WorldWideScience

Sample records for arachidonic acid promotes

  1. Role of Arachidonic Acid in Promoting Hair Growth

    OpenAIRE

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han; Kwon, Ohsang

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Met...

  2. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    Science.gov (United States)

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  3. The Property and Application of Arachidonic Acid

    Institute of Scientific and Technical Information of China (English)

    王相勤; 姚建铭; 袁成凌; 王纪; 余增亮

    2002-01-01

    Arachidonic acid (AA) is one of the most important PUFAs (polyunsaturated fatty acids) in human body. A high-yield arachidonic acid-producing strain (mortierella alpina) was selected by ion implantation (the relative content of arachidonic acid is 70.2% among all fatty acids). This paper mainly introduced the structure, distribution, source, physiologic healthcare function and application of AA.

  4. The property and application of arachidonic acid

    International Nuclear Information System (INIS)

    Arachidonic acid (AA) is one of the most important PUFAs (polyunsaturated fatty acids) in human body. A high-yield arachidonic acid-producing strain (mortierella alpina) was selected by ion implantation (the relative content of arachidonic acid is 70.2% among all fatty acids). The author mainly introduced the structure, distribution, source, physiologic health care function and application of AA

  5. Effect of arachidonic acid on anthralin inflammation.

    OpenAIRE

    Lawrence, C.M.; Shuster, S.

    1987-01-01

    1 The effect of topical arachidonic acid on anthralin inflammation was studied using sequential measurements of erythema (reflectance photometry) and oedema (calipers). 2 Topical arachidonic acid in concentrations which produced a small short-lived inflammatory response greatly augmented the initial phase and depressed the later phase of the inflammatory response to anthralin. 3 The initial augmentation was inhibited by concomitant administration of alpha-tocopherol. 4 It is suggested that fr...

  6. Dietary arachidonic acid in perinatal nutrition

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar lev...

  7. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  8. Arachidonic acid metabolism in cultured mouse keratinocytes

    International Nuclear Information System (INIS)

    The authors attempted to characterize the general features of arachidonate metabolism in cultured mouse keratinocytes. The cells labeled with [3H]arachidonate were stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), ionophore A23187, and fetal bovine serum (FBS). Common to the three substances, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine almost equally served as sources of arachidonate liberated by the action of phospholipase A2. The stimulation of phospholipase A2 action was observed in the order of A23187 greater than FBS greater than TPA. When stimulated by TPA or A23187, the radioactivity released into the extracellular medium was mostly found in prostaglandin (PG) E2. Formation of other PGs and hydroxyeicosatetraenoate (HETE) was extremely limited. In the case of stimulation by FBS, however, the released radioactivity was mainly associated with non-converted arachidonate. FBS also inhibited the TPA- and A23187-induced conversion of arachidonate to PGE2. Phospholipid degradation induced by the three stimulators was similarly dependent on extracellular Ca2+. The stimulation by FBS and A23187 was suppressed by calmodulin antagonists, though the effect of A23187 was much more sensitive to the antagonists when compared to that of FBS. The authors observed more than additive effects of the three stimulators when tested together

  9. Proteasome inhibitors: Their effects on arachidonic acid release from cells in culture and arachidonic acid metabolism in rat liver cells

    OpenAIRE

    Levine Lawrence

    2004-01-01

    Abstract Background I have postulated that arachidonic acid release from rat liver cells is associated with cancer chemoprevention. Since it has been reported that inhibition of proteasome activities may prevent cancer, the effects of proteasome inhibitors on arachidonic acid release from cells and on prostaglandin I2 production in rat liver cells were studied. Results The proteasome inhibitors, epoxomicin, lactacystin and carbobenzoxy-leucyl-leucyl-leucinal, stimulate the release of arachido...

  10. The discovery and early structural studies of arachidonic acid.

    Science.gov (United States)

    Martin, Sarah A; Brash, Alan R; Murphy, Robert C

    2016-07-01

    Arachidonic acid and esterified arachidonate are ubiquitous components of every mammalian cell. This polyunsaturated fatty acid serves very important biochemical roles, including being the direct precursor of bioactive lipid mediators such as prostaglandin and leukotrienes. This 20 carbon fatty acid with four double bonds was first isolated and identified from mammalian tissues in 1909 by Percival Hartley. This was accomplished prior to the advent of chromatography or any spectroscopic methodology (MS, infrared, UV, or NMR). The name, arachidonic, was suggested in 1913 based on its relationship to the well-known arachidic acid (C20:0). It took until 1940 before the positions of the four double bonds were defined at 5,8,11,14 of the 20-carbon chain. Total synthesis was reported in 1961 and, finally, the configuration of the double bonds was confirmed as all-cis-5,8,11,14. By the 1930s, the relationship of arachidonic acid within the family of essential fatty acids helped cue an understanding of its structure and the biosynthetic pathway. Herein, we review the findings leading up to the discovery of arachidonic acid and the progress toward its complete structural elucidation. PMID:27142391

  11. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    Energy Technology Data Exchange (ETDEWEB)

    Schick, P.K.; Webster, P.

    1987-05-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with (/sup 14/C)-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of (/sup 14/C)-20:4 into total MK phospholipids, 16% and 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of (/sup 14/C)-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of (/sup 14/C)-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA.

  12. Arachidonic acid assimilation by thrombocytes from white carneau pigeons

    International Nuclear Information System (INIS)

    The metabolism of arachidonic acid was investigated using thrombocyte-enriched-plasma from RBWC and WC-II white carneau pigeons, which differ genetically in their susceptibility to atherosclerosis. Thrombocytes were incubated at 42 C with [14C] arachidonate in Puck's solution. After a 1 hour labeling period the WC-II cells had taken up 69% and RBWC 77% of the [14C]arachidonate from the medium. When 8,11,14-eicosatrienoic acid or 5,8,11,14,17-eicosapentaenoic acid were added to incubation media the [14C] uptake was reduced in each type cell, with WC-II exhibiting the greatest effect. Release of [14C]molecules from cells labeled with [14]Carachidonate was studied using calcium ionophore and indomethacin. Indomethacin inhibited [14C] molecule release similarly in both RBWC and WC-II cells. Calcium ionophore was twice as effective in stimulating [14C]molecule release from WC-II than RBWC cells. Therefore, the WE-II cells (from pigeons greater in susceptibility to atherosclerosis) are more sensitive to calcium ionophore than the REWC cells

  13. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    International Nuclear Information System (INIS)

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively

  14. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Directory of Open Access Journals (Sweden)

    Ole H. Nielsen

    1992-01-01

    Full Text Available Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l was as potent as the calcium ionophore A23187 (10 μmol/l for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the decreases in radioactivity by 15.4% and 30.5%, respectively. The mechanism responsible for the release of arachidonate from cellular membranes is closely coupled to cellular calcium metabolism, and melittin was found to promote calcium entry through receptor gated calcium channels, probably due to an activation of phospholipase A2. Furthermore, a down-regulation of leukotriene B4 receptors was seen. The maximal number of binding sites per cell was reduced from a median of 1520 to 950 with melittin (1 μmol/l. The study has revealed some factors important for the inflammatory mechanisms mediated by melittin.

  15. [Changes, induced by certain flavonoids, of the hypotensive effects of arachidonic acid].

    Science.gov (United States)

    Damas, J; Mousty, J C; Lecomte, J

    1977-01-01

    In the rat, silybine and Z 12007, a derivative of rutoside, increase the vasodepressive activities of arachidonic acid, a prostaglandin precursor. They reduce the activity of PGE2. Quercetine also increases the hypotensive action of arachidonic acid. These three flavonoids are supposed to increase the prostaglandin biosynthesis. PMID:143326

  16. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation of arachidonic acid relea...se and cytosolic phospholipase A2activation. Authors Gij

  17. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status

  18. The Essentiality of Arachidonic Acid in Infant Development

    Science.gov (United States)

    Hadley, Kevin B.; Ryan, Alan S.; Forsyth, Stewart; Gautier, Sheila; Salem, Norman

    2016-01-01

    Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence. PMID:27077882

  19. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle

    OpenAIRE

    Olesen Ingrid; Haug Anna; Christophersen Olav A

    2010-01-01

    Abstract Chicken meat with reduced concentration of arachidonic acid (AA) and reduced ratio between omega-6 and omega-3 fatty acids has potential health benefits because a reduction in AA intake dampens prostanoid signaling, and the proportion between omega-6 and omega-3 fatty acids is too high in our diet. Analyses for fatty acid determination are expensive, and finding the optimal number of analyses to give reliable results is a challenge. The objective of the present study was i) to analys...

  20. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells

    Indian Academy of Sciences (India)

    Ralph H Schaloske; Dagmar Blaesius; Christina Schlatterer; Daniel F Lusche

    2007-12-01

    Cyclic AMP (cAMP) is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8–9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycolbis(b-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3-receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.

  1. Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ω-3 Fatty Acids*

    OpenAIRE

    Arnold, Cosima; Markovic, Marija; Blossey, Katrin; Wallukat, Gerd; Fischer, Robert; Dechend, Ralf; Konkel, Anne; von Schacky, Clemens; Luft, Friedrich C.; Muller, Dominik N.; Rothe, Michael; Schunck, Wolf-Hagen

    2010-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J...

  2. Lipoxygenation of arachidonic acid by subcellular preparations from murine keratinocytes

    International Nuclear Information System (INIS)

    In these studies, we examined the possibility that cell-free preparations from murine keratinocytes possess 5-lipoxygenase activity in addition to the well-established cyclooxygenase pathway of arachidonic acid (AA) in these cells. Our data demonstrated that the high-speed (105,000 g) supernatant preparations of the murine keratinocytes metabolized [14C]AA into labeled lipoxygenase products. Portions of these radioactive metabolites cochromatographed and comigrated with 12-HETE (a marker for 12-lipoxygenase pathway) and with authentic LTB4 (a marker for 5-lipoxygenase pathway) on silicic acid column chromatography and by thin-layer chromatography (TLC) in two solvent systems respectively. Identity of the novel 14C which comigrated with LTB4 on both TLC and column chromatography was verified further by cochromatography of the free acid with authentic LTB4 on a reverse phase (RP) and the methyl esters on a straight phase high-pressure liquid chromatography. Incubation of the cell-free preparations with [14C]AA in the presence of ETYA, NDGA (inhibitors of cyclooxygenase and lipoxygenase pathways) as well as with 15-HETE (an inhibitor of lipoxygenase pathway) resulted in decreased formation of [14C] 12-HETE and the [14C]LTB4-like metabolite. On the contrary, incubations of the cell-free extracts with [14C] AA in the presence of indomethacin (a cyclooxygenase inhibitor) resulted in increased biosynthesis of the labeled lipoxygenase metabolites. These data indicate the existence of enzymes in soluble fraction of murine keratinocyte which can catalyze the transformation of [14C] AA into products of both the 12- and 5-lipoxygenase pathways

  3. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid.

    OpenAIRE

    Goldman, A S; Baker, L; Piddington, R; Marx, B; Herold, R; Egler, J

    1985-01-01

    Congenital malformations now represent the largest single cause of mortality in the infant of the diabetic mother. The mechanism by which diabetes exerts its teratogenic effects is not known. This study evaluated whether arachidonic acid might be involved, a possibility raised by the role of arachidonic acid in palatal elevation and fusion, processes analogous to neural tube folding and fusion. This hypothesis was tested in two animal models of diabetic embryopathy, the in vivo pregnant diabe...

  4. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    International Nuclear Information System (INIS)

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms

  5. Influence of dietary linoleic acid intake with different fat intakes on arachidonic acid concentrations in plasma and platelet lipids and eicosanoid biosynthesis in female volunteers

    OpenAIRE

    Adam, Olaf; Wolfram, G.; Zöllner, N.

    2003-01-01

    Background/Aim: N-6 fatty acids are considered to promote diseases prevalent in industrialized countries and characterized by an increased eicosanoid biosynthesis from arachidonic acid (AA). We investigated the impact of the linoleic acid (LA) intake on AA levels in humans. Methods: Six healthy female volunteers (age range 2334 years) were given liquid formula diets (LFD) devoid of AA for 6 weeks, providing a constant intake of zero energy% (LFD 0: protein 15%, carbohydrates 85%) or 20 energy...

  6. Arachidonic acid production by Mortierella alpina using raw crop materials

    Directory of Open Access Journals (Sweden)

    Ganggang Cao

    2015-06-01

    Full Text Available Background. Arachidonic acid (ARA is one of the three essential fatty acids, and it is important for human body to keep healthy and is widely used. At present, expensive materials such as glucose and yeast extract are generally reported to be optimal for ARA production. A new cost-effective fermentation process including cheaper material for ARA production is of great signifi cance. Material and methods. Feasibility of using corn meal and powdered soybean for fungal growth and lipid accumulation was evaluated by means of single factor test. N-hexadecane concentration was optimized, and the effect of temperature on biomass and ARA content was examined. Results. Mortierella alpina made better use of the aforementioned material as carbon and nitrogen sources for both hyphae growth and ARA production compared with glucose and yeast extract. Maximal levels of 10.9 g/L ARA and 26.1 g/L total lipids were obtained when 66 g/L corn meal, 54 g/L soybean meal and 6% (v/v n-hexadecane were supplemented. A temperature-shift strategy involved three steps, namely, 30°C (3 days – 25°C (4 days – 20°C (4 days, which further improved ARA production by 24.7%. Conclusion. Several factors such as carbon and nitrogen sources, temperature and dissolved oxygen had great infl uence on biomass and microbial oil production. Mortierella alpina preferred corn and soybean meal compared with glucose and yeast extract, which would surely alleviate the high cost of ARA production. Based on this study, the new process is both low cost and practicable.

  7. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  8. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    International Nuclear Information System (INIS)

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A2 (PLA2)/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca2+-mobilization and enhanced bradykinin-promoted Ca2+-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  9. Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment

    International Nuclear Information System (INIS)

    Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A2 (cPLA2) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg-1 body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porhyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and ω-OH/ω-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA2 in the

  10. Apparent in vivo retroconversion of dietary arachidonic to linoleic acid in essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; von Wettstein-Knowles, P.

    1986-01-01

    Essential fatty acid-deficient rats were fed ethyl [U-C]arachidonate (308 dpm/nmol) and when a decrease in the transepidermal water loss was seen, the epidermal sphingolipids, acylglucosylceramide and acylceramide were isolated. [C]Linoleic acid (approx. 130 dpm/nmol) was present in both lipid...... classes, while the substrate was only detected in the former. These results intimate that in vivo retroconversion of arachidonic to linoleic acid can be induced in the rat....

  11. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists

    OpenAIRE

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-01-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytoso...

  12. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    Science.gov (United States)

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  13. Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic levels in postmenopausal women

    NARCIS (Netherlands)

    Giltay, E.J.; Duschek, E.J.J.; Katan, M.B.; Neele, S.J.; Netelenbos, J.C.; Zock, P.L.

    2004-01-01

    Estrogens may affect the essential n-6 and n-3 fatty acids arachidonic acid (AA; C20:4n-6) and docosahexaenoic acid (DHA; C22:6n-3). Therefore, we investigated the long-term effects of hormone replacement therapy and raloxifene, a selective estrogen-receptor modulator, in two randomized, double-blin

  14. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    OpenAIRE

    Nielsen, Ole H.; Bouchelouche, Pierre N.; Dag Berild

    1992-01-01

    Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l) was as potent as the calcium ionophore A23187 (10 μmol/l) for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the de...

  15. Effect of progesterone on the release of arachidonic acid from human endometrial cells stimulated by histamine

    International Nuclear Information System (INIS)

    Progesterone at concentrations of 10(-7)M and 10(-8)M inhibits release of [3H]-arachidonic acid from stimulated, perfused, endometrial cells. The effect is independent of the mechanism of stimulation. Cortisol (10(-5)M but not 10(-7)M) has a similar effect in this system but estradiol (10(-7)M) is without effect. There was a positive correlation (p less than 0.05) between the magnitude of inhibition by progesterone and the day of cycle. The inhibitory action of progesterone on the release of arachidonic acid was greater in endometrial cells than in decidual cells and was apparent after fifteen minutes. The activities of commercial and endometrial cell-free preparations of phospholipase A2 and phospholipase C were unaffected by the presence of progesterone. We conclude that progesterone modulates release of [3H]-arachidonic acid from endometrial cells by a rapid, indirect action on phospholipase activity

  16. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    Science.gov (United States)

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  17. Dietary supplementation with arachidonic acid in tilapia (Oreochromis mossambicus) reveals physiological effects not mediated by prostaglandins.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Wendelaar Bonga, S.E.

    2004-01-01

    This study aims to clarify the role of the polyunsaturated fatty acid arachidonic acid (ArA, 20:4n-6) in the stress response of Mozambique tilapia (Oreochromis mossambicus). ArA is converted into eicosanoids, including prostaglandins, which can influence the response to stressors. Tilapia, a species

  18. Evidence for lipoxin formation by bovine polymorphonuclear leukocytes via triple dioxygenation of arachidonic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Walstra, P.; Verhagen, J.; Vermeer, M.A.; Klerks, J.P.M.; Veldink, G.A.

    1988-01-01

    Incubation of bovine polymorphonuclear leukocytes (PMNs) with arachidonic acid leads to the formation of four lipoxins. The same lipoxins are also formed upon incubation of bovine PMNs with 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic aci

  19. Differences in the effect of arachidonic acid on polymorphonuclear and mononuclear leukocyte function

    OpenAIRE

    Nijkamp, F.P.; Henricks, P.A.J.; Tol, M.E. van der; Kats-Renaud, J. H. van; Verhoef, J.

    1984-01-01

    Incubation of human polymorphonuclear leukocytes with arachidonic acid resulted in a stimulation of the oxidative metabolism of the cells. Upon stimulation with 80 μM arachidonic acid, neutrophils (5·106 cells/ml) produced superoxide (53±8 nmol/5·106 cells per 15 min), generated chemiluminescence (1211 100±157 000 cpm) and consumed oxygen (20±1 nmol/106 cells per 5 min). The stimulation of the cell metabolism could be reduced 40–60% by prior incubation of the cells with 10 μM indomethacin. In...

  20. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets

    OpenAIRE

    Wijendran, Vasuki; Downs, Ian; Tyburczy, Cynthia; Kothapalli, Kumar S. D.; Park, Woo Jung; Blank, Bryant S.; Zimmer, J. Paul; Butt, C. M.; Salem, Norman; Brenna, J. Thomas

    2013-01-01

    Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic (ARA) and docosahexaenoic acid (DHA) during early postnatal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human b...

  1. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    Science.gov (United States)

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  2. Prenatal arachidonic acid exposure and selected immune-related variables in childhood

    NARCIS (Netherlands)

    Dirix, Chantal E. H.; Hogervorst, Janneke G. F.; Rump, Patrick; Hendriks, Johannes J. E.; Bruins, Maaike; Hornstra, Gerard

    2009-01-01

    Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childho

  3. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A...

  4. In vitro prostaglandin biosynthesis in human pregnant uterus from arachidonic acid

    International Nuclear Information System (INIS)

    Formation of prostaglandins (Fsub(2α), E2 and D2) in the pregnant human uterus microsomes was studied using 14C-labelled arachidonic acid. Sample of uterine pieces were removed from the lower uterine segment at the time of Caesarean section. The prostaglandin synthesis in the microsomal fraction was characterized in terms of cofactors, substrate concentration and incubation time requirements. (author)

  5. The effect of cigarette smoke on the metabolism of arachidonic acid in isolated hamster lungs

    International Nuclear Information System (INIS)

    The effects of cigarette smoke on the metabolism of exogenous arachidonic acid (AA) were investigated in isolated hamster lungs. Arachidonate was injected into the pulmonary circulation and the metabolites were analysed from the nonrecirculating perfusion effluent by thin layer chromatography. After the pulmonary injection of 66 nmol of 14C-AA about 20% of the injected radioactivity appeared in the perfusion effluent mostly as metabolites in six minutes. When isolated lungs were ventilated with cigarette smoke during the perfusion, the amounts of PGF2 alpha, PGE2 and two unidentified metabolite groups increased in the lung effluent. In two other experimental series hamsters were exposed to cigarette smoke before the lung perfusion either once for 30 min or during one hour daily for ten consecutive days. Neither pre-exposures caused any changes in the amounts of arachidonate metabolites in the lung effluent

  6. Metabolism of arachidonic acid in hamster lung microsomes is not completely inhibited by aspirin and indomethacin

    Energy Technology Data Exchange (ETDEWEB)

    Uotila, P.; Paajanen, H.; Schalin, M.; Simberg, N.

    1983-10-01

    Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

  7. Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways

    OpenAIRE

    Gomes, Ana; Fernandes, Eduarda; Silva, Artur; Santos, Clementina M.M.; Pinto, Diana; Cavaleiro, José; Lima, José Costa

    2009-01-01

    Abstract Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators. Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, a...

  8. Metabolism of arachidonic acid in phorbol ester, interferon and dimethyl sulfoxide differentiation induced U937 cells

    International Nuclear Information System (INIS)

    U937, a human macrophage cell line can metabolize arachidonic acid to a prostaglandin E2-like substance, and an unidentified lipoxygenase product. This metabolism occurs at very low levels however since these cells have low lipase and fatty acid oxygenase activities. The investigated the appearance of these enzyme activities during differentiation induced by phorbol-12-myristate-13-acetate (PMA), human gamma interferon (INF), and dimethyl sulfoxide (DMSO) on days 1,3 and 5 of stimulation using 3H-arachidonic acid (3H-AA). Culture supernatants were analyzed for free 3H-AA and 3H metabolites by radio-thin layer chromatography (3H-MET). The increasing percentage of 3H-AA release suggests the appearance of phospholipase activity during differentiation

  9. Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease.

    OpenAIRE

    Smith, D. M.; Walsh, C E; DeChatelet, L R; Waite, M.

    1983-01-01

    The effect of the calcium ionophore A23187 on the release and metabolism of [3H]arachidonic acid was examined in normal polymorphonuclear leukocytes and those obtained from patients with chronic granulomatous disease. The ionophore A23187 which stimulates oxidative metabolism in normal polymorphonuclear leukocytes was ineffective in increasing oxidative metabolism (chemiluminescence) in polymorphonuclear leukocytes from patients with chronic granulomatous disease. However, the ionophore A2318...

  10. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis

    OpenAIRE

    Hyde, C. A. C.; Missailidis, S

    2009-01-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemopreventio...

  11. Effects of fluticasone propionate inhalation on levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gert T. Verhoeven

    2001-01-01

    Full Text Available Background: In smoking COPD patients the bronchoalveolar lavage (BAL fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA metabolites, which contribute to inflammation and an increased bronchomotor tone.

  12. Tamoxifen stimulates arachidonic acid release from rat liver cells by an estrogen receptor-independent, non-genomic mechanism

    International Nuclear Information System (INIS)

    Tamoxifen is widely prescribed for the treatment of breast cancer. Its success has been attributed to the modulation of the estrogen receptor. I have previously proposed that the release of arachidonic acid from cells may also mediate cancer prevention. Rat liver cells were radiolabelled with arachidonic acid. The release of [3H] arachidonic acid after various times of incubation of the cells with tamoxifen was measured. Tamoxifen, at micromolar concentrations, stimulates arachidonic acid release. The stimulation is rapid and is not affected by pre-incubation of the cells with actinomycin or the estrogen antagonist ICI-182,780. The stimulation of AA release by tamoxifen is not mediated by estrogen receptor occupancy and is non-genomic

  13. Increased cell membrane arachidonic acid in experimental colorectal tumours.

    OpenAIRE

    Nicholson, M. L.; Neoptolemos, J P; Clayton, H A; Talbot, I C; Bell, P R

    1991-01-01

    Tumour cell membrane fatty acid composition was investigated using an animal model of colorectal carcinogenesis. Eighty six male Wistar rats were fed experimental diets containing either 5% saturated fat or 20% saturated fat. Colorectal tumours were induced by intraperitoneal injection of azoxymethane, and control rats received saline. Animals were killed at intervals up to 26 weeks after the last injection of carcinogen for histology and lipid analysis. Cell membrane fatty acids in colonic m...

  14. Targeted Chiral Analysis of Bioactive Arachidonic Acid Metabolites Using Liquid-Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Clementina Mesaros

    2012-04-01

    Full Text Available A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID and tandem mass spectrometry (MS/MS. Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS; whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.

  15. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    Science.gov (United States)

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  16. Arachidonic acid needed in infant formula when docosahexaenoic acid is present.

    Science.gov (United States)

    Brenna, J Thomas

    2016-05-01

    Recently, the European Food Safety Authority asserted that arachidonic acid (ARA) is an optional nutrient for the term infant even when docosahexaenoic acid (DHA) is present. The brief rationale is based on an explicit, widespread misapplication of the concept of "essential fatty acids" to linoleic acid that implies it is uniquely required as a nutrient per se. Linoleic acid prevents acute clinical symptoms caused by polyunsaturated fatty acid-deficient diets and is the major precursor for ARA in most human diets. Experimental diets with ARA as the sole n-6 similarly prevent symptoms but at a lower energy percentage than linoleic acid and show ARA is a precursor for linoleic acid. The absence of consistent evidence of ARA benefit from randomized controlled trials is apparently an issue as well. This review highlights basic and clinical research relevant to ARA requirements as an adjunct to DHA in infancy. ARA is a major structural central nervous system component, where it rapidly accumulates perinatally and is required for signaling. Tracer studies show that ARA-fed infants derive about half of their total body ARA from dietary preformed ARA. Clinically, of the 3 cohorts of term infants studied with designs isolating the effects of ARA (DHA-only vs DHA+ARA), none considered ARA-specific outcomes such as vascular or immune function; the study with the highest ARA level showed significant neurocognitive benefit. All breastfed term infants of adequately nourished mothers consume both DHA and ARA. The burden of proof to substantially deviate from the composition of breastmilk is greater than that available from inherently empirical human randomized controlled trial evidence. Infant formulas with DHA but without ARA risk harm from suppression of ARA-mediated metabolism manifest among the many unstudied functions of ARA. PMID:27013482

  17. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism

    International Nuclear Information System (INIS)

    We have shown that melatonin immediately and transiently stimulates intracellular free radical production on a set of leukocytes, possibly as a consequence of calmodulin binding. We show here that melatonin-induced ROS are produced by lipoxygenase (LOX), since they are prevented by a set of LOX inhibitors, and are accompanied by increase of the 5-LOX product 5-HETE. LOX activation is accompanied by strong liberation of AA; inhibition of Ca2+-independent, but not Ca2+-dependent, phospholipase A2 (PLA2), prevents both melatonin-induced arachidonic acid and ROS production, whereas LOX inhibition only prevents ROS, indicating that PLA2 is upstream with respect to LOX, as occurs in many signaling pathways. Chlorpromazine, an inhibitor of melatonin-calmodulin interaction, inhibits both ROS and arachidonic acid production, thus possibly placing calmodulin at the origin of a melatonin-induced pro-radical pathway. Interestingly, it is known that Ca2+-independent PLA2 binds to calmodulin: our results are compatible with PLA2 being liberated by melatonin from a steady-state calmodulin sequestration, thus initiating an arachidonate signal transduction. These results delineate a novel molecular pathway through which melatonin may participate to the inflammatory response.

  18. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle

    Directory of Open Access Journals (Sweden)

    Olesen Ingrid

    2010-04-01

    Full Text Available Abstract Chicken meat with reduced concentration of arachidonic acid (AA and reduced ratio between omega-6 and omega-3 fatty acids has potential health benefits because a reduction in AA intake dampens prostanoid signaling, and the proportion between omega-6 and omega-3 fatty acids is too high in our diet. Analyses for fatty acid determination are expensive, and finding the optimal number of analyses to give reliable results is a challenge. The objective of the present study was i to analyse the intraclass correlation of different fatty acids in five meat samples, of one gram each, within the same chicken thigh, and ii to study individual variations in the concentrations of a range of fatty acids and the ratio between omega-6 and omega-3 fatty acid concentrations among fifteen chickens. Fifteen newly hatched broilers were fed a wheat-based diet containing 4% rapeseed oil and 1% linseed oil for three weeks. Five muscle samples from the mid location of the thigh of each chicken were analysed for fatty acid composition. The intraclass correlation (sample correlation within the same animal was 0.85-0.98 for the ratios of total omega-6 to total omega-3 fatty acids and of AA to eicosapentaenoic acid (EPA. This indicates that when studying these fatty acid ratios, one sample of one gram per animal is sufficient. However, due to the high individual variation between chicken for these ratios, a relatively high number of animals (minimum 15 are required to obtain a sufficiently high power to reveal significant effects of experimental factors (e.g. feeding regimes. The present experiment resulted in meat with a favorable concentration ratio between omega-6 and omega-3 fatty acids. The AA concentration varied from 1.5 to 2.8 g/100 g total fatty acids in thigh muscle in the fifteen broilers, and the ratio between AA and EPA concentrations ranged from 2.3 to 3.9. These differences among the birds may be due to genetic variance that can be exploited by

  19. Arachidonic and eicosapentaenoic acid metabolism in bovine neutrophils and platelets: effect of calcium ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.M.; Laegreid, W.W.; Heidel, J.R.; Straub, K.M.; Liggitt, H.D.; Silflow, R.M.; Breeze, R.G.; Leid, R.W.

    1987-09-01

    Substitution of dietary fatty acids has potential for altering the inflammatory response. The purpose of the present study was to define the metabolites of arachidonic acid (AA) and eicosapentaenoic acid (EPA) secreted by bovine peripheral blood neutrophils and platelets. High performance liquid chromatography was used to characterize cyclooxygenase and lipoxygenase metabolites secreted in response to the calcium ionophore A23187. Cells were prelabelled with /sup 3/H-AA or /sup 3/H-EPA prior to challenge with the calcium ionophore. Bovine neutrophils secreted leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) as the major metabolites of AA, as well as the corresponding leukotriene B5 (LTB5) and 5-hydroxyeicosapentaenoic acid (5-HEPE) metabolites of EPA. Peptidoleukotrienes derived from /sup 3/H-AA or /sup 3/H-EPA were not detected under these conditions. The major tritiated metabolites secreted from bovine platelets were: thromboxane A2, measured as the stable metabolite thromboxane B2 (TXB2); hydroxyheptadecatrienoic acid (HHT) and 12-HETE derived from /sup 3/H-AA; and the omega-3 analogs TXB3 and 12-HEPE, derived from /sup 3/H-EPA. Preferred substrate specificities existed amongst the AA- and EPA-derived metabolites for the intermediary enzymes involved in the arachidonic acid cascade. These findings support the hypothesis that substitution of membrane-bound AA by EPA has potential for modulation of the host inflammatory response following cellular phospholipid mobilization.

  20. Inability of murine peritoneal macrophages to convert linoleic acid into arachidonic acid. Evidence of chain elongation

    International Nuclear Information System (INIS)

    Various murine macrophage populations synthesize and secrete large amounts of arachidonic acid (20:4n-6) derived eicosanoids (cyclo-oxygenase and lipoxygenase products). These metabolites are known to possess a wide variety of functions with regard to the initiation and regulation of inflammation and tumorigenesis. Because the dietary intake of 20:4n-6 is usually low, tissues are largely dependent upon dietary linoleic acid (18:2n-6) as an initial unsaturated precursor for the biosynthesis of 20:4n-6. The purpose of these experiments was to determine whether resident or responsive murine macrophages possess desaturase and elongase activities capable of in vitro conversion of 18:2n-6 into 20:4n-6. Peritoneal exudate macrophages were purified by adherence and incubated in serum-free medium containing fatty acid-free BSA with [1-14C] 18:2n-6. Approximately 90 to 98% of the [14C]18:2n-6 at 4 and 16 h was recovered in phosphatidylcholine and phosphatidylethanolamine. The metabolism of [14C]18:2n-6 was determined after transesterification and separation of the 14C-fatty acid methyl esters by argentation TLC, reverse phase HPLC, and electron impact gas chromatography/mass spectrometry. Resident and responsive macrophages lacked the capacity to transform [14C]18:2n-6 into 20:4n-6. In addition, prelabeled macrophages incubated with soluble, calcium ionophore A23187 or phorbol myristate, or particulate, zymosan, membrane perturbing agents also lacked delta 6 desaturase activity. All macrophages tested were capable of elongating [14C]18:2n-6 into [14C]20:2n-6. These observations suggest that 20:4n-6, present in macrophage phospholipids, is biosynthesized elsewhere and transported to the macrophage for esterification into the phospholipids. In addition, these findings demonstrate that elongase activity is present in both the resident and responsive peritoneal macrophage

  1. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE, CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张成武; ZviCohen; AmosRichmond

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main physiological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid, protein and total fatty acids (TFA), in this alga exposed to old culture supernatant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) were investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiological parameters. The longer the culture was exposed to OCS and the more CEAE were added into the algal culture, the more the above physiological properties were inhibited. Arachidonic acid (AA), the dominant component of fatty acids in this alga, was also seriously inhibited with respect to total TFA, AFDW of cell mass, or culture volume, due to a prebable reduction of enzymes activities catalyzing chain elongation from C18:1ω9 to AA. These results incontestably evidenced that some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhibited P. incisa growth through feedback. Hence, any efficient removal of auto-inhibitors from algal culture to decrease their bioactivity could be good for maximal production of desired products like AA.

  2. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main phy siological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid , protein and total fatty acids (TFA), in this alga exposed to old culture super natant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) wer e investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiol ogical parameters. The longer the culture was exposed to OCS and the more CEAE w ere added into the algal culture, the more the above physiological properties we re inhibited. Arachidonic acid (AA), the dominant component of fatty acids in th is alga, was also seriously inhibited with respect to total TFA, AFDW of cell ma ss, or culture volume, due to a probable reduction of enzymes activities catalyz ing chain elongation from C18:1ω9 to AA. These results incontestably evidenced t hat some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhi bited P. incisa growth through feedback. Hence, any efficient removal of aut o-i nhibitors from algal culture to decrease their bioactivity could be good for max imal production of desired products like AA.

  3. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells

    International Nuclear Information System (INIS)

    Exposure of an established marsupial cell line, PtK2 (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membrane. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. (author)

  4. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaleta, E.W.; Applegate, L.A.; Ley, R.D. (Lovelace Foundation for Medical Education and Research, Albuquerque, NM (United States))

    1991-11-01

    Exposure of an established marsupial cell line, PtK{sub 2} (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membrane. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. (author).

  5. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    OpenAIRE

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2005-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human e...

  6. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    Science.gov (United States)

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  7. Effect of aspirin on the metabolism of exogenous arachidonic acid in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Uotila, P.

    1984-08-01

    When human polymorphonuclear leukocytes (PMNL) were incubated with exogenous /sup 14/C-arachidonic acid (/sup 14/C-AA), both lipoxygenase and cyclo-oxygenase metabolites were detected. The amount of the 5-lipoxygenase metabolites formed, including 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), was small. The amount of other mono-HETE's (migrating in the vicinity of 12-HETE) was greater, but this was obviously mainly due to the small amount of contaminating platelets. In the presence of calcium ionophore A23187 the rate of formation of 5-HETE was increased, but the formation of other metabolites remained unchanged. When PMNL were incubated with aspirin in the presence of A23187 the formation of the cyclo-oxygenase products was decreased but that of 5-HETE was unchanged. The present study indicates that the calcium ionophore A23187 stimulates specifically the 5-lipoxygenase in human PMNL and that aspirin has no effect on the formation of the 5-lipoxygenase metabolites of arachidonic acid in human PMNL.

  8. Kinetics of uptake and distribution of arachidonic acid by rat alveolar macrophages

    International Nuclear Information System (INIS)

    The time course of uptake and distribution of 3H-arachidonic acid (3H-AA) into rat alveolar macrophage phospholipid pools was examined. Macrophages incubated with exogenous 3H-AA in RPMI-1640 containing 0.1% bovine serum albumin (BSA), incorporated this radiolabel into phosphatidylcholine and phosphatidylinositol (PI) with plateaus reached within 2 to 4 hours, which remained relatively constant for up to 18 hours. Incorporation of 3H-AA into phosphatidylethanolamine was small, but continued to increase for 14 hours. Analysis of phosphate content in phospholipid pools revealed that treatment with exogenous 5 nM arachidonic acid had no effect upon pool sizes, but there was a selective incorporation of 3H-AA into PI. Cells were incubated with 3H-AA in RPMI alone or medium containing either 0.2% lactalbumin, fetal calf serum at variable concentrations, 10% Nu Serum, or 0.1% BSA. Incubation of macrophages with 3H-AA in RPMI alone or containing 0.2% lactalbumin, resulted in approximately 70% of the radiolabel taken up by the cells being incorporated into triglyceride. The addition of BSA to RPMI-1640 medium was found to facilitate selective uptake of 3H-AA into phospholipids. Approximately 70% of incorporated 3H-AA was releasable through the action of exogenous phospholipase A2

  9. Lung, aorta, and platelet metabolism of 14C-arachidonic acid in vitamin E deficient rats

    International Nuclear Information System (INIS)

    14C-arachidonic acid metabolism was determined in aortas, platelets, and perfused lungs from rats pair fed a basal diet supplemented with 0 or 100 ppm vitamin E for 11 weeks. Spontaneous erythrocyte hemolysis tests showed 92% and 8% hemolysis for the 0 and 100 ppm vitamin E groups, respectively. Elevated lung homogenate levels of malonaldehyde in the 0 ppm group confirmed its deficient vitamin E status. Aortas from the vitamin E deficient group synthesized 54% less prostacyclin than aortas from the supplemented group (p less than 0.05). Although thromboxane generation by platelets from the vitamin E deficient group exhibited a 37% increase, this difference was not statistically significant compared to the supplemented animals. Greater amounts of PGE2, PGF2 alpha, TXB2, and 6-keto-PGF1 alpha were obtained in albumin buffer perfusates from lungs of vitamin E deficient rats than in those from supplemented rats. Significant differences (p less than 0.05) were noticed, however, only for PGE2 and PGF2 alpha. These studies indicate that vitamin E quantitatively alters arachidonic acid metabolism in aortic and lung tissue but its effect on thromboxane synthesis by platelets is less marked

  10. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips (≤12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 μm thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with [3H]arachidonic acid in M199 medium (0.5 μCi/ml) for 24 hours at 37C. The strips incorporated 36±4% (mean ± SEM) of the total radioactivity and released 8.0±1.2% of incorporated radioactivity when stimulated by 5.0 μM calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE2, PGF2α, and 12-HETE standards. The greatest activity corresponded to the PGE2 and PGF2α standards, which is a similar pattern to that reported for cultured human tracheal epithelium

  11. Regulation of the arachidonic acid-stimulated respiratory burst in neutrophils by intra- cellular and extracellular calcium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The respiratory burst is an important physiological function ofthe neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.

  12. Effect of selenium and vitamin E deficiencies on the fate of arachidonic acid in rat isolated lungs

    International Nuclear Information System (INIS)

    The fate of exogenous 14C-arachidonic acid (14C-AA) was investigated in the isolated lungs of rats fed selenium and vitamin E deficient diet or diets supplemented with selenium and/or vitamin E. When 80 nmol of 14C-AA was infused into the pulmonary circulation most of the infused 14C-AA was found in different phospholipid and neutral lipid fractions of the perfused lungs. Only less than ten percent of the infused radioactivity was recovered in the perfusion effluent. The amount of arachidonate metabolites in the perfusion effluent was negligible, and most of the radioactivity in the perfusion effluent consisted of unmetabolized arachidonate. Selenium deficiency had no significant effect on the distribution of 14C-AA in different lung lipid fractions. However, in the lungs of vitamin E deficient rats the amount of radioactivity was slightly increased in the neutral lipid fraction, which was due to the increased amount of 14C-AA in the diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of 14C-AA in the triacylglycerols and in different phospholipids was not significantly changed. The present study might indicate that selenium deficiency has no significant effect on the fate of exogenous arachidonic acid in isolated rat lungs, and that vitamin E deficiency would slightly increase the amount of arachidonic acid in the diacylglycerols

  13. Differential release of eicosanoids by bradykinin, arachidonic acid and calcium ionophore A23187 in guinea-pig isolated perfused lung.

    OpenAIRE

    Bakhle, Y. S.; Moncada, S.; de Nucci, G.; Salmon, J A

    1985-01-01

    The effects of infusions of bradykinin (0.2 microM), calcium ionophore A23187 (0.5 microM) and arachidonic acid (13 microM) on the release of eicosanoids from the guinea-pig isolated perfused lung were investigated using radioimmunoassay for thromboxane B2 (TXB2), 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha), PGE2, leukotriene B4 (LTB4) and LTC4 and bioassay using the superfusion cascade. Bradykinin released more 6-oxo-PGF1 alpha than TXB2, whereas arachidonic acid and ionophore released m...

  14. Measurement of arachidonic acid release from human polymorphonuclear neutrophils and platelets: comparison between gas chromatographic and radiometric assays

    International Nuclear Information System (INIS)

    a simple gas chromatographic method for the assay of phospholipase A2 (PLA2) has been described in which arachidonic acid released from endogenous phospholipid pools is measured following its extraction and derivatization to pentafluorobenzyl esters. Using this assay, PLA2 activities in control and calcium ionophore-stimulated human neutrophils, as well as in control, thrombin, and calcium ionophore stimulated human platelets, have been measured. These values are compared with those obtained by monitoring the release of radioactivity from 3H- or 14Carachidonic acid prelabeled cells. While the radiometric assay measures only the release of exogenously incorporated radioactive arachidonic acid, the gas chromatographic assay measures arachidonic acid released from all the endogenous pools. Thus, the apparent increase in PLA2 activity in stimulated cells measured by the gas chromatographic assay is four- to fivefold higher than that by the radiometric assay. Inclusion of fatty acid free bovine serum albumin in the reaction buffer significantly increases the amount of arachidonic acid that is measured by gas chromatography. The gas chromatographic method has also been successfully utilized for measuring PLA2 activity in cell-free preparations derived from physically disrupted human neutrophils

  15. Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Poulsen, Kristian Arild; Lambert, Ian H.

