WorldWideScience

Sample records for arachidonic acid metabolism

  1. Metabolic flux analysis on arachidonic acid fermentation

    Institute of Scientific and Technical Information of China (English)

    JIN Mingjie; HUANG He; ZHANG Kun; YAN Jie; GAO Zhen

    2007-01-01

    The analysis of flux distributions in metabolic networks has become an important approach for understanding the fermentation characteristics of the process.A model of metabolic flux analysis of arachidonic acid (AA) synthesis in Mortierella alpina ME-1 was established and carbon flux distributions were estimated in different fermentation phases with different concentrations of N-source.During the exponential,decelerating and stationary phase,carbon fluxes to AA were 3.28%,8.80% and 6.97%,respectively,with sufficient N-source broth based on the flux of glucose uptake,and those were increased to 3.95%,19.21% and 39.29%,respectively,by regulating the shifts of carbon fluxes via fermentation with limited N-source broth and adding 0.05%NaNO3 at 96 h.Eventually AA yield was increased from 1.3 to 3.5 g.L-1.These results suggest a way to improve AA fermentation,that is,fermentation with limited N-source broth and adding low concentration N-source during the stationary phase.

  2. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    NARCIS (Netherlands)

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; Maerz, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J. F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By co

  3. Production of metabolic products of arachidonic acid during cell-cell interactions

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, A.J.; Safier, L.B.; Broekman, M.J.; Ullman, H.L.; Islam, N.; Sorrell, T.C.; Serhan, C.N.; Weissmann, G.; Oglesby, T.D.; Gorman, R.R.

    1984-09-01

    Interactions of human platelets and neutrophils were studied with particular reference to the arachidonic acid pathway. Suspensions of (3H)arachidonate-labeled platelets and unlabeled neutrophils were stimulated with ionophore A23187. We detected several radioactive arachidonate metabolites, which are not produced by platelets alone. These included (3H)-labeled leukotriene B4 (LTB4), dihydroxy-eicosatetraeonic acid (DiHETE), and 5-hydroxy-eicosatetraenoic acid (5-HETE). DiHETE was formed when the platelet product (3H)12-HETE was added to ionophore-stimulated neutrophils. In addition, DiHETE was the major metabolite when (3H)5-HETE, a neutrophil arachidonate product, was added to stimulated platelets. We therefore suggest that upon stimulation, platelet-derived arachidonate can serve as precursor for the neutrophil-derived eicosanoids LTB4 and 5-HETE, and the platelet-derived product 12-HETE can be metabolized to DiHETE by stimulated human neutrophils. More recently we have shown that 12-HETE from thrombin-stimulated platelets can also be metabolized to a new product, 12,20-DiHETE, by

  4. Differential stimulation of luminol-enhanced chemiluminescence (CL) and arachidonic acid metabolism in rat peritoneal neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, R.J.; Adams, L.M.; Cullinan, C.A.; Berkenkopf, J.W.; Weichman, B.M.

    1986-03-05

    Phorbol 12-myristate, 13-acetate (PMA) induced the production of radical oxygen species (ROS) from rat peritoneal neutrophils as assessed by CL. ROS generation occurred in a time- (maximum at 13.5 min) and dose- (concentration range of 1.7-498 nM) related fashion. However, 166 nM PMA did not induce either cyclooxygenase (CO) or lipoxygenase (LPO) product formation by 20 min post-stimulation. Conversely, A23187, at concentrations between 0.1 and 10 ..mu..M, stimulated both pathways of arachidonic acid metabolism, but had little or no effect upon ROS production. When suboptimal concentrations of PMA (5.5 nM) and A23187 (0.1-1 ..mu..M) were coincubated with the neutrophils, a synergistic ROS response was elicited. However, arachidonic acid metabolism in the presence of PMA was unchanged relative to A12187 alone. Nordihydroguaiaretic acid (NDGA) inhibited both PMA-induced CL (IC/sub 50/ = 0.9 ..mu..M) and A23187-induced arachidonic acid metabolism (IC/sub 50/ = 1.7 ..mu..M and 6.0 ..mu..M for LPO and CO, respectively). The mixed LPO-CO inhibitor, BW755C, behaved in a qualitatively similar manner to NDGA, whereas the CO inhibitors, indomethacin, piroxicam and naproxen had no inhibitory effect on ROS generation at concentrations as high as 100 ..mu..M. These results suggest that NDGA and BW755C may inhibit CL and arachidonic acid metabolism by distinct mechanisms in rat neutrophils.

  5. Immunohistochemical localization of key arachidonic acid metabolism enzymes during fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Hsuan-Ni Lin

    Full Text Available This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1, cyclooxygenase -2 (COX-2, 5-lipoxygenase (5-LO, and leukotriene A4 hydrolase (LTA4H was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture. In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing.

  6. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  7. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. (Michigan State Univ., East Lansing (United States) Univ. of Michigan, Ann Arbor (United States))

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  8. Arachidonic acid metabolism in the platelets and neutrophils of diabetic rabbit and human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Greco, N.J.

    1985-01-01

    An alteration of arachidonic acid metabolism to prostaglandins and leukotrienes from platelets and polymorphonuclear leukocytes respectively is evident in subjects with diabetes mellitus. There is evidence of altered platelet/vascular wall interactions in diabetes mellitus and evidence that polymorphonuclear leukocytes influence the vascular walls. Theories on the pathogenesis of atherosclerosis include both blood cells. Platelet hypersensitivity is evident in those platelets from the alloxan-induced diabetic rabbit either suspended in plasma or buffer. Arachidonic acid- and collagen-induced platelet aggregation, release of /sup 14/serotonin, and T x B/sub 2/ and 12-HETE production is enhanced when responses of diabetic platelets are compared to control platelets. Control rabbit neutrophils produce more LTB/sub 4/, LTB/sub 4/ isomers and 5-HETE than diabetic rabbits neutrophils. Decreased synthesis from diabetic rabbit neutrophils is not explained by increased catabolism of LTB/sub 4/, reesterification of 5-HETE, or increased eicosanoid formation. These experiments demonstrate both platelet and neutrophil dysfunction in diabetic subjects. Because of the involvement of these cells in regulating circulatory homeostatis, abnormal behavior could aggravate the atherosclerotic process. Platelet and neutrophil dysfunctions are noted before macroscopic vascular lesions are apparent suggesting an important role in the pathogenesis of atherosclerosis.

  9. Research on Arachidonic Acid and Eicosapentaenoic Acid Anabolic Metabolism in Diasporangium sp.

    Institute of Scientific and Technical Information of China (English)

    DAI Chuan-chao; XU Yu-fen; XIA Shun-xiang; ZHAO Mo; YE Yu-cheng

    2010-01-01

    The fatty acids of a strain of Diasporangium sp.had been analyzed by using GC-MS.The fatty acids of twenty mutants were determined.Based on these results,the producing of eicosapentaenoic acid(EPA)supposed via 18∶2,18∶3,20∶3,20∶4 which all belong to ω-6 fatty acids.The ω-3 desaturation was undertaken at arachidonic acid(AA).In addition,mutant strains resulted in enhanced content of AA which could get two times more than initial strain,but no compact on EPA.

  10. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  11. Surfactant-induced alteration of arachidonic acid metabolism of mammalian cells in culture.

    Science.gov (United States)

    De Leo, V A; Harber, L C; Kong, B M; De Salva, S J

    1987-04-01

    Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.

  12. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism.

    Science.gov (United States)

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2016-04-04

    Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.

  13. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    Science.gov (United States)

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  14. Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Taha Ameer Y

    2012-10-01

    Full Text Available Abstract Background In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2 enzymes that regulate arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-6 acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases, DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases, brain-derived neurotrophic factor (BDNF, and synaptic integrity (drebrin and synaptophysin. Lipid concentrations were measured in brains subjected to high-energy microwave fixation. Results The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4 did not change. Conclusion These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.

  15. Effect of in vivo coal dust exposure on arachidonic acid metabolism in the rat alveolar macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, D.C.; Stanley, C.F.; El-Ayouby, N.; Demers, L.M. (Pennsylvania State Univ., Hershey, PA (USA). M.S. Hershey Medical Center, Dept. of Pathology)

    1990-01-01

    Oxygenated metabolites of arachidonic acid (AA) are produced by the alveolar macrophage (AM) and have been shown to mediate inflammatory reactions. We therefore assessed the production of eicosanoids by AM harvested from the lungs of rats exposed to a bituminous coal dust for 2 wk in an inhalation chamber in order to determine if AA metabolism was altered in a manner that may promote an inflammatory response in the lung. Exposure to coal dust resulted in a 66% increase in the number of AM harvested, an increase in thromboxane A{sub 2}(TxA{sub 2}) and leukotriene B{sub 4} (LTB{sub 4}) production to 222% and 181% of control values, respectively, and a decrease in prostaglandin E{sub 2} (PGE{sub 2}) production to 62% of control values. In AM harvested from rats allowed to breathe clean air for 2 wk following coal dust exposure, PGE{sub 2} production returned to control levels but TxA{sub 2} and LTB{sub 4} production remained elevated. The TxA{sub 2} synthesis inhibitor UK 38,485 reduced TxA{sub 2} production in dust-exposed AM both immediately and 2 wk following exposure. Thus, exposure of rats to coal dust significantly alters the metabolism of AA in AM, with potentially important aspects of AA metabolism remaining altered even after a 2-wk recovery period. Based on the established role of eicosanoids in inflammatory and fibrotic processes, these results suggest that the alteration of AM eicosanoid production as a result of the inhalation of coal mine dust may be an important factor in the pathophysiology of coal workers' pneumoconiosis. 26 refs., 4 figs.

  16. 2,3-Diarylxanthones as Potential Inhibitors of Arachidonic Acid Metabolic Pathways.

    Science.gov (United States)

    Santos, Clementina M M; Ribeiro, Daniela; Silva, Artur M S; Fernandes, Eduarda

    2017-03-11

    In response to an inflammatory stimulus, arachidonic acid (AA), the main polyunsaturated fatty acid present in the phospholipid layer of cell membranes, is released and metabolized to a series of eicosanoids. These bioactive lipid mediators of inflammation arise physiologically through the action of the enzymes 5-lipoxygenase (5-LOX) and cyclooxygenases (constitutive COX-1 and inducible COX-2). It is believed that dual inhibition of 5-LOX and COXs may have a higher beneficial impact in the treatment of inflammatory disorders rather than the inhibition of each enzyme. With this demand for new dual-acting anti-inflammatory agents, a range of 2,3-diarylxanthones were tested through their ability to interact in the AA metabolism. In vitro anti-inflammatory activity was evaluated through the inhibition of 5-LOX-catalyzed leukotriene B4 (LTB4) formation in human neutrophils and inhibition of COX-1- and COX-2-catalyzed prostaglandin E2 (PGE2) formation in human whole blood. The results showed that some of the studied arylxanthones were able to prevent LTB4 production in human neutrophils, in a concentration-dependent manner. The xanthone with a 2-catechol was the most active one (IC50 ∼ 9 μM). The more effective arylxanthones in preventing COX-1-catalyzed PGE2 production presented IC50 values from 1 to 7 μM, exhibiting a structural feature with at least one non-substituted aryl group. All the studied arylxanthones were ineffective to prevent the formation of PGE2 catalyzed by COX-2, up to the maximum concentration of 100 μM. The ability of the tested 2,3-diarylxanthones to interact with both 5-LOX and COX-1 pathways constitutes an important step in the research of novel dual-acting anti-inflammatory drugs.

  17. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    Secretory and cytosolic phospholipases A2 (sPLA2 and cPLA2) may contribute to the release of arachidonic acid and other bioactive lipids, which are modulators of synaptic function. In primary cortical neuron cultures, neurotoxic cell death and [3H]arachidonate metabolism was studied after adding...

  18. Eicosapentaenoic Acid, Arachidonic Acid and Eicosanoid Metabolism in Juvenile Barramundi Lates calcarifer.

    Science.gov (United States)

    Salini, Michael J; Wade, Nicholas M; Araújo, Bruno C; Turchini, Giovanni M; Glencross, Brett D

    2016-08-01

    A two part experiment was conducted to assess the response of barramundi (Lates calcarifer; initial weight = 10.3 ± 0.03 g; mean ± S.D.) fed one of five diets with varying eicosapentaenoic acid (diets 1, 5, 10, 15 and 20 g/kg) or one of four diets with varying arachidonic acid (1, 6, 12, 18 g/kg) against a fish oil control diet. After 6 weeks of feeding, the addition of EPA or ARA did not impact on growth performance or feed utilisation. Analysis of the whole body fatty acids showed that these reflected those of the diets. The ARA retention demonstrated an inversely related curvilinear response to either EPA or ARA. The calculated marginal utilisation efficiencies of EPA and ARA were high (62.1 and 91.9 % respectively) and a dietary ARA requirement was defined (0.012 g/kg(0.796)/day). The partial cDNA sequences of genes regulating eicosanoid biosynthesis were identified in barramundi tissues, namely cyclooxygenase 1 (Lc COX1a, Lc COX1b), cyclooxygenase 2 (Lc COX2) and lipoxygenase (Lc ALOX-5). Both Lc COX2 and Lc ALOX-5 expression in the liver tissue were elevated in response to increasing dietary ARA, meanwhile expression levels of Lc COX2 and the mitochondrial fatty acid oxidation gene carnitine palmitoyltransferase 1 (Lc CPT1a) were elevated in the kidney. A low level of EPA increased the expression of Lc COX1b in the liver. Consideration should be given to the EPA to ARA balance for juvenile barramundi in light of nutritionally inducible nature of the cyclooxygenase and lipoxygenase enzymes.

  19. The effects of xanthoangelol E on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit.

    Science.gov (United States)

    Fujita, T; Sakuma, S; Sumiya, T; Nishida, H; Fujimoto, Y; Baba, K; Kozawa, M

    1992-08-01

    The effects of a new chalcone derivative, xanthoangelol E, isolated from Angelica keiskei Koidzumi, on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit were examined. When gastric antral mucosal slices were incubated with xanthoangelol E (0.05-1.0 mM), there was no significant effect on the production of prostaglandin (PG) E2, PGF2 alpha and their metabolites. On the other hand, this compound inhibited effectively the production of thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid from exogenous arachidonic acid in platelets, and the concentration required for 50% inhibition (IC50) was approximately 5 microM. The formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid was also reduced by this drug (IC50, 50 microM). These results suggest that xanthoangelol E has the potential to modulate arachidonic acid metabolism in platelets and that this action may participate in some pharmacological effect of the plant.

  20. Arachidonate metabolism in bovine gallbladder muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  1. Extracts from Tribulus species may modulate platelet adhesion by interfering with arachidonic acid metabolism.

    Science.gov (United States)

    Olas, Beata; Hamed, Arafa I; Oleszek, Wieslaw; Stochmal, Anna

    2015-01-01

    The present work was designed to study the effects of crude extracts from Tribulus pterocarpus, T. pentandrus and T. parvispinus on selected biological functions of human blood platelets in vitro. Platelet suspensions were pre-incubated with extracts from aerial parts of T. pterocarpus, T. pentandrus and T. parvispinus, at the final concentrations of 0.5, 5 and 50 µg/ml. Then, for platelet activation thrombin, was used. The effects of crude extracts from T. pterocarpus, T. pentandrus and T. parvispinus on adhesion of blood platelets to collagen were determined by method according to Tuszynski and Murphy. Arachidonic acid metabolism was measured by the level of thiobarbituric acid reactive substances (TBARS). In these studies we also compared the action of tested crude plant extracts with the effects of the polyphenolic fraction isolated from aerial parts of T. pterocarpus, which has antiplatelet and antioxidative properties. The performed assays demonstrated that the tested crude extract from T. pterocarpus and the phenolic fraction from T. pterocarpus might influence the platelet functions in vitro. The inhibitory, concentration-dependent effects of this tested extract and its phenolic fraction on adhesion of resting platelets and thrombin - stimulated platelets to collagen was found. We also observed that the crude extract from T. pterocarpus, like the polyphenolic fraction from T. pterocarpus reduced TBARS production in blood platelets. In the comparative studies, the tested crude extract from T. pterocarpus was not found to be more effective antiplatelet factor, than the polyphenolic fraction from this plant. The results obtained suggest that T. pterocarpus may be a promising source of natural compounds, valuable in the prevention of the enhanced activity of blood platelets in numerous cardiovascular diseases.

  2. beta-oxidation modulates metabolic competition between eicosapentaenoic acid and arachidonic acid regulating prostaglandin E(2) synthesis in rat hepatocytes-Kupffer cells

    DEFF Research Database (Denmark)

    Du, Zhen-Yu; Ma, Tao; Winterthun, Synnøve;

    2010-01-01

    The ability of n-3 PUFA to competitively inhibit the use of arachidonic acid (AA) for membrane phospholipid synthesis and prostaglandin E(2) (PGE(2)) production has been well demonstrated in single cell models. In the present study, we investigated the metabolic competition between AA and eicosap......The ability of n-3 PUFA to competitively inhibit the use of arachidonic acid (AA) for membrane phospholipid synthesis and prostaglandin E(2) (PGE(2)) production has been well demonstrated in single cell models. In the present study, we investigated the metabolic competition between AA...

  3. The Property and Application of Arachidonic Acid

    Institute of Scientific and Technical Information of China (English)

    王相勤; 姚建铭; 袁成凌; 王纪; 余增亮

    2002-01-01

    Arachidonic acid (AA) is one of the most important PUFAs (polyunsaturated fatty acids) in human body. A high-yield arachidonic acid-producing strain (mortierella alpina) was selected by ion implantation (the relative content of arachidonic acid is 70.2% among all fatty acids). This paper mainly introduced the structure, distribution, source, physiologic healthcare function and application of AA.

  4. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, A.; Cottam, G.L.

    1987-05-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

  5. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.

  6. Arachidonic acid metabolism in TNS-induced chronic and immunologic enteritis in rats, and the effect of 5-ASA

    Directory of Open Access Journals (Sweden)

    F. J. Zijlstra

    1993-01-01

    Full Text Available Inflammation of the rat distal intestine was induced by intradermal sensitization and subsequent multiple intrajejunal challenge with the hapten 2,4,6-trinitrobenzenesulphonic acid (TNBS via an implanted catheter. The time course of the inflammatory reaction was followed by determination of the enteritis score and measurement of in vitro eicosanoid formation of homogenates of the gut after 0, 1, 2, 4, 7, 14 and 21 days of local daily challenge with 0.08% TNBS. There was a small initial increase of eicosanoid formation, reached at days 1 and 2, followed by a significant increase in metabolism of arachidonic acid on day 21. Although at day 1 a four-fold increase in inflammation score was reached, no further significant changes were observed during the following 3 weeks. The greatest increase in metabolite formation was observed in prostanoids TxB2, PGE2. and PGD2 and the 5-lipoxygenase product LTC4, whereas minor changes were found for LTB4 and other lipoxygenase products such as 12- and 15-HETE. The formation of these metabolites was already inhibited by low-dose 5-aminosalicylic acid (5-ASA, given orally twice daily during the 3 weeks challenge period, while the enteritis score was affected dosedependently.

  7. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  8. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice

    Directory of Open Access Journals (Sweden)

    L.B. Oliveros

    2004-03-01

    Full Text Available We investigated the effects of a saturated fat diet on lipid metabolism and arachidonic acid (AA turnover in mouse resident peritoneal macrophages. The pro-oxidative effect of this diet was also studied. Female C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet containing coconut oil (COCO diet, or the control diet containing soybean oil as fat source (10 mice per group. The fat content of each diet was 15% (w/w. Mice were fed for 6 weeks and then sacrificed. The concentration of total lipids, triglycerides, (LDL + VLDL-cholesterol, thiobarbituric acid-reactive substances (TBARS and reduced glutathione were increased in the plasma of mice fed the COCO diet, without changes in phospholipid or total cholesterol concentrations compared to control. The concentrations of total cholesterol, free and esterified cholesterol, triglycerides, and TBARS were increased in the macrophages of COCO-fed mice, while the content of total phospholipids did not change. The phospholipid composition showed an increase of phosphatidylcholine and a decrease of phosphatidylethanolamine. The [³H]-AA distribution in the phospholipid classes showed an increase in phosphatidylcholine and phosphatidylethanolamine. Incorporation of [³H]-cholesterol into the macrophages of COCO-fed mice and into the cholesterol ester fraction was increased. The COCO diet did not affect [³H]-AA uptake but induced an increase in [³H]-AA release. The COCO diet also enhanced AA mobilization induced by lipopolysaccharide. These results indicate that the COCO diet, high in saturated fatty acids, alters the lipid metabolism and AA turnover of peritoneal macrophages in female mice and also produces a significant degree of oxidative stress.

  9. [Effect of dauricine on rat and human platelet aggregation and metabolism of arachidonic acid in washed rat platelets].

    Science.gov (United States)

    Tong, L; Yue, T L

    1989-01-01

    Dauricine (Dau), an isoquinoline alkaloid extracted from the roots of Menispermum dauricum D. C. and used as an antiarrhythmic agent in China recently, was shown to inhibit rat platelet aggregation induced by arachidonic acid (AA) and ADP, as well as human platelet aggregation induced by AA, ADP and adrenaline (Adr) in vitro in a dose-dependent manner. The concentration of Dau required for 50% inhibition (IC50) of rat platelet aggregation induced by AA and ADP was 26 and 37 mumol/L, respectively. For human platelet aggregation induced by AA, ADP and Adr the IC50 of Dau was found to be 39, 55 and 43 mumol/L, respectively. Dau inhibited the cyclooxygenase pathway metabolites of AA (TXB2 and HHT) in washed intact rat platelets. The production of TXB2 and HHT was reduced by 26% and 19%, respectively, when the Dau concentration was 50 mumol/L and by 46 and 45%, respectively, when the concentration of Dau was 100 mumol/L. The formation of 12-HETE was also inhibited at 100 mumol/L of Dau. The inhibitory effect of Dau on AA metabolism may be one of the mechanisms related to its inhibition of platelet aggregation.

  10. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    Science.gov (United States)

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions.

  11. Effects of organometals on cellular signaling. I. Influence of metabolic inhibitors on metal-induced arachidonic acid liberation.

    OpenAIRE

    1994-01-01

    Organic lead and tin compounds stimulate an increase of free arachidonic acid (AA) in HL-60 cells. This fatty acid is involved in numerous health problems and physiological mechanisms. Three major pathways result in a liberation of AA from membrane phospholipids and there is evidence that G-proteins serve as couplers within all three pathways. Therefore we investigated the influence of pertussis toxin (PT) on the organometallic-induced AA liberation. The effect of all studied compounds (organ...

  12. Arachidonic acid metabolites in pathogenic yeasts

    Directory of Open Access Journals (Sweden)

    Ells Ruan

    2012-08-01

    Full Text Available Abstract Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.

  13. Extract of a spice--omum (Trachyspermum ammi)-shows antiaggregatory effects and alters arachidonic acid metabolism in human platelets.

    Science.gov (United States)

    Srivastava, K C

    1988-07-01

    An ethereal extract of omum (Trachyspermum ammi; Hindustani: ajwan)--a frequently consumed spice--was found to inhibit platelet aggregation induced by arachidonic acid (AA), epinephrine and collagen; in this respect it was most effective against AA-induced aggregation. Inhibition of aggregation by omum could be explained by its effect on platelet thromboxane production as suggested by the following experimental observation. (i) Omum reduced TxB2 formation in intact platelet preparations from added arachidonate, and (ii) it reduced the formation of TxB2 from AA-labelled platelets after stimulation with Ca2+-ionophore A23187 by a direct action on cyclooxygenase as it did not affect the release of AA from labelled platelets. An increased formation of lipoxygenase-derived products from exogenous AA in omum-treated platelets was apparently due to redirection of AA from cyclooxygenase to the lipoxygenase pathway.

  14. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    Science.gov (United States)

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  15. Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism.

    Science.gov (United States)

    Hernández, Victoriano; Recio, M Carmen; Máñez, Salvador; Giner, Rosa M; Ríos, José-Luis

    2007-07-19

    The anti-inflammatory properties of three flavanones isolated from Inula viscosa, sakuranetin, 7-O-methylaromadendrin, and 3-acetyl-7-O-methylaromadendrin, have been tested both in vitro and in vivo. Acute inflammation in vivo was induced by means of topical application of 12-O-tetradecanoylphorbol 13-acetate (TPA) to mouse ears or by subcutaneous injection of phospholipase A(2) (PLA(2)) into mouse paws. The test compounds were evaluated in vitro for their effect on both the metabolism of arachidonic acid and on the release and/or activity of enzymes involved in the inflammatory response such as elastase, myeloperoxidase (MPO), and protein kinase C (PKC). The most active compounds in vivo against PLA(2)-induced paw oedema were 7-O-methylaromadendrin (ED(50)=8 mg/kg) and sakuranetin (ED(50)=18 mg/kg). In contrast, the most potent compound against TPA-induced ear oedema was 3-acetyl-7-O-methylaromadendrin (ED(50)=185 microg/ear), followed by sakuranetin (ED(50)=205 microg/ear). In vitro, the latter compound was the most potent inhibitor of leukotriene (LT) B(4) production by peritoneal rat neutrophils (IC(50)=9 microM) and it was also the only compound that directly inhibited the activity of 5-lipoxygenase (5-LOX). 3-Acetyl-7-O-methylaromadendrin also inhibited LTB(4) production (IC(50)=15 microM), but had no effect on 5-LOX activity. The only flavanone that inhibited the secretory PLA(2) activity in vitro was 7-O-methylaromadendrin. This finding may partly explain the anti-inflammatory effect observed in vivo, although other mechanisms such as the inhibition of histamine release by mast cells may also be implicated. Sakuranetin at 100 microM was found to inhibit elastase release, although this result is partly due to direct inhibition of the enzyme itself. At the same concentration, 7-O-methylaromadendrin only affected the enzyme release. Finally, none of the flavanones exhibited any effect on MPO or PKC activities. Taken together, these findings indicate that

  16. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Feyen, J.H.; van der Wilt, G.; Moonen, P.; Di Bon, A.; Nijweide, P.J.

    1984-12-01

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (/sup 14/C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (/sup 3/H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3.

  17. Dietary arachidonic acid in perinatal nutrition

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar lev...

  18. Effects of organometals on cellular signaling. I. Influence of metabolic inhibitors on metal-induced arachidonic acid liberation.

    Science.gov (United States)

    Käfer, A; Krug, H F

    1994-09-01

    Organic lead and tin compounds stimulate an increase of free arachidonic acid (AA) in HL-60 cells. This fatty acid is involved in numerous health problems and physiological mechanisms. Three major pathways result in a liberation of AA from membrane phospholipids and there is evidence that G-proteins serve as couplers within all three pathways. Therefore we investigated the influence of pertussis toxin (PT) on the organometallic-induced AA liberation. The effect of all studied compounds (organotin and organo-lead) was diminished by PT. We conclude that the organometals activate PLA2 to some extent via a PT-sensitive pathway. The ionophor A 23187 (1-10 microM) led to an increase of free AA by raising the intracellular Ca2+ level. One of the postulated ways of AA release is via Ca2+ channel activation; phospholipases are Ca2+ dependent. Thus, we examined the necessity of free intracellular Ca2+ for the organometallic effect. The Ca2+ chelator EGTA inhibited the increase of free AA induced by organometals. This is true also for verapamil, a Ca2+ channel blocker. Quinacrine, which is thought to be an inhibitor of phospholipase A2 (PLA2), prevented the AA liberation from membrane phospholipids induced by organometals. This could be due to the inhibition of PLA2, but it could also be the result of an inhibited Ca2+ influx.

  19. The effect of trinitrobenzene sulfonic acid on gut-derived smooth muscle cell arachidonic acid metabolism: role of endogenous prostanoids

    Directory of Open Access Journals (Sweden)

    W. E. Longo

    1997-01-01

    Full Text Available The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB, a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE2 and 6-keto PGF-1α release, but not leukotriene B4 release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.

  20. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Wang, Yuzhong [Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079 (China); Zheng, Hao; Yu, Wei; Chai, Hongyan [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390,USA (United States); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Yue, Jiang; Peng, Renxiu [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  1. [Studies on arachidonic acid production by Mortierella].

    Science.gov (United States)

    Bao, S; Zhu, F; Lin, W; Yao, R

    1997-10-01

    The effects of the incubation temperature, initial pH of the medium, carbon source and nitrogen source on the production of arachidonic acid by Mortierella sp. M10 were studied. Thought orthogonal experiments, the optimum culture medium was obtained (g/L): glucose, 100; yeast extract, 10; KNO3, 4.0; KH2PO4, 2.0; CaCl2.2H2O, 0.1; MgSO4.7H2O, 0.5; FeCl3.6H2O, 0.015; ZnSO4.7H2O, 0.0075; CuSO4.5H2O, 0.0005. Under the optimum culture conditions, the dry cell weight and arachidonic acid was 33.51 g/L and 0.827 g/L, respectively. The flask culture process was analysed.

  2. Comparison of the effect of timegadine, levamisole, and D-penicillamine on human neutrophil metabolism of endogenous arachidonic acid and chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.H.; Ahnfelt-Roenne, I. Department of Pharmacology, Leo Pharmaceutical Products, Ballerup; Elmgreen, J.

    1988-01-01

    The effect of timegadine, a novel experimental antirheumatic drug, on human neutrophil (PMN) 5-lipoxygenase activity and leukotriene B/sub 4/ (LTB/sub 4/) chemotaxis was compared with that of two second-line antiinflammatory drugs, D-penicillamine and levamisole. 1-/sup 14/C-Arachidonic acid (AA) was incorporated into the purified cells until steady state conditions were obtained. After preincubation with serial dilutions of the three drugs, AA release and metabolism was stimulated with calcium ionophore A23187. The radioactive eicosanoids released were extracted and separated by thinlayer chromatography, followed by autoradiography and quantitative laser densitometry. Chemotaxi of PMNs towards LTB/sub 4/ was measured in a modified Boyden chamber. Timegardine showed dose-dependent inhibition of both the 5-lipoxygenase pathway (IC50 3.4 x 10/sup -5/ M), and of chemotaxis (IC50 3 x 10/sup -4/ M). Inhibition of the release of AA from phospholipids, however, occurred only at therapeutically irrelevant doses (millimolar concentrations). Levamisole and D-penicillamine did not inhibit any of the cell functions investigated. Inhibition of both neutrophil motility and cellular synthesis of pro-inflammatory eicosanoids, may thus contribute to the clinical effects of timegadine in rheumatoid arthritis.

  3. Correlation between arachidonic acid oxygenation and luminol-induced chemiluminescence in neutrophils: inhibition by diethyldithiocarbamate.

