. PMID:26868149

  6. Fast Release of Sulfosalicylic Acid from Polymer Implants Consisting of Regenerated Cellulose/γ-Ferric Oxide/Polypyrrole

    Directory of Open Access Journals (Sweden)

    Nargis A. Chowdhury

    2014-01-01

    Full Text Available This work presents a comparative study on the rate of drug release from implantable matrices induced by electric and magnetic fields separately for better biomedical applications. The matrices were prepared by coating γ-ferric oxide dispersed regenerated cellulose film by polypyrrole doped with sulfosalicylic acid as an anti-inflammatory drug. The drug release mechanisms were studied under both the electric and the magnetic fields separately in an acetate buffer solution with pH 5.5 and temperature 37°C during a period of 5 hours. The amount of drug released was analysed by UV-Vis spectrophotometry. The mechanism of drug release from the matrices under electric field includes expansion of conductive polymer chain and the electrostatic force between electron and drug. The drug release mechanism from the matrices under magnetic field is based on the fact that the heat produced locally by magnetic particles loosens the polymer (polypyrrole chain surrounding the particles. As a result, the drugs attached to the polypyrrole chain come out to the release medium. The matrices showed fast release of drug, that is, more than 60% of the loaded drug was released within 1 h, and are ideal for the treatment of illness in an emergency care.

  7. Baclofen (β-p-chlorophenyl-γ-aminobutyric acid) enhances [3H]γ-aminobutyric acid (3H-GABA) release from rat globus pallidus in vitro

    International Nuclear Information System (INIS)

    The rat globus pallidus has been investigated as a possible model in which to study pre-synaptic GABA mechanisms in vitro. (+ -)-Baclofen (300μM-1 mM) significantly enhanced the release of radioactivity from superfused slices of rat globus pallidus prelabelled with 3H-GABA in vitro. This releasing action was specific to the (+)-isomer of baclofen. Neither the (-)-isomer nor another neuronal depressant DL-α-upsilon-diaminopimelic acid had any significant effect. The releasing effect of baclofen appeared unrelated to the phenethylamine moiety of its structure as neither β-phenethylamine nor dopamine evoked release of 3H-GABA from pallidal slices. Baclofen increased the efflux of radioactivity from pallidal slices prelabelled with either [3H]β-alanine or 3H diaminobutric acid in vitro. The use of specific glial and neuronal GABA uptake blocking compounds (β-alanine and (+ -)-cis-1,3-aminocyclohexanecarboxylic acid) did not permit resolution of the elements from which baclofen was evoking [3H]GABA release. Baclofen also inhibited uptake of [3H]GABA into pallidal slices with an IC50 value of 6 x 10-4m. The GABA-like properties of baclofen may be related to the (+)-isomer while non-specific neuronal depressant actions are an effect of the (-)-isomer. The potential of the (+)-isomer as an antipyschotic agent while (-)-baclofen remains the effective antispastic drug free from unwanted side-effects is discussed. (author)

  8. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    Science.gov (United States)

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  9. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines.

    Science.gov (United States)

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  10. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L-phenylalanine...... nor L-serine methyl ester, stimulate insulin secretion. In the presence of L-glutamine, however, the effect of L-serine was additive, while the methyl esters of L-serine and L-phenylalanine as well as native L-phenylalanine, potentiated the glucose-stimulated release of insulin. Measurements of islet...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  11. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    Science.gov (United States)

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  12. Hyaluronic Acid-Based Biocompatible Supramolecular Assembly for Sustained Release of Antiretroviral Drug.

    Science.gov (United States)

    Song, Byeongwoon; Puskás, István; Szente, Lajos; Hildreth, James E K

    2016-09-01

    Human immunodeficiency virus (HIV) infection and its associated diseases continue to increase despite the progress in our understanding of HIV biology and the availability of a number of antiretroviral drugs. Adherence is a significant factor in the success of HIV therapy and current HIV treatment regimens require a combination of antiviral drugs to be taken at least daily for the remainder of a patient's life. A drug delivery system that allows sustained drug delivery could reduce the medical burden and costs associated with medication nonadherence. Here, we describe a novel supramolecular assembly or matrix that contains an anionic polymer hyaluronic acid, cationic polymer poly-l-lysine, and anionic oligosaccharide sulfobutylether-beta-cyclodextrin. HIV reverse transcriptase inhibitors Zidovudine and Lamivudine were successfully encapsulated into the polymer assembly in a noncovalent manner. The physicochemical properties and antiviral activity of the polymer assemblies were studied. The results of this study suggest that the supramolecular assemblies loaded with HIV drugs exert potent antiviral activity and allow sustained drug release. A novel drug delivery formulation such as the one described here could facilitate our efforts to reduce the morbidity and mortality associated with HIV infections and could be utilized in the design of therapeutic approaches for other diseases. PMID:26975245

  13. Cellular release of and response to ATP as key determinants of the set-point of signal transduction pathways.

    Science.gov (United States)

    Ostrom, R S; Gregorian, C; Insel, P A

    2000-04-21

    The determinants of "basal" activity of signaling pathways regulating cellular responses are poorly defined. One possibility is that cells release factors to establish the set-point of such pathways. Here we show that treatment of Madin-Darby canine kidney cells with the nucleotidase apyrase decreases basal arachidonic acid release and cAMP production 30-40% and that inhibitors of P2Y receptor action also affect basal and forskolin-stimulated cAMP accumulation. Changing medium prominently increases extracellular levels of ATP in Madin-Darby canine kidney, COS-7, and HEK-293 cells. Mechanical stimulation of ATP release likely occurs in virtually every experimental protocol with cultured cells, implicating such release and P2Y receptor activation as critical in establishing the set-point for signal transduction pathways. PMID:10766795

  14. Controlled release of diclofenac sodium from polylactide acid-based solid dispersions prepared by hot-melt extrusion.

    Science.gov (United States)

    Chen, Rong; Li, Genlin; Han, Aichun; Wu, Hong; Guo, Shaoyun

    2016-01-01

    In this paper, hot-melt extrusion was applied to prepare drug delivery systems using polylactide acid (PLA) as the matrix. Diclofenac sodium (DS) was used as a model drug. Polyethylene glycol (PEG, molecular weight is 6000) and sodium dodecyl sulfate (SDS) were used as the release rate modifiers. For the PLA/PEG/DS blends, the release of DS was enhanced with higher amounts of PEG and DS. After the addition of SDS to the PLA/PEG/DS blends, the dispersion of DS and PEG was significantly improved. Compared to the PLA/PEG/DS blends with the same drug loading, the drug release behavior of PLA/PEG/DS/SDS was remarkably suppressed due to the presence of SDS. And a controllable linear release of DS was achieved. PMID:26786535

  15. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.

    Science.gov (United States)

    Elviri, Lisa; Asadzadeh, Maliheh; Cucinelli, Roberta; Bianchera, Annalisa; Bettini, Ruggero

    2015-11-01

    Chitosan is a biodegradable, biocompatible polymer of natural origin widely applied to the preparation of functional hydrogels suitable for controlled release of drugs, peptides and proteins. Non-covalent interactions, expecially ionic interactions, are the main driver of the loading and release behaviour of amino acids or peptides from chitosan hydrogels. With the aim to improve the understanding of the mechanisms governing the behaviour of chitosan hydrogels on peptide uptake and delivery, in this paper the attention was focused on the role played by sulfur on the interactions of chitosan hydrogels with sulfur-containing amino acids (AA) and peptides. Hence, loading and release experiments on cysteine, cystine and glutathione (SH containing amino acid, dipeptide and tripeptide, respectively) as well as on glycine and valine as apolar amino acids were carried out. For these puroses, chitosan hydrogels were prepared in an easy and reproducible manner by a freeze-gelation process on a poly-L-lysine coated support. The hydrogel surface pore size, uniformity and distribution were tested. Optimal results (D50 = 26 ± 4 μm) were obtained by using the poly-L-lysine positively-charged surface. The loading results gathered evidenced that the sulfur-containing molecules presented an increased absorption both in terms of rate and extent by chitosan hydrogels with respect to nonpolar amino acids, mainly due to ionic and hydrogen bond interactions. ATR-FTIR analysis carried out on chitosan hydrogels, with and without the AA related compounds to study putative interactions, supported these apparent sulfur-dependent results. Finally, chitosan hydrogels displayed excellent retention capabilities (AA release hydrogels as matrix for controlled drug release.

  16. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Tan, Huaping, E-mail: hptan@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Hu, Xiaohong [School of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion.

  17. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    International Nuclear Information System (INIS)

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion

  18. Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia.

    Science.gov (United States)

    Fiebich, Bernd L; Lieb, Klaus; Kammerer, Norbert; Hüll, Michael

    2003-07-01

    Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.

  19. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012.

    Science.gov (United States)

    Li, Li; Zhai, Zihan; Liu, Jianguo; Hu, Jianxin

    2015-06-01

    China has been documented as one of the few remaining producers of perfluorooctanoic acid and its salts (PFOA/PFO) and the world's major contamination hotspot. However, limited information has been available for evaluating their environmental releases in China and the contribution to global PFOA/PFO burden. Here we present the first source-specific inventory for environmental releases of PFOA/PFO in China from 2004 to 2012, using a bottom-up approach for industrial sources and an inverse approach for domestic sources. Our results show that China became the current world's largest PFOA/PFO emitter, with cumulative environmental releases reaching 250tonnes (t) over the period of nine years. The eastern region was identified as the hotspot of environmental releases. Most of the national environmental releases were due to the activities of the fluorochemical industry (94.0%) rather than domestic use of PFOA/PFO-related consumer products (6.0%). Fluoropolymer manufacturing and processing, a dominating industrial source, contributed 83.7% of the national environmental releases. In contrast to the general decline trends in annual industrial environmental releases of PFOA/PFO in most industrialized countries, the trend increased in China because of the expansion of production as a result of the global geographical transition in fluorochemical industry. Based on these results, we recommend that the future reduction options are required in industrial sector in China.

  20. Association of arachidonic acid level in gastric cancer tissue with gender and tumor differentiation%胃癌组织中花生四烯酸水平与肿瘤分化程度及性别关系的初步观察

    Institute of Scientific and Technical Information of China (English)

    宋虎; 彭俊生; 李初俊; 向军; 刘中辉; 王华摄; 杜艳平

    2012-01-01

    Objective To explore the association of arachidonic acid (AA) level in gastric cancer (GC) tissue with tumor differentiation and patients' gender.Methods The contents of AA in GC tissue and adjacent matched normal mucosa were measured using gas chromatography/mass spectrometry.The relationships of AA with GC differentiation and patients' gender were analyzed.Results The level of AA significantly decreased in GC tissue (0.190% ± 0.255 %) compared with normal tissue (0.274% ± 0.254%,n =30,P =0.011 ),while the level of AA had no significant difference in the tissues of matched normal mucosa and different TNM stages or among different TNM stages ( all P > 0.05).The AA levels in well and moderately differentiated adenocarcinoma (0.173% ±0.244% ) and in poorly differentiated adenocarcinoma (0.195% ±0.264%) were significantly decreased when compared with those in the paired normal mucosa (0.334% ± 0.170%,P =0.018; 0.256% ± 0.275%,P =0.043,respectively),while no significant difference was observed between the different differentiated grades (P =0.895).The level of AA significantly decreased in male patients (0.137% ± 0.209% ) as compared with paired normal mucosa (0.275%:± 0.238%,P =0.010),while no positive correlation was observed in female patients as compared with normal group (P=0.477) or in the comparison between male and female groups (P =0.139).Conclusions The AA level remarkably decreases in GC tissue,which may be associated with differentiated grades and patients'gender.In addition,more AA is utilized in male GC patients than female patients.%目的 探讨胃癌组织中花生四烯酸(AA)含量及其与肿瘤分化程度及性别的关系.方法 采用气相色谱联合质谱分析技术对从胃癌组织中提取的花生四烯酸进行定量分析并与周围配对的正常黏膜进行对照.分析AA水平与胃癌分化程度及性别的关系.结果 胃癌组织中AA含量(0.190%±0.255%)显著少

  1. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.;

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium...

  2. Characterization of arachidonate 5-lipoxygenase and leukotriene A4 synthetase from RBL-1 cells

    International Nuclear Information System (INIS)

    5-lipoxygenase (LO) and leukotriene (LT) A4 synthetase from RBL-1 high speed (105,000 x g for 60 min) supernatants were partially purified by protein-high performance liquid chromatography (HPLC) and characterized in detail. The partially purified preparation contained only 5-LO and LTA4 synthetase and was isolated from 12-LO, peroxidase and LTA4 hydrolase activities. Reaction products were separated by reversed phase HPLC and quantitated by absorption spectrophotometry and radiochemical detection. The enzyme preparation rapidly converted [14C]arachidonate to [14C]5-hydroperoxyeicosatetraenoic acid (HPETE) and [14C]5,12-dihydroperoxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were primarily non-enzymatic breakdown products of LTA4 (e.g., 6-trans-LTB4 and 6-trans-12-epi-LTB4). Both the 5-LO and LTA4 synthetase activities were Ca2+- and ATP-dependent. For both enzyme activities, the CA2+ stimulation required the presence of ATP. The fatty acid hydroperoxides, 5-,12-, and 15-HPETE, both stimulated ([ 3 μM]) 5-LO and LTA4 synthetase activities. The rapid isolation and subsequent characterization of 5-LO and LTA4 synthetase provide the bases for the further understanding of the role of the LO pathway in biological processes

  3. Castor oil increases intestinal formation of platelet-activating factor and acid phosphatase release in the rat.

    OpenAIRE

    Pinto, A; Calignano, A; Mascolo, N; Autore, G; Capasso, F

    1989-01-01

    1. When castor oil was administered by gavage to rats, the duodenum and jejunum but not ileum and colon produced large amounts (5-6 fold greater than control) of platelet activating factor (Paf). 2. Intraluminal release of acid phosphatase (AP) was also markedly increased (5-6 fold greater than control) in the duodenum and jejunum of castor oil-treated rats and there was a correlation between the elevated release of AP and intestinal hyperaemia. 3. These findings support a role for Paf as a m...

  4. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  5. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  6. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Directory of Open Access Journals (Sweden)

    C. v. Sperber

    2015-03-01

    Full Text Available Phosphorus (P is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi from organic phosphorus compounds (Porg. Phytic acid (IP6 is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP and glycerophosphate (GPO4 as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰, which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰ where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ −12‰, again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ε to the same amino acid sequence motif (RHGXRXP at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate

  7. Regional selectivity of a gamma-aminobutyric acid-induced (/sup 3/H)acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G.; Raiteri, M.

    1987-05-01

    The effects of gamma-aminobutyric acid (GABA) on the release of (/sup 3/H)acetylcholine ((/sup 3/H)ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with (/sup 3/H)choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized (/sup 3/H)ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of (/sup 3/H)ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of (/sup 3/H)ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of (/sup 3/H)ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of (/sup 3/H)ACh following penetration into cholinergic nerve terminals through a GABA transport system.

  8. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  9. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid.

    Science.gov (United States)

    Lubkowski, Krzysztof; Smorowska, Aleksandra; Grzmil, Barbara; Kozłowska, Agnieszka

    2015-03-18

    The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer-coated materials and the thickness of the covering layers were examined using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis. The mechanical properties of these materials were determined with a strength-testing machine. Nutrient release was measured in water using spectrophotometry, potentiometry, and conductivity methods. The results of the nutrient release experiments from these polymer-coated materials were compared with the requirements for controlled-release fertilizers. A conceptual model is presented describing the mechanism of nutrient release from the materials prepared in this study. This model is based on the concentrations of mineral components inside the water-penetrated fertilizer granules, the diffusion properties of the nutrients in water, and a diffusion coefficient through the polymer layer. The experimental kinetic data on nutrient release were interpreted using the sigmoidal model equation developed in this study. PMID:25715823

  10. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    Science.gov (United States)

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  11. Drying of Micro-Encapsulated Lactic Acid Bacteria-Effects of Trehalose and Immobilization on Cell Survival and Release Properties

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoyan; CHEN Xiguang

    2009-01-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4℃. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7mm±0.2mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4℃. The density of hve LAB cells could be 10- CFU g-1 after 8 weeks of storage. Cells of LAB could be con-tinuously released from the capsules from the acidic (pH 1.2) to neutral conditions (plt 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those m acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they, were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  12. Modulation of drug release rate of diltiazem-HCl from hydrogel matrices of succinic acid-treated ispaghula husk.