    2006-01-01

    secretory sPLA2-V. Arachidonic acid release from swollen cells was partially inhibited by BEL and by the sPLA2-inhibitor manoalide. Cell swelling elicited BEL-sensitive arachidonic acid release from the nucleus, to which iPLA2-VIA localized. Exposure to the bee venom peptide melittin, to increase PLA2...

  16. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  17. Absorption and lymphatic transport of exogenous and endogenous arachidonic and linoleic acid in the rat

    International Nuclear Information System (INIS)

    [3H]Arachidonic (20:4) and [14C]linoleic acid (18:2) were fed to thoracic duct-cannulated rats in test meals of either tracers alone, cream, Intralipid, pure arachidonic acid, or pure linoleic acid. Less [3H]20:4 than [14C]18:2 was recovered in chyle during the first 5 h. After cream feeding, the proportion of radioactivity found in phospholipids was high and increased during the first 3 h. After the meal 61 +/- 6% of the 3H and 57 +/- 10% of the 14C was in phosphatidylcholine, and 11 +/- 3% of the 3H and 3.0 +/- 4% of the 14C was in phosphatidylethanolamine. Changing the fat vehicle to Intralipid or pure 18:2 decreased the proportion of label in the phospholipds and increased the 3H and 14C radioactivity in the triacylglycerol fraction, the distribution of 14C radioactivity in the triacylglycerol fraction, the distribution of 14C being influenced more than that of 3H. After feeding the tracers in 200 μl of pure 20:4, >90% of both isotopes was in triacylglycerol. During fasting, triacylglycerol transported 56% (0.7 μmol/h), phosphatidylethanolamine transported 10% (0.1 μmol/h) of the 20:4 mass. After cream or Intralipid feeding, the output of 20:4-containing phosphatidylcholine and phosphatidylethanolamine increased 2.1- to 2.8-fold, whereas the transport of 20:4 with triacylglycerol remained constant. Phospholipids thus became the predominant transport form for 20:4. After feeding 200 μl of 20:4, the intestine produced, however, 20:4-rich triacylglycerols that transported 80% of the chyle 20:4

  18. Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD.

    Science.gov (United States)

    Reynolds, T; Hartell, N A

    2001-01-22

    In cerebellar slices conjunctive pairing of parallel fibre (PF) stimulation with depolarization of Purkinje cells (PCs) induces a long-term depression (LTD) of PF synaptic transmission that spreads to unpaired PF inputs to the same cell. Inhibitors of NO synthase (7-nitro-indazole), soluble guanylate cyclase (ODQ) and PKG (KT5823) all prevented depression at each of two independent PF pathways to a single PC. Inhibition of NOS also unmasked a platelet activating factor (PAF)-mediated synaptic potentiation of possible presynaptic origin. LTD was also prevented by the phospholipase A2 inhibitor OBAA but was rescued by co-perfusion with arachidonic acid. We conclude that NO and diffusible products of phospholipase A2 metabolism are potential mediators of the spread of cerebellar plasticity at the single cell level. PMID:11201073

  19. Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

    Directory of Open Access Journals (Sweden)

    Carlos Rodrigo Camara-Lemarroy

    2012-01-01

    Full Text Available After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD. This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.

  20. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists.

    Science.gov (United States)

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-03-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca(2+) was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca(2+)] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca(2+) mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca(2+) mobilization due to the inhibition of NOS. PMID:27127451

  1. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination

    OpenAIRE

    Palumbo, S.; Toscano, C.D.; Parente, L.; Weigert, R.; Bosetti, F.

    2011-01-01

    Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of proinflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS).

  2. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    International Nuclear Information System (INIS)

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with (14C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A2 activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents

  3. Peroxidative metabolism of arachidonic acid in the course of Lyme arthritis

    Directory of Open Access Journals (Sweden)

    Wojciech Łuczaj

    2015-09-01

    Full Text Available [b][/b]Objective. The objective of the study was measurement of serum arachidonic acid level as well as the product of its peroxidation – 8-isoPGF[sub]2[/sub][sub]α[/sub], and the activity of phospholipase A[sub]2[/sub] and PAF-acetylhydrolase that participate in releasing 8-isoPGF[sub]2α[/sub] from glycerol skeleton, and the potential designation of their role in the pathomechanism of Lyme disease (LD. Material and methods. Changes in the phospholipid arachidonic acid level and the level of 8-isoPGF[sub]2α[/sub] were determined in the plasma and urine of patients with LA (n=57 and of healthy controls (n=41. The activity of phospholipase A[sub]2[/sub] and PAF acetylhydrolase were assayed. All examined parameters were also measured in the plasma of some LA patients (n=13 after antibiotics treatment. Results. An almost 3-fold higher level of the total plasma 8-isoPGF[sub]2α[/sub] was observed in LA patients compared to the controls, while in the urine it increased over 5-fold. The plasma PLA[sub]2[/sub] activity was more than 3-fold higher in LA patients than in the healthy subjects, while PAF acetylhydrolase activity was observed to be modestly, but not significantly lower. The total 8-isoPGF[sub]2α[/sub] level in the plasma and urine of LA patients was significantly lower after antibiotics treatment. The plasma activity of PAF-AH in the LA patients was increased, while the cPLA[sub]2[/sub] activity decreased after antibiotics treatment. Conclusions. It may be suggested that in the course of LA, the level of binding 8-isoPGF[sub]2α[/sub] is significantly enhanced, and it may also be suggested that uncontrolled changes in the lipid status of some patients may make their Lyme arthritis unresponsive to antibiotics.

  4. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    International Nuclear Information System (INIS)

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with [3H]arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of [3H]free fatty acids. These effects were attenuated in Ca2+-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca2+ with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of [3H]free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca2+ influx and that at least 80% of the [3H]free fatty acid accumulation required calcium

  5. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Motoko Maekawa

    Full Text Available Prepulse inhibition (PPI is a compelling endophenotype (biological markers for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs, arachidonic acid (ARA and/or docosahexaenoic acid (DHA, to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1 an independent model animal, Pax6 (+/- rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2 methylazoxymethanol acetate (an anti-proliferative drug elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks when the drug was given at the juvenile stage (4-5 weeks; (3 administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4 raising Pax6 (+/- pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.

  6. Synergism between thapsigargin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate on the release of [C]arachidonic acid and histamine from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Thapsigargin is a potent skin irritating sesquiterpene lactone isolated from the roots of Thapsia garganica L. (Apiaceae). In rat peritoneal mast cells thapsigargin induced a calcium-dependent non-cytotoxic [C]arachidonic acid and histamine release. A minor amount of the released [C]arachidonic a...

  7. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets.

    Science.gov (United States)

    Wijendran, Vasuki; Downs, Ian; Srigley, Cynthia Tyburczy; Kothapalli, Kumar S D; Park, Woo Jung; Blank, Bryant S; Zimmer, J Paul; Butt, C M; Salem, Norman; Brenna, J Thomas

    2013-10-01

    Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic acid (ARA) and docosahexaenoic acid (DHA) during early post-natal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human breast milk, in suckling piglets. Piglets were fed one of six milk replacer formula diets (formula-reared groups, FR) with varying ARA and DHA content from days 3-28 of age. The ARA/DHA levels of the six formula diets were as follows (% total fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. The control maternal-reared (MR) group remained with the dam. Fads1 expression was not significantly different between FR and MR groups. Fads2 expression was down-regulated significantly in diets with 1:1 ratio of ARA:DHA, compared to MR. Fads2 AT1 expression was highly correlated to Fads2 expression. Fads3 AT7 was the only Fads3 transcript sensitive to dietary LC-PUFA intake and was up-regulated in the formula diets with lowest ARA and DHA contents compared to MR. Thus, the present study provides evidence that the proportion of dietary ARA:DHA is a significant determinant of Fads2 expression and LC-PUFA metabolism during the early postnatal period. Further, the data suggest that Fads3 AT7 may have functional significance when dietary supply of ARA and DHA are low during early development. PMID:24075244

  8. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    Science.gov (United States)

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  9. Effects of arachidonic acid on ATP-sensitive K+ current in murine colonic smooth muscle cells.

    Science.gov (United States)

    Jun, Jae Yeoul; Yeum, Cheol Ho; Park, Yoo Whan; Jang, In Youb; Kong, In Deok; Sim, Jae Hoon; So, Insuk; Kim, Ki Whan; You, Ho Jin

    2002-09-01

    The effects of arachidonic acid (AA) and the mechanism through which it modulates ATP-sensitive K+ (K(ATP)) currents were examined in single smooth muscle cells of murine proximal colon. In the current-clamping mode, AA and glibenclamide induced depolarization of membrane potential. Using 0.1 mM ATP and 140 mM K+ solution in the pipette and 90 mM K+ in the bath solution at a -80 mV of holding potential, pinacidil activated the glibenclamide-sensitive inward current. The potential of these currents was reversed to near the equilibrium potential of K+ by 60 mM K+ in the bath solution. AA inhibited K(ATP) currents in a dose-dependent manner. This inhibition was not changed when 1 mM GDPbetaS was present in the pipette. Chelerythrine, protein kinase C inhibitor, did not block the AA effects. Superoxide dismutase and metabolic inhibitors (indomethacin and nordihydroguaiacretic acid) of AA did not affect the AA-induced inhibition. Eicosatetraynoic acid, a nonmetabolizable analogue of AA, inhibited the K(ATP) currents. These results suggest that AA-induced inhibition of K(ATP) currents is not mediated by G-protein or protein kinase C activation. The inhibitory action is likely to be a possible mechanism of AA-induced membrane depolarization. PMID:12396031

  10. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Science.gov (United States)

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  11. Effect of selenium and vitamin E deficiencies on the fate of arachidonic acid in rat isolated lungs

    Energy Technology Data Exchange (ETDEWEB)

    Uotila, P.; Puustinen, T.

    1985-06-01

    The fate of exogenous /sup 14/C-arachidonic acid (/sup 14/C-AA) was investigated in the isolated lungs of rats fed selenium and vitamin E deficient diet or diets supplemented with selenium and/or vitamin E. When 80 nmol of /sup 14/C-AA was infused into the pulmonary circulation most of the infused /sup 14/C-AA was found in different phospholipid and neutral lipid fractions of the perfused lungs. Only less than ten percent of the infused radioactivity was recovered in the perfusion effluent. The amount of arachidonate metabolites in the perfusion effluent was negligible, and most of the radioactivity in the perfusion effluent consisted of unmetabolized arachidonate. Selenium deficiency had no significant effect on the distribution of /sup 14/C-AA in different lung lipid fractions. However, in the lungs of vitamin E deficient rats the amount of radioactivity was slightly increased in the neutral lipid fraction, which was due to the increased amount of /sup 14/C-AA in the diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of /sup 14/C-AA in the triacylglycerols and in different phospholipids was not significantly changed. The present study might indicate that selenium deficiency has no significant effect on the fate of exogenous arachidonic acid in isolated rat lungs, and that vitamin E deficiency would slightly increase the amount of arachidonic acid in the diacylglycerols.

  12. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Jensen, B.;

    1989-01-01

    Dietary long-chain n-3 fatty acids (FA) may prolong gestation by inhibiting formation of prostaglandins from arachidonic acid. FA were quantified in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and total lipids (TL) of red cells sampled during pregnancy from 29 Faroese women. The ratio...... of long-chain n-3 FA to arachidonic acid (the (3/6) ratio) was used as the most relevant single measure of exposure. In 18 women with certain gestational age and with spontaneous onset of delivery, gestational age was significantly associated with the (3/6) ratio quantified in PC (correlation...

  13. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B;

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (arachidonate-phospholipids and preferential reesterification of the fatty acid into triacylglycerols. Free [3H]arachidonic acid accumulated at higher enzyme concentrations......, from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role for...

  14. Is human colon adenocarcinoma (HT-29) proliferating activity influenced by arachidonic acid modulated metabolism in vitro after photodynamic therapy?

    International Nuclear Information System (INIS)

    Photodynamic therapy induces photo-oxidative changes of phospholipids followed by phospholipase A2 and phospholipase C activation which accelerates phospholipids degradation with polyunsaturated fatty acids eg. arachidonic acids releasing. Arachidonic acid has important role in the tumour therapy mainly as a precursor of lipids mediators - eicosanoids. The combination of indomethacin (5-100 μM) and hypericin (4 · 10-8 M) did not influence the survival of HT-29 in comparison to indomethacin and hypericin alone. On the other hand, inhibitors of lipoxygenase - NDGA (5-100 μM), MK-886 (2,5-15 μM) added 24 or 48 hours before hypericin activation showed significant antiproliferative effect in comparison to NDGA, MK-886 or hypericin alone. (authors)

  15. Ca2+-dependent and Ca2+-independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells

    International Nuclear Information System (INIS)

    The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of 3H-labeled and 14C-labeled metabolites of phosphatidyl-[3H]inositol ([3H]Ins-PI) and 1-stearoyl-2-[14C] arachidonoyl-PI were determined at 370C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca2+. The rates of formation of lysophosphatidyl-[3H]inositol ([3H]Ins-lyso-PI) and 1-lyso-2-[14C] arachidonoyl-PI were similar in the presence and absence of Ca2+, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, [14C]arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI paralleled release of glycerophospho-[3H]inositol ([3H]GPI) from [3H]Ins-PI. Formation of [3H]GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in [3H]Ins-lyso-PI. In the presence of Ca2+, [14C] arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI was increased 2-fold and was associated with Ca2+-dependent phospholipase C activity. Under these conditions, [3H]inositol monophosphate production exceeded formation of [14C]arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of [14C]arachidonic acid formed in excess of [3H]GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca2+-dependent [14C]arachidonic acid release, and the decrease in [14C] arachidonic acid formed was matched by an equivalent increase in 14C label in diacylglycerol plus monoacyclglycerol

  16. Breeding of arachidonic acid-producing strain by low-energy ion implantation

    International Nuclear Information System (INIS)

    Low energy ion implantation technology was used in mutation breeding on arachidonic acid (5, 8, 11, 14-eicosatetraenoic acid, AA) yielding starting strain, Mortierelle alpina N7. The results indicate that dispersion of descendants of the N7 strain implanted with 10 keV N+ (3 x 1014 N+/cm2) was bigger than that in natural division strain. I49-N18, a high-yield AA-producing strain, was screened out by continuous mutagenicity. The biomass, lipid in biomass, AA in lipids of the high-yield strain were 26.3 g/L, 33.8%(w/w), and 52.36%(w/w), respectively. The AA content in culture was 4.66 g/L, which is 126.2% higher than the control, and its descendiblity was stable. It is concluded that I49-N18 is a promising strain for industrialization, and that ion implantation has remarkable mutagenic effect on microorganism

  17. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    Science.gov (United States)

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  18. In vitro release of arachidonic acid metabolites, glutathione peroxidase, and oxygen-free radicals from platelets of asthmatic patients with and without aspirin intolerance.

    OpenAIRE

    Plaza, V.; J. Prat; Rosellò, J.; Ballester, E; Ramis, I; Mullol, J; Gelpí, E; Vives-Corrons, J. L.; Picado, C.

    1995-01-01

    BACKGROUND--An abnormal platelet release of oxygen-free radicals has been described in acetylsalicylic acid (aspirin)-induced asthma, a finding which might suggest the existence of an intrinsic, specific platelet abnormality of arachidonic acid metabolism in these patients. The objective of this study was to evaluate platelet arachidonic acid metabolism in asthmatic patients with or without intolerance to aspirin. METHODS--Thirty subjects distributed into three groups were studied: group 1, 1...

  19. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug.

    Directory of Open Access Journals (Sweden)

    Daniel H Lopez

    Full Text Available BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS: The analogue of arachidonic acid (AA, 2-hydroxy-arachidonic acid (2OAA, was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method and iNOS (Western blot were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE: These findings demonstrate the potential of 2OAA as a NSAID.

  20. Release of arachidonic acid from oligodendrocytes by terminal complement proteins, C5b-C9

    International Nuclear Information System (INIS)

    Activation of C5b-C9 on monocytes, macrophages, platelets and neutrophils induces membrane lipid hydrolysis and generates arachidonic acid (AA) and its oxygenated derivatives. Additionally, activation of C5b-C9 and myelin lipid hydrolysis has been observed in demyelination. The authors have investigated the modulatory effect of C5b-9 on membrane lipid hydrolysis of oligodendrocytes (OLG), the myelin producing cells in the central nervous system. Antibody-sensitized rat OLG, prelabeled with 14C AA were treated with excess C6-deficient rabbit serum reconstituted with limiting doses of C6. Qualitative analysis of the supernatants by HPLC revealed the presence of both cyclooxygenase and lipooxygenase products. Prostaglandin E2, leukotriene (LT) E4, LTB4 and free AA were the major radiolabeled products. The kinetics and dose response of LTB4 release with respect to the cytolytic dose of C5b-9 were quantitated by radioimmunoassay. LTB4 release approached maximum in 1 hr and higher amounts were detected with fewer C5b-9 channels. Addition of C8 to OLG bearing C5b-7 intermediates induced maximum LTB4 release without further enhancement by C9 in contrast to the absolute requirement of C9 in mediator release from rat neutrophils. Thus, the requirement of C5b-8 or C5b-9 in mediator release appears to be cell-type dependent

  1. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects.

    Science.gov (United States)

    Altinbas, Burcin; Topuz, Bora Burak; İlhan, Tuncay; Yilmaz, Mustafa Sertac; Erdost, Hatice; Yalcin, Murat

    2014-08-01

    The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions. PMID:25065747

  2. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron

    2011-01-01

    Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as "hubs", thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular "hubs", including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.

  3. The effects of anaerobic training in serum lipids and arachidonic acid metabolites

    Directory of Open Access Journals (Sweden)

    GEORGIOS KIPREOS

    2010-01-01

    Full Text Available Coronary arteries are subjected daily in high shear stress and manifest atherosclerosis very early in life in comparison to other arteries in the human body. Some factors that are implicated in the evolution and progress of this process are the concentration of lipids and arachidonic acid metabolites, such prostacyclin and thromboxane. It has been reported that those who participate in aerobic activities such as walking, cycling, jogging or brisk walking might have normal values of the mentioned chemical substances. On the other hand, it is reported that the effects of anaerobic and strength activities has negative effects on the vascular endothelium, which is essential for the maintenance of hemostatic balance and the local regulation of vascular tone.Therefore, even although extensive research has been conducted in this field, there are crucial gaps in our knowledge. Consequently, the purpose of this brief review is to describe what is known about the effects of anaerobic activities in which the competitive athletes have participated on the following blood parameters: Total cholesterol, triglycerides, high density lipoprotein cholesterol (HDL - C, low density lipoproteins cholesterol (LDL - C, prostacyclin & thromboxane.

  4. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L. PMID:26038800

  5. Intestinal zinc transport: influence of streptozotocin-induced diabetes, insulin and arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.K.; Mooradian, A.D.

    1988-01-01

    The influence of arachidonic acid (AA) on the zinc flux rates of jejunal segments, isolated from streptozotocin-induced diabetic rats injected with saline or with insulin, was investigated using an Ussing chamber technique. Although the zinc flux rates from mucose-to-serosa (J/sub ms/) of normal rats were inhibited by addition of 5 ..mu..M AA to the jejunal segment bathing medium, AA had no effect on the J/sub ms/ of diabetic rats either with or without insulin treatment. Induction of diabetes also significantly reduces J/sub ms/, but 3 day insulin treatment did not reverse this effect. Addition of AA to the serosal side did not significantly alter the zinc flux rate from serosa-to-mucosa (J/sub sm/) in either control, diabetic or diabetic rats treated with insulin. The net zinc absorption rate (J/sub net/) of jejunal segments was decreased in diabetic rats compared to controls, but normalization of blood glucose with 3 day insulin treatment did not increase J/sub net/. Addition of AA was associated with a tendency to increase zinc uptake capacity. This change reached statistical significance in insulin treated diabetic rats. Short-circuit current (I/sub sc/) for diabetic rats was increased compared to controls but addition of AA to the mucosal side bathing medium decreased I/sub sc/ in all groups. 32 references, 3 figures, 1 table.

  6. Assay of phospholipase A2 with E. coli membrane doped by 3H-arachidonic acid

    International Nuclear Information System (INIS)

    Objective: To develop a new radiochemistry method to assay the secretory phospholipase A2 (sPLA2) and cytosolic phospholipase A2 (cPLA2) with a same substrate. Methods: E.coli membrane doped by 3H-arachidonic acid was prepared and hydrolyzed by PLA2 in certain condition, and the enzyme activity was expressed with the hydrolyzing rate. Results: Intra-day coefficient of variation (CV) of cPLA2 was 5.2% and inter-day CV was 10.9%, and 4.9% and 7.8% for sPLA2 respectively. Results of a series proportional dilution assay showed a good linear relationship. Serum sPLA2 activities of patients with acute cholecystitis were significantly higher than that of normal control subjects. There was a significant difference of activities of sPLA2 and cPLA2 between the endotoxin induced leukemia cell K562 and control. Conclusions: This method is specific, stable and sensitive, it may be used in clinical and scientific research

  7. The metabolism of arachidonic acid in isolated perfused fetal and neonatal rabbit lungs

    International Nuclear Information System (INIS)

    The developmental pattern of fetal and neonatal rabbit lungs to metabolize arachidonic acid (AA) to different cyclo-oxygenase products was studied in isolated rabbit lungs, which were perfused with Krebs bicarbonate buffer. 14C-AA (66 nmol) was injected into the pulmonary circulation and the nonrecirculating perfusion effluent was collected for four minutes. About ten per cent of the injected radioactivity was found in the 0-4 min perfusion effluent. The metabolites of AA in the effluent were analyzed by thin layer chromatography. The major metabolites of AA were PGE2 and its 15-keto-derivates, but also PGF2 alpha and its 15-keto-derivates, TXB2 and 6-keto-PGF1 alpha were found in the effluent. The most drastic developmental change was the increase in the amount of 15-keto-metabolites of PGE2 from late fetal period to the lungs of one day old rabbits (1.8 fold increase between birth and first postnatal day). Smaller changes were detected in the amounts of other cyclo-oxygenase products

  8. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats

    OpenAIRE

    Harry Gaylia; Kraft Andrew; Chen Mei; Greenstein Dede; Kellom Matthew; Kim Hyung-Wook; Rao Jagadeesh; Rapoport Stanley; Basselin Mireille

    2011-01-01

    Abstract Background Cognitive impairment has been reported in human immune deficiency virus-1- (HIV-1-) infected patients as well as in HIV-1 transgenic (Tg) rats. This impairment has been linked to neuroinflammation, disturbed brain arachidonic acid (AA) metabolism, and synapto-dendritic injury. We recently reported upregulated brain AA metabolism in 7- to 9-month-old HIV-1 Tg rats. We hypothesized that these HIV-1 Tg rats also would show upregulated brain inflammatory and AA cascade markers...

  9. Effects of chronic clozapine administration on markers of arachidonic acid cascade and synaptic integrity in rat brain

    OpenAIRE

    Kim, Hyung-Wook; Cheon, Yewon; Modi, Hiren R.; Rapoport, Stanley I; Rao, Jagadeesh S.

    2012-01-01

    The mode of action of clozapine, an atypical antipsychotic approved for treating schizophrenia and bipolar disorder (BD) mania, remains unclear. We tested for overlap with the actions of the mood stabilizers, lithium, carbamazepine and valproate, which downregulate arachidonic acid (AA) cascade markers in rat brain and upregulate BDNF. AA cascade markers are upregulated in the postmortem BD brain in association with neuroinflammation and synaptic loss, while BDNF is decreased. Rats were injec...

  10. Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils

    International Nuclear Information System (INIS)

    Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. (Abstract Truncated)

  11. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  12. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish

    Science.gov (United States)

    Koussoroplis, Apostolos-Manuel; Bec, Alexandre; Perga, Marie-Elodie; Koutrakis, Emmanuil; Bourdier, Gilles; Desvilettes, Christian

    2011-02-01

    The transfer of fatty acids (FAs) in the food web of a Mediterranean lagoon was studied using FA compositional patterns across several trophic levels. The structure of the food web was inferred from C and N stable isotopes values and an isotope mixing model was used in order to estimate the relative contribution of the different potential food sources to the biomass of consumers. Bidimensional plots of FA composition of food web components against their δ 15N values indicated a general trend of increasing proportions of highly unsaturated fatty acids (HUFAs) with increasing trophic levels while the proportions of saturated fatty acids (SAFAs) and 18-carbon polyunsaturated fatty acids (PUFAs) decreased. Using the relative contributions of food sources to consumers and their FA compositions, a model was built in order to estimate the PUFA composition of consumer mixed diets which was compared to consumer PUFA profiles. The latter allowed the identification of the PUFAs which were mostly enriched/retained in consumer lipids. There was a surprisingly high retention of arachidonic acid (ARA), a trend which challenges the idea of low ARA needs in marine fish and suggests the important physiological role of this essential FA for fish in estuarine environments.

  13. Arachidonic acid metabolism by bovine placental tissue during the last month of pregnancy

    International Nuclear Information System (INIS)

    Conversion of tritiated arachidonic acid (AA) into metabolites of the cyclo- and lipoxygenase pathways by bovine fetal placental tissue (200 mg) and fetal plus maternal placental tissue (400 mg) of Days 255, 265, 275 of gestation and at parturition (n = 5) during a 30 min incubation was measured using reverse-phase high pressure liquid chromatography. Fetal placental tissue produced 13,14-dihydro-15-keto-prostaglandin E2 (PGEM) as the major metabolite, the synthesis of which increased from Day 265 to Day 275 and parturition by 150% and 475%, respectively. In tissues collected at parturition, PGE2 synthesis was also detected. On Day 275 and at parturition fetal placental tissue synthesized the metabolite 12-hydroxyheptadecatrienoic acid (HHT), and throughout the experimental period the lipoxygenase product 15-HETE was detected with synthesis rates increasing over time of gestation. In addition, an unidentified metabolite was regularly found in the radiochromatograms which eluted at 1 h and 1 min (U101), between HHT and 15-HETE. The synthesis of this metabolite decreased as pregnancy progressed. Furthermore, various other polar and nonpolar metabolites pooled under the heading UNID were eluted, the production of which increased over time of gestation. The presence of maternal placental tissue did not influence the synthesis of PGEM, 15-HETE and U101, but the production of HHT was decreased when maternal tissue was present. Also, as pregnancy progressed, maternal placental tissue seemed to contribute to the pool of unidentified metabolites. In conclusion, fetal placental tissue seems to be the major source of the AA metabolites when compared with maternal placental tissue, and AA metabolism by bovine placental tissue is markedly increased throughout the last month of pregnancy, suggesting a role for AA metabolites in mechanisms controlling parturition

  14. Eugenol: a dual inhibitor of platelet-activating factor and arachidonic acid metabolism.

    Science.gov (United States)

    Saeed, S A; Simjee, R U; Shamim, G; Gilani, A H

    1995-07-01

    Eugenol is an active principal and responsible for several pharmacological activities of clove oil. We studied the effects of eugenol on human platelet aggregation, arachidonic acid (AA) and platelet-activating factor (PAF) metabolism and in vivo effects on AA and PAF-induced shock in rabbits. Eugenol strongly inhibited PAF-induced platelet aggregation with lesser effect against AA and collegen. The IC(50) values were against AA: 31 ± 0.5; collagen: 64 ± 0.7 and PAF 7 ± 0.2 μM (n=9) respectively. In addition, eugenol stimulated PAF-acetylhydrolase activity suggesting that inhibition of PAF could be due to its inactivation to lyso-PAF. Pretreatment of rabbits with eugenol (50-100 mg/kg) prevented the lethal effects of intravenous PAF (11 μgg/kg) or AA (2 mg/kg) in a dose-dependent fashion. The protective effects of eugenol in the rabbits, however, were more pronounced against PAF-induced mortality (100% protection). In addition, eugenol also inhibited AA metabolism via cyclooxygenase and lipoxygenase pathways in human platelets. Both the production of thromboxane-A(2) and 12-hydroxy-eicosatetraenoic acid was inhibited by eugenol in a concentration-related manner (30-120 μM). In vivo, eugenol (50-100 mg/kg; i.p.) inhibited carrageenan-induced rat paw oedema (P < 0.001). In this test, eugenol was 5 times more potent than aspirin. These results provide evidence that eugenol acts as a dual antagonist of AA and PAF. PMID:23196096

  15. Mechanism of arachidonic acid liberation in platelet-activating factor-stimulated human polymorphonuclear neutrophils

    International Nuclear Information System (INIS)

    Upon stimulation of human polymorphonuclear neutrophils with platelet-activating factor (PAF), arachidonic acid (AA) is released from membrane phospholipids. The mechanism for AA liberation, a key step in the synthesis of biologically active eicosanoids, was investigated. PAF was found to elicit an increase in the cytoplasmic level of free Ca2+ as monitored by fluorescent indicator fura 2. When [3H] AA-labeled neutrophils were exposed to PAF, the enhanced release of AA was observed with a concomitant decrease of radioactivity in phosphatidylinositol and phosphatidylcholine fractions. The inhibitors of phospholipase A2, mepacrine and 2-(p-amylcinnamoyl)-amino-4-chlorobenzoic acid, effectively suppressed the liberation of [3H]AA from phospholipids, indicating that liberation of AA is mainly catalyzed by the action of phospholipase A2. The extracellular Ca2+ is not required for AA release. However, intracellular Ca2+ antagonists, TMB-8 and high dose of quin 2/AM drastically reduced the liberation of AA induced by PAF, indicating that Ca2+ is an essential factor for phospholipase A2 activation. PAF raised the fluorescence of fura 2 at concentrations as low as 8 pM which reached a maximal level about 8 nM, whereas more than nM order concentrations of PAF was required for the detectable release of [3H]AA. Pretreatment of neutrophils with pertussis toxin resulted in complete abolition of AA liberation in response to PAF. However, the fura 2 response to PAF was not effectively inhibited by toxin treatment. In human neutrophil homogenate and membrane preparations, guanosine 5'-O-(thiotriphosphate) stimulated AA release and potentiated the action of PAF. Guanosine 5'-O-(thiodiphosphate) inhibited the effects of guanosine 5'-O-(thiotriphosphate)

  16. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    Science.gov (United States)

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  17. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release.

    Science.gov (United States)

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G

    2006-03-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) that couple Galpha(i) and Galpha(q) proteins to release arachidonic acid (AA) and elevate intracellular Ca2+ concentration ([Ca2+]i). Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Galpha(i), Galpha(q), and Galpha(12/13) proteins. In Chinese hamster ovary cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Galpha(i), Galpha(q), and Galpha(12/13) signaling pathways, and a protein kinase C (PKC)-alpha inhibitor, Gö-6976, blocked potentiation, while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a nonselective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the NH2-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  18. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    Science.gov (United States)

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2006-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Gαi, Gαq and Gα12/13 signaling pathways, and a PKCα inhibitor, Gö6976 blocked potentiation while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a non-selective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the N-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus, PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  19. Arachidonic acid pathway activates multidrug resistance related protein in cultured human lung cells.

    Science.gov (United States)

    Torky, Abdelrahman; Raemisch, Anja; Glahn, Felix; Foth, Heidi

    2008-05-01

    Primary cultures of human lung cells can serve as a model system to study the mechanisms underlying the effects of irritants in air and to get a deeper insight into the (patho)physiological roles of the xenobiotic detoxification systems. For 99 human lung cancer cases the culture duration for bronchial epithelium and peripheral lung cells (PLC) are given in term of generations and weeks. Using this system, we investigated whether and how prostaglandins (PG) modify multidrug resistance related protein (MRP) function in normal human lung cells. PGF2alpha had no effect on MRP function, whereas PGE2 induced MRP activity in cultured NHBECs. The transport activity study of MRP in NHBEC, PLC, and A549 under the effect of exogenously supplied PGF2alpha (10 microM, 1 day) using single cell fluorimetry revealed no alteration in transport activity of MRP. PG concentrations were within the physiological range. COX I and II inhibitors indomethacin (5, 10 microM) and celecoxib (5, 10 microM) could substantially decrease the transport activity of MRP in NHBEC, PLC, and A549 in 1- and 4-day trials. Prostaglandin E2 did not change cadmium-induced caspase 3/7 activation in NHBECs and had no own effect on caspase 3/7 activity. Cadmium chloride (5, 10 microM) was an effective inducer of caspase 3/7 activation in NHBECs with a fivefold and ninefold rise of activity. In primary human lung cells arachidonic acid activates MRP transport function only in primary epithelial lung cells by prostaglandin E2 but not by F2alpha mediated pathways and this effect needs some time to develop. PMID:17943274

  20. LC/ESI-MS/MS method for determination of salivary eicosapentaenoic acid concentration to arachidonic acid concentration ratio.

    Science.gov (United States)

    Ogawa, Shoujiro; Tomaru, Koki; Matsumoto, Nagisa; Watanabe, Shui; Higashi, Tatsuya

    2016-01-01

    A simple liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for determination of the eicosapentaenoic acid (EPA) concentration to arachidonic acid (AA) concentration ratio in human saliva has been developed. The EPA/AA ratio in serum or plasma is widely recognized as a useful indicator in identifying the risk of cardiovascular disease, especially atherosclerosis. The salivary EPA/AA ratio is expected to be a convenient alternative to the serum or plasma EPA/AA ratio, because saliva offers the advantages of easy and noninvasive sampling. The saliva was deproteinized with acetonitrile, purified using an Oasis HLB cartridge, and derivatized with 1-[(4-dimethylaminophenyl)carbonyl]piperazine (DAPPZ). The derivatized EPA and AA were subjected to LC/ESI-MS/MS, and the EPA/AA ratio was determined using the selected reaction monitoring mode. The DAPPZ-derivatization increased the ESI sensitivity by 100- and 300-fold for EPA and AA, respectively, and enabled the detection of trace fatty acids in saliva using a 200 μL sample. The assay reproducibility was satisfactory (relative standard deviation, <5.0%). The method was successfully applied to the measurement of the salivary EPA/AA ratios of healthy Japanese subjects and their changes owing to the supplementation of EPA. PMID:25620210

  1. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats.

    Science.gov (United States)

    Naito, Yukiko; Ji, Xu; Tachibana, Shigehiro; Aoki, Satoko; Furuya, Mami; Tazura, Yoshiyuki; Miyazawa, Daisuke; Harauma, Akiko; Moriguchi, Toru; Nagata, Tomoko; Iwai, Naoharu; Ohara, Naoki

    2015-09-14

    The aim of this study was to investigate the effects of the administration of oral arachidonic acid (AA) in rats with or without dextran sulphate sodium (DSS)-induced inflammatory bowel disease. Male Wistar rats were administered AA at 0, 5, 35 or 240 mg/kg daily by gavage for 8 weeks. Inflammatory bowel disease was induced by replacing drinking water with 3 % DSS solution during the last 7 d of the AA dosing period. These animals passed loose stools, diarrhoea and red-stained faeces. Cyclo-oxygenase-2 concentration and myeloperoxidase activity in the colonic tissue were significantly increased in the animals given AA at 240 mg/kg compared with the animals given AA at 0 mg/kg. Thromboxane B2 concentration in the medium of cultured colonic mucosae isolated from these groups was found to be dose-dependently increased by AA, and the increase was significant at 35 and 240 mg/kg. Leukotriene B4 concentration was also significantly increased and saturated at 5 mg/kg. In addition, AA at 240 mg/kg promoted DSS-induced colonic mucosal oedema with macrophage infiltration. In contrast, administration of AA for 8 weeks, even at 240 mg/kg, showed no effects on the normal rats. These results suggest that in rats with bowel disease AA metabolism is affected by oral AA, even at 5 mg/kg per d, and that excessive AA may aggravate inflammation, whereas AA shows no effects in rats without inflammatory bowel disease. PMID:26234346

  2. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. (TRC Environmental Corporation, Chapel Hill, NC (United States))

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  3. Tamoxifen and the Rafoxifene analog LY117018: their effects on arachidonic acid release from cells in culture and on prostaglandin I2 production by rat liver cells

    Directory of Open Access Journals (Sweden)

    Levine Lawrence

    2004-08-01

    Full Text Available Abstract Background Tamoxifen is being used successfully to treat breast cancer. However, tamoxifen also increases the risk of developing endometrial cancer in postmenopausal women. Raloxifene also decreases breast cancer in women at high risk and may have a lower risk at developing cancer of the uterus. Tamoxifen has been shown to stimulate arachidonic acid release from rat liver cells. I have postulated that arachidonic acid release from cells may be associated with cancer chemoprevention. Methods Rat liver, rat glial, human colon carcinoma and human breast carcinoma cells were labelled with [3H] arachidonic acid. The release of the radiolabel from these cells during incubation with tamoxifen and the raloxifene analog LY117018 was measured. The prostaglandin I2 produced during incubation of the rat liver cells with μM concentrations of tamoxifen and the raloxifene analog was quantitatively estimated. Results Tamoxifen is about 5 times more effective than LY117018 at releasing arachidonic acid from all the cells tested. In rat liver cells only tamoxifen stimulates basal prostaglandin I2 production and that induced by lactacystin and 12-O-tetradecanoyl-phorbol-13-acetate. LY117018, however, blocks the tamoxifen stimulated prostaglandin production. The stimulated prostaglandin I2 production is rapid and not affected either by preincubation of the cells with actinomycin or by incubation with the estrogen antagonist ICI-182,780. Conclusions Tamoxifen and the raloxifene analog, LY117018, may prevent estrogen-independent as well as estrogen-dependent breast cancer by stimulating phospholipase activity and initiating arachidonic acid release. The release of arachidonic acid and/or molecular reactions that accompany that release may initiate pathways that prevent tumor growth. Oxygenation of the intracellularly released arachidonic acid and its metabolic products may mediate some of the pharmacological actions of tamoxifen and raloxifene.

  4. Tamoxifen and the Rafoxifene analog LY117018: their effects on arachidonic acid release from cells in culture and on prostaglandin I2 production by rat liver cells

    International Nuclear Information System (INIS)

    Tamoxifen is being used successfully to treat breast cancer. However, tamoxifen also increases the risk of developing endometrial cancer in postmenopausal women. Raloxifene also decreases breast cancer in women at high risk and may have a lower risk at developing cancer of the uterus. Tamoxifen has been shown to stimulate arachidonic acid release from rat liver cells. I have postulated that arachidonic acid release from cells may be associated with cancer chemoprevention. Rat liver, rat glial, human colon carcinoma and human breast carcinoma cells were labelled with [3H] arachidonic acid. The release of the radiolabel from these cells during incubation with tamoxifen and the raloxifene analog LY117018 was measured. The prostaglandin I2 produced during incubation of the rat liver cells with μM concentrations of tamoxifen and the raloxifene analog was quantitatively estimated. Tamoxifen is about 5 times more effective than LY117018 at releasing arachidonic acid from all the cells tested. In rat liver cells only tamoxifen stimulates basal prostaglandin I2 production and that induced by lactacystin and 12-O-tetradecanoyl-phorbol-13-acetate. LY117018, however, blocks the tamoxifen stimulated prostaglandin production. The stimulated prostaglandin I2 production is rapid and not affected either by preincubation of the cells with actinomycin or by incubation with the estrogen antagonist ICI-182,780. Tamoxifen and the raloxifene analog, LY117018, may prevent estrogen-independent as well as estrogen-dependent breast cancer by stimulating phospholipase activity and initiating arachidonic acid release. The release of arachidonic acid and/or molecular reactions that accompany that release may initiate pathways that prevent tumor growth. Oxygenation of the intracellularly released arachidonic acid and its metabolic products may mediate some of the pharmacological actions of tamoxifen and raloxifene

  5. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2007-01-01

    Evidence confirms that polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid, DHA are involved in growth as well in pigmentation of marine fish larvae. In the present study we examined the performance of common sole larvae reared on...... Artemia enriched with 10 formulated emulsions, differing in inclusions of ARA, EPA, and DHA. The specific growth rate of the sole larvae until late metamorphosis, 21 days after hatching (dah) was 20 to 27% d(-1). Even though the relative tissue essential fatty acid (EFA) concentrations significantly...... reflected dietary composition, neither standard growth nor larval survival were significantly related to the absolute concentrations of ARA, EPA and DHA or their ratios. This suggests low requirements for essential polyunsaturated fatty acids (PUFAs) in common sole. Malpigmentation was significantly related...

  6. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    Science.gov (United States)

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  7. The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system

    Directory of Open Access Journals (Sweden)

    Sarkadi-Nagy Eszter A

    2005-06-01

    Full Text Available Abstract Background Docosahexaenoic acid (DHA and arachidonic acid (ARA are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. Methods Baboons were randomized into a breastfed (B and four formula-fed groups: term, no DHA/ARA (T-; term, DHA/ARA supplemented (T+; preterm, no DHA/ARA (P-; preterm and DHA/ARA supplemented (P+. At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. Results DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. Conclusion 1 DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2 DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3 supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA.