    Science.gov (United States)

    Chabannes, B; Perraut, C; El Habib, R; Moliere, P; Pacheco, Y; Lagarde, M

    1997-04-01

    Neutrophils from allergic subjects were hypersensitive to stimulation by low calcium ionophore concentration (0.15 microM), resulting in an increased formation of leukotriene B4 (LTB4), 5S-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-HETE), and other arachidonic acid metabolites through the 5-lipoxygenase pathway. In parallel, luminol-dependent chemiluminescence was also higher in neutrophils from allergic patients at the basal state and after stimulation by calcium ionophore, revealing an enhancement of radical oxygen species and peroxide production. The activity of glutathione peroxidase, the main enzyme responsible for hydroperoxide reduction, was lowered in these cells. Diethyl-dithiocarbamate (DTC) induced a concentration-dependent decrease in chemiluminescence and arachidonic acid metabolism after neutrophil stimulation. These data show that the elevation of arachidonic acid metabolism in neutrophils from allergic patients is strongly correlated with oxidative status. This elevation may be the consequence of an increased cellular hydroperoxide known to activate 5-lipoxygenase (5-LOX) activity and/or an increased arachidonic acid availability, due either to phospholipase A2 (PLA2) activation or inhibition of arachidonate reesterification into phospholipids. Lowering this oxidative status was associated with a concomitant decrease of this metabolism. Our results suggest that the effect of DTC may be the consequence of an inhibition of peroxyl radical and cellular lipid hydroperoxide production. Thus, DTC may modulate arachidonic acid metabolism in neutrophils by modulating the cellular hydroperoxide level.

  4. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Petrescu, G; Nelemans, SA

    1998-01-01

    Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions b

  5. Arachidonic acid metabolism in TNS-induced chronic and immunologic enteritis in rats, and the effect of 5-ASA

    NARCIS (Netherlands)

    F.J. Zijlstra (Freek); A.P.J. van Dijk (Arie); N. Selve (N.); J.H.P. Wilson (Paul)

    1993-01-01

    textabstractInflammation of the rat distal intestine was induced by intradermal sensitization and subsequent multiple intrajejunal challenge with the hapten 2,4,6-trinitrobenzenesulphonic acid (TNBS) via an implanted catheter. The time course of the inflammatory reaction was followed by determinatio

  6. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  7. The effect of non-steroidal anti-inflammatory drugs on the metabolism of /sup 14/C-arachidonic acid by human gingival tissue in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-09-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with /sup 14/C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam.

  8. The effects on plasma, red cell and platelet fatty acids of taking 12 g/day of ethyl-eicosapentaenoate for 16 months : dihomogammalinolenic, arachidonic and docosahexaenoic acids and relevance to Inuit metabolism

    NARCIS (Netherlands)

    Horrobin, David; Fokkema, M Rebecca; Muskiet, Frits A J

    2003-01-01

    A patient with mantle cell lymphoma took 12g/day of ethyl-eicosapentaenoate for 16 months. Compared to reference values, eicosapentaenoic and docosapentaenoic acids were elevated in plasma, red cells and platelets but docosahexaenoic acid levels were in the normal range. Arachidonic acid levels were

  9. Mechanism of arachidonic acid action on syntaxin-Munc18.

    Science.gov (United States)

    Connell, Emma; Darios, Frédéric; Broersen, Kerensa; Gatsby, Naomi; Peak-Chew, Sew-Yeu; Rickman, Colin; Davletov, Bazbek

    2007-04-01

    Syntaxin and Munc18 are, in tandem, essential for exocytosis in all eukaryotes. Recently, it was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by arachidonic acid, indicating that this common second messenger acts to disrupt the syntaxin-Munc18 interaction. Here, we show that arachidonic acid can stimulate syntaxin 1 alone, indicating that it is syntaxin 1 that undergoes a structural change in the syntaxin 1-Munc18 complex. Arachidonic acid is incapable of dissociating Munc18 from syntaxin 1 and, crucially, Munc18 remains associated with syntaxin 1 after arachidonic-acid-induced syntaxin 1 binding to synaptosomal-associated protein 25 kDa (SNAP25). We also show that the same principle operates in the case of the ubiquitous syntaxin 3 isoform, highlighting the conserved nature of the mechanism of arachidonic acid action. Neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) can be isolated from brain membranes in a complex with endogenous Munc18, consistent with a proposed function of Munc18 in vesicle docking and fusion.

  10. The Essentiality of Arachidonic Acid in Infant Development

    Directory of Open Access Journals (Sweden)

    Kevin B. Hadley

    2016-04-01

    Full Text Available Arachidonic acid (ARA, 20:4n-6 is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6. This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.

  11. Targeted Chiral Analysis of Bioactive Arachidonic Acid Metabolites Using Liquid-Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Clementina Mesaros

    2012-04-01

    Full Text Available A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID and tandem mass spectrometry (MS/MS. Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS; whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.

  12. Uptake and release of arachidonic acid by platelets and cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, E.J.

    1985-01-01

    The release by thrombin of arachidonic acid, and the accompanying phospholipid metabolism, were studied in human platelets. At 23/sup 0/C, arachidonate release was half-maximal by 10-30 sec after stimulation, and preceded substantial increase in phosphatidic acid (PA) mass. (/sup 3/H)-glycerol-labeled platelets synthesized phospholipids from (/sup 3/H) PA at a rate of 0.08-0.3 nmol/min/10/sup 9/ cells at 37/sup 0/C. This rate of PA turnover was not enhanced by thrombin stimulation. Thus, an increase in PA mass is not a necessary event in the pathway loading to arachidonate release, and the release of several nmol of arachidonate from PI in the first minute after thrombin stimulation could not have arisen via PA as an intermediate. Biological function of arachidonate-specific acyl-CoA synthetase was examined in platelets and in HSDM/sub 1/C/sub 1/ murine fibrosarcoma cells. Washed platelets were found to take up and esterify into cellular phospholipids eicosanoid precursor fatty acids present at concentrations of 5-500 nM. The uptake process was saturable with respect to fatty acid concentration, with apparent K/sub m/ less than or equal to 85 nM. Stearate, oleate and linoleate were taken up less rapidly, and with higher apparent K/sub m/'s (greater than or equal to 170 nM). High affinity uptake was also found in HSDM/sub 1/C/sub 1/ cells. The fatty acid structural requirements of arachidonoyl-CoA synthetase were examined. Among common mammalian fatty acids, only eicosanoid precursors and docosahexaenoate could serve as substrates. These studies strongly suggest that the synthetase is required for normal eicosanoid homeostasis.

  13. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M. (Univ. of Michigan, Ann Arbor (USA))

    1990-08-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung.

  14. Selective Inhibition of Human Group IIA-secreted Phospholipase A2 (hGIIA) Signaling Reveals Arachidonic Acid Metabolism Is Associated with Colocalization of hGIIA to Vimentin in Rheumatoid Synoviocytes*

    Science.gov (United States)

    Lee, Lawrence K.; Bryant, Katherine J.; Bouveret, Romaric; Lei, Pei-Wen; Duff, Anthony P.; Harrop, Stephen J.; Huang, Edwin P.; Harvey, Richard P.; Gelb, Michael H.; Gray, Peter P.; Curmi, Paul M.; Cunningham, Anne M.; Church, W. Bret; Scott, Kieran F.

    2013-01-01

    Human group IIA secreted phospholipase A2 (hGIIA) promotes tumor growth and inflammation and can act independently of its well described catalytic lipase activity via an alternative poorly understood signaling pathway. With six chemically diverse inhibitors we show that it is possible to selectively inhibit hGIIA signaling over catalysis, and x-ray crystal structures illustrate that signaling involves a pharmacologically distinct surface to the catalytic site. We demonstrate in rheumatoid fibroblast-like synoviocytes that non-catalytic signaling is associated with rapid internalization of the enzyme and colocalization with vimentin. Trafficking of exogenous hGIIA was monitored with immunofluorescence studies, which revealed that vimentin localization is disrupted by inhibitors of signaling that belong to a rare class of small molecule inhibitors that modulate protein-protein interactions. This study provides structural and pharmacological evidence for an association between vimentin, hGIIA, and arachidonic acid metabolism in synovial inflammation, avenues for selective interrogation of hGIIA signaling, and new strategies for therapeutic hGIIA inhibitor design. PMID:23482564

  15. Human monocyte differentiation stage affects response to arachidonic acid.

    Science.gov (United States)

    Escobar-Alvarez, Elizabeth; Pelaez, Carlos A; García, Luis F; Rojas, Mauricio

    2010-01-01

    AA-induced cell death mechanisms acting on human monocytes and monocyte-derived macrophages (MDM), U937 promonocytes and PMA-differentiated U937 cells were studied. Arachidonic acid induced apoptosis and necrosis in monocytes and U937 cells but only apoptosis in MDM and U937D cells. AA increased both types of death in Mycobacterium tuberculosis-infected cells and increased the percentage of TNFalpha+ cells and reduced IL-10+ cells. Experiments blocking these cytokines indicated that AA-mediated death was TNFalpha- and IL-10-independent. The differences in AA-mediated cell death could be explained by high ROS, calpain and sPLA-2 production and activity in monocytes. Blocking sPLA-2 in monocytes and treatment with antioxidants favored M. tuberculosis control whereas AA enhanced M. tuberculosis growth in MDM. Such evidence suggested that AA-modulated effector mechanisms depend on mononuclear phagocytes' differentiation stage.

  16. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activation...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  17. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status

  18. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijick-Brouwer, D. A. Janneke; Hadders-Algra, Mijna; Doornbos, Bennard; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Muskiet, Frits A. J.; Djick-Brouwer, D.A.J.

    2009-01-01

    Introduction: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. Maternal diet influences milk DHA, whereas milk AA seems rather constant. We investigated milk AA, DHA and DHA/AA after supplementation of AA plus DHA, or DHA alone during pregnancy and lactation.

  19. Dietary arachidonic acid in perinatal nutrition: a commentary.

    Science.gov (United States)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar levels in breast milk throughout the world, whereas the level of DHA is highly diet dependent. Autopsy studies show similar diet-dependent variation in brain DHA, whereas AA is little affected by intake. Early intake of DHA has been shown to affect visual development, but the effect of LCPUFA on neurodevelopment remains to be established. Few studies have found any functional difference between infants supplemented with DHA alone compared to DHA+AA, but some studies show neurodevelopmental advantages in breast-fed infants of mothers supplemented with n-3 LCPUFA alone. It also remains to be established whether the AA/DHA balance could affect allergic and inflammatory outcomes later in life. Disentangling effects of genetic variability and dietary intake on AA and DHA-status and on functional outcomes may be an important step in the process of determining whether AA-intake is of any physiological or clinical importance. However, based on the current evidence we hypothesize that dietary AA plays a minor role on growth and development relative to the impact of dietary DHA.

  20. Arachidonic and eicosapentaenoic acids in Araucariaceae, a unique feature among seed plants

    Directory of Open Access Journals (Sweden)

    Wolff Robert L.

    2000-01-01

    Full Text Available It is generally admitted that seed plants (spermaphytes are unable to synthesize either arachidonic or eicosapentaenoic acids (AA and EPA, the classic essential fatty acids in animals. We give here chromatographic and spectrometric data showing that species from the primitive family Araucariaceae (gymnosperms are able to synthesize AA and/or EPA in their seeds and leaves. Agathis robusta, in particular, contains AA and EPA in small amounts in its seeds, with no D5-unsaturated polymethylene-interrupted fatty acids (D5-UPIFA with 18 carbon atoms, whereas Araucaria spp. contain both AA and C18 D5-UPIFA. In both species, D5-UPIFA with 20 carbon atoms are present as in all other Coniferophytes. All metabolic intermediates necessary for the biosynthesis of AA and/or EPA have been characterized in Araucariaceae seeds. The relevance of these observations is discussed with regard to the phylogeny of Coniferophytes.

  1. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells

    Indian Academy of Sciences (India)

    Ralph H Schaloske; Dagmar Blaesius; Christina Schlatterer; Daniel F Lusche

    2007-12-01

    Cyclic AMP (cAMP) is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8–9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycolbis(b-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3-receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.

  2. Comparison of arachidonate metabolism by alveolar macrophages from bighorn and domestic sheep.

    Science.gov (United States)

    Silflow, R M; Foreyt, W J; Taylor, S M; Laegreid, W W; Liggitt, H D; Leid, R W

    1991-02-01

    We have defined the metabolites of arachidonic acid (AA) secreted by alveolar macrophages (AMs) of bighorn sheep and domestic sheep in response to three agents: calcium ionophore A23187, phorbol myristate acetate (PMA), and opsonized zymosan. Cells were labeled with [3H]AA prior to stimulation and 11 tritiated metabolites, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and hydroxyeicosatetraenoic acids (HETEs), were detected and quantitated by high-performance liquid chromotography and radiometry. Zymosan stimulation resulted in the release of significantly elevated quantities (P less than 0.05), of LTB4, [5(S), 12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid], 5-HETE, [5(S)-hydroxyeicosatetraenoic acid], and the nonenzymatic isomers of LTB4, [LTB I, 5(S),12(R)-6-trans-LTB4] and LTB II, [5(S), 12(S)-6-trans-LTB4], from domestic sheep AM when compared to bighorn sheep AM. Phorbol myristate acetate (PMA) stimulation released significantly elevated quantities (P less than 0.04), of TXB2, (thromboxane B2), HHT, [12(S)-12-hydroxy-5,8,10-heptadecaenoic acid], LTB I, LTB II, and 15-HETE, [15(S)-hydroxyeicosatetraenoic acid] from domestic sheep AMs when compared to bighorn sheep AMs. However, after A23187 challenge, only 15-HETE was significantly elevated (P less than 0.04) in domestic sheep AMs when compared to bighorn sheep AMs. These clear differences in AA metabolism of AMs obtained from bighorn and domestic sheep in response to three different agonists suggest not only different control mechanisms for lung metabolism of AA in the two species, but also suggest that differences in the metabolites released may lead to quite different regulation of lung defense mechanisms in the two sheep species.

  3. Arachidonic acid production by Mortierella alpina using raw crop materials

    Directory of Open Access Journals (Sweden)

    Ganggang Cao

    2015-06-01

    Full Text Available Background. Arachidonic acid (ARA is one of the three essential fatty acids, and it is important for human body to keep healthy and is widely used. At present, expensive materials such as glucose and yeast extract are generally reported to be optimal for ARA production. A new cost-effective fermentation process including cheaper material for ARA production is of great signifi cance. Material and methods. Feasibility of using corn meal and powdered soybean for fungal growth and lipid accumulation was evaluated by means of single factor test. N-hexadecane concentration was optimized, and the effect of temperature on biomass and ARA content was examined. Results. Mortierella alpina made better use of the aforementioned material as carbon and nitrogen sources for both hyphae growth and ARA production compared with glucose and yeast extract. Maximal levels of 10.9 g/L ARA and 26.1 g/L total lipids were obtained when 66 g/L corn meal, 54 g/L soybean meal and 6% (v/v n-hexadecane were supplemented. A temperature-shift strategy involved three steps, namely, 30°C (3 days – 25°C (4 days – 20°C (4 days, which further improved ARA production by 24.7%. Conclusion. Several factors such as carbon and nitrogen sources, temperature and dissolved oxygen had great infl uence on biomass and microbial oil production. Mortierella alpina preferred corn and soybean meal compared with glucose and yeast extract, which would surely alleviate the high cost of ARA production. Based on this study, the new process is both low cost and practicable.

  4. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  5. Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders.

    Science.gov (United States)

    Yui, Kunio; Imataka, George; Nakamura, Hiroyuki; Ohara, Naoki; Naito, Yukiko

    2015-01-01

    Arachidonic acid (AA)-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of a wide variety of physiological responses and pathological processes, and control important cellular processes. AA can be converted into biologically active compounds by metabolism by cyclooxygenases (COX). Beneficial effect of COX-2 inhibitor celecoxib add-on therapy has been reported in early stage of schizophrenia. Moreover, add-on treatment of celecoxib attenuated refractory depression and bipolar depression. Further, the COX/prostaglandin E pathway play an important role in synaptic plasticity and may be included in pathophysiology in autism spectrum disorders (ASD). In this regard, plasma transferrin, which is an iron mediator related to eicosanoid signaling, may be related to social impairment of ASD. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, and the only isoform responsible for propagating the inflammatory response. Thus, COX-2 inhibitors considered as the best target for Alzheimer's disease.

  6. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    2000-01-01

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg e

  7. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  8. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition

    NARCIS (Netherlands)

    Dijck-Brouwer, DAJ; Hadders-Algra, M; Bouwstra, H; Decsi, T; Boehm, G; Martini, IA; Boersma, ER; Muskiet, FAJ

    2005-01-01

    Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term i

  9. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine.

    Science.gov (United States)

    Hu, Sherry Shu-Jung; Bradshaw, Heather B; Benton, Valery M; Chen, Jay Shih-Chieh; Huang, Susan M; Minassi, Alberto; Bisogno, Tiziana; Masuda, Kim; Tan, Bo; Roskoski, Robert; Cravatt, Benjamin F; Di Marzo, Vincenzo; Walker, J Michael

    2009-10-01

    N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.

  10. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    DEFF Research Database (Denmark)

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...

  11. Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic levels in postmenopausal women

    NARCIS (Netherlands)

    Giltay, E.J.; Duschek, E.J.J.; Katan, M.B.; Neele, S.J.; Netelenbos, J.C.; Zock, P.L.

    2004-01-01

    Estrogens may affect the essential n-6 and n-3 fatty acids arachidonic acid (AA; C20:4n-6) and docosahexaenoic acid (DHA; C22:6n-3). Therefore, we investigated the long-term effects of hormone replacement therapy and raloxifene, a selective estrogen-receptor modulator, in two randomized, double-blin

  12. Arachidonic acid reduces the stress response of gilthead seabream Sparus aurata L.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Nixon, O.; Wendelaar Bonga, S.E.

    2004-01-01

    In this study the influence of the dietary level of the fatty acid arachidonic acid (ArA, 20:4n-6) was determined on the acute stress response and osmoregulation of adult gilthead seabream Sparus aurata L. Seabream were fed a diet containing either 0.9% or 2.4% of total fatty acids as ArA for 18 day

  13. Ultraviolet B irradiation induces changes in the distribution and release of arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1987-05-01

    There is increasing evidence that derivatives of 20-carbon polyunsaturated fatty acids, the eicosanoids, play an important role in the inflammatory responses of the human skin. To better understand the metabolic fate of fatty acids in the skin, the effect of ultraviolet B (UVB) irradiation (280-320 nm) on the distribution and release of /sup 14/C-labeled arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid in human keratinocytes in culture was investigated. Ultraviolet B irradiation induced the release of all three /sup 14/C-labeled fatty acids from the phospholipids, especially from phosphatidylethanolamine, and this was accompanied by increased labeling of the nonphosphorus lipids. This finding suggests that UVB induces a significant liberation of eicosanoid precursor fatty acids from cellular phospholipids, but the liberated fatty acids are largely reincorporated into the nonphosphorus lipids. In conclusion, the present study suggests that not only arachidonic acid but also dihomo-gamma-linolenic acid, and eicosapentaenoic acid might be involved in the UVB irradiation-induced inflammatory reactions of human skin.

  14. Dietary supplementation with arachidonic acid in tilapia (Oreochromis mossambicus) reveals physiological effects not mediated by prostaglandins.

    NARCIS (Netherlands)

    Anholt, R.D. van; Spanings, F.A.T.; Koven, W.M.; Wendelaar Bonga, S.E.

    2004-01-01

    This study aims to clarify the role of the polyunsaturated fatty acid arachidonic acid (ArA, 20:4n-6) in the stress response of Mozambique tilapia (Oreochromis mossambicus). ArA is converted into eicosanoids, including prostaglandins, which can influence the response to stressors. Tilapia, a species

  15. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A...

  16. Effect of gomisin A (TJN-101) on the arachidonic acid cascade in macrophages.

    Science.gov (United States)

    Ohkura, Y; Mizoguchi, Y; Morisawa, S; Takeda, S; Aburada, M; Hosoya, E

    1990-02-01

    It has been reported that leukotrienes (LTs) may play a role in inflammatory liver diseases, and several inhibitors of LTs show an inhibitory effect on experimental liver injuries. In this study, the effect of Gomisin A (TJN-101), which is a lignan component of schisandra fruits, on the arachidonic acid cascade in macrophages was examined to explain the mechanisms of the inhibitory effect of TJN-101 on liver injuries. The production of leukotriene B4 was suppressed by treatment with TJN-101, while the activity of 5-lipoxygenase was not affected. The release of arachidonic acid from macrophages stimulated with fMet-Leu-Phe or the Ca++ ionophore A23187 was suppressed by treatment with TJN-101. The activity of phospholipase A2 was not affected by treatment with TJN-101. These results suggested that TJN-101 produces an inhibitory effect on the biosynthesis of LTs by preventing the release of arachidonic acid, and it was thought that the preventive effect on the arachidonic acid cascade may be partially associated with the inhibitory effect of TJN-101 on liver injuries.

  17. Cell survival signalling through PPARδ and arachidonic acid metabolites in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Emma Bell

    Full Text Available Retinoic acid (RA has paradoxical effects on cancer cells: promoting cell death, differentiation and cell cycle arrest, or cell survival and proliferation. Arachidonic acid (AA release occurs in response to RA treatment and, therefore, AA and its downstream metabolites may be involved in cell survival signalling. To test this, we inhibited phospholipase A2-mediated AA release, cyclooxygenases and lipoxygenases with small-molecule inhibitors to determine if this would sensitise cells to cell death after RA treatment. The data suggest that, in response to RA, phospholipase A2-mediated release of AA and subsequent metabolism by lipoxygenases is important for cell survival. Evidence from gene expression reporter assays and PPARδ knockdown suggests that lipoxygenase metabolites activate PPARδ. The involvement of PPARδ in cell survival is supported by results of experiments with the PPARδ inhibitor GSK0660 and siRNA-mediated knockdown. Quantitative reverse transcriptase PCR studies demonstrated that inhibition of 5-lipoxygenase after RA treatment resulted in a strong up-regulation of mRNA for PPARδ2, a putative inhibitory PPARδ isoform. Over-expression of PPARδ2 using a tetracycline-inducible system in neuroblastoma cells reduced proliferation and induced cell death. These data provide evidence linking lipoxygenases and PPARδ in a cell survival-signalling mechanism and suggest new drug-development targets for malignant and hyper-proliferative diseases.

  18. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. (TRC Environmental Corporation, Chapel Hill, NC (United States))

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  19. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    Science.gov (United States)

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA.

  20. Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity

    Institute of Scientific and Technical Information of China (English)

    Luca; Munaron

    2011-01-01

    Cell signaling is a very complex network of biochemical reactions triggered by a huge number of stimuli coming from the external medium. The function of any single signaling component depends not only on its own structure but also on its connections with other biomolecules. During prokaryotic-eukaryotic transition, the rearrangement of cell organization in terms of diffusional compartmentalization exerts a deep change in cell signaling functional potentiality. In this review I briefly introduce an intriguing ancient relationship between pathways involved in cell responses to chemical agonists (growth factors, nutrients, hormones) as well as to mechanical forces (stretch, osmotic changes). Some biomolecules (ion channels and enzymes) act as "hubs", thanks to their ability to be directly or indirectly chemically/mechanically co-regulated. In particular calcium signaling machinery and arachidonic acid metabolism are very ancient networks, already present before eukaryotic appearance. A number of molecular "hubs", including phospholipase A2 and some calcium channels, appear tightly interconnected in a cross regulation leading to the cellular response to chemical and mechanical stimulations.

  1. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-02-01

    Human keratinocytes in culture were labelled with /sup 14/C-dihomo-gamma-linolenic acid, /sup 14/C-arachidonic acid or /sup 14/C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.

  2. Allometric scaling of dietary linoleic acid on changes in tissue arachidonic acid using human equivalent diets in mice

    Directory of Open Access Journals (Sweden)

    Whelan Jay

    2011-06-01

    Full Text Available Abstract Background It is hypothesized that dietary linoleic acid (LA promotes chronic and acute diseases in humans by enriching tissues with arachidonic acid (AA, its downstream metabolite, and dietary studies with rodents have been useful for validation. However, levels of LA in research diets of rodents, as published in the literature, are notoriously erratic making interspecies comparisons unreliable. Therefore, the ability to extrapolate the biological effects of dietary LA from experimental rodents to humans necessitates an allometric scaling model that is rooted within a human equivalent context. Methods To determine the physiological response of dietary LA on tissue AA, a mathematical model for extrapolating nutrients based on energy was used, as opposed to differences in body weight. C57BL/6J mice were divided into 9 groups fed a background diet equivalent to that of the US diet (% energy with supplemental doses of LA or AA. Changes in the phospholipid fatty acid compositions were monitored in plasma and erythrocytes and compared to data from humans supplemented with equivalent doses of LA or AA. Results Increasing dietary LA had little effect on tissue AA, while supplementing diets with AA significantly increased tissue AA levels, importantly recapitulating results from human trials. Conclusions Thus, interspecies comparisons for dietary LA between rodents and humans can be achieved when rodents are provided human equivalent doses based on differences in metabolic activity as defined by energy consumption.

  3. The skeletal muscle arachidonic acid cascade in health and inflammatory disease.

    Science.gov (United States)

    Korotkova, Marina; Lundberg, Ingrid E

    2014-05-01

    Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.

  4. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    Directory of Open Access Journals (Sweden)

    Hamid-Reza Samadlouie

    2014-06-01

    Full Text Available The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.

  5. Effects of fluticasone propionate inhalation on levels of arachidonic acid metabolites in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gert T. Verhoeven

    2001-01-01

    Full Text Available Background: In smoking COPD patients the bronchoalveolar lavage (BAL fluid contains high numbers of inflammatory cells. These cells might produce arachidonic acid (AA metabolites, which contribute to inflammation and an increased bronchomotor tone.

  6. Evaluation of Bioequivalency and Toxicological Effects of Three Sources of Arachidonic Acid (ARA) in Domestic Piglets

    OpenAIRE

    2011-01-01

    Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are routinely added to infant formula to support growth and development. We evaluated the bioequivalence and safety of three ARA-rich oils for potential use in infant formula using the neonatal pig model. The primary outcome for bioequivalence was brain accretion of ARA and DHA. Days 3 to 22 of age, domestic pigs fed one of three formulas, each containing ARA at ~0.64% and DHA at ~0.34% total fatty acids (FA). Control diet ARA was provided...

  7. Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells.

    Science.gov (United States)

    Hughes-Fulford, Millie; Tjandrawinata, Raymond R; Li, Chai-Fei; Sayyah, Sina

    2005-09-01

    For the past 60 years, dietary intake of essential fatty acids has increased. Moreover, the omega-6 fatty acids have recently been found to play an important role in regulation of gene expression. Proliferation of human prostate cells was significantly increased 48 h after arachidonic acid (AA) addition. We have analyzed initial uptake using nile red fluorescence and we found that the albumin conjugated AA is endocytosed into the cells followed by the induction of RNA within minutes, protein and PGE2 synthesis within hours. Here we describe that AA induces expression of cytosolic phospholipase A2 (cPLA2) in a dose-dependent manner and that this upregulation is dependent upon downstream synthesis of PGE2. The upregulation of cox-2 and cPLA2 was inhibited by flurbiprofen, a cyclooxygenase (COX) inhibitor, making this a second feed-forward enzyme in the eicosanoid pathway. Cox-2 specific inhibitors are known to inhibit colon and prostate cancer growth in humans; however, recent findings show that some of these have cardiovascular complications. Since cPLA2 is upstream in the eicosanoid pathway, it may be a good alternative for a pharmaceutical target for the treatment of cancer.

  8. Docosahexaenoic acid suppresses arachidonic acid-induced proliferation of LS-174T human colon carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Piet Habbel; Karsten H Weylandt; Katja Lichopoj; Johannes Nowak; Martin Purschke; Jing-Dong Wang; Cheng-Wei He; Daniel C Baumgart; Jing X Kang

    2009-01-01

    AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth.METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in cells incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2ELISA.RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly,DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation.DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner.CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.

  9. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro.

    Science.gov (United States)

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro

    2015-08-01

    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses.

  10. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    Science.gov (United States)

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity.

  11. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    2008-01-01

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  12. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main phy siological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid , protein and total fatty acids (TFA), in this alga exposed to old culture super natant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) wer e investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiol ogical parameters. The longer the culture was exposed to OCS and the more CEAE w ere added into the algal culture, the more the above physiological properties we re inhibited. Arachidonic acid (AA), the dominant component of fatty acids in th is alga, was also seriously inhibited with respect to total TFA, AFDW of cell ma ss, or culture volume, due to a probable reduction of enzymes activities catalyz ing chain elongation from C18:1ω9 to AA. These results incontestably evidenced t hat some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhi bited P. incisa growth through feedback. Hence, any efficient removal of aut o-i nhibitors from algal culture to decrease their bioactivity could be good for max imal production of desired products like AA.

  13. PHYSIOLOGICAL INHIBITORY EFFECT OF OCS IN ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE, CHLOROPHYTA)

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张成武; ZviCohen; AmosRichmond

    2002-01-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main physiological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid, protein and total fatty acids (TFA), in this alga exposed to old culture supernatant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) were investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiological parameters. The longer the culture was exposed to OCS and the more CEAE were added into the algal culture, the more the above physiological properties were inhibited. Arachidonic acid (AA), the dominant component of fatty acids in this alga, was also seriously inhibited with respect to total TFA, AFDW of cell mass, or culture volume, due to a prebable reduction of enzymes activities catalyzing chain elongation from C18:1ω9 to AA. These results incontestably evidenced that some CEAE dissolving substances existing in OCS, like auto-inhibitors, inhibited P. incisa growth through feedback. Hence, any efficient removal of auto-inhibitors from algal culture to decrease their bioactivity could be good for maximal production of desired products like AA.

  14. Physiological inhibitory effect of ocs in arachidonic acid-rich Parietochloris incisa (trebouxiophyceae, chlorophyta)

    Science.gov (United States)

    Liu, Jian-Guo; Zhang, Cheng-Wu; Cohen, Zvi; Richmond, Amos

    2002-09-01

    Parietochloris incisa is an arachidonic acid-rich snow green alga. The main physiological profiles, such as ash free dry weight (AFDW), chlorophyll, carotenoid, protein and total fatty acids (TFA), in this alga exposed to old culture supernatant (OCS) at the decline phase or its crude ethyl acetate extracts (CEAE) were investigated by using tubular photobioreactors of different diameters. Results showed that both OCS and CEAE had strong inhibitory effect on the above physiological parameters. The longer the culture was exposed to OCS and the more CEAE were added into the algal culture, the more the above physiological properties were inhibited. Arachidonic acid (AA), the dominant component of fatty acids in this alga, was also seriously inhibited with respect to total TFA, AFDW of cell mass, or culture volume, due to a probable reduction of enzymes activities catalyzing chain elongation from C18; 1ω9 to AA. These results incontestably evidenced that some CEAE dissolving substances existing in OCS. like auto-inhibitors, inhibited P. incisa growth through feedback. Hence, any efficient removal of auto-inhibitors from algal culture to decrease their bioactivity could be good for maximal production of desired products like AA.

  15. Biochemical and pharmacological effects of dipyrone and its metabolites in model systems related to arachidonic acid cascade.