    Science.gov (United States)

    Gohel, M C; Amin, A F; Chhabaria, M T; Panchal, M K; Lalwani, A N

    2000-01-01

    The feasibility of using succinic acid-treated ispaghula husk in matrix-based tablets of diltiazem-HCl was investigated. The sample prepared using 4:1 weight ratio of ispaghula husk to succinic acid showed improved swelling and gelling. A 3(2) factorial design was employed to investigate the effect of amount of succinic acid-treated ispaghula husk and dicalcium phosphate (DCP) on the percentage of the drug dissolved in 60, 300, and 480 min from the compressed tablets. The results of multiple linear regression analysis revealed that the significance of the amount of succinic acid-treated ispaghula husk was greater in magnitude than that of the amount of DCP in controlling the drug release. Acceptable batches were identified from a contour plot with constraints on the percentage drug released at the three sampling times. A mathematical model was also evolved to describe the entire dissolution profile. The results of F-test revealed that the Higuchi model fits well to the in vitro dissolution data. The tablets showed considerable radial and axial swelling in distilled water. Succinic acid-treated ispaghula husk can be used as an economical hydrophilic matrixing agent.

  13. Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties

    Science.gov (United States)

    Li, Xiaoyan; Chen, Xiguang

    2009-03-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4 °C. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7 mm ± 0.2 mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4 °C. The density of live LAB cells could be 107 CFU g-1 after 8 weeks of storage. Cells of LAB could be continuously released from the capsules from the acidic (pH 1.2) to neutral conditions (pH 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those in acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  14. Acid-independent release of secretin and cholecystokinin by intraduodenal infusion of fat in humans.

    Science.gov (United States)

    Rhodes, R A; Skerven, G; Chey, W Y; Chang, T M

    1988-01-01

    In order to clarify a possible role of fat content in the release of secretin and cholecystokinin by liquid nutritional supplements in humans, duodenal pH and plasma concentrations of secretin and cholecystokinin were studied during the intraduodenal infusion of Ensure, Vivonex, 10% Intralipid, and sodium oleate. Significant release of secretin was observed with Intralipid and sodium oleate, while significant release of cholecystokinin was observed with all four testing solutions. Duodenal pH was rarely below 4.5 during the infusion of Ensure, Intralipid, and sodium oleate. Duodenal pH was high, greater than 6.0, when plasma secretin and cholecystokinin levels were elevated during the administration of Ensure, Intralipid, and sodium oleate. We conclude that both secretin and cholecystokinin are released in response to fat solutions in the duodenum and that low duodenal pH was not responsible for either secretin or cholecystokinin release during intraduodenal infusions of Ensure, Intralipid, or sodium oleate. PMID:3140233

  15. Controlled 5-fluorouracil release from hydrogels of Poly (acrylamide-co-metacrylic acid) crosslinked by means Of gamma irradiation techniques

    International Nuclear Information System (INIS)

    This report present the results on entrapped a cytostatic 5-Fluorouracil (5-F) in polymeric matrixes named hydrogels of polyacrylamide co -metacrylic acid crosslinked by means of gamma radiation with doses of 10,30, and 30 kGy at 25 o C. The drug delivery was followed by HPLC. The behavior of 5 -Fu migration from polymeric network was analyze by Iguchi equation for plain structure systems. The diffusion coefficients were obtained and drug release was in accordance with Fickian behavior

  16. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release.

    Science.gov (United States)

    Zhang, Liping; Wang, Jie; Ni, Caihua; Zhang, Yanan; Shi, Gang

    2016-01-01

    A new kind of polyelectrolyte complex (PEC) based on cationic chitosan (CS) and anionic poly(2-acry1amido-2-methylpropanesulfonic acid) (PAMPS) was prepared using a polymer-monomer pair reaction system. Chitosan was mixed with 2-acry1amido-2-methylpropanesulfonic acid) (AMPS) in an aqueous solution, followed by polymerization of AMPS. The complex was formed by electrostatic interaction of NH3(+) groups of CS and SO3(-) groups of AMPS, leading to a formation of complex nanoparticles of CS-PAMPS. A series of nanoparticles were obtained by changing the weight ratio of CS to AMPS, the structure and properties of nanoparticles were investigated. It was observed that the nanoparticles possessed spherical morphologies with average diameters from 255 nm to 390 nm varied with compositions of the nanoparticles. The nanoparticles were used as drug vehicles for doxorubicin, displaying relative high drug loading rate and encapsulation rate. The vitro release profiles revealed that the drug release could be controlled by adjusting pH of the release media. The nanoparticles demonstrated apparent advantages such as simple preparation process, free of organic solvents, size controllable, good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field.

  17. Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel

    Indian Academy of Sciences (India)

    Hossein Hosseinzadeh

    2010-07-01

    In this paper, controlled release of diclofenac sodium (DS) from pH-sensitive carrageenan-gpoly(acrylic acid) superabsorbent hydrogels was investigated. The hydrogels were prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The synthesized hydrogels were subjected to equilibrium swelling studies in simulated gastric and intestinal fluids (SGF and SIF). Hydrogels containing drug DS, at different drug-to-polymer ratios, were prepared by direct adsorption method. The loading yield was found to depend on both the impregnation time and the amount of encapsulated drug. In vitro drug-release studies in different buffer solutions showed that the most important parameter affecting the drug-release behaviour of hydrogels is the pH of the solution. The mechanism involved in release was Fickian ( ≤ 0.43, = 0.348) and Super Case II kinetics ( > 1, = 1.231) at pH 1.2 and 7.4, respectively.

  18. Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide.

    Science.gov (United States)

    Ipp, E; Dobbs, R E; Arimura, A; Vale, W; Harris, V; Unger, R H

    1977-01-01

    The effects of glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide upon the release of immunoreactive somatostatin (IRS) from the isolated perfused pancreas were studied. In seven experiments in which glucose was perfused either at a concentration of 100 or 350 mg/dl or at 25 mg/dl, IRS levels were significantly greater at the higher glucose concentrations. In three dose-response experiments in which the perfusing glucose concentration was increased at 30-min intervals from an initial concentration of 25 mg/dl to a final concentration of 300 mg/dl, progressive increases in IRS release were noted at glucose concentrations of 100 mg/dl and above. Perfusion of a 20 mM mixture of 10 amino acids also elicited a prompt and significant biphasic IRS rise in each of six experiments. In five experiments, 20 mM leucine evoked a similar response in mean IRS. Perfusion with 0.075 Ivy U/ml of pancreozymin-cholecystokinin, with or without the presence of a 1 mM 10-amino acid mixture, elicited a prompt rise in IRS with a pattern resembling that of insulin in a total of six experiments. Tolbutamide (0.75 mg/min) also stimulated IRS release in five of six challenges. The IRS responses to nutrients and to pancreozymin and their similarity to the insulin responses raise the possibility that, like insulin, pancreatic somatostatin may have an endocrine role related to nutrient homeostasis. PMID:330567

  19. Extracellular ATP stimulates exocytosis via localized Ca(2+) release from acidic stores in rat pancreatic beta cells.

    Science.gov (United States)

    Xie, Li; Zhang, Ming; Zhou, Wei; Wu, Zhengxing; Ding, Jiuping; Chen, Liangyi; Xu, Tao

    2006-04-01

    Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin. PMID:16536741

  20. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    Science.gov (United States)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  1. Preparation and Characterization of Kynurenic Acid Occluded in Sol-Gel Silica and SBA-15 Silica as Release Reservoirs

    Directory of Open Access Journals (Sweden)

    Tessy López

    2014-01-01

    Full Text Available Kynurenic acid (KYNA may have important therapeutic effects in neurological disorders; however, its use as a neuroprotective agent is restricted due to its very limited ability to cross the blood brain barrier (BBB. For this reason, we are looking for new alternatives for KYNA to reach the brain; one of them is using drug delivery systems. To obtain KYNA release reservoirs, KYNA molecules were hosted in two different silica materials. The different KYNA-silica materials were characterized by means of several physical techniques. The spectroscopic studies showed that KYNA molecules remained unchanged once hosted in silica materials. The surface area values of KYNA-silica samples were substantially lower than those for pure silica materials due to the addition of the drug. The electronic micrographs showed that the sol-gel KYNA-silica material consisted of aggregates of nanoparticles around 50 nm in size. On the other hand, the typical SBA-15 hexagonal arrangement was observed, even when hosting KYNA molecules. KYNA release profiles, carried out during approximately 300 hours, showed a first stage of fast drug release followed by a slow release phase. The experimental values fitted to the Peppas equation indicate that the release mechanism was controlled by Fickian diffusion.

  2. Hyaluronic acid induces the release of growth factors from platelet-rich plasma

    Directory of Open Access Journals (Sweden)

    Kohei Iio

    2016-04-01

    Conclusion: The levels of growth factors released by PRP on Day 5 were increased by the addition of HA. A mixture of PRP and HA may be a more effective therapy than PRP or HA alone for osteoarthritis and tendinopathy.

  3. Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides.

    Science.gov (United States)

    Soontornworajit, Boonchoy; Zhou, Jing; Snipes, Matthew P; Battig, Mark R; Wang, Yong

    2011-10-01

    Biomaterials for the precise control of protein release are important to the development of new strategies for treating human diseases. This study aimed to fundamentally understand aptamer--protein dissociation triggered by complementary oligonucleotides, and to apply this understanding to develop affinity hydrogels for controlled protein release. The results showed that the oligonucleotide tails of the aptamers played a critical role in inducing intermolecular hybridization and triggering aptamer--protein dissociation. In addition, the attachment of the oligonucleotide tails to the aptamers and the increase of hybridizing length could produce a synergistic effect on the dissociation of bound proteins from their aptamers. More importantly, pegylated complementary oligonucleotides could successfully trigger protein release from the aptamer-functionalized hydrogels at multiple time points. Based on these results, it is believed that aptamer-functionalized hydrogels and complementary oligonucleotides hold great potential of controlling the release of protein drugs to treat human diseases.

  4. Caffeic Acid Phenethyl Ester: Consequences of Its Hydrophobicity in the Oxidative Functions and Cytokine Release by Leukocytes

    Directory of Open Access Journals (Sweden)

    Luana Chiquetto Paracatu

    2014-01-01

    Full Text Available Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE, an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential (Epa measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 by Staphylococcus aureus stimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.

  5. Madhucosides A and B, protobassic acid glycosides from Madhuca indica with inhibitory activity on free radical release from phagocytes.

    Science.gov (United States)

    Pawar, Rahul S; Bhutani, K K

    2004-04-01

    The structures of madhucosides A (1) and B (2), isolated from the bark of Madhuca indica, were established as 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1--> 3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid and 3-O-beta-D-apiofuranosyl(1-->2)-beta-D-glucopyranosyl-28-O-[beta-D-xylopyranosyl(1-->2)-[alpha-L-rhamnopyranosyl(1-->4)]-beta-D-glucopyranosyl(1-->3)-alpha-L-rhamnopyranosyl(1-->2)-alpha-L-arabinopyranosyl]protobassic acid, respectively. These two compounds showed significant inhibitory effects on both superoxide release from polymorphonuclear cells in a NBT reduction assay and hypochlorous acid generation from neutrophils assessed in a luminol-enhanced chemiluminescence assay. PMID:15104500

  6. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    Science.gov (United States)

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents.

  7. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    Science.gov (United States)

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents. PMID:27139119

  8. Gibberellic-acid-induced synthesis and release of cell-wall-degrading endoxylanase by isolated aleurone layers of barley

    Energy Technology Data Exchange (ETDEWEB)

    Dashek, W.V.; Chrispeels, M.J.

    1977-01-01

    When aleurone layers of barley (Hordeum vulgare L.) are incubated with gibberellic acid (GA/sub 3/), xylose and arabinose, both as free sugars and bound to larger molecules, are released into the medium. Release begins 10 to 12 h after the start of incubation and continues for at least 60 h. At the same time there is a GA/sub 3/-induced breakdown of the cell wall resulting in a loss of /sup 2///sub 3/ of the cell-wall pentose during 60 h of incubation. GA/sub 3/ causes the appearance in the medium of an enzyme (or enzymes) which hydrolyze larchwood xylan and aleurone-layer arabinoxylan. Release of the enzyme(s) into the medium begins 28 to 32 h after the start of incubation. Enzyme activity does not accumulate to any large extent in the tissue prior to release into the medium, and is present in very low levels only in the absence of GA/sub 3/. Xylanase activity is associated with a protein (or proteins) with a molecular weight of 29,000. The hydrolysis of the xylans is largely caused by endoxylanase activity, indicating the importance of endoglycosidases in the GA/sub 3/-induced breakdown of the aleurone cell wall.

  9. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics.

    Science.gov (United States)

    Gatto, Francesco; Schulze, Almut; Nielsen, Jens

    2016-07-19

    Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. PMID:27396332

  10. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index.

    Science.gov (United States)

    Šerý, Omar; Hlinecká, Lýdia; Povová, Jana; Bonczek, Ondřej; Zeman, Tomáš; Janout, Vladimír; Ambroz, Petr; Khan, Naim A; Balcar, Vladimir J

    2016-03-15

    Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (life-style) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case-control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascade. A-allele of rs4769874 polymorphism increases the risk of AD 1.41-fold (p<0.0001), while AA genotype does so 1.79-fold (p<0.0001). In addition, GG genotype of rs4769874 polymorphism is associated with a modest increase in body mass index (BMI). We discuss potential biochemical mechanisms linking the SNP to AD and suggest possible preventive pharmacotherapies some of which are based on commonly available natural products. Finally, we set the newly identified AD risk factors into a broader context of similar CVD risk factors to generate a more comprehensive picture of interacting genetics and life-style habits potentially leading to the deteriorating mental health in the old age. PMID:26944113

  11. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-07-01

    Full Text Available Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.

  12. Arachidonate 15-lipoxygenase type B knockdown leads to reduced lipid accumulation and inflammation in atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Lisa U Magnusson

    Full Text Available Inflammation in the vascular wall is important for development of atherosclerosis. We have shown previously that arachidonate 15-lipoxygenase type B (ALOX15B is more highly expressed in human atherosclerotic lesions than in healthy arteries. This enzyme oxidizes fatty acids to substances that promote local inflammation and is expressed in lipid-loaded macrophages (foam cells present in the atherosclerotic lesions. Here, we investigated the role of ALOX15B in foam cell formation in human primary macrophages and found that silencing of human ALOX15B decreased cellular lipid accumulation as well as proinflammatory cytokine secretion from macrophages. To investigate the role of ALOX15B in promoting the development of atherosclerosis in vivo, we used lentiviral shRNA silencing and bone marrow transplantation to knockdown mouse Alox15b gene expression in LDL-receptor-deficient (Ldlr(-/- mice. Knockdown of mouse Alox15b in vivo decreased plaque lipid content and markers of inflammation. In summary, we have shown that ALOX15B influences progression of atherosclerosis, indicating that this enzyme has an active proatherogenic role.

  13. Essential fatty acid nutrition of the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Staton, M A; Edwards, H M; Brisbin, I L; Joanen, T; McNease, L

    1990-07-01

    The essential fatty acid (EFA) nutrition of young American alligators (Alligator mississippiensis) was examined by feeding a variety of fats/oils with potential EFA activity. Over a 12-wk period, alligators fed diets containing 2.5 or 5.0% chicken liver oil grew longer and heavier and converted feed to body mass more efficiently than alligators fed other fat/oil combinations that lacked or contained only trace amounts of arachidonic acid [20:4(n-6)]. Alligators fed an EFA-deficient diet (containing only coconut fat as the dietary fat) were the slowest-growing animals and converted feed to body mass least efficiently. However, over a 41-wk feeding period, alligators fed this diet showed no obvious external signs of deficiency other than being reduced in size and unthrifty. Fatty acid composition of heart, liver, muscle, skin and adipose tissue lipids was influenced markedly by dietary fat composition. Tissues varied significantly in response to dietary fat composition. Heart lipids contained the lowest levels of short- and medium-chain fatty acids and the highest levels of arachidonic acid. Arachidonic acid levels were less influenced by diet than were levels of other 20- and 22-carbon polyunsaturated fatty acids. Radiotracer studies indicated that linoleic acid was converted to arachidonic acid in the liver. Nevertheless, tissue arachidonic acid levels also appeared to be maintained by concentration from dietary sources and selective conservation. It appears that a dietary source of arachidonic acid may be required for a maximum rate of growth.