  8. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    Directory of Open Access Journals (Sweden)

    Weiss Carsten

    2011-08-01

    Full Text Available Abstract Background Acute exposure to elevated levels of environmental particulate matter (PM is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS, oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA cascade. Incinerator fly ash particles (MAF02 were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2, and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC prevented the MAF02

  9. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    OpenAIRE

    Oliveros L.B.; Videla A.M.; Giménez M.S.

    2004-01-01

    We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacr...

  10. Plasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation

    International Nuclear Information System (INIS)

    The present study demonstrates that rabbit aortic intimal smooth muscle cells contain the majority of their endogenous arachidonic acid mass in plasmenylethanolamine molecular species. To demonstrate the potential significance of these plasmenylethanolamines as substrates for the smooth muscle cell phospholipases that are activated during agonist stimulation, aortic rings were prelabeled with [3H]arachidonic acid and stimulated with angiotensin II. Although the specific activities of the choline and inositol glycerophospholipid pools were similar after the labeling interval, ethanolamine glycerophospholipids had a specific activity of only 20% of the specific activity of choline and inositol glycerophospholipids. Despite the marked disparity in the specific activities of these three phospholipid classes, angiotensin II stimulation resulted in similar fractional losses (35-41%) of [3H]arachidonic acid from vascular smooth muscle choline, ethanolamine, and inositol glycerophospholipid classes. Reverse-phase HPLC demonstrated that >60% of the [3H]arachidonic acid released from ethanolamine glycerophospholipids after angiotensin II stimulation originated from plasmenylethanolamine molecular species. Taken together, the results demonstrate that the major phospholipid storage depot for arachidonic acid in vascular smooth muscle cells are plasmenylethanolamine molecular species which are important substrates for the phospholipase(s) that are activated during agonist stimulation

  11. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    Science.gov (United States)

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  12. Altered Arachidonic Acid Cascade Enzymes in Postmortem Brain from Bipolar Disorder Patients

    OpenAIRE

    Kim, Hyung-Wook; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2009-01-01

    Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that AA cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex fro...

  13. Biotransformation of arachidonic acid (AA) and eicosapentaenoic acid (EPA) into lipoxins and lipoxenes by porcine leukocytes

    International Nuclear Information System (INIS)

    Lipoxins and lipoxenes have been reported to be formed after incubation of 15-hydroperoxyeicosatetraenoic acid and 15-hydroperoxyeicosapentaenoic acid with human leukocytes and porcine leukocytes, respectively. The authors examined the ability of porcine leukocytes to metabolize [14C]-AA and [14C]-EPA (100 μM) to lipoxins and lipoxenes. Incubation products were separated by RP-HPLC and identified by U.V. spectrum and GC/MS. Porcine leukocytes metabolized both AA and EPA to form lipoxins and lipoxenes in addition to mono- and di-hydroxyl fatty acids. Quantitative analysis from U.V. absorbance after RP-HPLC revealed that about 0.05% of AA was converted to lipoxins A and B and 0.1% of EPA was converted to lipoxenes A and B. In addition, treatment of leukotriene A4 and leukotriene A5 with 15-lipoxygenase also gave rise to several isomers of lipoxin and lipoxene. Thus, lipoxins and lipoxenes would have been derived from AA and EPA after dioxygenation by 5-lipoxygenase and 15-lipoxygenase, respectively. When tested for biological activity, lipoxene A (2 μM), like lipoxin A, induced superoxide anion generation in canine neutrophils but had no effect on lysosomal enzyme release on neutrophil aggregation

  14. Lyso(bis)phosphatidic acid: a preferred donor of arachidonic acid for macrophage-synthesis of eicosanoids

    International Nuclear Information System (INIS)

    In order to dissect mechanisms of arachidonic acid (20:4) metabolism, two cell populations were investigated, resident (AM) and Bacillus Calmette-Guerin-activated (BCG-AM) rabbit alveolar macrophages. After purified AM were labeled overnight with [3H]20:4, radioactivity was localized primarily within lyso(bis)phosphatidic acid [L(bis)PA] (13.1%), phosphatidylethanolamine (PE) (22.8%) and phosphatidylcholine (PC) (26.7%), with lesser amounts recovered in phosphatidyl-serine (PS) plus phosphatidylinositol (PI) (9.2%). By contrast, analysis of the phospholipid classes from prelabeled BCG-AM revealed that the mass of L(bis)PA as well as its [3H]20:4 content was profoundly decreased while other BCG-AM phospholipids remained unchanged. When [3H]20:4-labeled AM were stimulated with 1 μM 12-0-tetradecanoyl-phorbol-13-acetate (TPA), a loss of [3H]20:4 was observed from L(bis)PA, PE, PC, and PS/PI with a corresponding increase in eicosanoid synthesis. BCG-AM exposed to either TPA or 3.8 μM Ca+2 ionophore A23187 liberated [3H]20:4 solely from Pe and PC. BCG-AM, which exhibited depressed eicosanoid formation, consistently failed to deacylate [3H]20:4 from L(bis)PA or PI. Their evidence suggests that the diminution of eicosanoid synthesis by BCG-AM may be due to the reduction of 20:4 contained within specific phospholipid pools, namely L(bis)PA

  15. Lung, aorta, and platelet metabolism of /sup 14/C-arachidonic acid in vitamin E deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Valentovic, M.A.; Gairola, C.; Lubawy, W.C.

    1982-08-01

    /sup 14/C-arachidonic acid metabolism was determined in aortas, platelets, and perfused lungs from rats pair fed a basal diet supplemented with 0 or 100 ppm vitamin E for 11 weeks. Spontaneous erythrocyte hemolysis tests showed 92% and 8% hemolysis for the 0 and 100 ppm vitamin E groups, respectively. Elevated lung homogenate levels of malonaldehyde in the 0 ppm group confirmed its deficient vitamin E status. Aortas from the vitamin E deficient group synthesized 54% less prostacyclin than aortas from the supplemented group (p less than 0.05). Although thromboxane generation by platelets from the vitamin E deficient group exhibited a 37% increase, this difference was not statistically significant compared to the supplemented animals. Greater amounts of PGE2, PGF2 alpha, TXB2, and 6-keto-PGF1 alpha were obtained in albumin buffer perfusates from lungs of vitamin E deficient rats than in those from supplemented rats. Significant differences (p less than 0.05) were noticed, however, only for PGE2 and PGF2 alpha. These studies indicate that vitamin E quantitatively alters arachidonic acid metabolism in aortic and lung tissue but its effect on thromboxane synthesis by platelets is less marked.

  16. Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle

    OpenAIRE

    1992-01-01

    The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)- 2-methylp...

  17. Attachment of fatty acid substrate fragments to prostaglandin (PG) H synthase during reaction with arachidonate

    International Nuclear Information System (INIS)

    Pure ovine synthase was incubated aerobically with 14C-arachidonate to inactivate the cyclooxygenase. After solvent extraction to remove the bulk of the lipid, the inactive protein was analyzed by polyacrylamide gel electrophoresis. In SDS-PAGE radioactive label was associated with protein that comigrated with the 70 K Da synthase subunit, as well as with protein that accumulated at the upper edge of the resolving gel. In HPLC radioactivity was found in two peaks eluting in the region of unreacted synthase. SDS-PAGE analysis of pooled material from these HPLC peaks gave a distribution of radioactivity similar to that obtained with the unfractionated material. The radioactivity and protein content of inactivated synthase purified by HPLC indicated that 0.3-1.0 mole of substrate fragment were bound per mole of synthase subunit. Incubation of a mixture of the synthase and ovalbumin with arachidonate resulted in 5-fold more labelling of synthase than ovalbumin. Thus, a substrate fragment appears to become selectively attached to the synthase during reaction, and may represent the product of a self-inactivation event

  18. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0.45% dehydroisoandrosterone (DHA)

    International Nuclear Information System (INIS)

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous [1-14C]arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1α were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet

  19. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    Science.gov (United States)

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity. PMID:26094213

  20. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    International Nuclear Information System (INIS)

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE2, TxB2 and PGD2), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE2 inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: → We investigated how contact sensitizers modulate an inflammatory response. → We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. → Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). → Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. → New insight in the biochemical properties of sensitizers.

  1. Discovery of Novel 15-Lipoxygenase Activators To Shift the Human Arachidonic Acid Metabolic Network toward Inflammation Resolution.

    Science.gov (United States)

    Meng, Hu; McClendon, Christopher L; Dai, Ziwei; Li, Kenan; Zhang, Xiaoling; He, Shan; Shang, Erchang; Liu, Ying; Lai, Luhua

    2016-05-12

    For disease network intervention, up-regulating enzyme activities is equally as important as down-regulating activities. However, the design of enzyme activators presents a challenging route for drug discovery. Previous studies have suggested that activating 15-lipoxygenase (15-LOX) is a promising strategy to intervene the arachidonic acid (AA) metabolite network and control inflammation. To prove this concept, we used a computational approach to discover a previously unknown allosteric site on 15-LOX. Both allosteric inhibitors and novel activators were discovered using this site. The influence of activating 15-LOX on the AA metabolite network was then investigated experimentally. The activator was found to increase levels of 15-LOX products and reduce production of pro-inflammatory mediators in human whole blood assays. These results demonstrate the promising therapeutic value of enzyme activators and aid in further development of activators of other proteins. PMID:26290290

  2. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  3. Effects of arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on prolactin secretion from anterior pituitary cells

    International Nuclear Information System (INIS)

    The role of two lipids, arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, as modulators or prolactin secretion has been examined. Stimulators of phospholipase A2 activity, melittin and mastoparan, were found to increase prolactin release. Melittin also caused release of previously incorporated 3H-arachidonic acid and this effect was associated with loss of radiolabel from the phospholipid fraction. Exogenous arachidonic acid also stimulated prolactin secretion. Conversely, inhibitors of phospholipase A2 activity, dibromoacetophenone and U10029A, decreased basal and stimulated prolactin release. Prolactin release could also be lowered by ETYA, BW755C and NDGA, inhibitors of arachidonic acid metabolism. In the second series of experiments the effects of the biologically active phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor, PAF) on prolactin release were examined. PAF is an ether-linked phospholipid known to stimulate granule release in a variety of cell types including both inflammatory and noninflammatory cells. PAF increased release of prolactin from dispersed rat anterior pituitary cells; stimulation was not due to cell lysis. PAF-induced prolactin release could be blocked by the dopaminergic agonists apomorphine and bromocriptine as well as by two PAF receptor antagonists, SRI 63-072 and L-652-731

  4. Modulation of hypericin photodynamic therapy by pretreatment with 12 various inhibitors of arachidonic acid metabolism in colon adenocarcinoma HT-29 cells

    Czech Academy of Sciences Publication Activity Database

    Kleban, J.; Mikeš, J.; Szilárdiová, B.; Koval, J.; Sačková, V.; Solár, P.; Horváth, Viktor; Hofmanová, Jiřina; Kozubík, Alois; Fedoročko, P.

    2007-01-01

    Roč. 83, č. 5 (2007), s. 1174-1185. ISSN 0031-8655 R&D Projects: GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hypericin * photodynamic therapy * arachidonic acid inhibitors Subject RIV: BO - Biophysics Impact factor: 2.172, year: 2007

  5. Effects of arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine on prolactin secretion from anterior pituitary cells

    Energy Technology Data Exchange (ETDEWEB)

    Camoratto, A.M.

    1988-01-01

    The role of two lipids, arachidonic acid and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, as modulators or prolactin secretion has been examined. Stimulators of phospholipase A{sub 2} activity, melittin and mastoparan, were found to increase prolactin release. Melittin also caused release of previously incorporated {sup 3}H-arachidonic acid and this effect was associated with loss of radiolabel from the phospholipid fraction. Exogenous arachidonic acid also stimulated prolactin secretion. Conversely, inhibitors of phospholipase A{sub 2} activity, dibromoacetophenone and U10029A, decreased basal and stimulated prolactin release. Prolactin release could also be lowered by ETYA, BW755C and NDGA, inhibitors of arachidonic acid metabolism. In the second series of experiments the effects of the biologically active phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor, PAF) on prolactin release were examined. PAF is an ether-linked phospholipid known to stimulate granule release in a variety of cell types including both inflammatory and noninflammatory cells. PAF increased release of prolactin from dispersed rat anterior pituitary cells; stimulation was not due to cell lysis. PAF-induced prolactin release could be blocked by the dopaminergic agonists apomorphine and bromocriptine as well as by two PAF receptor antagonists, SRI 63-072 and L-652-731.

  6. Nonenzymatic pathway of PUFA oxidation. A first-principles study of the reactions of OH radical with 1,4-pentadiene and arachidonic acid

    Czech Academy of Sciences Publication Activity Database

    Szöri, Milan; Csizmadia, I. G.; Viskolcz, B.

    2008-01-01

    Roč. 4, č. 9 (2008), s. 1472-1479. ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : OH radical * arachidonic acid * ab initio * nonenzymatic biosynthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.274, year: 2008

  7. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania) : targets for infant formulae close to our ancient diet?

    NARCIS (Netherlands)

    Kuipers, RS; Fokkema, MR; Smit, EN; van der Meulen, J; Boersma, ER; Muskiet, FAJ

    2005-01-01

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the

  8. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    International Nuclear Information System (INIS)

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (14C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (3H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3

  9. Lipoxygenase- and cyclooxygenase-reaction products and incorporation into glycerolipids or radiolabeled arachidonic acid in the bovine retina

    International Nuclear Information System (INIS)

    The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina in vitro has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF2 alpha, PGE2, PGD2, 6-keto-PGF1 alpha and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 . 8.3 nM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 microM), indomethacin (1 microM) and NDGA (IC50 . 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina

  10. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells.

    Science.gov (United States)

    Aukema, Harold M; Winter, Tanja; Ravandi, Amir; Dalvi, Siddhartha; Miller, Donald W; Hatch, Grant M

    2016-05-01

    The human blood-brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2-5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function. PMID:26439837

  11. Modulation of arachidonic Acid metabolism in the rat kidney by sulforaphane: implications for regulation of blood pressure.

    Science.gov (United States)

    Elbarbry, Fawzy; Vermehren-Schmaedick, Anke; Balkowiec, Agnieszka

    2014-01-01

    Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure. PMID:24734194

  12. Senegalese sole (Solea senegalensis) metamorphic larvae are more sensitive to pseudo-albinism induced by high dietary arachidonic acid levels than post-metamorphic larvae

    OpenAIRE

    Boglino, A.; Wishkerman, A.; Darias, Maria Jose; de la Iglesia, P.; Andree, K. B.; Gisbert, E; Estevez, A

    2014-01-01

    High dietary levels of arachidonic acid (ARA) and its relative proportions with eicosapentaenoic acid (EPA), fed during early larval stages, have been associated with malpigmentation in various flatfish species. This study investigated whether the nutritional induction of pigmentary disorders at larval stages was related to a specific larval period of increased sensitivity to ARA in Senegalese sole (Solea senegalensis Kaup, 1858). Senegalese sole larvae were fed high dietary ARA levels during...

  13. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    Science.gov (United States)

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. PMID:26767978

  14. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  15. Phospholipid, arachidonate and eicosanoid signaling in schizophrenia

    Directory of Open Access Journals (Sweden)

    Messamore Erik

    2016-01-01

    Full Text Available This paper reviews the potential role of arachidonic acid in the pathophysiology of schizophrenia. We discuss how abnormal levels of arachidonic acid may arise, and how dysregulation of signaling molecules derived from it have the potential to disrupt not only dopamine signaling, but numerous other physiological processes associated with the illness. Pharmacological doses of niacin stimulate the release of arachidonic acid; and arachidonic acid-derived molecules in turn dilate blood vessels in the skin. A blunted skin flush response to niacin is reliably observed among patients with schizophrenia. The niacin response abnormality may thus serve as a biomarker to identify a physiological subtype of schizophrenia associated with defective arachidonic acid-derived signaling.

  16. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    Science.gov (United States)

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. PMID:26335394

  17. Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Taha Ameer Y

    2012-10-01

    Full Text Available Abstract Background In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2 enzymes that regulate arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-6 acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases, DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases, brain-derived neurotrophic factor (BDNF, and synaptic integrity (drebrin and synaptophysin. Lipid concentrations were measured in brains subjected to high-energy microwave fixation. Results The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4 did not change. Conclusion These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.

  18. Metabolism of arachidonic acid in 1 yr old New Zealand white (NZW) and watanabe heritable hyperlipidemic (WHHL) rabbit aortas

    International Nuclear Information System (INIS)

    This study was designed to characterize the metabolism of arachidonic acid (AA) in normal and atherosclerotic aortas. Segments of aortas were obtained from 1 yr old NZW rabbits, and WHHL rabbits, a genetic model of athero-sclerosis resembling familial hypercholesterolemia. Aortas were incubated at 370C for 15 min with 14C-AA (5 x 10-5M) during stimulation by A23187. The media was extracted using octadecylsilica columns and resolved into metabolites by reverse-phase HPLC. Prostaglandins (PGs) were identified by comigration of 14C-metabolites with standards. The monoxygenated metabolites of AA (HETEs) were resolved by normal-phase HPLC, and their structures confirmed by GC-MS. In extracts from NZW and WHHL aortas, approximately 14% and 6% of the total radioactivity was converted to PGs and HETEs, respectively. The major PG produced by NZW and WHHL aortas was 6-keto PGF/sub 1α/ with lesser amounts of PGE2. Similarly, NZW and WHHL aortas produced primarily 12- and 15-HETE with lesser amounts of 11-, 9-, 8-, and 5-HETE. There were no qualitative differences between NZW and WHHL aortas in PG and HETE production. Therefore, despite extensive atherosclerosis in aortas of WHHL rabbits, the vessels maintain the ability to synthesize PGs and HETEs

  19. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  20. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Sánchez-Calvo

    Full Text Available Nitro-arachidonic acid (NO2-AA is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II produces an increase in reactive oxygen species (ROS production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells. Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-, nitric oxide (●NO, inducible nitric oxide synthase (NOS2 expression, peroxynitrite (ONOO- and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH and ATP synthase (ATPase were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II-induced renal disease.

  1. Oxygen metabolites stimulate release of high-molecular-weight glycoconjugates by cell and organ cultures of rodent respiratory epithelium via an arachidonic acid-dependent mechanism.

    OpenAIRE

    Adler, K B; Holden-Stauffer, W J; Repine, J E

    1990-01-01

    Several common pulmonary disorders characterized by mucus hypersecretion and airway obstruction may relate to increased levels of inhaled or endogenously generated oxidants (O2 metabolites) in the respiratory tract. We found that O2 metabolites stimulated release of high-molecular-weight glycoconjugates (HMG) by respiratory epithelial cells in vitro through a mechanism involving cyclooxygenase metabolism of arachidonic acid. Noncytolytic concentrations of chemically generated O2 metabolites (...

  2. Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Science.gov (United States)

    Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  3. Positive Selection on a Regulatory Insertion–Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid

    Science.gov (United States)

    Kothapalli, Kumar S. D.; Ye, , Kaixiong; Gadgil, Maithili S.; Carlson, Susan E.; O’Brien, Kimberly O.; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S.; Joshi, Kalpana S.; Gu, Zhenglong; Keinan, Alon; Brenna, J.Thomas

    2016-01-01

    Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion–deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product–precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529

  4. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Meng YANG; Wen-xie XU; Xing-lan LI; Hui-ying XU; Jia-bin SUN; Bin MEI; Hai-feng ZHENG; Lian-hua PIAO; De-gang XING; Zhai-liu LI

    2005-01-01

    Aim: To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (IKCa) in gastric myocytes. Methods: Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. Results: Hyposmotic membrane stretch and AA increased both IK(Ca) and spontaneous transient outward currents significantly.Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in IK(Ca). The hyposmotic membrane stretch-induced increase in IK(Ca) was significantly suppressed by dimethyleicosadienoic acid (100 μmol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in IK(Ca). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in IK(Ca) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in IK(Ca); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in IK(Ca). Conclusion:Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca2+ influx, which triggers Ca2+-induced Ca2+ release and elicits activation of IK(Ca) in gastric antral circular myocytes of the guinea pig.

  5. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice.

    Science.gov (United States)

    Oliveros, L B; Videla, A M; Giménez, M S

    2004-03-01

    We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA) turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet), or the control diet containing soybean oil as fat source (10 mice per group). The fat content of each diet was 15% (w/w). Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL+VLDL)-cholesterol, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [3H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [3H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [3H]-AA uptake but induced an increase in [3H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress. PMID:15060696

  6. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid.

    Science.gov (United States)

    Kothapalli, Kumar S D; Ye, Kaixiong; Gadgil, Maithili S; Carlson, Susan E; O'Brien, Kimberly O; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S; Joshi, Kalpana S; Gu, Zhenglong; Keinan, Alon; Brenna, J Thomas

    2016-07-01

    Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529

  7. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  8. Hydroxyurea Therapy Mobilises Arachidonic Acid from Inner Cell Membrane Aminophospholipids in Patients with Homozygous Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    A. A. Daak

    2011-01-01

    Full Text Available The cytotoxic compound hydroxyurea (HU is effective therapy for sickle cell disease. However, its effect on unsaturated membrane lipids is unknown. Red cell fatty acids were investigated in HU-treated (n=19 and HU-untreated (n=17 sickle cell patients and controls (n=20. The HU-treated compared with the HU-untreated patients had lower arachidonic (AA acid level in ethanolamine, physphoglycerids (EPG (22.9±1.2   versus   24.0±1.1%,  P<0.05 serine SPG (22.13±2.2   versus   24.9±2.3%,  P<0.01 phosphoglycerides. The treated patients and controls had comparable levels of docosahexaenoic (DHA and total n-3 fatty acids in EPG and choline phosphoglycerides (CPG. In contrast, the untreated group had significantly (P<0.05 lower DHA and total n-3 compared with the controls in EPG (2.7±0.4   versus   3.2±0.6% and 4.6±0.5   versus   5.2±0.7% and CPG (0.7±0.2   versus   1.0±0.2% and 1.2±0.2   versus   1.4±0.3. HU is known to activate cytosolic phospholipase A2 and cyclooxygenase 2, and from this study, it appears to induce mobilisation of AA from the inner cell membrane EPG and SPG. Hence, eicosanoids generated from the released AA may play a role in clinical improvements which occur in HU-treated patients.

  9. Increased concentrations of arachidonic acid, prostaglandins E2, D2, and 6-oxo-F1 alpha, and histamine in human skin following UVA irradiation

    International Nuclear Information System (INIS)

    The buttock skin of clinically normal human subjects was subjected to approximately 2.5 minimal erythema doses of ultraviolet A irradiation. Deep red erythema developed during irradiation, faded slightly within the next few hours, increased to maximum intensity between 9-15 h, and decreased gradually thereafter although still persisting strongly at 48 h. Suction blister exudates were obtained at 0, 5, 9, 15, 24, and 48 h after irradiation as well as suction blister exudates from a contralateral control site and assayed for arachidonic acid, prostaglandins D2 and E2, and the prostacyclin breakdown product 6-oxo-prostaglandin F1 alpha by gas chromatography-mass spectrometry, and for histamine by radioenzyme assay. Increased concentrations of arachidonic acid and prostaglandins D2, E2, and 6-oxo-prostaglandin F1 alpha were found maximally between 5-9 h after irradiation, preceding the phase of maximal erythema. Elevations of histamine concentration occurred 9-15 h after irradiation, preceding and coinciding with the phase of maximal erythema. At 24 h, still at the height of the erythemal response, all values had returned to near control levels. Hence increased concentrations of arachidonic acid and its products from the cyclooxygenase pathway, and of histamine, accompany the early stages up to 24 h. A causal role in production of the erythema seems likely for these substances although other mediators are almost certainly involved

  10. Effect of some saturated and unsaturated fatty acids on prostaglandin biosynthesis in washed human blood platelets from (1-/sup 14/ C)arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.; Awasthi, K.K.; Lindegard, P.; Tiwari, K.P.

    1982-03-01

    The effects of some saturated (lauric, palmitic and stearic) an unsaturated (linoleic, gamma-linolenic, alpha-linolenic and oleic) fatty acids at 0.1. 0.25 and 0.5 mM concentrations on the in vitro metabolization of (1-14 C) arachidonic acid by washed human blood platelets have been studied. Effects of these fatty acids were studied with intact as well as lysed platelet preparations. With intact platelet preparations it was found that (i) all unsaturated fatty acids enhanced the biosynthesis of TxB2, PGE2, PGD2 and PGF2 alpha, (ii) unsaturated fatty acids reduced the formation of HHT and HETE with the exception of oleic acid which showed very little effect, (iii) unsaturated fatty acids reduced the formation of MDA, whereas palmitic and stearic acids increased its formation and (iv) all unsaturated fatty acids reduced the synthesis of prostaglandin endoperoxides. These results support our previous observations where effects of fatty acids were examined at higher concentrations (10). At 0.1 mM FA concentration, inconsistent results were obtained. With lysed platelet preparations all cyclooxygenase products were reduced in presence of unsaturated fatty acids, whereas HETE formation was reduced only in presence of linoleic and gamma-linolenic acids. Electron micrographs of washed platelet suspensions were obtained with untreated platelet preparations and platelet preparations treated with 0.25 and 0.5 mM linoleic acid concentrations. The results are discussed in the light of a possible soap-like effect of FA salt on platelets.

  11. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade.

    Science.gov (United States)

    Rapoport, Stanley I

    2014-06-18

    This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients. PMID

  12. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  13. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    International Nuclear Information System (INIS)

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line

  14. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations

    Science.gov (United States)

    De Souza, Eduardo O.; Lowery, Ryan P.; Wilson, Jacob M.; Sharp, Matthew H.; Mobley, Christopher Brooks; Fox, Carlton D.; Lopez, Hector L.; Shields, Kevin A.; Rauch, Jacob T.; Healy, James C.; Thompson, Richard M.; Ormes, Jacob A.; Joy, Jordan M.; Roberts, Michael D.

    2016-01-01

    Background The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Methods Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Results Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Conclusions Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation. PMID:27182886

  15. Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2

    OpenAIRE

    Mulugeta, Surafel; Suzuki, Takashi; Hernandez, Noemi Tejera; Griesser, Markus; Boeglin, William E; Schneider, Claus

    2010-01-01

    Biosynthesis of the prostaglandin endoperoxide by the cyclooxygenase (COX) enzymes is accompanied by formation of a small amount of 11R-hydroxyeicosatetraenoic acid (HETE), 15R-HETE, and 15S-HETE as by-products. Acetylation of COX-2 by aspirin abrogates prostaglandin synthesis and triggers formation of 15R-HETE as the sole product of oxygenation of arachidonic acid. Here, we investigated the formation of by-products of the transformation of 5S-HETE by native COX-2 and by aspirin-acetylated CO...

  16. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  17. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males

    Directory of Open Access Journals (Sweden)

    Greenwood Mike

    2007-11-01

    Full Text Available Abstract Background To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males. Methods In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16 or AA (AA: 1 g·day-1 AA, n = 15 while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM, leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50. Results Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression. Conclusion AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy.

  18. How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome

    Directory of Open Access Journals (Sweden)

    Roberts Matthew A

    2006-04-01

    Full Text Available Introduction Herein, we expand our previous work on the effects of long chain polyunsaturated fatty acids (LC-PUFA on the murine hepatic transcriptome using novel statistical and bioinformatic approaches for evaluating microarray data. The analyses focuses on key differences in the transcriptomic response that will influence metabolism following consumption of FUNG (rich in 20:4n6, FISH (rich in 20:5n3, 22:5n3, and 22:6n3 and COMB, the combination of the two. Results Using a variance-stabilized F-statistic, 371 probe sets (out of 13 K probe sets in the Affymetrix Mu11K chip set were changed by dietary treatment (P Conclusion Distinct transcriptomic, signaling cascades, and predicted affects on murine liver metabolism have been elucidated for 20:4n6-rich dietary oils, 22:6n3-rich oils, and a surprisingly distinct set of genes were affected by the combination of the two. Our results emphasize that the balance of dietary n6 and n3 LC-PUFA provided for infants and in nutritional and neutraceutical applications could have profoundly different affects on metabolism and cell signaling, beyond that previously recognized.

  19. Incorporation of arachidonic acid (AA) into phosphatidylcholine molecular species of the human neutrophil (PMN)

    International Nuclear Information System (INIS)

    Recently the authors proposed that the initial incorporation of AA into 1,2 diacylphosphatidylcholine (PC) was mediated by AA-CoA transferase(s) while the subsequent transfer of AA from 1,2-diacyl- into alkyl, acyl-PC was mediated by a CoA-independent transacylase. Studies here provide further evidence for such a two-step mechanism. PMNs were pulse labeled for 5 min with 3H-AA (.07μM) which was rapidly incorporated into 1,2-diacyl-PC. However, incorporation of AA into 1,2-diacyl-PC was inhibited by incubation with high levels of AA (30 μM). Similarly PMNs were pulsed labeled with 3H-AA for 5 min followed by a 120 min incubation. In these cells, 3H-AA was rapidly transferred from 1,2-diacyl-PC into alkyl, acyl-PC. In the presence of 30 μM AA redistribution of 3H-AA from diacyl to alkyl, acyl-PC was observed. This result implied that the initial incorporation of 3H-AA proceeds via a free acid intermediate while the transfer of 3H-AA from diacyl to alkyl, acyl-PC does not. Using a cell free system, 14C-AACoA was incubated for 5 min and found to be incorporated into 1,2-diacyl-PC containing 16:0, 18:0, and 18:1 at the sn-1 position. Furthermore 14C-AACoA and various 1-radyl, 2-lyso-PC were added to a PMN membrane preparation. The arachidonyl-transferase(s) preferred the 1-acyl, 2-lyso-PC substrate to 1-alkyl, 2-lyso-PC. Thus these studies provide further evidence that AA is initially incorporated into 1,2-diacyl-PC through arachidonyl-CoA transferases

  20. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Arachidonic acid cytochrome P-450 (CYP) hydroxylase 4A isoforms, including 4A1, 4A2, 4A3 and 4A8 in the rat kidney, catalyze arachidonic acid to produce 19/20-Hydroxyeicosatetraenoic acids (20-HETE), a biologically active metabolite, which plays an important role in the regulation of blood pressure. However, controversial results have been reported regarding the exact role of 20-HETE on blood pressure. In the present study, we used recombinant adenoassociated viral vector (rAAV) to deliver CYP 4A1 cDNA and antisense 4A1 cDNA into Sprague-Dawley (SD) rats and spontaneously hypertensive rats (SHR), respectively, to investigate the effects of long-term modifications of blood pressure and the potential for gene therapy of hypertension. The mean systolic pressure increased by 14.2±2.5 mm Hg in rAAV.4A1-treated SD rats and decreased by 13.7±2.2 mm Hg in rAAV.anti4A1-treated SHR rats 5 weeks after the injection compared with controls and these changes in blood pressure were maintained until the experiments ended at 24weeks. In 4A1 treated animals CYP4A was overexpressed in various tissues, but preferentially in the kidney at both mRNA and protein levels. In anti-4A1-treated SHR, CYP4A mRNA in various tissues was probed, especially in kidneys,but 4A1 protein expression was almost completely inhibited. These results suggest that arachidonic acid CYP hydroxylases contribute not only to the maintenance of normal blood pressure but also to the development of hypertension.rAAV-mediated anti4A administration strategy has the potential to be used as targeted gene therapy in human hypertension by blocking expression of CYP 4A in kidneys.

  1. FATTY ACIDS PROFILE IN A HIGH CELL DENSITY CULTURE OF ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA) EXPOSED TO HIGH PFD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong photon flux density [PFD, 2400 μEmol/(m2*s)]. Sixteen fatty acids were identified by gas chromatography showing that AA was the dominant fatty acid (33%-41%) followedby linoleic acid (17%-21%). AA content was closely investigated with respect tototal fatty acids (TFA), ash free dry weight (AFDW) of cell mass as well as total culture content. These parameters were influenced significantly in a similar manner by culture growth phase, i.e., slightly decreasing in the lag period, gradually increasing in the logarithmic phase, becoming maximal at the early stationary phase, starting to decrease at the late stationary phase, sharply dropping at the decline phase. The increase in AA per culture volume during the logarithmic phase was not only associated with the increase in AFDW but also connected with a corresponding increase in AA/TFA, TFA/AFDW as well as AA/AFDW. The sharp decrease in AA content of the culture during the decline phase was mainly due to the decrease in AA/TFA, TFA/AFDW and AA/AFDW, although AFDW declined only a smallextent. Maximal AA concentration, obtained at the early stationary phase, was 900 mg/L culture volume, and the average daily net increase of AA during 9 days logarithmic growth was 1.7 g/(m2*day). Therefore, harvesting prior to the declinephase in a batch culture, or at steady state in continuous culture mode seems best for high AA production. The latter possibility was also further confirmed bycontinuous culture with 5 gradients of harvesting rate. ``

  2. The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar)

    OpenAIRE

    Oxley, Anthony; Jolly, Cecile; Eide, Torunn; Jordal, Ann-Elise O.; Svardal, Asbjørn Martin; Olsen, Rolf Erik

    2010-01-01

    A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined ...

  3. cPLA2alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha...... dose dependently (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules...

  4. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.;

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently...... (EC50 = 86 nM) stimulated depolarization-evoked exocytosis by 450% without affecting the whole cell Ca2+ current or cytoplasmic Ca2+ levels. The stimulatory effect involved priming of secretory granules as reflected by an increase in the size of the readily releasable pool of granules from 70...

  5. Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane.

    Science.gov (United States)

    Lazrak, A; Peres, A; Giovannardi, S; Peracchia, C

    1994-09-01

    In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only. PMID:7811915

  6. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  7. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    Science.gov (United States)

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    ) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation. PMID:25633958

  8. Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami.

    Science.gov (United States)

    Cambronero, J C; Rivas, F J; Borrell, J; Guaza, C

    1992-07-01

    The present work shows that the corticotropin-releasing factor (CRF)-releasing activity of interleukin-1 (IL-1) is partially inhibited by a phospholipase A2 (mepacrine) or a cyclooxygenase (indomethacin) inhibitor, but is not affected by inhibition of the lypoxygenase pathway with norhydroguaiaretic acid. These results indicate that the metabolism of arachidonic acid plays an important role as mediator of the effects of IL-1 on CRF release. It is also shown that products of the cyclooxygenase activity such as prostaglandins can stimulate CRF secretion by a direct action on the hypothalamus. Whereas PGE2 failed to induce increases on CRF release, PGF2 alpha stimulated in a dose-dependent manner (21-340 nM), the CRF release from continuous perifused hypothalami. It is suggested that PGF2 alpha could be involved as a messenger in the hypothalamic CRF secretion induced by IL-1. PMID:1619039

  9. Short-term diets rich in arachidonic acid influence plasma phospholipid polyunsaturated fatty acid levels and prostacyclin and thromboxane production in humans.

    Science.gov (United States)

    Sinclair, A J; Mann, N J

    1996-04-01

    Two small-scale dietary intervention studies were conducted to examine the effect of diets rich in arachidonic acid (AA) and n-3 long-chain polyunsaturated fatty acids (n-3 LCP), on the in vivo production of prostacyclin (PGI2) and thromboxane (TXA2). The first was a pilot study and contained insufficient numbers for statistical analyses. It involved a 7-d intervention with 10 subjects divided into three groups, consuming diets rich in AA (500 mg/d), rich in AA and docosahexaenoic acid (DHA) (500 mg/d of each), or rich in DHA and eicosapentaenoic acid (EPA) (approximately 1500 mg/d of n-3 LCP). Plasma phospholipid (PL) levels of AA increased in all subjects in groups 1 (n = 4) and 2 (n = 3). DHA levels increased in all subjects in Groups 2 and 3 (n = 3), and EPA levels increased in all subjects from Group 3 but fell in all subjects from Group 1. The in vivo production of PGI2, measured as its urinary metabolite, was increased in two subjects in Group 1 and one subject in Group 2, with all other subjects showing little change. Urinary TXA2 metabolite increased in all subjects from Group 1. The second study was conducted in seven subjects, who consumed a low fat diet for 2 wk: the 1st wk was a vegetarian diet (no LCP) followed by a 2nd wk where the subjects were required to consume 500 g (raw weight) of kangaroo meat daily (305 mg/d AA, 325 mg/d n-3 LCP). The meat diet was associated with a marked rise in the serum PL levels of AA, EPA and docosapentaenoic acid 22:5(n-3) and with a significant increase in the urinary output of the prostacyclin metabolite, but no effect on TXA2 production, as measured by its urinary metabolite level. The results of these studies have shown that diets that contain both AA and n-3 LCP are associated with an increase in PGI2 production, without affecting TXA2 production. Further studies with purified LCP are warranted. PMID:8642442

  10. Effect of NC-1900, an active fragment analog of arginine vasopressin, and inhibitors of arachidonic acid metabolism on performance of a passive avoidance task in mice.

    Science.gov (United States)

    Sato, Tomoaki; Ishida, Takayuki; Irifune, Masahiro; Tanaka, Koh-ichi; Hirate, Kenji; Nakamura, Norifumi; Nishikawa, Takashige

    2007-03-29

    In this study, we investigated the effect of administration of inhibitors of each of the arachidonic acid metabolism pathways and the effect of co-administration of these inhibitors with NC-1900, a fragment analog of arginine vasopressin, on step-through passive avoidance task performance. All drugs were administered just after the acquisition trial in the passive avoidance task. Intracerebroventricular (i.c.v.) administration of nordihydroguaiaretic acid (NDGA, 1 and 10 microg), a phospholipase A2 (PLA2) and lipoxygenase (LOX) inhibitor, and of arachidonyl trifluoromethyl ketone (ATK, 1 and 10 microg), a specific PLA2 inhibitor caused reductions in latency on the retention trial. The i.c.v. administration of either of baicalein (0.1-10 microg), a 12-LOX inhibitor, or AA-861 (0.1-10 microg), a 5-LOX inhibitor, did not influence the latency. Intraperitoneal administration of indomethacin (20 mg/kg), a non-specific COX inhibitor, or NS-398 (10 mg/kg), a specific COX-2 inhibitor, impaired performance on the retention trial in the task, while piroxicam (20 mg/kg), a specific COX-1 inhibitor, did not. Subcutaneous administration of NC-1900 (0.1 ng/kg) ameliorated the reduction of latency caused by NDGA, ATK, indomethacin, or NS-398. These results suggested that the COX-2 pathway of arachidonic acid metabolism may be important for learning and/or memory in the passive avoidance task in mice, and that the ameliorating effect of NC-1900, in part, is due to mimicking of the effects of metabolites of the COX-2 pathway. PMID:17303115

  11. Arachidonic acid production from cane molasses by Mortierella alpina%利用甘蔗糖蜜发酵生产花生四烯酸的研究

    Institute of Scientific and Technical Information of China (English)

    彭超; 黄和; 纪晓俊; 刘欣; 聂志奎; 邓中涛

    2013-01-01

    Arachidonic acid (ARA) fermentation by Mortierella alpina was carried out using cane molasses.Several different preparation methods were investigated to evaluate the optimal process of cane molasses method.The results indicated that sulfuric acid process was the best method.The cultivation parameters were as follows:reducing sugar concentration 80 g/L,nitrogen resource concentration 6 g/L,inoculum density 20%,initial pH 6.0,and cultivation temperature 25 ℃.The resultant dry cell weight,total lipid content,arachidonic acid yield,and sugar utilization were 28.5 g/L,11.7 g/L,3.68 g/L,and 94.5%,respectively.%通过培养高山被孢霉利用糖蜜来发酵生产花生四烯酸(ARA),研究了不同甘蔗糖蜜预处理方法对ARA发酵生产的影响.研究表明:H2S04法是最利于ARA发酵生产的糖蜜预处理方法.利用预处理的甘蔗糖蜜发酵生产ARA,通过单因素实验设计,确定了最优的培养条件,包括初始还原糖80 g/L,N源6g/L,接种量20%,初始pH6.0和培养t温度25℃,在此条件下发酵,干细胞质量、油脂含量、ARA产量和糖利用率分别达到28.5 g/L、11.7g/L、3.68 g/L和94.5%.

  12. Influence of dietary arachidonic acid combined with light intensity and tank colour on pigmentation of common sole (Solea solea L.) larvae

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2010-01-01

    Supplementation of dietary arachidonic acid (ARA) is known to cause hypopigmentation in common sole larvae (Solea solea L.). This study examined a possible link between dietary ARA supplementation - light intensity and tank colour on pigment defects in common sole larvae. Larval tissue ARA and...... prostaglandin PGE(2) content increased significantly when fed Artemia enriched by a fish oil emulsion supplemented with 24% dietary ARA during premetamorphosis (until 11 days post hatch, dph) as compared to larvae fed on Artemia enriched by a fish oil based emulsion. More than 90% of all larvae in groups...... treated with the ARA supplemented emulsion during premetamorphosis showed partly or complete dorsal hypopigmentation. There were no significant effects of light intensity or tank background colour in combination with ARA on malpigmentation. Larval hypopigmentation was below 10% in the groups not treated...

  13. Arachidonate metabolism in bovine gallbladder muscle

    International Nuclear Information System (INIS)

    Incubation of (1-14C]arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of [1-14C]PGH2 was virtually identical to that of [1-14C]AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid

  14. A liquid chromatography/mass spectrometric method for simultaneous analysis of arachidonic acid and its endogenous eicosanoid metabolites prostaglandins, dihydroxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids in rat brain tissue.