    Science.gov (United States)

    Weithmann, K U; Alpermann, H G

    1985-01-01

    The metabolites of dipyrone (metamizol, Novalgin) were compared with appropriate standard drugs for their influences on the pathways of the arachidonic acid metabolism. The drugs in this study had no significant effects on the lipoxygenase pathway in human neutrophils in vitro. The dipyrone metabolites 4-methylaminoantipyrine (MAAP) and 4-aminoantipyrine (AAP) inhibited prostaglandin synthesis in the 10(-3) to 10(-4) mol/l range thus being comparable to acetylsalicylic acid (ASA), whereas the two additional metabolites 4-acetylaminoantipyrine (AAAP) and 4-formylaminoantipyrine (FAAP) were practically inactive. This result is in accordance with the effects of the metabolites on the formation of oedema in the arthritis rat model, and supports published data showing that MAAP and AAP are the metabolites responsible for the clinical effects of dipyrone. Further systems in our study depending at least partially on the prostaglandin pathway were the release of antiaggregatory activity from rat aortae in vitro and the aggregation of human platelets induced by arachidonic acid in vitro. MAAP exhibits antiaggregatory activity (IC50 5 x 10(-6) mol/l), whereas the inhibitory effect on the vascular antiaggregatory release is much weaker. Compared to normals platelet aggregability ex vivo is enhanced in arthritic rats, but could significantly be lowered again by treatment of the rats with MAAP. A further system studied was the release of 6-keto-PGF1 alpha from rat mucosa in vitro and ex vivo. In vitro there is inhibition to be found with MAAP as well as with ASA. Ex vivo, however, dipyrone or MAAP slightly stimulates mucosal 6-keto-PGF1 alpha rather than inhibiting it, whereas ASA exerts inhibition, as expected.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Targeting arachidonic acid pathway to prevent programmed hypertension in maternal fructose-fed male adult rat offspring.

    Science.gov (United States)

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-12-01

    Hypertension can be programmed in response to nutritional insults in early life. Maternal high-fructose (HF) intake induced programmed hypertension in adult male offspring, which is associated with renal programming and arachidonic acid metabolism pathway. We examined whether early treatment with a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-Deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) can prevent HF-induced programmed hypertension. Pregnant Sprague Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) during the whole period of pregnancy and lactation. Four groups of male offspring were studied: control, HF, HF+AUDA and HF+15dPGJ2. In HF+AUDA group, mother rats received AUDA 25 mg/L in drinking water during lactation. In the HF+15dPGJ2 group, male offspring received 15dPGJ2 1.5 mg/kg body weight by subcutaneous injection once daily for 1 week after birth. Rats were sacrificed at 12 weeks of age. Maternal HF-induced programmed hypertension is associated with increased renal protein level of SEH and oxidative stress, which early AUDA therapy prevents. Comparison of AUDA and 15dPGJ2 treatments demonstrated that AUDA was more effective in preventing HF-induced programmed hypertension. AUDA therapy increases angiotensin converting enzyme-2 (ACE2) protein levels and PGE2 levels in adult offspring kidney exposed to maternal HF. 15dPGJ2 therapy increases plasma asymmetric dimethylarginine (ADMA) levels and decreases L-arginine-to-ADMA ratio. Better understanding of the impact of arachidonic acid pathway, especially inhibition of SEH, on renal programming may aid in developing reprogramming strategy to prevent programmed hypertension in children exposed to antenatal HF intake.

  17. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid

  18. The effect of prostaglandin E2 and arachidonic acid on dentinogenesis in pigs.

    Science.gov (United States)

    Burke, A; Weiler, H

    2001-01-01

    The rate of dentinogenesis for the pig is quantified and the effects of dietary arachidonic acid supplementation and/or exogenous prostaglandin on dentine formation are defined. Thirty-six pigs were randomised to four groups, receiving either standard or supplemented formula and either prostaglandin E2 or placebo injections for fifteen days. Double tetracycline banding is used to measure rate of growth in the teeth. The average rate of dentinogenesis for all the study animals is 17.96 microm/day. Results show that the rate of dentinogenesis is not significantly affected by the interaction of hormone and dietary supplementation.

  19. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids.

    Science.gov (United States)

    Yin, Huiyong; Zhou, Yunhua; Zhu, Mingjiang; Hou, Sarina; Li, Zi; Zhong, Huiqin; Lu, Jianhong; Meng, Tao; Wang, Junhong; Xia, Lin; Xu, Yue; Wu, Yuncheng

    2013-05-01

    Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.

  20. Lyso(bis)phosphatidic acid: a preferred donor of arachidonic acid for macrophage-synthesis of eicosanoids

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, F.; Roddick, V.; Connor, J.; Waite, M.

    1986-05-01

    In order to dissect mechanisms of arachidonic acid (20:4) metabolism, two cell populations were investigated, resident (AM) and Bacillus Calmette-Guerin-activated (BCG-AM) rabbit alveolar macrophages. After purified AM were labeled overnight with (/sup 3/H)20:4, radioactivity was localized primarily within lyso(bis)phosphatidic acid (L(bis)PA) (13.1%), phosphatidylethanolamine (PE) (22.8%) and phosphatidylcholine (PC) (26.7%), with lesser amounts recovered in phosphatidyl-serine (PS) plus phosphatidylinositol (PI) (9.2%). By contrast, analysis of the phospholipid classes from prelabeled BCG-AM revealed that the mass of L(bis)PA as well as its (/sup 3/H)20:4 content was profoundly decreased while other BCG-AM phospholipids remained unchanged. When (/sup 3/H)20:4-labeled AM were stimulated with 1 ..mu..M 12-0-tetradecanoyl-phorbol-13-acetate (TPA), a loss of (/sup 3/H)20:4 was observed from L(bis)PA, PE, PC, and PS/PI with a corresponding increase in eicosanoid synthesis. BCG-AM exposed to either TPA or 3.8 ..mu..M Ca/sup +2/ ionophore A23187 liberated (/sup 3/H)20:4 solely from Pe and PC. BCG-AM, which exhibited depressed eicosanoid formation, consistently failed to deacylate (/sup 3/H)20:4 from L(bis)PA or PI. Their evidence suggests that the diminution of eicosanoid synthesis by BCG-AM may be due to the reduction of 20:4 contained within specific phospholipid pools, namely L(bis)PA.

  1. Glycerol-3-phosphate acyltransferase-2 is expressed in spermatic germ cells and incorporates arachidonic acid into triacylglycerols.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Cattaneo

    Full Text Available BACKGROUND: De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT. In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid. METHODS AND RESULTS: Incubation of GPAT2-transfected CHO-K1 cells with [1-(14C]arachidonate for 3 h increased incorporation of [(14C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2's role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein. CONCLUSIONS: These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.

  2. [The role of arachidonic acid metabolites in the regulation of renal function and pathogenesis of hypertension].

    Science.gov (United States)

    Certíková Chábová, V

    2008-01-01

    Eicosanoids are twenty-carbon compounds derived from arachidonic acid. Lipoxygenases, cyclooxygenases and cytochrome P-450 enzymes contribute to their synthesis. Our review is focused on prostaglandins, leucotrienes, lipoxins, hepoxilins, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. Most of these compounds have multiple functions and they also participate in blood pressure regulation and excretion of water and solutes in the kidney. They have some roles in the patogenesis of kidney disease, too. Both experimental models (mainly geneticaly modified mice and rats) and human epidemiological and genetical studies are used in the investigation of eicosanoid physiological and patophysiological functions. New information about their enzymatic regulations and receptors have already resulted in the development of new drugs, mainly antiasthmatics, but further investigation should bring about new results in the treatment of hypertension and other cardiovascular and renal diseases.

  3. The target of arachidonic acid pathway is a new anticancer strategy for human prostate cancer

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-07-01

    Full Text Available Masahide Matsuyama, Rikio YoshimuraDepartment of Urology, Osaka City University Graduate School of Medicine, Osaka, JapanAbstract: Recent epidemiological studies and animal experiments have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs reduce the incidence of colorectal carcinoma. Cyclooxygenase (COX is the principal target of NSAIDs. COX is the first oxidase in the process of prostaglandin production from arachidonic acid. COX enzyme may be involved in the initiation and/or the promotion of carcinogenesis due to NSAIDs inhibition of COX. Lipoxygenase (LOX is also an initial enzyme in the pathway for producing leukotrienes from arachidonic acid. Similar to COX, LOX enzyme may also be involved in the initiation and/or promotion of carcinogenesis. Peroxisome proliferator activator-receptor (PPAR-γ is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and carcinogenesis. PPAR-γ is one target for cell growth modulation of NSAIDs. In this review, we report the expression of COX-2, LOX and PPAR-γ in human prostate cancer tissues as well as the effects of COX-2 and LOX inhibitors and PPAR-γ ligand.Keywords: cyclooxygenase, lipoxygenase, peroxisome proliferator activator-receptor-γ, prostate cancer

  4. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  5. Regulation of the arachidonic acid-stimulated respiratory burst in neutrophils by intra- cellular and extracellular calcium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The respiratory burst is an important physiological function ofthe neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.

  6. Inhibition by amiloride and by Na-depletion of A23187-stimulated arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1988-01-01

    Rat peritoneal mast cells, labelled with [C]arachidonic acid, released histamine and [C]arachidonic acid upon the addition of A23187. The release induced by low concentrations of A23187 was suppressed by removal of extracellular Na and by addition of the Na/H exchange inhibitor, amiloride. Addition...

  7. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    Energy Technology Data Exchange (ETDEWEB)

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. (Baylor College of Medicine, Houston, TX (USA))

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  8. Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

    Directory of Open Access Journals (Sweden)

    Carlos Rodrigo Camara-Lemarroy

    2012-01-01

    Full Text Available After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD. This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise.

  9. Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

    Science.gov (United States)

    Camara-Lemarroy, Carlos Rodrigo; Gonzalez-Moreno, Emmanuel Irineo; Guzman-de la Garza, Francisco Javier; Fernandez-Garza, Nancy Esthela

    2012-01-01

    After peripheral nerve injury, a process of axonal degradation, debris clearance, and subsequent regeneration is initiated by complex local signaling, called Wallerian degeneration (WD). This process is in part mediated by neuroglia as well as infiltrating inflammatory cells and regulated by inflammatory mediators such as cytokines, chemokines, and the activation of transcription factors also related to the inflammatory response. Part of this neuroimmune signaling is mediated by the innate immune system, including arachidonic acid (AA) derivatives such as prostaglandins and leukotrienes. The enzymes responsible for their production, cyclooxygenases and lipooxygenases, also participate in nerve degeneration and regeneration. The interactions between signals for nerve regeneration and neuroinflammation go all the way down to the molecular level. In this paper, we discuss the role that AA derivatives might play during WD and nerve regeneration, and the therapeutic possibilities that arise. PMID:22997489

  10. Ozone toxicity: hormone-like oxidation products from arachidonic acid by ozone-catalyzed autoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Roycroft, J.H.; Cunter, W.B.; Menzel, D.B.

    1977-09-01

    The effects of peroxidation by ozone on the activity of arachidonic acid (AA) with and without vitamin E, on the initiation of human platelet aggregation, and on the contraction of superfused smooth muscle strips, are described. AA was rapidly oxidized by a stream of air containing 2 ppm of ozone to peroxides having biological activity similar to prostaglandin endoperoxides. Ozone-formed AA peroxides contracted both rabbit aortic strips and rat fundus strips in the presence of indomethacin and vasoactive hormones at doses comparable to naturally formed prostaglandin endoperoxides. Vitamin E had no effect on the activity of AA peroxides once formed. Ozone-formed AA peroxides also aggregated human platelets in platelet rich plasma, but this activity was blocked by the addition of indomethacin. (2 diagrams, 3 graphs, 8 references)

  11. Arachidonic acid modulates hippocampal calcium current via protein kinase C and oxygen radicals.

    Science.gov (United States)

    Keyser, D O; Alger, B E

    1990-10-01

    Arachidonic acid (AA) is a second messenger liberated via receptor activation of phospholipase A2 or diacylglycerol-lipase. We used whole-cell voltage clamp of acutely isolated hippocampal CA1 pyramidal cells to investigate the hypothesis that AA modulates Ca2+ channel current (ICa) via activation of protein kinase C (PKC) and generation of free radicals. AA depressed ICa in a dose- and time-dependent manner similar to that previously reported for the action of phorbol esters on ICa. A similar depression was seen with a xanthine-based free radical generating system. The specific PKC inhibitor PKCI (19-36), the protein kinase inhibitor H-7, and the superoxide free radical scavenger SOD each blocked ICa depression by 70%-80%. Complete block of the AA response occurred when SOD was used simultaneously with a PKC inhibitor. These data suggest that PKC and free radicals play a role in AA-induced suppression of ICa.

  12. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    Science.gov (United States)

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema.

  13. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer.

    NARCIS (Netherlands)

    Siezen, Christine L E; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Kram, Nicolien R; Doeselaar, Marina van; Kranen, Henk J van

    2006-01-01

    The objective of this study on colorectal cancer was to investigate the associations between SNPs in the genes involved in the arachidonic acid (AA)-pathway, their haplotypes and colorectal cancer. Moreover, interactions between SNPs and fish consumption were considered. In this study, a total of 50

  14. Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain.

    Science.gov (United States)

    Qu, W; Bradbury, J A; Tsao, C C; Maronpot, R; Harry, G J; Parker, C E; Davis, L S; Breyer, M D; Waalkes, M P; Falck, J R; Chen, J; Rosenberg, R L; Zeldin, D C

    2001-07-06

    A cDNA encoding a new cytochrome P450 was isolated from a mouse brain library. Sequence analysis reveals that this 1,958-base pair cDNA encodes a 57-58-kDa 502-amino acid polypeptide that is 70-91% identical to CYP2J subfamily P450s and is designated CYP2J9. Recombinant CYP2J9 was co-expressed with NADPH-cytochrome P450 oxidoreductase (CYPOR) in Sf9 cells using a baculovirus system. Microsomes of CYP2J9/CYPOR-transfected cells metabolize arachidonic acid to 19-hydroxyeicosatetraenoic acid (HETE) thus CYP2J9 is enzymologically distinct from other P450s. Northern analysis reveals that CYP2J9 transcripts are present at high levels in mouse brain. Mouse brain microsomes biosynthesize 19-HETE. RNA polymerase chain reaction analysis demonstrates that CYP2J9 mRNAs are widely distributed in brain and most abundant in the cerebellum. Immunoblotting using an antibody raised against human CYP2J2 that cross-reacts with CYP2J9 detects a 56-kDa protein band that is expressed in cerebellum and other brain segments and is regulated during postnatal development. In situ hybridization of mouse brain sections with a CYP2J9-specific riboprobe and immunohistochemical staining with the anti-human CYP2J2 IgG reveals abundant CYP2J9 mRNA and protein in cerebellar Purkinje cells. Importantly, 19-HETE inhibits the activity of recombinant P/Q-type Ca(2+) channels that are known to be expressed preferentially in cerebellar Purkinje cells and are involved in triggering neurotransmitter release. Based on these data, we conclude that CYP2J9 is a developmentally regulated P450 that is abundant in brain, localized to cerebellar Purkinje cells, and active in the biosynthesis of 19-HETE, an eicosanoid that inhibits activity of P/Q-type Ca(2+) channels. We postulate that CYP2J9 arachidonic acid products play important functional roles in the brain.

  15. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    Science.gov (United States)

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  16. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina

    Institute of Scientific and Technical Information of China (English)

    Wenjia Wu; Jiacheng Yan; Xiaojun Ji; Xin Zhang; Jingsheng Shang; Lina Sun; Lujing Ren; He Huang

    2015-01-01

    Mortierel a alpina has been considered as the most effective producer of arachidonic acid (ARA)-rich oil. It was found that several methods could improve the percentage of ARA in total lipids successful y, as they activated the desaturation system on the endoplasmic reticulum. Additionally, in M. alpina the ARA exists in several forms, such as triacylglycerol (TAG), and diacylglycerol (DAG). These forms are caused by different acyltransferases and they determine the nutrient value of the microbial oil. However, few works revealed de-tailed fatty acid distribution among lipid classes, which to some extent impeded the accurate regulation in ARA accumulation. Herein, this paper gives information on the accumulation process of main lipid classes and the changes of fatty acid composition in these lipids during ARA accumulation period in M. alpina. The result dem-onstrates that TAG was the dominant component of the total lipids, and it is the main form for ARA storage. The ARA enrichment stage occurred during 168–192 h when the amount of total lipids maintained steady. Further analysis indicated that the newly formed ARA-TAG might come from the incorporation and modification of sat-urated and monounsaturated fatty acids in other lipid classes. This work could be helpful for further optimization of ARA-rich TAG production.

  17. Arachidonic acid accumulates in the stromal macrophages during thymus involution in diabetes.

    Science.gov (United States)

    Gruia, Alexandra T; Barbu-Tudoran, Lucian; Mic, Ani A; Ordodi, Valentin L; Paunescu, Virgil; Mic, Felix A

    2011-07-01

    Diabetes is a debilitating disease with chronic evolution that affects many tissues and organs over its course. Thymus is an organ that is affected early after the onset of diabetes, gradually involuting until it loses most of its thymocyte populations. We show evidence of accumulating free fatty acids with generation of eicosanoids in the diabetic thymus and we present a possible mechanism for the involution of the organ during the disease. Young rats were injected with streptozotocin and their thymuses examined for cell death by flow cytometry and TUNEL reaction. Accumulation of lipids in the diabetic thymus was investigated by histology and electron microscopy. The identity and quantitation of accumulating lipids was done with gas chromatography-mass spectrometry and liquid chromatography. The expression and dynamics of the enzymes were monitored via immunohistochemistry. Diabetes causes thymus involution by elevating the thymocyte apoptosis. Exposure of thymocytes to elevated concentration of glucose causes apoptosis. After the onset of diabetes, there is a gradual accumulation of free fatty acids in the stromal macrophages including arachidonic acid, the substrate for eicosanoids. The eicosanoids do not cause thymocyte apoptosis but administration of a cyclooxygenase inhibitor reduces the staining for ED1, a macrophage marker whose intensity correlates with phagocytic activity. Diabetes causes thymus involution that is accompanied by accumulation of free fatty acids in the thymic macrophages. Excess glucose is able to induce thymocyte apoptosis but eicosanoids are involved in the chemoattraction of macrophage to remove the dead thymocytes.

  18. [ANALYSIS OF ARACHIDONIC ACID RELATIVE CONTENT CHANGES IN ERYTHROCYTES AND PLATELETS PHOSPHOLIPIDS MEMBRANES FEATURES IN CORONARY HEART DISEASE WITH ATRIAL FIBRILLATION PATIENTS].

    Science.gov (United States)

    Lizogub, V G; Zavalska, T V; Merkulova, I O; Bryuzgina, T S

    2015-01-01

    Erythrocytes and platelets phospholipid membranes fatty acid spectrum was detected in coronary heart disease and atrial fibrillation patients and in patients with coronary heart disease without atrial fibrillation. 87 patients were investigated. Significant decrease in the arachidonic acid relative content in coronary heart disease patients compared with healthy individuals was related. As well as a significant decrease in the arachidonic acid relative content in coronary heart disease and atrial fibrillation patients compared with coronary heart disease patients without atrial fibrillation was related too. These dates may indicate that decreasing relative content arachidonic acid can be possible pathogenetic link in the development of arrhythmias.

  19. Effect of some saturated and unsaturated fatty acids on prostaglandin biosynthesis in washed human blood platelets from (1-/sup 14/ C)arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, K.C.; Awasthi, K.K.; Lindegard, P.; Tiwari, K.P.

    1982-03-01

    The effects of some saturated (lauric, palmitic and stearic) an unsaturated (linoleic, gamma-linolenic, alpha-linolenic and oleic) fatty acids at 0.1. 0.25 and 0.5 mM concentrations on the in vitro metabolization of (1-14 C) arachidonic acid by washed human blood platelets have been studied. Effects of these fatty acids were studied with intact as well as lysed platelet preparations. With intact platelet preparations it was found that (i) all unsaturated fatty acids enhanced the biosynthesis of TxB2, PGE2, PGD2 and PGF2 alpha, (ii) unsaturated fatty acids reduced the formation of HHT and HETE with the exception of oleic acid which showed very little effect, (iii) unsaturated fatty acids reduced the formation of MDA, whereas palmitic and stearic acids increased its formation and (iv) all unsaturated fatty acids reduced the synthesis of prostaglandin endoperoxides. These results support our previous observations where effects of fatty acids were examined at higher concentrations (10). At 0.1 mM FA concentration, inconsistent results were obtained. With lysed platelet preparations all cyclooxygenase products were reduced in presence of unsaturated fatty acids, whereas HETE formation was reduced only in presence of linoleic and gamma-linolenic acids. Electron micrographs of washed platelet suspensions were obtained with untreated platelet preparations and platelet preparations treated with 0.25 and 0.5 mM linoleic acid concentrations. The results are discussed in the light of a possible soap-like effect of FA salt on platelets.

  20. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to omega-3 fatty acids

    Directory of Open Access Journals (Sweden)

    Hitesh Vaidya

    2015-03-01

    Full Text Available Background: The effects of long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA on the regulation of adipocytes metabolism are well known. These fatty acids are generally consumed together in our diets; however, the metabolic regulation of adipocytes in the presence of these fatty acids when given together is not known. Objective: To investigate the effects of n-3 PUFA and arachidonic acid (AA, an n-6 PUFA, on the regulation of adipogenic and lipogenic genes in mature 3T3-L1 adipocytes. Methods: 3T3-L1 adipocytes were incubated in the presence or absence of 100 µM of eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA; docosapentaenoic acid, DPA and AA, either alone or AA+n-3 PUFA; control cells received bovine serum albumin alone. The mRNA expression of adipogenic and lipogenic genes was measured. The fatty acid composition of adipocytes was analyzed using gas chromatography. Results: Individual n-3 PUFA or AA had no effect on the mRNA expression of peroxisome-proliferator-activated receptor-γ; however, AA+EPA and AA+DPA significantly increased (P<0.05 the expression compared to control cells (38 and 42%, respectively. AA and AA+EPA increased the mRNA expression of acetyl-CoA carboxylase 1 (P<0.05. AA treatment decreased the mRNA expression of stearoyl-CoA desaturase (SCD1 (P<0.01, while n-3 PUFA, except EPA, had no effect compared to control cells. AA+DHA and AA+DPA inhibited SCD1 gene expression (P<0.05 suggesting a dominant effect of AA. Fatty acids analysis of adipocytes revealed a higher accretion of AA compared to n-3 PUFA. Conclusions: Our findings reveal that AA has a dominant effect on the regulation of lipogenic genes in adipocytes.

  1. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein

    Science.gov (United States)

    Iljina, Marija; Tosatto, Laura; Choi, Minee L.; Sang, Jason C.; Ye, Yu; Hughes, Craig D.; Bryant, Clare E.; Gandhi, Sonia; Klenerman, David

    2016-09-01

    The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

  2. Ethanolic extract of Piper betle Linn. leaves reduces nociception via modulation of arachidonic acid pathway

    Directory of Open Access Journals (Sweden)

    Soumita De

    2013-01-01

    Full Text Available Objectives: The objective of this study was to evaluate the peripheral analgesic effect of Piper betle leaf extract (PBE along with establishing its putative mechanism of action. Materials and Methods: Male Swiss albino mice after pre-treatment (1 h with different doses of PBE were injected 0.8% (v/v acetic acid i.p.; the onset and number of writhes were noted up to 15 min. To evaluate the mechanism of action, the murine peritoneal exudate was incubated with PBE for 1 h, followed by exposure to arachidonic acid (AA and generation of reactive oxygen species (ROS was measured by flow cytometry using 2′,7′-dichlorodihydrofluorescein diacetate. Results: PBE in a dose dependent manner significantly reduced acetic acid induced writhing response in mice (P < 0.001. In peritoneal exudates, PBE significantly inhibited AA induced generation of ROS, P < 0.01. Conclusions: The present study indicates that PBE has promising analgesic activity, worthy of future pharmacological consideration.

  3. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  4. The effect of antibiotic exposure on eicosanoid generation from arachidonic acid and gene expression in a primitive chordate, Branchiostoma belcheri.

    Science.gov (United States)

    Yuan, Dongjuan; Pan, Minming; Zou, Qiuqiong; Chen, Chengyong; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Chloramphenicol (Chl) is an effective antimicrobial agent widely used in veterinary medicine and commonly used in fish. Its use is restricted in the clinic because of adverse effects on the immune system and oxidative stress in mammals. However, the effects of Chl treatment on invertebrates remain unclear. Amphioxus, a basal chordate, is an ideal model to study the origin and evolution of the vertebrate immune system as it has a primary vertebrate-like arachidonic acid (AA) metabolic system. Here, we combined transcriptomic and lipidomic approaches to investigate the immune system and observe the oxygenated metabolites of AA to address the antibiotic effects on amphioxus. Tissue necrosis of the gill slits occurred in the Chl-treated amphioxus, but fewer epithelial cells were lost when treated with both Chl and ampicillin (Amp). The immune related pathways were dysregulated in both of the antibiotic treatment groups. The Chl alone treatment resulted in immunosuppression with down-regulation of the innate immune genes. In contrast, the Chl + Amp treatment resulted in immunostimulation to some extent, as shown by KEGG clustering. Furthermore, Chl induced a 3-fold reduction in the level of the eicosanoids, while the Chl + Amp treatment resulted in 1.7-fold increase of eicosanoid level. Thus in amphioxus, Amp might relieve the effects of the Chl-induced immune suppression and increase the level of eicosanoids from AA. Finally, the oxygenated metabolites from AA might be crucial to evaluate the effects of Chl treatment in animals.

  5. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid.

    Science.gov (United States)

    Korbecki, J; Baranowska-Bosiacka, I; Gutowska, I; Chlubek, D

    2013-08-01

    Reactive oxygen species (ROS), such as hydrogen peroxide, superoxide anion radical or hydroxyl radical, play an important role in inflammation processes as well as in transduction of signals from receptors to interleukin -1β (IL-1β), tumor necrosis factor α (TNF-α) or lipopolysaccharides (LPS). NADPH oxidase increases the ROS levels, leading to inactivation of protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and protein tyrosine phosphatase (PTP): MAPK phosphatase 1 (MKP-1). Inactivation of phosphatases results in activation of mitogen-activated protein kinase (MAPK) cascades: c-Jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (Erk), which, in turn, activate cytosolic phospholipase A₂ (cPLA₂). ROS cause cytoplasmic calcium influx by activation of phospholipase C (PLC) and phosphorylation of IP₃-sensitive calcium channels. ROS activate nuclear factor κB (NF-κB) via IκB kinase (IKK) through phosphoinositide 3-kinase (PI3K), tumor suppressor phosphatase and tensin homolog (PTEN) and protein kinase B (Akt/PKB) or NF-κB-inducing kinase (NIK). IKK phosphorylates NF-κB α subunit (IκBα) at Ser³². Oxidative stress inactivates NIK and IκB kinase γ subunit/NF-κB essential modulator (IKKγ/NEMO), which might cause activation of NF-κB that is independent on IKK and inhibitor of IκBα degradation, including phosphorylation of Tyr⁴² at IκBα by c-Src and spleen tyrosine kinase (Syk), phosphorylation of the domain rich in proline, glutamic acid, serine and threonine (PEST) sequence by casein kinase II and inactivation of protein tyrosine phosphatase 1B (PTP1B). NF-κB and MAPK cascades-activated transcription factor activator protein 1 (AP-1) and CREB-binding protein (CBP/p300) lead to expression of cytosolic phospholipase A₂ (cPLA₂), cyclooxygenase-2 (COX-2) and membrane-bound prostaglandin E synthase 1 (mPGES-1), and thus to increased release of arachidonic acid and production of prostaglandins, particularly

  6. Development of a defined medium for arachidonic acid production by Mortierella alpina using a visualization method.

    Science.gov (United States)

    Liu, Xin; Ji, Xiaojun; Zhang, Hongman; Fu, Ninghua; Yan, Liexiang; Deng, Zhongtao; Huang, He

    2012-11-01

    Defined medium for arachidonic acid (ARA) production by Mortierella alpina was optimized for its metabolomics study. For this purpose, a visualization method (VM) was applied for the first time. Experiments were designed according to the uniform design with four factors (concentrations of glucose, NaNO(3), KH(2)PO(4) and MgSO(4)·7H(2)O) for each at nine levels. Dry cell weight (DCW), ARA yield in DCW [percent (w/w)] and ARA content in total fatty acids [percent (w/w)] were considered as the three objectives. Optimization of single-objective function and multi-objective function of two objectives and three objectives was attempted. Optimal DCW, ARA yield and ARA content were predicted to occur in a medium that contained (grams per litre): glucose 35, NaNO(3) 1, KH(2)PO(4) 7.5 and MgSO(4)·7H(2)O 2.6. Upon verification, the average tested DCW (12.95 g/l), ARA yield (18.89 %) and ARA content (42.36 %) were fairly close to the predicted values (12.88 g/l, 9.68 % and 35.57 %, respectively). Moreover, DCW, ARA yield and ARA content from the optimum medium increased by 35.68, 47.23 and 30.90 % compared with control, respectively, indicating that VM had succeeded in exploiting the biomass growth and ARA production by M. alpina.

  7. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug.

    Directory of Open Access Journals (Sweden)

    Daniel H Lopez

    Full Text Available BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS: The analogue of arachidonic acid (AA, 2-hydroxy-arachidonic acid (2OAA, was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method and iNOS (Western blot were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE: These findings demonstrate the potential of 2OAA as a NSAID.

  8. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease.

    Science.gov (United States)

    Norris, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-04-01

    Membrane phospholipids make up a substantial portion of the human brain, and changes in their amount and composition are thought to play a role in the pathogenesis of age-related neurodegenerative disease. Nevertheless, little is known about the changes that phospholipids undergo during normal adult aging. This study examined changes in phospholipid composition in the mitochondrial and microsomal membranes of human dorsolateral prefrontal cortex over the adult life span. The largest age-related changes were an increase in the abundance of both mitochondrial and microsomal phosphatidylserine 18:0_22:6 by approximately one-third from age 20 to 100 years and a 25% decrease in mitochondrial phosphatidylethanolamine 18:0_20:4. Generally, increases were seen with age in phospholipids containing docosahexaenoic acid across both membrane fractions, whereas phospholipids containing either arachidonic or adrenic acid decreased with age. These findings suggest a gradual change in membrane lipid composition over the adult life span.

  9. Phospholipid, arachidonate and eicosanoid signaling in schizophrenia

    OpenAIRE

    Messamore Erik; Yao Jeffrey K.

    2016-01-01

    This paper reviews the potential role of arachidonic acid in the pathophysiology of schizophrenia. We discuss how abnormal levels of arachidonic acid may arise, and how dysregulation of signaling molecules derived from it have the potential to disrupt not only dopamine signaling, but numerous other physiological processes associated with the illness. Pharmacological doses of niacin stimulate the release of arachidonic acid; and arachidonic acid-derived molecules in turn dilate blood vessels i...

  10. The effects of anaerobic training in serum lipids and arachidonic acid metabolites

    Directory of Open Access Journals (Sweden)

    GEORGIOS KIPREOS

    2010-01-01

    Full Text Available Coronary arteries are subjected daily in high shear stress and manifest atherosclerosis very early in life in comparison to other arteries in the human body. Some factors that are implicated in the evolution and progress of this process are the concentration of lipids and arachidonic acid metabolites, such prostacyclin and thromboxane. It has been reported that those who participate in aerobic activities such as walking, cycling, jogging or brisk walking might have normal values of the mentioned chemical substances. On the other hand, it is reported that the effects of anaerobic and strength activities has negative effects on the vascular endothelium, which is essential for the maintenance of hemostatic balance and the local regulation of vascular tone.Therefore, even although extensive research has been conducted in this field, there are crucial gaps in our knowledge. Consequently, the purpose of this brief review is to describe what is known about the effects of anaerobic activities in which the competitive athletes have participated on the following blood parameters: Total cholesterol, triglycerides, high density lipoprotein cholesterol (HDL - C, low density lipoproteins cholesterol (LDL - C, prostacyclin & thromboxane.