  14. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    Science.gov (United States)

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  15. Uranium pollution in an estuary affected by pyrite acid mine drainage and releases of naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Highlights: → Huelva estuary is affected by former phosphogypsum releases and pyrite acid mine drainage. → Time evolution of uranium concentration is analyzed after halting of NORM releases. → Two new contamination sources are preventing the complete uranium cleaning: (1) The leaching of phosphogypsum stacks located close to Tinto River. (2) Pyrite acid mine drainage. → High uranium concentrations are dissolved in water and precipitate subsequently. - Abstract: After the termination of phosphogypsum discharges to the Huelva estuary (SW Spain), a unique opportunity was presented to study the response of a contaminated environmental compartment after the cessation of its main source of pollution. The evolution over time of uranium concentrations in the estuary is presented to supply new insights into the decontamination of a scenario affected by Naturally Occurring Radioactive Material (NORM) discharges. The cleaning of uranium isotopes from the area has not taken place as rapidly as expected due to leaching from phosphogypsum stacks. An in-depth study using various techniques of analysis, including 234U/238U and 230Th/232Th ratios and the decreasing rates of the uranium concentration, enabled a second source of uranium contamination to be discovered. Increased uranium levels due to acid mine drainage from pyrite mines located in the Iberian Pyrite Belt (SW Spain) prevent complete uranium decontamination and, therefore, result in levels nearly twice those of natural background levels.

  16. Effects of ω-3 polyunsaturated fatty acids on prostaglandin E-2 and arachidonic acid in rats with senile dementia%ω-3多不饱和脂肪酸对老年痴呆大鼠前列腺素E2、花生四烯酸的影响

    Institute of Scientific and Technical Information of China (English)

    赵秀娟; 冯亚青; 李文景; 刘月欣; 张振凤; 吕佩源

    2009-01-01

    Objective To investigate the mechanism of ω-3 polyunsaturated fatty acids in senile dementi-a. Methods The normal 15 months old Wistar rats were randomly divided into normal control,model group andre-cape latency time and mistaken times were evaluated by using the step down test. The content of serum PGE2 and urachidonic acid(AA),EPA and DHA of cerebral tissue in rats were detected. Results The lingeringly latency and error times were ( 264.83±16.99) s and (4.8±1.7) times in control group, ( 189.26±31.42)s and ( 9.6± 2.2) times in model group, (230.88±29.35) s and (7.3±2.2) times in treatment group, respectively. Differences in three groups were very significantly by analyses of variance(F=20.114, F=13.638, P=0.000). Compared with model group, control group and treatment group had lingeringly latency(LSD-t=6.332,P=0.000 and LSD-t =3.987, P=0.002, respectively) and less error times (LSD-t=5.221, P=0.000 and LSD-t=3.502, P= 0.019,respectively). Serum PGE2 were in control group, model group and treatment group were very significantly by analyses of variance(F=6.851 , P=0.004). Compared with model group,control group had less serum PGE2 (LSD-t=3.684, P=0.001 ). Compared with model group,ω-3 polyunsaturated fatty acids chould decrease serum PGE2( LSD-t=2.152, P=0.041 ). AA, EPA and DHA of cerebral tissue in control group, in model group, in treatment group, respectively. Differences in three groups were very significantly by analyses of variance (F=5.538, P=0.010, F=4.240, P=0.025, F=4.633, P=0.019). Compared with model group,ω-3 polyunsaturat-ed fatty acids could decrease A A(LSD-t=2.273, P=0.031) and increase EPA and D HA (LSD-t=2.428, P= 0.022,LSD-t=2.520, P=0.018,respectively). Conclusions ω-3 polyunsaturated fatty acids can improve learning-memory function in rats,change the proportion of AA,EPA and DHA in cerebral tissue and prevent senile dementia.%目的 探讨ω-3多不饱和脂肪酸治疗老年痴呆的可能机制.方法 将15月龄雌性健

  17. Studies of manufacturing controlled-release graphene acid and catalyzing synthesis of chalcone with Claisen-Schmidt condensation reaction

    Science.gov (United States)

    Li, Jihui; Feng, Jia; Li, Mei; Wang, Qiaolian; Su, Yumin; Jia, Zhixin

    2013-07-01

    In the paper, graphene acid (GA) was manufactured, using flake graphite as raw material, and the acidity and the structure of GA were characterized as well as. Then, chalcone was synthesized in the presence of GA, using acetophenone and benzaldehyde as the reactant. The results showed that the acidity of GA was for pH = 1.12 in aqueous solution, and it was structured by the graphene sheets with the spaces between the graphene sheet and the graphene sheet and sulfuric acid (H2SO4) and acetic acid (CH3CO2H) inside the spaces. At the same time, the results also exhibited that the chalcone yield was able to reach 60.36% when GA dosage was 5 g, and the chalcone yields could attain apart 60.36, 52.05 and 31.16% when 5 g of GA was used thrice. This shows that GA is not only a high-performance catalyst, but also a controlled-release catalyst.

  18. Membrane Disruption by Antimicrobial Fatty Acids Releases Low-Molecular-Weight Proteins from Staphylococcus aureus

    OpenAIRE

    Parsons, Joshua B; Yao, Jiangwei; Frank, Matthew W.; Jackson, Pamela; Rock, Charles O

    2012-01-01

    The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward Gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthes...

  19. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Barahuie F

    2013-05-01

    Full Text Available Farahnaz Barahuie,1 Mohd Zobir Hussein,1 Samer Hasan Hussein-Al-Ali,2 Palanisamy Arulselvan,3 Sharida Fakurazi,3,4 Zulkarnain Zainal11Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, 2Laboratory of Molecular Biomedicine, Institute of Bioscience, 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 4Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: In the study reported here, magnesium/aluminum (Mg/Al-layered double hydroxide (LDH was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method, respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w, respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells

  20. Poly(anhydride-ester) and Poly(N-vinyl-2-pyrrolidone) Blends: Salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation

    OpenAIRE

    Ouimet, Michelle A.; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Luiz H. Catalani; Pochan, Darrin J.; Uhrich, Kathryn E.

    2014-01-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, the release of physically admixed therapeutics from hydrogels has been evaluated, but with limited control over drug release profiles. To overcome these limitations, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies de...

  1. Mechanism of cAMP-induced H+ -efflux of Dictyostelium cells: a role for fatty acids

    Indian Academy of Sciences (India)

    H Flaadt; R Schaloske; D Malchow

    2000-09-01

    Aggregating Dictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.

  2. Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: A comparative study

    Science.gov (United States)

    The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofib...

  3. THE COMBINATION OF α-LIPOIC ACID INTAKE WITH ECCENTRIC EXERCISE MODULATES ERYTHROPOIETIN RELEASE

    OpenAIRE

    Morawin, B.; Turowski, D; Naczk, M.; Siatkowski, I.; Zembron-Lacny, A.

    2014-01-01

    The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric ...

  4. Slow release anti-fungal skin formulations based on citric acid intercalated layered double hydroxides nanohybrids

    OpenAIRE

    Perera, Jayoda; Weerasekera, Manjula; Kottegoda, Nilwala

    2015-01-01

    Background During the past few decades, the occurrence of superficial fungal infections has rapidly increased. As the fungal infections take longer time to get cured, concepts such as designing drugs with extended persistence and controlled release have gained attention. In this context, nanotechnology has been identified as the latest technological revolution which has opened up new pathways for designing new therapeutic materials. Out of the many available nano-structures layered double hyd...

  5. Kinetic energy releases of small amino acids upon interaction with keV ions

    International Nuclear Information System (INIS)

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies. (authors)

  6. Kinetic energy releases of small amino acids upon interaction with keV ions

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlatholter, T. [Groningen Univ., KVI Atomic Physics (Netherlands); Schlatholter, T. [Universites P. et M. Curie and D. Diderot, INSP, CNRS UMR 75-88, 75 - Paris (France)

    2009-01-15

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV {alpha}-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies. (authors)

  7. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  8. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine.

    Science.gov (United States)

    Anirudhan, T S; Nair, Syam S; Nair, Anoop S

    2016-11-01

    A novel efficient transdermal (TD) lidocaine (LD) delivery device based on chitosan (CS) and hyaluronic acid (HA) was successfully developed in the present investigation. CS was grafted with glycidyl methacrylate (GMA) and butyl methacrylate (BMA) to fabricate a versatile material with improved adhesion and mechanical properties. HA was hydrophobically modified by covalently conjugating 3-(dimethylamino)-1-propylamine (DMPA) to encapsulate poorly water soluble LD and was uniformly dispersed in modified CS matrix. The prepared materials were characterized through FTIR, NMR, XRD, SEM, TEM and tensile assay. The dispersion of amine functionalized HA (AHA) on modified CS matrix offered strong matrix - filler interaction, which improved the mechanical properties and drug retention behavior of the device. In vitro skin permeation study of LD was performed with modified Franz diffusion cell using rat skin and exhibited controlled release. The influence of storage time on release profile was investigated and demonstrated that after the initial burst, LD release profile of the device after 30 and 60days storage was identical to that of a device which was not stored. In vivo skin adhesion test and skin irritation assay in human subjects, water vapor permeability and environmental fitness test was performed to judge its application in biomedical field. All results displayed that the fabricated device is a potential candidate for TD LD administration to the systemic circulation. PMID:27516320

  9. Mineralization and drug release of hydroxyapatite/poly(l-lactic acid) nanocomposite scaffolds prepared by Pickering emulsion templating.

    Science.gov (United States)

    Hu, Yang; Zou, Shengwen; Chen, Weike; Tong, Zhen; Wang, Chaoyang

    2014-10-01

    Biodegradable and bioactive nanocomposite (NC) biomaterials with controlled microstructures and able to deliver special drugs have gained increasing attention in bone tissue engineering. In this study, the hydroxyapatite (HAp)/poly(l-lactic acid) (PLLA) NC scaffolds were facilely prepared using solvent evaporation from templating Pickering emulsions stabilized with PLLA-modified HAp (g-HAp) nanoparticles. Then, in vitro mineralization experiments were performed in a simulated body fluid (SBF) to evaluate the bioactivity of the NC scaffolds. Moreover, in vitro drug release of the NC scaffolds using anti-inflammatory drug (ibuprofen, IBU) as the model drug was also investigated. The results showed that the NC scaffolds possessed interconnected pore structures, which could be modulated by varying the g-HAp nanoparticle concentration. The NC scaffolds exhibited excellent bioactivity, since they induced the formation of calcium-sufficient, carbonated apatite nanoparticles on the scaffolds after mineralization in SBF for 3 days. The IBU loaded in the NC scaffolds showed a sustained release profile, and the release kinetic followed the Higuchi model with diffusion process. Thus, solvent evaporation based on Pickering emulsion droplets is a simple and effective method to prepare biodegradable and bioactive porous NC scaffolds for bone repair and replacement applications. PMID:25127362

  10. Synthesis of nanocomposite 2-methyl-4-chlorophenoxyacetic acid with layered double hydroxide: physicochemical characterization and controlled release properties

    Energy Technology Data Exchange (ETDEWEB)

    Sarijo, Siti Halimah, E-mail: izaddinizaddin@yahoo.com; Ghazali, Sheikh Ahmad Izaddin Sheikh Mohd [Faculty of Applied Sciences, Universiti Teknologi MARA (Malaysia); Hussein, Mohd Zobir [Universiti Putra Malaysia, Department of Chemistry, Faculty of Science (Malaysia); Sidek, Norizzah Jaafar [Faculty of Applied Sciences, Universiti Teknologi MARA (Malaysia)

    2013-01-15

    A new organic-inorganic hybrid nanocomposite Zn-Al-MCPA-layered double hydroxide (ZAM) was prepared by intercalation of 2-methyl-4-chlorophenoxyacetic acid (MCPA) into Zn-Al-layered double hydroxide (ZAL) at various concentration of MCPA ranging from 0.1 to 0.7 M. The pH of the synthesis was kept constant at 7.5. Well-ordered hybrid nanocomposite was obtained with 0.4 M MCPA with an expansion of basal spacing from 8.9 Angstrom-Sign in the ZAL to 19.7 Angstrom-Sign in the resulting nanocomposite. The FTIR spectra of the nanocomposite show resemblance peaks of the MCPA and Zn-Al-layered double hydroxide indicating the inclusion of MCPA into the layered double hydroxide. The average particle size of ZAL and ZAM in this study was 115 and 128 nm, respectively. Percentage loading of MCPA was found to be 45.0 % (w/w), calculated based on the percentage of carbon in the sample. The release of MCPA into various aqueous solution was found to be dependent to the anion in the aqueous solution in the order of phosphate > sulfate > chloride with the percentage release of 80, 44, and 8%, respectively. This study shows that Zn-Al-layered double hydroxide can be used as a host carrier for herbicide, MCPA, with controlled release capability.

  11. Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Alexander Simonis

    2014-06-01

    Full Text Available The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains.

  12. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu, E-mail: wangbc2000@126.com; Deng, Jia; Zhu, Liancai; Cao, Yang

    2014-06-01

    In the present study, the electrospray deposition was successfully applied to prepare the porous poly(lactic-co-glycolic acid) (PLGA) microparticles by one-step processing. Metronidazole was selected as the model drug. The porous PLGA microparticles had high drug loading and low density, and the porous structure can be observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The production time has been shortened considerably compared with that of the traditional multi-emulsion method. In addition, no chemical reaction occurred between the drug and polymer in the preparation of porous microparticles, and the crystal structure of drug did not change after entrapment into the porous microparticles. The porous microparticles showed a sustained release in the simulated gastric fluid, and the release followed non-Fickian or case II transport. Furthermore, porous microparticles showed a slight cytotoxicity in vitro. The results indicated that electrospray deposition is a good technique for preparation of porous microparticles, and the low-density porous PLGA microparticles has a potential for the development of gastroretentive systems or for pulmonary drug delivery. - Highlights: • The porous PLGA microparticles were successfully prepared by the electrospray deposition method at one step. • The porous microparticles had high loading capacity and low density. • The microparticle showed a sustained release in the simulated gastric liquid. • The microparticles showed a slight cytotoxicity in vitro.

  13. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    Science.gov (United States)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry.

  14. The European Food Safety Authority recommendation for polyunsaturated fatty acid composition of infant formula overrules breast milk, puts infants at risk, and should be revised.

    Science.gov (United States)

    Crawford, Michael A; Wang, Yiqun; Forsyth, Stewart; Brenna, J Thomas

    2015-12-01

    The European Food Safety Authority (EFSA) has concluded from a limited review of the literature that although docosahexaenoic acid (DHA) is required for infant formula, arachidonic acid is not required "even in the presence of DHA" (EFSA Journal, 12 (2014) 3760). This flawed opinion is grounded in human trials which tested functionality of DHA in neural outcomes and included arachidonic acid ostensibly to support growth. The EFSA report mistakes a nutrient ubiquitous in the diets of newborn infants, through breast milk and with wide-ranging health and neurodevelopmental effects, for an optional drug targeted to a particular outcome that is properly excluded when no benefit is found for that particular outcome. Arachidonic acid has very different biological functions compared to DHA, for example, arachidonic acid has unique functions in the vasculature and in specific aspects of immunity. Indeed, the overwhelming majority of trials include both DHA and arachidonic acid, and test development specific to DHA such as neural and visual development. DHA suppresses membrane arachidonic acid concentrations and its function. An infant formula with DHA and no arachidonic acid runs the risk of cardio and cerebrovascular morbidity and even mortality through suppression of the favorable oxylipin derivatives of arachidonic acid. The EFSA recommendation overruling breast milk composition should be revised forthwith, otherwise being unsafe, ungrounded in most of the evidence, and risking lifelong disability.