    Science.gov (United States)

    Yue, Hongfei; Jansen, Susan A; Strauss, Kenneth I; Borenstein, Michael R; Barbe, Mary F; Rossi, Luella J; Murphy, Elise

    2007-02-19

    A sensitive, specific, and robust liquid chromatography/mass spectrometric (LC/MS) method was developed and validated that allows simultaneous analysis of arachidonic acid (AA) and its cyclooxygenase, cytochrome P450, and lipoxygenase pathway metabolites prostaglandins (PGs), dihydroxyeicosatrienoic acids (DiHETrEs), hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), including PGF(2alpha), PGE(2), PGD(2), PGJ(2), 14,15-DiHETrE, 11,12-DiHETrE, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 9-HETE, 8-HETE, 5-HETE, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET in rat brain tissues. Deuterium labeled PGF(2alpha)-d(4), PGD(2)-d(4), 15(S)-HETE-d(8), 14,15-EET-d(8), 11,12-EET-d(8), 8,9-EET-d(8), and AA-d(8) were used as internal standards. Solid phase extraction was used for sample preparation. A gradient LC/MS method using a C18 column and electrospray ionization source under negative ion mode was optimized for the best sensitivity and separation within 35 min. The method validation, including LC/MS instrument qualification, specificity, calibration model, accuracy, precision (without brain matrix and with brain matrix), and extraction efficiency were performed. The linear ranges of the calibration curves were 2-1000 pg for PGs, DiHETrEs, HETEs, and EETs, 10-2400 pg for PGE(2) and PGD(2), and 20-2000 ng for AA, respectively. PMID:17125954

  15. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zheng, Hao; Yu, Wei; Chai, Hongyan [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390,USA (United States); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yue, Jiang; Peng, Renxiu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  16. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    International Nuclear Information System (INIS)

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E2 (PGE2) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B4 (LTB4). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser241), phospho-Akt (Thr308), phospho-Bad (Ser136), and Bcl-xL expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE2, LTB4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr308). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in human breast cancer

  17. Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant's immune system early in life.

    Science.gov (United States)

    Richard, Caroline; Lewis, Erin D; Field, Catherine J

    2016-05-01

    Long-chain polyunsaturated fatty acids (LCPUFA), especially the balance between arachidonic (AA) and docosahexaenoic (DHA) acids are known to have important immunomodulatory roles during the postnatal period when the immune system is rapidly developing. AA and DHA are required in infant formula in many countries but are optional in North America. The rationale for adding these LCPUFA to full-term formula is based on their presence in breast milk and randomized controlled studies that suggest improved cognitive function in preterm infants, but results are more variable in full-term infants. Recently, the European Food Safety Authority has proposed, based on a lack of functional evidence, that AA is not required in infant formula for full-term infants during the first year of life but DHA should remain mandatory. The purpose of this review is to review the evidence from epidemiological and intervention studies regarding the essentiality of AA and DHA in the postnatal infant and maternal diet (breast-feeding) for the immune system development early in life. Although studies support the essentiality of DHA for the immune system development, more research is needed to rule out the essentiality of AA. Nevertheless, intervention studies have demonstrated improvement in many markers of immune function in infants fed formula supplemented with AA and DHA compared with unsupplemented formula, which appears to consistently result in beneficial health outcomes including reduction in the risk of developing allergic and atopic disease early in life. PMID:27138971

  18. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury.

    Science.gov (United States)

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  19. Melittin stimulates phosphoinositide hydrolysis and placental lactogen release: Arachidonic acid as a link between phospholipase A sub 2 and phospholipase C signal-transduction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, P.; Handwerger, S. (Univ. of Cincinnati College of Medicine, OH (USA)); Wu, Y.Q. (Duke Univ. Medical Center, Durham, NC (USA))

    1991-01-01

    Previous investigations from this laboratory have implicated both phospholipase A{sub 2} and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A{sub 2} and the relationship between phospholipase A{sub 2} activation and phosphoinositide metabolism, the authors examined hPL and ({sup 3}H)-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and ({sup 3}H)-inositol. Mepacrine inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and ({sup 3}H)-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoionsitide metabolism and hPL release is mediated by initial activation of phospholipase A{sub 2}. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A{sub 2} activation, can act as a second messenger linking the two phospholipase pathways.

  20. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death.

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  1. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  2. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death

    Science.gov (United States)

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  3. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    International Nuclear Information System (INIS)

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species

  4. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    Energy Technology Data Exchange (ETDEWEB)

    Bito, L.Z.; Klein, E.M.

    1982-05-01

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species.

  5. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  6. High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog parathyroid cells through the mediation of arachidonic acid cascade.

    Directory of Open Access Journals (Sweden)

    Yukio Okada

    Full Text Available Elevation of extracellular Ca(2+ concentration induces intracellular Ca(2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+ signaling in frog parathyroid cells and show that Ca(2+-activated Cl(- channels are activated by intracellular Ca(2+ increase through an inositol 1,4,5-trisphophate (IP(3-independent pathway. High extracellular Ca(2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50 ∼6 mM. The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+-induced and Ca(2+ dialysis-induced currents reversed at the equilibrium potential of Cl(- and were inhibited by niflumic acid (a specific blocker of Ca(2+-activated Cl(- channel. Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+-induced current, suggesting the change of intracellular Cl(- concentration in a few minutes. Extracellular Ca(2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP. All blockers for phospholipase C, diacylglycerol (DAG lipase, monoacylglycerol (MAG lipase and lipoxygenase inhibited extracellular Ca(2+-induced current. IP(3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG, arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S-HPETE dialysis increased the conductance identical to extracellular Ca(2+-induced conductance. These results indicate that high extracellular Ca(2+ raises intracellular Ca(2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(- conductance.

  7. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Banta, G.;

    2008-01-01

    metamorphosis. Initiation of metamorphosis (i.e. start of eye migration) was related to the size of larvae and not related to ARA or EPA content. Dietary EPA or DHA did not retard the advance of eye migration. More than 90 % of highly malpigmented juveniles, (i.e. "albinos") had a permanent aberrant eye......Dietary manipulations of arachidonic acid, ARA and eicosapentaenoic acid, EPA may have an influence on pigmentation in common sole larvae (Solea solea L., Linnaeus 1758) which may be related to a "pigmentation window". This is a specific period in the larval ontogeny where nutritional factors...... determine pigmentation. Malpigmentation defined as hypomelanosis was significantly related to elevated dietary and larval ARA contents, but not to EPA. The study reports evidence for a pigmentation window, as larval sensitivity to ARA or its derivatives was much higher during pre metamorphosis, than during...

  8. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    Science.gov (United States)

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  9. Immunoregulation of antitumor response; differential secretion of arachidonic acid metabolites by macrophages during stimulation ''in vitro'' with BCG and ''Corynebacterium parvum''

    International Nuclear Information System (INIS)

    The level of arachidonic acid (AA) metabolites in the supernatants of cultures peritoneal exudate cells (PEC) were studied under various conditions using BCG and ''Corynebacterium parvum'' as stimulators. The metabolite levels were analyzed by thin layer chromatography (TLC). The degree of macrophage cytotoxic/cytostatic activity was dependent on the dose and character of stimulators used and the source of macrophages. The application of micro cytotoxicity assay for the evaluation of tumor cell lysis (lung sarcoma SaL-1) ''in vitro'' revealed that peritoneal macrophages from healthy and tumor bearing BALB/c mice may affect the degree of antitumor response. In the supernatants of cultured PEC from tumor bearing mice AA level increased (by 10-fold) in comparison with PEC from healthy mice. Stimulation with BCG induced over a double level of AA in PEC isolated from tumor bearing mice non-stimulated or stimulated with ''C.parvum''. A lower level of prostaglandins (PGs) was found in the supernatants of cultured PEC isolated from healthy mice (stimulated and non-stimulated), but the highest level of PGs was observed in the supernatants of cultured PEC isolated from tumor bearing mice stimulated with BCG. The unique metabolite of AA was found only in the supernatants form non-stimulated PEC from tumor bearing mice. PEC from tumor bearing mice produced metabolites of AA which were not detected in control group. These results suggest that macrophages also play a regulatory role by secretion of AA. This process can be modified by bacterial antigens. (author). 21 refs, 7 figs

  10. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    International Nuclear Information System (INIS)

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45Ca2+ uptake into the cell monolayer, and (f) increased 86Rb+ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca2+-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca2+ gating

  11. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    Science.gov (United States)

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  12. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier. This...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from the...

  13. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    Science.gov (United States)

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  14. The application of arachidonic acid in dairy products%花生四烯酸在乳制品中的应用

    Institute of Scientific and Technical Information of China (English)

    詹现璞; 吕银德; 赵俊芳

    2009-01-01

    花生四烯酸(AA)是一种人体必需的多不饱和脂肪酸,是人体生长因子,影响婴幼儿大脑和神经发育.AA具有改善记忆力和视力、调节血脂和血糖、降低血清胆固醇、预防心血管疾病、辅助抑制肿瘤、预防癌变、神经功能调节等作用.人体自身不能合成AA,必需从食物补充才能满足机体代谢的需要,牛乳是人体补充营养物质的载体,而AA在牛乳中几乎不存在,所以在牛乳中强化AA已显得非常必要.本文介绍了AA添加带配方奶粉中的工艺流程和操作要点;AA应用于纯牛奶中的工艺流程和操作要点;开发富含AA酸牛奶的生产工艺和操作要点;开发富含AA乳饮料的工艺流程和操作要点.研究发现,AA在酸牛奶和乳饮料中的应用将是新的发展趋势,富含AA的乳制品将会给企业带来巨大的经济效益和社会效益.%Arachidonic acid(AA)is an essential polyunsaturated fatty acids for human.It is a human growth factor,which can greatly affect infant brain and neurological development.AA can improve the memory and vision,regulate blood lipids and blood sugar,reduce cholesterol,and prevent cardiovascular disease and cancer.AA can not be synthesized by human body,it can only be obtained through food.Milk contains rich nutrients except AA,so AA fortified milk has become necessary.In this paper,the formula and process for adding AA into milk has been studied.It is found that AA in the acidophilus milk and milk drinks will be the new trend of dairy products.AA enrichment products will bring enormous economic and social benefits.

  15. Engineering of a novel hybrid enzyme: an anti-inflammatory drug target with triple catalytic activities directly converting arachidonic acid into the inflammatory prostaglandin E2

    Science.gov (United States)

    Ruan, Ke-He; Cervantes, Vanessa; So, Shui-Ping

    2009-01-01

    Cyclooxygenase isoform-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are inducible enzymes that become up-regulated in inflammation and some cancers. It has been demonstrated that their coupling reaction of converting arachidonic acid (AA) into prostaglandin (PG) E2 (PGE2) is responsible for inflammation and cancers. Understanding their coupling reactions at the molecular and cellular levels is a key step toward uncovering the pathological processes in inflammation. In this paper, we describe a structure-based enzyme engineering which produced a novel hybrid enzyme that mimics the coupling reactions of the inducible COX-2 and mPGES-1 in the native ER membrane. Based on the hypothesized membrane topologies and structures, the C-terminus of COX-2 was linked to the N-terminus of mPGES-1 through a transmembrane linker to form a hybrid enzyme, COX-2-10aa-mPGES-1. The engineered hybrid enzyme expressed in HEK293 cells exhibited strong triple-catalytic functions in the continuous conversion of AA into PGG2 (catalytic-step 1), PGH2 (catalytic-step 2) and PGE2 (catalytic-step 3), a pro-inflammatory mediator. In addition, the hybrid enzyme was also able to directly convert dihomo-gamma-linolenic acid (DGLA) into PGG1, PGH1 and then PGE1 (an anti-inflammatory mediator). The hybrid enzyme retained similar Kd and Vmax values to that of the parent enzymes, suggesting that the configuration between COX-2 and mPGES-1 (through the transmembrane domain) could mimic the native conformation and membrane topologies of COX-2 and mPGES-1 in the cells. The results indicated that the quick coupling reaction between the native COX-2 and mPGES-1 (in converting AA into PGE2) occurred in a way so that both enzymes are localized near each other in a face-to-face orientation, where the COX-2 C-terminus faces the mPGES-1 N-terminus in the ER membrane. The COX-2-10aa-mPGES-1 hybrid enzyme engineering may be a novel approach in creating inflammation cell and animal models, which

  16. The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Oxley, Anthony; Jolly, Cecile; Eide, Torunn; Jordal, Ann-Elise O; Svardal, Asbjørn; Olsen, Rolf-Erik

    2010-03-01

    A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined pre- (0 h) and post- (1 h) acute stress for blood parameters and intestinal bioactive lipidic mediators of inflammation (prostaglandins). Plasma cortisol responses were greatest in the FMFO group, while 80 % PP and 70 % VO fish exhibited increased plasma chloride concentrations. The n-3:n-6 PUFA ratio in intestinal glycerophospholipids from 70 % VO groups significantly decreased in both proximal and distal regions due to elevated levels of 18 : 2n-6 and the elongation/desaturation products 20 : 2n-6 and 20 : 3n-6. Increases in n-6 PUFA were not concomitant with increased AA, although the AA:EPA ratio did vary significantly. The 40 % PP and 70 % VO diet produced the highest intestinal AA:EPA ratio proximally, which coincided with a trend in elevated levels of PGF2alpha, PGE2 and 6-keto-PGF1alpha in response to stress. PGE2 predominated over PGF2alpha and 6-keto-PGF1alpha (stable metabolite of PGI2) with comparable concentrations in both intestinal regions. Cyclo-oxygenase-2 (COX-2) mRNA expression was an order of magnitude higher in distal intestine, compared with proximal, and was significantly up-regulated following stress. Furthermore, the 80 % PP and 70 % VO diet significantly amplified proximal COX-2 induction post-stress. Results demonstrate that high replacements with plant-derived dietary ingredients can enhance COX-2 induction and synthesis of pro-inflammatory eicosanoids in the intestine of salmon in response to acute physiological stress. PMID:19943982

  17. Altered secretion of selected arachidonic acid metabolites during subclinical endometritis relative to estrous cycle stage and grade of fibrosis in mares.

    Science.gov (United States)

    Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Siemieniuch, Marta J

    2015-08-01

    Mares that fail to become pregnant after repeated breeding, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). Contact with infectious agents results in altered synthesis and secretion of inflammatory mediators, including cytokines and arachidonic acid metabolites, and disturbs endometrial functional balance. To address the hypothesis that SE affects the immune endocrine status of the equine endometrium, spontaneous secretion of prostaglandin E(2) (PGE(2)), prostaglandin F(2α) (PGF(2α)), 6-keto-PGF(1α )(a metabolite of prostacyclin I(2)), leukotriene B(4) (LTB(4)), and leukotriene C(4) (LTC(4)) was examined. In addition, secretion of these factors was examined relative to the grade of inflammation, fibrosis, and estrous cycle stage. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. On the basis of histopathologic assessment, mares were classified as suffering from first-grade SE, second-grade SE, or being healthy. The grade of fibrosis and the infiltration of endometrial tissue with polymorphonuclear leukocytes were examined by routine hematoxylin-eosin staining. In mares suffering from SE, the secretion profiles of PGE(2), 6-keto-PGF(1α), LTB(4), and LTC(4) were changed compared to mares that did not suffer from endometritis. The secretion of PGE(2) and 6-keto-PGF1α was increased, whereas that of LTB(4) and LTC(4) was decreased. Secretion of 6-keto-PGF(1α) was increased in first- and second-grade SE (P < 0.01). The concentration of PGI(2) metabolite was increased only in inflamed endometrium, independently of the inflammation grade, but was not affected by fibrosis. Prostaglandin E(2) secretion was increased in second-grade SE (P < 0.05). The secretion of LTB(4) decreased in both first- and second-grade SE (P < 0.05), whereas secretion of LTC(4) was decreased only in second-grade SE (P < 0.05). Fibrosis did not change the secretion profile of PGE(2), PGF(2α), and 6

  18. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  19. Differences in Arachidonic Acid Levels and Fatty Acid Desaturase (FADS) Gene Variants in African Americans and European Americans with Diabetes/Metabolic Syndrome

    OpenAIRE

    Sergeant, Susan; Hugenschmidt, Christina E.; Rudock, Megan E; Ziegler, Julie T.; Ivester, Priscilla; Ainsworth, Hannah C; Vaidya, Dhananjay; Case, L. Douglas; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.; Mathias, Rasika A; Chilton, Floyd H.

    2011-01-01

    Over the past 50 years, increases in dietary n-6 polyunsaturated fatty acids (PUFAs), such as linoleic acid, have been hypothesized to cause or exacerbate chronic inflammatory diseases. This study examines an individual’s innate capacity to synthesize n-6-long chain PUFAs (LC-PUFAs), with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes/metabolic syndrome. Compared to European Americans (EAm), African Americans (AfAm) exhibited marke...

  20. [Therapeutic effects of larger doses of arachidonic acid added to DHA on social impairment and its relation to alterations of polyunsaturated fatty acids in individuals with autism spectrum disorders].

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Onishi, Masako

    2011-06-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and docosahexaenoic acid (DHA) may play key roles in brain network maturation. ARA plays an important role in signal transduction related to neuronal maturation. This study aims to evaluate the efficacy of supplementing with larger doses of ARA added to DHA in a double-blind, placebo-controlled 16-week trial. To confirm findings observed in the placebo-controlled trial, an additional 16-week open-label study was further conducted. To examine the relationship between the efficacy of the supplementation regimen and alterations in PUFAs levels, we examined plasma levels of PUFAs. We used the Social Responsiveness Scale (SRS) and the Aberrant Behavior Checklist-Community (ABC) to estimate psychotic symptoms. Repeated measures ANOVA revealed that this supplementation significantly improved SRS-measured communication as well as ABC-measured social withdrawal during the placebo-controlled trial. The treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: 0.87 vs. 0.44; social withdrawal: 0.88 vs. 0.54). At the end of the placebo-controlled trial, there was a significant difference in the change in plasma ARA levels from the baseline and a trend towards a significant difference in plasma ARA levels between the two groups. The open-label study was not powered to detect significant improvements in the outcome measures or significant differences in plasma ARA levels. The present clinical trials suggest that supplementation with larger ARA doses added to DHA improves social impairment in individuals with ASD via ARA-induced upregulation of neuronal functioning. PMID:21800702

  1. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Kobayashi, Yuji

    2012-04-01

    Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction. PMID:22370992

  2. Synthesis of (9Z, 12E-, (9E, 12Z-[1-14C]-linoleic acid, (9Z, 12Z, 15E-, (9E, 12Z, 15Z-[1-14C]-linolenic acid and (5Z, 8Z, 11Z, 14E-[1-14C]-arachidonic acid

    Directory of Open Access Journals (Sweden)

    Enard, Thierry

    1996-04-01

    Full Text Available Trans polyunsaturated fatty acids are produced in vegetable oils during heat treatment (240-250 °C.ln order to study the metabolic pathway of 9c, 12t and 9t, 12c linoleic acid and 9c, 12c, 15t and 9t, 12c, 15c linolenic acid, these products were prepared labelled with carbon 14 in the carboxylic position. 5c, 8c, 11c, 14t-Arachidonic acid was also labelled on the carboxylic position with carbon 14 in order to study its physiological effects. To introduce the labelling (E-bromo precursors with a 17 carbons chain or a 19 carbon chain were needed. The different syntheses were done by elongation steps and creation of cis double bonds via highly stereospecific Wittig reactions. The radioactive carbon atom was introduced from [14C]-potassium cyanide. The final radioactive fatty acids had a specific activity greater than 50 mCi/mmol and a radioactive purity better than 99 % for linoleic and linolenic and better than 98.6 % for arachidonic acid.

  3. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    Science.gov (United States)

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization. PMID:26828067

  4. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  5. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve; Kristiansen, Karsten; Frøyland, Livar; Madsen, Lise

    2010-01-01

    eicosapentaenoic acid (EPA) for PGE(2) synthesis in a rat hepatocyte-Kupffer cell (HPC/KC) co-culture system when the cellular oxidation capacity was enhanced by exogenous l-carnitine. We demonstrate that in the absence of l-carnitine, 1) beta-oxidation rates of EPA and AA were comparable in HPCs and in KCs; 2) AA...... and not EPA was preferentially incorporated into glycerolipids; and 3) addition of EPA significantly decreased AA-dependent PGE(2) synthesis in HPCs and cyclooxygenase-2 (COX-2) expression in co-cultured HPCs/KCs. However, enhancing the cellular oxidation capacity by the addition of l-carnitine 1...... inhibition of AA-dependent PGE(2) synthesis and COX-2 expression by EPA. Taken together, the results strongly suggest that l-carnitine affects competition between AA and EPA in PG synthesis in liver cells by enhancing oxidation of EPA in HPCs. This implies that the beneficial effects of n-3 PUFA, especially...

  6. A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies

    Directory of Open Access Journals (Sweden)

    Corsetto Paola

    2010-01-01

    Full Text Available Abstract Background Omega-3 and -6 polyunsaturated fatty acids (LCPUFA, are important for good health conditions. They are present in membrane phospholipids. The ratio of total n-6:n-3 LCPUFA and arachidonic acid:eicosapentaenoic acid (AA and EPA, should not exceed 5:1. Increased intake of n-6 and decreased consumption of n-3 has resulted in much higher, ca 10/15:1 ratio in RBC fatty acids with the possible appearance of a pathological "scenario". The determination of RBC phospholipid LCPUFA contents and ratios is the method of choice for assessing fatty acid status but it is labour intensive and time consuming. Aims of the study [i] To describe and validate a rapid method, suitable for large scale population studies, for total blood fatty acid assay; [ii] to verify a possible correlation between total n-6:n-3 ratio and AA:EPA ratios in RBC phospholipids and in whole-blood total lipids, [iii] to assess usefulness of these ratio as biomarkers of LCPUFA status. Methods 1 Healthy volunteers and patients with various pathologies were recruited. 2 Fatty acid analyses by GC of methyl esters from directly derivatized whole blood total lipids and from RBC phospholipids were performed on fasting blood samples from 1432 subjects categorised according to their age, sex and any existing pathologies. AA:EPA ratio and the total n-6:n-3 ratio were determined. Results AA:EPA ratio is a more sensitive and reliable index for determining changes in total blood fatty acid and it is correlated with the ratio derived from extracted RBC phospholipids. Conclusions The described AA:EPA ratio is a simple, rapid and reliable method for determining n-3 fatty acid status.

  7. Acetyl eugenol, a component of oil of cloves (Syzygium aromaticum L.) inhibits aggregation and alters arachidonic acid metabolism in human blood platelets.

    Science.gov (United States)

    Srivastava, K C; Malhotra, N

    1991-01-01

    In continuation of our studies with the oil of cloves--a common kitchen spice and a crude drug for home medicine--we have isolated yet another active component identified as acetyl eugenol (AE); the earlier reported active component being eugenol. The isolated material (IM) was found to be a potent platelet inhibitor; IM abolished arachidonate (AA)-induced aggregation at ca. 12 microM, a concentration needed to abolish the second phase of adrenaline-induced aggregation. Chemically synthesized acetyl eugenol showed similar effects on AA- and adrenaline-induced aggregation. A dose-dependent inhibition of collagen-induced aggregation was also observed. AE did not inhibit either calcium ionophore A23187- or thrombin-induced aggregation. Studies on aggregation and ATP release were done using whole blood (WB). AA-induced aggregation in WB was abolished at 3 micrograms/ml (14.6 microM) which persisted even after doubling the concentration of AA. ATP release was inhibited. Inhibition of aggregation appeared to be mediated by a combination of two effects: reduced formation of thromboxane and increased generation of 12-lipoxygenase product (12-HPETE). These effects were observed by exposing washed platelets to (14C)AA or by stimulating AA-labelled platelets with ionophore A23187. Acetyl eugenol inhibited (14C)TxB2 formation in AA-labelled platelets on stimulation with thrombin. AE showed no effect on the incorporation of AA into platelet phospholipids. PMID:2011614

  8. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  9. Ion-beam-mutation breeding of an arachidonic acid biosynthesis microorganism and its industrial fermentation control%微生物油脂花生四烯酸产生菌离子束诱变和发酵调控

    Institute of Scientific and Technical Information of China (English)

    余增亮; 王纪; 袁成凌; 黄青; 冯慧云; 贡国鸿; 郑之明; 姚建铭

    2012-01-01

    某些微生物是高质量油脂的生产者.微生物油脂不仅有益健康,而且是生物柴油潜在的油脂来源.中国是个油脂资源缺乏的国家,开发微生物源油脂具有重要的意义.本文以产油微生物——高山被孢霉菌为出发菌,以单细胞油脂多不饱和脂肪酸产率为筛选目标,采用二步离子束诱变-筛选的策略,获得了高产菌株.研究了高产菌株的营养需求,创建了重复利用提油后的残体(菌粕)合成微生物油脂的技术.针对丝状真菌高密度发酵的传能和传质问题,研制了6×50和4×200m3大容量专用反应器组,单位发酵容积生物量达38.2g/L(发酵液)、油脂20.67g/L.其中具有重要生理活性的花生四烯酸产率最高达9.89 g/L,平均为8.97g/L.花生四烯酸提取和精炼后的残油转化为生物柴油,主要指标达到国家生物柴油标准.%Some microorganisms in nature produce high-quality oils. These oils provide nutritional benefits to human health, and can be potential sources of biodiesel. Developing microorganism-derived oils, also known as single-cell oils, is particularly important for China because of the shortage of oil resources. We have bred a high-yielding, polyunsaturated fatty acids (PUFCs)-producing strain from the fungi Mortierelia alpine by using a two-step strategy of ion-beam-mutation breeding and PUFCs productivity screening. We further studied the nutritional requirements of this new strain, and developed a technique that recycles the fungi residues, after oil extraction, into fermentation substrates. A biomass of 38.2 g/L, 20.67 g/L of which were oils, was reached in the 6x50 m3 and 4x200 m3 high-capacity reactors, designed for mycelial fungus fermentation at high-density, with optimized energy and mass transmission efficiency. Among the oils, the content of the physiologically active arachidonic acid reached 9.89 g/L at the highest level and 8.97 g/L on average. Residual oils, after arachidonic acid

  10. Maitotoxin: Effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells

    International Nuclear Information System (INIS)

    Maitotoxin (MTX) increases formation of [3H]inositol phosphates from phosphoinositides and release of [3H]arachidonic acid from phospholipids in pheochromocytoma PC12 cells. Formation of [3H]inositol phosphates is detected within 1 min of incubation even with concentrations as low as 0.3 ng/ml (90 pm) MTX, whereas release of [3H]arachidonic acid is not detected until 20 min even with concentrations as high as 1 ng/ml (300 pm) MTX. Stimulation of arachidonic acid release can be detected at 0.03 ng/ml (9 pm) MTX, whereas 0.1 ng/ml (30 pm) MTX is the threshold for detection of phosphoinositide breakdown. Organic and inorganic calcium channel blockers, except Cd2+ and a high concentration of Mn2+, have no effect on MTX-elicited phosphoinositide breakdown, whereas inorganic blockers (e.g., Co2+, Mn2+, Cd2+), but not organic blockers (nifedipine, verapamil, diltiazem), inhibit MTX-stimulated arachidonic acid release. All calcium channel blockers, however, inhibited MTX-elicited influx of 45Ca2+ and the MTX-elicited increase in internal Ca2+ measured with fura-2 was markedly reduced by nifedipine. MTX-elicited phosphoinositide breakdown and arachidonic acid release are abolished or reduced, respectively, in the absence of extracellular calcium plus chelating agent. The calcium ionophore A23187 has little or no effect alone but, in combination with MTX, A23187 inhibits MTX-elicited phosphoinositide breakdown and enhances arachidonic acid release, the latter even in the absence of extracellular calcium. The results suggest that different sites and/or mechanisms are involved in stimulation of calcium influx, breakdown of phosphoinositides, and release of arachidonic acid by MTX

  11. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease.

    Science.gov (United States)

    Coquenlorge, Sabrina; Van Landeghem, Laurianne; Jaulin, Julie; Cenac, Nicolas; Vergnolle, Nathalie; Duchalais, Emilie; Neunlist, Michel; Rolli-Derkinderen, Malvyne

    2016-01-01

    In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn's Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-β, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11βPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11βPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11βPGF2α dependent pathway. PMID:27140063

  12. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn’s disease

    Science.gov (United States)

    Coquenlorge, Sabrina; Van Landeghem, Laurianne; Jaulin, Julie; Cenac, Nicolas; Vergnolle, Nathalie; Duchalais, Emilie; Neunlist, Michel; Rolli-Derkinderen, Malvyne

    2016-01-01

    In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn’s Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-β, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11βPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11βPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11βPGF2α dependent pathway. PMID:27140063

  13. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila

    Directory of Open Access Journals (Sweden)

    Ryuichi Yamada

    2015-02-01

    Full Text Available Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

  14. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  15. Dexamethasone blocks arachidonate biosynthesis in isolated hepatocytes and cultured hepatoma cells

    International Nuclear Information System (INIS)

    The effect of dexamethasone on the incorporation and conversion of [1-14C]eicosa-8,11,14-trienoic acid to arachidonic acid in isolated hepatocytes and in hepatoma tissue culture (HTC) cells was studied. In both kinds of cells, no changes in the exogenous acid incorporation were found when the hormone was added to the incubation media at 0.1 or 0.2 mM concentration, while the biosynthesis of arachidonic acid was significantly depressed. The effect on the biosynthesis was faster in isolated normal liver cells (60 min) than in tumoral cells (120 min) and reached an inhibition of ca. 50% after 3 hr of treatment. The addition of cycloheximide (10(-6) M) also caused a marked decrease in the biosynthesis of this polyunsaturated fatty acid, but when dexamethasone was added to the media simultaneously with cycloheximide, a synergistic action was not observed. The results obtained show that protein synthesis would be involved in the modulation of the biosynthesis of arachidonic acid by glucocorticoids. The changes in the delta 5 desaturation of labeled 20:3 omega 6 to arachidonic acid correlated with changes in the fatty acid composition in isolated cells

  16. Intracellular Actions of Group IIA Secreted Phospholipase A2 and Group IVA Cytosolic Phospholipase A2 Contribute to Arachidonic Acid Release and Prostaglandin Production in Rat Gastric Mucosal Cells and Transfected Human Embryonic Kidney Cells*

    OpenAIRE

    Ni, Zhanglin; Okeley, Nicole M.; Smart, Brian P.; Gelb, Michael H.

    2006-01-01

    Gastric epithelial cells liberate prostaglandin E2 in response to cytokines as part of the process of healing of gastric lesions. Treatment of the rat gastric epithelial cell line RGM1 with transforming growth factor-α and interleukin-1β leads to synergistic release of arachidonate and production of prostaglandin E2. Results with highly specific and potent phospholipase A2 inhibitors and with small interfering RNA show that cytosolic phospholipase A2-α and group IIA secreted phospholipase A2 ...

  17. Involvement of arachidonate metabolism in neurotensin-induced prolactin release in vitro

    International Nuclear Information System (INIS)

    Neurotensin increased in a concentration-dependent manner the level of hypophyseal [3H]arachidonic acid in vitro as well as prolactin release from hemipituitary glands. The effect of 1 microM neurotensin on arachidonate release was already present at 2.5 min, maximal at 5, and disappeared after a 10-min incubation. Neurotensin analogues produced an enhancement of hypophyseal arachidonate similar to their relative potencies in other cellular systems, whereas other peptides (somatostatin and vasoactive intestinal peptide) were devoid of any effect on the concentration of the fatty acid in the pituitary. Seventy micromoles RHC 80267, a rather selective inhibitor of diacylglycerol lipase, completely prevented the neurotensin-stimulated prolactin release and decreased arachidonate release both in basal or in neurotensin-induced conditions. Similar results were obtained with 50 microM quinacrine, a phospholipase A2 inhibitor. To clarify whether arachidonate released by neurotensin requires a further metabolism through specific pathways to stimulate prolactin release, the authors used indomethacin and BW 755c, two blockers of cyclooxygenase and lipoxygenase pathways. Thirty micromoles indomethacin, a dose active to inhibit cyclooxygenase, did not affect unesterified arachidonate levels either in basal or in neurotensin-induced conditions; moreover, the drug did not modify basal prolactin release but slightly potentiated the stimulatory effect of neurotensin on the release of the hormone. On the other hand, 250 microM BW 755c, an inhibitor of both cyclooxygenase and lipoxygenase pathways, significantly inhibited both basal and neurotensin-stimulated prolactin release and further potentiated the increase of the fatty acid concentrations produced by 1 microM neurotensin

  18. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders; Fehrmann, Rasmus

    2011-01-01

    were studied and compared with the catalytic activity for the selective catalytic reduction (SCR) of NO with ammonia. The SCR activities and acidity values of heteropoly acid promoted catalysts were found to be much higher than unpromoted catalysts. The influence of potassium poisons on the SCR...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might be...... suitable for biomass fired power plant SCR applications....

  19. Effect of arachidonic acid supplementation and cyclooxygenase/lipoxygenase inhibition on the development of early bovine embryos Influência do ácido araquidónico e da inibição da ciclo-oxigenase ou lipo-oxigenase no desenvolvimento inicial de embriões bovinos

    Directory of Open Access Journals (Sweden)

    Rosa Maria Pereira

    2006-04-01

    Full Text Available The effect of arachidonic acid (AA cascade on bovine embryo development in a granulosa cell co-culture system was studied. Arachidonic acid (100 µM was supplemented from 1-cell to 8-16 cell block stage (first three days of co-culture and from 1-cell to hatching. Specific cyclooxygenase (indomethacin, 28 µM and lipoxygenase (nordihydroguaiaretic acid - NDGA, 28 µM inhibitors were used from 1-cell to 8-16 cell block stage with AA. Embryo development was assessed by cleavage, day 7-day 8 and hatched embryo rates and by measuring growth rates through development stages found in days 7-10 of culture (day 0 = insemination day. Embryo quality was scored at day 8. A 6.5-10.4% increase on cleavage rate after AA supplementation was found. This AA supplementation from 1-cell to hatching delayed embryo growth rate beyond day 7 and a reduction on hatching rate was detected. When AA supplementation was restricted to the first three days of co-culture those negative effects were overcome. Also, indomethacin and NDGA prevented the positive effect of AA and induced a significant reduction on cleavage, respectively. NDGA further decreased day 7 embryo rate and quality. Results suggest that AA has a two-phase action on bovine embryos, promoting early development and impairing embryo growth from day 7 onwards and hatching rates. Both cyclooxygenase and lipoxygenase were found to be important pathways to promote cleavage.Estudou-se a influência da cascata do ácido araquidónico (AA no desenvolvimento de embriões bovinos produzidos in vitro em co-cultura com células da granulosa. Os embriões foram suplementados com AA (100 µM desde o estádio de 1 célula até 8-16 células (primeiros três dias de co-cultura ou até a eclosão. Introduziram-se inibidores específicos da ciclo-oxigenase (indometacina, 28 µM e da lipo-oxigenase (ácido nordihidroguaiarético - NDGA, 28 µM, juntamente com o ácido araquidónico, desde o estádio de 1 célula até 8-16 c

  20. Growth hormone releasing factor (GRF) increases free arachidonate levels in the pituitary: a role for lipoxygenase products

    International Nuclear Information System (INIS)

    GRF, a specific stimulator of GH release, increased in a concentration- and time-dependent manner pituitary (3H)-arachidonate levels in vitro. This effect was antagonized by 100 nM somatostatin. Exogenous arachidonate also stimulated GH release in vitro. Quinacrine, a phospholipase A2 inhibitor, reduced both basal and GRF-stimulated free arachidonate levels as well as GH release. The cyclooxygenase inhibitor indomethacin was ineffective, while BW755c, which also inhibits the lipoxygenase pathway, produced a further increase in the levels of the fatty acid stimulated by GRF and potently reduced GH release. These results provide additional evidence for the involvement of arachidonate metabolism in the hormone-releasing effect of GRF at the somatotroph. 14 references, 1 figure, 2 tables

  1. Arachidonate 15-lipoxygenase type B knockdown leads to reduced lipid accumulation and inflammation in atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Lisa U Magnusson

    Full Text Available Inflammation in the vascular wall is important for development of atherosclerosis. We have shown previously that arachidonate 15-lipoxygenase type B (ALOX15B is more highly expressed in human atherosclerotic lesions than in healthy arteries. This enzyme oxidizes fatty acids to substances that promote local inflammation and is expressed in lipid-loaded macrophages (foam cells present in the atherosclerotic lesions. Here, we investigated the role of ALOX15B in foam cell formation in human primary macrophages and found that silencing of human ALOX15B decreased cellular lipid accumulation as well as proinflammatory cytokine secretion from macrophages. To investigate the role of ALOX15B in promoting the development of atherosclerosis in vivo, we used lentiviral shRNA silencing and bone marrow transplantation to knockdown mouse Alox15b gene expression in LDL-receptor-deficient (Ldlr(-/- mice. Knockdown of mouse Alox15b in vivo decreased plaque lipid content and markers of inflammation. In summary, we have shown that ALOX15B influences progression of atherosclerosis, indicating that this enzyme has an active proatherogenic role.

  2. Oxidation of esterified arachidonate by rat liver microsomes

    International Nuclear Information System (INIS)

    The authors have previously demonstrated a relationship between phospholipid arachidonate in liver microsomes and malondialdehyde (MDA) formation during lipid peroxidation. In this study arachidonic acid (U-14C) was incorporated into rat liver microsomes and NADPH-supported peroxidation was carried out at 370C for 15 minutes. The microsomes were pelleted by centrifugation and the labeled products in the supernatant were isolated by a solid phase method. Pellets were hydrolyzed with phospholipase A2 and extracted with diethyl ether and the products from both fractions were separated by reverse phase HPLC. The results show that (1) oxidation occurs in all of the major phospholipids but that phosphatidylethanolamine is the most susceptible; (2) a linear correlation exists between MDA formation and supernatant radioactivity; (3) several different polar products are found in both the supernatant and the hydrolyzed pellet but that the ratios of product peaks in HPLC do not change during the peroxidation, indicating no secondary metabolism or propagation; and (4) cytochrome P-450 is not involved in the peroxidative reactions since no oxidation occurs in the absence of Fe3+ and since product formation is unaffected in the presence of carbon monoxide

  3. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation

    OpenAIRE

    Basselin, Mireille; Kim, Hyung-Wook; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Robert C. Murphy; Farias, Santiago E.

    2010-01-01

    Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a l...

  4. Trifluoromethanesulfonic acid promoted Dakin-West reaction: An efficient and convenient synthesis of -acetamido ketones

    Indian Academy of Sciences (India)

    Ravindra M Kumbhare; Madabhushi Sridhar

    2012-03-01

    Trifluoromethanesulfonic acid promoted efficient condensation of an aromatic aldehyde with an acetophenone and acetonitrile in the presence of acetylchloride as an activator producing -acetamido carbonyl compounds is described.

  5. p63 promotes cell survival through fatty acid synthase.

    Directory of Open Access Journals (Sweden)

    Venkata Sabbisetti

    Full Text Available There is increasing evidence that p63, and specifically DeltaNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN, a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or DeltaN-specific p63 isoforms in squamous cell carcinoma (SCC9 or immortalized prostate epithelial (iPrEC cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.

  6. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    Science.gov (United States)

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis. PMID:27273788

  7. Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation

    DEFF Research Database (Denmark)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf; Huang, Yunjie; Cleemann, Lars Nilausen; Bjerrum, Niels; Xing, Wei

    2012-01-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium–cobalt (Pd–Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid...

  8. SEM ANALYSIS OF THE ACID-ETCHED ENAMEL PATTERNS PROMOTED BY ACIDIC MONOMERS AND PHOSPHORIC ACIDS

    OpenAIRE

    Mirela Sanae Shinohara; Marcelo Tavares de Oliveira; Vinícius Di Hipólito; Marcelo Giannini; Mario Fernando de Goes

    2006-01-01

    ABSTRACT OBJECTIVE: Although self-etching bonding systems (SES) are indicated to prepare dental enamel for bonding, concerns have been expressed regarding their effectiveness. The aim of this study was to analyze the etching pattern (EP) of nine SES in comparison with 35% and 34% phosphoric acid etchants (FA) on intact (IN) and ground (GR) enamel surface. MATERIALS AND METHODS: Twenty-two human third molars were sectioned in mesial-distal and buccal-lingual directions, and four dental fragmen...

  9. Acid adaptation promotes survival of Salmonella spp. in cheese.

    OpenAIRE

    Leyer, G J; Johnson, E A

    1992-01-01

    Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fer...