  11. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects.

    Science.gov (United States)

    Altinbas, Burcin; Topuz, Bora Burak; İlhan, Tuncay; Yilmaz, Mustafa Sertac; Erdost, Hatice; Yalcin, Murat

    2014-08-01

    The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions.

  12. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  13. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    Science.gov (United States)

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  14. Supplementation of DHA but not DHA with arachidonic acid during pregnancy and lactation influences general movement quality in 12-week-old term infants

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Doornbos, Bennard; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Muskiet, Frits A. J.; Hadders-Algra, Mijna

    2010-01-01

    DHA and arachidonic acid (AA) are important for neurodevelopment. A traditional neonatal neurological examination and the evaluation of general movement quality are sensitive techniques for assessing neurodevelopment in young infants. Mildly abnormal general movement,,; at 3 months have been associa

  15. Effect of Arachidonic Acid on the Rate of Oxygen Consumption in Isolated Cardiomyocytes from Intact Rats and Animals with Ischemic or Diabetic Injury to the Heart.

    Science.gov (United States)

    Egorova, M V; Kutsykova, T V; Afanas'ev, S A; Popov, S V

    2015-12-01

    We studied the rate of oxygen consumption by isolated cardiomyocytes from intact rats and animals with experimental myocardial infarction or streptozotocin-induced diabetes mellitus. The measurements were performed in standard incubation medium under various conditions of oxygenation and after addition of arachidonic acid (20 μmol/liter). Under normoxic conditions, arachidonic acid improves respiration of cardiomyocytes from intact animals, but reduces this parameter in cells isolated from animals with pathologies. The intensity of O2 consumption by cardiomyocytes from intact rats and animals with pathologies was shown to decrease during hypoxia. Addition of arachidonic acid aggravated inhibition of respiration for cardiomyocytes from intact rats and specimens with myocardial infarction, but had no effect in diabetes mellitus. The effect of arachidonic acid on oxygen consumption rate is probably mediated by a nonspecific mechanism realized at the mitochondrial level.

  16. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells.

    Science.gov (United States)

    Cho, Young Sik; Kim, Chi Hyun; Kim, Ki Young; Cheon, Hyae Gyeong

    2012-05-01

    Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG.

  17. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  18. Effects of α-linolenic acid and arachidonic acid on the expressions of nuclear transcription factor Nrf 2 and phase Ⅰ metabolism enzyme CYP7A1%α-亚麻酸和花生四烯酸对Nrf2和Ⅰ相代谢酶CYP7A1表达的影响

    Institute of Scientific and Technical Information of China (English)

    张金铭; 张秀英; 郝丽红; 马丽梅

    2016-01-01

    为了检测α-亚麻酸(α-linolenic acid,ALA)和花生四烯酸(arachidonic acid,AA)对于人肝癌细胞系(HepG2细胞)中核转录因子Nrf 2和Ⅰ相代谢酶胆固醇7α-羟化酶(CYP7A1)的mRNA和蛋白质表达的影响,并探究CYP7A1是否受Nrf2的调控,试验以不同浓度的ALA和AA诱导HepG2细胞24 h,之后采用Real-time PCR法和Western-blot法分别检测HepG2细胞内Nrf 2和CYP7A1的mRNA和蛋白质的表达量.结果表明:当使ALA浓度为0.25,0.5,1 mmol/L作用于HepG2细胞时,Nrf2和CYP7A1的mRNA和蛋白质的表达量相比于细胞对照均呈剂量依赖性升高(P<0.01);当使AA浓度为0.25,0.5,1 mmol/L作用于HepG2细胞时,Nrf 2的mRNA和蛋白质的表达量相比于细胞对照呈剂量依赖性升高(P<0.01),但CYP7A1的mRNA和蛋白质的表达量相比于细胞对照则呈剂量依赖性减少(P<0.01).说明不同剂量的ALA和AA对Nrf 2和CYP7A1的mRNA和蛋白质的表达量影响不同,Nrf 2和CYP7A1呈正相关或负相关.

  19. Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid.

    Science.gov (United States)

    Samikkannu, Thangavel; Rao, Kurapati V K; Ding, Hong; Agudelo, Marisela; Raymond, Andrea D; Yoo, Changwon; Nair, Madhavan P N

    2014-01-01

    Arachidonic acid (AA) is known to be increased in HIV infected patients and illicit drug users are linked with severity of viral replication, disease progression, and impaired immune functions. Studies have shown that cocaine accelerates HIV infection and disease progression mediated by immune cells. Dendritic cells (DC) are the first line of antigen presentation and defense against immune dysfunction. However, the role of cocaine use in HIV associated acceleration of AA secretion and its metabolites on immature dendritic cells (IDC) has not been elucidated yet. The aim of this study is to elucidate the mechanism of AA metabolites cyclooxygenase-2 (COX-2), prostaglandin E2 synthetase (PGE2), thromboxane A2 receptor (TBXA2R), cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), 14-3-3 ζ/δ and 5-lipoxygenase (5-LOX) mediated induction of IDC immune dysfunctions in cocaine using HIV positive patients. The plasma levels of AA, PGE2, 15d-PGJ2, 14-3-3 ζ/δ and IDC intracellular COX-2 and 5-LOX expression were assessed in cocaine users, HIV positive patients, HIV positive cocaine users and normal subjects. Results showed that plasma concentration levels of AA, PGE2 and COX-2, TBXA2R and 5-LOX in IDCs of HIV positive cocaine users were significantly higher whereas 15d-PGJ2 and 14-3-3 ζ/δ were significantly reduced compared to either HIV positive subjects or cocaine users alone. This report demonstrates that AA metabolites are capable of mediating the accelerative effects of cocaine on HIV infection and disease progression.

  20. Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid.

    Directory of Open Access Journals (Sweden)

    Thangavel Samikkannu

    Full Text Available Arachidonic acid (AA is known to be increased in HIV infected patients and illicit drug users are linked with severity of viral replication, disease progression, and impaired immune functions. Studies have shown that cocaine accelerates HIV infection and disease progression mediated by immune cells. Dendritic cells (DC are the first line of antigen presentation and defense against immune dysfunction. However, the role of cocaine use in HIV associated acceleration of AA secretion and its metabolites on immature dendritic cells (IDC has not been elucidated yet. The aim of this study is to elucidate the mechanism of AA metabolites cyclooxygenase-2 (COX-2, prostaglandin E2 synthetase (PGE2, thromboxane A2 receptor (TBXA2R, cyclopentenone prostaglandins (CyPG, such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, 14-3-3 ζ/δ and 5-lipoxygenase (5-LOX mediated induction of IDC immune dysfunctions in cocaine using HIV positive patients. The plasma levels of AA, PGE2, 15d-PGJ2, 14-3-3 ζ/δ and IDC intracellular COX-2 and 5-LOX expression were assessed in cocaine users, HIV positive patients, HIV positive cocaine users and normal subjects. Results showed that plasma concentration levels of AA, PGE2 and COX-2, TBXA2R and 5-LOX in IDCs of HIV positive cocaine users were significantly higher whereas 15d-PGJ2 and 14-3-3 ζ/δ were significantly reduced compared to either HIV positive subjects or cocaine users alone. This report demonstrates that AA metabolites are capable of mediating the accelerative effects of cocaine on HIV infection and disease progression.

  1. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia.

    Directory of Open Access Journals (Sweden)

    Gaoliang Yan

    Full Text Available AIMS: Arachidonic acid (AA and its metabolites, prostaglandins (PG are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs. METHODS AND RESULTS: We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM, an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV. CONCLUSION: Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca(2+ channels.

  2. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    Science.gov (United States)

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  3. Year-round high arachidonic acid levels in herbivorous rabbit fish Siganus fuscescens tissues.

    Science.gov (United States)

    Osako, Kazufumi; Saito, Hiroaki; Kuwahara, Koichi; Okamoto, Akira

    2006-05-01

    To identify a stable resource of 20:4 n-6 (arachidonic acid, AA) in marine fish tissues, the lipid profiles of Siganus fuscescens organs (muscle, liver, and other viscera) and stomach contents were examined throughout the year. Crude total lipid (TL) contents in respective organs showed seasonal variations and were high in winter and low in summer. The main FA in TL were 16:0, 18:0, 16:1n-7, 18:1n-9, AA, and 22:6n-3 (DHA). These FA were those generally observed in marine fish lipids, except for comparatively high levels of AA. In TL of muscle and liver, AA showed relatively high values during the period from late May to August (muscle, 4.6-13.1%; liver, 4.5-9.1%), compared with other seasons (muscle, 4.3-9.5%; liver, 3.6-8.4%). The AA levels in TL of other viscera and stomach contents fluctuated (other viscera, 2.0-10.7%; stomach contents, 7.6-26.7%). Regardless of the fishing season, each organ contained a higher level of AA in polar lipids (PL) than in neutral lipids. It was concluded that the fish contain comparatively high levels of AA in their TL throughout the year, and they accumulate AA characteristically in their tissue PL, probably from dietary food sources. Moreover, it was suggested that S. fuscescens has potential utility as a natural marine source of nutritional lipids, because the fish contain comparatively high levels of DHA and AA.

  4. Pathways of arachidonic acid peroxyl radical reactions and product formation with guanine radicals.

    Science.gov (United States)

    Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2008-02-01

    Peroxyl radicals were derived from the one-electron oxidation of polyunsaturated fatty acids by sulfate radicals that were generated by the photodissociation of peroxodisulfate anions in air-equilibrated aqueous solutions. Reactions of these peroxyl and neutral guanine radicals, also generated by oxidation with sulfate radicals, were investigated by laser kinetic spectroscopy, and the guanine oxidation products were identified by HPLC and mass spectrometry methods. Sulfate radicals rapidly oxidize arachidonic (ArAc), linoleic (LnAc), and palmitoleic (PmAc) acids with similar rate constants, (2-4) x 10 (9) M (-1) s (-1). The C-centered radicals derived from the oxidation of ArAc and LnAc include nonconjugated Rn(.) ( approximately 80%) and conjugated bis-allylic Rba(.) ( approximately 20%) radicals. The latter were detectable in the absence of oxygen by their prominent, narrow absorption band at 280 nm. The Rn(.) radicals of ArAc (containing three bis-allylic sites) transform to the Rba(.) radicals via an intramolecular H-atom abstraction [rate constant (7.5 +/- 0.7) x 10 (4) s (-1)]. In contrast, the Rn(.) radicals of LnAc that contain only one bis-allylic site do not transform intramolecularly to the Rba(.) radicals. In the case of PmAc, which contains only one double bond, the Rba(.) radicals are not observed. The Rn(.) radicals of PmAc rapidly combine with oxygen with a rate constant of (3.8 +/- 0.4) x 10(9) M(-1) s(-1). The Rba(.) radicals of ArAc are less reactive and react with oxygen with a rate constant of (2.2 +/- 0.2) x 10 (8) M (-1) s (-1). The ArAc peroxyl radicals formed spontaneously eliminate superoxide radical anions [rate constant = (3.4 +/- 0.3) x 10 (4) M (-1) s (-1)]. The stable oxidative lesions derived from the 2',3',5'-tri- O-acetylguanosine or 2',3',5'-tri- O-acetyl-8-oxo-7,8-dihydroguanosine radicals and their subsequent reactions with ArAc peroxyl radicals were also investigated. The major products found were the 2,5-diamino-4 H

  5. Arachidonic Acid and Cerebral Ischemia Risk: A Systematic Review of Observational Studies

    Directory of Open Access Journals (Sweden)

    Mai Sakai

    2014-11-01

    Full Text Available Background: Arachidonic acid (ARA is a precursor of various lipid mediators. ARA metabolites such as thromboxane A2 cause platelet aggregation and vasoconstriction, thus may lead to atherosclerotic disease. It is unclear whether dietary ARA influences the ARA-derived lipid mediator balance and the risk for atherosclerotic diseases, such as cerebral ischemia. Considering the function of ARA in atherosclerosis, it is reasonable to focus on the atherothrombotic type of cerebral ischemia risk. However, no systematic reviews or meta-analyses have been conducted to evaluate the effect of habitual ARA exposure on cerebral ischemia risk. We aimed to systematically evaluate observational studies available on the relationship between ARA exposure and the atherothrombotic type of cerebral ischemia risk in free-living populations. Summary: The PubMed database was searched for articles registered up to June 24, 2014. We designed a PubMed search formula as follows: key words for humans AND brain ischemia AND study designs AND ARA exposure. Thirty-three articles were reviewed against predefined criteria. There were 695 bibliographies assessed from the articles that included both ARA and cerebral ischemia descriptions. Finally, we identified 11 eligible articles and categorized them according to their reporting and methodological quality. We used the Strengthening the Reporting of Observational Studies in Epidemiology Statement (STROBE checklist to score the reporting quality. The methodological quality was qualitatively assessed based on the following aspects: subject selection, ARA exposure assessment, outcome diagnosis, methods for controlling confounders, and statistical analysis. We did not conduct a meta-analysis due to the heterogeneity among the studies. All eligible studies measured blood ARA levels as an indicator of exposure. Our literature search did not identify any articles that evaluated dietary ARA intake and tissue ARA as assessments of

  6. Dietary fatty acids and the stress response of fish : arachidonic acid in seabream and tilapia

    NARCIS (Netherlands)

    Anholt, Rogier Daniël van

    2004-01-01

    A key factor in the production of fish in commercial aquaculture is the optimization of the artificial diets, not only to achieve optimal growth, but also to maximize fish health. Evidence is accumulating that dietary lipids, particularly the fatty acid composition, can have a direct effect on the f

  7. Effect of extra virgin olive oil components on the arachidonic acid cascade, colorectal cancer and colon cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    C. E. Storniolo

    2016-12-01

    Full Text Available The mediterranean diet (MD reduced the risk of colorectal cancer (CRC, and olive oil, the primary source of fat in the MD, has also been found to have a protective effect. However, animals fed with oleic acid present a high number of intestinal tumours, suggesting that oleic acid and olive oil consumption can exert different effects on CRC. Considering that extra virgin olive oil (EVOO is a complex mix of fatty acids and minor compounds such as polyphenols, hydrocarbons, phytosterols and triterpenes; and that these compounds have antioxidant activity and consequently they can modulate the arachidonic acid (AA cascade and eicosanoid synthesis. This review analyzes the state of the art of olive oil components on the AA cascade and cellular mechanism involved in CRC such as intestinal epithelial cell growth/apoptosis, to understand the fact that the consumption of seed oils with high oleic content or EVOO will probably have different effects on CRC development.

  8. Decreases in Phospholipids Containing Adrenic and Arachidonic Acids Occur in the Human Hippocampus over the Adult Lifespan.

    Science.gov (United States)

    Hancock, Sarah E; Friedrich, Michael G; Mitchell, Todd W; Truscott, Roger J W; Else, Paul L

    2015-09-01

    One of the biggest risk factors for developing Alzheimer's disease is advanced age. Despite several studies examining changes to phospholipids in the hippocampus during the pathogenesis of Alzheimer's disease, little is known regarding changes to phospholipids in this region during normal adult aging. This study examined the phospholipid composition of the mitochondrial and microsomal membranes of the human hippocampus from post-mortem tissue of neurologically normal subjects aged between 18 and 104 years. Many of the age-related changes found were in low-to-moderately abundant phospholipids in both membrane fractions, with decreases with age being seen in many phospholipids containing either adrenic or arachidonic acid. The most abundant phospholipid of this type was phosphatidylethanolamine 18:0_22:4, which decreased in both the mitochondrial and microsomal membranes by approximately 20% from ages 20 to 100. Subsequent decreases with age were seen in total adrenic and arachidonic acid in the phospholipids of both membrane fractions, but not in either fatty acid specifically within the phosphatidylethanolamine class. Increases with age were seen in the hippocampus for mitochondrial phosphatidylserine 18:0_22:6. This is the first report of changes to molecular phospholipids of the human hippocampus over the adult lifespan, with this study also providing a comprehensive profile of the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids of the human hippocampus.

  9. An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS

    OpenAIRE

    Wan Wang; Suzi Qin; Linsen Li; Xiaohua Chen; Qunjie Wang; Junfu Wei

    2015-01-01

    A high throughput sample preparation method was developed utilizing mixed-mode solid phase extraction (SPE) in 96-well plate format for the determination of free arachidonic acid in plasma by LC-MS/MS. Plasma was mixed with 3% aqueous ammonia and loaded into each well of 96-well plate. After washing with water and methanol sequentially, 3% of formic acid in acetonitrile was used to elute arachidonic acid. The collected fraction was injected onto a reversed phase column at 30°C with mobile pha...

  10. Impact of arachidonic acid enrichment of live rotifer prey on bacterial communities in rotifer and larval fish cultures.

    Science.gov (United States)

    Seychelles, Laurent H; Doiron, Kim; Audet, Céline; Tremblay, Réjean; Pernet, Fabrice; Lemarchand, Karine

    2013-03-01

    Rotifers (Brachionus plicatilis), commonly used at first feeding in commercial fish hatcheries, carry a large bacteria load. Because they are relatively poor in essential fatty acids, it is common practice to enrich them with fatty acids, including arachidonic acid (AA). This study aims to determine whether prey enrichment with AA may act as a prebiotic and modify the microbial community composition either in AA-enriched rotifer cultures or in larval-rearing water using winter flounder (Pseudopleuronectes americanus) as a larval fish model. AA enrichment modified the bacterial community composition in both the rotifer culture tanks and the larval-rearing tanks. We observed an increase in the number of cultivable bacteria on TCBS (thiosulfate-citrate-bile salts-sucrose) agar, used as a proxy for the abundance of Vibrio sp. The results suggest that AA may also play an indirect role in larval health.

  11. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kellom Matthew

    2012-05-01

    Full Text Available Abstract Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS, stimulates rat brain arachidonic acid (AA metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h and a high-dose (250 ng/h of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase, and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.

  12. How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome

    Directory of Open Access Journals (Sweden)

    Roberts Matthew A

    2006-04-01

    Full Text Available Introduction Herein, we expand our previous work on the effects of long chain polyunsaturated fatty acids (LC-PUFA on the murine hepatic transcriptome using novel statistical and bioinformatic approaches for evaluating microarray data. The analyses focuses on key differences in the transcriptomic response that will influence metabolism following consumption of FUNG (rich in 20:4n6, FISH (rich in 20:5n3, 22:5n3, and 22:6n3 and COMB, the combination of the two. Results Using a variance-stabilized F-statistic, 371 probe sets (out of 13 K probe sets in the Affymetrix Mu11K chip set were changed by dietary treatment (P Conclusion Distinct transcriptomic, signaling cascades, and predicted affects on murine liver metabolism have been elucidated for 20:4n6-rich dietary oils, 22:6n3-rich oils, and a surprisingly distinct set of genes were affected by the combination of the two. Our results emphasize that the balance of dietary n6 and n3 LC-PUFA provided for infants and in nutritional and neutraceutical applications could have profoundly different affects on metabolism and cell signaling, beyond that previously recognized.

  13. Arachidonic metabolism and radiation toxicity in cultures of vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Eldor, A.; Vlodavsky, I.; Fuks, Z.; Matzner, Y.; Rubin, D.B. (Hadassah Univ. Hospital, Jerusalem (Israel) Rush-Presbyterian-St. Luke' s Medical Center, Chicago, IL (USA))

    1989-06-01

    The authors conclude that the observed changes in eicosanoid production by vascular endothelial cells exposed to ionizing irradiation may be relevant to the pathogenesis of post-radiation injury in small and large blood vessels. Anomalies of PGI{sub 2} production may lead to thrombosis and accelerated arteriosclerosis which are observed in irradiated vessels. The generation of potent cells may greatly facilitate inflammation in irradiated vessels. The model of irradiated cultured endothelial cells may also be useful for the study of various methods and agents aimed at reducing the radiation induced damage to blood vessels. Evaluation of the capacity of cultured endothelial cells to produce eicosanoids may serve as an appropriate index for the metabolic damage induced by radiation. (author).

  14. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    Science.gov (United States)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  15. Synergism between thapsigargin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate on the release of [C]arachidonic acid and histamine from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Jacobsen, S.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Thapsigargin is a potent skin irritating sesquiterpene lactone isolated from the roots of Thapsia garganica L. (Apiaceae). In rat peritoneal mast cells thapsigargin induced a calcium-dependent non-cytotoxic [C]arachidonic acid and histamine release. A minor amount of the released [C...

  16. Evaluation of a subchronic (13-week) oral toxicity study, preceded by an in utero exposure phase, with arachidonic acid oil derived from Mortierella alpina in rats

    NARCIS (Netherlands)

    Hempenius, R.A.; Lina, B.A.R.; Haggitt, R.C.

    2000-01-01

    Arachidonic acid oil (ARA-oil) derived from the fungus Mortierella alpina for use in infant nutrition was tested in a subchronic (13-week) oral toxicity study in rats, preceded by an in utero exposure phase. The ARA-oil was administered as admixture to the rodent diet at dose levels of 3000 ppm, 15,

  17. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  18. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania) : targets for infant formulae close to our ancient diet?

    NARCIS (Netherlands)

    Kuipers, RS; Fokkema, MR; Smit, EN; van der Meulen, J; Boersma, ER; Muskiet, FAJ

    2005-01-01

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the

  19. Generation of trans-arachidonic acid under nitrative stress is associated with upregulation of thromponsdin-1 in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    XU Lin; XU Xun; LIU Yu-min; YAO Zhu-jun; XUN Guo-liang; YU Wen-juan; LIU Kun; SUN Xiao-dong; QIU Yun-ping; WU Hai-xiang

    2011-01-01

    Background Trans-arachidonic acids (TAAs), newly discovered markers of nitrative stress and the major products of nitrogen dioxide (NO2)-mediated isomerization of arachidonic acid (AA), represent a new mechanism of NO2-induced toxicity. It has been reported that TAAs were generated in oxygen-induced microvascular degeneration model and TAAs were also generated in a diabetic retinopathy (DR) model. In this study, we examined high glucose-induced nitrative stress damage and TAAs levels and explored the possible mechanisms for DR caused by reactive nitrogen species. Methods Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) at 60 mg/kg. Bovine retinal capillary endothelial cells (BRECs) were selectively cultured and incubated with normal or high glucose. The serum TAAs and AA in diabetic rats were measured by the gas chromatography and mass spectrometry (GC/MS) method. The ratio of peak area of TAAs to AA with selected ion of 79 was estimated by a group (-test. Thrombospondin-1 (TSP-1) in the rat retinas and BRECs extracts were examined by Western blotting. The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) protein was examined by Western blotting in BRECs incubated with high glucose.Results The TAAs to AA ratio (TAAs/AA) was significantly increased in the serum at 8, 12 and 16 weeks after STZ injection (P 0.05). Expression of TSP-1 in the retina of diabetic rats was progressively elevated according to the duration of diabetes. TSP-1 expression was increased in BRECs incubated with high glucose at 48 hours. Moreover, high glucose also increased ERK1/2 expression, which peaked at 30 minutes and then decreased in the following 48 hours.Conclusion An elevation of TAAs/AA is associated with high glucose-induced nitrative stress, which probably involves upregulation of TSP-1 through activating ERK1/2.

  20. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids.

    Science.gov (United States)

    Lin, Lauren E; Chen, Chuck T; Hildebrand, Kayla D; Liu, Zhen; Hopperton, Kathryn E; Bazinet, Richard P

    2015-02-01

    To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of (3)H-ARA or (3)H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (J out). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the J out was decreased. In the deprived versus adequate n-6 PUFA rats, the J out of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism.

  1. Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand.

    Science.gov (United States)

    Hosoya, Shoichi; Arunpairojana, Vullapa; Suwannachart, Chatrudee; Kanjana-Opas, Akkharawit; Yokota, Akira

    2006-12-01

    Three strains of gliding bacteria, 24(T), 62 and 71, isolated from a marine sponge and algae from the southern coastline of Thailand, were studied using a polyphasic approach to clarify their taxonomic positions. A phylogenetic analysis based on 16S rRNA gene sequences showed that the three isolates formed a distinct lineage within the family 'Saprospiraceae' of the phylum Bacteroidetes and were related to members of the genus Saprospira. The G+C contents of the isolates were in the range 38-39 mol%. The major respiratory quinone was MK-7. The predominant cellular fatty acids were 20 : 4omega6c (arachidonic acid), 16 : 0 and iso-17 : 0. On the basis of morphological, physiological and chemotaxonomic characteristics, together with DNA-DNA hybridization data and 16S rRNA gene sequences, the isolates represent a novel species of a novel genus, for which the name Aureispira marina gen. nov., sp. nov. is proposed. The type strain of Aureispira marina is 24(T) (=IAM 15389(T)=TISTR 1719(T)).

  2. Mechanism of angiotensin II-induced arachidonic acid metabolite release in aortic smooth muscle cells: involvement of phospholipase D.

    Science.gov (United States)

    Shinoda, J; Kozawa, O; Suzuki, A; Watanabe-Tomita, Y; Oiso, Y; Uematsu, T

    1997-02-01

    In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholine-hydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/I and 0.1 mumol/I. D.L.-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells.

  3. Phospholipid, arachidonate and eicosanoid signaling in schizophrenia

    Directory of Open Access Journals (Sweden)

    Messamore Erik

    2016-01-01

    Full Text Available This paper reviews the potential role of arachidonic acid in the pathophysiology of schizophrenia. We discuss how abnormal levels of arachidonic acid may arise, and how dysregulation of signaling molecules derived from it have the potential to disrupt not only dopamine signaling, but numerous other physiological processes associated with the illness. Pharmacological doses of niacin stimulate the release of arachidonic acid; and arachidonic acid-derived molecules in turn dilate blood vessels in the skin. A blunted skin flush response to niacin is reliably observed among patients with schizophrenia. The niacin response abnormality may thus serve as a biomarker to identify a physiological subtype of schizophrenia associated with defective arachidonic acid-derived signaling.

  4. Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses.

    Directory of Open Access Journals (Sweden)

    Motoko Maekawa

    Full Text Available Prepulse inhibition (PPI is a compelling endophenotype (biological markers for mental disorders including schizophrenia. In a previous study, we identified Fabp7, a fatty acid binding protein 7 as one of the genes controlling PPI in mice and showed that this gene was associated with schizophrenia. We also demonstrated that disrupting Fabp7 dampened hippocampal neurogenesis. In this study, we examined a link between neurogenesis and PPI using different animal models and exploring the possibility of postnatal manipulation of neurogenesis affecting PPI, since gene-deficient mice show biological disturbances from prenatal stages. In parallel, we tested the potential for dietary polyunsaturated fatty acids (PUFAs, arachidonic acid (ARA and/or docosahexaenoic acid (DHA, to promote neurogenesis and improve PPI. PUFAs are ligands for Fabp members and are abundantly expressed in neural stem/progenitor cells in the hippocampus. Our results are: (1 an independent model animal, Pax6 (+/- rats, exhibited PPI deficits along with impaired postnatal neurogenesis; (2 methylazoxymethanol acetate (an anti-proliferative drug elicited decreased neurogenesis even in postnatal period, and PPI defects in young adult rats (10 weeks when the drug was given at the juvenile stage (4-5 weeks; (3 administering ARA for 4 weeks after birth promoted neurogenesis in wild type rats; (4 raising Pax6 (+/- pups on an ARA-containing diet enhanced neurogenesis and partially improved PPI in adult animals. These results suggest the potential benefit of ARA in ameliorating PPI deficits relevant to psychiatric disorders and suggest that the effect may be correlated with augmented postnatal neurogenesis.

  5. Involvement of Oxidative Stress and Down-Regulation of Bcl-2 in Arachidonic Acid-Induced Apoptosis in HUVECs

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-hua; WANG Yun; CHEN Li-da; CAO Jin-xiu; ZHOU Wen-jing

    2005-01-01

    Human umbilical vein endothelial cells (HUVECs) were treated with arachidonic acid (AA). After 24 h exposure to AA, typical morphological changes of apoptosis were observed by Giemsa stain and transmission electron microscopy. The apoptotic ratio in HUVECs treated with 50 μmol/L, 100 μmol/L and 150 μmol/L AA were (20.7±3.6) %, (38.6±4.3) % and (52.5±7.5) % respectively. Contrarily, low concentration of AA (≤25 μmol/L) exerted no influence on cell viability by MTT assay. Intracellular malondialdehyde increased significantly in a dose-dependent manner upon AA treatment and the opposite tendency was found for the reduced glutathione. Western Blots show that apoptosis triggered by AA was associated with the down-regulation of Bcl-2 expression, but not with Bax and p53. Pretreatment with 50 μmol/L α-tocopherol reduced AA-induced oxidative stress and apoptosis, also inhibited the down-regulation of Bcl-2/Bax ratio. These results suggested that high concentration of free AA could induce apoptosis in HUVECs probably via oxidative stress and down-regulation of Bcl-2.

  6. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production.

    Science.gov (United States)

    Dichlberger, Andrea; Schlager, Stefanie; Kovanen, Petri T; Schneider, Wolfgang J

    2016-08-15

    Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.

  7. Production of arachidonic acid metabolites by macrophages exposed in vitro to asbestos, carbonyl iron particles, or calcium ionophore.

    Science.gov (United States)

    Kouzan, S; Brody, A R; Nettesheim, P; Eling, T

    1985-04-01

    Consequent to asbestos deposition, alveolar macrophages (AM) accumulate at alveolar duct bifurcations where they phagocytize fibers. Because phagocytosis can stimulate the release of arachidonic acid (AA) metabolites, the possibility that secretion of these powerful mediators of inflammation might be induced by chrysotile asbestos was investigated in vitro. Rat AM were treated in vitro with chrysotile asbestos, and the cyclooxygenase products--prostaglandins, thromboxane B2 (TXB2), 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT)--and lipoxygenase products--leukotrienes (LT), hydroxyeicosatetraenoic acids (HETE)--secreted in the medium were isolated by high-performance liquid chromatography. Composition of the AA metabolites released was compared with that from those stimulated by the calcium ionophore A 23187 (20 microM) and by another particulate phagocytic stimulus, i.e., carbonyl iron beads. Calcium ionophore stimulation induced a marked release of various AA metabolites in the medium from both the cyclooxygenase pathway (HHT, TXB2, and PGE2, in decreasing quantities, respectively) and the lipoxygenase pathway (LTB4, 5-HETE, 12-HETE, and LTC4). The major product was LTB4. Treatment of the macrophages with asbestos fibers induced the release of a similar array of AA metabolites, although there were smaller amounts of LTC4 and 12-HETE, but increased quantities of PGF2 alpha. A time course study showed a steady increase in metabolite production for 1 h, followed by a plateau. In addition, the amount of metabolites released was dependent on asbestos concentrations. Phagocytosis of iron beads induced the secretion of the same metabolites as asbestos stimulation, but in larger quantities, probably reflecting the lack of cytotoxicity of the particle.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Hydroxyurea Therapy Mobilises Arachidonic Acid from Inner Cell Membrane Aminophospholipids in Patients with Homozygous Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    A. A. Daak

    2011-01-01

    Full Text Available The cytotoxic compound hydroxyurea (HU is effective therapy for sickle cell disease. However, its effect on unsaturated membrane lipids is unknown. Red cell fatty acids were investigated in HU-treated (n=19 and HU-untreated (n=17 sickle cell patients and controls (n=20. The HU-treated compared with the HU-untreated patients had lower arachidonic (AA acid level in ethanolamine, physphoglycerids (EPG (22.9±1.2   versus   24.0±1.1%,  P<0.05 serine SPG (22.13±2.2   versus   24.9±2.3%,  P<0.01 phosphoglycerides. The treated patients and controls had comparable levels of docosahexaenoic (DHA and total n-3 fatty acids in EPG and choline phosphoglycerides (CPG. In contrast, the untreated group had significantly (P<0.05 lower DHA and total n-3 compared with the controls in EPG (2.7±0.4   versus   3.2±0.6% and 4.6±0.5   versus   5.2±0.7% and CPG (0.7±0.2   versus   1.0±0.2% and 1.2±0.2   versus   1.4±0.3. HU is known to activate cytosolic phospholipase A2 and cyclooxygenase 2, and from this study, it appears to induce mobilisation of AA from the inner cell membrane EPG and SPG. Hence, eicosanoids generated from the released AA may play a role in clinical improvements which occur in HU-treated patients.