  15. Effect of fatty acids on leukocyte function

    Directory of Open Access Journals (Sweden)

    Pompéia C.

    2000-01-01

    Full Text Available Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.

  16. Synthesis and bioactivity of novel nitric oxide-releasing ursolic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Wen Qiu; Jia Tang; Zhi Feng Wang; Shu Ying He

    2011-01-01

    A series of furoxan-based novel nitric oxide-donating ursolic acid (UA) derivatives (7a-f) were synthesized, and their cytotoxic activities against HepG2 cells in vitro were evaluated by MTT method. It was found that 7a-d and 7f showed more potent cytotoxic activities than control 5-fluorouracil and UA.

  17. Kinetic energy releases of small amino acids upon interaction with keV ions

    NARCIS (Netherlands)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlatholter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiatio

  18. Transient increase in neuronal chloride concentration by neuroactive amino acids released from glioma cells

    Directory of Open Access Journals (Sweden)

    Cristina eBertollini

    2012-11-01

    Full Text Available Neuronal chloride concentration ([Cl-]i is known to be dynamically modulated and alterations in Cl- homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl-]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl-]i, we used genetically encoded CFP/YFP-based ratiometric Cl-Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM caused rapid and transient elevation of [Cl-]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic current with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl-]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl-]i rise. GCM-evoked [Cl-]i elevation was not inhibited by antagonists of Cl- transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl-selective channels are a major route for GCM-induced Cl- influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl- equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and

  19. Modulating protein release profiles by incorporating hyaluronic acid into PLGA microparticles Via a spray dryer equipped with a 3-fluid nozzle

    DEFF Research Database (Denmark)

    Wan, Feng; Maltesen, Morten Jonas; Andersen, Sune Klint;

    2014-01-01

    PURPOSE: The purpose of this study was to modulate the release profiles of the model protein drug from spray dried poly(DL-lactic-co-glycolic acid) (PLGA) microparticles by incorporating hyaluronic acid (HA) in the formulation. METHODS: Bovine serum albumin (BSA)-loaded PLGA microparticles...

  20. Effects of acid rain on competitive releases of Cd, Cu, and Zn from two natural soils and two contaminated soils in hunan, China

    OpenAIRE

    Liao, Bo-han; Guo, Zhao-hui; Zeng, Qingru; Probst, Anne; Probst, Jean-Luc

    2007-01-01

    Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6– 3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, southcentralChina, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rai...

  1. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment

    OpenAIRE

    Jeff B. Langman; Mandy L. Moore; Carol J. Ptacek; Leslie Smith; David Sego; David W. Blowes

    2014-01-01

    A five-year, humidity-cell experiment was used to study the weathering evolution of a low-sulfide, granitic waste rock at 5 and 22 °C. Only the rock with the highest sulfide content (0.16 wt %) released sufficient acid to overcome a limited carbonate acid-neutralization capacity and produce a substantial decline in pH. Leached SO4 and Ca quickly increased then decreased during the first two years of weathering. Sulfide oxidation continued to release acid and SO4 after carbonate depletion, res...

  2. The Loss of Weight and Release of Formaldehyde in Acid Treatment of Basofil Fiber

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong

    2007-01-01

    The Basofil fiber is a new type of hightemperature fiber. Its Limiting Oxygen Index (LOI) value reaches 32. It does not melt, drop down or smolder when it contacts fire. The fiber is condensed from melamine and formaldehyde into a cross-linked with methylene-ether and methylene bridge bond. This thesis discusses the change of fiber structure and performance after the acid treatment.

  3. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    OpenAIRE

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the ma...

  4. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent

    OpenAIRE

    Hussein MZ; Al Ali SH; Zainal Z; Hakim MN

    2011-01-01

    Mohd Zobir Hussein1,2, Samer Hasan Al Ali2, Zulkarnain Zainal2, Muhammad Nazrul Hakim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), 2Department of Chemistry, Faculty of Science, 3Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, MalaysiaAbstract: An ellagic acid (EA)–zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc o...

  5. A New Pro-Prodrug Aminoacid-Based for Trans-Ferulic Acid and Silybin Intestinal Release

    Directory of Open Access Journals (Sweden)

    Sonia Trombino

    2014-07-01

    Full Text Available The aim of this work was the preparation and characterization of a pro-prodrug able to simultaneously transport silybin, a drug possessing various pharmacological effects, and trans-ferulic acid, a known antioxidant. More specifically, l-phenylalanine-N-(4-hydroxy-3-methoxy-phenyl prop-2-en-O-(2R,3R-3,5,7-trihydroxy-2-((2R,3R-3-(4-hydroxy-3-methoxyphenyl-2-(hydroxymethyl-2,3-dihydro-benzo-(1,4-dioxin-6-ylcroman-4-one was synthesized by using the aminoacid l-phenylalanine (l-Phe as carrier. Indeed, l-Phe is characterized by an intrinsic chemical reactivity due to the presence of an amino group, placed on the chiral center, and of a carboxylic group. The synthesis has been characterized first by adding silybin by means of carboxylic group and then, with the aim to confer antioxidant properties to this new carrier, by linking trans-ferulic acid to l-Phe via amino group. The so obtained derivative was then characterized by FT-IR, and 1H-NMR spectroscopies. Furthermore, its ability to inhibit lipid peroxidation induced by tert-butyl hydroperoxide in rat liver microsomes, was evaluated. The 1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect, was also assessed. The release of silybin and trans-ferulic acid was determined in simulated gastric and intestinal fluids over the time. The results showed that the covalent bond between both (i silybin; or (ii trans-ferulic acid and the amino acid was degraded by enzymatic reactions. In addition, the pro-prodrug, showed strong antioxidant and scavenger activities. Due to these properties, this new pro-prodrug could be applied for the treatment of intestinal pathologies and it might improve the therapeutic potential of silybin which is strongly limited by its low solubility.

  6. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.

    Science.gov (United States)

    Chen, Wei; Meng, Fenghua; Li, Feng; Ji, Shun-Jun; Zhong, Zhiyuan

    2009-07-13

    pH-responsive biodegradable micelles were prepared from block copolymers comprising of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50 °C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). The copolymerization of D,L-lactide (DLLA) and 2a under otherwise the same conditions could also proceed smoothly to afford PEG-P(TMBPEC-co-DLLA) (3c) block copolymer. These block copolymers readily formed micelles in water with sizes of about 120 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate was investigated using UV/vis spectroscopy. The results showed that the acetals of micelles 3a, while stable at pH 7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half-life of 1 and 6.5 h, respectively. The acetal hydrolysis resulted in significant swelling of micelles, as a result of change of hydrophobic polycarbonate to hydrophilic polycarbonate. In comparison, the acetals of PMBPEC of micelles 3b displayed obviously slower hydrolysis at the same pH. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 and 11.7 wt %, respectively). The in vitro release studies showed clearly a pH dependent release behavior, that is, significantly faster drug release at mildly acidic pH of 4.0 and 5.0 compared to physiological pH. These pH-responsive biodegradable micelles are promising as smart nanovehicles for targeted delivery of anticancer drugs.

  7. Behaviour of U-Isotopes in an Estuary Affected by Acid Mine Drainage and Industrial Releases

    International Nuclear Information System (INIS)

    Tinto and Odiel rivers (SW of Spain) is an ecosystem of great interest that is seriously affected by acid mine drainage (AMD) from long-term mining activities (pH < 3). Additionally, a large industrial complex is located in the surroundings of this estuary and Huelva town, which includes two phosphate rock processing plants that produce about 3 millions of tons per year of a byproduct called phosphogypsum (PG) containing high U-series radionuclides concentrations. For these reasons, the estuary of Huelva is one of the most heavy metals and radionuclides polluted estuarine systems in Europe with extremely low pH.

  8. Catecholamine release and potentiation of thromboxane A2 production by nicotine in the greyhound.

    OpenAIRE

    Dusting, G J; D.M. Li

    1986-01-01

    Thromboxane A2 was generated by infusing arachidonic acid (2.5 micrograms ml-1) into an extra-corporeal circuit of blood withdrawn from anaesthetized dogs, and assayed on a blood-bathed bioassay cascade of porcine and bovine coronary artery strips, chick rectum and rat stomach strip. All tissues except chick rectum were treated with phentolamine and propranolol to abolish direct effects of catecholamines. The arachidonate-induced contractions of artery strips were abolished by a thromboxane s...

  9. Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo.

    Directory of Open Access Journals (Sweden)

    Renée E Haskew-Layton

    Full Text Available A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl] medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i kinetic properties, (ii sensitivity to isoosmotic changes in [NaCl], and (iii sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.

  10. Archaeal acylamino acid releasing enzyme/lipase: Crystallization and preliminary crystallographic analysis in a new crystal form

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A primitive orthorhombic crystal form of acylamino acid releasing enzyme/lipase (APE1547) from hyperthermophilic archaeon Aeropyrum pernix strain K1 has been obtained at 291 K. The diffraction pattern of the crystal extends to 0.27 nm resolution at 100 K using Cu Kαradiation. The crystal belongs to the space group P212121 with unit cell dimensions of a = 6.399, b = 10.439 and c = 16.953 nm. The presence of two molecules per asymmetric unit gives a crystal volume per protein mass (Vm) of 0.0022 nm3 Da-1 and a solvent content of 43% by volume. A full set of X-ray diffraction data were collected to 0.3 nm from the native crystal.

  11. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    Science.gov (United States)

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery.

  12. Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    1999-01-01

    A copolymer of N-isopropylacrylamide (98 mol% in feed) and acrylic acid, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), was prepared by free radical polymerization for development of a thermally reversible polymer to entrap islets of Langerhans for a refillable biohybrid artificial pancreas. A 5 wt% solution of the polymer in Hanks' balanced salt solution forms a gel at 37 degrees C that exhibits no syneresis. Diffusion of fluorescein isothiocyanate (FITC) dextrans having molecular weights of 4400 and 70000 were used to evaluate mass transport in the gel at 37 degrees C. Insulin secretion from islets in the polymer gel was also investigated in both static and dynamic systems. The polymer gel exhibited excellent diffusion of FITC dextran 4400 and FITC dextran 70000 with diffusion ratios, D/D0 (ratio of diffusion in the gel to diffusion in water), of 0.20+/-0.04 and 0.35+/-0.17, respectively. Human islets entrapped in the polymer gel showed prolonged insulin secretion in response to basal (5.5 mM) glucose concentration compared to free human islets. Rat islets showed prolonged insulin secretion in response to high (16.5 mM) glucose concentrations compared to free rat islets. Rat islets in the polymer gel maintained insulin secretion in response to the higher glucose concentration for over 26 days. Rat islets entrapped by the polymer also released higher quantities of insulin more rapidly in response to changes in concentrations of glucose and other stimulants than rat islets entrapped in an alginate control. These results suggest that this material would provide adequate diffusion for rapid insulin release in an application as a synthetic extracellular matrix for a biohybrid artificial pancreas.

  13. Photo-crosslinked networks prepared from fumaric acid monoethyl ester-functionalized poly(D,L-lactic acid) oligomers and N-vinyl-2-pyrrolidone for the controlled and sustained release of proteins

    NARCIS (Netherlands)

    Jansen, Janine; Tibbe, Martijn P.; Mihov, George; Feijen, Jan; Grijpma, Dirk W.

    2012-01-01

    Photo-crosslinked networks were prepared from fumaric acid monoethyl ester-functionalized poly (D,L-lactic acid) oligomers and N-vinyl-2-pyrrolidone. Two model proteins, lysozyme and albumin, were incorporated into the network films as solid particles and their release behavior was studied. By varyi

  14. Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold.

    Science.gov (United States)

    Jiang, Liming; Sun, Haizhu; Yuan, Anliang; Zhang, Kai; Li, Daowei; Li, Chen; Shi, Ce; Li, Xiangwei; Gao, Kai; Zheng, Changyu; Yang, Bai; Sun, Hongchen

    2013-11-01

    Simvastatin is considered as a stimulator for bone formation. However, the half-life for simvastatin is generally 2 hours, which means, it is difficult to maintain biologically active simvastatin in vivo. To overcome this limitation, we created a system to slowly release simvastatin in vitro and in vivo. We constructed a poly(lactic-co-glycolic acid)/hydroxyapatite nano-fibrous scaffold to carry simvastatin. Releasing assays showed that simvastatin was released from poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin quickly within - 15 days, and small amounts continued to be released through day 56 (experiments terminated). MTT assays demonstrated that both poly(lactic-co-glycolic acid)/hydroxyapatite and poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin promoted MC3T3-E1 cell proliferation. However, Alkaline phosphatase assays showed that only poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold significantly promoted the osteogenic differentiation of MC3T3-E1 cells in vitro on day 14. To further test in vivo, we created calvaria bone defect models and implanted either poly(lactic-co-glycolic acid)/hydroxyapatite or poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin. After 4 or 8 weeks post-implantation, the results indicated that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold induced bone formation more efficiently than poly(lactic-co-glycolic acid)/hydroxyapatite alone. Our data demonstrates that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin has the potential to aid in healing bone defects and promoting bone regeneration in the future although we still need to optimize this complex to efficiently promote bone regeneration.

  15. Nitric oxide-releasing poly(lactic-co-glycolic acid-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity

    Directory of Open Access Journals (Sweden)

    Nurhasni H

    2015-04-01

    Full Text Available Hasan Nurhasni,1 Jiafu Cao,1 Moonjeong Choi,1 Il Kim,2 Bok Luel Lee,1 Yunjin Jung,1 Jin-Wook Yoo11College of Pharmacy, Pusan National University, Busan, South Korea; 2Department of Polymer Science and Engineering, Pusan National University, Busan, South KoreaAbstract: Nitric oxide (NO-releasing nanoparticles (NPs have emerged as a wound healing enhancer and a novel antibacterial agent that can circumvent antibiotic resistance. However, the NO release from NPs over extended periods of time is still inadequate for clinical application. In this study, we developed NO-releasing poly(lactic-co-glycolic acid-polyethylenimine (PEI NPs (NO/PPNPs composed of poly(lactic-co-glycolic acid and PEI/diazeniumdiolate (PEI/NONOate for prolonged NO release, antibacterial efficacy, and wound healing activity. Successful preparation of PEI/NONOate was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet/visible spectrophotometry. NO/PPNPs were characterized by particle size, surface charge, and NO loading. The NO/PPNPs showed a prolonged NO release profile over 6 days without any burst release. The NO/PPNPs exhibited potent bactericidal efficacy against methicillin-resistant Staphylococcus aureus (MRSA and Pseudomonas aeruginosa concentration-dependently and showed the ability to bind on the surface of the bacteria. We also found that the NO released from the NO/PPNPs mediates bactericidal efficacy and is not toxic to healthy fibroblast cells. Furthermore, NO/PPNPs accelerated wound healing and epithelialization in a mouse model of a MRSA-infected wound. Therefore, our results suggest that the NO/PPNPs presented in this study could be a suitable approach for treating wounds and various skin infections.Keywords: nitric oxide-releasing nanoparticles, PLGA, PEI, antimicrobial, wound healing

  16. Microwave-assisted Polymerization of ε-Caprolactone with Maleic Acid as Initiator and Drug Release Behavior of Ibuprofen-Poly(ε-caprolaetone) System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Poly(ε-caprolactone) (PCL) with weight-average molar mass over 10000 g/mol was synthesized by microwave-assisted ring-opening polymerization of ε-caprolactonc (ε-CL) with malcic acid (MA) as initiator (2.45 GHz, 360 W, 85 min). Ibuprofen-PCL controlled release system was prepared directly by the ROP of ε-CL in its mixture with ibuprofen. The release of ibuprofen from the system was sustained and steady.