  10. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  11. Arachidonate 12-lipoxygenases with reference to their selective inhibitors

    International Nuclear Information System (INIS)

    Lipoxygenase is a dioxygenase recognizing a 1-cis,4-cis-pentadiene of polyunsaturated fatty acids. The enzyme oxygenates various carbon atoms of arachidonic acid as a substrate and produces 5-, 8-, 12- or 15-hydroperoxy eicosatetraenoic acid with a conjugated diene chromophore. The enzyme is referred to as 5-, 8-, 12- or 15-lipoxygenase, respectively. Earlier we found two isoforms of 12-lipoxygenase, leukocyte- and platelet-type enzymes, which were distinguished by substrate specificity, catalytic activity, primary structure, gene intron size, and antigenicity. Recently, the epidermis-type enzyme was found as the third isoform. Attempts have been made to find isozyme-specific inhibitors of 12-lipoxygenase, and earlier we found hinokitol, a tropolone, as a potent inhibitor selective for the platelet-type 12-lipoxygenase. More recently, we tested various catechins of tea leaves and found that (-)-geotechnical gallate was a potent and selective inhibitor of human platelet 12-lipoxygenase with an IC5 of 0.14 μM. The compound was much less active with 12-lipoxygenase of leukocyte-type, 15-, 8-, and 5-lipoxygenases, and cyclo oxygenases-1 and -2

  12. Mechanisms of action of okadaic acid class tumor promoters on mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Hirota; Suganuma, Masami; Yoshizawa, Seiji; Nishiwaki, Shinji; Winyar, Boonsong (National Cancer Center Research Inst., Tokyo (Japan)); Sugimura, Takashi (National Cancer Center, Tokyo (Japan))

    1991-06-01

    Okadaic acid, dinophysistoxin-1 (35-methylokadaic acid), and calyculin A are the okadaic acid class of non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, which do not bind to the phorbol ester receptors in cell membranes or activate protein kinase C in vitro. They have potent tumor-promoting activities on mouse skin, as strong as TPA-type tumor promoters, such as TPA, teleocidin, and aplysiatoxin. DNA samples isolated from tumors induced by dimethylbenz(a)anthracene and each of the okadaic acid class tumor promoters had the same mutation at the second nucleotide of codon 61 (CAA to CTA) in the c-H-ras gene. Okadaic acid receptors, protein phosphatases 1 and 2A, are present in the particulate as well as cytosolic fractions of various mouse tissues. The apparent activation of protein kinases by the okadaic acid class tumor promoters, after their incubation with {sup 32}P-ATP, protein kinases, and protein phosphatases, was observed. This activation was caused by inhibition of protein phosphatases 1 and 2A by the okadaic acid class tumor promoters. Treatment of primary human fibroblasts and human keratinocytes with the okadaic acid class tumor promoters induced the hyperphosphorylation of a 60-k-Da protein in nuclear and cytosolic fractions, due to the inhibition of protein phosphatases. The 60-kDa protein is a proteolytic fragment of nucleolin, a major nonhistone protein and is designated as N-60. The mechanisms of action of the okadaic acid class tumor promoters are discussed with emphasis on the inhibition of protein phosphatase activity.

  13. Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids

    OpenAIRE

    Jerzy Z. Nowak

    2010-01-01

    Inflammation is a physiological defense reaction of living tissues to injury or infection. An array of mediators, including those derived from omega-6 (ω6) polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA) e.g. prostaglandins and leukotrienes, promote the inflammatory response. Acute inflammation has several programmed fates, including complete resolution or progression to chronic inflammation, scarring, and eventual loss of tissue function. Studies on AA-derived proinflammat...

  14. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid.

    Directory of Open Access Journals (Sweden)

    Giulia Somenzi

    Full Text Available BACKGROUND: Retinoic acid (RA, the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs, exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591. The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER, the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P, the sphingolipid with prosurvival activity. METHODOLOGY/PRINCIPAL FINDINGS: We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling. CONCLUSIONS/SIGNIFICANCE: In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct

  15. Effect of Ultrasonic Frequency on Lactic Acid Fermentation Promotion by Ultrasonic Irradiation

    Science.gov (United States)

    Shimada, Tadayuki; Ohdaira, Etsuzo; Masuzawa, Nobuyoshi

    2004-05-01

    The authors have been researching the promotion of lactic acid fermentation by ultrasonic irradiation. In the past research, it was proven that ultrasonic irradiation is effective in the process of fermentation, and the production of yoghurt and kefir was promoted. In this study, the effect of the ultrasonic frequency in this fermentation process was examined. In the frequency range of this study, it was found that the action of fermentation promotion was exponentially proportionate to the irradiated ultrasonic frequency.

  16. Omega-6 Fatty Acids

    Science.gov (United States)

    ... Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other ... ACIDS are as follows:Improving mental development or growth in infants. Adding arachidonic acid (an omega-6 ...

  17. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity

    Directory of Open Access Journals (Sweden)

    Zhang Jianing

    2010-03-01

    Full Text Available Abstract Background fatty acids are considered to be effective components to promote wound healing and Lucilia sericata larvae are applied clinically to treat intractable wounds. We aimed to investigat the effect of fatty acid extracts from dried Lucilia sericata larvae on murine cutaneuous wound healing as well as angiogenesis. Results On day 7 and 10 after murine acute excision wounds creation, the percent wound contraction of fatty acid extracts group was higher than that of vaseline group. On day 3, 7 and 10 after wounds creation, the wound healing quality of fatty acid extracts group was better than that of vaseline group on terms of granulation formation and collagen organization. On day 3 after wounds creation, the micro vessel density and vascular endothelial growth factor expression of fatty acid extracts group were higher than that of vaseline group. Component analysis of the fatty acid extracts by gas chromatography-mass spectrometry showed there were 10 kinds of fatty acids in total and the ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid (PUFA was: 20.57%:60.32%:19.11%. Conclusions Fatty acid extracts from dried Lucilia sericata larvae, four fifths of which are unsaturated fatty acids, can promote murine cutaneous wound healing probably resulting from the powerful angiogenic activity of the extracts.

  18. p-Nitrobenzoic acid promoted synthesis of 1,5-benzodiazepine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Varala, Ravi; Enugala, Ramu; Adapa, Srinivas R. [Indian Institute of Chemical Technology, Hyderabad (India)]. E-mail: rvarala_iict@yahoo.co.in

    2007-03-15

    p-Nitrobenzoic acid was found to be the versatile Bronsted organic acid promoter among the carboxylic acids tested for the preparation of 1,5-benzodiazepine derivatives from a wide range of substituted o-phenylenediamines and ketones. The corresponding products were obtained in good isolated yields (62-92%) under mild conditions using acetonitrile as solvent at ambient temperature. Further, the reagent could be easily recovered and reused. (author00.

  19. Microwave Irradiation Promoted Synthesis of Aryloxy Acetic Acids

    Institute of Scientific and Technical Information of China (English)

    LIN Min; ZHOU Jin-mei; XIA Hai-ping; YANG Rui-feng; LIN Chen

    2004-01-01

    Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%-97.4%) were obtained when the molar ratio of the reactants was n(ArOH) : n(NaOH): n(ClCH2CO2H) =1: 2.5: 1.2 with microwave irradiation power of 640 W for 65-85 s.

  20. Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism

    International Nuclear Information System (INIS)

    Arachidonate metabolites are important regulators of human breast cancer cells. Production of bioactive lipids are frequently initiated by the enzyme phospholipase A2 which releases arachidonic acid (AA) that is rapidly metabolized by cyclooxygenases (COX) or lipoxygenases (LO) to other highly potent lipids. In this study we screened a number of inhibitors which blocked specific pathways of AA metabolism for their antiproliferative activity on MCF-7 wild type and MCF-7 ADR drug resistant breast cancer cells. The toxicity of these inhibitors was further tested on human bone marrow cell proliferation. Inhibitors of LO pathways (specifically the 5-LO pathway) were most effective in blocking proliferation. Inhibitors of platelet activating factor, a byproduct of arachidonate release, were also effective antiproliferative agents. Curcumin, an inhibitor of both COX and LO pathways of eicosanoid metabolism, was 12-fold more effective in blocking proliferation of the MCF-7 ADRs cells compared to MCF-7 wild type (WT) cells. These inhibitors that effectively blocked the proliferation of breast cancer cells showed varying degrees of toxicity to cultures of human bone marrow cells. We observed greater toxicity to bone marrow cells with inhibitors that interfere with the utilization of AA in contrast to those which block utilization of its downstream metabolites. MK-591, MK-886, PCA-4248, and AA-861 blocked proliferation of breast cancer cells but showed no toxicity to bone marrow cells. These inhibitors were effective in blocking the proliferation of breast cancer cells and may be potentially useful in human breast cancer therapy

  1. Hydroxycitric acid does not promote inflammation or liver toxicity

    OpenAIRE

    Clouatre, Dallas L.; Preuss, Harry G.

    2013-01-01

    Garcinia cambogia extract (GC) with its active component consisting of hydroxycitric acid (HCA) is widely utilized for weight loss. Various HCA salts are available, including calcium, magnesium, potassium and mixtures of these. Experimentally, these salts exhibit different properties with some, but not all, improving glucose tolerance and blood pressure. Recently, obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The active arm re...

  2. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    Science.gov (United States)

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications. PMID:27399667

  3. Polyunsaturated fatty acids and inflammation

    OpenAIRE

    Calder Philip C

    2004-01-01

    The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites) and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and ...

  4. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Wistuba; Carsten Gnewuch; Gerhard Liebisch; Gerd Schmitz; Thomas Langmann

    2007-01-01

    AIM: To study the effect of the toxic secondary bile acid lithocholic acid (LCA) on the expression of fibroblast growth factor 19 (FGF19) in intestinal cells and to characterize the pregnane-X-receptor (PXR) response of the FGF19 promoter region.METHODS: The intestinal cell line LS174T was stimulated with various concentrations of chenodeoxycholic acid and lithocholic acid for several time points.FGF19 mRNA levels were determined with quantitative realtime RT-PCR. FGF19 deletion promoter constructs were generated and the LCA response was analzyed in reporter assays. Co-transfections with PXR and RXR were carried out to study FGF19 regulation by these factors.RESULTS: LCA and CDCA strongly up-regulate FGF19 mRNA expression in LS174T cells in a time and dose dependent manner. Using reporter gene assays with several deletion constructs we found that the LCA responsive element in the human FGF19 promoter maps to the proximal regulatory region containing two potential binding sites for PXR. Overexpression of PXR and its dimerization partner retinoid X receptor (RXR) and stimulation with LCA or the potent PXR ligand rifampicin leads to a significant induction of FGF19 promoter activity in intestinal cells.CONCLUSION: LCA induced feedback inhibition of bile acid synthesis in the liver is likely to be regulated by PXR inducing intestinal FGF19 expression.

  5. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2

    OpenAIRE

    Liu, Runping; Zhao, Renping; Zhou, Xiqiao; Liang, Xiuyin; Campbell, Deanna JW; Zhang, Xiaoxuan; ZHANG, LUYONG; Shi, Ruihua; Wang, Guangji; Pandak, William M.; Sirica, Alphonse E.; Hylemon, Phillip B.; Zhou, Huiping

    2014-01-01

    Cholangiocarcinoma (CCA) is an often fatal primary malignancy of the intra- and extrahepatic biliary tract that is commonly associated with chronic cholestasis and significantly elevated levels of primary and conjugated bile acids (CBAs), which are correlated with bile duct obstruction (BDO). BDO has also recently been shown to promote CCA progression. However, whereas there is increasing evidence linking chronic cholestasis and abnormal bile acid profiles to CCA development and progression, ...

  6. Relative efficacy of organic acids and antibiotics as growth promoters in broiler chicken

    Directory of Open Access Journals (Sweden)

    Vikrant Laxman Bagal

    2016-04-01

    Full Text Available Aim: The objective of this study was to evaluate the effect of organic acids as replacer to antibiotics in their various combinations on feed consumption, body weight gain, and feed conversion ratio (FCR in broiler chicks during different phases of growth. Materials and Methods: Antibiotics and organic acids were incorporated into boiler feed in different combinations to form 10 maize based test diets (T1 to T10. Each test diet was offered to four replicates of 10 birds each constituting a total of 400 birds kept for 45 days. Results: Significantly better effect in terms of body weight gain from supplementation of 1% citric acid and 1% citric acid along with antibiotic was observed throughout the entire study, whereas the effect of tartaric acid supplementation was similar to control group. Citric acid (1% along with antibiotic supplementation showed highest feed intake during the experimental period. Significantly better FCR was observed in groups supplemented with 1% citric acid and 1% citric acid along with antibiotic followed by antibiotic along with organic acids supplemented group. Conclusion: Growth performance of birds in terms of body weight, body weight gain, and FCR improved significantly in 1% citric acid which was significantly higher than antibiotic supplemented group. 1% citric acid can effectively replace antibiotic growth promoter (chlortetracycline without affecting growth performance of birds.

  7. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids

    OpenAIRE

    Khalifeh-Soltani, Amin; McKleroy, William; Sakuma, Stephen; Cheung, Yuk Yin; Tharp, Kevin; Qiu, Yifu; Turner, Scott M; Chawla, Ajay; Stahl, Andreas; Atabai, Kamran

    2014-01-01

    Fatty acids are integral mediators of energy storage, membrane formation and cell signaling. The pathways that orchestrate uptake of fatty acids remain incompletely understood. Expression of the integrin ligand Mfge8 is increased in human obesity and in mice on a high-fat diet, but its role in obesity is unknown. We show here that Mfge8 promotes the absorption of dietary triglycerides and the cellular uptake of fatty acid and that Mfge8-deficient (Mfge8−/−) mice are protected from diet-induce...

  8. p-Toluenesulphonic acid-promoted, I2-catalysed sulphenylation of pyrazolones with aryl sulphonyl hydrazides.

    Science.gov (United States)

    Zhao, Xia; Zhang, Lipeng; Li, Tianjiao; Liu, Guiyan; Wang, Haomeng; Lu, Kui

    2014-11-01

    Aryl pyrazolone thioethers were synthesized via the I2-catalysed cross-coupling of pyrazolones with aryl sulphonyl hydrazides in the presence of p-toluenesulphonic acid, which has been proposed to promote the reaction by facilitating the decomposition of sulphonyl hydrazides. PMID:25225659

  9. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Indian Academy of Sciences (India)

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  10. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  11. Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation

    OpenAIRE

    Combet, E; Paterson, S; Iijima, K; Winter, J; Mullen, W.; Crozier, A.; Preston, T; McColl, K E L

    2007-01-01

    Background: The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre-carcinogen present in saliva, can be converted to nitrosating species and N-nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. Aims: To assess the effect of lipid and ascorbic acid on the nitrosative chemistry under conditions simulating the human proximal stomach. M...

  12. Promotion

    OpenAIRE

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed.

  13. Platinum-nickel catalyst: The effect of promoters in cis-oleic acid adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Universidad Nacional del Sur-IFISUR-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Martirena, M.; Ulacco, S. [Universidad Tecnologica Nacional, Facultad Regional Bahia Blanca, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Brizuela, G. [Universidad Nacional del Sur-IFISUR-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer C=O adsorption is more favored than C=C adsorption on the PtNi(1 1 1) surface. Black-Right-Pointing-Pointer The adsorption of the olefinic bond is strengthened by K, Mg, Co, B or Pd promoters. Black-Right-Pointing-Pointer The energy of the system and the C=C/surface distances decrease using promoters. Black-Right-Pointing-Pointer The molecule-surface interaction is favored by electron density exchange. Black-Right-Pointing-Pointer Co promoter shows better adsorption properties than K, Mg, B or Pd. - Abstract: The study of the cis-oleic acid adsorption, on clean and promoted (K, Mg, Co, B or Pd) PtNi(1 1 1) surface was performed by quatum chemical calculations. The oleic acid adsorption on PtNi(1 1 1) surface shows a weak molecule-surface interaction. No preferential site for C=C adsorption is computed and only the C=O adsorption is favored on the clean PtNi(1 1 1) surface. The adsorption properties of the PtNi(1 1 1) are improved by promoters. The stability of the system is increased and the C=C/surface distances are reduced when promoters are present. Among the considered promoters, Co has the best performance in terms of system stability. The lowest C p orbital substantially interacts with Pt and Co s, p and d orbitals. The change electron density of metal centers, enhance the C=C adsorption being the Pt-C interaction the more favored. After adsorption, the strength of the C=C, Pt-Pt and Pt-Co bonds decrease while a molecule-surface bond is formed.

  14. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats.

    Science.gov (United States)

    Ding, Long; Yang, Yu; Qu, Yikun; Yang, Ting; Wang, Kaifeng; Liu, Weixin; Xia, Weibin

    2015-06-01

    Bile acids, which are synthesized from cholesterol in the hepatocytes of the liver, are amphipathic molecules with a steroid backbone. Studies have shown that bile acid exhibits important effects on liver regeneration. However, the mechanism underlying these effects remains unclear. The aim of the present study was to investigate the effect of bile acid and the farnesoid X receptor (FXR) on hepatic regeneration and lipid metabolism. Rats were fed with 0.2% bile acid or glucose for 7 days and then subjected to a 50 or 70% hepatectomy. Hepatic regeneration rate, serum and liver levels of bile acid, and expression of FXR and Caveolin‑1, were detected at 24, 48 or 72 h following hepatectomy. The expression of proliferating cell nuclear antigen (PCNA) in the liver was measured using immunohistochemistry at the end of the study. Hepatocytes isolated from rats were treated with bile acid, glucose, FXR agonist and FXR antagonist, separately or in combination. Lipid metabolism, the expression of members of the FXR signaling pathway and energy metabolism‑related factors were measured using ELISA kits or western blotting. Bile acid significantly increased the hepatic regeneration rate and the expression of FXR, Caveolin‑1 and PCNA. Levels of total cholesterol and high density lipoprotein were increased in bile acid‑ or FXR agonist‑treated hepatocytes in vitro. Levels of triglyceride, low density lipoprotein and free fatty acid were decreased. In addition, bile acid and FXR agonists increased the expression of bile salt export pump and small heterodimer partner, and downregulated the expression of apical sodium‑dependent bile acid transporter, Na+/taurocholate cotransporting polypeptide and cholesterol 7α‑hydroxylase. These results suggested that physiological concentrations of bile acid may promote liver regeneration via FXR signaling pathways, and may be associated with energy metabolism. PMID:25634785

  15. Enhancement of mononuclear procoagulant activity by platelet 12-hydroxyeicosatetraenoic acid.

    OpenAIRE

    Lorenzet, R; Niemetz, J; Marcus, A J; Broekman, M J

    1986-01-01

    Platelets induce generation of procoagulant tissue factor activity (TFa) by mononuclear leukocytes, and also enhance the TFa induced by endotoxin. Our present investigation demonstrated that arachidonic acid, which by itself had no effect on mononuclear TFa, greatly enhanced platelet-induced TFa. The effect was concentration dependent for both platelets and arachidonate (1-20 microM); other fatty acids tested were inactive. The enhancing effect of arachidonate was more pronounced if platelets...

  16. A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains.

    OpenAIRE

    Lipkin, S. M.; Nelson, C. A.; Glass, C K; Rosenfeld, M G

    1992-01-01

    Retinoic acid receptors are ligand-dependent transcription factors that stimulate gene transcription from promoters containing retinoic acid or thyroid hormone response elements. We describe a high-affinity binding site from the rat oxytocin promoter that mediates negative transcriptional regulation by the retinoic acid receptor. To examine whether strong, constitutive transactivation domains would be capable of stimulating gene transcription when bound to this DNA binding site that normally ...

  17. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    Science.gov (United States)

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. PMID:25055748

  18. Indoleacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification.

    OpenAIRE

    Gaffney, T D; da Costa e Silva, O.; Yamada, T.; Kosuge, T

    1990-01-01

    Expression of the indoleacetic acid (iaa) operon, which contributes to the virulence of the phytopathogenic bacterium Pseudomonas syringae subsp. savastanoi, was monitored by using broad-host-range lacZ reporter gene plasmids. A combination of translational (gene) fusions and transcriptional (operon) fusions of P. syringae subsp. savastanoi sequences to lacZ allowed localization of the iaa operon promoter. RNA recovered from P. syringae subsp. savastanoi strains was mapped with iaa operon-spe...

  19. The Lewis Acid-promoted Novel Cyclization Reactions Towards N-adn O-Containing Heterocycles

    Institute of Scientific and Technical Information of China (English)

    Shoko; Yamazaki

    2007-01-01

    1 Results Nitrogen and oxygen-containing heterocyclic systems are important structures in organic chemistry because of their presence in many biologically active compounds.In this work,a new zinc and indium-promoted conjugate addition-cyclization reaction to afford nitrogen and oxygen-containing five-membered heterocycles has been developed.A Lewis acid-catalyzed cyclization of an ethenetricarboxylate derivative with propargylamines or propargyl alcohols to give methylenepyrrolidines and methylenetetrah...

  20. Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress

    Directory of Open Access Journals (Sweden)

    In-Jung Lee

    2012-09-01

    Full Text Available We isolated and examined two endophytic fungi for their potential to secrete phytohormones viz. gibberellins (GAs and indoleacetic acid (IAA and mitigate abiotic stresses like salinity and drought. The endophytic fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted the shoot and allied growth attributes of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice. Analysis of the pure cultures of these endophytic fungi showed biologically active GAs (GA1, GA3, GA4 and GA7 in various quantities. The cultures of P. glomerata and Penicillium sp. also contained IAA. The culture application and endophytic-association with host-cucumber plants significantly increased the plant biomass and related growth parameters under sodium chloride and polyethylene glycol induced salinity and drought stress as compared to control plants. The endophytic symbiosis resulted in significantly higher assimilation of essential nutrients like potassium, calcium and magnesium as compared to control plants during salinity stress. Endophytic-association reduced the sodium toxicity and promoted the host-benefit ratio in cucumber plants as compared to non-inoculated control plants. The symbiotic-association mitigated stress by compromising the activities of reduced glutathione, catalase, peroxidase and polyphenol oxidase. Under stress conditions, the endophyte-infection significantly modulated stress through down-regulated abscisic acid, altered jasmonic acid, and elevated salicylic acid contents as compared to control. In conclusion, the two endophytes significantly reprogrammed the growth of host plants during stress conditions.

  1. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    Science.gov (United States)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  2. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  3. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Aristolochic acid induced autophagy in vivo and in vitro. • Autophagy induced by aristolochic acid could promote cell apoptosis. • Inhibition autophagy by silencing ATG5 could prevent cell from programmed cell death induced by aristolochic acid. - Abstract: Studies have found that ingestion of aristolochic acid (AA) causes nephropathy first by inducing renal tubular cell apoptosis acutely. It is currently unknown whether crosstalk between autophagy and apoptosis orchestrates the fate of tubular cells in acute AA nephropathy. We tested this hypothesis by acute administration of AA in vivo and in vitro. Autophagy was first induced in vivo through enhancing Atg5 and LC3-II expressions in kidneys of AA-I-treated rats. Punctuate LC3-GFP dots and autophagosomes were detected in this acute AA-I nephropathy rat model. We subsequently utilized normal rat renal proximal tubular epithelial cells (NRK52E) to study the autophagy mechanisms involved in acute AA-I nephropathy, with 100 μM AA-I (median lethal dose 50) given in vitro. Cleavage of poly (ADP-ribose) polymerase (PARP), nuclear condensation, and fragmentation were demonstrated in the AA-I-treated NRK52E cells. Furthermore, AA-I induced Atg5 and LC3-II expressions and punctuated LC3-GFP dots. Autophagy flux by using lysosome inhibitor E64 induced the accumulation of LC3-II, which further promoted apoptosis through enhancing PARP cleavage. Inhibition of autophagy by 3-methyl adenine also led to the attenuation of AA-I-induced apoptosis, manifesting as decreased PARP cleavage, nuclei condensation, and decreased the number of cells negative for acridine orange/ethidium bromide staining. In addition, knockdown of Atg5 by short hairpin RNA attenuated LC3-II expression and PARP cleavage in NRK52E cells. Taken together, these findings suggested that the acute phase of AA-I-induced nephropathy is associated with induction of Atg5-dependent autophagy, which promotes renal tubular cell

  4. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder

    2010-03-01

    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  5. Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.

    Science.gov (United States)

    Troise, Antonio Dario; Vitiello, Daniele; Tsang, Catherine; Fiore, Alberto

    2016-06-15

    The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl)-l-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid. PMID:27240727

  6. Myristic Acid (MA) Promotes Adipogenic Gene Expression and the Differentiation of Porcine Intramuscular Adipocyte Precursor Cells

    Institute of Scientific and Technical Information of China (English)

    LU Nai-sheng; ZHANG Yong-liang; JIANG Qing-yan; SHU Gang; XIE Qiu-ping; ZHU Xiao-tong; GAO Ping; ZHOU Gui-xuan; WANG Song-bo; WANG Li-na; XI Qian-yun

    2014-01-01

    Intramuscular fat (IMF) content is considered to be a key factor that affects the marbling, tenderness, juiciness and lfavor of pork. To investigate the effects of myristic acid (MA) on the differentiation of porcine intramuscular adipocytes, cells were isolated from longissimus dorsi muscle (LDM) and treated with 0, 10, 50 or 100μmol L-1 MA. The results showed that MA signiifcantly promotes the differentiation of intramuscular adipocytes in a dose-dependent manner. MA also led to a parallel increase in the expression of peroxisome proliferator activated receptor-γ(PPARγ) and adipose-related genes, such as glucose transporter 1 (GLUT1), lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4/aP2), fatty acid translocase (FAT), acetyl-CoA carboxylaseα(ACCα), adipose triglyceride lipase (ATGL) and fatty acid synthase (FASN). However, no signiifcant effects of MA were observed on the expression of CAAT enhancer binding protein-α(C/EBPα) or hormone sensitive lipase (HSL). The expression of pyruvate dehydrogenase kinase 4 (PDK4) was increased by MA during the early stages of differentiation (day 1-3). In addition, MA also increased the absolute content of C14 (P<0.001) and saturated fatty acids (SFA) (P<0.05) to varying degrees, but no effects were observed on other fatty acids. These results suggest that MA might be able to enhance the IMF content of pork and increase the accumulation of myristic and myristoleic acid in muscle, which might have beneifcial implications for human health.

  7. Gamma-aminobutyric acid promotes human hepatocellular carcinoma growth through overexpressed gamma-aminobutyric acid A receptor α3 subunit

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the expression pattern of gamma-aminobutyric acid A (GABAA) receptors in hepatocellular carcinoma (HCC) and indicate the relationship among gamma-aminobutyric acid (GABA), gamrna-aminobutyric acid A receptor α3 subunit (GABRA3) and HCC.METHODS: HCC cell line Chang, HepG2, normal liver cell line L-02 and 8 samples of HCC tissues and paired non-cancerous tissues were analyzed with semiquantitative polymerase chain reaction (PCR) for the expression of GABAA receptors. HepG2 cells were treated with gamma-aminobutyric acid (GABA) at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell doubling time test, colon formation assay, cell cycle analysis and tumor planted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRA3 in HepG2. oliferating abilities of these cells treated with or without GABA were analyzed.RESULTS: We identified the overexpression of GABRA3 in HCC cells. Knockdown of endogenous GABRA3 expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We determined the in vitro and in vivo effect of GABA in the proliferation of GABRA3-positive cell lines, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRA3-expressing HepG2 cells, but not GABRA3-knockdown HepG2 cells. This means that GABA stimulates HepG2 cell growth through GABRA3. CONCLUSION: GABA and GABRA3 play important roles in HCC development and progression and can be a promising molecular target for the development of new diagnostic and therapeutic strategies for HCC.

  8. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Science.gov (United States)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  9. Industry experience in promoting weekly iron-folic acid supplementation in the Philippines.

    Science.gov (United States)

    Garcia, Josel; Datol-Barrett, Eva; Dizon, Maynilad

    2005-12-01

    After participating in a pilot project under a government-industry partnership to promote the adoption of weekly iron-folic acid supplementation among women of reproductive age in the Philippines in 1998, United Laboratories (UNILAB), the Philippines' largest private pharmaceutical company, decided in April 2002 to launch a weekly iron-folic acid supplement for pregnant and non-pregnant women under the brand name Femina. The business objective set for the Femina brand was to build the category of preventive iron-folic acid supplements in line with the Philippine Department of Health's advocacy on weekly supplementation as an alternate to daily dosing to reduce the prevalence of anemia in the country. The brand was supported with an integrated mix of traditional advertising media with complementary direct-to-consumer educational programs that aimed to create awareness of iron-deficiency anemia, its causes and effects, and the role of weekly intake of iron-folic acid in preventing the condition. Aggressive marketing support for 1 year was successful in creating awareness among the target women. Significant lessons derived from consumers identified opportunity areas that can be further addressed in developing advocacy programs on weekly iron supplementation implemented on a nationwide scale in the future. PMID:16466091

  10. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...

  11. Melittin stimulates fatty acid release through non-phospholipase-mediated mechanisms and interacts with the dopamine transporter and other membrane spanning proteins

    OpenAIRE

    Keith, Dove J; Eshleman, Amy J; Janowsky, Aaron

    2010-01-01

    Phospholipase A2 releases the fatty acid arachidonic acid from membrane phospholipids. We used the purported phospholipase A2 stimulator, melittin, to examine the effects of endogenous arachidonic acid signaling on dopamine transporter function and trafficking. In HEK-293 cells stably transfected with the dopamine transporter, melittin reduced uptake of [3H]dopamine. Additionally, measurements of fatty acid content demonstrated a melittin-induced release of membrane-incorporated arachidonic a...

  12. Rheb-TOR signaling promotes protein synthesis, but not glucose or amino acid import, in Drosophila

    Directory of Open Access Journals (Sweden)

    de la Cruz Aida

    2007-03-01

    Full Text Available Abstract Background The Ras-related GTPase, Rheb, regulates the growth of animal cells. Genetic and biochemical tests place Rheb upstream of the target of rapamycin (TOR protein kinase, and downstream of the tuberous sclerosis complex (TSC1/TSC2 and the insulin-signaling pathway. TOR activity is regulated by nutritional cues, suggesting that Rheb might either control, or respond to, nutrient availability. Results We show that Rheb and TOR do not promote the import of glucose, bulk amino acids, or arginine in Drosophila S2 cells, but that both gene products are important regulators of ribosome biogenesis, protein synthesis, and cell size. S2 cell size, protein synthesis, and glucose import were largely insensitive to manipulations of insulin signaling components, suggesting that cellular energy levels and TOR activity can be maintained through insulin/PI3K-independent mechanisms in S2 cell culture. In vivo in Drosophila larvae, however, we found that insulin signaling can regulate protein synthesis, and thus may affect TOR activity. Conclusion Rheb-TOR signaling controls S2 cell growth by promoting ribosome production and protein synthesis, but apparently not by direct effects on the import of amino acids or glucose. The effect of insulin signaling upon TOR activity varies according to cellular type and context.

  13. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  14. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Sujin; Lee, Kyusung; Bae, Sang-Jeong; Hahn, Ji-Sook

    2015-03-01

    A wide range of promoters with different strengths and regulatory mechanisms are valuable tools in metabolic engineering and synthetic biology. While there are many constitutive promoters available, the number of inducible promoters is still limited for pathway engineering in Saccharomyces cerevisiae. Here, we constructed aromatic amino-acid-inducible promoters based on the binding sites of Aro80 transcription factor, which is involved in the catabolism of aromatic amino acids through transcriptional activation of ARO9 and ARO10 genes in response to aromatic amino acids. A dynamic range of tryptophan-inducible promoter strengths can be obtained by modulating the number of Aro80 binding sites, plasmid copy numbers, and tryptophan concentrations. Using low and high copy number plasmid vectors and different tryptophan concentrations, a 29-fold range of fluorescence intensities of enhanced green fluorescent protein (EGFP) reporter could be achieved from a synthetic U4C ARO9 promoter, which is composed of four repeats of Aro80 binding half site (CCG) and ARO9 core promoter element. The U4C ARO9 promoter was applied to express alsS and alsD genes from Bacillus subtilis for acetoin production in S. cerevisiae, resulting in a gradual increase in acetoin titers depending on tryptophan concentrations. Furthermore, we demonstrated that γ-aminobutyrate (GABA)-inducible UGA4 promoter, regulated by Uga3, can also be used in metabolic engineering as a dose-dependent inducible promoter. The wide range of controllable expression levels provided by these tryptophan- and GABA-inducible promoters might contribute to fine-tuning gene expression levels and timing for the optimization of pathways in metabolic engineering. PMID:25573467

  15. Antisera production to detect indoleacetic acid in cultures of plant-growth promoting bacteria

    International Nuclear Information System (INIS)

    Rabbit polyclonal antisera against indoleacetic acid (IAA) bound to nitrocellulose membrane were obtained, which exhibited a high titer and specificity. The dot immunobinding technique with colloidal gold was used to detect auxin production by several strains belonging to Gluconacetobacter, Herbaspirillum, Azospirillum, Pseudomonas, Burkholderia and Bacillus genera, using culture supernatants as antigens. Moreover, auxin production was quantified by the Salkowski's method to corroborate the previous results. It was found that that all the studied microorganisms produce IAA and the feasibility of using these antisera to detect the metabolite was confirmed. Taking into account the potentialities of plant growth promoting bacteria as biofertilizers, the use of these antisera for a rapid and easy detection of IAA in bacteria associated with important crops is thus recommended.

  16. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice.

    Science.gov (United States)

    Bode, Niklas; Grebe, Alena; Kerksiek, Anja; Lütjohann, Dieter; Werner, Nikos; Nickenig, Georg; Latz, Eicke; Zimmer, Sebastian

    2016-09-01

    Atherosclerosis is a chronic inflammatory disease driven primarily by a continuous retention of cholesterol within the subendothelial space where it precipitates to form cholesterol crystals (CC). These CC trigger a complex inflammatory response through activation of the NLRP3 inflammasome and promote lesion development. Here we examined whether increasing cholesterol solubility with ursodeoxycholic acid (UDCA) affects vascular CC formation and ultimately atherosclerotic lesion development. UDCA mediated intracellular CC dissolution in macrophages and reduced IL-1β production. In ApoE(-/-) mice, UDCA treatment not only impaired atherosclerotic plaque development but also mediated regression of established vascular lesions. Importantly, mice treated with UDCA had decreased CC-depositions in atherosclerotic plaques compared to controls. Together, our data demonstrate that UDCA impaired CC and NLRP3 dependent inflammation by increasing cholesterol solubility and diminished atherosclerosis in mice. PMID:27416761

  17. Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance

    Indian Academy of Sciences (India)

    Giulia Bernardini; Federico Chellini; Bruno Frediani; Adriano Spreafico; Annalisa Santucci

    2015-03-01

    In the present study, we aimed to demonstrate the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes seeded on a polygtlycolic acid (PGA) 3D scaffold. Gene expression and biochemical analysis were carried out to assess the improved quality of our PGA-based cartilage constructs supplemented with PRPr. We observed that the use of PRPr as cell cultures supplementation to PGA-chondrocyte constructs may promote chondrocyte differentiation, and thus may contribute to maintaining the chondrogenic phenotype longer than conventional supplementation by increasing high levels of important chondrogenic markers (e.g. sox9, aggrecan and type II collagen), without induction of type I collagen. Moreover, our constructs were analysed for the secretion and deposition of important ECM molecules (sGAG, type II collagen, etc.). Our results indicate that PRPr supplementation may synergize with PGA-based scaffolds to stimulate human articular chondrocyte differentiation, maturation and phenotypic maintenance.

  18. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    International Nuclear Information System (INIS)

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  19. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Science.gov (United States)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  20. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting.

    Science.gov (United States)

    Wang, Cheng; Tu, Qiaoping; Dong, Da; Strong, P J; Wang, Hailong; Sun, Bin; Wu, Weixiang

    2014-09-15

    Despite the many benefits of biochar amendment in composting, little information is available about its effects on organic matter humification during the process. In this study the analytical results for two in-vessel composting piles were compared, one amended with biochar (VPSB, pig manure+sawdust+biochar) and the other serving as a control (VPS, pig manure+sawdust). During the 74 days of humification, the increased content of humic acid carbon in VPSB is 16.9% more than that of the control. Spectroscopic analyses show a higher O-alkyl C/alkyl C ratio and aromaticity in VPSB at the thermophilic phase, and peak intensities of fulvic-like and humic-like substances were achieved faster in VPSB than VPS. These data inferred that biochar amendment promoted the neo-synthesis of humic acids and intensified the humification of pig manure. Increase in carboxylic groups of biochar as a result of oxidation reactions and sorption of humic substances may correspond to the faster formation of aromatic polymers in biochar-supplemented composting pile. The results suggest that biochar amendment might be a potential method to enhance humification during pig manure composting. PMID:25194558

  1. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Institute of Scientific and Technical Information of China (English)

    Qun Zhao; Zhi-yue Li; Ze-peng Zhang; Zhou-yun Mo; Shi-jie Chen; Si-yu Xiang; Qing-shan Zhang; Min Xue

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro-trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site;their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro-spheres at 300-µm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta-tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve ifbers were observed and dis-tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  2. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK.

    Directory of Open Access Journals (Sweden)

    Yucun Niu

    Full Text Available Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW decreased dose-dependently FFA and triglycerides (TG levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK phosphorylation and its downstream proteins involved in fatty acid translocase (CD36 and carnitine palmitoyltransferase 1 (CPT1, but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2 expression and acetyl-CoA carboxylase (ACC activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.

  3. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    Science.gov (United States)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  4. Characterization of arachidonate 5-lipoxygenase and leukotriene A4 synthetase from RBL-1 cells

    International Nuclear Information System (INIS)

    5-lipoxygenase (LO) and leukotriene (LT) A4 synthetase from RBL-1 high speed (105,000 x g for 60 min) supernatants were partially purified by protein-high performance liquid chromatography (HPLC) and characterized in detail. The partially purified preparation contained only 5-LO and LTA4 synthetase and was isolated from 12-LO, peroxidase and LTA4 hydrolase activities. Reaction products were separated by reversed phase HPLC and quantitated by absorption spectrophotometry and radiochemical detection. The enzyme preparation rapidly converted [14C]arachidonate to [14C]5-hydroperoxyeicosatetraenoic acid (HPETE) and [14C]5,12-dihydroperoxyeicosatetraenoic acids (diHETEs). The 5,12-diHETEs were primarily non-enzymatic breakdown products of LTA4 (e.g., 6-trans-LTB4 and 6-trans-12-epi-LTB4). Both the 5-LO and LTA4 synthetase activities were Ca2+- and ATP-dependent. For both enzyme activities, the CA2+ stimulation required the presence of ATP. The fatty acid hydroperoxides, 5-,12-, and 15-HPETE, both stimulated ([ 3 μM]) 5-LO and LTA4 synthetase activities. The rapid isolation and subsequent characterization of 5-LO and LTA4 synthetase provide the bases for the further understanding of the role of the LO pathway in biological processes

  5. TdaA Regulates Tropodithietic Acid Synthesis by Binding to the tdaC Promoter Region ▿ †

    OpenAIRE

    Geng, Haifeng; Belas, Robert

    2011-01-01

    Silicibacter sp. TM1040, a member of the marine Roseobacter clade, produces the antibiotic and quorum signaling molecule tropodithietic acid (TDA), encoded by tdaABCDEF. Here, we showed that an LysR-type transcriptional regulator, TdaA, is a positive regulator of tdaCDE gene expression and binds to the tdaC promoter region.

  6. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption.

    Science.gov (United States)

    Li, Mu; Su, Yinglong; Chen, Yinguang; Wan, Rui; Zheng, Xiong; Liu, Kun

    2016-06-01

    The heterotrophic denitrification requires the participation of electrons which are derived from direct electron donor (usually nicotinamide adenine dinucleotide (NADH)), and the electrons are transferred via electron transport system in denitrifiers and then consumed by denitrifying enzymes. Despite the reported electron transfer ability of humic substances (HS), the influences of fulvic acid (FA), an ubiquitous major component of HS, on promoting NADH generation, electron transfer, and consumption in denitrification process have never been reported. The presence of FA, compared with the control, was found not only significantly improved the total nitrogen (TN) removal efficiency (99.9 % versus 74.8 %) but remarkably reduced the nitrite accumulation (0.2 against 43.8 mg/L) and N2O emission (0.003 against 0.240 mg nitrogen/mg TN removed). The mechanisms study showed that FA increased the metabolism of carbon source via glycolysis and tricarboxylic acid (TCA) cycle pathways to produce more available NADH. FA also facilitated the electron transfer activities from NADH to denitrifying enzymes via complex I and complex III in electron transport system, which improved the reduction of nitrate and accelerated the transformations of nitrite and N2O, and lower nitrite and N2O accumulations were therefore observed. In addition, the consumption of electrons in denitrification was enhanced due to FA stimulating the synthesis and the catalytic activity of key denitrifying enzymes, especially nitrite reductase and N2O reductase. It will provide an important new insight into the potential effect of FA on microbial denitrification metabolism process and even nitrogen cycle in nature niches. PMID:26894403

  7. Amino acid deprivation induces CREBZF/Zhangfei expression via an AARE-like element in the promoter.

    Science.gov (United States)

    Zhang, Yani; Jin, Yaping; Williams, Tegan A; Burtenshaw, Sally M; Martyn, Amanda C; Lu, Rui

    2010-01-15

    CREBZF (also called ZF or Zhangfei) is a basic region-leucine zipper transcription factor that has been implicated in the herpesvirus infection cycle and related cellular processes. Since ATF4 is known to play a key role in cellular responses to various ER stresses as well as amino acid deprivation, we sought to examine the potential involvement of CREBZF in the amino acid response (AAR). We found that the CREBZF protein was induced by amino acid deprivation in the canine MDCK cells. We subsequently cloned a canine CREBZF promoter region (-1767bp to +1bp) that responds to amino acid limitation. Using deletion mapping and site-directed mutagenesis, we identified a 9-bp sequence 5'-ATTCACTCA-3' in the promoter (-1227 to -1219), deletion of which resulted in a complete loss of inducibility by amino acid deprivation. This sequence is similar to the known amino acid response elements (AAREs) found in other AAR-inducible genes, such as CHOP (C/EBP homologous protein, also known as GADD153). These results suggest that CREBZF may be an amino acid stress sensor. Considering the AARE-like sequence found in CREBZF and other similarities between CREBZF and CHOP, we postulate that CREBZF and CHOP may be two sensors that regulate different yet related signaling pathways governing the AAR. PMID:20026304

  8. Identification and characterization of the retinoic acid response elements in the human RIG1 gene promoter

    International Nuclear Information System (INIS)

    The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the at

  9. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods

    Directory of Open Access Journals (Sweden)

    Lilis Nuraida

    2015-06-01

    Full Text Available Traditional Indonesian fermented foods can be used as potential sources of probiotics as they commonly contain lactic acid bacteria (LAB, including species of Lactobacillus, Pediococcus, Enterococcus, Weisella and Leuconostoc. The occurrence of LAB in Indonesian fermented foods is not only limited to lactic fermented foods but is also present in foods with molds as the main starter culture. This review aims to describe the significance of Indonesian fermented foods as potential sources of probiotics and the potential of LAB from fermented foods to promote beneficial health effects. A number of in vitro studies have been carried out to assess the probiotic potential of LAB from fermented foods. Many LAB strains have met the basic requirements for them to be considered as probiotics and possess some functional properties contributing to positive health impacts. Hypocholesterolemic effects, stimulation of the immune system, and prevention of diarrhea by some probiotic strains have been shown in animal studies. However, human studies on the efficacy of probiotic strains are still limited. Two strains isolated from dadih, a fermented buffalo milk, are examples of promising probiotic strains that have gone through human studies. The potential probiotic properties of LAB in Indonesian fermented foods still need to be fully investigated to assess their impact on human health. The studies should also consider factors that may influence the functional properties of probiotics, both in foods and in humans.