  9. Role of arachidonic acid in hyposmotic membrane stretch-induced increase in calcium-activated potassium currents in gastric myocytes

    Institute of Scientific and Technical Information of China (English)

    Meng YANG; Wen-xie XU; Xing-lan LI; Hui-ying XU; Jia-bin SUN; Bin MEI; Hai-feng ZHENG; Lian-hua PIAO; De-gang XING; Zhai-liu LI

    2005-01-01

    Aim: To study effects of arachidonic acid (AA) and its metabolites on the hyposmotic membrane stretch-induced increase in calcium-activated potassium currents (IKCa) in gastric myocytes. Methods: Membrane currents were recorded by using a conventional whole cell patch-clamp technique in gastric myocytes isolated with collagenase. Results: Hyposmotic membrane stretch and AA increased both IK(Ca) and spontaneous transient outward currents significantly.Exogenous AA could potentiate the hyposmotic membrane stretch-induced increase in IK(Ca). The hyposmotic membrane stretch-induced increase in IK(Ca) was significantly suppressed by dimethyleicosadienoic acid (100 μmol/L in pipette solution), an inhibitor of phospholipase A2. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly suppressed AA and hyposmotic membrane stretch-induced increases in IK(Ca). External calcium-free or gadolinium chloride, a blocker of stretch-activated channels, blocked the AA-induced increase in IK(Ca) significantly, but it was not blocked by nicardipine, an L-type calcium channel blocker. Ryanodine, a calcium-induced calcium release agonist, completely blocked the AA-induced increase in IK(Ca); however, heparin, a potent inhibitor of inositol triphosphate receptor, did not block the AA-induced increase in IK(Ca). Conclusion:Hyposmotic membrane stretch may activate phospholipase A2, which hydrolyzes membrane phospholipids to ultimately produce AA; AA as a second messenger mediates Ca2+ influx, which triggers Ca2+-induced Ca2+ release and elicits activation of IK(Ca) in gastric antral circular myocytes of the guinea pig.

  10. Irradiation of human skin by short wavelength ultraviolet radiation (100--290 nm) (u.v.C): increased concentrations of arachidonic acid and prostaglandines E2 and F2alpha.

    Science.gov (United States)

    Camp, R D; Greaves, M W; Hensby, C N; Plummer, N A; Warin, A P

    1978-08-01

    1. Human abdominal skin was irradiated with six times the minimal erythema dose of ultraviolet C (100--290 nm) radiation. Erythema appeared at 3 h, was of moderate degree by 6 h and was maximal at 12--24 h. It was reduced at 48 h and by 72 h had disappeared. 2. A suction bulla technique was used for the recovery of exudate from normal and inflamed skin at 6, 18, 24 and 48 h after irradiation. 3. Prostaglandin-like activity, estimated by bioassay, showed maximum increase at 18 h, when erythema was also maximum. PGF 2alpha, measured by both radioimmunoassay and by combined gas-liquid chromatography--gas spectrometry, followed a similar time course then fell to normal, or near normal, levels at 48 h. 4. Prostaglandin E2 and arachidonic acid concentrations, measured by gas chromatography--mass spectrometry, were maximally raised at 18--24 h. At 48 h, when some erythema was still present, though reduced, prostaglandin E2 concentrations were still raised above control values. 5. The results provide direct evidence in support of the view that the erythma following irradiation of human skin by u.v.C involves activation of arachidonic acid metabolism. However, the relationship between the erythema and increased prostaglandin activity is not fully understood.

  11. Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Science.gov (United States)

    Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  12. Synthesis of (9Z, 12E-, (9E, 12Z-[1-14C]-linoleic acid, (9Z, 12Z, 15E-, (9E, 12Z, 15Z-[1-14C]-linolenic acid and (5Z, 8Z, 11Z, 14E-[1-14C]-arachidonic acid

    Directory of Open Access Journals (Sweden)

    Enard, Thierry

    1996-04-01

    Full Text Available Trans polyunsaturated fatty acids are produced in vegetable oils during heat treatment (240-250 °C.ln order to study the metabolic pathway of 9c, 12t and 9t, 12c linoleic acid and 9c, 12c, 15t and 9t, 12c, 15c linolenic acid, these products were prepared labelled with carbon 14 in the carboxylic position. 5c, 8c, 11c, 14t-Arachidonic acid was also labelled on the carboxylic position with carbon 14 in order to study its physiological effects. To introduce the labelling (E-bromo precursors with a 17 carbons chain or a 19 carbon chain were needed. The different syntheses were done by elongation steps and creation of cis double bonds via highly stereospecific Wittig reactions. The radioactive carbon atom was introduced from [14C]-potassium cyanide. The final radioactive fatty acids had a specific activity greater than 50 mCi/mmol and a radioactive purity better than 99 % for linoleic and linolenic and better than 98.6 % for arachidonic acid.

  13. Blockade by metal complexing agents and by catalase of the effects of arachidonic acid on platelets: relevance to the study of anti-inflammatory mechanisms.

    Science.gov (United States)

    Vargaftig, B B; Tranier, Y; Chignard, M

    1975-08-01

    Metal-chelating agents inhibited platelet aggregation and the accompanying generation of rabbit aorta contracting and PG-like activities, when platelets were challenged with arachidonic acid. Inhibition required the presence of the chelating agents in the medium, and was insured by reagents avid for free or protein-bound copper. Catalase also prevented aggregation and generation of pharmacologically active substances; its activity was reversed by aminothiol agents and by Cu2+ and Zn2+, shown previously to potentiate the platelet effects of arachidonic acid. Inhibition by indomethacin was not prevented by amino-thiol drugs nor by Cu2+ or Zn2+. The catalase-induced inhibition was not affected by scavenging of thiol groups; this rules out, as a mechanism of action of catalase, the increased destruction of popoperoxides by glutathione peroxidase, which requires reduced glutathione as hydrogen donor. The results are compatible with the hypothesis that the agent that mediates platelet aggregation by arachidonic acid is a popoperoxide, requiring the presence either of H2O2 or of a similarly catalase-sensitive substance to be generated.

  14. Differential age- and disease-related effects on the expression of genes related to the arachidonic acid signaling pathway in schizophrenia.

    Science.gov (United States)

    Tang, Bin; Capitao, Cristina; Dean, Brian; Thomas, Elizabeth A

    2012-04-30

    We have previously identified differential effects of age on global brain gene expression profiles in subjects with schizophrenia compared to normal controls. Here, we have focused on age-related effects of genes associated with the arachidonic acid-related inflammation pathway. Linear correlation analysis of published microarray expression data reveal strong age- and cell-type- specific-effects on the expression of genes related to the arachidonic acid signaling pathway, which differed in control subjects compared to those with schizophrenia. Using real-time qPCR analysis, we validated age and disease effects of arachidonic acid-related genes in a large cohort of subjects with schizophrenia and matched controls (n=76 subjects in total). We found that levels of prostaglandin-endoperoxide synthase 1 (PTGS1; aka COX-1) and prostaglandin-endoperoxide receptor 3 (PTGER3) mRNA are increased, and levels of prostaglandin-endoperoxide synthase 2 (PTGS2; aka COX-2) mRNA are decreased, in older subjects with schizophrenia (> 40years of age) compared to matched normal controls or younger subjects with schizophrenia (schizophrenia and further suggest that age may be an important factor in the potential use of anti-inflammatory therapies.

  15. The influence of dietary concentrations of arachidonic acid and eicosapentaenoic acid at various stages of larval ontogeny on eye migration, pigmentation and prostaglandin content of common sole larvae ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Banta, G.;

    2008-01-01

    Dietary manipulations of arachidonic acid, ARA and eicosapentaenoic acid, EPA may have an influence on pigmentation in common sole larvae (Solea solea L., Linnaeus 1758) which may be related to a "pigmentation window". This is a specific period in the larval ontogeny where nutritional factors...

  16. Novel liquid chromatography–mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Katie M. Lebold

    2014-01-01

    Full Text Available To test the hypothesis that embryogenesis depends upon α-tocopherol (E to protect embryo polyunsaturated fatty acids (PUFAs from lipid peroxidation, new methodologies were applied to measure α-tocopherol and fatty acids in extracts from saponified zebrafish embryos. A solid phase extraction method was developed to separate the analyte classes, using a mixed mode cartridge (reverse phase, π–π bonding, strong anion exchange, then α-tocopherol and cholesterol were measured using standard techniques, while the fatty acids were quantitated using a novel, reverse phase liquid chromatography–mass spectrometry (LC–MS approach. We also determined if α-tocopherol status alters embryonic lipid peroxidation products by analyzing 24 different oxidized products of arachidonic or docosahexaenoic (DHA acids in embryos using LC with hybrid quadrupole-time of flight MS. Adult zebrafish were fed E− or E+ diets for 4 months, and then were spawned to obtain E− and E+ embryos. Between 24 and 72 hours post-fertilization (hpf, arachidonic acid decreased 3-times faster in E− (21 pg/h compared with E+ embryos (7 pg/h, P<0.0001, while both α-tocopherol and DHA concentrations decreased only in E− embryos. At 36 hpf, E− embryos contained double the 5-hydroxy-eicosatetraenoic acids and 7-hydroxy-DHA concentrations, while other hydroxy-lipids remained unchanged. Vitamin E deficiency during embryogenesis depleted DHA and arachidonic acid, and increased hydroxy-fatty acids derived from these PUFA, suggesting that α-tocopherol is necessary to protect these critical fatty acids.

  17. Recent advances on the correlation between 5-LOX pathway of arachidonic acid and periodontitis%5-LOX代谢途径与牙周炎相关性的研究进展

    Institute of Scientific and Technical Information of China (English)

    罗华珍

    2015-01-01

    The metabolism of arachidonic acid plays a signiifcant role in the pathological process of inlfammatory bone destruction disease. The main pathomechanism is osteoclast formation and activation. In recent years, evidence suggests that the level of LTB4 metabolized by LOX enzymatic pathway is elevated in gingival crevicular fluid of patients with periodontitis compared with periodontal health. Giving inhibitor of 5-LOX to the inlfammation model showed that the number of osteoclast and the degree of bone destruction are al below when compared with normal control. Therefore, discuss arachidonic acid metabolized by 5-LOX enzymatic pathway how to influence as wel as mechanism on periodontitis wil be conducive to expound pathogenesis of periodontitis. It proposes a new idea for the prevention and treatment of periodontitis. In this article the relationship between 5-LOX pathway of arachidonic acid and periodontitis will be reviewed.%花生四烯酸的代谢产物在炎症性骨破坏疾病的病理过程中发挥着重的作用,其主病理机制为破骨细胞的形成和活化,近年来发现花生四烯酸经脂氧酶(1ipoxygenase,LOX)途径代谢的产物LTB4在牙周炎患者龈沟液中的含量高于正常者,给予5-LOX抑制剂的炎症模型中破骨细胞的数量和骨破坏的程度均低于对照组,因而探讨花生四烯酸经5-LOX途径代谢对牙周炎的影响及其机制将有利于进一步阐明牙周炎的发病机理,为牙周炎的防治提出新的思路,本文就有关花生四烯酸脂氧酶代谢途径与牙周炎关系的研究做一综述.

  18. Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Directory of Open Access Journals (Sweden)

    Kawabata Terue

    2011-08-01

    Full Text Available Abstract Background We reported that the compositions of arachidonic acid (ARA in erythrocytes and plasma phospholipids (PL in the elderly were lower than those in the young, though the ARA intake was nearly identical. Objective We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested. Methods One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed. Results No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA + docosahexaenoic acid (DHA intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects. Conclusions Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.

  19. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Jensen, B.;

    1989-01-01

    of long-chain n-3 FA to arachidonic acid (the (3/6) ratio) was used as the most relevant single measure of exposure. In 18 women with certain gestational age and with spontaneous onset of delivery, gestational age was significantly associated with the (3/6) ratio quantified in PC (correlation coefficient...... 0.50, P = 0.035), but not with the (3/6) radio in PE (correlation coefficient 0.21, P = 0.40) or TL (correlation coefficient 0.29, P = 0.26). The association with the (3/6) ratio in PC could not be attributed to confounding by maternal age, weight, marital status or smoking....

  20. Mechanisms for the formation of isoprostane endoperoxides from arachidonic acid. "Dioxetane" intermediate versus beta-fragmentation of peroxyl radicals.

    Science.gov (United States)

    Yin, Huiyong; Havrilla, Christine M; Gao, Ling; Morrow, Jason D; Porter, Ned A

    2003-05-09

    The isoprostanes are a class of autoxidation products generated from arachidonic acid (or its esters) by a free radical initiated process. The potent biological activity of these compounds has been attracting intense research interest since they were detected in humans as well as animal models in the early 1990s. The measurement of these compounds has been regarded as one of the most useful non-invasive biomarkers for oxidative stress status. Two mechanisms for the formation of these compounds have been proposed. In the first mechanism, a peroxyl radical undergoes successive 5-exo cyclizations analogous to the enzymatic mechanism proposed for prostaglandin biosynthesis. The second mechanism starts with a 4-exo cyclization of a peroxyl radical leading to an intermediate dioxetane, a mechanism that has also been proposed for prostaglandin biosynthesis as well as for the formation of 4-hydroxy nonenal (HNE). Autoxidation of cholesteryl-15-HpETE under free radical conditions provides Type IV isoprostanes. The "dioxetane" mechanism for isoprostane generation from 15-HpETE requires that optically pure products are formed from an optically pure reactant, whereas an alternate mechanism for the process involving beta-fragmentation of the 15-peroxyl would give racemic isoprostane products. We have carried out a test of the mechanism based upon these stereochemical requirements. The results of analysis of the product mixture derived from autoxidation of optically pure Ch-15-HpETE by atmospheric pressure chemical ionization-mass spectrometry coupled with chiral high performance liquid chromatography indicate that the major isoprostane diastereomers are formed as a racemic mixture. These experimental results are consistent with a mechanism for isoprostane formation involving beta-fragmentation of the 15-peroxyl radical followed by re-addition of oxygen to form the 11-HPETE peroxyl, and they exclude a mechanism proceeding through the formation of a dioxetane intermediate.

  1. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations.

    Directory of Open Access Journals (Sweden)

    Eduardo O De Souza

    Full Text Available The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents.Thirty strength-trained males (age: 20.4 ± 2.1 yrs were randomly divided into two groups: ARA or placebo (i.e. CTL. Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA, muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old were pre-fed with either ARA or water (CTL for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise.Lean body mass (2.9%, p<0.0005, upper-body strength (8.7%, p<0.0001, and peak power (12.7%, p<0.0001 increased only in the ARA group. For the animal trial, GSK-β (Ser9 phosphorylation (p<0.001 independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041 were different in ARA-fed versus CTL rats.Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.

  2. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC.

    Science.gov (United States)

    Sun, Peng; Lin, Dao-Hong; Wang, Tong; Babilonia, Elisa; Wang, Zhijian; Jin, Yan; Kemp, Rowena; Nasjletti, Alberto; Wang, Wen-Hui

    2006-12-01

    We previously demonstrated that arachidonic acid (AA) inhibits epithelial Na channels (ENaC) through the cytochrome P-450 (CYP) epoxygenase-dependent pathway (34). In the present study, we tested the hypothesis that low Na intake suppresses the expression of CYP2C23, which is mainly responsible for converting AA to epoxyeicosatrienoic acid (EET) in the kidney (11) and attenuates the AA-induced inhibition of ENaC. Immunostaining showed that CYP2C23 is expressed in the Tamm-Horsfall protein (THP)-positive and aquaporin 2 (AQP2)-positive tubules. This suggests that CYP2C23 is expressed in the thick ascending limb (TAL) and collecting duct (CD). Na restriction significantly suppressed the expression of CYP2C23 in the TAL and CD. Western blot also demonstrated that the expression of CYP2C23 in renal cortex and outer medulla diminished in rats on Na-deficient diet (Na-D) but increased in those on high-Na diet (4%). Moreover, the content of 11,12-epoxyeicosatrienoic acid (EET) decreased in the isolated cortical CD from rats on Na-D compared with those on a normal-Na diet (0.5%). Patch-clamp study showed that application of 15 microM AA inhibited the activity of ENaC by 77% in the CCD of rats on a Na-D for 3 days. However, the inhibitory effect of AA on ENaC was significantly attenuated in rats on Na-D for 14 days. Furthermore, inhibition of CYP epoxygenase with MS-PPOH increased the ENaC activity in the CCD of rats on a control Na diet. We also used microperfusion technique to examine the effect of MS-PPOH on Na transport in the distal nephron. Application of MS-PPOH significantly increased Na absorption in the distal nephron of control rats but had no significant effect on Na absorption in rats on Na-D for 14 days. We conclude that low Na intake downregulates the activity and expression of CYP2C23 and attenuates the inhibitory effect of AA on Na transport.

  3. Leukotrienes and other lipoxygenase products of arachidonic acid synthesized in the kidney.

    Science.gov (United States)

    Ardaillou, R; Baud, L; Sraer, J

    1986-08-25

    Lipoxygenase products are synthesized in the kidney. Rabbit medulla and murine and human glomeruli produce 12- and 15-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Minor amounts of leukotrienes are formed under normal conditions, but it is likely that the resident renal cells are capable of synthesizing these metabolites. Rat glomeruli and papillae possess the enzymes necessary to process leukotriene C4 into leukotrienes D4 and E4. However, the enzyme activity of the papillae is masked due to the presence of an inhibitor detected in the 10,000 g supernate of the papillary homogenate. 12-HETE synthesis is markedly increased in glomeruli from rats with nephrotoxic serum nephritis and leukotriene B4 synthesis in glomeruli from rats with cationic bovine gamma-globulin-induced glomerulonephritis. In vivo consequences of the association between the resident glomerular cells and the bone marrow-derived cells have been studied in vitro in co-incubation experiments. Glomeruli release factors that stimulate the cyclo-oxygenase and lipoxygenase pathways in macrophages. Co-incubation of glomeruli, platelets, and polymorphonuclear leukocytes results in the formation of 12,20-diHETE and an excess of 12-HETE. Lipoxygenase products, regardless of their origin, modify the renal functions. Leukotriene C4 binds specifically to rat glomeruli and human cultured glomerular epithelial cells. Leukotrienes C4 or D4 administered in vivo cause renal vasoconstriction and a decline in the glomerular filtration rate. In vitro, these two sulfidopeptide leukotrienes promote epithelial cell proliferation and produce mesangial cell contraction. The lipoxygenase pathway is also implicated in the attachment of macrophages to glomeruli and in the oxidative burst of glomerular mesangial cells during phagocytosis. The future use of specific inhibitors of the synthesis or antagonists of the lipoxygenase products, particularly the leukotrienes, should provide a tool for evaluating the role of these

  4. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release

    Science.gov (United States)

    Paillamanque, Joaquin; Sanchez-Tusie, Ana; Carmona, Emerson M.; Treviño, Claudia L.; Sandoval, Carolina; Nualart, Francisco; Osses, Nelson

    2017-01-01

    Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis. PMID:28192519

  5. Competitive Interaction Between Plasma Omega-3 Fatty Acids and Arachidonic Acid is Related to Down-Regulation of A Signaling Mediator.

    Science.gov (United States)

    Yui, Kunio; Imataka, George; Kawasaki, Yohei

    2016-01-01

    Autism spectrum disorders (ASD) may be attributed to altered composition of polyunsaturated fatty acids. We examined the relationships between the plasma ratios of docosahexaenoic acid (DHA)/arachidonic acid (AA) and eicosapentaenoic acid (EPA)/AA, and biomarkers of AA-related signaling mediators, i.e., ceruloplasmin, transferrin and superoxide dismutase, with the behavioral symptoms of 30 individuals with ASD (mean age, 13.0 years old) and 20 age- and gender-matched normal controls (mean age, 13.6 years old). Behavioral symptoms were assessed using the Aberrant Behavior Checklists (ABC). The ASD group had significantly higher plasma DHA/AA and EPA/AA ratios, as well as ABC scores, compared to the control group. The plasma ceruloplasmin levels in the ASD group were significantly reduced compared to those in the control group. Multiple linear regression demonstrated that plasma DHA/AA ratio was a fitting model for distinguishing the ASD group from the control group. These findings suggested that increased plasma DHA/AA ratio may be related to lower plasma levels of ceruloplasmin, which may contribute to the pathophysiology of behavioral symptoms in 30 individuals with ASD.

  6. Long-term modifications of blood pressure in normotensive and spontaneously hypertensive rats by gene delivery of rAAV-mediated cytochrome P450 arachidonic acid hydroxylase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Arachidonic acid cytochrome P-450 (CYP) hydroxylase 4A isoforms, including 4A1, 4A2, 4A3 and 4A8 in the rat kidney, catalyze arachidonic acid to produce 19/20-Hydroxyeicosatetraenoic acids (20-HETE), a biologically active metabolite, which plays an important role in the regulation of blood pressure. However, controversial results have been reported regarding the exact role of 20-HETE on blood pressure. In the present study, we used recombinant adenoassociated viral vector (rAAV) to deliver CYP 4A1 cDNA and antisense 4A1 cDNA into Sprague-Dawley (SD) rats and spontaneously hypertensive rats (SHR), respectively, to investigate the effects of long-term modifications of blood pressure and the potential for gene therapy of hypertension. The mean systolic pressure increased by 14.2±2.5 mm Hg in rAAV.4A1-treated SD rats and decreased by 13.7±2.2 mm Hg in rAAV.anti4A1-treated SHR rats 5 weeks after the injection compared with controls and these changes in blood pressure were maintained until the experiments ended at 24weeks. In 4A1 treated animals CYP4A was overexpressed in various tissues, but preferentially in the kidney at both mRNA and protein levels. In anti-4A1-treated SHR, CYP4A mRNA in various tissues was probed, especially in kidneys,but 4A1 protein expression was almost completely inhibited. These results suggest that arachidonic acid CYP hydroxylases contribute not only to the maintenance of normal blood pressure but also to the development of hypertension.rAAV-mediated anti4A administration strategy has the potential to be used as targeted gene therapy in human hypertension by blocking expression of CYP 4A in kidneys.

  7. Interrelated effects of dihomo-γ-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats.

    Science.gov (United States)

    Ide, Takashi; Ono, Yoshiko; Kawashima, Hiroshi; Kiso, Yoshinobu

    2012-12-14

    Interrelated effects of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined in rats. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin), containing 100 g/kg of maize oil or fungal oil rich in DGLA or ARA for 16 d. Among the groups fed sesamin-free diets, oils rich in DGLA or ARA, especially the latter, compared with maize oil strongly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin, irrespective of the type of fat, reduced the parameters of lipogenic enzymes except for malic enzyme. The type of dietary fat was rather irrelevant in affecting hepatic fatty acid oxidation among rats fed the sesamin-free diets. Sesamin increased the activities of enzymes involved in fatty acid oxidation in all groups of rats given different fats. The extent of the increase depended on the dietary fat type, and the values became much higher with a diet containing sesamin and oil rich in ARA in combination than with a diet containing lignan and maize oil. Analyses of mRNA levels revealed that the combination of sesamin and oil rich in ARA compared with the combination of lignan and maize oil markedly increased the gene expression of various peroxisomal fatty acid oxidation enzymes but not mitochondrial enzymes. The enhancement of sesamin action on hepatic fatty acid oxidation was also confirmed with oil rich in DGLA but to a lesser extent.

  8. FATTY ACIDS PROFILE IN A HIGH CELL DENSITY CULTURE OF ARACHIDONIC ACID-RICH PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE,CHLOROPHYTA) EXPOSED TO HIGH PFD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The changes in arachidonic acid (AA) and fatty acids profiles along the growth curve of Parietochloris incisa, a coccoid snow green alga, were studied in a 2.8 cm light-path flat photobioreactor, exposed to strong photon flux density [PFD, 2400 μEmol/(m2*s)]. Sixteen fatty acids were identified by gas chromatography showing that AA was the dominant fatty acid (33%-41%) followedby linoleic acid (17%-21%). AA content was closely investigated with respect tototal fatty acids (TFA), ash free dry weight (AFDW) of cell mass as well as total culture content. These parameters were influenced significantly in a similar manner by culture growth phase, i.e., slightly decreasing in the lag period, gradually increasing in the logarithmic phase, becoming maximal at the early stationary phase, starting to decrease at the late stationary phase, sharply dropping at the decline phase. The increase in AA per culture volume during the logarithmic phase was not only associated with the increase in AFDW but also connected with a corresponding increase in AA/TFA, TFA/AFDW as well as AA/AFDW. The sharp decrease in AA content of the culture during the decline phase was mainly due to the decrease in AA/TFA, TFA/AFDW and AA/AFDW, although AFDW declined only a smallextent. Maximal AA concentration, obtained at the early stationary phase, was 900 mg/L culture volume, and the average daily net increase of AA during 9 days logarithmic growth was 1.7 g/(m2*day). Therefore, harvesting prior to the declinephase in a batch culture, or at steady state in continuous culture mode seems best for high AA production. The latter possibility was also further confirmed bycontinuous culture with 5 gradients of harvesting rate. ``

  9. An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS.

    Science.gov (United States)

    Wang, Wan; Qin, Suzi; Li, Linsen; Chen, Xiaohua; Wang, Qunjie; Wei, Junfu

    2015-01-01

    A high throughput sample preparation method was developed utilizing mixed-mode solid phase extraction (SPE) in 96-well plate format for the determination of free arachidonic acid in plasma by LC-MS/MS. Plasma was mixed with 3% aqueous ammonia and loaded into each well of 96-well plate. After washing with water and methanol sequentially, 3% of formic acid in acetonitrile was used to elute arachidonic acid. The collected fraction was injected onto a reversed phase column at 30°C with mobile phase of acetonitrile/water (70 : 30, v/v) and detected by LC-MS/MS coupled with electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The calibration curve ranged from 10 to 2500 ng/mL with sufficient linearity (r (2) = 0.9999). The recoveries were in the range of 99.38% to 103.21% with RSD less than 6%. The limit of detection is 3 ng/mL.

  10. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma.

    Science.gov (United States)

    Gachet, María Salomé; Rhyn, Peter; Bosch, Oliver G; Quednow, Boris B; Gertsch, Jürg

    2015-01-22

    Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.

  11. Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells through prostaglandin E2 activation of EP3 and EP4 receptors.

    Science.gov (United States)

    Dalvi, Siddhartha; Nguyen, Hieu H; On, Ngoc; Mitchell, Ryan W; Aukema, Harold M; Miller, Donald W; Hatch, Grant M

    2015-12-01

    The blood-brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14-cis-eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n-6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell(®) inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2 ), an eicosanoid known to facilitate opening of the blood-brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein-labeled dextran from apical to basolateral medium. ARA-mediated permeability was attenuated by specific cyclooxygenase-2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA-mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA. The blood-brain barrier, formed by microvessel endothelial cells, is a restrictive barrier between the brain parenchyma and the circulating blood. Radiolabeled arachidonic acid (ARA) movement across, and monolayer permeability in the presence of ARA, was examined in confluent monolayers of primary human brain microvessel endothelial cells (HBMECs) cultured on Transwell(®) plates. Incubation of HBMECs with ARA resulted in a rapid increase in HBMEC monolayer permeability. The mechanism was mediated, in part

  12. Relationships between Arachidonic Acid, Uterine Activity and Metabolic Regulation of Placental Lactogen Secretion.

    Science.gov (United States)

    1982-08-01

    conclusions can be made. Io I I 1~ .. MATERIALS AND METHODS 1. Fasting Study. Pregnant and non-pregnant Dorset ewes weighing 50 to 55 kg were selected from...the uterus. Amniotic catheters and flow probe cables were exteriorized from the abdominal cavity through the maternal flank via a metal trocar and...cannula. Vascular catheters and EMG wires were passed tn the opposite direction using a second trocar and 4I cannula. I. ,° * -- - - -31- The fetal head

  13. Arachidonic acid metabolism and inhibition of cyclooxygenase in platelets from asthmatic subjects with aspirin intolerance.

    Science.gov (United States)

    Bonne, C; Moneret-Vautrin, D A; Wayoff, M; Descharmes, A; Gazel, P; Legrand, A; Kalt, C

    1985-02-01

    Exaggerated inhibition of cyclooxygenase has been proposed as a mechanism of drug-induced bronchospasm in aspirin-intolerant patients. This study, using platelets, shows that inhibition of prostaglandin biosynthesis by aspirin is unmodified in patients when compared with healthy subjects. The ratio of cyclooxygenase:lipoxygenase products is similar in platelets from patients and control subjects. We conclude that the cyclooxygenase alteration observed in cells from the respiratory tract is not generalised to other cells such as platelets. We also propose that the major abnormality in NSAID-intolerant patients would affect receptivity to lipoxygenase products more than their biosynthesis.

  14. Effects of some iridoids from plant origin on arachidonic acid metabolism in cellular systems.

    Science.gov (United States)

    Bermejo Benito, P; Díaz Lanza, A M; Silván Sen, A M; De Santos Galindez, J; Fernandez Matellano, L; Sanz Gómez, A; Abad Martínez, M J

    2000-05-01

    Seven iridoid glycosides isolated from different extracts of Scrophularia scorodonia L., namely bartsioside, aucubin, harpagide, harpagoside, 8-acetylharpagide, scorodioside and scropolioside B, had been evaluated for their in vitro anti-inflammatory activity in cellular systems generating COX and LOX metabolites. Structure-activity relationships obtained from in vitro screening results were discussed. Most compounds assayed did not exhibit any significant effect on PGE2- and LTC4-release from calcium ionophore-stimulated mouse peritoneal macrophages. In the LTC4-assay, only aucubin showed a significant effect, with an IC50 value of 72 microM. Harpagoside and harpagide also inhibited release of LTC4, but neither effect reached statistical significance. The release of PGE2 by mouse peritoneal macrophages stimulated with calcium ionophore was inhibited by harpagoside and 8-acetylharpagide, but this effect is not statistically significant. However, most iridoids assayed showed a significant effect on TXB2-release from calcium ionophorestimulated human platelets, with inhibition percentages slightly lower than the reference drug ibuprofen. Only harpagide, scorodioside and scropolioside B had no significant effect on TXB2-release. Our results indicate that selective inhibition of the TX-synthase enzyme may be the primary target of action of most of these iridoids, and one of the mechanisms through which they exert their anti-inflammatory effects.