  17. Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution

    International Nuclear Information System (INIS)

    The degradability of fibrous wollastonite (CaSiO3) in an aqueous solution of acetic acid and leaching of Ca2+ ions were investigated in the temperature range from 22 to 50 oC. The Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) was used for the assessment of calcium and other selected cations in the leaching medium. The amount of calcium in the solvent can be significantly enhanced through leaching at higher temperature. Fibrous silica particles are the main by-product of the leaching process. The properties of by-product were examined by thermal analysis (simultaneous TG-DTA-EGA), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The formation of silica layer on the surface of fibrous wollastonite particles is an important factor in the leaching process. Particles were covered by the silica layer and wollastonite core size was continually decreasing during leaching. The shape of resulting silica particles shows no significant changes during this process. Specific surface of the formed fibrous silica particles strongly depends on the leaching temperature.

  18. Diphenylarsinic acid increased the synthesis and release of neuroactive and vasoactive peptides in rat cerebellar astrocytes.

    Science.gov (United States)

    Negishi, Takayuki; Takahashi, Masaki; Matsunaga, Yuki; Hirano, Seishiro; Tashiro, Tomoko

    2012-06-01

    An incident of poisoning occurred in Japan in 2003 when high-level contamination with arsenic, mainly diphenylarsinic acid (DPAA), was found in well water. People using this water particularly experienced cerebellar symptoms. In the present study, we investigated the adverse effects of DPAA on the cerebellum in vitro and in vivo to understand the biological mechanisms that cause cerebellar symptoms. Comprehensive gene expression analyses in primary cultured ratcerebellar cells exposed to 10 μM DPAA for 24 hours indicated significant alterations in the mRNA expression of genes encoding antioxidative stress proteins (heme oxigenase 1 and heat shock protein72) and neuroactive and vasoactive peptides (neuropeptide Y, adrenomedullin, monocyte chemoattractant protein 1, and fibroblast growth factor 2). Further analyses of proteins revealed that cultured cerebellar astrocytes expressed these antioxidative stress proteins and peptides in response to exposure to DPAA. In addition, these adverseeffects were also observed in the cerebellum exposed in vivo to DPAA (100 mg/L) for 21 days. These results suggested that cerebellarastrocytes irregularly secrete neuroactive and vasoactive peptidesagainst DPAA-induced oxidative stress, which leads to abnormal neural functions and disrupted cerebellar autoregulation dynamics and results in the onset of cerebellar symptoms.

  19. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhefan; Huang Jingyi; Liu Jing; Cheng Sixue; Zhuo Renxi; Li Feng, E-mail: lfsj2004@hotmail.com [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072 (China)

    2011-08-19

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-({omega}-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l{sup -1}.

  20. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    Science.gov (United States)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  1. Whey protein/polysaccharide-stabilized oil powders for topical application-release and transdermal delivery of salicylic acid from oil powders compared to redispersed powders.

    Science.gov (United States)

    Kotzé, Magdalena; Otto, Anja; Jordaan, Anine; du Plessis, Jeanetta

    2015-08-01

    Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabilized o/w emulsions could be converted into stable oil powders by means of freeze-drying. Moreover, during this study, the effects of pH and polymer type on release and trans(dermal) delivery of salicylic acid, a model drug, from these oil powders were investigated and compared to those of the respective template emulsions and redispersed oil powders. Physical characterization of the various formulations was performed, such as droplet size analysis and oil leakage, and relationships drawn with regards to release and trans(dermal) delivery. The experimental outcomes revealed that the oil powders could be redispersed in water without changing the release characteristics of salicylic acid. pH and polymer type affected the release of salicylic acid from the oil powders, template emulsions, and redispersed powders similarly. Contrary, the transdermal delivery from the oil powders and from their respective redispersed oil powders was differently affected by pH and polymer type. It was hypothesized that the release had been influenced by the electrostatic interactions between salicylic acid and emulsifiers, whereas the transdermal performance could have been determined by the particle or aggregate sizes of the formulations.

  2. Differential Release of Lipoteichoic and Teichoic Acids from Streptococcus pneumoniae as a Result of Exposure to β-Lactam Antibiotics, Rifamycins, Trovafloxacin, and Quinupristin-Dalfopristin

    OpenAIRE

    Stuertz, K; Schmidt, H.; Eiffert, H.; Schwartz, P.; Mäder, M.; Nau, R.

    1998-01-01

    The release of lipoteichoic acid (LTA) and teichoic acid (TA) from a Streptococcus pneumoniae type 3 strain during exposure to ceftriaxone, meropenem, rifampin, rifabutin, quinupristin-dalfopristin, and trovafloxacin in tryptic soy broth was monitored by a newly developed enzyme-linked immunosorbent assay. At a concentration of 10 μg/ml, a rapid and intense release of LTA and TA occurred during exposure to ceftriaxone (3,248 ± 1,688 ng/ml at 3 h and 3,827 ± 2,133 ng/ml at 12 h) and meropenem ...

  3. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    Science.gov (United States)

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. PMID:26093053

  4. The gastric acid secretagogue gastrin-releasing peptide and the inhibitor oxyntomodulin do not exert their effect directly on the parietal cell in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1988-01-01

    Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production in...... and histamine-stimulated parietal cells confirmed that the cells retained the normal morphology of intracellular organelles and that the cells responded to physiological stimulation by marked expansion of the intracellular canaliculi.......Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production...... in vitro by measuring [14C]-aminopyrine accumulation, a reliable index of H+ generation, in isolated rat parietal cells. However, neither gastrin-releasing peptide nor oxyntomodulin influenced basal acid secretion or histamine-stimulated gastric acid secretion. Electron-microscopic studies of unstimulated...

  5. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  6. Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins

    Energy Technology Data Exchange (ETDEWEB)

    Hamberg, M.; Svensson, J.; Samuelsson, B.

    1974-10-01

    Methods were developed for quantitative determination of the three major metabolites of arachidonic acid in human platelets, i.e., 12L-hydroxy-5,8,10,14-cicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 8-(1-hydroxy-3-oxopropyl)-9,12L-dihydroxy-5,10-heptadecadienoic acid (PHD). Aggregation of washed platelets by thrombin was accompanied by release of 1163 to 2175 ng/ml of HETE, 1129 to 2430 ng/ml of HHT, and 998 to 2299 ng/ml of PHD. The amount of PGG/sub 2/ (prostaglandin G/sub 2/) produced as calculated from the sum of the amounts of its metabolites (HHT and PHD) was 2477 to 5480 ng/ml. In contrast, the amounts of PGF/sub 2/ (prostaglandin E/sub 2/) and PGF/sub 2..cap alpha../ (prostaglandin F/sub 2..cap alpha../) released were approximately two orders of magnitude lower. In this system, the prostaglandins thus exert their biological action through the endoperoxides, which are almost exclusively metabolized to nonprostanoate structures and only to a small extent to the classical prostaglandins. Platelets from subjects given aspirin produced less than 5% of the above mentioned amounts of HHT and PHD, whereas the production of HETE was stimulated about 3-fold. This provides additional evidence for our earlier proposal that the anti-aggregating effect of aspirin is through inhibition of PGG/sub 2/ formation.

  7. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid/Poly(vinyl alcohol IPN Hydrogel and Its Drug Controlled Release

    Directory of Open Access Journals (Sweden)

    Jingqiong Lu

    2015-01-01

    Full Text Available Modified poly(aspartic acid/poly(vinyl alcohol interpenetrating polymer network (KPAsp/PVA IPN hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid grafting 3-aminopropyltriethoxysilane (KH-550 and poly(vinyl alcohol (PVA as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The thermal stability was analyzed by thermogravimetric analysis (TGA. The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN, and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid and 62.5 wt% at pH = 7.4 (simulated intestinal fluid, respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  8. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    Science.gov (United States)

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  9. Rheology as a Tool to Predict the Release of Alpha-Lipoic Acid from Emulsions Used for the Prevention of Skin Aging.

    Science.gov (United States)

    Isaac, Vera Lucia Borges; Chiari-Andréo, Bruna Galdorfini; Marto, Joana Marques; Moraes, Jemima Daniela Dias; Leone, Beatriz Alves; Corrêa, Marcos Antonio; Ribeiro, Helena Margarida

    2015-01-01

    The availability of an active substance through the skin depends basically on two consecutive steps: the release of this substance from the vehicle and its subsequent permeation through the skin. Hence, studies on the specific properties of vehicles, such as their rheological behavior, are of great interest in the field of dermatological products. Recent studies have shown the influence of the rheological features of a vehicle on the release of drugs and active compounds from the formulation. In this context, the aim of this study was to evaluate the influence of the rheological features of two different emulsion formulations on the release of alpha-lipoic acid. Alpha-lipoic acid (ALA) was chosen for this study because of its antioxidant characteristics, which could be useful for the prevention of skin diseases and aging. The rheological and mechanical behavior and the in vitro release profile were assayed. The results showed that rheological features, such as viscosity, thixotropy, and compliance, strongly influenced the release of ALA from the emulsion and that the presence of a hydrophilic polymer in one of the emulsions was an important factor affecting the rheology and, therefore, the release of ALA.

  10. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  11. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment

    Directory of Open Access Journals (Sweden)

    Jeff B. Langman

    2014-04-01

    Full Text Available A five-year, humidity-cell experiment was used to study the weathering evolution of a low-sulfide, granitic waste rock at 5 and 22 °C. Only the rock with the highest sulfide content (0.16 wt % released sufficient acid to overcome a limited carbonate acid-neutralization capacity and produce a substantial decline in pH. Leached SO4 and Ca quickly increased then decreased during the first two years of weathering. Sulfide oxidation continued to release acid and SO4 after carbonate depletion, resulting in an increase in acid-soluble elements, including Cu and Zn. With the dissolution of Al-bearing minerals, the pH stabilized above 4, and sulfide oxidation continued to decline until the end of the experiment. The variation in activation energy of sulfide oxidation correlates with changes in sulfide availability, where the lowest activation energies occurred during the largest releases of SO4. A decrease in sulfide availability was attributed to consumption of sulfide and weathered rims on sulfide grains that reduced the oxidation rate. Varying element release rates due to changing carbonate and sulfide availability provide identifiable geochemical conditions that can be viewed as neutralization sequences and may be extrapolated to the field site for examining the evolution of mineral weathering of the waste rock.

  12. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    Science.gov (United States)

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  13. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis

    Directory of Open Access Journals (Sweden)

    Katherine D. Connolly

    2015-11-01

    Full Text Available Extracellular vesicles (EVs are submicron vesicles released from many cell types, including adipocytes. EVs are implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation. EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking analysis (NTA. EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS and show higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0. PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis, particularly in vesicles <300 nm. Cells at this time point possess a greater proportion of PS (required for EV generation whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and markers of adipogenesis, such as PREF-1 and PPARγ.

  14. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. PMID:27178954

  15. Peptide Synthesis through Cell-Free Expression of Fusion Proteins Incorporating Modified Amino Acids as Latent Cleavage Sites for Peptide Release.

    Science.gov (United States)

    Liutkus, Mantas; Fraser, Samuel A; Caron, Karine; Stigers, Dannon J; Easton, Christopher J

    2016-05-17

    Chlorinated analogues of Leu and Ile are incorporated during cell-free expression of peptides fused to protein, by exploiting the promiscuity of the natural biosynthetic machinery. They then act as sites for clean and efficient release of the peptides simply by brief heat treatment. Dehydro analogues of Leu and Ile are similarly incorporated as latent sites for peptide release through treatment with iodine under cold conditions. These protocols complement enzyme-catalyzed methods and have been used to prepare calcitonin, gastrin-releasing peptide, cholecystokinin-7, and prolactin-releasing peptide prohormones, as well as analogues substituted with unusual amino acids, thus illustrating their practical utility as alternatives to more traditional chemical peptide synthesis. PMID:26918308

  16. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice.

    Science.gov (United States)

    Chandorkar, Yashoda; Bhaskar, Nitu; Madras, Giridhar; Basu, Bikramjit

    2015-02-01

    There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 × 10(-4) h(-1) over ∼1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-α and IL-1β), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.

  17. Effect of malic acid on aluminum and silicon release from kaolinite%苹果酸对高岭石中铝和硅释放的影响

    Institute of Scientific and Technical Information of China (English)

    胡华锋; 王慧杰; 王兴祥; 介晓磊; 李清曼

    2013-01-01

    Experiment was conducted to investigate the long-time dissolution effects of water-eluviated and acid-eluviated kaolinite with batch method in malic acid solution. The results showed that malic acid significantly enhanced Al and Si release from kaolinite, and release of Al and Si from kaolinite increased with the increase of concentration of malic acid. Acid-eluviated kaolinite was more easily dissolved than that of water-eluviated kaolinite. When the concentration of malic acid was 20 mmol·L-1, after reaction for 936 hours, the release amount of Al and Si from water-eluviated kaolinite was 0.51 mmol·L-1 and 0.57 mmol·L-1, which were 86.44% and 83.82% of the release amount of Al and Si from acid-eluviated kaolinite. The preferential Si-release of kaolinite was observed initially, but at reaction anaphase, when the concentration of malic acid were less than 20 mmol/L, Al and Si showed stoichiometric release. Dissolution rate of kaolinite increased with the increase of concentration of malic acids, and dissolution rate of acid-eluviated kaolinite was higher than that of water-eluviated kaolinite; the dissolution rate didn't show the character of saturation, and the dissolution rate indiated the increasing character of linearity; malic acid significantly enhanced Al and Si release from kaolinite, and the acid-eluviated kaolinite was more easily dissolved than water-eluviated kaolinite in the malic acids reactive solution.%采用间歇法(batch method)模拟研究水洗和酸洗高岭石在苹果酸溶液中的长期溶解效应及其相对溶解能力.结果表明,水洗和酸水高岭石反应液中Al、Si离子浓度均随苹果酸浓度的增加而升高,且酸洗高岭石中Al、Si离子更易释放;当苹果酸浓度为20 mmol·L-1时,反应936h后,水洗高岭石Al、Si的释放量为0.51 mmol·L-1和0.57 mmol·L-1,分别是酸洗高岭石Al、Si释放量的86.44%和83.82%.高岭石反应前期表现为Si的优先释放,而在反

  18. Inhibition of basophil histamine release by gangliosides. Further studies on the significance of cell membrane sialic acid in the histamine release process

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Thastrup, Ole;

    1987-01-01

    . aureus Wood 46 was not affected. It was demonstrated that the inhibitory capacity of the glucolipid mixture could be attributed to the content of gangliosides, since no inhibition was obtained with cerebrosides or with gangliosides from which sialic acid was removed. Preincubation of the cells...

  19. Polyunsaturated fatty acids and inflammation

    Directory of Open Access Journals (Sweden)

    Calder Philip C.

    2004-01-01

    Full Text Available The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids act as arachidonic acid antagonists. Components of both natural and acquired immunity, including the production of key inflammatory cytokines, can be affected by n-3 polyunsaturated fatty acids. Although some of the effects of n-3 fatty acids may be brought about by modulation of the amount and types of eicosanoids made, it is possible that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms. Such n-3 fatty acid-induced effects may be of use as a therapy for acute and chronic inflammation, and for disorders that involve an inappropriately-activated immune response.

  20. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    Science.gov (United States)

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  1. Drug Release Property of Modified Hyaluronic Acid Films in Vitro%改性透明质酸薄膜的体外释药性能研究

    Institute of Scientific and Technical Information of China (English)

    聂素云

    2012-01-01

    OBJECTIVE To evaluate the in vitro drug release properties of modified hyaluronic acid films. METHODS The drug release rates of the films were measured by dictyo-dish method and UV-Vis absorption spectroscopy. The effects of modifier contents and the solubility of medicines on the release were investigated. RESULTS The release of some hydrophobic drugs from the films were sustained. The drug release pattern followed Higuchi equation, and was controlled by diffusion mechanism. Drug release rates were delayed by increasing contents of modifier. CONCLUSION The films made of modified hyaluronic acid have excellent potentials as carriers for the sustained release of some hydrophobic drugs.%目的 对改性透明质酸制备的载药薄膜进行体外药物释放研究,为制备良好的缓释制剂提供参考依据.方法 用网碟法及紫外分光光度法测定载药薄膜的药物体外释放度,考查了改性剂用量和药物溶解性对释放度的影响.结果 载药薄膜对非水溶性药物具有较好的缓释作用,药物的体外释放符合Higuchi公式,受扩散机制控制.增加改性剂的用量可以降低药物的释放速率.结论 改性透明质酸薄膜对疏水性药物具有较好的缓释作用,是一种良好的药物载体.