  10. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Jung-Ha Park

    Full Text Available The life span of intestinal epithelial cells (IECs is short (3-5 days, and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen-free (SPF mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs.

  11. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids.

    Science.gov (United States)

    Park, Jung-Ha; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Kitamura, Yasuaki; Imada, Shinya; Usui, Yutaro; Hatano, Naoya; Shinohara, Masakazu; Saito, Yasuyuki; Murata, Yoji; Matozaki, Takashi

    2016-01-01

    The life span of intestinal epithelial cells (IECs) is short (3-5 days), and its regulation is thought to be important for homeostasis of the intestinal epithelium. We have now investigated the role of commensal bacteria in regulation of IEC turnover in the small intestine. The proliferative activity of IECs in intestinal crypts as well as the migration of these cells along the crypt-villus axis were markedly attenuated both in germ-free mice and in specific pathogen-free (SPF) mice treated with a mixture of antibiotics, with antibiotics selective for Gram-positive bacteria being most effective in this regard. Oral administration of chloroform-treated feces of SPF mice to germ-free mice resulted in a marked increase in IEC turnover, suggesting that spore-forming Gram-positive bacteria contribute to this effect. Oral administration of short-chain fatty acids (SCFAs) as bacterial fermentation products also restored the turnover of IECs in antibiotic-treated SPF mice as well as promoted the development of intestinal organoids in vitro. Antibiotic treatment reduced the phosphorylation levels of ERK, ribosomal protein S6, and STAT3 in IECs of SPF mice. Our results thus suggest that Gram-positive commensal bacteria are a major determinant of IEC turnover, and that their stimulatory effect is mediated by SCFAs. PMID:27232601

  12. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Directory of Open Access Journals (Sweden)

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  13. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  14. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ying [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Sun, Gui-yuan, E-mail: sungy2004@sohu.com [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Liu, Rui-tian, E-mail: rtliu@tsinghua.edu.cn [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China)

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  15. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Science.gov (United States)

    Wichmann, Heidi; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2016-01-01

    The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP), produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA), a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2). Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells. PMID:27164116

  16. Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity

    International Nuclear Information System (INIS)

    Smaller, soluble oligomers of β-amyloid (Aβ) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of Aβ oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against Aβ neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on Aβ42 aggregation and neurotoxicity in vitro. EA promoted Aβ fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited Aβ aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in Aβ42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic Aβ aggregates to render them harmless, our MTT results showed that EA could significantly reduce Aβ42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  17. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  18. Alpha-Lipoic acid counteracts the promoted oxidative DNA damage in the liver of septic rats

    International Nuclear Information System (INIS)

    Viral, parasitic infections and chemical carcinogens are among the etiological factors of liver cancer. It seems important to study the initiating and promoting agents to evaluate the etiology and prevention of such life threatening disease. Intestine-derived bacteria product, lipopolysaccharide (LPS), is mainly detoxified by the liver. It has shown to induce a state of oxidative DNA damage is not fully investigated. Increased oxidative DNA damage and rate of cell proliferation may initiate or even promote cancer. In the present work, the capability of LPS to induce 8-hydroxydeoxyguanosine (8-HDG), a specific DNA adduct for oxidative DNA damage, in rat livers is tested. Furthermore, a possible protective effect of alpha lipoic acid (ALA) is also assessed. Investigated parameters are liver contents of glutathione (GSH), lipid peroxides (MDA), nitric oxide (NO) and 8-HDG in the liver-extracted DNA. Serum activities of ALT, AST and GGT as liver-function markers as well as IL2 are assessed. Moreover, liver histology is examined. LPS was given doses of 1, 3, 5, 7 and 9 mg/kg once i.p. while, the rat mortality was examined 24 hours later. ALA was given in doses of 50, 100 and 200 mg/kg once i.p. 3h before LPS is found to be 5mg/kg. LPS increased the level of 8-HDG, MDA and NO in the liver. It also induced acute liver necrosis and inflammatory cell infiltration as shown in liver-histopathology and in the significant increase in the activities of ALT, AST and GGT. LPS increased the serum level of IL2 as well. The dose 200mg/kg of ALA revealed a 100% protection against LPS-induced lethality. It also, prevented the LPS-induced increase in 8-HDG in liver extracted DNA, the liver contents of MDA and NO. ALA also rescued the LPS-induced GSH depletion. It corrected the liver function as shown by the prevention of increases in the activity of ALT, AST and GGT with a remarkable improvement in the liver histology. Moreover, it prevented the increase in serum level of IL2. These

  19. Roles of Salicylic Acid-responsive Cis-acting Elements and W-boxes in Salicylic Acid Induction of VCH3 Promoter in Transgenic Tobaccos

    Institute of Scientific and Technical Information of China (English)

    Hai-Yan LI; Wei WEI; Yu LI

    2006-01-01

    A salicylic acid (SA)-inducible VCH3 promoter was recently identified from grapevine (Vitis amurensis) that contains two inverse SA-responsive cis-acting elements and four W-boxes. To further demonstrate the roles of these elements, four fragments with lengths from -1187, -892, -589, -276 to +7 bp were fused with the β-glucuronidase (GUS) reporter gene and transferred to Nicotiana tobacum,together with another four VCH3 promoter fragments with mutation in the two inverse SA-responsive elements. The functions of each promoter fragment were examined by analysis of GUS activity in the transgenic tobacco root treated with SA. Enhanced GUS activity was shown in the roots of transgenic tobaccos with the VCH3 (-1187)-GUS construct containing two SA-responsive cis-acting elements and four W-boxes. However, GUS activity directed by the VCH3 (-892)-GUS construct, containing one SA cisacting element and four W-boxes, was reduced by up to 35% compared with that in tobaccos transformed with the VCH3 (-1187)-GUS construct, indicating that the SA cis-acting element plays an important role in SA induction of the VCH3 promoter. Neither the m2VCH3 (-1187)-GUS nor the m VCH3 (-892)-GUSconstruct, with mutation on the SA-responsive elements, abolished the expression of GUS activity, demonstrating that the W-boxes in the VCH3 promoter are also involved in SA induction. Histochemical analysis of GUS activity directed by each of the eight VCH3 promoter fragments showed that GUS was expressed specifically in vascular tissue. It was concluded that both the SA-responsive cis-acting elements and the Wboxes are important for the SA induction of the VCH3 promoter. This promoter might have a potential use in plant genetic engineering.

  20. Heteropoly acid promoted V2O5/TiO2 catalysts for NO abatement with ammonia in alkali containing flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2011-01-01

    catalytic reduction (SCR) of NO with ammonia. The SCR activity of heteropoly acid promoted catalysts was found to be much higher than for unpromoted catalysts. The stability of heteropoly acid promoted catalysts is dependent on calcination temperature and there is a gradual decrease in SCR activity and...... acidity with increase in calcination temperatures. Furthermore, the heteropoly acid promoted V2O5/TiO2 catalysts showed excellent alkali deactivation resistance and might therefore be alternative deNOx catalysts in biomass fired power plants.......V2O5/TiO2 and heteropoly acid promoted V2O5/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD and NH3-TPD. The influence of the calcination temperature from 400 to 700 1C on crystallinity and acidic properties was studied and compared with the activity for the selective...

  1. Promotion of radiation peroxidation in models of lipid membranes by caesium and rubidium counter-ions: micellar linolenic acids

    International Nuclear Information System (INIS)

    Caesium and rubidium counter-ions increase peroxidation in irradiated micelles of linoleic (18 : 2) and linolenic (18 :3) acids. The effect was specific to Cs+ and Rb+ in the alkali metal series. The effect was independent of the salts used (Cl-, NO3-, Cl04-) and, therefore, independent of the chaotropic nature, and reactivity with hydroxyl radicals of Cl-, NO3- and ClO4-. The promotion of peroxidation by Cs+ and Rb+ is interpreted in terms of their effect on fatty acid micelle structure. The dependence of radiation peroxidation on lipid structure in the micelles may be significant for studies of peroxidation in highly structured cell membranes. (author)

  2. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Baochang, E-mail: sunbc@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Shao, Lei, E-mail: shaol@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  3. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Bell, Alexis T. (LBNL); (UCB)

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH4 and increase the selectivity toward C5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becoming insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and

  4. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics.

    Science.gov (United States)

    Gatto, Francesco; Schulze, Almut; Nielsen, Jens

    2016-07-19

    Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network. PMID:27396332

  5. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-07-01

    Full Text Available Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.

  6. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index.

    Science.gov (United States)

    Šerý, Omar; Hlinecká, Lýdia; Povová, Jana; Bonczek, Ondřej; Zeman, Tomáš; Janout, Vladimír; Ambroz, Petr; Khan, Naim A; Balcar, Vladimir J

    2016-03-15

    Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (life-style) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case-control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascade. A-allele of rs4769874 polymorphism increases the risk of AD 1.41-fold (p<0.0001), while AA genotype does so 1.79-fold (p<0.0001). In addition, GG genotype of rs4769874 polymorphism is associated with a modest increase in body mass index (BMI). We discuss potential biochemical mechanisms linking the SNP to AD and suggest possible preventive pharmacotherapies some of which are based on commonly available natural products. Finally, we set the newly identified AD risk factors into a broader context of similar CVD risk factors to generate a more comprehensive picture of interacting genetics and life-style habits potentially leading to the deteriorating mental health in the old age. PMID:26944113

  7. EFFECTS OF SP1 SITE TO hTERT PROMOTER ACTIVITY AND ITS RESPONSE TO RETINOID ACID

    Institute of Scientific and Technical Information of China (English)

    应磊; 戴冰冰; 王楚; 卢健; 钱关祥

    2005-01-01

    Objective To investigate the function of Sp1 consensus sites to human telomerase reverse transcriptase (hTERT) promoter in different cell lines and in TRA-treated Held cell. Methods Different length of hTERT promoter was cloned and inserted into pGL3/basic reporter plasmid. The last four Sp1 sites were deleted by PCR and pGL3 B/TRTP413 A reporter plasmid was constructed. All reporter plasmids were transiently transfected into 293, A549, Hela and HepG2 cell lines. 48 h after transfection, luciferase activity was analyzed. hTERT promoter activity of Held cell which was treated with trans-retinoid acid (TRA) was tested too. Total RNA of these cells were extracted and reverse transcript. hTERT mRNA level was analyzed in all tested cells. c-Myc and Sp1 expression were examined in Hela cell before and after TRA treatment. U937 was used as a positive control in TRA treatment.Results hTERT was expressed at different level in all tested cell lines. 207bp promoter upstream of transcription start site maintained complete activity. Deletion of last 4 Sp1 sites greatly decreased activity of hTERT promoter, and almost eliminated its activity in HepG2. TRA increased the activity of different length hTERT promoters in Hela cell,but the activity of Sp1 site-deleted promoter decreased by 3 times. Unlike U937 cell, hTERT expression of Held cell increased after TRA treatment, and c-Myc and Sp1 mRNA level were relatively stable. Conclusion Sp1 site was required for transactivation of hTERT promoter and played an important role during TRA treatment.

  8. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2.

    Science.gov (United States)

    Xu, Yi; Yang, Xiaoyu; Zhao, Pinjing; Yang, Zhongyu; Yan, Changhui; Guo, Bin; Qian, Steven Y

    2016-07-01

    Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived byproduct (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5-1.0μM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational

  9. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media

    DEFF Research Database (Denmark)

    Garcia-Suarez, Eduardo J.; Khokarale, Santosh Govind; Nguyen van Buu, Olivier;

    2014-01-01

    Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e.g. methanesulf...

  10. Mycogenic Mn(II) oxidation promotes remediation of acid mine drainage and other anthropogenically impacted environments

    Science.gov (United States)

    Santelli, C. M.; Chaput, D.; Hansel, C. M.; Burgos, W. D.

    2014-12-01

    Manganese is a pollutant in worldwide environments contaminated with metals and organics, such as acid mine drainage (AMD), freshwater ponds, and agricultural waste storage sites. Microorganisms contribute to the removal of dissolved Mn compounds in the environment by promoting Mn(II) oxidation reactions. The oxidation of Mn(II) results in the precipitation of sparingly soluble Mn(IV) oxide minerals, effectively removing the metal from the aqueous milieu (e.g., groundwater or wastewater streams). In recent years, our research has identified a diversity of Mn(II)-oxidizing fungi inhabiting these polluted environments, however their overall contribution to the remediation process in situ remains poorly understood. Here we present results of culture-based and Next Generation Sequencing (NGS) studies in AMD treatment systems actively remediating Mn and other metals where we profile the bacterial, fungal, algal and archaeal communities to determine the overall community diversity and to establish the relative abundance of known Mn(II) oxidizers. A variety of treatment systems with varying Mn-removal efficiencies were sampled to understand the relationship between remediation efficiency and microbial community composition and activity. Targeted-amplicon sequencing of DNA and RNA of the 16S rRNA genes (bacteria and archaea), 23S rRNA genes (algae) and ITS region (fungi) was performed using both 454 pyrosequencing and Illumina platforms. Results showed that only the fungal taxonomic profiles significantly differed between sites that removed the majority of influent Mn and those that did not. Specifically, Ascomycota (which include known Mn(II) oxidizers isolated from these treatment systems) dominated greater efficiency systems whereas less efficient systems were dominated by Basidiomycota. Furthermore, known Mn(II) oxidizers accounted for only a minor proportion of bacterial sequences but a far greater proportion of fungal sequences. These culture-independent studies lend

  11. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  12. Noncytotoxic and Antitumour-Promoting Activities of Garcinia Acid Esters from Garcinia atroviridis Griff. ex T. Anders (Guttiferae

    Directory of Open Access Journals (Sweden)

    Mukram M. Mackeen

    2012-01-01

    Full Text Available The in vitro antitumour-promoting, cytotoxic, and antioxidant activities of two ester derivatives of garcinia acid, that is, 2-(butoxycarbonylmethyl-3-butoxycarbonyl-2-hydroxy-3-propanolide (1 and 1′,1′′-dibutyl methyl hydroxycitrate (2, that had been previously isolated from the fruits of Garcinia atroviridis Griff. ex T. Anders (Guttiferae, were examined. Based on the inhibition of Epstein-Barr virus early antigen (EBV-EA activation, compound 1 (IC50: 70 μM showed much higher (8-fold antitumour-promoting activity than compound 2 (IC50: 560 μM. In addition, both compounds were nontoxic towards CEM-SS (human T-lymphoblastic leukemia cells (CD50: >100 μM, Raji (human B-lymphoblastoid cells (CD50: >600 μM, and brine shrimp (LD50: >300 μM. Although the antitumour-promoting activity of compound 1 is moderate compared with the known antitumour promoter genistein, its non-toxicity suggests the potential of compound 1 and related structures as chemopreventive agents. The weak antioxidant activity displayed by both compounds also suggested that the primary antitumour-promoting mechanism of compound 1 did not involve oxidative-stress quenching.

  13. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor

    Science.gov (United States)

    Krall, Abigail S.; Xu, Shili; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2016-01-01

    Cellular amino acid uptake is critical for mTOR complex 1 (mTORC1) activation and cell proliferation. However, the regulation of amino acid uptake is not well-understood. Here we describe a role for asparagine as an amino acid exchange factor: intracellular asparagine exchanges with extracellular amino acids. Through asparagine synthetase knockdown and altering of media asparagine concentrations, we show that intracellular asparagine levels regulate uptake of amino acids, especially serine, arginine and histidine. Through its exchange factor role, asparagine regulates mTORC1 activity and protein synthesis. In addition, we show that asparagine regulation of serine uptake influences serine metabolism and nucleotide synthesis, suggesting that asparagine is involved in coordinating protein and nucleotide synthesis. Finally, we show that maintenance of intracellular asparagine levels is critical for cancer cell growth. Collectively, our results indicate that asparagine is an important regulator of cancer cell amino acid homeostasis, anabolic metabolism and proliferation. PMID:27126896

  14. Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid

    OpenAIRE

    Enrico D'Aniello; Rydeen, Ariel B.; Jane L Anderson; Amrita Mandal; Waxman, Joshua S.

    2013-01-01

    Author Summary Retinoic acid (RA) is the most active metabolic product of Vitamin A. Appropriate levels of RA are required for proper embryonic development and tissue maintenance in all vertebrates. Inappropriate levels of RA in human embryos can cause congenital defects that affect many organs, including the heart and limbs, and lead to numerous types of cancers. Understanding how animals maintain appropriate RA levels and the consequences of inappropriate RA signaling will therefore provide...

  15. Effects of a tumor promoter on phospholipid metabolism in HeLa cells

    International Nuclear Information System (INIS)

    The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) caused a marked stimulation of inorganic [32P]orthophosphate incorporation into HeLa-cell phosphatidylcholine (PC), phosphatidylethanolamine (PE), and lysophosphatidylethanolamine. The increased incorporation of inorganic [32P]orthophosphate into PE and lysophosphatidylethanolamine in the presence of TPA was not associated with an increase in PE synthesis as detected by the incorporation of [3H]serine or [3H]ethanolamine. The PC-specific exchange protein from beef liver was used to insert PC labeled with [3H]choline, inorganic [32P]orthophosphate, or [14C]arachidonic acid plus [3H]palmitic acid into the outer monolayer of intact HeLa cell membranes. Radioactivity from the latter two compounds was rapidly incorporated into PE and lysophosphatidylethanolamine; the incorporation was stimulated by TPA. It was concluded that TPA stimulated the formation of PE by base exchange between ethanolamine and PC

  16. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice.

    Science.gov (United States)

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-05-11

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  17. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    OpenAIRE

    M. Allegra; F. D’Acquisto; Tesoriere, L.; Attanzio, A.; M. A. Livrea

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia ...

  18. Essential fatty acids and lipid mediators. Endocannabinoids

    Directory of Open Access Journals (Sweden)

    G. Caramia

    2012-03-01

    Full Text Available In 1929 Burr and Burr discovered the essential fatty acids omega-6 and omega-3. Since then, researchers have shown a growing interest in polyunsaturated fatty acids (PUFA as precursors of “lipid mediator” molecules, often with opposing effects, prostaglandins, prostacyclins, thromboxanes, leukotrienes, lipossines, resolvines, protectines, maresins that regulate immunity, platelet aggregation, inflammation, etc. They showed that the balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s. The CYP-catalyzed epoxidation and hydroxylation of arachidonic acid (AA were established recently as the so-called third branch of AGE cascade. Cytochrome P450 (CYP epoxygenases convert AA to four epoxyeicosatrienoic acid (EET regioisomers, that produce vascular relaxation anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are accessible to CYP enzymes in the same way as AA. Metabolites derived from EPA include epoxyeicosatetraenoic acids (EETR and hydroxyeicosapentaenoic acids (19- and 20-HEPE, whereas DHA include epoxydocosapentaenoic acids (EDPs hydroxydocosahexaenoic acids (21- and 22-HDoHE. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates and the available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA. From AA derives also endocannabinoids like anandamide (N-arachidonoylethanolamine and 2-arachidonoylglycerol, capable of mimicking the pharmacological actions of the active principle of Cannabis sativa preparations such as

  19. Regulation of carnitine palmitoyltransferase (CPT) I during fasting in rainbow trout (Oncorhynchus mykiss) promotes increased mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Morash, Andrea J; McClelland, Grant B

    2011-01-01

    Periods of fasting, in most animals, are fueled principally by fatty acids, and changes in the regulation of fatty acid oxidation must exist to meet this change in metabolic substrate use. We examined the regulation of carnitine palmitoyltransferase (CPT) I, to help explain changes in mitochondrial fatty acid oxidation with fasting. After fasting rainbow trout (Oncorhynchus mykiss) for 5 wk, the mitochondria were isolated from red muscle and liver to determine (1) mitochondrial fatty acid oxidation rate, (2) CPT I activity and the concentration of malonyl-CoA needed to inhibit this activity by 50% (IC(50)), (3) mitochondrial membrane fluidity, and (4) CPT I (all five known isoforms) and peroxisome proliferator-activated receptor (PPARα and PPARβ) mRNA levels. Fatty acid oxidation in isolated mitochondria increased during fasting by 2.5- and 1.75-fold in liver and red muscle, respectively. Fasting also decreased sensitivity of CPT I to malonyl-CoA (increased IC(50)), by two and eight times in red muscle and liver, respectively, suggesting it facilitates the rate of fatty acid oxidation. In the liver, there was also a significant increase CPT I activity per milligram mitochondrial protein and in whole-tissue PPARα and PPARβ mRNA levels. However, there were no changes in mitochondrial membrane fluidity in either tissue, indicating that the decrease in CPT I sensitivity to malonyl-CoA is not due to bulk fluidity changes in the membrane. However, there were significant differences in CPT I mRNA levels during fasting. Overall, these data indicate some important changes in the regulation of CPT I that promote the increased mitochondrial fatty acid oxidation that occurs during fasting in trout. PMID:22030855

  20. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor

    2013-03-05

    poplar GA 2-oxidases predominantly expressed in roots also decreased lateral root formation. GAs negatively affected lateral root formation by inhibiting lateral root primordium initiation. A whole-genome microarray analysis of root development in GA-modified transgenic plants revealed 2069 genes with significantly altered expression. The expression of 1178 genes, including genes that promote cell proliferation, growth, and cell wall loosening, corresponded to the phenotypic severity of the root traits when transgenic events with differential phenotypic expression were compared. The array data and direct hormone measurements suggested crosstalk of GA signaling with other hormone pathways, including auxin and abscisic acid. Transgenic modification of a differentially expressed gene encoding an auxin efflux carrier suggests that GA modulation of lateral root development is at least partly imparted by polar auxin transport modification. These results suggest a mechanism for GA-regulated modulation of lateral root proliferation associated with regulation of plant allometry during the stress response. Here we summarize progress in identification of three classes of genes useful for control of plant architecture: those affecting hormone metabolism and signaling; transcription and other regulatory factors; and the cell cycle. We focus on strong modifiers of stature and form that may be useful for directed modification of plant architecture, rather than the detailed mechanisms of gene action. Gibberellin (GA) metabolic and response genes are particularly attractive targets for manipulation because many act in a dose-dependent manner; similar phenotypic effects can be readily achieved in heterologous species; and induced pleiotropic effects--such as on nitrogen assimilation, photosynthesis, and lateral root production--are usually positive with respect to crop performance. Genes encoding transcription factors represent strong candidates for manipulation of plant architecture. For

  1. Macrophage reprogramming by mycolic acid promotes a tolerogenic response in experimental asthma

    NARCIS (Netherlands)

    Korf, Johanna E.; Pynaert, Gwenda; Tournoy, Kurt; Boonefaes, Tom; Van Oosterhout, Antoon; Ginneberge, Daisy; Haegeman, Anuschka; Verschoor, Jan A.; De Baetselier, Patrick; Grooten, Johan

    2006-01-01

    Rationale: Mycolic acid (MA) constitutes a major and distinguishing cell wall biolipid from Mycobacterium tuberculosis. MA interferes with the lipid homeostasis of alveolar macrophages, inducing differentiation into foamy macrophages exhibiting increased proinflammatory function. Objectives: We veri

  2. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    OpenAIRE

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products...

  3. Noncytotoxic and Antitumour-Promoting Activities of Garcinia Acid Esters from Garcinia atroviridis Griff. ex T. Anders (Guttiferae)

    OpenAIRE

    Abdul M. Ali; Nashriyah Mat; Lajis, Nordin H.; Mooi, Lim Y.; Mohidin Amran; Mackeen, Mukram M.

    2012-01-01

    The in vitro antitumour-promoting, cytotoxic, and antioxidant activities of two ester derivatives of garcinia acid, that is, 2-(butoxycarbonylmethyl)-3-butoxycarbonyl-2-hydroxy-3-propanolide (1) and 1′,1′′-dibutyl methyl hydroxycitrate (2), that had been previously isolated from the fruits of Garcinia atroviridis Griff. ex T. Anders (Guttiferae), were examined. Based on the inhibition of Epstein-Barr virus early antigen (EBV-EA) activation, compound 1 (IC50: 70  μ M) showed much higher (8-fol...

  4. Total synthesis of gracilioether F. Development and application of Lewis acid promoted ketene–alkene [2+2] cycloadditions and late-stage C—H oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rasik, Christopher M. [Indiana Univ., Bloomington, IN (United States); Brown, M. Kevin [Indiana Univ., Bloomington, IN (United States)

    2014-12-22

    The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late-stage carboxylic acid directed C(sp³)—H oxidation. The synthesis requires only eight steps from norbornadiene.

  5. Origins of selectivity in Brønsted acid-promoted diazoalkane-azomethine reactions (the aza-Darzens aziridine synthesis).

    Science.gov (United States)

    Troyer, Timothy L; Muchalski, Hubert; Hong, Ki Bum; Johnston, Jeffrey N

    2011-04-01

    The mechanism of the Brønsted acid-catalyzed aza-Darzens reaction is explored by charting the stereochemical outcome of the triflic acid-promoted conversion of trans-triazolines to cis-aziridines. These experiments are consistent with the intermediacy of an α-diazonium-β-amino ester intermediate. PMID:21366339

  6. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid.

    Directory of Open Access Journals (Sweden)

    Enrico D'Aniello

    Full Text Available Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1, a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.

  7. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    OpenAIRE

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability o...

  8. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway

    Science.gov (United States)

    AMONYINGCHAROEN, SUMET; SURIYO, TAWIT; THIANTANAWAT, APINYA; WATCHARASIT, PIYAJIT; SATAYAVIVAD, JUTAMAAD

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1–40 μM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth. PMID:25815516

  9. Cloning and Analyzing of Xenopus Mespo Promoter in Retinoic Acid Regulated Mespo Expression

    Institute of Scientific and Technical Information of China (English)

    Jin-Hu WANG; Xiao-Yan DING

    2006-01-01

    Juring vertebrate embryogenesis, presomitic mesoderm cells enter a segmental program to generate somite, a process termed somitogenesis. Mespo, a member of the bHLH transcription factor family,plays important roles in this process. However, how Mespo expression is regulated remains unclear. To address this question, we isolated a genomic DNA sequence containing 4317 bp of Mespo 5' flanking region in Xenopus. Luciferase assays show that this upstream sequence has transcription activity. Transgenic assay shows that this genomic contig is sufficient to recapitulate the dynamic stage- and tissue-specific expression pattern of endogenous Mespo from the gastrula to the tailbud stage. We further mapped a 326 bp DNA sequence responding to retinoic acid signaling. These results shed light on how Mespo expression is regulated,and suggest that retinoic acid signaling pathways play roles in somitogenesis through regulating Mespo.

  10. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    Science.gov (United States)

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  11. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    Science.gov (United States)

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states.

  12. Ascorbic acid improves embryonic cardiomyoblast cell survival and promotes vascularization in potential myocardial grafts in vivo

    OpenAIRE

    Martinez, E. C.; Wang, J; Gan, S U; Singh, R.; Lee, C. N.; Kofidis, T

    2010-01-01

    Organ restoration via cell therapy and tissue transplantation is limited by impaired graft survival. We tested the hypothesis that ascorbic acid (AA) reduces cell death in myocardial grafts both in vitro and in vivo and introduced a new model of autologous graft vascularization for later transplantation. Luciferase (Fluc)- and green fluorescent protein (GFP)-expressing H9C2 cardiomyoblasts were seeded in gelatin scaffolds to form myocardial artificial grafts (MAGs). MAGs were supplemented wit...

  13. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    OpenAIRE

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  14. High level of deoxycholic acid in human bile does not promote cholesterol gallstone formation

    Institute of Scientific and Technical Information of China (English)

    Ulf Gustafsson; Staffan Sahlin; Curt Einarsson

    2003-01-01

    AIM: To study whether patients with excess deoxycholic acid (DCA) differ from those with normal percentage of DCA with respect to biliary lipid composition and cholesterol saturation of gallbladder bile.METHODS: Bile was collected during operation through puncturing into the gallbladder from 122 cholesterol gallstone patients and 46 gallstone-free subjects undergoing cholecystectomy. Clinical data, biliary lipids, bile acid composition,presence of crystals and nucleation time were analyzed.RESULTS: A subgroup of gallstone patients displayeda higher proportion of DCA in bile than gallstone free subjects.By choosing a cut-off level of the 90th percentile, a group of 13 gallstone patients with high DCA levels (mean 50percent of total bile acids) and a large group of 109 patients with normal DCA levels (mean 21 percent of total bile acids)were obtained. The mean age of the patients with high DCA levels was higher than that of the group with normal levels (mean age: 62 years vs45 years) and so was the mean BMI (28.3 vs. 24.7). Plasma levels of cholesterol and triglycerides were slightly higher in the DCA excess groups compared with those in the normal DCA group. There was no difference in biliary lipid composition, cholesterol saturation, nucleation time or occurrence of cholesterol crystals in bile between patients with high and normal levels of DCA.CONCLUSION: Gallstone patients with excess DCA were of older age and had higher BMI than patients with normal DCA. The two groups of patients did not differ with respect to biliary lipid composition, cholesterol saturation, nucleation time or occurrence of cholesterol crystals. It is concluded that DCA in bile does not seem to contribute to gallstone formation in cholesterol gallstone patients.

  15. Retinoic Acid Promotes Interleukin-4 Plasmid-Dimethylsulfoxide Topical Transdermal Delivery for Treatment of Psoriasis

    OpenAIRE

    Chen, Zhong-Wen; Zhang, Yin-Bing; Chen, Xaing-Jun; Liu, Xiao; Wang, Zhen; Zhou, Xi-Kun; Qiu, Ji; Zhang, Nan-Nan; Teng, Xiu; MAO, YONG-QIU; Liu, Chang-Yong; Wei, Yu-quan; Li, Jiong

    2015-01-01

    Background Psoriasis is an autoimmune disease that is caused by a shift in the Th1/Th2 balance toward Th1-dominant immunity. It has been established as an effective treatment to counteract psoriasis by subcutaneous injection of recombinant interleukin (IL)-4, and IL-4 gene therapy by topical transdermal penetration has shown its antipsoriatic effect in mice. Retinoic acid (RA) and dimethylsulfoxide can increase the efficiency of gene transfection in the topical transdermal delivery system. Ob...

  16. The promoting effects of geniposidic acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis.

    Science.gov (United States)

    Li, Y; Sato, T; Metori, K; Koike, K; Che, Q M; Takahashi, S

    1998-12-01

    We have reported that collagen synthesis was stimulated by the administration of a hot water extract from the leaves of Eucommia ulmoides OLIVER, Eucommiaceae (Du-Zhong leaves) in false aged model rats. In this paper, we set out to examine the compounds in Du-Zhong leaves that stimulated collagen synthesis in false aged model rats. In experiment 1, a methanol extract of Du-Zhong leaves also stimulated collagen synthesis in aged model rats. An acetone fraction was derived from the methanol extract by silica gel chromatography in experiment 2. The acetone fraction mainly contained iridoides mono-glycosides such as geniposidic acid and aucubin. The administration of geniposidic acid or aucubin stimulated collagen synthesis in aged model rats in experiments 3 and 4 (significance (p<0.05)). The reported pharmacological effects of Du-Zhong leaves, including healing organs and strengthening bone and muscle, are closely related to collagen metabolism. It appears that geniposidic acid and aucubin are the actual compounds in Du-Zhong which caused the effect in our experiments. PMID:9881644

  17. Post-Harvest Induced Production of Salvianolic Acids and Significant Promotion of Antioxidant Properties in Roots of Salvia miltiorrhiza (Danshen

    Directory of Open Access Journals (Sweden)

    Guo-Jun Zhou

    2014-05-01

    Full Text Available Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB, the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1, DPPH (2, hydroxyl (3 and superoxide (4, were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1; 7.75 to 0.43 (2; 2.57 to 1.13 (3 and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials.

  18. Post-harvest induced production of salvianolic acids and significant promotion of antioxidant properties in roots of Salvia miltiorrhiza (Danshen).

    Science.gov (United States)

    Zhou, Guo-Jun; Wang, Wei; Xie, Xiao-Mei; Qin, Min-Jian; Kuai, Ben-Ke; Zhou, Tong-Shui

    2014-01-01

    Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB), the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs) in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1), DPPH (2), hydroxyl (3) and superoxide (4), were significantly increased along with the accumulation of total salvianolic acids in the process. The contents of chemical targets and antioxidant activities both reached the highest value under thermal treatment at 130 °C for 80 min. In this dehydration period, contents of SaB, and sum of nine SAs increased from 0.01% to 5.51%, and 0.20% to 6.61%; and IC50 of antioxidant activity decreased from 4.85 to 2.69 (1); 7.75 to 0.43 (2); 2.57 to 1.13 (3) and 17.25 to 1.10 mg/mL. These results further supported the hypothesis that the newly harvested plant roots were still physiologically active and the secondary metabolites might be produced due to dehydration stress after harvest. Our findings supplied an important and useful theoretical basis for promoting the quality of Danshen and other medicinal plant materials. PMID:24886944

  19. Polyunsaturated fatty acids and inflammation

    Directory of Open Access Journals (Sweden)

    Calder Philip C.

    2004-01-01

    Full Text Available The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids act as arachidonic acid antagonists. Components of both natural and acquired immunity, including the production of key inflammatory cytokines, can be affected by n-3 polyunsaturated fatty acids. Although some of the effects of n-3 fatty acids may be brought about by modulation of the amount and types of eicosanoids made, it is possible that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms. Such n-3 fatty acid-induced effects may be of use as a therapy for acute and chronic inflammation, and for disorders that involve an inappropriately-activated immune response.

  20. 9-Cis Retinoic Acid Promotes Lymphangiogenesis and Enhances Lymphatic Vessel Regeneration: Therapeutic Implications of 9-Cis Retinoic Acid for Secondary Lymphedema

    Science.gov (United States)

    Choi, Inho; Lee, Sunju; Chung, Hee Kyoung; Lee, Yong Suk; Kim, Kyu Eui; Choi, Dongwon; Park, Eun Kyung; Yang, Dongyun; Ecoiffier, Tatiana; Monahan, John; Chen, Wen; Aguilar, Berenice; Lee, Ha Neul; Yoo, Jaehyuk; Koh, Chester J.; Chen, Lu; Wong, Alex K.; Hong, Young-Kwon

    2012-01-01

    Background The lymphatic system plays a key role in tissue fluid homeostasis and lymphatic dysfunction due to genetic defects or lymphatic vessel obstruction can cause lymphedema, disfiguring tissue swellings often associated with fibrosis and recurrent infections without available cures to date. In this study, retinoic acids (RAs) were determined to be a potent therapeutic agent that is immediately applicable to reduce secondary lymphedema. Methods and Results We report that RAs promote proliferation, migration and tube formation of cultured lymphatic endothelial cells (LECs) by activating FGF-receptor signaling. Moreover, RAs control the expression of cell-cycle checkpoint regulators such as p27Kip1, p57Kip2 and the aurora kinases through both an Akt-mediated non-genomic action and a transcription-dependent genomic action that is mediated by Prox1, a master regulator of lymphatic development. Moreover, 9-cisRA was found to activate in vivo lymphangiogenesis in animals based on mouse trachea, matrigel plug and cornea pocket assays. Finally, we demonstrate that 9-cisRA can provide a strong therapeutic efficacy in ameliorating the experimental mouse tail lymphedema by enhancing lymphatic vessel regeneration. Conclusions These in vitro and animal studies demonstrate that 9-cisRA potently activates lymphangiogenesis and promotes lymphatic regeneration in an experimental lymphedema model, presenting it as a promising novel therapeutic agent to treat human lymphedema patients. PMID:22275501

  1. Activation of platelet aggregation and arachidonate metabolism in early stage of acute radiation injury

    International Nuclear Information System (INIS)

    The paper describes the changes of platelet aggregation and arachidonate metabolism in platelets and endothelial cells after 8.0-8.5 Gy γ-ray whole-body irradiation in rats. It was found that with 8.0 Gy exposure platelet aggregation rate and speed, and plasma TxB2 level were increased at 4h and on the 1st day post irradiation, and that 6-keto-PGF1α level was enhanced at 4h, then reduced to the control level on the 1st day post irradiation. The result of biological assay showed the ability for rat platelets to convert exogenous arachidonate into TxA2 was significantly raised at 4h and on the 1st day after 8.5 Gy γ-ray irradiation. It is suggested that the activation of platelet arachidonate metabolism may be one of the important causes of acute radiation injury is suggested that the activation of platelet arachidonate metabolism may be one of the important causes of acute radiation injury

  2. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  3. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    Science.gov (United States)

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans. PMID:25347552

  4. Photoelectrocatalytic oxidation of glucose at a ruthenium complex modified titanium dioxide electrode promoted by uric acid and ascorbic acid for photoelectrochemical fuel cells

    Science.gov (United States)

    Lu, Shuo-Jian; Ji, Shi-Bo; Liu, Jun-Chen; Li, Hong; Li, Wei-Shan

    2015-01-01

    The simultaneous presence of uric acid (UA) and ascorbic acid (AA) is first found to largely promote the photoelectrocatalytic oxidation of glucose (GLU) at an indium-tin oxide (ITO) or TiO2 nanoparticles/ITO electrode modified with [Ru(tatp)3]2+ (tatp = 1,4,8,9-tetra-aza-triphenylene) possessing good redox activity and nanoparticle size distribution. A well-defined electrocatalytic peak for GLU oxidation is shown at 0.265 V (vs. SCE) under approximate physiological conditions upon incorporation of UA and AA. The [Ru(tatp)3]2+/ITO electrode exhibits attractive amperometric oxidation responses towards GLU, UA and AA, while controlled potentiostatically at 0.3 V, 0.7 V and 1.0 V, respectively, indicating high sensitivity and excellent reproducibility. On basis of the photoelectrocatalysis of [Ru(tatp)3]2+/TiO2/ITO anode, a GLU concentration-dependent photoelectrochemical fuel cell vs. SCE is elaborately assembled. The proposed free-enzyme photoelectrochemical fuel cell employing 0.1 M GLU associated with 0.01 M UA and 0.01 M AA as fuel shows open-circuit photovoltage of 0.608 V, short-circuit photocurrent density of 124.5 μA cm-2 and maximum power density of 21.75 μW cm-2 at 0.455 V, fill factor of 0.32 and photoenergy conversion efficiency of 36.65%, respectively.

  5. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells.

    Science.gov (United States)

    Reigstad, Christopher S; Salmonson, Charles E; Rainey, John F; Szurszewski, Joseph H; Linden, David R; Sonnenburg, Justin L; Farrugia, Gianrico; Kashyap, Purna C

    2015-04-01

    Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5-hydroxytryptamine (5-HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ-free (GF) or humanized (HM; ex-GF colonized with human gut microbiota). 5-HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5-HT synthesis; P cell numbers (cells producing 5-HT) were unchanged. Short-chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5-HT production and homeostasis. PMID:25550456

  6. Lewis acid-promoted hydrofluorination of alkynyl sulfides to generate α-fluorovinyl thioethers

    Directory of Open Access Journals (Sweden)

    Davide Bello

    2015-10-01

    Full Text Available A new method for the preparation of α-fluorovinyl thioethers is reported which involves the hydrofluorination of alkynyl sulfides with 3HF·Et3N, a process that requires Lewis acid activation using BF3·Et2O and TiF4. The method gives access to a range of α-fluorovinyl thioethers, some in high stereoselectivity with the Z-isomer predominating over the E-isomer. The α-fluorovinyl thioether motif has prospects as a steric and electronic mimetic of thioester enols and enolates, important intermediates in enzymatic C–C bond forming reactions. The method opens access to appropriate analogues for investigations in this direction.