  15. Influence of mineral dusts on metabolism of arachidonic acid by alveolar macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Demers, L.M.; Kuhn, D.C. [Pennsylvania State University, Hershey, PA (United States). Dept. of Pathology

    1994-12-01

    The alveolar macrophage (AM) responds to stimuli such as coal mine dust by releasing inflammatory mediators such as cytokines, growth factors, reactive oxygen species, and eicosanoids. In this report, the authors examined the effects of an antioxidant, vitamin E, on dust-induced synthesis of PGE(2) and TXB(2) in vitro and in vivo by AM obtained by bronchoalveolar lavage from rats. They also looked at the effects of the surface of silica particles on AM eicosanoid biosynthesis under conditions of calcination, a process that removes exposed hydroxyl groups from the surface of silica particles, thus reducing the likelihood of soluble hydroxyl radical formation. Treatment of AM with vitamin E in vivo and in vitro reduced the augmentation in eicosanoid production usually observed when AM are exposed to mine dusts. These results suggest that vitamin E may effectively reduce the inflammatory and fibrotic response produced by inhalation of mineral dust through an antioxidant mechanism. Silica that has been chemically altered by calcination was unable to activate AM eicosanoid production in vitro when compared to untreated, freshly fractured silica. These findings suggest that the mechanism by which dust particles can activate AM eicosanoid release may involve interaction of surface and/or soluble factors with the cell membrane. Taken together, these studies point to the involvement of Am eicosanoid production as part of the proinflammatory response of this cell to occupational inhalation of mineral dust.

  16. Fatty Acid Modulation of the Endocannabinoid System and the Effect on Food Intake and Metabolism

    Directory of Open Access Journals (Sweden)

    Shaan S. Naughton

    2013-01-01

    Full Text Available Endocannabinoids and their G-protein coupled receptors (GPCR are a current research focus in the area of obesity due to the system’s role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA and 2-arachidonoyl glycerol (2-AG and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β-oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.

  17. Metabolism of polyunsaturated fatty acids and ketogenesis: an emerging connection.

    Science.gov (United States)

    Cunnane, Stephen C

    2004-03-01

    This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.

  18. [Recent biochemical nutrition knowledge in relation to metabolism and the significance of essential fatty acids and n-3-fatty acids contained in fish].

    Science.gov (United States)

    Kolb, E

    1989-10-01

    A survey is given on some newer knowledge about metabolism and about the importance of the essential fatty acids and of the n-3 fatty acids (eicosapentaenic, docosapentaenic, docosahexaenic acids) which occur in fish oils. In the body the linoleic acid via intermediate steps can be transformed into the arachidonic acid, from which various prostaglandins and leucotriens as well as the thromboxane A2 can be formed. The transformation of the linolenic acid into the eicosapentaenic acid is slight in man. The docosahexaenic acid is necessary for the construction of phospholipids in the brain and in the retina. The uptake of fish fatty acids inhibits the formation of thromboxane A2 and of leukotriens from the arachidonic acid. The fish fatty acids further in the liver in the peroxisomas the activity of the enzymes for the beta-oxidation; the formation of lipoproteins of high density increases under their influence: the triacylglyceride content, the cholesterol as well as the lipoprotein content of very low and low density decreases, when there is an adequate part of fish fatty acids in the nutrition.

  19. Disorders of Amino Acid Metabolism

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  20. Targeted profiling of arachidonic acid and eicosanoids in rat tissue by UFLC-MS/MS: Application to identify potential markers for rheumatoid arthritis.

    Science.gov (United States)

    Wang, Nannan; Zhao, Xiaoning; Wang, Weihui; Peng, Yan; Bi, Kaishun; Dai, Ronghua

    2017-01-01

    We describe a method for the targeted analysis of bioactive arachidonic acid metabolites through cyclooxygenase (COX) and lipoxygenase (LOX) pathway in knee joint, liver, kidney, spleen and heart using an ultra-fast liquid chromatography-tandem mass (UFLC-MS/MS) method. Method validation was investigated, including linearity, precision, accuracy, matrix effect, extraction recovery and stability for the simultaneous analysis of prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs). The method enables us to chromatographically separate branched-chain species from their straight-chain isomers as well as separate biologically important eicosanoids. The concentrations of the following major eicosanoids were significantly increased in rheumatoid arthritis model rats than in normal ones: 5-HETE, 8-HETE, 12-HETE, 15-HETE, PGF2α, TXB2, 5-HpETE, LTE4, PGE2, PGD2, LTB4. Further multivariate data analysis (partial least square-discriminant analysis) showed COX products (PGs, TXs) were readily distributed towards liver and kidney, LOX products (LTs, HETEs) towards knee joint and spleen, and heart had no characteristic metabolites. The method described here offers a useful tool for the evaluation of complex regulatory eicosanoids responses in RA disease states and provides support for use of dual inhibitors of COX and LOX enzymes on RA treatment.

  1. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Zhu, Quan-Fei; Hao, Yan-Hong; Liu, Ming-Zhou; Yue, Jiang; Ni, Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-09-04

    Cytochrome P450 metabolites of arachidonic acid (AA) belong to eicosanoids and are potent lipid mediators of inflammation. It is well-known that eicosanoids play an important role in numerous pathophysiological processes. Therefore, quantitative analysis of cytochrome P450 metabolites of AA, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatreinoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) can provide crucial information to uncover underlying mechanisms of cytochrome P450 metabolites of AA related diseases. Herein, we developed a highly sensitive method to identify and quantify HETEs, EETs, and DHETs in lipid extracts of biological samples based on stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. To this end, a pair of stable isotope probes, 2-dimethylaminoethylamine (DMED) and d4-2-dimethylaminoethylamine (d4-DMED), were utilized to facilely label eicosanoids. The heavy labeled eicosanoid standards were prepared and used as internal standards for quantification to minimize the matrix and ion suppression effects in mass spectrometry analysis. In addition, the detection sensitivities of DMED labeled eicosanoids improved by 3-104 folds in standard solution and 5-138 folds in serum matrix compared with unlabeled analytes. Moreover, a good separation of eicosanoids isomers was achieved upon DMED labeling. The established method provided substantial sensitivity (limit of quantification at sub-picogram), high specificity, and broad linear dynamics range (3 orders of magnitude). We further quantified cytochrome P450 metabolites of AA in rat liver, heart, brain tissues and human serum using the developed method. The results showed that 19 eicosanoids could be distinctly detected and the contents of 11-, 15-, 16-, 20-HETE, 5,6-EET, and 14,15-EET in type 2 diabetes mellitus patients and 5-, 11-, 12-, 15-, 16-, 20-HETE, 8,9-EET, and 5,6-DHET in myeloid leukemia patients had significant changes

  2. AD6 (8-monochloro-3-beta-diethylamino-ethyl-4-methyl-7-ethoxycarbonyl-meth oxy coumarin) inhibits the release of arachidonic acid in human platelets stimulated by thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Porcellati, S.; Costantini, V.; Prosdocimi, M.; Pistolesi, R.; Porrovecchio, P.; Nenci, G.G.; Goracci, G.

    1987-07-01

    The coumarin derivative AD6 is known to inhibit platelet aggregation and release and it possesses vasodilatory properties on coronary arteries of laboratory animals. Furthermore, the inhibition of the production of TxB2 from endogenous substrates after stimulation of human platelets with collagen has been demonstrated. The present report demonstrates that AD6 inhibits the production of labeled arachidonic acid and diglycerides from phospholipids of platelets stimulated with thrombin. This effect is dose-dependent and is already evident at a concentration of the drug (25 microM) which is unable to prevent the aggregation. Apparently, AD6 inhibits the release of arachidonic acid from phosphatidylinositol and choline phosphoglycerides which are the main sources of the substrate for the synthesis of prostaglandins and thromboxanes.

  3. 内皮源性缩血管因子花生四烯酸代谢物的作用多样性%Diversity of endothelium-derived vasocontracting factors--arachidonic acid metabolites

    Institute of Scientific and Technical Information of China (English)

    KURAHASHI Kazuyoshi; NISHIHASHI Tsuyoshi; TRANDAFIR Cristina Corina; WANG Ai-Min; MURAKAMI Shizuka; JI Xu

    2003-01-01

    Vascular endothelium releases vasocontracting and/or vasorelaxing substances. Here, we report the diversity of endothelium-derived vasocontracting factors (EDCFs), arachidonic acid metabolites, and discuss the pathophysiological significance. In the canine basilar artery and the rabbit intrapulmonary artery, acetylcholine-induced contractions (Ach-induced EDC) are due to endothelial thromboxane A2 (TXA2) (TXA2-type). The Ach-induced EDC in the rabbit coronary artery is due to endothelial leukotrienes (LTs) (LTs-type). In addition, in the rat coronary artery, nicotine and noradrenaline (Nad)-induced EDCs are due to endothelial COX-metabolites (COX metabolite-type). These arachidonic acid metabolites derived from endothelium (activation by vasoactive substances including Ach, Nad and nicotine) cause a contraction of vascular smooth muscle cells and may disturb the local circulation. These EDCFs (TXA2, LTs and COX-metabolites) may be involved in the pathophysiology of cardiovascular immuno-inflammatory diseases.

  4. Nrf2 is crucial for the down-regulation of Cyp7a1 induced by arachidonic acid in Hepg2 cells.

    Science.gov (United States)

    Zhang, Jin-Ming; Wang, Xing-He; Hao, Li-Hong; Wang, He; Zhang, Xiu-Ying; Muhammad, Ishfaq; Qi, Yue; Li, Guang-Liang; Sun, Xiao-Qi

    2017-03-07

    In former research, cyp7a1 expression was decreased but Nrf2 transcription and hepatic arachidonic acid (AA) concentration were increased in high-fat diet fed mice. This study aims to investigate the influence of AA in CYP7A1 expression and the role of Nrf2 in regulating CYP7A1 in the process. HepG2 cells were administered with different concentrations of AA. Nrf2 and CYP7A1 expressions were analyzed by real-time PCR and western blot. Nrf2 silenced and over-expressed cell models were constructed by Nrf2 siRNA and eukaryotic expression vector transient transfections and were used to investigate the role of Nrf2 in regulating CYP7A1 following AA administration. The results showed that Nrf2 was increased dose-dependently but CYP7A1 was decreased dose-dependently in cells treated with increasing concentrations of AA. The expression of CYP7A1 was increased by Nrf2 silence and was decreased by Nrf2 over-expression in HepG2 cells treated with different concentrations of AA. In conclusion, Nrf2 plays a significant role in the down-regulation of CYP7A1 induced by AA in HepG2 cells.

  5. Determination of arachidonic acid by on-line solid-phase extraction HPLC with UV detection for screening of cytosolic phospholipase A2α inhibitors.

    Science.gov (United States)

    Hanekamp, Walburga; Lehr, Matthias

    2012-07-01

    An on-line solid-phase extraction (SPE)-liquid chromatographic method with ultraviolet detection at 200nm for screening of inhibitors of cytosolic phospholipase A(2)α (cPLA(2)α) was developed and validated. cPLA(2)α was isolated from porcine platelets. Enzyme activity was determined by measuring the release of arachidonic acid from a phospholipid substrate using automated on-line sample clean up on a trap column followed by isocratic back-flush elution on a RP18 analytical column. While the use of a conventional RP18 column for trapping the analyte led to peak broadening only after a few runs due to pollution of the column by binding of components present in the enzyme preparation, the application of a turbulent flow column (TurboFlow Cyclone™) resulted in sharp peaks even after a plurality of injections. Interestingly, for sample introduction a turbulent flow of the mobile phase produced by high flow rates was not necessary to maintain good peak shapes. The same result could also be achieved applying low flow rates (0.5 mL/min). Several known cPLA(2)α inhibitors were used to validate the test system.

  6. Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine.

    Science.gov (United States)

    Mishra, Nripendra Nath; Ali, Shakir; Shukla, Praveen K

    2014-01-01

    Candida albicans utilizes arachidonic acid (AA) released during the course of infection (Candidiasis) from phospholipids of infected host cell membranes and synthesizes extracellular prostaglandin(s) which play an important role in hyphae formation and host cell damage. C. albicans biofilms secrete significantly more prostaglandin(s) and evidence suggests that Candida biofilms have dramatically reduced susceptibility to majority of antifungal drugs. AA influences the saturation level of lipids and fluidity of yeast cell membranes. Therefore the aim of this study was to evaluate the effect of AA alone or in combination with antifungal agents on biofilm formation and production of prostaglandin (PGE2) in C. albicans, C. parapsilosis, C. glabrata, C. tropicalis, and C. albicans amphotericin B resistant strain (AmBR). Maximum biofilm formation was found to be in the case of C. albicans compared to C. non-albicans species. However, among the non-albicans species C. tropicalis exhibited highest biofilm formation. Treatment with AA in combination with subinhibitory concentrations of fluconazole and terbinafine separately exhibited significant (p<0.05) reduction in biofilm formation against C. glabrata, C. parapsilosis, C. tropicalis and AmBR as compared to their individual effect. Further, these two antifungal agents in combination with AA caused an increase in production of prostaglandin from fungal cell itself which was significant (p<0.05) in case of all the strains tested.

  7. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  8. Identification of a cyclooxygenase gene from the red alga Gracilaria vermiculophylla and bioconversion of arachidonic acid to PGF(2α) in engineered Escherichia coli.

    Science.gov (United States)

    Kanamoto, Hirosuke; Takemura, Miho; Ohyama, Kanji

    2011-08-01

    Prostaglandins (PGs) are important local messenger molecules in many tissues and organs of animals including human. For applications in medicine and animal care, PGs are mostly purified from animal tissues or chemically synthesized. To generate a clean, reliable, and inexpensive source for PGs, we have now engineered expression of a suitable cyclooxygenase gene in Escherichia coli and achieved production levels of up to 2.7 mg l(-1) PGF(2α). The cyclooxygenase gene cloned from the red alga Gracilaria vermiculophylla appears to be fully functional without any eukaryotic modifications in E. coli. A crude extract of the recombinant E. coli cells is able to convert in vitro the substrate arachidonic acid (AA) to PGF(2α). Furthermore, these E. coli cells produced PGF(2α) in a medium supplemented with AA and secreted the PGF(2α) product. To our knowledge, this is the first report of the functional expression of a cyclooxygenase gene and concomitant production of PGF(2α) in E. coli. The successful microbial synthesis of PGs with reliable yields promises a novel pharmaceutical tool to produce PGF(2α) at significantly reduced prices and greater purity.

  9. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Concepcion, M.; Gruissem, W. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  10. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    Energy Technology Data Exchange (ETDEWEB)

    Bito, L.Z.; Klein, E.M.

    1982-05-01

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species.

  11. Inhibition of protein kinase B by Palmitate in the insulin signaling of HepG2 cells and the preventive effect of Arachidonic acid on insulin resistance

    Institute of Scientific and Technical Information of China (English)

    XIA Yanzhi; WAN Xuedong; DUAN Qiuhong; HE Shansu; WANG Ximing

    2007-01-01

    Elevated plasma levels of free fatty acids(FFAs)may contribute to insulin resistance (IR)that is characteristic of type 2 diabetes mellitus.In this study,we investigated the effects of two fatty acids,palmitate(PA)and arachidonic acid (AA)on glycogenesis under insulin signaling in HepG2cells,a transformed hepatic carcinoma cell line.In the presence of 200 μmol of palmitate,insulin(10-7 mol/L)stimulation of glycogenesis was inhibited,as evidenced by increased glucose in the medium and decreased intracellular glycogen.Wortmannin(WM),a specific inhibitor of PI3K,dramatically decreased the amount of intracellular glycogen in cells without PA incubation.However,glycogen in PA treated cells was not significantly changed by WM,indicating that PA may also act on PI3K.Interestingly,AA restored the effects of WM inhibition on glycogenesis in PA cells.Western blot analysis demonstrated that PA in the absence of WM increased phosphorylated glycogen synthase(inactive form of GS)and decreased phosphorylated protein kinase B(active form of PKB),causing a reduction of intracellular glycogen.AA,however,reversed the effects of PA on GS and PKB.Furthermore,inhibition of protein kinase C(PKC)by a specific inhibitor chelerythrine chloride (CC)abolished the inhibitory efrect of PA on glycogen synthesis by decreasing phosphorylated GS and increasing phosphorylated PKB.However,the effect of CC in the presence of PA disappeared when AA was also present.Our results suggest that there is a disruption of the insulin signaling pathway between PKB and GS when the cells were exposed to PA,contributing to IR.PA may also interrupt the PKC signaling pathway.In contrast,AA could rescue glycogenesis impaired by PA.

  12. Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults

    Science.gov (United States)

    Seah, Jowy Yi Hoong; Gay, Gibson Ming Wei; Su, Jin; Tai, E-Shyong; Yuan, Jian-Min; Koh, Woon-Puay; Ong, Choon Nam; van Dam, Rob M.

    2017-01-01

    High arachidonic acid (AA; 20:4n-6) status may have adverse effects on inflammation and risk of cardiovascular diseases. Concerns about high intake of n-6 polyunsaturated fatty acids (PUFAs) are based on the premise that endogenous conversion from linoleic acid (LA; 18:2n-6) is an important source of AA, but few population-based studies have investigated dietary determinants of AA status. In this study, we examined habitual food consumption in relation to plasma concentrations of AA and other PUFAs in population-based studies. We used cross-sectional data from 269 healthy, ethnic Chinese participants (25–80 years old) with contrasting intakes of fish and red meat from the Singapore Prospective Study Program and 769 healthy participants (44–74 years old) from the Singapore Chinese Health Study as a validation set. Multivariable linear regression was used to examine PUFA intake (% energy) and food sources of PUFA (fish, red meat, poultry, soy and cooking oils) in relation to plasma PUFAs (AA, LA, dihomo-gamma-linolenic acid (DGLA; 20:3n-6), alpha-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3)) concentrations. Higher intake of red meat was associated with higher plasma AA concentrations. High intake of PUFA or PUFA-rich oils was associated with higher plasma ALA but not with plasma AA. Higher intakes of soy were associated with higher ALA and fish with higher DHA and EPA concentrations. These associations were statistically significant (p < 0.05) in both studies. Red meat consumption, but not PUFA or PUFA-rich cooking oil, was associated with circulating AA suggesting that intake of pre-formed AA rather than LA is an important determinant of AA status. A diet high in fish, soy products and polyunsaturated cooking oil, and low in red meat may be associated with an optimal plasma profile of PUFA in this Chinese population. PMID:28146136

  13. Consumption of Red Meat, but Not Cooking Oils High in Polyunsaturated Fat, Is Associated with Higher Arachidonic Acid Status in Singapore Chinese Adults

    Directory of Open Access Journals (Sweden)

    Jowy Yi Hoong Seah

    2017-01-01

    Full Text Available High arachidonic acid (AA; 20:4 n − 6 status may have adverse effects on inflammation and risk of cardiovascular diseases. Concerns about high intake of n − 6 polyunsaturated fatty acids (PUFAs are based on the premise that endogenous conversion from linoleic acid (LA; 18:2 n − 6 is an important source of AA, but few population-based studies have investigated dietary determinants of AA status. In this study, we examined habitual food consumption in relation to plasma concentrations of AA and other PUFAs in population-based studies. We used cross-sectional data from 269 healthy, ethnic Chinese participants (25–80 years old with contrasting intakes of fish and red meat from the Singapore Prospective Study Program and 769 healthy participants (44–74 years old from the Singapore Chinese Health Study as a validation set. Multivariable linear regression was used to examine PUFA intake (% energy and food sources of PUFA (fish, red meat, poultry, soy and cooking oils in relation to plasma PUFAs (AA, LA, dihomo-gamma-linolenic acid (DGLA; 20:3 n − 6, alpha-linolenic acid (ALA; 18:3 n − 3, eicosapentaenoic acid (EPA; 20:5 n − 3, and docosahexaenoic acid (DHA; 22:6 n − 3 concentrations. Higher intake of red meat was associated with higher plasma AA concentrations. High intake of PUFA or PUFA-rich oils was associated with higher plasma ALA but not with plasma AA. Higher intakes of soy were associated with higher ALA and fish with higher DHA and EPA concentrations. These associations were statistically significant (p < 0.05 in both studies. Red meat consumption, but not PUFA or PUFA-rich cooking oil, was associated with circulating AA suggesting that intake of pre-formed AA rather than LA is an important determinant of AA status. A diet high in fish, soy products and polyunsaturated cooking oil, and low in red meat may be associated with an optimal plasma profile of PUFA in this Chinese population.

  14. Arachidonic acid enhances TPA-induced differentiation in human leukemia HL-60 cells via reactive oxygen species-dependent ERK activation.

    Science.gov (United States)

    Chien, Chih-Chiang; Wu, Ming-Shun; Shen, Shing-Chuan; Yang, Liang-Yo; Wu, Wen-Shin; Chen, Yen-Chou

    2013-04-01

    The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent stimulator of differentiation in human leukemia cells; however, the effects of arachidonic acid (AA) on TPA-induced differentiation are still unclear. In the present study, we investigated the contribution of AA to TPA-induced differentiation of human leukemia HL-60 cells. We found that treatment of HL-60 cells with TPA resulted in increases in cell attachment and nitroblue tetrazolium (NBT)-positive cells, which were significantly enhanced by the addition of AA. Stimulation of TPA-induced intracellular reactive oxygen species (ROS) production by AA was detected in HL-60 cells via a DCHF-DA analysis, and the addition of the antioxidant, N-acetyl-cysteine (NAC), was able to reduce TPA+AA-induced differentiation in accordance with suppression of intracellular peroxide elevation by TPA+AA. Furthermore, activation of extracellular-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by TPA+AA was identified in HL-60 cells, and the ERK inhibitor, PD98059, but not the JNK inhibitor, SP600125, inhibited TPA+AA-induced NBT-positive cells. Suppression of TPA+AA-induced ERK protein phosphorylation by PD98059 and NAC was detected, and AA enhanced ERK protein phosphorylation by TPA was in HL-60 cells. AA clearly increased TPA-induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression, which was inhibited by NAC and PD98059 addition. Eicosapentaenoic acid (EPA) as well as AA showed increased intracellular peroxide production and differentiation of HL-60 cells elicited by TPA. Evidence of AA potentiation of differentiation by TPA in human leukemia cells HL-60 via activation of ROS-dependent ERK protein phosphorylation was first demonstrated herein.

  15. Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages.

    Science.gov (United States)

    Vivancos, Marta; Moreno, Juan J

    2008-06-01

    Oxidation of LDL is hypothesised as an early and critical event in atherogenesis. Oxidised LDL (oxLDL) favour the transformation of macrophages into foam cells, an important cell involved in atherosclerosis. Furthermore, oxLDL cause multiple changes in macrophage functions. Thus, oxLDL induces certain genes, suppresses others and alters cell lipid metabolism. Consumption of a Mediterranean diet is associated with a low incidence of atherosclerotic disease, but data about the specific dietary constituents involved and mechanisms conferring cardioprotection are still sparse. The aim of the present study was to determine the effect of representative minor components of wine and olive oil on reactive oxygen species and eicosanoid synthesis induced by oxLDL-stimulated macrophages. We observed that exposure to non-toxic oxLDL concentrations leads to the production of H2O2 by RAW 264.7 macrophages and this effect was reverted by apocynin, a NADPH oxidase inhibitor. Moreover, oxLDL induced arachidonic acid (AA) release, cyclo-oxygenase-2 overexpression and subsequent PGE2 release. We observed that resveratrol and tyrosol revert H2O2 production induced by oxLDL as well as AA release and PGE2 synthesis and that these effects were not as a consequence of these compounds interfering with the oxLDL binding to their receptors. Interestingly, beta-sitosterol presence enhances these polyphenol actions. Thus, we found a synergistic action of polyphenols of olive oil and wine and beta-sitosterol of olive oil led to the modulation of the effects of oxLDL on oxidative stress and PGE2 synthesis.

  16. Antagonizing arachidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity.

    Science.gov (United States)

    Monk, Jennifer M; Turk, Harmony F; Fan, Yang-Yi; Callaway, Evelyn; Weeks, Brad; Yang, Peiying; McMurray, David N; Chapkin, Robert S

    2014-01-01

    During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23), decreased percentages of Th17 cells and, improved colon injury scores (P ≤ 0.05). Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  17. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  18. Effects of arachidonic acid supplementation in maturation diet on female reproductive performance and larval quality of giant river prawn (Macrobrachium rosenbergii)

    Science.gov (United States)

    Pratoomyot, Jarunan; Siranonthana, Nisa; Senanan, Wansuk

    2016-01-01

    The giant river prawn (Macrobrachium rosenbergii) is one of the most farmed freshwater crustaceans in the world. Its global production has been stalling in the past decade due to the inconsistent quality of broodstock and hatchery-produced seeds. A better understanding of the role of nutrition in maturation diets will help overcome some of the production challenges. Arachidonic acid (20:4 n-6, ARA) is a fatty acid precursor of signaling molecules important for crustacean reproduction, prostaglandins E and F of the series II (PGE2 and PGF2α), and is often lacking in maturation diets of shrimp and prawns. We examined the effects of ARA in a combination of different fish oil (FO) and soybean oil (SO) blends on females’ reproductive performance and larval quality. Adult females (15.22 ± 0.13 g and 11.12 ± 0.09 cm) were fed six isonitrogenous and isolipidic diets containing one of two different base compositions (A or B), supplemented with one of three levels of Mortierella alpine-derived ARA (containing 40% active ARA): 0, 1 or 2% by ingredient weight. The two base diets differed in the percentages of (FO and SO with diet A containing 2% SO and 2% FO and diet B containing 2.5% SO and 1.5% FO, resulting in differences in proportional contents of dietary linoleic acid (18:2n-6, LOA) and docosahexaenoic acid (22:6n-3, DHA)). After the eight-week experiment, prawns fed diet B with 1 and 2% ARA supplement (B1 and B2) exhibited the highest gonadosomatic index (GSI), hepatosomatic index (HSI), egg clutch weight, fecundity, hatching rate, number of larvae, and reproductive effort compared to those fed other diets (p ≤ 0.05). Larvae from these two dietary treatments also had higher tolerance to low salinity (2 ppt). The maturation period was not significantly different among most treatments (p ≥ 0.05). ARA supplementation, regardless of the base diet, significantly improved GSI, HSI, egg clutch weight and fecundity. However, the diets with an enhanced ARA and LOA

  19. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Science.gov (United States)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  20. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons.

    Science.gov (United States)

    Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello

    2005-08-01

    Previous studies have revealed a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) neurons of the leech Hirudo medicinalis. The firing of T cells is characterized by an AHP, which is mainly due to the activity of the Na+/K+ ATPase. Low-frequency repetitive stimulation of T neurons leads to a robust increment of the AHP amplitude, which is correlated with a synaptic depression between T neuron and follower cells. In the present study, we explored the molecular cascades underlying the AHP increase. We tested the hypothesis that this activity-dependent phenomenon was triggered by calcium influx during neural activity by applying blockers of voltage-dependent Ca2+ channels. We report that AHP increase requires calcium influx that, in turn, induces release of calcium from intracellular stores so sustaining the enhancement of AHP. An elevation of the intracellular calcium can activate the cytosolic isoforms of the phosholipase A2 (PLA2). Therefore we analyzed the role of PLA2 in the increase of the AHP, and we provide evidence that not only PLA2 but also the recruitment of arachidonic acid metabolites generated by the 5-lipoxygenase pathway are necessary for the induction of AHP increase. These data indicate that a sophisticated cascade of intracellular signals links the repetitive discharge of T neurons to the activation of molecular pathways, which finally may alter the activity of critical enzymes such as the Na+/K+ ATPase, that sustains the generation of the AHP and its increase during repetitive stimulation. These results also suggest the potential importance of the poorly studied 5-lipoxygenase pathway in forms of neuronal plasticity.

  1. Effects of fluticasone propionate on arachidonic acid metabolites in BAL-fluid and methacholine dose-response curves in non-smoking atopic asthmatics

    Directory of Open Access Journals (Sweden)

    S. E. Overbeek

    1996-01-01

    Full Text Available Hyperresponsiveness of the airways to nonspecific stimuli is a characteristic feature of asthma. Airway responsiveness is usually characterized in terms of the position and shape of the dose–response curve to methacholine (MDR. In the study we have investigated the influence of fluticasone propionate (FP, a topically active glucocorticoid, on arachidonic acid (AA metabolites in broncho-alveolar lavage (BAL fluid (i.e. TxB2, PGE2, PGD2, 6kPGF1α and LTC4 on the one hand and MDR curves on the other hand. The effect of FP was studied in a randomized, double-blind, placebo-controlled design in 33 stable nonsmoking asthmatics; 16 patients received FP (500 μg b.i.d. whereas 17 patients were treated with placebo. We found that the forced expiratory volume in 1s (FEV1 % predicted increased, the log2PC20 methacholine increased and the plateau value (% fall in FEV1 decreased after a 12 week treatment period. No changes in AA-metabolites could be determined after treatment except for PGD2 which decreased nearly significantly (p = 0.058 within the FP treated group, whereas the change of PGD2 differed significantly (p = 0.05 in the FP treated group from placebo. The levels of the other AA metabolites (i.e. TxB2, PGE2, 6kPGF1α and LTC4 remained unchanged after treatment and were not significantly different from the placebo group. Our results support the hypothesis that although FP strongly influences the position, the shape and also the maximum response plateau of the MDR curve, this effect is not mainly achieved by influence on the level of AA metabolites. Other pro-inflammatory factors may be of more importance for the shape of the MDR curve. It is suggested that these pro-inflammatory factors are downregulated by FP.

  2. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    Science.gov (United States)

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA.

  3. Oxidation of esterified arachidonate by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.W.; Suzuki, T.; Schenkman, J.B.

    1986-03-05

    The authors have previously demonstrated a relationship between phospholipid arachidonate in liver microsomes and malondialdehyde (MDA) formation during lipid peroxidation. In this study arachidonic acid (U-/sup 14/C) was incorporated into rat liver microsomes and NADPH-supported peroxidation was carried out at 37/sup 0/C for 15 minutes. The microsomes were pelleted by centrifugation and the labeled products in the supernatant were isolated by a solid phase method. Pellets were hydrolyzed with phospholipase A/sub 2/ and extracted with diethyl ether and the products from both fractions were separated by reverse phase HPLC. The results show that (1) oxidation occurs in all of the major phospholipids but that phosphatidylethanolamine is the most susceptible; (2) a linear correlation exists between MDA formation and supernatant radioactivity; (3) several different polar products are found in both the supernatant and the hydrolyzed pellet but that the ratios of product peaks in HPLC do not change during the peroxidation, indicating no secondary metabolism or propagation; and (4) cytochrome P-450 is not involved in the peroxidative reactions since no oxidation occurs in the absence of Fe/sup 3 +/ and since product formation is unaffected in the presence of carbon monoxide.

  4. BIRM 270: a novel inhibitor of arachidonate release that blocks leukotriene B4 and platelet-activating factor biosynthesis in human neutrophils.