  2. Is the release of acid phosphatases by ectomycorrhizal fungi a matter of environmental conditions or species in situ?

    OpenAIRE

    Plassard, Claude; Ali, Muhhammad A.; Duchemin, Myriam; Legname-Vonarx, Elvira; Louche, Julien; Cloutier-Hurteau, Benoît

    2011-01-01

    Ectomycorrhizal (ECM) fungi are able to release significant amounts of phosphatases (Pases) in their environment. These enzymes, by releasing the phosphate group of organic P, may play an important role in the recycling of P in forest soil. However, whether this enzyme release depends on the fungal diversity and / or the nutrient availability is not known. We addressed this question in the maritime pine (Pinus pinaster) forest, the first planted area in France on sandy podzol very poor in ...

  3. Sustained Release of Hydrophilic l-ascorbic acid 2-phosphate Magnesium from Electrospun Polycaprolactone Scaffold—A Study across Blend, Coaxial, and Emulsion Electrospinning Techniques

    Directory of Open Access Journals (Sweden)

    Xinxin Zhao

    2014-11-01

    Full Text Available The purpose of this study was to achieve a sustained release of hydrophilic l-ascorbic acid 2-phosphate magnesium (ASP from electrospun polycaprolactone (PCL scaffolds, so as to promote the osteogenic differentiation of stem cells for bone tissue engineering (TE. ASP was loaded and electrospun together with PCL via three electrospinning techniques, i.e., coaxial, emulsion, and blend electrospinning. For blend electrospinning, binary solvent systems of dichloromethane–methanol (DCM–MeOH and dichloromethane–dimethylformamide (DCM–DMF were used to achieve the desired ASP release through the effect of solvent polarity and volatility. The scaffold prepared via a blend electrospinning technique with a binary solvent system of DCM–MeOH at a 7:3 ratio demonstrated a desirable, sustained ASP release profile for as long as two weeks, with minimal burst release. However, an undesirable burst release (~100% was observed within the first 24 h for scaffolds prepared by coaxial electrospinning. Scaffolds prepared by emulsion electrospinning displayed poorer mechanical properties. Sustained releasing blend electrospun scaffold could be a good potential candidate as an ASP-eluting scaffold for bone tissue engineering.

  4. Discrepancy in calcium release from the sarcoplasmic reticulum and intracellular acidic stores for the protection of the heart against ischemia/reperfusion injury.

    Science.gov (United States)

    Khalaf, Aseel; Babiker, Fawzi

    2016-09-01

    We and others have demonstrated a protective effect of pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection are not completely clear. In the present study, we evaluated the effects of calcium release from the sarcoplasmic reticulum (SR) and the novel intracellular acidic stores (AS). Isolated rat hearts (n = 6 per group) were subjected to coronary occlusion followed by reperfusion using a modified Langendorff system. Cardiac hemodynamics and contractility were assessed using a data acquisition program, and cardiac injury was evaluated by creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. The hearts were also subjected to PPC (3 cycles of 30 s of left ventricle (LV) pacing alternated with 30 s of right atrium (RA) pacing) and/or were treated during reperfusion with agonists or antagonists of release of calcium from SR or AS. PPC significantly (P < 0.05) normalized LV, contractility, and coronary vascular dynamics and significantly (P < 0.001) decreased heart enzyme levels compared to the control treatments. The blockade of SR calcium release resulted in a significant (P < 0.01) recovery in LV function and contractility and a significant reduction in CK and LDH levels (P < 0.01) when applied alone or in combination with PPC. Interestingly, the release of calcium from AS alone or in combination with PPC significantly improved LV function and contractility (P < 0.05) and significantly decreased the CK and LDH levels (P < 0.01) compared to the control treatments. An additive effect was produced when agonism of calcium release from AS or blockade of calcium release from the SR was combined with PPC. Calcium release from AS and blockade of calcium release from the SR protect the heart against I

  5. Effect of Chia oil (Salvia Hispanica) rich in omega-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma.

    Science.gov (United States)

    Espada, C E; Berra, M A; Martinez, M J; Eynard, A R; Pasqualini, M E

    2007-07-01

    We investigated the effects of certain dietary polyunsaturated fatty acids (PUFAs) and related eicosanoids on the growth and metastasis formation of a murine mammary gland adenocarcinoma. Salvia hispanica (ChO) and Carthamus tinctorius (SaO) vegetable oil sources of omega-3 and -6 PUFAs and a commercial diet as control (CO), were used. We analysed fatty acids of neoplastic cells (NC) membranes by GLC; the eicosanoids 12- HETE and 12-HHT (LOX and COX metabolites) by HPLC and apoptosis and T-lymphocyte infiltration by flow cytometry and microscopy. NC from ChO groups showed lower levels of arachidonic acid and of both eicosanoids compared to SaO and CO (p<0.05). The ChO diet decreased the tumor weight and metastasis number (p<0.05). Apoptosis and T-lymphocyte infiltration were higher and mitosis decreased with respect to the other diets (p<0.05). Present data showed that ChO, an ancient and almost unknown source of omega-3, inhibits growth and metastasis in this tumor model.

  6. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.;

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using...... an established steady-state kinetic model. Liver was used as a negative control, and no changes were observed between groups. In Snca-/- brains, there was a marked reduction in 20:4n-6-CoA mass and in microsomal acyl-CoA synthetase (Acsl) activity toward 20:4n-6. Microsomal Acsl activity was completely restored...... after the addition of exogenous wild-type mouse or human alpha-synuclein, but not by A30P, E46K, and A53T forms of alpha-synuclein. Acsl and acyl-CoA hydrolase expression was not different between groups. The incorporation and turnover of 20:4n-6 into brain phospholipid pools were markedly reduced...

  7. Hydroxyl radicals mediate acute pulmonary vasoconstriction and thromboxane release during protamine reversal of heparin in awake sheep

    Energy Technology Data Exchange (ETDEWEB)

    Nguyenduy, T.; Morel, D.R.; Collee, G.; Eberhard, M.; Melvin, C.; Robinson, D.R.; Repine, J.E.; Lowenstein, E.; Zapol, W.M.

    1986-03-01

    Neutralization of heparin by protamine sulfate activates the classical complement pathway and causes release of thromboxane leading to pulmonary hypertension (PH). Oxygen radicals are generated during granulocyte stimulation by complement fragments. The authors investigated the effect of dimethyl sulfoxide (DMSO), a non-specific hydroxyl radical scavenger, and dimethyl thiourea (DMTU), a specific enzymatic hydroxyl radical scavenger, on this acute reaction. In chronically instrumented sheep, IV injection of protamine (2 mg/kg) 5 min after heparin (200IU/kg) produced PH (246 +/- 16% of baseline at 1 min, anti x +/- SE), with leukopenia (to 37 +/- 8% of baseline at 2 min) associated with thromboxane B/sub 2/ (TxB/sub 2/) release (5.3 + 2.0 ng/ml). IV pretreatment with DMSO (lg/kg) had no effect on the response. DMTU, 0.5 g/kg, attenuated, and lg/kg completely abolished TxB/sub 2/ release and PH. Neither DMSO nor DMTU had any effect on the leukopenia. Arachidonic acid infusion (100 ..mu..g/kg/min x 5 min) released TxB/sub 2/ and produced PH despite pre-treatment with DMTU, demonstrating intact cyclooxygenase pathway. Thus, hydroxyl radicals appear to mediate TxB/sub 2/ release in classical pathway complement activation accompanying heparin neutralization by protamine.

  8. Application of acid-treated yeast cell wall (AYC) as a pharmaceutical additive. II: effects of curing on the medicine release from AYC-coated tablets.

    Science.gov (United States)

    Yuasa, H; Kaneshige, J; Ozeki, T; Kasai, T; Eguchi, T; Ishiwaki, N

    2000-11-19

    Acid-treated yeast cell wall (AYC) was newly prepared by acidifying brewers' yeast cell wall. Core tablets containing 3% of acetaminophen (AAP) were coated with the AYC aqueous dispersion containing 5% (w/v) of AYC and 0.35% (w/v) of glycerol. The curing of AYC-coated tablets was performed at various curing periods of time and temperatures. The effects of curing on AAP release from AYC-coated tablets, the weight and thickness of the coated layer of AYC and the water sorption into the AYC-coated tablets were studied. The tensile strength and pore size distribution of the AYC cast film were measured. In the case of 60, 80, or 100 degrees C curing, AAP release from AYC-coated tablets showed a sigmoidal release profile with an initial lag time. The duration of the lag time increased with the increasing curing time and temperature, though the release rate after the lag time hardly changed. At 120 degrees C curing, the release rate after the lag time decreased with the increasing curing time and a sustained release was observed. The weight and thickness of the AYC-coated layer and the water sorption rate into AYC-coated tablets decreased with the increasing curing time and temperature. The tensile strength of the AYC cast film increased with increasing the curing temperature, particularly at 120 degrees C curing. It is considered that the water was evaporated from the AYC-coated layer and the adhesion force between AYC particles increased during curing, making the structure of the AYC-coated layer densely firm. The changes in the duration of lag time and the release rate may be due to changes in the structure of the AYC-coated layer caused by curing. These results show that it is feasible to control the lag time and the release rate of AAP from AYC-coated tablets by varying the curing time and temperature.

  9. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.

    OpenAIRE

    Schliephake, Henning; Weich, Herbert A.; Dullin, Christian; Gruber, Rudolf; Frahse, Sarah

    2008-01-01

    The aim of the present study was to test the hypothesis that human recombinant bone morphogenic protein 2 (rhBMP-2) implanted in a slow release carrier of polylactic acid (PLA) can repair a non-healing defect in the rat mandible and maintain the thickness of an augmented volume. p-DL-lactic acid discs were produced and loaded with 48 and 96 microg rhBMP-2 and inserted into non-healing defects of the mandible of 45 Wistar rats. Fifteen rats received implants with 96 microg rhBMP-2 (Group 2), 4...

  10. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    OpenAIRE

    P.C. Calder

    1998-01-01

    1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune...

  11. Fliposomes: pH-Sensitive Liposomes Containing a trans-2-morpholinocyclohexanol-Based Lipid That Performs a Conformational Flip and Triggers an Instant Cargo Release in Acidic Medium

    OpenAIRE

    Barbora Brazdova; Franz, Andreas H.; Samoshin, Vyacheslav V.; Xin Guo; Xin Liu; Samoshina, Nataliya M.

    2011-01-01

    Incorporation of a pH-sensitive conformational switch into a lipid structure enables a drastic conformational flip upon protonation that disrupts the liposome membrane and causes rapid release of cargo specifically in areas of increased acidity. pH-sensitive liposomes containing the amphiphile (1) with trans-2-morpholinocyclohexanol conformational switch, a phospholipid, and a PEG-lipid conjugate were constructed and characterized. The optimized composition—1/POPC/PEG-ceramide (50/45/5)—could...

  12. Differential free fatty acid receptor-1 (FFAR1/GPR40) signalling is associated with gene expression or gelatinase granule release in bovine neutrophils.

    Science.gov (United States)

    Mena, Sandra J; Manosalva, Carolina; Carretta, Maria D; Teuber, Stefanie; Olmo, Iván; Burgos, Rafael A; Hidalgo, Maria A

    2016-08-01

    Fatty acids have been recognized as regulators of immune function in addition to their known metabolic role. Long-chain fatty acids bind free fatty acid receptor (FFAR)-1/GPR40, which is expressed on bovine neutrophils, and increase responses such as granule release and gene expression. In this study, we investigated the molecular mechanisms governing the up-regulation of cyclooxygenase-2 (COX-2) and IL-8, as well as matrix metalloproteinase (MMP)-9 granule release in FFAR1/GPR40 agonist-stimulated neutrophils. Our results showed that natural (oleic and linoleic acid) and synthetic (GW9508) FFAR1/GPR40 agonists increased ERK1/2, p38 MAPK and Akt phosphorylation, and that the FFAR1/GPR40 antagonist GW1100 reduced these responses. We evaluated the levels of IκBα, a component of the classical activation pathway of the transcription factor NF-κB, and we observed IκBα reduction after stimulation with FFAR1/GPR40 agonists, an effect that was inhibited by GW1100 or the inhibitors UO126, SB203580 or LY294002. FFAR1/GPR40 agonists increased COX-2 and IL-8 expression, which was inhibited by GW1100 and an NF-κB inhibitor. Finally, the FFAR1/GPR40 agonist-induced MMP-9 granule release was reduced by GW1100 and UO126. In conclusion, FFAR1/GPR40 agonists differentially stimulate neutrophil functions; COX-2 and IL-8 are expressed after FFAR1/GPR40 activation via NF-κB, IκBα reduction is FFAR1/GPR40- and PI3K/MAPK-dependent, and MMP-9 granule release is FFAR1/GPR40- and ERK1/2-dependent. PMID:27363707

  13. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    Science.gov (United States)

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  14. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    Science.gov (United States)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  15. Influence of the composition of hydroxypropyl cellulose/maleic acid-alt-styrene copolymer blends on their properties as matrix for drug release

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Poly(carboxylic acid-polysaccharide compositions have been found suitable for obtaining drug formulations with controlled release, most formulations being therapeutically efficacious, stable, and non-irritant. The influence of the characteristics of the aqueous solutions from which the polymer matrix is prepared (i.e. the total concentration of polymer in solutions and the mixing ratio between the partners, hydroxypropyl cellulose, HPC and maleic acid-alternating-styrene copolymer, MAc-alt-S on the kinetics of some drugs release in acidic environment (pH = 2 has been followed by ‘in vitro’ dissolution tests. It has been established that the kinetics of procaine hydrochloride release from HPC/MAc-alt-S matrix depends on its composition; the diffusion exponent, n is close to 0.5 for matrices where one of the components is in large excess and n~0.02 for middle composition range. The lower value of diffusion exponent for middle composition range could be caused by the so called ‘burst effect’, therefore the kinetic evaluation is difficult.

  16. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.

  17. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  18. Controlled Release of Linalool Using Nanofibrous Membranes of Poly(lactic acid) Obtained by Electrospinning and Solution Blow Spinning: A Comparative Study.

    Science.gov (United States)

    Souza, Michelle A; Oliveira, Juliano E; Medeiros, Eliton S; Glenn, Gregory M; Mattoso, Luiz H C

    2015-08-01

    The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofibrous membranes produced by electrospinning and solution blow spinning (SBS) as well as the effect of linalool on fiber morphology and structural properties. PLA nanofibrous membranes were characterized by Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and contact angle measurements. The average diameters of the electrospun and solution blow spun nanofibers were similar, ranging from 176 to 240 nm. Linalool behaved as a plasticizer to PLA decreasing the glass transition temperature (Tg), melting point (Tm) and crystallization temperature (TC) of PLA. Curves of the release of linalool at 35 °C were non-linear, showing a clear biphasic pattern consistent with one or more Fickian release components. The time required to release 50% of linalool (t1/2) decreased with increasing linalool concentration. The range in t1/2 values for SBS nanofibers was higher (291-1645s) than the t1/2 values for electrospun fibers (76-575s).