  7. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    Science.gov (United States)

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  8. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Alessandra eScala

    2013-04-01

    Full Text Available Green Leaf Volatiles (GLVs are C6-molecules - alcohols, aldehydes and esters - produced by plants upon herbivory or during pathogen infection. Exposure to this blend of volatiles induces defence-related responses in neighboring undamaged plants, thus assigning a role to GLVs in regulating plant defences. Here we compared Arabidopsis thaliana ecotype Ler with a hydroperoxide lyase line, hpl1, unable to synthesize GLVs, for susceptibility to Pseudomonas syringae pv. tomato (DC3000. We found that the growth of DC3000 was significantly reduced in the hpl1 mutant. This phenomenon correlated with lower jasmonic acid (JA levels and higher salicylic acid (SA levels in the hpl1 mutant. Furthermore, upon infection, the JA-responsive genes VSP2 and LEC were only slightly or not induced, respectively, in hpl1. This suggests that the reduced growth of DC3000 in hpl1 plants is due to the constraint of JA-dependent responses. Treatment of hpl1 plants with E-2-hexenal, one of the more reactive GLVs, prior to infection with DC3000, resulted in increased growth of DC3000 in hpl1, thus complementing this mutant. Interestingly, the growth of DC3000 also increased in Ler plants treated with E-2-hexenal. This stronger growth was not dependent on the JA-signaling component MYC2, but on ORA59, an integrator of JA and ethylene signaling pathways, and on the production of coronatine by DC3000. GLVs may have multiple effects on plant-pathogen interactions, in this case reducing resistance to P. syringae via JA and ORA59.

  9. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon

    International Nuclear Information System (INIS)

    Highlights: • PFOA removal and defluorination with AC/PS are 12 and 19 times higher than PS only • AC can activate PS to accelerate the decomposition and mineralization of PFOA. • With AC/PS, a lower reaction temperature and a shorter reaction time would suffice • A 2-cycle schematic reaction mechanism was proposed to describe PS oxidation of PFOA. -- Abstract: Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25–45 °C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25 °C reached 682% with a high defluorination efficiency of 549% after 12 h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261 kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products

  10. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu-Chi [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan, ROC (China); Lo, Shang-Lien, E-mail: sllo@ntuedu.tw [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan, ROC (China); Kuo, Jeff [Department of Civil and Environmental Engineering, California State University, 800 North, State College Blvd., Fullerton (United States); Huang, Chin-Pao [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2013-10-15

    Highlights: • PFOA removal and defluorination with AC/PS are 12 and 19 times higher than PS only • AC can activate PS to accelerate the decomposition and mineralization of PFOA. • With AC/PS, a lower reaction temperature and a shorter reaction time would suffice • A 2-cycle schematic reaction mechanism was proposed to describe PS oxidation of PFOA. -- Abstract: Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25–45 °C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25 °C reached 682% with a high defluorination efficiency of 549% after 12 h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261 kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products.

  11. Hairpin formation promoted by the heterochiral dinipecotic acid segment: A DFT study.

    Science.gov (United States)

    Kang, Young Kee; Park, Hae Sook

    2015-11-01

    Conformational preferences for the turn and β-hairpin structures of Ala-based peptides [Ac-Ala(n)-(R)-Nip-(S)-Nip-Ala(n)-X (n = 0-2; X = NHMe or NMe2)] containing nipecotic acid (Nip) residues were carried out using the density functional M06-2X and the implicit solvation model SMD in CH2Cl2 and/or water. The turn structure of the (R)-Nip-(S)-Nip segment with a C10 H-bond between two terminal groups was found to be most preferred (populated at 98.9%) in CH2Cl2; this structure is consistent with IR and (1)H NMR results. The stabilities of the β-hairpins containing the (R)-Nip-(S)-Nip segment as a turn motif relative to the extended structures increased with peptide sequence length. The relative strengths of the H-bonds between the carbonyl oxygen and the amide hydrogen appeared to be responsible for stabilizing the turn and β-hairpin structures in CH2Cl2. In addition, the (R)-Nip-(S)-Nip segment exhibited the capability to be incorporated into one of the two β-turn motifs of gramicidin S (GS). The structure of this GS derivative (GS-Nip2 ) was generally similar to the native peptide but was less hydrophobic and it is therefore expected to exhibit lower hemolytic activity; however, further experiments are needed to evaluate its antimicrobial activity. The structure of GS-Nip2 was somewhat more flexible than GS in solvents of higher polarity. Thus, our calculated results regarding the turn and β-hairpin motifs of the (R)-Nip-(S)-Nip segment indicate that this structure might be useful for the design of bioactive macrocyclic peptides containing β-hairpin mimics as well as binding epitopes in protein-protein and protein-nucleic acid recognitions. PMID:26015319

  12. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  13. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    Science.gov (United States)

    Barneda, David; Planas-Iglesias, Joan; Gaspar, Maria L; Mohammadyani, Dariush; Prasannan, Sunil; Dormann, Dirk; Han, Gil-Soo; Jesch, Stephen A; Carman, George M; Kagan, Valerian; Parker, Malcolm G; Ktistakis, Nicholas T; Klein-Seetharaman, Judith; Dixon, Ann M; Henry, Susan A; Christian, Mark

    2015-01-01

    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI: http://dx.doi.org/10.7554/eLife.07485.001 PMID:26609809

  14. Collagen synthesis promoting pullulan-PEI-ascorbic acid conjugate as an efficient anti-cancer gene delivery vector.

    Science.gov (United States)

    Ambattu, Lizebona August; Rekha, M R

    2015-08-01

    Cationized pullulan (pullulan-PEI; PP) was synthesized and further modified with an anti-oxidant molecule, ascorbic acid (PPAA) at various ratios. The nanoplexes formed at an optimum ratio of 4:1 was within a size of 150nm and had a zeta potential of 9-14mV. The nanoplexes at this ratio was used for further investigations. The cell internalization and transfection efficiency of these nanoplexes were determined in presence of serum. The internalization and transfection efficiency were found to be unaffected by the presence of fetal bovine serum. Another interesting observation was that this polymer was found to have collagen synthesis promoting property. The collagen synthesis effect of these polymers was quantified and observed that PPAA3 promoted the highest. Transfection efficiency was evaluated by assessing the p53 gene expression in C6 rat glioma cells and cell death was quantified to be 96% by flow cytometry, thus establishing the high efficacy of this polymer. PMID:25933522

  15. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork.

    Directory of Open Access Journals (Sweden)

    Joan Estany

    Full Text Available There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18 ∶ 1 by desaturating stearic acid (18 ∶ 0. Here we describe a total of 18 mutations in the promoter and 3' non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18 ∶ 1/18 ∶ 0 in muscle increases from 3.78 to 4.43 in opposite homozygotes without affecting fat content (18 ∶ 0+18 ∶ 1, intramuscular fat content, and backfat thickness. No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs (g.2108C>T; g.2228T>C; g.2281A>G of the promoter region was additively associated to enhanced 18 ∶ 1/18 ∶ 0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18 ∶ 1/18 ∶ 0 and, consequently, the proportion of monounsaturated to saturated fat.

  16. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms.

    Science.gov (United States)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-05-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and "ropy" products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed. PMID:27020288

  17. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    Science.gov (United States)

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process. PMID:26252996

  18. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  19. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    Full Text Available Chlorogenic acid (CGA is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/- mice and its potential mechanism. ApoE(-/- mice were fed a cholesterol-rich diet without (control or with CGA (200 and 400 mg/kg or atorvastatin (4 mg/kg for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  20. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    Science.gov (United States)

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  1. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    OpenAIRE

    P.C. Calder

    1998-01-01

    1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune...

  2. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    Science.gov (United States)

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress. PMID:17189333

  3. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFβ-MYH11 fusion transcripts

    DEFF Research Database (Denmark)

    Rethmeier, Anita; Aggerholm, Anni; Olesen, Lene Hyldahl;

    2006-01-01

    Silencing of the putative tumour suppressor gene retinoic acid receptor beta2 (RARbeta2) caused by aberrant promoter hypermethylation has been identified in several solid tumours. In order to evaluate the extent of RARbeta2 hypermethylation and transcription in acute myeloid leukaemia (AML) at...

  4. Metal‐Free Dehydration of Glucose to 5‐(Hydroxymethyl)furfural in Ionic Liquids with Boric Acid as a Promoter

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Rodriguez, Sergio; Fristrup, Peter;

    2011-01-01

    The dehydration of glucose and other hexose carbohydrates to 5‐(hydroxymethyl)furfural (HMF) was investigated in imidazolium‐based ionic liquids with boric acid as a promoter. A yield of up to 42 % from glucose and as much as 66 % from sucrose was obtained. The yield of HMF decreased as the...

  5. Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity.

    OpenAIRE

    Higgs, G. A.; Salmon, J. A.; Henderson, B; Vane, J R

    1987-01-01

    Among the nonsteroid antiinflammatory drugs there is generally a close correlation between the potency of their inhibition of arachidonate cyclooxygenase, and thus prostaglandin production, and their antiinflammatory activity. One anomaly in this generalization is that whereas aspirin and salicylate are equipotent as antiinflammatory agents, salicylate is less active than aspirin in inhibiting prostaglandin production in vitro. Using rats, we have now measured the concentrations of aspirin an...

  6. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    Science.gov (United States)

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  7. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma.

    Science.gov (United States)

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-04-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy. PMID:26919097

  8. Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L..

    Directory of Open Access Journals (Sweden)

    Jan F Humplík

    Full Text Available Dark-induced growth (skotomorphogenesis is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA during the development of young tomato (Solanum lycopersicum L. seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.

  9. Melatonin promotes Bax sequestration to mitochondria reducing cell susceptibility to apoptosis via the lipoxygenase metabolite 5-hydroxyeicosatetraenoic acid

    KAUST Repository

    Radogna, Flavia

    2015-03-01

    Extra-neurological functions of melatonin include control of the immune system and modulation of apoptosis. We previously showed that melatonin inhibits the intrinsic apoptotic pathway in leukocytes via stimulation of high affinity MT1/MT2 receptors, thereby promoting re-localization of the anti-apoptotic Bcl-2 protein to mitochondria. Here we show that Bcl-2 sequesters pro-apoptotic Bax into mitochondria in an inactive form after melatonin treatment, thus reducing cell propensity to apoptosis. Bax translocation and the anti-apoptotic effect of melatonin are strictly dependent on the presence of Bcl-2, and on the 5-lipoxygenase (5-LOX) metabolite 5-hydroxyeicosatetraenoic acid (5-HETE), which we have previously shown to be produced as a consequence of melatonin binding to its low affinity target calmodulin. Therefore, the anti-apoptotic effect of melatonin requires the simultaneous, independent interaction with high (MT1/MT2) and low (calmodulin) affinity targets, eliciting two independent signal transduction pathways converging into Bax sequestration and inactivation. MT1/MT2 vs. lipoxygenase pathways are activated by 10-9 vs. 10-5M melatonin, respectively; the anti-apoptotic effect of melatonin is achieved at 10-5M, but drops to 10-9M upon addition of exogenous 5-HETE, revealing that lipoxygenase activation is the rate-limiting pathway. Therefore, in areas of inflammation with increased 5-HETE levels, physiological nanomolar concentrations of melatonin may suffice to maintain leukocyte viability.

  10. Potential Production of Polyunsaturated Fatty Acids from Microalgae

    OpenAIRE

    Noer Abyor Handayani; Dessy Ariyanti; Hady Hadiyanto

    2011-01-01

    Currently, public awareness of healthcare importance increase. Polyunsaturated fatty acid is an essential nutrition for us, such arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid. The need of Polyunsaturated fatty acid generally derived from fish oil, but fish oil has a high risk chemical contamination. Microalgae are single cell microorganism, one of Phaeodactylum tricornutum which have relatively high content of eicosapentaenoic acid (29,8%). Biotechnology market of Polyunsat...

  11. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  12. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing; LIU Qing; WU ZhiFang; WANG ZongYi; GOU KeMian

    2009-01-01

    Fatty acid desaturase-2 (FAD2)introduces a double bond in position △12 in oleic acid (18:1)to form linoleic acid (18:2 n-6)in higher plants and microbes.A new transgenic expression cassette,containing CMV promoter/fad2 cDNA/SV40 polyA,was constructedto produce transgenic mice.Among 63 healthy offspring,10 founders (15.9%)integrated the cotton fad2 transgene into their genomes,as demonstrated by PCR and Southern blotting analysis.All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography.One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05)in transgenic muscles compared to their nontransgenic littermates.Moreover,it exhibited an 87% and a 9% increase (P<0.05)in arachidonic acid (20:4 n-6)in muscles and liver,compared to their nontransgenic littermates.The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  13. A RARE of hepatic Gck promoter interacts with RARα, HNF4α and COUP-TFII that affect retinoic acid- and insulin-induced Gck expression.

    Science.gov (United States)

    Li, Rui; Zhang, Rui; Li, Yang; Zhu, Bing; Chen, Wei; Zhang, Yan; Chen, Guoxun

    2014-09-01

    The expression of hepatic glucokinase gene (Gck) is regulated by hormonal and nutritional signals. How these signals integrate to regulate the hepatic Gck expression is unclear. We have shown that the hepatic Gck expression is affected by Vitamin A status and synergistically induced by insulin and retinoids in primary rat hepatocytes. We hypothesized that this is mediated by a retinoic acid responsive element (RARE) in the hepatic Gck promoter. Here, we identified the RARE in the hepatic Gck promoter using standard molecular biology techniques. The single nucleotide mutations affecting the promoter activation by retinoic acid (RA) were also determined for detail analysis of protein and DNA interactions. We have optimized experimental conditions for performing electrophoresis mobility shift assay and demonstrated the interactions of the retinoic acid receptor α (RARα), retinoid X receptor α (RXRα), hepatocyte nuclear factor 4α (HNF4α) and chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) in the rat nuclear extract with this RARE, suggesting their roles in the regulation of Gck expression. Chromatin immunoprecipitation assays demonstrated that recombinant adenovirus-mediated overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, significantly increased their occupancy in the hepatic Gck promoter in primary rat hepatocytes. Overexpression of RARα, HNF4α and COUP-TFII, but not RXRα, also affected the RA- and insulin-mediated Gck expression in primary rat hepatocytes. In summary, this hepatic Gck promoter RARE interacts with RARα, HNF4α and COUP-TFII to integrate Vitamin A and insulin signals. PMID:24973045

  14. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells.

    Directory of Open Access Journals (Sweden)

    Geneviève Mailhot

    Full Text Available BACKGROUND: Abnormal fatty acid composition (FA in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR mutations. The mechanism(s underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL, isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARalpha

  15. Arachidonic Acid Derivatives in the Exhaled Breath Condensate in Pneumoconioses and their Correlation with Individual Factors

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Kačer, J.; Navrátil, Tomáš; Kuzma, Marek; Lebedová, J.; Klusáčková, P.

    2007-01-01

    Roč. 101, s (2007), s144-s146. E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA MZd NR9338 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50200510 Keywords : silica * asbestos * leukotrienes Subject RIV: CF - Physical ; Theoretical Chemistry

  16. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    DEFF Research Database (Denmark)

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A;

    2002-01-01

    secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate...

  17. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation

    Czech Academy of Sciences Publication Activity Database

    Kubala, Lukáš; Schmelzer, K.R.; Klinke, A.; Kolářová, Hana; Baldus, S.; Hammock, B.D.; Eiserich, J.P.

    2010-01-01

    Roč. 48, č. 10 (2010), s. 1311-1320. ISSN 0891-5849 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : myeloperoxidase * sepsis * free radicals Subject RIV: BO - Biophysics Impact factor: 5.707, year: 2010

  18. LysoPC and PAF Trigger Arachidonic Acid Release by Divergent Signaling Mechanisms in Monocytes

    Directory of Open Access Journals (Sweden)

    Janne Oestvang

    2011-01-01

    Full Text Available Oxidized low-density lipoproteins (LDLs play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC. LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF receptor. Here, we report that PAF triggers a pertussis toxin- (PTX- sensitive intracellular signaling pathway leading to sequential activation of sPLA2, PLD, cPLA2, and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA2, and a second parallel PTX-sensitive pathway activating cPLA2 with concomitant activation of sPLA2, all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.

  19. Modulation of the Cyclooxygenase Branch of the Arachidonic Acid Cascade by Polyphenols

    OpenAIRE

    Willenberg, Ina

    2015-01-01

    The intake of fruits and vegetables is associated with beneficial effects on human health. Polyphenols are discussed to play a key role in this process. Several in vitro studies suggest an anti-inflammatory effect of polyphenols mediated by a modulation of the cyclooxygenase-2 (COX-2) activity. However, the low bioavailability of polyphenols is a limiting factor for their effects in vivo. Therefore, the first part of this thesis aims to investigate the bioavailability of the resveratrol oligo...

  20. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. PMID:27090758

  1. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  2. Evening primrose oil in rheumatoid arthritis: changes in serum lipids and fatty acids.

    OpenAIRE

    Jäntti, J; Nikkari, T.; Solakivi, T; Vapaatalo, H.; Isomäki, H

    1989-01-01

    The serum concentration of lipids and composition of fatty acids after overnight fasting were studied in 18 patients with rheumatoid arthritis treated for 12 weeks with either 20 ml of evening primrose oil containing 9% of gamma-linolenic acid or olive oil. The serum concentrations of oleic acid, eicosapentaenoic acid, and apolipoprotein B decreased and those of linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, and arachidonic acid increased during treatment with evening primr...

  3. Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Lili Xu; Peng Lin; Jing Cui

    2012-01-01

    Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time- and concentration-dependent manner.

  4. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    OpenAIRE

    LING, GENG-QIANG; LIU, YI-JING; Ke, Yi-Quan; Chen, Lei; JIANG, XIAO-DAN; JIANG, CHUAN-LU; Ye, Wei

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SL...

  5. Antidepressant Potential of Chlorogenic Acid-Enriched Extract from Eucommia ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression

    Directory of Open Access Journals (Sweden)

    Jianming Wu

    2016-02-01

    Full Text Available Eucommia ulmoides Oliver (E. ulmoides is a traditional Chinese medicine with many beneficial effects, used as a tonic medicine in China and other countries. Chlorogenic acid (CGA is an important compound in E. ulmoides with neuroprotective, cognition improvement and other pharmacological effects. However, it is unknown whether chlorogenic acid-enriched Eucommia ulmoides Oliver bark has antidepressant potential through neuron protection, serotonin release promotion and penetration of blood-cerebrospinal fluid barrier. In the present study, we demonstrated that CGA could stimulate axon and dendrite growth and promote serotonin release through enhancing synapsin I expression in the cells of fetal rat raphe neurons in vitro. More importantly, CGA-enriched extract of E. ulmoides (EUWE at 200 and 400 mg/kg/day orally administered for 7 days showed antidepressant-like effects in the tail suspension test of KM mice. Furthermore, we also found CGA could be detected in the the cerebrospinal fluid of the rats orally treated with EUWE and reach the level of pharmacological effect for neuroprotection by UHPLC-ESI-MS/MS. The findings indicate CGA is able to cross the blood-cerebrospinal fluid barrier to exhibit its neuron protection and promotion of serotonin release through enhancing synapsin I expression. This is the first report of the effect of CGA on promoting 5-HT release through enhancing synapsin I expression and CGA-enriched EUWE has antidepressant-like effect in vivo. EUWE may be developed as the natural drugs for the treatment of depression.

  6. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  7. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-round in Integrated Multi-trophic Aquaculture

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo; Holdt, Susan Løvstad; Jacobsen, Charlotte;

    2015-01-01

    acids with a maximum in July (52.3%-54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA's, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables...

  8. Prognostic Value of Promoter Hypermethylation of Retinoic Acid Receptor Beta (RARB) and CDKN2 (p16/MTS1) in Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Ameri A; Alidoosti A; Hosseini Y; Parvin M; Emranpour MH; Taslimi F; Salehi E; Fadavi P

    2011-01-01

    Objective:The molecular mechanism of prostate cancer is poorly understood.The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and p16 among benign prostatic hyperplasia (BPH) and prostate cancer patients.Methods:In this case-control study,63 patients were included in three groups; 21 with BPH as the control group,21 with prostate cancer and good prognostic factors (based on prostate-specific antigen,Gleason score and stage) as good prognosis group,and 21 with prostate cancer and poor prognostic features as poor prognosis group.The prostate biopsy specimen of each individual was examined for hypermethylation of RARB and p16 promoters by methylation specific PCR (MSPCR).Results:Seven (33.3%) patients with good prognosis and 15 (71.4%) patients with poor prognosis were positive for RARB methylation,which were significantly higher than controls (P <0.0001).p16 promoter methylation was shown in 19.0% and 47.6% patients with good and poor prognosis,respectively.The RARB and p16 promoter methylation in the poor prognosis group was significantly higher than that in the good prognosis group (P -0.02 for RARB and P<0.0001 for p16).Conclusion:Hypermethylation of RARB and p16 promoters may predict prognosis in prostate cancer.

  9. Modulation of phospholipid metabolism in murine keratinocytes by tumor promoter, 12-O-tetradecanoylphorbol-13-acetate

    International Nuclear Information System (INIS)

    The possibility that phospholipid deacylation may be a critical event in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-associated effects on mouse skin prompted us to examine in vitro the effects of TPA on arachidonic acid metabolism in neonatal mouse keratinocytes. Three-day old neonatal keratinocytes were prelabeled with [14C]arachidonic acid ([14C]AA) and [14C] stearic acid ([14C]ST) and used to characterize the lipases that were activated when these cells were treated with TPA in culture. Data from these studies demonstrate that phosphatidylcholine (PC) and phosphatidylinositol (PI) are the major phospholipids that undergo early hydrolysis to release arachidonic acid when challenged by TPA. Of particular interest was the novel observation of the hydrolysis of 14C-labeled PI in these keratinocytes, the accumulation of [14C]1,2-diacylglyceride and the lack of the [14C]diacylglyceride phosphorylation to form [14C]phosphatidic acid. This lack of [14C] phosphatidic accumulation implied that although TPA enhanced the hydrolysis of [14C]PI resulting in increased [14C]diacylglyceride it did not enhance the resynthesis of the [14C]PI via the phosphorylation of the [14C]diacylglyceride. Therefore, TPA probably is not involved in the turnover of PI in these cells but is involved in the activation of PC hydrolyzing phospholipase A2 and PI hydrolyzing phospholipase C in these keratinocytes releasing arachidonic acid which then undergoes oxygenation reactions to provide biologically active eicosanoids

  10. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  11. Bispalladacycle-catalyzed Brønsted acid/base-promoted asymmetric tandem azlactone formation-Michael addition.

    Science.gov (United States)

    Weber, Manuel; Jautze, Sascha; Frey, Wolfgang; Peters, René

    2010-09-01

    Cooperative activation by a soft bimetallic catalyst, a hard Brønsted acid, and a hard Brønsted base has allowed the formation of highly enantioenriched, diastereomerically pure masked alpha-amino acids with adjacent quaternary and tertiary stereocenters in a single reaction starting from racemic N-benzoylated amino acids. The products can, for example, be used to prepare bicyclic dipeptides. PMID:20715774

  12. Overexpression of Cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis

    OpenAIRE

    Li, Tiangang; Matozel, Michelle; Boehme, Shannon; Kong, Bo; Nilsson, Lisa-Mari; Guo, Grace; Ellis, Ewa; Chiang, John Y. L.

    2011-01-01

    We reported previously that mice overexpressing Cyp7a1 (Cyp7a1-tg) are protected against high fat diet-induced hypercholesterolemia, obesity and insulin resistance (1). Here we investigated the underlying mechanism of bile acid signaling in maintaining cholesterol homeostasis in Cyp7a1-tg mice. Cyp7a1-tg mice had 2-fold higher Cyp7a1 activity and bile acid pool than wild type mice. Gallbladder bile acid composition changed from predominantly cholic acid (57%) in wild type to chenodeoxycholic ...

  13. Modification of essential fatty acid composition in broodstock of cultured European eel Anguilla anguilla L

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Jacobsen, Charlotte; Tomkiewicz, Jonna;

    2013-01-01

    Farmed eels had lower levels of arachidonic acid (20:4 n-6) (ARA) and higher ratios of eicosapentaenoic acid (20:5 n-3) (EPA):ARA compared to wild European eels collected from the Baltic Sea and southern Norwegian coast. Eels fed a formulated feed (JD) with a distribution of essential fatty acids...

  14. Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10 M AVP [C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10-10 M). No change in labelling...

  15. Dietary Supplementation with Docosahexaenoic Acid, but Not Eicosapentanoic Acid, Dramatically Alters Cardiac Mitochondrial Phospholipid Fatty Acid Composition and Prevents Permeability Transition

    OpenAIRE

    Khairallah, Ramzi J.; Sparagna, Genevieve C.; Khanna, Nishanth; O’Shea, Karen M.; Hecker, Peter A; Kristian, Tibor; Fiskum, Gary; Rosiers, Christine Des; Polster, Brian M.; Stanley, William C.

    2010-01-01

    Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effe...

  16. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  17. Two Ellagic Acids Isolated from Roots of Sanguisorba officinalis L. Promote Hematopoietic Progenitor Cell Proliferation and Megakaryocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Xiaoping Gao

    2014-04-01

    Full Text Available Using a bioassay-directed chromatographic separation, two ellagic acids were obtained from the ethyl acetate extract of the roots of Sanguisorba officinalis L. On the basis of chemical and spectroscopic methods, the two ellagic acids were identified as 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside and 3,3',4-tri-O-methylellagic acid. Stimulation of cell proliferation was assayed in hematopoietic progenitor cells using the Cell Counting kit-8 method. The megakaryocyte differentiation was determined in human erythroleukemia (HEL cells using Giemsa staining and flow cytometry analysis. The ellagic acids significantly stimulated the proliferation of Baf3/Mpl cells. Morphology analysis and megakaryocyte specific-marker CD41 staining confirmed that the ellagic acids induced megakaryocyte differentiation in HEL cells. This is the first time that 3,3',4-tri-O-methylellagic acid or 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside are reported to induce megakaryopoiesis, suggesting a class of small molecules which differ from others non-peptidyl, and appears to have potential for clinical development as a therapeutic agent for patients with blood platelet disorders.

  18. Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases

    OpenAIRE

    Al-Taan, Omer; Stephenson, James A; Spencer, Laura; Pollard, Cristina; West, Annette L.; Calder, Philip C.; Metcalfe, Matthew; Dennison, Ashley R

    2013-01-01

    Background Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are functionally the most important omega-3 polyunsaturated fatty acids (PUFAs). Oral supply of these fatty acids increases their levels in plasma and cell membranes, often at the expense of the omega-6 PUFAs arachidonic acid (ARA) and linoleic acid. This results in an altered pattern of lipid mediator production to one which is less pro-inflammatory. We investigated whether short term intravenous supply of omega-3 PUFAs co...

  19. Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes

    OpenAIRE

    Dai, Wei Wei; Panserat, Stephane; Plagnes- Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine

    2015-01-01

    Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs)-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and emplo...

  20. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    Science.gov (United States)

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system. PMID:26819060

  1. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, O.R.; Abou-El-Ela, S.H. (Univ. of Georgia, Athens (United States))

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was to establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.

  2. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes

    Directory of Open Access Journals (Sweden)

    Weiwei Dai

    2015-06-01

    Full Text Available Background/Aims: Carnivores exhibit poor utilization of dietary carbohydrates and glucose intolerant phenotypes, yet it remains unclear what are the causal factors and underlying mechanisms. We aimed to evaluate excessive amino acids (AAs-induced effects on insulin signaling, fatty acid biosynthesis and glucose metabolism in rainbow trout and determine the potential involvement of mTORC1 and p38 MAPK pathway. Methods: We stimulated trout primary hepatocytes with different AA levels and employed acute administration of rapamycin to inhibit mTORC1 activation. Results: Increased AA levels enhanced the phosphorylation of ribosomal protein S6 kinase (S6K1, S6, and insulin receptor substrate 1 (IRS-1 on Ser302 but suppressed Akt and p38 phosphorylation; up-regulated the expression of genes related to gluconeogenesis and fatty acid biosynthesis. mTORC1 inhibition not only inhibited the phosphorylation of mTORC1 downstream targets, but also blunted IRS-1 Ser302 phosphorylation and restored excessive AAs-suppressed Akt phosphorylation. Rapamycin also inhibited fatty acid biosynthetic and gluconeogenic gene expression. Conclusion: High levels of AAs up-regulate hepatic fatty acid biosynthetic gene expression through an mTORC1-dependent manner, while attenuate insulin-mediated repression of gluconeogenesis through elevating IRS-1 Ser302 phosphorylation, which in turn impairs Akt activation and thereby weakening insulin action. We propose that p38 MAPK probably also involves in these AAs-induced metabolic changes.

  3. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    Science.gov (United States)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  4. Cs salt of tungstophosphoric acid-promoted zirconium titanium phosphate solid acid catalyst: An active catalyst for the synthesis of bisphenols

    Indian Academy of Sciences (India)

    Niranjan Biswal; Dipti Prakasini Das; Kulamani Parida

    2014-03-01

    A series of novel CsTPA-ZTP ( = 30, 40, 50, 60 and 80 wt%) solid acid composite catalysts were synthesized by ion-exchange process using cesium nitrate, tungstophosphoric acid (TPA), zirconium titanium phosphate (ZTP) with varied surface areas, acidities and microstructures. Detailed characterizations of the composite catalysts were done by Powder X-ray Diffraction (PXRD), Fourier Transform Infrared (FTIR) Spectroscopy, N2 adsorption desorption, Scanning Electron Microscopy (SEM-EDS) analysis, X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Desorption (TPD).We have studied the catalytic activities, kinetics and reusability of the catalysts. 60CsTPA-ZTP is found to be an effective and re-usable catalyst for the synthesis of bisphenol A (BPA) and bisphenol F (BPF) using acetonitrile as solvent.

  5. Post-Harvest Induced Production of Salvianolic Acids and Significant Promotion of Antioxidant Properties in Roots of Salvia miltiorrhiza (Danshen)

    OpenAIRE

    Guo-Jun Zhou; Wei Wang,; Xiao-Mei Xie; Min-Jian Qin; Ben-Ke Kuai; Tong-Shui Zhou

    2014-01-01

    Danshen, the dried roots of Salvia miltiorrhiza, is an extremely valued Traditional Chinese Medicine. Previously, we have demonstrated that salvianolic acid B (SaB), the important bioactive ingredient in this herb, was a post-harvest product. Here, we further reported that all salvianolic acids (SAs) in the roots were post-harvest products of the drying process. In addition, the results of various radical scavenging activity assays, including lipid peroxidation (1), DPPH (2), hydroxyl (3) and...

  6. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility.

    Science.gov (United States)

    Chen, Shunyu; He, Zhihang; Xu, Guojie; Xiao, Xiufeng

    2016-07-01

    Modified nanofibrous Poly(L-lactic acid) (PLLA) scaffolds were fabricated by aminolysis combined with thermally induced phase separation technique using PLLA/1,4-dioxane/urea-NaOH-H2O system at -40 °C freeze temperature. Aminolysis led to the modification of scaffold resulting in enhancement in the bioactivity. The surface of the modified nanofibrous scaffold provided a good environment for attachment and proliferation of MC3T3-E1 subclone 14 cells, exhibiting significant potential for bone tissue regeneration and for promoting cytocompatibility. PMID:27095503

  7. Can essential fatty acids reduce the burden of disease(s)?

    OpenAIRE

    Das Undurti N

    2008-01-01

    Abstract Coronary heart disease, stroke, diabetes mellitus, hypertension, cancer, depression schizophrenia, Alzheimer's disease, and collagen vascular diseases are low-grade systemic inflammatory conditions that are a severe burden on health care resources. Essential fatty acids (EFAs) and their metabolites: eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) and their products: prostaglandin E1, pr...

  8. Promotion effect of lanthanum addition on the catalytic activity of zirconia supported platinum and tungstophosphoric acid catalyst for n-pentane isomerization

    International Nuclear Information System (INIS)

    Zirconia supported platinum and tungstophosphoric acid (TPA) metal-acid bifunctional catalysts modified with lanthanum were prepared and tested in the reaction involving the production of branched-chain alkanes by skeletal isomerization of n-pentane. The prepared samples were characterized by XRD, FT-IR, H2-TPR and XPS. The catalytic performance was evaluated at 200 deg. C under atmospheric pressure. According to the conversion and selectivity a promotion effect of La on the activity of Pt-TPA/ZrO2 was found and the optimal doping amount of La depended strongly on the Pt loadings. Simultaneously, cerium was also found to have the similar effect that was weaker than that of La.

  9. Multi-porous electroactive poly(L-lactic acid)/polypyrrole composite micro/nano fibrous scaffolds promote neurite outgrowth in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Qiaozhen Yu; Shuiling Xu; Kuihua Zhang; Yongming Shan

    2013-01-01

    In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual 10.0 μA for about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.

  10. Developmentally dependent and different roles of fatty acids OMEGA-6 and OMEGA-3

    DEFF Research Database (Denmark)

    Mourek, J

    2011-01-01

    The developmentally-dependent differences in the biological significances and effects of PUFA-OMEGA-6 (namely of arachidonic acid) and PUFA-OMEGA-3 (namely of docosahexaenoic acid) are discussed. The clinical results as well as developmental experiences are indicating a hypothesis of the evolution...... that created mutual relationship between those two substances (with immunological basis and following recuperation). The anti-inflammatory actions of PUFA-OMEGA-3 are the most visible (and significant) contrasts as compared with the large affects of namely arachidonic acid and its metabolites....

  11. Aromatic substitution in the gas phase. On the mechanism of the dehalogenation reactions of halobenzenes and dihalobengenes promoted by gaseous Bronsted acids

    International Nuclear Information System (INIS)

    The attack of CH5+ and C2H5+ ions, obtained in the dilute gas state from the γ radiolysis of methane, on halo- and dihalobenzenes causes extensive dehalogenation via two distinct channels, leading respectively to protodehalogenated and methyldehalogenated products, whose relative rate depends primarily on the nature of the leaving halogen. Kinetic and mass spectrometric evidences suggest that direct attack of the Bronsted acid to the halogen substituent leads to formation of the correspondent arylium cation, via hydrogen halide elimination, at a rate which decreases in the order F much greater than Cl equal to or greater than Br. The subsequent electrophilic attack of the arylium cations on CH4, the bulk constituent of the system, yields methylated arenium ions, and eventually the observed methyldehalogenated products. On the other hand, attack of the Bronsted acid to the aromatic ring of halobenzenes promotes protodehalogenation, at a rate increasing in the order F much less than Cl < Br. Direct comparison of the rates of the two dehalogenation processes has been obtained from the study of dihalobenzenes containing different halogens. Furthermore, isolation of a mixture of m- and p-xylene among the dehalogenation products of p-fluorotoluene has provided direct evidence for the isomerization of the p-tolyl cation formed from the attack of the gaseous Bronsted acid to the n-type center of the substrate and/or of the xylenium ion formed from the attack of the tolyl ion to methane. The present results, and supporting mass spectrometric evidence, underline the typical ambident behavior of halobenzenes toward charged electprophiles, and allow a unified interpretation of the dehalogention processes promoted by different Bronsted acids. The gas-phase reactivity of halobenzenes is compared with their behavior in similar processes occuring in solution

  12. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    Science.gov (United States)

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. PMID:26603903

  13. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    International Nuclear Information System (INIS)

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming

  14. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  15. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  16. Associations of polymorphisms in the promoter I of bovine acetyl-CoA carboxylase-alpha gene with beef fatty acid composition.

    Science.gov (United States)

    Zhang, S; Knight, T J; Reecy, J M; Wheeler, T L; Shackelford, S D; Cundiff, L V; Beitz, D C

    2010-08-01

    The objectives of this study were to identify single nucleotide polymorphisms (SNPs) in the promoter I (PI) region of the bovine acetyl-CoA carboxylase-alpha (ACACA) gene and to evaluate the extent to which they were associated with lipid-related traits. Eight novel SNPs were identified, which were AJ276223:g.2064T>A (SNP1), g.2155C>T (SNP2), g.2203G>T (SNP3), g.2268T>C (SNP4), g.2274G>A (SNP5), g.2340A>G (SNP6), g.2350T>C (SNP7) and g.2370A>G (SNP8). Complete linkage disequilibrium was observed among SNP1, 2, 4, 5, 6 and 8. Phenotypic data were collected from 573 cross-bred steers with six sire breeds, including Hereford, Angus, Brangus, Beefmaster, Bonsmara and Romosinuano. The genotypes of SNP1/2/4/5/6/8 were significantly associated with adjusted backfat thickness. The genotypes of SNP3 were significantly associated with triacylglycerol (TAG) content and fatty acid composition of longissimus dorsi muscle (LM) in Brangus-, Romosinuano- and Bonsmara-sired cattle. Cattle with g.2203GG genotype had greater concentrations of TAG, total lipid, total saturated fatty acid and total monounsaturated fatty acid than did cattle with g.2203GT genotype. The genotypes of SNP7 were significantly associated with fatty acid composition of LM. Cattle with genotype g.2350TC had greater amounts of several fatty acids in LM than did cattle with genotype g.2350CC. Our results suggested that the SNPs in the PI region of ACACA gene are associated with variations in the fatty acid contents in LM. PMID:20002363

  17. Use of organic acids and competitive exclusion product as an alternative to antibiotic as a growth promoter in the raising of commercial turkeys.

    Science.gov (United States)

    Milbradt, E L; Okamoto, A S; Rodrigues, J C Z; Garcia, E A; Sanfelice, C; Centenaro, L P; Andreatti Filho, R L

    2014-07-01

    A study was conducted to investigate the effects of organic acids (OA) and competitive exclusion product (CE) on growth performance, intestinal morphology, and concentration of volatile fatty acids in the cecal content. The experiment lasted for 10 wk. Four hundred twenty 1-d-old female commercial cross turkey poults (British United Turkeys, BUT Big 9) were distributed into 4 treatments with 5 replicates/pen of 21 birds each. The birds were fed a basal diet without growth promoter (control), diet with lincomycin (44 mg/kg), diet with organic acids (2 g/kg), and diet with product of CE (10(9) cfu/kg). Dietary levels of other nutrients, housing, and general management practices were similar for all treatments. On the first week (d 0-7), the BW and BW gain of the birds that fed diets with OA were lower than in the control group. In the fattening phase (d 28-70), the feed intake of the OA-treated group was lower than compared with the control. The birds that received diet with OA and CE product presented higher concentrations of propionic acid, at 14 d, and butyric acid in cecal content at 28, 56, and 70 d, compared with the control. Dietary inclusion of additives had no significant effects on intestinal villus height, crypt depth, and villus:crypt ratio. Organic acids had negative effects either on early gain or feed intake throughout the study. Because the test was conducted under controlled experimental conditions, the additives that showed results similar to those found by using antibiotics should be studied further in commercial farms to obtain results that can be incorporated into practice. PMID:24812241

  18. Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings.

    Science.gov (United States)

    Edenborn, H M

    2004-04-01

    The ability of poly(lactic acid) (PLA) to serve as a long-term source of lactic acid for bacterial sulfate reduction activity in zinc smelter tailings was investigated. Solid PLA polymers mixed in water hydrolyzed abiotically to release lactic acid into solution over an extended period of time. The addition of both PLA and gypsum was required for indigenous bacteria to lower redox potential, raise pH, and stimulate sulfate reduction activity in highly oxidized smelter tailings after one year of treatment. Bioavailable cadmium, copper, lead and zinc were all lowered significantly in PLA/gypsum treated soil, but PLA amendments alone increased the bioavailability of lead, nickel and zinc. Similar PLA amendments may be useful in constructed wetlands and reactive barrier walls for the passive treatment of mine drainage, where enhanced rates of bacterial sulfate reduction are desirable. PMID:14693443

  19. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  20. Cover Picture: Metal‐Free Dehydration of Glucose to 5‐(Hydroxymethyl)furfural in Ionic Liquids with Boric Acid as a Promoter (Chem. Eur. J. 5/2011)

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Rodriguez, Sergio; Fristrup, Peter;

    2011-01-01

    Boric acid promotes the dehydration of glucose to 5-(hydroxy)methylfurfural in ionic liquids. Computational analyses by DFT calculations show a significant decrease in energy for the isomerization of glucose to fructose when the sugars are bound to boric acid and isotopic labeling NMR studies...

  1. Identification of novel chicken estrogen receptor-alpha messenger ribonucleic acid isoforms generated by alternative splicing and promoter usage.