    Science.gov (United States)

    Farina, P R; Graham, A G; Hoffman, A F; Watrous, J M; Borgeat, P; Nadeau, M; Hansen, G; Dinallo, R M; Adams, J; Miao, C K

    1994-12-01

    (S)-N-[2-Cyclohexyl-1-(2-pyridinyl)ethyl]-5-methyl-2-benzoxazolamine+ ++ (BIRM 270) was identified as a potent and enantiomerically selective inhibitor of calcium ionophore A23187-stimulated leukotriene B4 biosynthesis in human neutrophils. The (S)- and (R)-enantiomers exhibited IC50 values of 1 nM and 40 nM, respectively. BIRM 270 did not inhibit 5-lipoxygenase activity in a cell-free assay. In addition, the compound did not interfere with the conversion of exogenous 5-lipoxygenase substrate (15S)-hydroperoxyeicosatetraenoic acid to (5S, 15S)-dihydroxyeicosatetraenoic acid in intact, ionophore-stimulated neutrophils. Under the same experimental conditions, BIRM 270 inhibited the production of 5-lipoxygenase products from endogenous substrate, suggesting that the compound affected arachidonate availability rather than metabolism. Consistent with this concept, the inhibition of leukotriene B4 biosynthesis by BIRM 270 was overcome by the addition of exogenous arachidonic acid to the leukocyte preparation. Direct measurement of free arachidonate by gas chromatography-mass spectrometry confirmed that BIRM 270 inhibited arachidonate release from ionophore-stimulated neutrophils. The compound did not affect arachidonate reacylation. The blockage of arachidonate release coincided with inhibition of leukotriene B4 biosynthesis in these cells. BIRM 270 also inhibited ionophore-stimulated platelet-activating factor biosynthesis by human neutrophils. Although these results suggest that BIRM 270 inhibited phospholipase A2-mediated deacylation of membrane phospholipids, the compound did not directly inhibit the high molecular weight, cytosolic phospholipase A2 derived from human neutrophils or U937 cells. Thus, suppression of arachidonate mobilization by BIRM 270 may be due to indirect inhibition of intracellular phospholipase A2 or to inhibition of another acylhydrolase activity.

  5. Effect of dietary arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in larvae of common sole ( Solea solea L.)

    DEFF Research Database (Denmark)

    Lund, Ivar; Steenfeldt, Svend Jørgen; Hansen, B.W.

    2007-01-01

    reflected dietary composition, neither standard growth nor larval survival were significantly related to the absolute concentrations of ARA, EPA and DHA or their ratios. This suggests low requirements for essential polyunsaturated fatty acids (PUFAs) in common sole. Malpigmentation was significantly related...... to increased dietary ARA content. However, pigmentation was not affected by inclusion levels of EPA or DHA when ARA was high. This, and no relation between DHA: EPA or ARA: EPA ratios and pigmentation and only a weak relation to ARA: DHA ratio, advocate for that it is the absolute concentration of ARA...... resulted in a lower growth rate, which suggests that visual aberrations affected prey capture. (C) 2007 Elsevier B.V. All rights reserved....

  6. The application of arachidonic acid in dairy products%花生四烯酸在乳制品中的应用

    Institute of Scientific and Technical Information of China (English)

    詹现璞; 吕银德; 赵俊芳

    2009-01-01

    花生四烯酸(AA)是一种人体必需的多不饱和脂肪酸,是人体生长因子,影响婴幼儿大脑和神经发育.AA具有改善记忆力和视力、调节血脂和血糖、降低血清胆固醇、预防心血管疾病、辅助抑制肿瘤、预防癌变、神经功能调节等作用.人体自身不能合成AA,必需从食物补充才能满足机体代谢的需要,牛乳是人体补充营养物质的载体,而AA在牛乳中几乎不存在,所以在牛乳中强化AA已显得非常必要.本文介绍了AA添加带配方奶粉中的工艺流程和操作要点;AA应用于纯牛奶中的工艺流程和操作要点;开发富含AA酸牛奶的生产工艺和操作要点;开发富含AA乳饮料的工艺流程和操作要点.研究发现,AA在酸牛奶和乳饮料中的应用将是新的发展趋势,富含AA的乳制品将会给企业带来巨大的经济效益和社会效益.%Arachidonic acid(AA)is an essential polyunsaturated fatty acids for human.It is a human growth factor,which can greatly affect infant brain and neurological development.AA can improve the memory and vision,regulate blood lipids and blood sugar,reduce cholesterol,and prevent cardiovascular disease and cancer.AA can not be synthesized by human body,it can only be obtained through food.Milk contains rich nutrients except AA,so AA fortified milk has become necessary.In this paper,the formula and process for adding AA into milk has been studied.It is found that AA in the acidophilus milk and milk drinks will be the new trend of dairy products.AA enrichment products will bring enormous economic and social benefits.

  7. Castration modifies aortic vasoreactivity and serum fatty acids in a sucrose-fed rat model of metabolic syndrome.

    Science.gov (United States)

    Perez, Israel; El Hafidi, Mohammed; Carvajal, Karla; Baños, Guadalupe

    2009-03-01

    Levels of testosterone and estradiol influence the incidence of cardiovascular diseases: generally, estrogens in females are protective before menopause; coronaropathies, hypertension, and dyslipidemias in normal men are more frequent at comparable ages. We investigated the modulation by castration of in vitro vasoreactivity, serum lipid content, and systolic blood pressure (SBP) in rats with sucrose-induced metabolic syndrome. The main characteristics of the rat model are: hypertriglyceridemia, moderately high blood pressure, intra-abdominal accumulation of adipose tissue, hyperinsulinemia, nephropathy, increased oxidative stress, and altered vasoreactivity. Male weanling rats received 30% sucrose solution for 16 weeks (metabolic syndrome; MS), controls (C) had plain water; both had commercial rodent chow. They were subdivided into five groups with two subgroups each: Group 1, intact C and MS rats, Groups 2-5, C and MS rats castrated for periods of 16, 12, 8, and 4 weeks. At the end of the study period, systolic blood pressure was measured, and blood and aortas were obtained for fatty acid determination and vasoreactivity assays, respectively. After 16 weeks' sucrose treatment MS aortas showed hypercontractility and decreased vasodilation. Palmitic and palmitoleic acids were increased in MS versus C. Arachidonic acid levels in MS were lower than in intact or castrated C. Long-term castration of 16 weeks normalized the levels of palmitic and oleic acids. With the shorter periods of castration, contractility increased and relaxation decreased in C and MS, but it was more significant in C. Regarding fatty acid composition, long-term castration increased polyunsaturated (arachidonic and eicosapentaenoic) fatty acids. The shorter periods did not modify the fatty acid profile in either C or MS. Metabolic syndrome altered SBP, aortic reactivity, and levels of fatty acids; castration of long duration normalized them in some cases.

  8. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from...... the skin were determined. The results indicate that re-establishment of a low trans-epidermal water loss was associated with incorporation of linolenate into the two epidermal sphingolipids. Supplementation with columbinate resulted in relatively high amounts of this fatty acid in the investigated...

  9. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats

    Directory of Open Access Journals (Sweden)

    A. M. Zúñiga-Muñoz

    2015-01-01

    Full Text Available Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood pressure, body weight, body fat, triglycerides, insulin, HOMA-index, albuminuria, and TNF-α were increased in ovariectomized metabolic syndrome rats (p<0.001. The perfusion pressure in isolated kidneys of ovariectomized metabolic syndrome rats in presence of 4 μg of arachidonic acid was increased. The inhibitors of the arachidonic acid metabolism Baicalein, Miconazole, and Indomethacin in these rats decreased the perfusion pressure by 57.62%, 99.83%, and 108.5%, respectively and they decreased creatinine clearance and the arachidonic acid percentage. Phospholipase A2 expression in the kidney of ovariectomized metabolic syndrome rats was not modified. 5-lipoxygenase was increased in metabolic syndrome ovariectomized rats while cytochrome p450 4A was decreased. In conclusion, the loss of estradiol increases renal damage while the treatment with estradiol benefits renal function by modulating arachidonic acid metabolism through the 5-lipoxygenase and cytochrome p450 4A pathways.

  10. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Science.gov (United States)

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  11. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  12. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    DEFF Research Database (Denmark)

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    Dover sole (Solea solea, Linneaus 1758) were raised from first feeding on brine shrimp (Artemia sp.) with different contents and compositions of the essential fatty acids (EFA) arachidonic acid (ARA, 20:4n - 6); eicosapentaenoic acid (EPA, 20:5n - 3), and docosahexaenoic acid (DHA, 22:6n - 3......), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega......-crit, but juveniles fed on un-enriched Artemia still exhibited higher P-crit and agitation thresholds than the other groups. Sole fed un-enriched Artemia had significantly lower contents of EFA in their tissues, both before and after settlement. Thus, enriching live feeds with EFA has significant effects...

  13. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis.

    Science.gov (United States)

    Ramakers, Julian D; Mensink, Ronald P; Verstege, Marleen I; te Velde, Anje A; Plat, Jogchum

    2008-08-01

    Fish oils (FO) - rich in EPA and DHA - may protect against colitis development. Moreover, inflammatory bowel disease patients have elevated colonic arachidonic acid (AA) proportions. So far, effects of dietary AA v. FO on colitis have never been examined. We therefore designed three isoenergetic diets, which were fed to mice for 6 weeks preceding and during 7 d dextran sodium sulfate colitis induction. The control diet was rich in oleic acid (OA). For the other two diets, 1.0 % (w/w) OA was exchanged for EPA+DHA (FO group) or AA. At 7 d after colitis induction, the AA group had gained weight (0.46 (sem 0.54) g), whereas the FO and OA groups had lost weight (- 0.98 (SEM 0.81) g and - 0.79 (SEM 1.05) g, respectively; P diet increased colonic AA content, but did not result in more colonic inflammation as compared with FO- and OA-enriched diets. As we only examined effects after 7 d and because the time point for evaluating effects seems to be important, the present results should be regarded as preliminary. Future studies should further elucidate differential effects of fatty acids on colitis development in time.

  14. Polyunsaturated fatty acid metabolism in prostate cancer.

    Science.gov (United States)

    Berquin, Isabelle M; Edwards, Iris J; Kridel, Steven J; Chen, Yong Q

    2011-12-01

    Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.

  15. Metabolism of dicarboxylic acids in rat hepatocytes.

    Science.gov (United States)

    Bergseth, S; Poisson, J P; Bremer, J

    1990-02-06

    [carboxyl-14C]Dodecanedioic acid (DC12) is metabolized in hepatocytes at a rate about two thirds that of [1-14C]palmitate. Shorter dicarboxylates (sebacic (DC10), suberic (DC8), and adipic (DC6) acid) are formed, mainly DC6, less DC8 and only a little DC10. In hepatocytes from clofibrate-treated rats, more polar products account for most of the breakdown products, presumably because the beta-oxidation proceeds all the way to succinate and acetyl-CoA. [carboxyl-14C]Suberic acid (DC8) is oxidized at a rate only one fifth that of dodecanedioic acid. (+)-Decanoylcarnitine inhibits palmitate oxidation but not the oxidation of dodecanedioic acid. At low concentrations of [carboxyl-14C]dodecanedioic acid or of [1-14C]palmitate, acetylsulfanilamide is more efficiently labeled by the former. High concentrations of dodecanedioic acid inhibit palmitate oxidation and the acetylation of sulfanilamide, presumably because their CoA-esters accumulate in the cytosol. These results indicate that medium-chain dicarboxylic acids are beta-oxidized mainly in the peroxisomes.

  16. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  17. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Allegra, M; D'Acquisto, F; Tesoriere, L; Attanzio, A; Livrea, M A

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50-100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5-3 h) modest inhibition, followed by a progressive (3-12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5-3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  18. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Science.gov (United States)

    Allegra, M.; D’Acquisto, F.; Tesoriere, L.; Attanzio, A.; Livrea, M.A.

    2014-01-01

    Macrophages come across active prostaglandin (PG) metabolism during inflammation, shunting early production of pro-inflammatory towards anti-inflammatory mediators terminating the process. This work for the first time provides evidence that a phytochemical may modulate the arachidonate (AA) metabolism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, promoting the ultimate formation of anti-inflammatory cyclopentenone 15deoxy-PGJ2. Added 1 h before LPS, indicaxanthin from Opuntia Ficus Indica prevented activation of nuclear factor-κB (NF-κB) and over-expression of PGE2 synthase-1 (mPGES-1), but up-regulated cyclo-oxygenase-2 (COX-2) and PGD2 synthase (H-PGDS), with final production of the anti-inflammatory cyclopentenone. The effects were positively related with concentration between 50 and 100 µM. Indicaxanthin did not have any effect in the absence of LPS. A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h) modest inhibition, followed by a progressive (3–12 h) concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h) concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages. PMID:25180166

  19. Linking uric acid metabolism to diabetic complications

    Institute of Scientific and Technical Information of China (English)

    Akifumi; Kushiyama; Kentaro; Tanaka; Shigeko; Hara; Shoji; Kawazu

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.

  20. Adaptive modification of membrane phospholipid fatty acid composition and metabolic thermosuppression of brown adipose tissue in heat-acclimated rats

    Science.gov (United States)

    Saha, S. K.; Ohno, T.; Tsuchiya, K.; Kuroshima, A.

    Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25+/-1°C, 50% relative humidity and heat acclimation: 32+/-0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, Pfatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.

  1. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Kobayashi, Yuji

    2012-04-01

    Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction.

  2. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. (Univ. of Cincinnati Medical Center, OH (United States))

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  3. Calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis: a rapid method to evaluate inhibitors of arachidonic acid metabolism in vivo

    Directory of Open Access Journals (Sweden)

    T. S. Rao

    1993-01-01

    Full Text Available The present investigation characterizes calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis in the rat. Intraperitoneal injection of A-23187 (20 μg/rat stimulated marked biosynthesis of 6-keto-PGF1α (6-KPA, TxB2, LTC4 and LTB4, with no detectable changes on levels of PGE2. Levels of all eicosanoids decreased rapidly after a peak which was seen as early as 5 min. Enzyme markers of cellular contents of neutrophils and mononuclear cells, MPO and NAG respectively, decreased rapidly after ionophore injection; this was followed by increases after 60 min. Indomethacin, a selective cyclooxygenase inhibitor, and zileuton and ICI D-2138, two selective 5-lipoxygenase inhibitors attenuated prostaglandin and leukotriene pathways respectively. Oral administration of zileuton (20 mg/kg, p.o. inhibited LTB4 biosynthesis for up to 6 h suggesting a long duration of pharmacological activity in the rats consistent with its longer half-life. The rapid onset and the magnitude of increases in levels of eicosanoids render the ionophore induced peritoneal eicosanoid biosynthesis a useful model to evaluate pharmacological profiles of inhibitors of eicosanoid pathways in vivo.

  4. Amino acids: metabolism, functions, and nutrition.

    Science.gov (United States)

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  5. Effects of arachidonic acid on L-type calcium channel and its mechanism of antiarrhythmia%花生四烯酸对L-型钙通道的作用及其抗心律失常机制

    Institute of Scientific and Technical Information of China (English)

    刘承云; 陈桂青; 耿小晶; 陈心; 万晶晶

    2009-01-01

    目的 研究花生四烯酸(arachidonic acid,AA)对家兔单个心室肌细胞L-广型钙通道的作用及其抗心律失常作用的机制.方法 采用酶解法分离得到家兔单个心室肌细胞,全细胞膜片钳技术记录单个心室肌细胞L-型钙电流(L-type calcium current,Ica-L),用累积给药的方法在灌流液中加入不同浓度的AA,观察给药前后L-型钙电流的变化,统计学方法采用单因素方差分析.结果 不同浓度的从均能明显抑制心室肌细胞,Ica-L.3 μmol/L,μmol/L,20,μmol/L的AA使Ica-L峰电流密度从(10.79±0.93)pA/pF分别减少剑(8.99 ±0.43)pA/pF、(7.60 ±0.35)pA/pF和(5.60±0.30)pA/pF(n=7,P<0.05),经冲洗后Ica-L可部分恢复,并且AA可使Ica-L的I-V关系曲线上移,其形状和峰值电压保持不变;20 μmol/L的AA使Ica-L失活曲线左移,失活后恢复时间明显延长,但对激活曲线无明显影响.结论 花生四烯酸可通过加快L-型钙通道失活,延长其失活后的恢复过程而减少细胞外钙离子的内流,延长有效不应期,从而发挥抗心律失常作用.%Objective To study the influence of arachidonic acid (AA) on L-type calcium channel in rabbits sin-gle cardiomyocyte and its mechanism of antiarrhythmia. Method The single ventricular cardiomyocyte was isolat-ed by using enzyme dispersion method and whole-cell clamp-patch technique was used to record L-type calcium current.All data were analyzed using ANOVA. Results AA inhibited Ica-L in a concentration-dependent manner. The application of 3 μmol/L, 10 μmol/L and 20 μmol/L arachidonic acid reduced the density of peak Ica-L from (10.79±0.93)pA/pF to (8.99±0.43)pA/pF to (7.60±0.35)pA/pF and to (5.60±0.30)pA/pF, respctive-ly (n=7, P<0. O1 ). The Ica-Lpartially resumed after washout. The AA up-shifted the I-V curves of Ica-L without changes of their shape,peak and reverse potentials. The AA also markedly shifted the inactivation curve to left, and prolonged the recorvery time from inactivation

  6. Inhibitory effects of Tabebuia impetiginosa inner bark extract on platelet aggregation and vascular smooth muscle cell proliferation through suppressions of arachidonic acid liberation and ERK1/2 MAPK activation.

    Science.gov (United States)

    Son, Dong-Ju; Lim, Yong; Park, Young-Hyun; Chang, Sung-Keun; Yun, Yeo-Pyo; Hong, Jin-Tae; Takeoka, Gary R; Lee, Kwang-Geun; Lee, Sung-Eun; Kim, Mi-Ran; Kim, Jeong-Han; Park, Byeoung-Soo

    2006-11-03

    The antiplatelet and antiproliferative activities of extract of Tabebuia impetiginosa inner bark (taheebo) were investigated using washed rabbit platelets and cultured rat aortic vascular smooth muscle cells (VSMCs) in vitro. n-Hexane, chloroform and ethyl acetate fractions showed marked and selective inhibition of platelet aggregation induced by collagen and arachidonic acid (AA) in a dose-dependent manner. These fractions, especially the chloroform fraction, also significantly suppressed AA liberation induced by collagen in [(3)H]AA-labeled rabbit platelets. The fractions, especially the chloroform fraction, potently inhibited cell proliferation and DNA synthesis induced by platelet derived growth factor (PDGF)-BB, and inhibited the levels of phosphorylated extracellular signal regulated kinase (ERK1/2) mitogen activated protein kinase (MAPK) stimulated by PDGF-BB, in the same concentration range that inhibits VSMC proliferation and DNA synthesis.

  7. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

    Directory of Open Access Journals (Sweden)

    Rudock Megan E

    2011-05-01

    Full Text Available Abstract Background Arachidonic acid (AA is a long-chain omega-6 polyunsaturated fatty acid (PUFA synthesized from the precursor dihomo-gamma-linolenic acid (DGLA that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date. Results In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48 and lower DGLA levels (p = 9.80 × 10-11 than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs in the Fatty Acid Desaturase (FADS locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans. Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537, wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups. Conclusions We conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.

  8. A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies

    Directory of Open Access Journals (Sweden)

    Corsetto Paola

    2010-01-01

    Full Text Available Abstract Background Omega-3 and -6 polyunsaturated fatty acids (LCPUFA, are important for good health conditions. They are present in membrane phospholipids. The ratio of total n-6:n-3 LCPUFA and arachidonic acid:eicosapentaenoic acid (AA and EPA, should not exceed 5:1. Increased intake of n-6 and decreased consumption of n-3 has resulted in much higher, ca 10/15:1 ratio in RBC fatty acids with the possible appearance of a pathological "scenario". The determination of RBC phospholipid LCPUFA contents and ratios is the method of choice for assessing fatty acid status but it is labour intensive and time consuming. Aims of the study [i] To describe and validate a rapid method, suitable for large scale population studies, for total blood fatty acid assay; [ii] to verify a possible correlation between total n-6:n-3 ratio and AA:EPA ratios in RBC phospholipids and in whole-blood total lipids, [iii] to assess usefulness of these ratio as biomarkers of LCPUFA status. Methods 1 Healthy volunteers and patients with various pathologies were recruited. 2 Fatty acid analyses by GC of methyl esters from directly derivatized whole blood total lipids and from RBC phospholipids were performed on fasting blood samples from 1432 subjects categorised according to their age, sex and any existing pathologies. AA:EPA ratio and the total n-6:n-3 ratio were determined. Results AA:EPA ratio is a more sensitive and reliable index for determining changes in total blood fatty acid and it is correlated with the ratio derived from extracted RBC phospholipids. Conclusions The described AA:EPA ratio is a simple, rapid and reliable method for determining n-3 fatty acid status.

  9. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  10. Bile acid signaling in metabolic disease and drug therapy.

    Science.gov (United States)

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  11. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    Science.gov (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  12. Increased brain fatty acid uptake in metabolic syndrome

    DEFF Research Database (Denmark)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  13. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    Science.gov (United States)

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia.

  14. Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects.

    Science.gov (United States)

    Bachar, Mostafa; Raimann, Jochen G; Kotanko, Peter

    2016-03-07

    In this work, we develop an impulsive mathematical model of Vitamin C (ascorbic acid) metabolism in healthy subjects for daily intake over a long period of time. The model includes the dynamics of ascorbic acid plasma concentration, the ascorbic acid absorption in the intestines and a novel approach to quantify the glomerular excretion of ascorbic acid. We investigate qualitative and quantitative dynamics. We show the existence and uniqueness of the global asymptotic stability of the periodic solution. We also perform a numerical simulation for the entire time period based on published data reporting parameters reflecting ascorbic acid metabolism at different oral doses of ascorbic acid.

  15. Metabolic engineering as a tool for enhanced lactic acid production.

    Science.gov (United States)

    Upadhyaya, Bikram P; DeVeaux, Linda C; Christopher, Lew P

    2014-12-01

    Metabolic engineering is a powerful biotechnological tool that finds, among others, increased use in constructing microbial strains for higher lactic acid productivity, lower costs and reduced pollution. Engineering the metabolic pathways has concentrated on improving the lactic acid fermentation parameters, enhancing the acid tolerance of production organisms and their abilities to utilize a broad range of substrates, including fermentable biomass-derived sugars. Recent efforts have focused on metabolic engineering of lactic acid bacteria as they produce high yields and have a small genome size that facilitates their genetic manipulation. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating lactic acid producing organisms developed to address and overcome major challenges in the lactic acid production process.

  16. Association between polymorphisms of arachidonate 12-lipoxygenase (ALOX12 and schizophrenia in a Korean population

    Directory of Open Access Journals (Sweden)

    Park Jin

    2010-07-01

    Full Text Available Abstract Arachidonic acid (AA, an essential polyunsaturated fatty acid, is one of the major components of neural membranes, which show an altered phospholipid composition in schizophrenia. Arachidonate 12-lipoxygenase (ALOX12, an important enzyme, metabolizes AA to 12-HPETE, which affects catecholamine synthesis. However, research has yet to show the genetic association between ALOX12 and schizophrenia. Therefore, we investigated single nucleotide polymorphisms (SNP of the ALOX12 gene in schizophrenia, recruiting patients with schizophrenia (n = 289 and normal controls (n = 306 from a Korean population. We selected three SNPs (rs1126667, rs434473, and rs1042357 of the ALOX12 gene and genotyped them by direct sequencing. We reviewed the schizophrenic patients' medical records and assessed them clinically using the Brief Psychiatric Rating Scale (BPRS, the Scale for the Assessment of Negative Symptoms (SANS, and the Operational Criteria Checklist (OPCRIT. Then we statistically analyzed the genetic associations between the SNPs and schizophrenia, finding a genetic association between both rs1126667 and rs1042357 and schizophrenia, in the recessive model (p = 0.015 and 0.015, respectively. We also found an association between rs434473 and negative symptoms, defined through a factor analysis of the OPCRIT data (p = 0.040. Consequently, we suggest that SNPs of the ALOX12 gene might be associated with schizophrenia and negative symptoms in this Korean population. These weak positives require additional study.

  17. Disturbed amino acid metabolism in HIV: association with neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Johanna M Gostner

    2015-07-01

    Full Text Available Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1-infected patients. Both essential amino acids, tryptophan and phenylalanine are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms such as development of depression, fatigue, and cognitive impairment.Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.

  18. Anti-inflammatory Effects of Omega 3 and Omega 6 Polyunsaturated Fatty Acids in Cardiovascular Disease and Metabolic Syndrome.

    Science.gov (United States)

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2016-01-08

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases. On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and cardiovascular diseases has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of cardiovascular diseases, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese-overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of cardiovascular disease risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in cardiovascular diseases and metabolic syndrome.

  19. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  20. Differential diagnosis of (inherited) amino acid metabolism or transport disorders

    NARCIS (Netherlands)

    W. Blom (W.); J.G.M. Huijmans (Jan)

    1992-01-01

    markdownabstract__Abstract__ Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various eti

  1. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    Science.gov (United States)

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process.

  2. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  3. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    Science.gov (United States)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  4. EFFECTS OF HYDRAZINES ON THE METABOLISM OF CERTAIN AMINES AND AMINO ACIDS.

    Science.gov (United States)

    AMINES, * AMINO ACIDS , *DIAMINE OXIDASE, TOXICITY, METABOLISM, METABOLISM, DIMETHYLHYDRAZINES, GLUTAMIC ACID, ENZYMES, PHARMACOLOGY, TRACER STUDIES, LABELED SUBSTANCES, RESPIRATION, GASTROINTESTINAL SYSTEM, RATS.

  5. Differential diagnosis of (inherited) amino acid metabolism or transport disorders.

    Science.gov (United States)

    Blom, W; Huijmans, J G

    1992-02-01

    Disorders of amino acid metabolism or transport are most clearly expressed in urine. Nevertheless the interpretation of abnormalities in urinary amino acid excretion remains difficult. An increase or decrease of almost every amino acid in urine can be due to various etiology. To differentiate between primary and secondary aminoacido-pathies systematic laboratory investigation is necessary. Early diagnosis of disorders of amino acid metabolism or transport is very important, because most of them can be treated, leading to the prevention of (further) clinical abnormalities. In those disorders, which cannot be treated, early diagnosis in an index-patient may prevent the birth of other siblings by means of genetic counseling and prenatal diagnosis.Primary aminoacidopathies can be due to genetically determined transport disorders and enzyme deficiencies in amino acid metabolism or degradation. Secondary aminoacidopathies are the result of abnormal or deficient nutrition, intestinal dysfunction, organ pathology or other metabolic diseases like organic acidurias.A survey of amino acid metabolism and transport abnormalities will be given, illustrated with metabolic pathways and characteristic abnormal amino acid chromatograms.

  6. Citric acid cycle and role of its intermediates in metabolism.

    Science.gov (United States)

    Akram, Muhammad

    2014-04-01

    The citric acid cycle is the final common oxidative pathway for carbohydrates, fats and amino acids. It is the most important metabolic pathway for the energy supply to the body. TCA is the most important central pathway connecting almost all the individual metabolic pathways. In this review article, introduction, regulation and energetics of TCA cycle have been discussed. The present study was carried out to review literature on TCA cycle.

  7. 品种与部位对羊肌肉中亚麻酸与花生四烯酸含量的影响%Study on the Linolenic Acid and Arachidonic Acid Content in Different Breeds and Parts of Sheep

    Institute of Scientific and Technical Information of China (English)

    罗玉龙; 杨晶; 刘夏炜; 靳志敏; 段艳; 靳烨

    2015-01-01

    Linolenic acid and Arachidonic acid content of biceps femoris,triceps brachii and longissimus dorsi from 5 months Sunite sheep,Small tailed han sheep and Bahan F2 sheep were detected by gas chromatography to explore the effect of breeds and anatomical locations.The results showed breeds and anatomical locations had significantly influence on Linolenic acid and Arachidonic acid content.Content of Linolenic acid was the highest in the longissimus muscles of Small tailed han sheep;In the same breed,Arachidonic acid content in the longissimus dorsi significantly higher than other anatomical locations.In the different breeds,content of Arachidonic acid in Sunite sheep was higher than other breeds.Compared comprehensively,content of Arachidonic acid in the longissimus dorsi of Sunite lamb was the highest.As the standard evaluation of mutton nutrition value,meat of Sunite sheep was the better than meat of Small tailed han sheep and Bahan F2 sheep,the longissimus dorsi of Sunite sheep was best.%通过选择5月龄苏尼特羊、小尾寒羊及巴寒F2各5只,每只羊就其背最长肌,股二头肌、臂三头肌3个部位用气相色谱法测定其脂肪酸含量,来进一步研究不同品种不同部位羊肉亚麻酸与花生四烯酸的含量,阐明品种及部位对羊肉中亚麻酸与花生四烯酸含量的影响.结果表明:品种和部位都对羊肉中亚麻酸与花生四烯酸的含量有一定影响,小尾寒羊背最长肌部位的亚麻酸含量最高;同一品种,背最长肌部位花生四烯酸含量显著高于其他部位.不同品种的羊,苏尼特羊的花生四烯酸含量高于小尾寒羊和巴寒F2,综合比较得出苏尼特羊背最长肌部位的花生四烯酸含量最高.以这2种酸作为评价羊肉营养价值的标准时,苏尼特肉质较小尾寒羊和巴寒F2好,其中背最长肌肉质为最佳.

  8. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further ex...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...

  9. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation

    NARCIS (Netherlands)

    Lefebvre, Philippe; Cariou, Bertrand; Lien, Fleur; Kuipers, Folkert; Staels, Bart

    2009-01-01

    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 89: 147-191,2009; doi: 10.1152/physrev.00010.2008. - The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an incre

  10. Natural toxins that affect plant amino acid metabolism

    Science.gov (United States)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  11. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Stroeve, Johanna H. M.; Caron, Sandrine; Staels, Bart

    2007-01-01

    Purpose of review Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuc

  12. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  13. Engineering metabolic highways in Lactococci and other lactic acid bacteria

    NARCIS (Netherlands)

    Vos, de W.M.; Hugenholtz, J.

    2004-01-01

    Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive ba

  14. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  15. Phytanic acid metabolism in health and disease.

    Science.gov (United States)

    Wanders, Ronald J A; Komen, Jasper; Ferdinandusse, Sacha

    2011-09-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which cannot be beta-oxidized due to the presence of the first methyl group at the 3-position. Instead, phytanic acid undergoes alpha-oxidation to produce pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) plus CO(2). Pristanic acid is a 2-methyl branched-chain fatty acid which can undergo beta-oxidation via sequential cycles of beta-oxidation in peroxisomes and mitochondria. The mechanism of alpha-oxidation has been resolved in recent years as reviewed in this paper, although some of the individual enzymatic steps remain to be identified. Furthermore, much has been learned in recent years about the permeability properties of the peroxisomal membrane with important consequences for the alpha-oxidation process. Finally, we present new data on the omega-oxidation of phytanic acid making use of a recently generated mouse model for Refsum disease in which the gene encoding phytanoyl-CoA 2-hydroxylase has been disrupted.