  19. The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles.

    Science.gov (United States)

    Al-Qadi, Sonia; Alatorre-Meda, Manuel; Martin-Pastor, Manuel; Taboada, Pablo; Remuñán-López, Carmen

    2016-05-01

    The synergistic effects of the polysaccharides chitosan (CS) and hyaluronic acid (HA) formulated into hybrid nanoparticles are promising for drug delivery. In the present work, we performed a detailed analysis of the molecular interactions involved in the TPP-assisted ionotropic gelation of CS hybrid nanoparticles with the objective of investigating the impact of HA inclusion on the particle formulation and on the in vitro release of insulin (INS) as a protein cargo. To do that, an in-depth thermodynamic study was carried out by isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. Such analysis allowed us to elucidate the type and extent of interactions established by INS within the hybrid nanoparticles and to get further knowledge on the nature of its release mechanism in vitro. Overall, INS release from the CS nanoparticles was thermodynamically driven, and when including HA a weaker INS binding to the nanoparticles, hence, a faster release rate in vitro were observed. As a negative polyelectrolyte, HA might have sterically blocked the activated sites of CS, such as the amino groups, through chain entanglement, thereby, attenuating the competitive binding interactions of INS. As a consequence, INS might have experienced a spatial exclusion onto the surface of the hybrid nanoparticles to a greater extent which, in turn, would explain its initial abrupt release. PMID:26854581

  20. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  1. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  2. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  3. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin

    Science.gov (United States)

    Khatun, Zehedina; Nurunnabi, Md; Nafiujjaman, Md; Reeck, Gerald R.; Khan, Haseeb A.; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-06-01

    The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid

  4. In vitro release studies of vitamin B12 from poly N-vinyl pyrrolidone /starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation. Their gel contents, grafting process and swelling were evaluated. The gels were also characterized by thermal gravimetric analysis. The gel content found to be increase with increasing the irradiation dose up to 50 kGy then decrease. The grafting percent increase by increasing the percentage of acrylic acid in the grafted hydrogels. The thermal stability and the rate of the thermal decomposition showed to be changed according to the different composition of the hydrogels. It also showed a decrease in the maximum rate of the thermal decomposition by the increasing of the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B12 as drug model, demonstrated a decrease release in acidic medium than the neutral one

  5. Effect of a controlled-release drug delivery system made of oleanolic acid formulated into multivesicular liposomes on hepatocellular carcinoma in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Luo YL

    2016-07-01

    Full Text Available Yuling Luo, Zhongbing Liu, Xiaoqin Zhang, Juan Huang, Xin Yu, Jinwei Li, Dan Xiong, Xiaoduan Sun, Zhirong Zhong Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan,People’s Republic of ChinaAbstract: The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 µm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy.Keywords: oleanolic acid, multivesicular liposomes, murine hepatocellular carcinoma, controlled release, cancer therapy

  6. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males

    Directory of Open Access Journals (Sweden)

    Greenwood Mike

    2007-11-01

    Full Text Available Abstract Background To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males. Methods In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16 or AA (AA: 1 g·day-1 AA, n = 15 while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM, leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50. Results Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression. Conclusion AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy.

  7. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  8. In vivo release by vagal stimulation of L-/sup 3/Hglutamic acid in the nucleus tractus solitarius preloaded with L-/sup 3/Hglutamine

    Energy Technology Data Exchange (ETDEWEB)

    Granata, A.R.; Sved, A.F.; Reis, D.J.

    1984-01-01

    In anesthetized and paralyzed rats, using a push-pull perfusion technique, we examined the effect of bilateral vagal stimulation on the release of L-/sup 3/Hglutamic acid (L-/sup 3/HGlu) from the nucleus tractus solitarius (NTS), after preloading the tissue either with L-/sup 3/HGlu or L-/sup 3/Hglutamine (L-/sup 3/HGln). Vagal stimulation sufficient to produce a maximum fall of arterial pressure (AP) evoked release of L-/sup 3/HGlu from the NTS when the tissue was preloaded with either /sup 3/H-Glu or /sup 3/H-Gln, and of D-/sup 3/Haspartic acid (D-/sup 3/HAsp) when this stable Glu analogue was used to preloaded with either /sup 3/H-Glu or /sup 3/H-Gln, and of D-/sup 3/H precursor L-Gln is a good marker of the releasable pool of L-Glu in vivo and are consistent with the hypothesis that L-/sup 3/HGlu is a neurotransmitter in the NTS, mediating the vasodepressor response from cardiopulmonary mechanoreceptors.

  9. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property.

  10. The stability and controlled release of I-ascorbic acid encapsulated in poly (ethyl-2-cyanoacrylate) nanocapsules prepared by interfacial polymerization of water-in-oil microemulsions.

    Science.gov (United States)

    Zhang, Su-Ning; Chen, Tao; Guo, Yi-Guang; Zhang, Jian; Song, Xiaoqiu; Zhou, Lei

    2015-01-01

    The L-ascorbic acid (AA) was encapsulated into biodegradable and biocompatible poly(ethyl-2-cyanoacrylate) (PECA) nanocapsules by interfacial polymerization of water-in-oil (W/O) microemulsions. The influences of surfactant concentration, pH value of the dispersed aqueous phase, and W/O ratio on nanocapsule size were discussed. The stability and in vitro release of encapsulated AA were also investigated. The results show that nanocapsules could be obtained under the conditions with low pH value, high fraction of aqueous phase, and appropriate surfactant concentration. The encapsulated AA was protected by nanocapsules from oxidation and presented superior storage stability in aqueous medium than pure AA. Releasing AA from the inner core of nanocapsules could be controlled by adjusting the enzyme hydrolysis extent of the PECA wall. PMID:26665980

  11. Transcranial focal electrical stimulation reduces the convulsive expression and amino acid release in the hippocampus during pilocarpine-induced status epilepticus in rats.

    Science.gov (United States)

    Santana-Gómez, César E; Alcántara-González, David; Luna-Munguía, Hiram; Bañuelos-Cabrera, Ivette; Magdaleno-Madrigal, Víctor; Fernández-Mas, Rodrigo; Besio, Walter; Rocha, Luisa

    2015-08-01

    The aim of the present study was to evaluate the effects of transcranial focal electrical stimulation (TFS) on γ-aminobutyric acid (GABA) and glutamate release in the hippocampus under basal conditions and during pilocarpine-induced status epilepticus (SE). Animals were previously implanted with a guide cannula attached to a bipolar electrode into the right ventral hippocampus and a concentric ring electrode placed on the skull surface. The first microdialysis experiment was designed to determine, under basal conditions, the effects of TFS (300 Hz, 200 μs biphasic square pulses, for 30 min) on afterdischarge threshold (ADT) and the release of GABA and glutamate in the hippocampus. The results obtained indicate that at low current intensities (Status Epilepticus".

  12. Fabrication of long-acting drug release property of hierarchical porous bioglasses/polylactic acid fibre scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Dan; Lin, Huiming; Jiang, Jingjie; Jin, Qumei; Li, Lei; Dong, Yan; Qu, Fengyu

    2015-04-01

    Hierarchical porous fibre scaffolds with mesoporous bioglasses (MBGs) and polylactic acid (PLA) were successfully fabricated by the electrospinning method. These compound scaffolds possess macropores with sizes of about 100 nm because of the solvent evaporation from the fibre and the mesoporous structure ( ∼4.0 nm) originated from MBGs. The biomineralisation ability was investigated in simulated body fluid. The fibre structure is beneficial for inducing the growth of hydroxyapatite. In addition, compared with pure MBGs, the materials (MP-1 and MP-2) exhibit a long-acting drug release process up to 140 h and the drug release process corresponds with the Fickian diffusion mechanism. With the special fibre morphology and the hierarchical porous structure, the MBGs/PLA fibre scaffolds are expected to have potential application for bone tissue repair and regeneration.

  13. The stability and controlled release of I-ascorbic acid encapsulated in poly (ethyl-2-cyanoacrylate) nanocapsules prepared by interfacial polymerization of water-in-oil microemulsions.

    Science.gov (United States)

    Zhang, Su-Ning; Chen, Tao; Guo, Yi-Guang; Zhang, Jian; Song, Xiaoqiu; Zhou, Lei

    2015-01-01

    The L-ascorbic acid (AA) was encapsulated into biodegradable and biocompatible poly(ethyl-2-cyanoacrylate) (PECA) nanocapsules by interfacial polymerization of water-in-oil (W/O) microemulsions. The influences of surfactant concentration, pH value of the dispersed aqueous phase, and W/O ratio on nanocapsule size were discussed. The stability and in vitro release of encapsulated AA were also investigated. The results show that nanocapsules could be obtained under the conditions with low pH value, high fraction of aqueous phase, and appropriate surfactant concentration. The encapsulated AA was protected by nanocapsules from oxidation and presented superior storage stability in aqueous medium than pure AA. Releasing AA from the inner core of nanocapsules could be controlled by adjusting the enzyme hydrolysis extent of the PECA wall.

  14. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    OpenAIRE

    Noer Abyor Handayani; Dessy Ariyanti; Hady Hadiyanto

    2011-01-01

    Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%). Biotechnology market of Polyunsat...

  15. Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G

    Directory of Open Access Journals (Sweden)

    Simonson Michael S

    2005-01-01

    Full Text Available Abstract Background In type 2 diabetes, free fatty acids (FFA accumulate in microvascular cells, but the phenotypic consequences of FFA accumulation in the microvasculature are incompletely understood. Here we investigated whether saturated FFA induce apoptosis in human microvascular mesangial cells and analyzed the signaling pathways involved. Methods Saturated and unsaturated FFA-albumin complexes were added to cultured human mesangial cells, after which the number of apoptotic cells were quantified and the signal transduction pathways involved were delineated. Results The saturated FFA palmitate and stearate were apoptotic unlike equivalent concentrations of the unsaturated FFA oleate and linoleate. Palmitate-induced apoptosis was potentiated by etomoxir, an inhibitor of mitochondrial β-oxidation, but was prevented by an activator of AMP-kinase, which increases fatty acid β-oxidation. Palmitate stimulated an intrinsic pathway of pro-apoptotic signaling as evidenced by increased mitochondrial release of cytochrome-c and activation of caspase 9. A caspase 9-selective inhibitor blocked caspase 3 activation but incompletely blocked apoptosis in response to palmitate, suggesting an additional caspase 9-independent pathway. Palmitate stimulated mitochondrial release of endonuclease G by a caspase 9-independent mechanism, thereby implicating endonuclease G in caspase 9-indpendent regulation of apoptosis by saturated FFA. We also observed that the unsaturated FFA oleate and linoleate prevented palmitate-induced mitochondrial release of both cytochrome-c and endonuclease G, which resulted in complete protection from palmitate-induced apoptosis. Conclusions Taken together, these results demonstrate that palmitate stimulates apoptosis by evoking an intrinsic pathway of proapoptotic signaling and identify mitochondrial release of endonuclease G as a key step in proapoptotic signaling by saturated FFA and in the anti-apoptotic actions of unsaturated FFA.

  16. Effect of humic acid on absorption-release processes in the system bottom sediments - Yenisei river water as studied by dual-column ion chromatography and γ-ray spectrometry

    International Nuclear Information System (INIS)

    The effect of humic acid on absorption-release processes in the system bottom sediments - Yenisei river water was studied by dual-column ion chromatography and γ-ray spectrometry. With the use of ion chromatography, it was found that processes related to the absorption of SO42- and Cl- anions by a solid phase with the release of NO3-, PO43- , and F- to a liquid phase competed in the test systems as the concentration of water-soluble organic carbon (WSOC) was increased. Only the test anions were released in the systems without the introduction of an additional amount of WSOC as humic acid. With the use of γ-ray spectrometry, it was found that the release of 60Co, 152Eu, and 241Am radionuclides to the liquid phase in the systems with added humic acid began much earlier than in the system without the addition of humic acid. In this case, the amount of released radionuclides was greater than the amount of radioisotopes released in the system without the addition of humic acid: ∼25% 241Am, ∼3% 152Eu, and ∼0.8% 60Co in the system with added humic acid or 0.8% 152Eu and 60Co in the system without the addition of humic acid. The 241Am radionuclide was not determined in the system without the addition of humic acid. An increase in the concentration of WSOC in the experimental system bottom sediments - Yenisei river water initiated the release of 60Co, 152Eu, and 241Am anthropogenic radionuclides from bottom sediments because of the formation of soluble complexes capable of migration. An increase in the concentration of WSOC had almost no effect on the release of 40K and 137Cs radionuclides

  17. Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents

    Directory of Open Access Journals (Sweden)

    Lee CH

    2014-08-01

    Full Text Available Cheng-Hung Lee,1,2 Chia-Ying Yu,2 Shang-Hung Chang,1 Kuo-Chun Hung,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 I-Chang Hsieh,1 Wei-Jan Chen,1 Yu-Shien Ko,1 Ming-Shien Wen1 1Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan; 2Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; 3Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan Introduction: This work reports on the development of a biodegradable dual-drug-eluting stent with sequential-like and sustainable drug-release of anti-platelet acetylsalicylic acid and anti-smooth muscle cell (SMC proliferative paclitaxel.Methods: To fabricate the biodegradable stents, poly-L-lactide strips are first cut from a solvent-casted film. They are rolled onto the surface of a metal pin to form spiral stents. The stents are then consecutively covered by acetylsalicylic acid and paclitaxel-loaded polylactide-polyglycolide nanofibers via electrospinning.Results: Biodegradable stents exhibit mechanical properties that are superior to those of metallic stents. Biodegradable stents sequentially release high concentrations of acetylsalicylic acid and paclitaxel for more than 30 and 60 days, respectively. In vitro, the eluted drugs promote endothelial cell numbers on days 3 and 7, and reduce the proliferation of SMCs in weeks 2, 4, and 8. The stents markedly inhibit the adhesion of platelets on days 3, 7, and 14 relative to a non-drug-eluting stent. In vivo, the implanted stent is intact, and no stent thrombosis is observed in the stent-implanted vessels without the administration of daily oral acetylsalicylic acid. Promotion of endothelial recovery and inhibition of neointimal hyperplasia are also observed on the stented vessels.Conclusion: The work demonstrates the efficiency and safety of the biodegradable dual-drug-eluting stents with sequential and sustainable drug release

  18. Release of Propolis Phenolic Acids from Semisolid Formulations and Their Penetration into the Human Skin In Vitro

    Directory of Open Access Journals (Sweden)

    Modestas Žilius

    2013-01-01

    Full Text Available Antioxidant and free radical scavenging effects are attributed to phenolic compounds present in propolis, and when delivered to the skin surface and following penetration into epidermis and dermis, they can contribute to skin protection from damaging action of free radicals that are formed under UV and premature skin aging. This study was designed to determine the penetration of phenolic acids and vanillin into the human skin in vitro from experimentally designed vehicles. Results of the study demonstrated the ability of propolis phenolic acids (vanillic, coumaric, caffeic, and ferulic acids and vanillin to penetrate into skin epidermis and dermis. The rate of penetration and distribution is affected both by physicochemical characteristics of active substances and physical structure and chemical composition of semisolid vehicle. Vanillin and vanillic acid demonstrated relatively high penetration through epidermis into dermis where these compounds were concentrated, coumaric and ferulic acids were uniformly distributed between epidermis and dermis, and caffeic acid slowly penetrated into epidermis and was not determined in dermis. Further studies are deemed relevant for the development of semisolid topically applied systems designed for efficient delivery of propolis antioxidants into the skin.

  19. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  20. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [3H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10-5-10-3 M, enhanced potassium stimulated [3H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [3H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABAA receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABAA agonist muscimol, 10-4 M, mimicked the effect of GABA, but the GABAB agonist (±)baclofen, 10-4 M, did not affect the release of [3H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABAA, but not GABAB, receptors. In contrast to the results that would be predicted for an event involving GABAA receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10-8 and 10-4 M. Thus these receptors may constitute a subclass of GABAA receptors. These results support a role of GABA uptake and GABAA receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  1. Novel electrospun nanofibrous matrices prepared from poly(lactic acid)/poly(butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent.