    Science.gov (United States)

    Griffin, C; Flouriot, G; Sonntag-Buck, V; Nestor, P; Gannon, F

    1998-11-01

    Using the rapid amplification of complementary DNA ends (RACE) methodology we have identified three new chicken estrogen receptor-alpha (cER alpha) messenger RNA (mRNA) variants in addition to the previously described form (isoform A). Whereas one of the new variants (isoform B) presents a 5'-extremity contiguous to the 5'-end of isoform A, the two other forms (isoforms C and D) are generated by alternative splicing of upstream exons (C and D) to a common site situated 70 nucleotides upstream of the translation start site in the previously assigned exon 1 (A). The 3'-end of exon 1C has been located at position -1334 upstream of the transcription start site of the A isoform (+1). Whereas the genomic location of exon 1D is unknown, 700 bp 5' to this exon were isolated by genomic walking, and their sequence was determined. The transcription start sites of the cER alpha mRNA isoforms were defined. In transfection experiments, the regions immediately upstream of the A-D cER alpha mRNA isoforms were shown to possess cell-specific promoter activities. Three of these promoters were down-regulated in the presence of estradiol and ER alpha protein. It is concluded, therefore, that the expression of the four different cER alpha mRNA isoforms is under the control of four different promoters. Finally, RT-PCR, S1 nuclease mapping, and primer extension analysis of these different cER alpha mRNA isoforms revealed a differential pattern of expression of the cER alpha gene in chicken tissues. Together, the results suggest that alternative 5'-splicing and promoter usage may be mechanisms used to modulate the levels of expression of the chicken ER alpha gene in a tissue-specific and/or developmental stage-specific manner. PMID:9794473

  2. The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, as growth promoters in fish fed low protein diets

    Directory of Open Access Journals (Sweden)

    Maurilio Lara-Flores

    2013-07-01

    Full Text Available In this study, the effect as growth promoter of five lactic acid strains (Enterococcus faecium, E. durans, Leuconostoc sp., Streptococcus sp. I and Streptococcus sp. II, isolated from intestinal tract of Nile tilapia (Oreochromis niloticus, was evaluated. Eight isocaloric diets were formulated: one containing 40% of protein as positive control, and seven with 27% protein. Five diets with 27% protein were supplemented with one of the isolated lactic acid bacteria in a concentration of 2.5x10(6 cfu g-1 of diet. A commercial probiotic based on S. faecium and Lactobacillus acidophilus was added at the same concentration to one 27% protein diet as a comparative diet, and the last diet was not supplemented with bacteria (negative control. Tilapia fry (280 mg basal weight stocked in 15 L aquaria at a density of two per liter were fed for 12 weeks with experimental diets. Results showed that fry fed with native bacteria supplemented diets presented significantly higher growth and feeding performance than those fed with control diet. Treatment with Streptococcus sp. I isolated from the intestine of Tilapia produced the best growth and feeding efficiency, suggesting that this bacteria is an appropriate native growth promoter.

  3. Silica Sulfuric Acid Promotes Aza-Michael Addition Reactions under Solvent-Free Condition as a Heterogeneous and Reusable Catalyst

    Directory of Open Access Journals (Sweden)

    Sheng-Rong Guo

    2009-11-01

    Full Text Available A highly efficient, inexpensive, recyclable, convenient, and green protocol for chemoselective aza-Michael addition reactions of amines/thiols to α,β-unsaturated compounds using silica sulfuric acid (SSA or SiO2-SO3H was developed. This method is simple, convenient and the title compounds are produced in good to excellent yields.

  4. Acid-Promoted Hydrolysis of m-Cl-Phenyl Phosphorotriamidate leading to its Highly Basic Nature by Kinetic Means

    Directory of Open Access Journals (Sweden)

    Harish Kumar Amb

    2015-06-01

    Full Text Available Hydrolysis of m-Cl-Phenyl Phosphorotriamidate has been performed in the acid range, 0.01 to 7.0 M –HCl,in 12%AcoH-H2O (v/v at 98(±0.5oC. The continuous second-order rate rise with the absence of a rate maximum in the entire acid range is significant, leading to its highly basic nature. In this respect, it differs from other related(o-Cl-Ph-&p-Cl-Ph- members of the phosphorotriamidate group. The salt effect variable study leads to the presence and reactivity of the two major reactive species with the Neutral Species(I working in the entire acid range; while the Conjugate acid form(II was observed operating between 4.0-7.0 M HCl region only. Both uni-and bi-molecular mechanisms for the two reactive forms with P-N bond fission have been decided for the C-N-P ester. The hydrolysis is shown to be decreased by the action of the series of the nucleophilic reagents and I'shows the optimum effect here. Role of a chloro-group in the unusual meta position in each aryl matix during hydrolysis was particularly the important feature of this study.

  5. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Low-cost Ni modified CdS was prepared via a simple hydrothermal reduction method. • The H2 evolution rate exceeds that of 0.5 wt% Pt–CdS in lactic acid solution. • The H2 is produced steadily from H2O and lactic acid due to the unique role of Ni. - Abstract: Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h−1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid

  6. Performance enhancement of poly(lactic acid)/soy protein concentrate blends by promoting formation of network structure

    Science.gov (United States)

    In this work, the effects of water content in preformulated soy protein concentrate (SPC) and of SPC content on the thermal, rheological and mechanical properties and morphology of poly(lactic acid) (PLA)/SPC blends were studied. The blends were prepared by twin screw compounding and the test specim...

  7. Promotion effect of nickel loaded on CdS for photocatalytic H{sub 2} production in lactic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Chen, Xiaoping [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Jiang, Qizhong [School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Yuan, Jian; Lin, Caifang [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Shangguan, Wenfeng, E-mail: shangguan@sjtu.edu.cn [Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-10-15

    Graphical abstract: - Highlights: • Low-cost Ni modified CdS was prepared via a simple hydrothermal reduction method. • The H{sub 2} evolution rate exceeds that of 0.5 wt% Pt–CdS in lactic acid solution. • The H{sub 2} is produced steadily from H{sub 2}O and lactic acid due to the unique role of Ni. - Abstract: Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H{sub 2} evolution rate (3004.8 μmol h{sup −1}) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H{sub 2} production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.

  8. The Pseudomonas syringae Type III Effector AvrRpt2 Promotes Pathogen Virulence via Stimulating Arabidopsis Auxin/Indole Acetic Acid Protein Turnover1[C][W][OA

    Science.gov (United States)

    Cui, Fuhao; Wu, Shujing; Sun, Wenxian; Coaker, Gitta; Kunkel, Barbara; He, Ping; Shan, Libo

    2013-01-01

    To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously shown that the Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis (Arabidopsis thaliana) auxin physiology. Here, we report that AvrRpt2 promotes auxin response by stimulating the turnover of auxin/indole acetic acid (Aux/IAA) proteins, the key negative regulators in auxin signaling. AvrRpt2 acts additively with auxin to stimulate Aux/IAA turnover, suggesting distinct, yet proteasome-dependent, mechanisms operated by AvrRpt2 and auxin to control Aux/IAA stability. Cysteine protease activity is required for AvrRpt2-stimulated auxin signaling and Aux/IAA degradation. Importantly, transgenic plants expressing the dominant axr2-1 mutation recalcitrant to AvrRpt2-mediated degradation ameliorated the virulence functions of AvrRpt2 but did not alter the avirulent function mediated by the corresponding RPS2 resistance protein. Thus, promoting auxin response via modulating the stability of the key transcription repressors Aux/IAA is a mechanism used by the bacterial type III effector AvrRpt2 to promote pathogenicity. PMID:23632856

  9. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery

    Directory of Open Access Journals (Sweden)

    Lee CH

    2014-01-01

    release high concentrations of acetylsalicylic acid for three weeks. The in vivo efficacy of local delivery of acetylsalicylic acid in reducing platelet and monocyte adhesion, and the minimum tissue inflammatory reaction caused by the hybrid stents in treating denuded rabbit arteries, are documented. The proposed hybrid stent, with biodegradable acetylsalicylic acid-loaded nanofibers, substantially contributed to local, sustained delivery of drugs to promote re-endothelialization and reduce thrombogenicity in the injured artery. The stents may have potential applications in the local delivery of cardiovascular drugs. Furthermore, the use of hybrid stents with acetylsalicylic acid-loaded nanofibers that have high drug loadings may provide insight into the treatment of patients with high risk of acute stent thromboses.Keywords: biodegradable drug-eluting nanofibers, acetylsalicylic acid, release characteristics, cell adhesion to vascular stents

  10. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport.

    Science.gov (United States)

    Vylkova, Slavena; Lorenz, Michael C

    2014-03-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  11. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport.

    Directory of Open Access Journals (Sweden)

    Slavena Vylkova

    2014-03-01

    Full Text Available Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages.

  12. NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Blair Therit

    Full Text Available Among many other virulence factors, Clostridium perfringens produces three sialidases NanH, NanI and NanJ. NanH lacks a secretion signal peptide and is predicted to be an intracellular enzyme, while NanI and NanJ are secreted. Previously, we had identified part of an operon encoding NanE (epimerase and NanA (sialic acid lyase enzymes. Further analysis of the entire operon suggests that it encodes a complete pathway for the transport and metabolism of sialic acid along with a putative transcriptional regulator, NanR. The addition of 30 mM N-acetyl neuraminic acid (Neu5Ac to a semi-defined medium significantly enhanced the growth yield of strain 13, suggesting that Neu5Ac can be used as a nutrient. C. perfringens strain 13 lacks a nanH gene, but has NanI- and NanJ-encoding genes. Analysis of nanI, nanJ, and nanInanJ mutants constructed by homologous recombination revealed that the expression of the major sialidase, NanI, was induced by the addition of Neu5Ac to the medium, and that in separate experiments, the same was true of a nanI-gusA transcriptional fusion. For the nanI and nanJ genes, primer extension identified three and two putative transcription start sites, respectively. Gel mobility shift assays using purified NanR and DNA from the promoter regions of the nanI and nanE genes showed high affinity, specific binding by NanR. We propose that NanR is a global regulator of sialic acid-associated genes and that it responds, in a positive feedback loop, to the concentration of sialic acid in the cell.

  13. Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study.

    Science.gov (United States)

    Porenta, Shannon R; Ko, Yi-An; Gruber, Stephen B; Mukherjee, Bhramar; Baylin, Ana; Ren, Jianwei; Djuric, Zora

    2013-11-01

    A Mediterranean diet increases intakes of n-3 and n-9 fatty acids and lowers intake of n-6 fatty acids. This can impact colon cancer risk as n-6 fatty acids are metabolized to proinflammatory eicosanoids. The purpose of this study was to evaluate interactions of polymorphisms in the fatty acid desaturase (FADS) genes, FADS1 and FADS2, and changes in diet on fatty acid concentrations in serum and colon. A total of 108 individuals at increased risk of colon cancer were randomized to either a Mediterranean or a Healthy Eating diet. Fatty acids were measured in both serum and colonic mucosa at baseline and after six months. Each individual was genotyped for four single-nucleotide polymorphisms in the FADS gene cluster. Linear regression was used to evaluate the effects of diet, genotype, and the diet by genotype interaction on fatty acid concentrations in serum and colon. Genetic variation in the FADS genes was strongly associated with baseline serum arachidonic acid (n-6) but serum eicosapentaenoic acid (n-3) and colonic fatty acid concentrations were not significantly associated with genotype. After intervention, there was a significant diet by genotype interaction for arachidonic acid concentrations in colon. Subjects who had all major alleles for FADS1/2 and were following a Mediterranean diet had 16% lower arachidonic acid concentrations in the colon after six months of intervention than subjects following the Healthy Eating diet. These results indicate that FADS genotype could modify the effects of changes in dietary fat intakes on arachidonic acid concentrations in the colon. PMID:24022589

  14. A heterogeneous mixture of F-series prostaglandins promotes sperm guidance in the Caenorhabditis elegans reproductive tract.

    Directory of Open Access Journals (Sweden)

    Hieu D Hoang

    Full Text Available The mechanisms that guide motile sperm through the female reproductive tract to oocytes are not well understood. We have shown that Caenorhabditis elegans oocytes synthesize sperm guiding F-series prostaglandins from polyunsaturated fatty acid (PUFA precursors provided in yolk lipoprotein complexes. Here we use genetics and electrospray ionization tandem mass spectrometry to partially delineate F-series prostaglandin metabolism pathways. We show that omega-6 and omega-3 PUFAs, including arachidonic and eicosapentaenoic acids, are converted into more than 10 structurally related F-series prostaglandins, which function collectively and largely redundantly to promote sperm guidance. Disruption of omega-3 PUFA synthesis triggers compensatory up-regulation of prostaglandins derived from omega-6 PUFAs. C. elegans F-series prostaglandin synthesis involves biochemical mechanisms distinct from those in mammalian cyclooxygenase-dependent pathways, yet PGF(2α stereoisomers are still synthesized. A comparison of F-series prostaglandins in C. elegans and mouse tissues reveals shared features. Finally, we show that a conserved cytochrome P450 enzyme, whose human homolog is implicated in Bietti's Crystalline Dystrophy, negatively regulates prostaglandin synthesis. These results support the model that multiple cyclooxygenase-independent prostaglandins function together to promote sperm motility important for fertilization. This cyclooxygenase-independent pathway for F-series synthesis may be conserved.

  15. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress.

    Science.gov (United States)

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-12-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%-33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures. PMID:26642184

  16. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

    OpenAIRE

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-01-01

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ΔCEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effect...

  17. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation

    OpenAIRE

    Chang, Jinsam; Thangamani, Shankar; Kim, Myung H.; Ulrich, Benjamin; Morris, Sidney M.; Chang H Kim

    2013-01-01

    Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in dendritic cells re...

  18. Hypoxia and Amino Acid Supplementation Synergistically Promote the Osteogenesis of Human Mesenchymal Stem Cells on Silk Protein Scaffolds

    OpenAIRE

    Sengupta, Sejuti; Park, Sang-Hyug; Patel, Atur; Carn, Julia; Lee, Kyongbum; Kaplan, David L.

    2010-01-01

    Tailoring tissue engineering strategies to match patient- and tissue-specific bone regeneration needs offers to improve clinical outcomes. As a step toward this goal, osteogenic outcomes and metabolic parameters were assessed when varying inputs into the bone formation process. Silk protein scaffolds seeded with human mesenchymal stem cells in osteogenic differentiation media were used to study in vitro osteogenesis under varied conditions of amino acid (lysine and proline) concentration and ...

  19. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    OpenAIRE

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul; Kim, Kyu Han

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal...

  20. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  1. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    International Nuclear Information System (INIS)

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA

  2. Dietary Karaya Saponin and Rhodobacter capsulatus Exert Hypocholesterolemic Effects by Suppression of Hepatic Cholesterol Synthesis and Promotion of Bile Acid Synthesis in Laying Hens

    Directory of Open Access Journals (Sweden)

    Sadia Afrose

    2010-01-01

    Full Text Available This study was conducted to elucidate the mechanism underlying the hypolipidemic action of karaya saponin or Rhodobacter (R. capsulatus. A total of 40 laying hens (20-week-old were assigned into four dietary treatment groups and fed a basal diet (as a control or basal diets supplemented with either karaya saponin, R. capsulatus, or both for 60 days. The level of serum low-density-lipoprotein cholesterol and the levels of cholesterol and triglycerides in the serum, liver, and egg yolk were reduced by all the supplementations (<.05. Liver bile acid concentration and fecal concentrations of cholesterol, triacylglycerol, and bile acid were simultaneously increased by the supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus (<.05. The supplementation of karaya saponin, R. capsulatus, and the combination of karaya saponin and R. capsulatus suppressed the incorporation of 14C from 1-14C-palmitic acid into the fractions of total lipids, phospholipids, triacylglycerol, and cholesterol in the liver in vitro (<.05. These findings suggest that the hypocholesterolemic effects of karaya saponin and R. capsulatus are caused by the suppression of the cholesterol synthesis and the promotion of cholesterol catabolism in the liver.

  3. Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk.

    Science.gov (United States)

    Ryder, Christopher; McColl, Karen; Zhong, Fei; Distelhorst, Clark W

    2012-08-10

    Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway. PMID:22685289

  4. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    Science.gov (United States)

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  5. High contents of very long-chain polyunsaturated fatty acids in different moss species

    OpenAIRE

    Beike, Anna K; Jaeger, Carsten; Zink, Felix; Decker, Eva L; Reski, Ralf

    2013-01-01

    Key message Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER. Abstract Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chai...

  6. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    Science.gov (United States)

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  7. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    OpenAIRE

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in me...

  8. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    Science.gov (United States)

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  9. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    Science.gov (United States)

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  10. Growth and development of term infants fed with milk with long-chain polyunsaturated fatty acid supplementation

    Institute of Scientific and Technical Information of China (English)

    BEN Xiao-ming 贲晓明; ZHOU Xiao-yu 周晓玉; ZHAO Wei-hua 赵卫华; YU Wen-liang 喻文亮; PAN Wei 潘伟; ZHANG Wei-li 张伟利; WU Sheng-mei 吴圣楣; Christien M. Van Beusekom; Anne Schaafsma

    2004-01-01

    @@ Presently, there is growing interest in long-chain polyunsaturated fatty acids (LCPUFAs), which are considered a major determinant of growth, visual and neural development, and long-term health.1 Two groups of LCPUFAs have received special interest: homologues of linoleic acid (LA) of the n-6 series, which are precursors of arachidonic acid (AA), and homologues of α-linolenic acid (ALA) of the n-3 series, which are precursors of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

  11. Comparison of the fatty-acid compositions of prey items and yolks of Australian insectivorous scincid lizards.

    Science.gov (United States)

    Speake, Brian K; Herbert, Jacquie F; Thompson, Michael B

    2004-07-01

    The yolk fatty-acid profiles of a range of species of insectivorous scincid lizards generally conform to a common pattern, typified by high proportions of linoleic acid (13.5-18.5% of total fatty acids), substantial proportions of alpha-linolenic acid (2.4-8.2%), and significant amounts of the long-chain polyunsaturated fatty acids, arachidonic (1.6-3.3%), eicosapentaenoic (0.7-1.2%) and docosahexaenoic (0.7-1.6%) acids. We characterised the fatty-acid compositions of ten prey taxa that are eaten by female skinks during vitellogenesis. Linoleic acid is the major polyunsaturated fatty acid in all prey, excepting Orthoptera where alpha-linolenic acid predominates. To varying extents, alpha-linolenic acid is present in all the prey items. Arachidonic acid forms over 1% of total fatty acids for six of the prey items. Four of the prey items contain eicosapentaenoic acid at over 1%. Most notably, docosahexaenoic acid is essentially absent from all the prey items. There is a general similarity between the fatty-acid profiles of prey and yolk, suggesting that the linoleic, alpha-linolenic, arachidonic and eicosapentaenoic acids required for egg formation can be supplied directly from the maternal diet. However, the docosahexaenoic acid of the egg lipids cannot derive from the diet and must, therefore, be formed by biosynthesis in the maternal liver, using dietary alpha-linolenic and eicosapentaenoic acids as precursors. PMID:15085383

  12. Growth-promoting Activity of Casein Hydrolysate for Lactic Acid Bacteria%酪蛋白水解物对乳酸菌的促生长作用

    Institute of Scientific and Technical Information of China (English)

    张清丽; 赵强忠; 赵谋明

    2011-01-01

    研究了酪蛋白的木瓜蛋白酶水解物对乳酸菌(嗜热链球菌∶保加利亚杆菌=1∶1)的促生长作用.通过比较不同水解度的酪蛋白水解物的增值作用,发现酪蛋白经木瓜蛋白酶水解8 h后的水解物具有最强的促进乳酸菌生长作用.本试验进一步考察了该水解物对酸乳乳酸菌代谢产物(乳酸和胞外多糖)的产量及活菌数变化的影响.结果表明木瓜蛋白酶酪蛋白水解液能将乳酸菌乳酸和胞外多糖的产量分别提高33.1%和30.4%.%The influence of casein hydrolysate treated by papain on growth of lactic acid bacteria (Lactobacillus bulgaricus:Streptococcus thermophilus = 1:1) was studied. The hydrolysate treated by papain for 8 h displayed the highest growth-promoting activity for the strains. ln addition, the effect of casein hydrolysate on the bacterial viability, the yield of lactic acid and exopolysaccharide from lactic acid bacteria was determined. These results suggested that the yield of lactic acid and exopolysaccharide could be improved by 33.1% and 30.4%, respectively.

  13. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60

    International Nuclear Information System (INIS)

    Highlights: ► TRIM32 enhanced RARα-mediated transcriptional activity even in the absence of RA. ► TRIM32 stabilized RARα in the human promyelogenous leukemic cell line HL60. ► Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. ► TRIM32 may function as a coactivator for RARα-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  14. Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets.

    Directory of Open Access Journals (Sweden)

    Barbara D Pachikian

    Full Text Available Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF versus a control diet (CT, which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c. Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.

  15. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly.

    Science.gov (United States)

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this differential subcellular localization remained to be further elucidated. By constructing ASIC2 chimeras, we found that the first transmembrane (TM1) domain and the proximal post-TM1 domain (17 amino acids) of ASIC2a are critical for membrane targeting of the proteins. We also observed that replacement of corresponding residues in ASIC2b by those of ASIC2a conferred proton-sensitivity as well as surface expression to ASIC2b. We finally confirmed that ASIC2b is delivered to the cell surface from the ER by forming heteromers with ASIC2a, and that the N-terminal region of ASIC2a is additionally required for the ASIC2a-dependent membrane targeting of ASIC2b. Together, our study supports an important role of ASIC2a in membrane targeting of ASIC2b. PMID:27477936

  16. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells.

    Science.gov (United States)

    Yao, D W; Luo, J; He, Q Y; Wu, M; Shi, H B; Wang, H; Wang, M; Xu, H F; Loor, J J

    2016-04-01

    In nonruminants, thyroid hormone responsive (THRSP) is a crucial protein for cellular de novo lipogenesis. However, the role of THRSP in regulating the synthesis of milk fatty acid composition in goat mammary gland remains unknown. In the present study, we compared gene expression of THRSP among different goat tissues. Results revealed that THRSP had the highest expression in subcutaneous fat, and expression was higher during lactation compared with the dry period. Overexpression of THRSP upregulated the expression of fatty acid synthase (FASN), stearoyl-coenzyme A desaturase 1 (SCD1), diacylglycerol acyltransferase 2 (DGAT2), and glycerol-3-phosphate acyltransferase (GPAM) in goat mammary epithelial cells. In contrast, overexpression of THRSP led to downregulation of thrombospondin receptor (CD36) and had no effect on the expression of acetyl-coenzyme A carboxylase α (ACACA) and sterol regulatory element binding transcription factor1 (SREBF1). In addition, overexpressing THRSP in vitro resulted in a significant increase in triacylglycerol (TAG) concentration and the concentrations of C12:0 and C14:0. Taken together, these results highlight an important role of THRSP in regulating lipogenesis in goat mammary epithelial cells. PMID:26851858

  17. Promoting endothelial recovery and reducing neointimal hyperplasia using sequential-like release of acetylsalicylic acid and paclitaxel-loaded biodegradable stents

    Directory of Open Access Journals (Sweden)

    Lee CH

    2014-08-01

    Full Text Available Cheng-Hung Lee,1,2 Chia-Ying Yu,2 Shang-Hung Chang,1 Kuo-Chun Hung,1 Shih-Jung Liu,2 Chao-Jan Wang,3 Ming-Yi Hsu,3 I-Chang Hsieh,1 Wei-Jan Chen,1 Yu-Shien Ko,1 Ming-Shien Wen1 1Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan; 2Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; 3Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan Introduction: This work reports on the development of a biodegradable dual-drug-eluting stent with sequential-like and sustainable drug-release of anti-platelet acetylsalicylic acid and anti-smooth muscle cell (SMC proliferative paclitaxel.Methods: To fabricate the biodegradable stents, poly-L-lactide strips are first cut from a solvent-casted film. They are rolled onto the surface of a metal pin to form spiral stents. The stents are then consecutively covered by acetylsalicylic acid and paclitaxel-loaded polylactide-polyglycolide nanofibers via electrospinning.Results: Biodegradable stents exhibit mechanical properties that are superior to those of metallic stents. Biodegradable stents sequentially release high concentrations of acetylsalicylic acid and paclitaxel for more than 30 and 60 days, respectively. In vitro, the eluted drugs promote endothelial cell numbers on days 3 and 7, and reduce the proliferation of SMCs in weeks 2, 4, and 8. The stents markedly inhibit the adhesion of platelets on days 3, 7, and 14 relative to a non-drug-eluting stent. In vivo, the implanted stent is intact, and no stent thrombosis is observed in the stent-implanted vessels without the administration of daily oral acetylsalicylic acid. Promotion of endothelial recovery and inhibition of neointimal hyperplasia are also observed on the stented vessels.Conclusion: The work demonstrates the efficiency and safety of the biodegradable dual-drug-eluting stents with sequential and sustainable drug release

  18. Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF as a reference

    Directory of Open Access Journals (Sweden)

    Pession Annalisa

    2010-02-01

    Full Text Available Abstract Background Epigenetic silencing of the MGMT gene by promoter methylation is associated with loss of MGMT expression, diminished DNA-repair activity and longer overall survival in patients with glioblastoma who, in addition to radiotherapy, received alkylating chemotherapy with carmustine or temozolomide. We describe and validate a rapid methylation sensitive quantitative PCR assay (MS-qLNAPCR using Locked Nucleic Acid (LNA modified primers and an imprinted gene as a reference. Methods An analysis was made of a database of 159 GBM patients followed between April 2004 and October 2008. After bisulfite treatment, methylated and unmethylated CpGs were recognized by LNA primers and molecular beacon probes. The SNURF promoter of an imprinted gene mapped on 15q12, was used as a reference. This approach was used because imprinted genes have a balanced copy number of methylated and unmethylated alleles, and this feature allows an easy and a precise normalization. Results Concordance between already described nested MS-PCR and MS-qLNAPCR was found in 158 of 159 samples (99.4%. The MS-qLNAPCR assay showed a PCR efficiency of 102% and a sensitivity of 0.01% for LNA modified primers, while unmodified primers revealed lower efficiency (69% and lower sensitivity (0.1%. MGMT promoter was found to be methylated using MS-qLNAPCR in 70 patients (44.02%, and completely unmethylated in 89 samples (55.97%. Median overall survival was of 24 months, being 20 months and 36 months, in patients with MGMT unmethylated and methylated, respectively. Considering MGMT methylation data provided by MS-qLNAPCR as a binary variable, overall survival was different between patients with GBM samples harboring MGMT promoter unmethylated and other patients with any percentage of MGMT methylation (p = 0.003. This difference was retained using other cut off values for MGMT methylation rate (i.e. 10% and 20% of methylated allele, while the difference was lost when 50% of MGMT

  19. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  20. Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.

    OpenAIRE

    Chien, K R; Sen, A; Reynolds, R.; Chang, A.; Kim, Y; M. D. Gunn; Buja, L. M.; Willerson, J T

    1985-01-01

    The present study utilized a cultured myocardial cell model to evaluate the relationship between the release of arachidonate from membrane phospholipids, and the progression of cell injury during ATP depletion. High-energy phosphate depletion was induced by incubating cultured neonatal rat myocardial cells with various combinations of metabolic inhibitors (deoxyglucose, oligomycin, cyanide, and iodoacetate). Phospholipid degradation was assessed by the release of radiolabeled arachidonate fro...

  1. A Mutant of Hepatitis B Virus X Protein (HBxΔ127 Promotes Cell Growth through A Positive Feedback Loop Involving 5-Lipoxygenase and Fatty Acid Synthase

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2010-02-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignant tumors worldwide. Hepatitis B virus X protein (HBx contributes to the development of HCC, whereas HBx with COOH-terminal deletion is a frequent event in the HCC tissues. Previously, we identified a natural mutant of HBx-truncated 27 amino acids at the COOH-terminal (termed HBxΔ127, which strongly enhanced cell growth. In the present study, we focused on investigating the mechanism. Accordingly, fatty acid synthase (FAS plays a crucial role in cancer cell survival and proliferation; thus, we examined the signaling pathways involving FAS. Our data showed that HBxΔ127 strongly increased the transcriptional activities of FAS in human hepatoma HepG2 and H7402 cells. Moreover, we found that 5-lipoxygenase (5-LOX was responsible for the up-regulation of FAS by using MK886 (an inhibitor of 5-LOX and 5-LOX small interfering RNA. We observed that HBxΔ127 could upregulate 5-LOX through phosphorylated extracellular signal-regulated protein kinases 1/2 and thus resulted in the increase of released leukotriene B4 (LTB4, a metabolite of 5-LOX by ELISA. The additional LTB4 could upregulate the expression of FAS in the cells as well. Interestingly, we found that FAS was able to upregulate the expression of 5-LOX in a feedback manner by using cerulenin (an inhibitor of FAS. Collectively, HBxΔ127 promotes cell growth through a positive feedback loop involving 5-LOX and FAS, in which released LTB4 is involved in the up-regulation of FAS. Thus, our finding provides a new insight into the mechanism involving the promotion of cell growth mediated by HBxΔ127.

  2. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomonobu [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan); Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 (Japan); Okumura, Fumihiko [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan); Iguchi, Akihiro; Ariga, Tadashi [Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 (Japan); Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  3. Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by β-catenin translocation and MMP7 activation

    International Nuclear Information System (INIS)

    Glutamate decarboxylase 1 (GAD1), a rate-limiting enzyme in the production of γ-aminobutyric acid (GABA), is found in the GABAergic neurons of the central nervous system. Little is known about the relevance of GAD1 to oral squamous cell carcinoma (OSCC). We investigated the expression status of GAD1 and its functional mechanisms in OSCCs. We evaluated GAD1 mRNA and protein expressions in OSCC-derived cells using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunoblotting analyses. To assess the critical functions of GAD1, i.e., cellular proliferation, invasiveness, and migration, OSCC-derived cells were treated with the shRNA and specific GAD1 inhibitor, 3-mercaptopropionic acid (3-MPA). GAD1 expression in 80 patients with primary OSCCs was analyzed and compared to the clinicopathological behaviors of OSCC. qRT-PCR and immunoblotting analyses detected frequent up-regulation of GAD1 in OSCC-derived cells compared to human normal oral keratinocytes. Suppression of nuclear localization of β-catenin and MMP7 secretion was observed in GAD1 knockdown and 3-MPA-treated cells. We also found low cellular invasiveness and migratory abilities in GAD1 knockdown and 3-MPA-treated cells. In the clinical samples, GAD1 expression in the primary OSCCs was significantly (P < 0.05) higher than in normal counterparts and was correlated significantly (P < 0.05) with regional lymph node metastasis. Our data showed that up-regulation of GAD1 was a characteristic event in OSCCs and that GAD1 was correlated with cellular invasiveness and migration by regulating β-catenin translocation and MMP7 activation. GAD1 might play an important role in controlling tumoral invasiveness and metastasis in oral cancer

  4. Determination of essential fatty acids and long chain polyunsaturated fatty acids in complimentary infant foods in the UK

    OpenAIRE

    Loughrill, Emma; Zand, Nazanin

    2014-01-01

    The study reported herein was conducted to establish the concentration of two essential fatty acids; linoleic acid (LA) 18:2 n-6 and α-linolenic acid (ALA) 18:3 n-3; and three long chain poly unsaturated fatty acids (LCPUFA); eicosapentaenoic acid (EPA) 20:5 n-3, decosahexaenoic acid (DHA) 22:6 n-3 and arachidonic acid (AA) 20:4 n-6 in fish based commercial infant foods in the UK. Quantitative analyses were conducted on four different products using charged aerosol detection HPLC. The total ...

  5. Fat content, energy value and fatty acid profile of donkey milk during lactation and implications for human nutrition

    Directory of Open Access Journals (Sweden)

    Martemucci Giovanni

    2012-09-01

    Full Text Available Abstract Background and aims Milk contains numerous nutrients. The content of n-3 fatty acids, the n-6/n-3 ratio, and short- and medium-chain fatty acids may promote positive health effects. In Western societies, cow’s milk fat is perceived as a risk factor for health because it is a source of a high fraction of saturated fatty acids. Recently, there has been increasing interest in donkey’s milk. In this work, the fat and energetic value and acidic composition of donkey’s milk, with reference to human nutrition, and their variations during lactation, were investigated. We also discuss the implications of the acidic profile of donkey’s milk on human nutrition. Methods Individual milk samples from lactating jennies were collected 15, 30, 45, 60, 90, 120, 150, 180 and 210days after foaling, for the analysis of fat, proteins and lactose, which was achieved using an infrared milk analyser, and fatty acids composition by gas chromatography. Results The donkey’s milk was characterised by low fat and energetic (1719.2kJ·kg-1 values, a high polyunsaturated fatty acids (PUFA content of mainly α-linolenic acid (ALA and linoleic acid (LA, a low n-6 to n-3 FA ratio or LA/ALA ratio, and advantageous values of atherogenic and thrombogenic indices. Among the minor PUFA, docosahesaenoic (DHA, eicosapentanoic (EPA, and arachidonic (AA acids were present in very small amounts ( The fatty acid patterns were affected by the lactation stage and showed a decrease (P Conclusions The high level of unsaturated/saturated fatty acids and PUFA-n3 content and the low n-6/n-3 ratio suggest the use of donkey’s milk as a functional food for human nutrition and its potential utilisation for infant nutrition as well as adult diets, particular for the elderly.

  6. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    Directory of Open Access Journals (Sweden)

    Shakilur Rahman

    2011-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC Coville (creosote bush. It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA. Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer.

  7. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression.

    Science.gov (United States)

    Gao, Peng; Wang, Yanli; Villanueva, Iván; Ho, Pak Leung; Davies, Julian; Kao, Richard Yi Tsun

    2016-01-01

    As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm. PMID:27625639

  8. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.

    Science.gov (United States)

    Jain, Rahul; Pandey, Anita

    2016-09-01

    The genus Pseudomonas is known to comprise a huge diversity of species with the ability to thrive in different habitats, including those considered as extreme environments. In the present study, a psychrotolerant, wide pH tolerant and halotolerant strain of Pseudomonas chlororaphis GBPI_507 (MCC2693), isolated from the wheat rhizosphere growing in a mountain location in Indian Himalayan Region (IHR), has been investigated for its antimicrobial potential with particular reference to phenazine production and plant growth promoting traits. GBPI_507 showed phenazine production at the temperatures ranged from 14 to 25°C. The benzene extracted compound identified as phenazine-1-carboxylic acid (PCA) through GC-MS exhibited antimicrobial properties against Gram positive bacteria and actinomycetes. The inhibition of phytopathogens in diffusible biocontrol assays was recorded in an order: Alternaria alternata>Phytophthora sp.>Fusarium solani>F. oxysporum. In volatile metabolite assays, all the pathogens, except Phytophthora sp. produced distorted colonies, characterized by restricted sporulation. The isolate also possessed other growth promoting and biocontrol traits including phosphate solubilization and production of siderophores, HCN, ammonia, and lytic enzymes (lipase and protease). Molecular studies confirmed production of PCA by the bacterium GBPI_507 through presence of phzCD and phzE genes in its genome. The polyextremophilic bacterial strain possesses various important characters to consider it as a potential agent for field applications, especially in mountain ecosystem, for sustainable and eco-friendly crop production. PMID:27394000

  9. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology.

    Science.gov (United States)

    Fan, Fan; Ge, Ying; Lv, Wenshan; Elliott, Matthew R; Muroya, Yoshikazu; Hirata, Takashi; Booz, George W; Roman, Richard J

    2016-01-01

    Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury. PMID:27100515

  10. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress

    Institute of Scientific and Technical Information of China (English)

    Muhammad WAQAS; Abdul Latif KHAN; Raheem SHAHZAD; Ihsan ULLAH; Abdur Rahim KHAN; In-Jung LEE

    2015-01-01

    题目:持续高温胁迫环境下内生菌产生植物激素和有机酸促进粳稻生长的研究  目的:研究在高温胁迫环境下内生菌( Paecilomyces formosus LWL1)对粳稻生长的影响。  创新点:首次探讨P. formosus LWL1产生的植物激素和有机酸在缓解粳稻热应激方面的作用。  方法:比较正常和高温胁迫两种环境下,P. formosus LWL1对 Dongjin粳稻植株的生长状况及内源性脱落酸、茉莉酸和总蛋白水平变化的作用。  结论:内生菌在正常和高温胁迫条件下均能显著提高植物生长情况,包括株高、鲜重、干重和叶绿素含量。内生菌组的植株具有更低的内源性胁迫信号化合物水平及提升的总蛋白量,表明其具有保护粳稻的作用。这种内生菌可能有利于作物在高温环境下生长的耐受性。%This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in control ed chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. for-mosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures.

  11. Promotion by 5-Aminolevulinic Acid of Germination of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) Seeds Under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Liang-Ju WANG; Wei-Bing JIANG; Hui LIU; Wei-Qin LIU; Lang KANG; Xi-Lin HOU

    2005-01-01

    The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var.communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress.These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme,which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.

  12. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  13. α-Lipoic acid promotes α-tubulin hyperacetylation and blocks the turnover of mitochondria through mitophagy.

    Science.gov (United States)

    Stoner, Michael W; Thapa, Dharendra; Zhang, Manling; Gibson, Gregory A; Calderon, Michael J; St Croix, Claudette M; Scott, Iain

    2016-06-15

    Lysine acetylation is tightly coupled to the nutritional status of the cell, as the availability of its cofactor, acetyl-CoA, fluctuates with changing metabolic conditions. Recent studies have demonstrated that acetyl-CoA levels act as an indicator of cellular nourishment, and increased abundance of this metabolite can block the induction of cellular recycling programmes. In the present study we investigated the cross-talk between mitochondrial metabolic pathways, acetylation and autophagy, using chemical inducers of mitochondrial acetyl-CoA production. Treatment of cells with α-lipoic acid (αLA), a cofactor of the pyruvate dehydrogenase complex, led to the unexpected hyperacetylation of α-tubulin in the cytosol. This acetylation was blocked by pharmacological inhibition of mitochondrial citrate export (a source for mitochondria-derived acetyl-CoA in the cytosol), was dependent on the α-tubulin acetyltransferase (αTAT) and was coupled to a loss in function of the cytosolic histone deacetylase, HDAC6. We further demonstrate that αLA slows the flux of substrates through autophagy-related pathways, and severely limits the ability of cells to remove depolarized mitochondria through PTEN-associated kinase 1 (PINK1)-mediated mitophagy. PMID:27099338

  14. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  15. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.

    Science.gov (United States)

    Hsieh, Pei-Wen; Chen, Wei-Yu; Aljuffali, Ibrahim A; Chen, Chun-Che; Fang, Jia-You

    2013-01-01

    Hydroquinone and tranexamic acids (TXA) are skin-lightening agents with a hydrophilic nature and low skin absorption. A high dose is needed for clinical use, resulting in a high incidence of skin irritation. Co-drugs formed by conjugating hydroquinone and TXA were synthesized and their in vitro and in vivo skin absorption characteristics were evaluated. The two synthesized co-drugs were 4-hydroxyphenyl 4-(aminomethyl)cyclohexanecarboxylate (HAC) and 1,4- phenylene bis(aminomethyl)cyclohexanecarboxylate (BAC). The co-drugs were chemically stable in aqueous solution, but rapidly degraded to the respective parent drug in esterases and skin homogenates. Compared to hydroquinone application, 7.2- and 2.4-fold increments in the hydroquinone skin deposition were obtained with the in vitro application of HAC and BAC. HAC and BAC led to 3- and 2-fold enhancements of equivalent TXA deposition compared to TXA administration. The in vivo experiment showed a further enhancement of co-drugs compared to the in vitro setup. The transdermal penetration of co-drugs, especially BAC, was much lower than that of hydroquinone and TXA. This indicated high-level skin targeting by the co-drugs. HAC and BAC revealed strong affinities for the viable epidermis/dermis. Hair follicles are important reservoirs for co-drug delivery. Daily administration of co-drugs to the skin did not generate irritation for up to 7 days. Both co-drugs are superior candidates for treating skin hyperpigmentation. PMID:23931279

  16. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis.

    Science.gov (United States)

    Kumar, Divya P; Asgharpour, Amon; Mirshahi, Faridoddin; Park, So Hyun; Liu, Sichen; Imai, Yumi; Nadler, Jerry L; Grider, John R; Murthy, Karnam S; Sanyal, Arun J

    2016-03-25

    The physiological role of the TGR5 receptor in the pancreas is not fully understood. We previously showed that activation of TGR5 in pancreatic β cells by bile acids induces insulin secretion. Glucagon released from pancreatic α cells and glucagon-like peptide 1 (GLP-1) released from intestinal L cells regulate insulin secretion. Both glucagon and GLP-1 are derived from alternate splicing of a common precursor, proglucagon by PC2 and PC1, respectively. We investigated whether TGR5 activation in pancreatic α cells enhances hyperglycemia-induced PC1 expression thereby releasing GLP-1, which in turn increases β cell mass and function in a paracrine manner. TGR5 activation augmented a hyperglycemia-induced switch from glucagon to GLP-1 synthesis in human and mouse islet α cells by GS/cAMP/PKA/cAMP-response element-binding protein-dependent activation of PC1. Furthermore, TGR5-induced GLP-1 release from α cells was via an Epac-mediated PKA-independent mechanism. Administration of the TGR5 agonist, INT-777, to db/db mice attenuated the increase in body weight and improved glucose tolerance and insulin sensitivity. INT-777 augmented PC1 expression in α cells and stimulated GLP-1 release from islets of db/db mice compared with control. INT-777 also increased pancreatic β cell proliferation and insulin synthesis. The effect of TGR5-mediated GLP-1 from α cells on insulin release from islets could be blocked by GLP-1 receptor antagonist. These results suggest that TGR5 activation mediates cross-talk between α and β cells by switching from glucagon to GLP-1 to restore β cell mass and function under hyperglycemic conditions. Thus, INT-777-mediated TGR5 activation could be leveraged as a novel way to treat type 2 diabetes mellitus. PMID:26757816

  17. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    Science.gov (United States)

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  18. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  19. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    International Nuclear Information System (INIS)

    Highlights: ► We found a 17-fold upregulation of ALOX15 in the ischemic heart. ► Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. ► We observed increased levels of proinflammatory markers in ischemic heart tissue. ► Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1α (HIF-1α) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1α mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield important insights into the underlying association between hypoxia and inflammation in the human ischemic heart disease.

  20. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.