    Science.gov (United States)

    Siafaka, Panoraia I; Barmbalexis, Panagiotis; Bikiaris, Dimitrios N

    2016-06-10

    In the present work, a series of novel formulations consisting of poly(lactic acid)/poly(butylene adipate) (PLA/PBAd) electrospun blends was examined as controlled release matrices for Leflunomide's active metabolite, Teriflunomide (TFL). The mixtures were prepared using different ratios of PLA and PBAd in order to produce nanofibrous matrices with different characteristics. Miscibility studies of the blended polymeric fibers were performed through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolytic degradation in the prepared fibers was evaluated at 37°C using a phosphate buffered saline solution. Different concentrations of (TFL) (5, 10, 15wt.%) were incorporated into nanofibers for examining the drug release behavior in simulated body fluids (SBF), at 37°C. The drug-loaded nanofibrous formulations were further characterized by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, DSC and XRD. Gel permeation chromatography (GPC) analysis was used to evaluate the mechanism of TFL release. Artificial neural networks (ANN) and multi-linear-regression (MLR) models were used to evaluate the effect of % content of PBAd (X1) and TFL (X2) on an initial burst effect and a dissolution behavior. It was found that PLA/PBAd nanofibers have different diameters depending on the ratio of used polyesters and added drug. TFL was incorporated in an amorphous form inside the polymeric nanofibers. In vitro release studies reveal that a drug release behavior is correlated with the size of the nanofibers, drug loading and matrix degradation after a specific time. ANN dissolution modeling showed increased correlation efficacy compared to MLR. PMID:27039136

  2. Gestational age in relation to marine n-3 fatty acids in maternal erythrocytes

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sommer, S.;

    1991-01-01

    Gestation is longer in Faroese than Danish women, possibly because of the high intake of marine long-chain n-3 fatty acids that down regulates formation of prostaglandins from arachidonic acid. Polyunsaturated fatty acids were quantified in erythrocytes obtained within 2 days of delivery from...... randomly selected groups of 62 Faroese and 37 Danish women with an assessable gestational age. Average ratio of long-chain n-3 fatty acids to arachidonic acid [(3/6) ratio] was 0.73 (SD = 0.11) in Faroese women and 0.61 (SD = 0.12) in Danish women (p marine n...

  3. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    Science.gov (United States)

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-01

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility. PMID:26853559

  4. Acid and reduction stimulated logic "and"-type combinational release mode achieved in DOX-loaded superparamagnetic nanogel.

    Science.gov (United States)

    Song, Meifang; Xue, Yanan; Chen, Lidi; Xia, Xiaoyang; Zhou, Yang; Liu, Lei; Yu, Bo; Long, Sihui; Huang, Shiwen; Yu, Faquan

    2016-08-01

    A superparamagnetic nanogel featured with a logic "and"-type pH/reduction combinational stimulated release mode was fabricated as a drug delivery system by virtue of parallel crosslinking. The disulfide bond and electrostatic interaction between thiolated alginate (SA-SH) and thiolated/aminated iron oxide nanoparticles (SH-MION-NH2) were employed to achieve the mechanism. The obtained DOX-loaded magnetic nanogel is 122.7±20.3nm in size with superparamagnetism. The combinational conditions of pH5.0/10mM glutathione (GSH) stimulated a significantly high accumulative release. However, either pH7.4/10mM (GSH) or pH5.0 alone induced much low release. This verified the typical logic "and"-type combinationally stimulated release mode. In vitro cytotoxicity tests clearly illustrated the effective selectivity of killing the human cervical cancer cells (HeLa) with IC50 of 1.01μg/mL and the human hepatoma cells (HepG2) with IC50 of 1.57μg/mL but significantly low cytotoxicity to the cercopithecus aethiops kidney cells (Vero). CLSM presented the internationalization of the nanogel into cytoplasm and nuclei with time. In vivo investigation revealed that the selective intratumoral accumulation and antitumor efficacy were considerably advantageous over free DOX whereas low systemic toxicity exhibited up-regulated security as compared to free DOX. Overall, the DOX-loaded magnetic nanogel with enhanced antitumor efficacy and down-regulated adverse effect was a promising nanoplatform for the clinical chemotherapy of malignancy. PMID:27157762

  5. Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a microdialysis study

    OpenAIRE

    Yablonsky-Alter, Elena; Agovic, Mervan S.; Gashi, Eleonora; Lidsky, Theodore I.; Friedman, Eitan; Banerjee, Shailesh P.

    2009-01-01

    Drug addiction is a serious public health problem. There is increasing evidence on the involvement of augmented glutamatergic transmission in cocaine-induced addiction and neurotoxicity. We investigated effects of acute or chronic cocaine administration and cocaine challenge following chronic cocaine exposure on the release of excitotoxic glutamate and neuroprotective taurine in the rat striatum by microdialysis. Cocaine challenge, following withdrawal after repeated cocaine exposure markedly...

  6. Analysis of IL-1β Release from Cryopreserved Pooled Lymphocytes in Response to Lipopolysaccharide and Lipoteichoic Acid

    Directory of Open Access Journals (Sweden)

    Sreelekshmi R. Nair

    2013-01-01

    Full Text Available Pyrogens are heterogeneous group of fever-inducing substances derived from Gram-positive and Gram-negative bacteria, fungi, and viruses. They incite immune response by producing endogenous pyrogens such as prostaglandins and other proinflammatory cytokines like IL-1β, IL-6, and TNF-α. The present study was to analyze the influence of cryopreservation in IL-1β release, a marker for inflammatory response from human lymphocytes, in response to exogenous pyrogenic stimulants. Lymphocytes isolated from pooled blood of multiple healthy individuals were cryopreserved in DMSO and glycerol for periods of 7, 14, 30, and 60 days and were challenged with LPS and LTA in vitro. The inflammatory cytokine, IL-1β release, was measured by ELISA method. It was observed that the release of IL-1β increases instantaneously after the initiation of incubation and reaches a maximum at 3 to 5 hours and then gradually decreases and gets stabilized for both pyrogens. Moreover it was also observed that the effect of cryoprotectants, DMSO (10% and glycerol (10%, showed almost similar results for short-term storage, but DMSO-preserved lymphocytes yielded a better viability for long-term storage. Thus, the isolated cryopreserved lymphocytes system can be a promising approach for the total replacement/alteration to animal experimentation for pyrogenicity evaluation.

  7. EFFECT OF 4-AMINOPYRIDINE ON TAURINE-REGULATED RELEASE OF AMINO ACID FROM RAT CORTICAL SYNAPTOSOMES%4-氨基吡啶对牛磺酸调节突触体氨基酸释放的影响

    Institute of Scientific and Technical Information of China (English)

    郑里翔

    2001-01-01

    AIM To elucidate the mechanism of taurine-regulated amino acid release from synaptosomes. METHODS Endogenous aspartate, glutamate and GABA release from cortical synaptosomes were measured by high performance liquid chromatography using stepwise elution system, Glutamate release was monitored by continuous fluorometry. RESULTS 4-Aminopyridine (3.0×10-2 mol*L-1) counteracted the taurine-induced inhibition of glutamate overflow (P<0.05), while aspartate and GABA release was not affected. Nimodipine (10-5 mol*L-1) combined with 4-aminopyridine was shown to decrease glutamate release (P<0.05). CONCLUSION Taurine may regulate glutamate release through presynaptic L-type calcium channel and aslo act on Asp-and GABA-nereve terminal to regulate Asp and GABA release in rat cortex.

  8. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    Science.gov (United States)

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  9. Evening primrose oil in rheumatoid arthritis: changes in serum lipids and fatty acids.

    OpenAIRE

    Jäntti, J; Nikkari, T.; Solakivi, T; Vapaatalo, H.; Isomäki, H

    1989-01-01

    The serum concentration of lipids and composition of fatty acids after overnight fasting were studied in 18 patients with rheumatoid arthritis treated for 12 weeks with either 20 ml of evening primrose oil containing 9% of gamma-linolenic acid or olive oil. The serum concentrations of oleic acid, eicosapentaenoic acid, and apolipoprotein B decreased and those of linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, and arachidonic acid increased during treatment with evening primr...

  10. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm.

    Science.gov (United States)

    Bastari, Kelsen; Arshath, Mohamed; Ng, Zhi Hui Melissa; Chia, Jia Hua; Yow, Zhi Xian Daniel; Sana, Barindra; Tan, Meng Fong Cherine; Lim, Sierin; Loo, Say Chye Joachim

    2014-03-01

    Ceramic-polymer hybrid particles, intended for osteomyelitis treatment, were fabricated by preparing poly(lactic-co-glycolic acid) particles through an emulsion solvent evaporation technique, followed by calcium phosphate (CaP) coating via a surface adsorption-nucleation method. The presence of CaP coating on the surface of the particles was confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Subsequently, two antibiotics for treating bone infection, nafcillin (hydrophilic) and levofloxacin (amphiphilic), were loaded into these hybrid particles and their in vitro drug release studies were investigated. The CaP coating was shown to reduce burst release, while providing sustained release of the antibiotics for up to 4 weeks. In vitro bacterial study against Staphylococcus aureus demonstrated the capability of these antibiotic-loaded hybrid particles to inhibit biofilm formation as well as deteriorate established biofilm, making this hybrid system a potential candidate for further investigation for osteomyelitis treatment.

  11. FORMULATION OF FLOATING TABLETS OF MEFENAMIC ACID WITH DIFFERENT GRADES OF HYDROXY PROPYL METHYL CELLULOSE POLYMER AND STUDYING THE RELEASE PROFILES

    Directory of Open Access Journals (Sweden)

    Ramanathan.G, Kavitha.K

    2010-09-01

    Full Text Available Hydrodynamically balanced system (HBS or Floating tablets has gained importance in recent days to improve absorption of drugs especially those that are absorbed from stomach and small intestine. In the present study, an attempt was made to fabricate and evaluate an HBS dosage form of Mefenamic Acid tablet The different viscosity grades of Hydroxypropylmethyl cellulose polymer like HPMC K100, HPMC K4M, HPMC KV600, HPMC K50 was incorpated as hydrophilic swellable polymers for preparing matrix-floating tablets. Sodium bicarbonate was incorporated as a gas-generating agent. The prepared floating tablets were evaluated for the physical parameters like thickness, hardness, friability, drug content, floating lag time, floating time and Invitro dissolution studies. The mechanism of drug release was anomalous type and depends upon the viscosity of polymers, which was mainly concluded as the major controlling factor for the drug release. The results showed that the formulation containing Drug: Hpmc kv600 in the ratio of 1:0.5 is suitable for the formulation of gastroretentive floating tablets of mefenamic acid

  12. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    Science.gov (United States)

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  13. Stimuli-Sensitive Hydrogel Based on N-Isopropylacrylamide and Itaconic Acid for Entrapment and Controlled Release of Candida rugosa Lipase under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Nikola Milašinović

    2014-01-01

    Full Text Available Stimuli responsive pH- and temperature-sensitive hydrogel drug delivery systems, as those based on N-isopropylacrylamide (NiPAAm and itaconic acid (IA, have been attracting much of the attention of the scientific community nowadays, especially in the field of drug release. By adjusting comonomer composition, the matrix is enabled to protect the incorporated protein in the highly acidic environment of upper gastrointestinal tract and deliver it in the neutral or slightly basic region of the lower intestine. The protein/poly(NiPAAm-co-IA hydrogels were synthetized by free radical crosslinking copolymerization and were characterized concerning their swelling capability, mechanical properties, and morphology. The pore structure and sizes up to 1.90 nm allowed good entrapment of lipase molecules. Model protein, lipase from Candida rugosa, was entrapped within hydrogels upon mild conditions that provided its protection from harmful environmental influences. The efficiency of the lipase entrapment reached 96.7%, and was dependent on the initial concentration of lipase solution. The swelling of the obtained hydrogels in simulated pH and temperature of gastrointestinal tract, the lipase entrapment efficiency, and its release profiles from hydrogels were investigated as well.

  14. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes.

    Science.gov (United States)

    Negrulj, Rebecca; Mooranian, Armin; Chen-Tan, Nigel; Al-Sallami, Hesham S; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Watts, Gerald F; Arfuso, Frank; Al-Salami, Hani

    2016-08-01

    We have demonstrated a permeation-enhancing effect of deoxycholic acid (DCA), the bile acid, in diabetic rats. In this study, we designed DCA-based microcapsules for the oral delivery of the antilipidemic drug probucol (PB), which has potential antidiabetic effects. We aimed to further characterize these microcapsules and examine their pH-dependent release properties, as well as the effects of DCA on their stability and mechanical strength at various pH and temperature values. Using the polymer sodium alginate (SA), we prepared PB-SA (control) and PB-DCA-SA (test) microcapsules. The microcapsules were examined for drug content, size, surface composition, release, Micro-CT cross-sectional imaging, stability, Zeta potential, mechanical strength, and swelling characteristics at different pH and temperature values. The microencapsulation efficiency and production yield were also examined. The addition of DCA resulted in microcapsules with a greater density and with reduced swelling at a pH of 7.8 and at temperatures of 25°C and 37°C (p diabetes. PMID:25811999

  15. Water-compatible silica sol-gel molecularly imprinted polymer as a potential delivery system for the controlled release of salicylic acid.

    Science.gov (United States)

    Li, Bin; Xu, Jingjing; Hall, Andrew J; Haupt, Karsten; Tse Sum Bui, Bernadette

    2014-09-01

    Molecularly imprinted polymers (MIPs) for salicylic acid were synthesized and evaluated in aqueous environments in the aim to apply them as drug delivery carriers. One organic MIP and one inorganic MIP based on the sol-gel process were synthesized. The organic MIP was prepared by radical polymerization using the stoichiometric functional monomer, 1-(4-vinylphenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea, which can establish strong electrostatic interactions with the -COOH of salicylic acid. The sol-gel MIP was prepared with 3-(aminopropyl)triethoxysilane and trimethoxyphenylsilane, as functional monomers and tetraethyl orthosilicate as the crosslinker. While the organic MIPs bound the target specifically in acetonitrile, they exhibited lower binding in the presence of water, although the imprinting factor increased under these conditions, due to reduced non-specific binding. The sol-gel MIP has a high specificity and capacity for the drug in ethanol, a solvent compatible with drug formulation and biomedical applications. In vitro release profiles of the polymers in water were evaluated, and the results were modelled by Fick's law of diffusion and the power law. Analysis shows that the release mechanism was predominantly diffusion-controlled.

  16. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    Science.gov (United States)

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome. PMID:26283281

  17. Upper critical solution temperature behavior of cinnamic acid and polyethyleneimine mixture and its effect on temperature-dependent release of liposome.

    Science.gov (United States)

    Guo, Huangying; Kim, Jin-Chul

    2015-10-15

    The mixture of polyethyleneimine (PEI) and cinnamic acid (CA) in HEPES buffer (pH 7.0) exhibited an upper critical solution temperature in the temperature range of 20-50 °C. CA would be electrostatically conjugated with PEI and the PEI-CA conjugate is thought to act as a thermo-sensitive polymer. On the optical microscope image of PEI/CA mixture, microparticles were found at 25 °C, disappeared when heated to 50 °C, and formed again upon cooling to 25 °C. PEI-CA conjugate was immobilized on the surface of egg phosphatidylcholine (EPC) liposome by adding PEI to the suspension of liposome incorporating CA. The size and the zeta potential of the liposome markedly increased by cooling the liposomal suspension from 50 °C to 20 °C. This could be ascribed to the cooling-induced self-assembling property of PEI-CA conjugate. The release profile of Rhodamine B base from liposome incorporating CA with PEI was investigated while the liposome suspension of 50 °C was exposed to the release medium of 20 °C, 30 °C, 40 °C and 50 °C. The release degree was higher at a lower temperature. When exposed to a lower temperature (20 °C, 30 °C, 40 °C), PEI-CA could be self-assembled and change its configuration on the surface of liposome, promoting the release from the liposome.

  18. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    Science.gov (United States)

    Agutter, P S

    1980-04-15

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.

  19. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    Science.gov (United States)

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  20. Release of Propolis Phenolic Acids from Semisolid Formulations and Their Penetration into the Human Skin In Vitro

    OpenAIRE

    Modestas Žilius; Kristina Ramanauskienė; Vitalis Briedis

    2013-01-01

    Antioxidant and free radical scavenging effects are attributed to phenolic compounds present in propolis, and when delivered to the skin surface and following penetration into epidermis and dermis, they can contribute to skin protection from damaging action of free radicals that are formed under UV and premature skin aging. This study was designed to determine the penetration of phenolic acids and vanillin into the human skin in vitro from experimentally designed vehicles. Results of the stud...