  16. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study

    Science.gov (United States)

    An, Yang; Pletnikova, Olga; O’Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav

    2017-01-01

    Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few

  17. Bile acid metabolism in ileostomy patients.

    Science.gov (United States)

    Huibregtse, K; Hoek, F; Sanders, G T; Tytgat, G N

    1977-04-01

    In ten ileostomy patients, a 14C-cholylglycine breath test was performed. The 14CO2 in the exhaled air and the 14C bile acid quantity and composition and fat content in the subsequent 24 h ileostomy effluent were determined and compared to the values in twenty healthy controls. The results show that in ileostomy patients only minor bile acid-deconjugation occurs in vivo. Deconjugation in the ileostomy bags was found to be mainly responsible for the absence of conjugated bile acids in many of the ileostomy effluent samples. Secondary bile acids were not present in these patients, as determined by TLC. The fecal fat and bile acid excretion was found to be in the normal range in ileostomy patients provided no concomitant ileum resection was present.

  18. Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei.

    Science.gov (United States)

    Sinz, Quirin; Schwab, Wilfried

    2012-04-01

    The microbial degradation of proteins, peptides and amino acids generates volatiles involved in the typical flavor of dry fermented sausage. The ability of three Lactobacillus sakei strains to form aroma compounds was investigated. Whole resting cells were fermented in phosphate buffer with equimolar amounts of substrates consisting of dipeptides, tetrapeptides and free amino acids, respectively. Dipeptides disappeared quickly from the solutions whereas tetrapeptides were only partially degraded. In both approaches the concentration of free amino acids increased in the reaction mixture but did not reach the equimolar amount of the initial substrates. When free amino acids were fed to the bacteria their levels decreased only slightly. Although peptides were more rapidly degraded and/or transported into the cells, free amino acids produced higher amounts of volatiles. It is suggested, that after transport into the cell peptides are only partially hydrolyzed to their amino acids, while the rest is metabolized via alternative metabolic pathways. The three L. sakei strains differed to some extend in their ability to metabolize the substrates to volatile compounds. In a few cases this was due to the position of the amino acids within the peptides. Compared to other starter cultures used for the production of dry fermented sausages, the metabolic impact of the L. sakei strains on the formation of volatiles was very low.

  19. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    Science.gov (United States)

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  20. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    Energy Technology Data Exchange (ETDEWEB)

    Raza, H.; Chung, W.L.; Mukhtar, H. (Department of Dermatology, University Hospitals of Cleveland, Case Western Reserve University, OH (USA))

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  1. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including...... the interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods...... for manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  2. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism.

    Science.gov (United States)

    Kim, Yoo; Kim, Jonggun; Whang, Kwang-Youn; Park, Yeonhwa

    2016-02-01

    Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.

  3. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  4. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  5. Rat liver metabolism of dicarboxylic acids.

    Science.gov (United States)

    Vamecq, J; Draye, J P; Brison, J

    1989-04-01

    Recently, we demonstrated in rat liver that dicarboxylic acids containing more than five carbons can be activated by a microsomal dicarboxylyl-CoA synthetase (J. Vamecq, E. de Hoffmann, and F. Van Hoof. Biochem. J. 230: 683-693, 1985). The products of this reaction, dicarboxylyl-CoA esters, were found to be substrates for an H2O2-generating dicarboxylyl-CoA oxidase. In the present work we report that 1) the catalytic center or the essential domains of dicarboxylyl-CoA synthetase are located at the cytosolic aspect of the endoplasmic reticulum membrane; 2) dicarboxylyl-CoA oxidase is optimally active on dodecanedioyl-CoA and is a peroxisomal enzyme; 3) cyanide-insensitive dodecanedioyl-CoA oxidation (NADH production) is catalyzed by rat liver homogenates. Cell fractionation studies disclose that, similar to dodecanedioyl-CoA oxidase (H2O2 production), the cyanide-insensitive dodecanedioyl-CoA oxidizing activity also belongs to peroxisomes; 4) a dodecanedioyl-CoA oxidoreductase reaction can be assayed by the dichlorphenolindophenol procedure in rat liver homogenates, and the activity is abundant in peroxisomal, mitochondrial, and soluble fractions; 5) by contrast with monocarboxylyl-CoA esters, the dicarboxylyl-CoAs are apparently not substrates for mitochondrial fatty acid oxidation; however, the use of dicarboxylylcarnitine esters as direct substrate for mitochondria suggests the existence of an active beta-oxidation of dicarboxylates in these organelles, which is further confirmed by experiments in which mitochondria are permeabilized with digitonin; 6) the in vivo oxidation of infused dodecanedioic acid results in a rapid appearance in urine of medium-chain dicarboxylic acids, with only 30-50% of the infused dose recovered in urine.

  6. A Review of the Metabolic Origins of Milk Fatty Acids

    Directory of Open Access Journals (Sweden)

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  7. Analysis of the aspartic acid metabolic pathway using mutant genes.

    Science.gov (United States)

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  8. Transcriptional regulation of central amino acid metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Larsen, Rasmus

    2005-01-01

    This thesis describes the functional characterisation of the transcriptional regulators GlnR, ArgR and AhrC of Lactococcus lactis, which are responsible for the control of genes involved in the metabolism of the amino acids glutamine, glutamate and arginine. A chromosomal glnR deletion mutant was ma

  9. Nicotinamide metabolism in ferns: formation of nicotinic acid glucoside.

    Science.gov (United States)

    Ashihara, Hiroshi; Yin, Yuling; Watanabe, Shin

    2011-03-01

    The metabolic fate of [carbonyl-(14)C]nicotinamide was investigated in 9 fern species, Psilotum nudum, Angiopteris evecta, Lygodium japonicum, Acrostichum aureum, Asplenium antiquum, Diplazium subsinuatum, Thelypteris acuminate, Blechnum orientale and Crytomium fortune. All fern species produce a large quantity of nicotinic acid glucoside from [(14)C]nicotinamide, but trigonelline formation is very low. Increases in the release of (14)CO(2) with incubation time was accompanied by decreases in [carboxyl-(14)C]nicotinic acid glucoside. There was slight stimulation of nicotinic acid glucoside formation by 250 mM NaCl in mature leaves of the mangrove fern, Acrostichum aureum, but it is unlikely that this compound acts as a compatible solute. Nicotinamide and nicotinic acid salvage for pyridine nucleotide synthesis was detected in all fern species, although this activity was always less than nicotinic acid glucoside synthesis. Predominant formation of nicotinic acid glucoside is characteristic of nicotinic acid metabolism in ferns. This reaction appears to act as a detoxication mechanism, removing excess nicotinic acid.

  10. Role of mitochondrial transamination in branched chain amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, S.M.; Fenstermacher, D.; Mahar, C.

    1988-03-15

    Oxidative decarboxylation and transamination of 1-/sup 14/C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso(1-/sup 14/C)valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and (1-/sup 14/C)KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM (1-/sup 14/C)KIV and alpha-ketoiso(1-/sup 14/C)caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using (1-/sup 14/C)leucine and (1-/sup 14/C)valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of (1-/sup 14/C)leucine or (1-/sup 14/C)valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized.

  11. 花生四烯酸、二十二碳六烯酸和二十碳五烯酸在炎症中的作用概述%Roles of arachidonic acid, docosahexaenoic acid and eicosapentaenoic acid in inflammation

    Institute of Scientific and Technical Information of China (English)

    柳泽深; 姜悦; 陈峰

    2016-01-01

    心脑血管疾病、肿瘤、糖尿病、神经系统疾病、自身免疫等疾病严重危害着人类的生命和健康,并消耗着大量医疗资源。事实上,很多疾病发生和发展的背后都伴随着炎症反应,炎症是众多疾病的病理基础,甚至是导致这些疾病的诱因。炎症本身是机体的防御性反应,但过度的炎症反应和长期慢性炎症会损害机体的稳态。炎症的调节和控制由炎症介质介导,花生四烯酸(arachidonic acid, AA)、二十二碳六烯酸(docosahexaenoic acid, DHA)和二十碳五烯酸(eicosapentaenoic acid, EPA)等长链多不饱和脂肪酸(long-chain polyunsaturated fatty acids, LC-PUFAs)的衍生物是一类重要的调控炎症的介质。炎性细胞间的交流和细胞内信号传递与LC-PUFAs有关。AA经环氧酶和脂氧合酶合成的类二十烷酸主要起促炎作用,但有的也有抗炎作用。DHA和EPA在体内起抗炎作用,由它们合成的消退素(resolvins, Rvs)和保护素(protectin, PD)是重要的抗炎活性物质。DHA和EPA还可以干扰炎性细胞内信号传导途径来抑制炎症反应。本文从炎症与疾病的关系、LC-PUFAs的衍生物及其促炎和抗炎机制等方面综述了AA、DHA和EPA在炎症中的作用。%ABSTRACT:Cardiovascular disease, cancer, diabetes, neurological diseases and autoimmune disease are major threat to human health and long life, and a large amount of medical resources are consumed on the treatment of these diseases. In fact, the progression of these diseases is pointed out to be accompanied by inflammatory response, and inflammation is regarded as pathological basis of many diseases. Normally inflammation itself is a defensive reaction of body, but excessive inflammatory response and chronic inflammation can damage organ homeostasis. On the other side, regulation and control of inflammation can be mediated by inflammatory mediators. It is indicated that derivatives of long-chain polyunsaturated fatty acids

  12. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    Directory of Open Access Journals (Sweden)

    Nobuyuki Okahashi

    2014-05-01

    Full Text Available 13C metabolic flux analysis (MFA is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs. Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

  13. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    Science.gov (United States)

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production.

  14. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  15. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    NARCIS (Netherlands)

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well

  16. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  17. Regulation of energy metabolism by long-chain fatty acids.

    Science.gov (United States)

    Nakamura, Manabu T; Yudell, Barbara E; Loor, Juan J

    2014-01-01

    In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.

  18. Acid-base metabolism: implications for kidney stones formation.

    Science.gov (United States)

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  19. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    Science.gov (United States)

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  20. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    Science.gov (United States)

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  1. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  2. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    Science.gov (United States)

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.

  3. Dietary supplementation of essential fatty acids in larval pikeperch (Sander lucioperca); short and long term effects on stress tolerance and metabolic physiology

    DEFF Research Database (Denmark)

    Lund, Ivar; Skov, Peter Vilhelm; Hansen, Benni Winding

    2012-01-01

    The present study examined the effects of feeding pike perch larvae Artemia, enriched with either docosahexanoic acid (DHA), arachidonic acid (ARA), oleic acid (OA), olive oil (OO) or a commercial enrichment DHA Selco (DS) on tissue lipid deposition, stress tolerance, growth and development...

  4. Absorption and metabolism of benzoic acid in growing pigs

    DEFF Research Database (Denmark)

    Kristensen, N B; Nørgaard, J V; Wamberg, S

    2009-01-01

    Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact...... of BA on systemic acid-base status. Eight growing pigs (BW = 63 ± 1 kg at sampling) fitted with permanent indwelling catheters in the abdominal aorta, hepatic portal vein, hepatic vein, and mesenteric vein were allocated to 4 sampling blocks and randomly assigned to control (CON; nonsupplemented diet...... portal flux and hepatic uptake of BA was 87 ± 5% and 89 ± 15%, respectively. The recovery of dietary BA as urinary excretion of BA and HA was 0.08 ± 0.02% and 85 ± 7%, respectively. It is concluded that the small impact of BA supplementation on systemic acid-base status was caused by a protracted BA...

  5. Control of immune response by amino acid metabolism.

    Science.gov (United States)

    Grohmann, Ursula; Bronte, Vincenzo

    2010-07-01

    The interaction between pathogenic microorganisms and their hosts is regulated by reciprocal survival strategies, including competition for essential nutrients. Though paradoxical, mammalian hosts have learned to take advantage of amino acid catabolism for controlling pathogen invasion and, at the same time, regulating their own immune responses. In this way, ancient catabolic enzymes have acquired novel functions and evolved into new structures with highly specialized functions, which go beyond the struggle for survival. In this review, we analyze the evidence supporting a critical role for the metabolism of various amino acids in regulating different steps of both innate and adaptive immunity.

  6. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  7. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    OpenAIRE

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) th...

  8. Bio-availability and metabolism of n-3 fatty acid rich garden cress (Lepidium sativum) seed oil in albino rats.

    Science.gov (United States)

    Diwakar, B T; Dutta, P K; Lokesh, B R; Naidu, K A

    2008-02-01

    The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that

  9. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  10. C20∶4和C22∶6对早产儿视功能和认知功能的影响%Effects of Docosahexaenoic and Arachidonic Acid on Visual and Cognitive Function of Premature Infants

    Institute of Scientific and Technical Information of China (English)

    韩宏裕; 苏宜香

    2001-01-01

    【目的】 探讨补充模拟母乳二十二碳六烯酸(C22∶6 ,DHA)和二十碳四烯酸(C20∶4,AA)水平的脂肪酸对早产儿视功能和认知功能的影响 。【方法】 选取体质量<2 100 g ,胎龄<37周的早产儿32名,分为3组:A组,母乳组11例;B组,传统配方组10例;C组,补 充组11例。B组配方不含DHA和AA,C组配方添加了DHA和AA。补充组配方补充至婴儿体质量达 (2.50±0.10) kg。当胎龄满42周±1周时以鲍秀兰等新生儿行为神经测定方法测认知功能 ;出生后3个月时测双眼视网膜电图。【结果】 补充组早产儿在视功能、认知功能等方面都 与母乳组相近,而传统配方组则低于母乳组和补充组(P<0.05)。【结论】 给予早产儿 补充模拟母乳水平的DHA和AA,可促进其正常的脑发育和视网膜发育,使认知功能和视功能 与母乳喂养的早产儿相近。%【Objective】 To study the effects of docosahexaenoic ac id (DHA) and arachidonic acid (AA) intake on the visual and cognitive function o f preterm infants. 【Methods】 32 preterm infants (gestational age<37 weeks) wer e divided into three groups which were fed with different formula respectively: group A, breast milk(n=11); group B, a conventional formula lacking DHA and AA (n=10); group C, DHA and AA enriched formula (n=11). Group C was stop ped to fed enriched formula when infant's weight reached (2.50±0.10) kg. Cognitiv e function was evaluated by NBNA test when the corrected age of each preterm inf ant was 42 week±7 day, ERG of both eyes was tested at three-months old. The ex periment lasted for three months. 【Results】 Cognitive and visual function of g roup C were similar to group A, however, some indexes of group B were significan tly lower than group A and C (P<0.05). 【Conclusion】 Adding DHA and AA to f ormulas similar to breast milk in amounts, can improve cognitive and visual func tion of preterm infants, and help these infants

  11. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...... enzymes involved in biosynthesis of the precursor for PUFAs, or codon optimization of the heterologous genes, or expression of heterologous enzymes involved in the biosynthesis of the precursor for PUFAs....

  12. Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development.

    Science.gov (United States)

    Liang, Dong; Zhu, Tingting; Ni, Zhiyou; Lin, Lijin; Tang, Yi; Wang, Zhihui; Wang, Xun; Wang, Jin; Lv, Xiulan; Xia, Hui

    2017-01-01

    To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.

  13. Altered cholesterol and fatty acid metabolism in Huntington disease.

    Science.gov (United States)

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  14. Comparison of increased arachidonic acid content in Myrmecia incisa cultured during the course of nitrogen or phosphorus starvation%氮饥饿与磷饥饿促使缺刻缘绿藻花生四烯酸含量增加的比较

    Institute of Scientific and Technical Information of China (English)

    童牧; 于水燕; 欧阳珑玲; 周志刚

    2011-01-01

    The growth rate and biomass,contents of arachidonic acid(AA) and other fatty acids in Myrmecia incisa Reisigl H4301, a freshwater green microalga rich in AA, were comparatively studied while cultured between nitrogen and phosphorus starvation under different light intensities. It was found that either nitrogen or phosphorus starvation could cause a reduced growth rate of this microalga as well as a resultant biomass.If grown under a lower light intensity [ 60 μmol photons/( m2 · s) ], the lowest average growth rate [ 0.025 g/( d · L) ] of this microalga resulted from phosphorus starvation, which was nearly half of the growth rate while grown in a complete BG-11 medium. Both of nitrogen and phosphorus starvation could increase the contents of total fatty acids and AA,however, when this alga was exposed to low light intensity the positive effect of phosphorus starvation was limited. High light intensity [ 200 μmol photons/( m2 · s ) ] was not beneficial to the synthesis and accumulation of AA no matter how this microalga was cultured in the complete or nitrogen-free or phosphorus-free media. The AA content gradually increased accompanying with a decrease of linoleic acid content during the starvation. However, the oleic acid percentage also gradually increased which limited more significantly the accumulation of AA in this microalga grown under phosphorus starvation than nitrogen one. Based on the composition changes of every species of fatty acids, the main synthesis metabolic pathway of AA suggested that it proceeded from linoleic acid to γ-linolenic acid and then to 20:3ω6 under nitrogen or phosphate starvation,and that the Δ6 desaturase was a rate-limiting enzyme. The step in which ω3 desaturase played was down regulated by nitrogen or phosphorus starvation, thus ensuring the synthesis and accumulation of AA positively. Nitrogen starvation blocked the protein synthesis, and phosphorus starvation caused the disorders of nucleic acid, carbohydrate and

  15. Dodecanedioic acid overcomes metabolic inflexibility in type 2 diabetic subjects.

    Science.gov (United States)

    Salinari, Serenella; Bertuzzi, Alessandro; Gandolfi, Alberto; Greco, Aldo V; Scarfone, Antonino; Manco, Melania; Mingrone, Geltrude

    2006-11-01

    Metabolically healthy skeletal muscle possesses the ability to switch easily between glucose and fat oxidation in response to homeostatic signals. In type 2 diabetes mellitus and obesity, the skeletal muscle shows a great reduction in this metabolic flexibility. A substrate like dodecanedioic acid (C-12), able to increase skeletal muscle glycogen stores via succinyl-CoA formation, might both postpone the fatigue and increase fatty acid utilization, since it does not affect insulin secretion. In healthy volunteers and in type 2 diabetic subjects, the effect of an oral C-12 load was compared with a glucose or water load during prolonged, moderate-intensity, physical exercise. C-12 metabolism was analyzed by a mathematical model. After C-12, diabetics were able to complete the 2 h of exercise. Nonesterified fatty acids increased both during and after the exercise in the C-12 session. C-12 oxidation provided 14% of total energy expenditure, and the sum of C-12 plus lipids oxidized after the C-12 meal was significantly greater than lipids oxidized after the glucose meal (P < 0.025). The fraction of C-12 that entered the central compartment was 47% of that ingested. During the first phase of the exercise ( approximately 60 min), the mean C-12 clearance from the central compartment toward tissues was 2.57 and 1.30 l/min during the second phase of the exercise. In conclusion, C-12 seems to be a suitable energy substrate during exercise, since it reduces muscle fatigue, is rapidly oxidized, and does not stimulate insulin secretion, which implies that lipolysis is not inhibited as reported after glucose ingestion.

  16. Domestication of the high-sugar-tolerant Mortierella alpina on arachidonic acid (ARA) production%花生四烯酸产生菌高山被孢霉的高糖驯化研究

    Institute of Scientific and Technical Information of China (English)

    曾思钰; 凌雪萍; 张长杰; 卢英华

    2012-01-01

    [目的]提高花生四烯酸(Arachidonic acid,ARA)产量,克服ARA产生菌高山被孢霉(Mortierella alpina)在长期的保存及使用过程中易受到外界条件影响发生退化,从而导致菌种耗糖量降低、影响菌种摄入营养的能力和不利于工业化生产的缺点.[方法]首先采用固体培养基驯化,将菌种逐级涂布于梯度高糖PDA平板(含糖量分别为2%、5%、7%、10%和15%)培养,挑选经固体驯化后能耐受10%高糖浓度平板的菌种,转接到两种含不同氮源的梯度高糖(含糖量分别为3%、4%、5%和6%)液体培养基中进行驯化,最后对驯化后的菌种进行2L发酵罐放大实验.[结果]当培养基中以酵母粉为氮源时,驯化后菌体的最高耗糖量由3 g/(L·d)提高到12 g/(L·d);当培养基中以玉米浆为氮源时,驯化后菌体的最高耗糖量由7 g/(L·d)提高到12 g/(L·d).摇瓶驯化实验结果表明以玉米浆为氮源驯化的菌种发酵效果较好,发酵罐实验结果显示菌体生物量为50 g/L,总油脂为18 g/L,目的产物ARA产量为8g/L.相比未驯化之前的发酵结果,生物量和总油脂含量提高了近3倍,ARA产量提高了近4倍.[结论]经过高糖驯化,菌种的耗糖能力得到提高,生物量、总油脂及ARA的产量也都有所增加,从而可以使菌种在保存和使用过程中不易退化,保持稳定.%[Objective] In order to improve arachidonia acid (ARA) production, and prevent the degeneration of ARA-producing strain Mortierella alpina in long-term culture preservation and cultivation, which could lead to low consumption rate of substrates like carbon source. [Methods] Mortierella alpina strain was first domesticated in high-sugar PDA plate with gradient sugar content (2%, 5%, 7%, 10% and 15%). The strain which grew better in the solid medium containing 10% sugar was then selected and transferred to two liquid high-sugar media with different nitrogen sources to domesticate. The gradient sugar

  17. Arachidonic Acid Metabolism in the Nervous System; Physiological and Pathological Significance. Annals of the New York Academy of Science. Volume 5

    Science.gov (United States)

    1989-01-01

    effects of vasopressin and synthetic ovine CRF 7 and GRF2" on PGE2 synthesis by the rat adenohypophysis . The other prostanoids were not formed under...latter exerts a tonic inhibitory influence on the release of growth hormone from the adenohypophysis and modulates CNS synaptic transmission

  18. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    Science.gov (United States)

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  19. Metabolic interactions between vitamin A and conjugated linoleic acid.

    Science.gov (United States)

    Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Ortiz, Berenice; Giordano, Elena; Belury, Martha A; Quadro, Loredana; Banni, Sebastiano

    2014-03-24

    Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

  20. Metabolic Interactions between Vitamin A and Conjugated Linoleic Acid

    Directory of Open Access Journals (Sweden)

    Gianfranca Carta

    2014-03-01

    Full Text Available Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4. However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

  1. Liquid Chromatography-Mass Spectrometry-Based In Vitro Metabolic Profiling Reveals Altered Enzyme Expressions in Eicosanoid Metabolism

    OpenAIRE

    Lee, Su Hyeon; Kim, Eung Ju; Lee, Dong-Hyoung; Lee, Won-Yong; Chung, Bong Chul; Seo, Hong Seog; Choi, Man Ho

    2016-01-01

    Background Eicosanoids are metabolites of arachidonic acid that are rapidly biosynthesized and degraded during inflammation, and their metabolic changes reveal altered enzyme expression following drug treatment. We developed an eicosanoid profiling method and evaluated their changes on drug treatment. Methods Simultaneous quantitative profiling of 32 eicosanoids in liver S9 fractions obtained from rabbits with carrageenan-induced inflammation was performed and validated by liquid chromatograp...

  2. Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction

    NARCIS (Netherlands)

    van Straten, Esther M. E.; Bloks, Vincent W.; van Dijk, Theo H.; Baller, Julius F. W.; Huijkman, Nicolette C. A.; Kuipers, Irma; Verkade, Henkjan J.; Plosch, Torsten

    2012-01-01

    Background: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. Objective: We aim

  3. Les rôles physiologiques majeurs exercés par les acides gras polyinsaturés (AGPI)

    OpenAIRE

    Guesnet Philippe; Alessandri Jean-Marc; Astorg Pierre; Pifferi Fabien; Lavialle Monique

    2005-01-01

    Polyunsaturated fatty acids (PUFAs) are essential nutrients for mammals and the human species, and belong to either of two distinct and not interconvertible series, omega 6 and omega 3. The metabolic precursors of these two series, linoleic and α-linolenic acids respectively, are the dietary essential fatty acids. These two fatty acids, once absorbed, lead to the specific synthesis and incorporation in practically all cell membranes of long-chain active PUFA derivatives such as arachidonic ac...

  4. (-)-Hydroxycitric Acid Nourishes Protein Synthesis via Altering Metabolic Directions of Amino Acids in Male Rats.

    Science.gov (United States)

    Han, Ningning; Li, Longlong; Peng, Mengling; Ma, Haitian

    2016-08-01

    (-)-Hydroxycitric acid (HCA), a major active ingredient of Garcinia Cambogia extracts, had shown to suppress body weight gain and fat accumulation in animals and humans. While, the underlying mechanism of (-)-HCA has not fully understood. Thus, this study was aimed to investigate the effects of long-term supplement with (-)-HCA on body weight gain and variances of amino acid content in rats. Results showed that (-)-HCA treatment reduced body weight gain and increased feed conversion ratio in rats. The content of hepatic glycogen, muscle glycogen, and serum T4 , T3 , insulin, and Leptin were increased in (-)-HCA treatment groups. Protein content in liver and muscle were significantly increased in (-)-HCA treatment groups. Amino acid profile analysis indicated that most of amino acid contents in serum and liver, especially aromatic amino acid and branched amino acid, were higher in (-)-HCA treatment groups. However, most of the amino acid contents in muscle, especially aromatic amino acid and branched amino acid, were reduced in (-)-HCA treatment groups. These results indicated that (-)-HCA treatment could reduce body weight gain through promoting energy expenditure via regulation of thyroid hormone levels. In addition, (-)-HCA treatment could promote protein synthesis by altering the metabolic directions of amino acids. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  6. Polyunsaturated fatty acids in pregnancy and metabolic syndrome: a review.

    Science.gov (United States)

    Poniedzialek-Czajkowska, Elzbieta; Mierzynski, Radzislaw; Kimber-Trojnar, Zaneta; Leszczynska-Gorzelak, Bozena; Oleszczuk, Jan

    2014-01-01

    This review presents available evidence for possible application of n-3 long chain polyunsaturated fatty acids (PUFAs) in pregnant obese women with metabolic syndrome (MS) and focuses on prophylaxis of pregnancy complications associated with MS such as gestational hypertension, preeclampsia and gestational diabetes. Dietary supplementation with n-3 PUFAs has recently become popular and their adequate intake during pregnancy and early childhood is of clinical importance. The results of experimental and epidemiological investigations reveal that n-3 PUFAs, especially α- linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), may decrease the risk of cardiovascular diseases. It is believed that n-3 PUFAs affect a multitude of molecular pathways, involving regulation of gene expression, alteration of physical and chemical properties of cellular membranes and modulation of membrane channels and proteins. A large body of evidence focuses on anti-inflammatory properties of PUFAs which seem to be fundamental in prevention and reversing of insulin resistance, atherogenic dyslipidemia, hypertension, thromboembolism and in improving vascular function. Despite the potential PUFAs benefits of decreasing insulin resistance, their application in order to prevent preeclampsia, gestational hypertension and gestational diabetes mellitus in pregnant women with MS has not yet been established. Numerous reports have revealed that appropriate fetal development, including neuronal, retinal and immune function depends on EPA and DHA which are crucial also for prevention of preterm birth. Thus the supplementation with EPA and DHA is highly recommended during pregnancy although the optimal dosing and treatment strategies still need to be determined.

  7. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases.

    Science.gov (United States)

    Cascio, Giuseppe; Schiera, Gabriella; Di Liegro, Italia

    2012-01-01

    In the last few decades, the prevalence of overweight and essential obesity has been undergoing a fast and progressive worldwide increase. Obesity has been in turn linked to type II diabetes, with the total number of diabetic patients worryingly increasing, in the last fifteen years, suggesting a pandemic phenomenon. At the same time, an increase in the prevalence of cardiovascular diseases has been also recorded. Increasing evidence suggests that the diet is involved in such escalation. In particular, the progressive globalization of food industry allowed massive supply, at a relatively low price, of a great variety of pre-packed food and bakery products, with very high energy content. Most of this food contains high amounts of saturated fatty acids (SFA) and of hydrogenated or trans fatty acids (TFA), that probably represent the prominent risk factors in the diet. Herein we will report diffusion and possible impact on health of such molecules, with reference to coronary heart disease, insulin resistance, metabolic syndrome and diabetes. We will also discuss the cellular and molecular mechanisms of action of fatty acids and fatty acid-derivatives which have been involved either in promoting or in preventing human pathologies. Free fatty acids (FFA) are not indeed only essential fuels for the organism. They also act as ligands for both membrane and nuclear receptors involved in different signaling pathways. Notably, some of these pathways can induce cell stress and apoptosis. Most important, FFA can affect glucose-induced insulin secretion and activate β-cell death. These events can be at least in part counteracted by polyunsaturated fatty acids.

  8. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Science.gov (United States)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  9. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  10. Milk in the island of Chole [Tanzania] is high in lauric, myristic, arachidonic and docosahexaenoic acids, and low in linoleic acid - Reconstructed diet of infants born to our ancestors living in tropical coastal regions

    NARCIS (Netherlands)

    Kuipers, Remko S.; Smit, Ella N.; van der Meulen, Jan; Dijck-Brouwer, D. A. Janneke; Boersma, E. Rudy; Muskiet, Frits A. J.

    2007-01-01

    Background: We need information on the diet on which our genes evolved. Objective: We studied the milk fatty acid [FA] composition of mothers living in the island of Chole [Tanzania, Indian Ocean]. These mothers have high intakes of boiled marine fish and coconut, and consume plenty amount of fruits

  11. Adipose Tissue Branched Chain Amino Acid (BCAA) Metabolism Modulates Circulating BCAA Levels*

    OpenAIRE

    Herman, Mark A.; She, Pengxiang; Peroni, Odile D.; Lynch, Christopher J.; Kahn, Barbara B.

    2010-01-01

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent obse...

  12. Conjugated linoleic acid isomers: differences in metabolism and biological effects.

    Science.gov (United States)

    Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, Maria Puy

    2009-01-01

    The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.

  13. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells

    OpenAIRE

    Vaughan Roger A; Garcia-Smith Randi; Bisoffi Marco; Conn Carole A; Trujillo Kristina A

    2012-01-01

    Abstract Background Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We evaluated the effects of conjugated linoleic acid (CLA) or combination omega 3 on metabolic characteristics in muscle cells. Methods Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega 3 for 24 or 48 hours. RNA was determine...

  14. [Phospholipid and fatty acid content of the blood of sheep infected with the nematode Dictyocaulus filaria].

    Science.gov (United States)

    Kuchbaev, A E; Bastarbekova, G M

    2001-01-01

    The results of analysis of phospholipids (PL) and fatty acid content in the blood of sheep infected with the nematodes Dictyocaulus filaria are displayed. A significant increase of lysophosphatidylcholine and arachidonic acid as well as a decrease of docozagexaenic acid in PL of infected sheep have been recorded. That points out to structural and functional disorders of cellular membranes during the infection. These disorder could be used as a metabolic criterion to estimate the relationships within the host-parasite system examined.

  15. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  16. Metabolic mechanisms of cancer-induced inhibition of immune responses.

    Science.gov (United States)

    Viola, Antonella; Bronte, Vincenzo

    2007-08-01

    During progression, tumors become refractory to the offensive weapons of the immune system. It has been known for a long time that the tumor microenvironment presents a profound modification in the metabolism of arachidonic acid and amino acids such as l-triptophan and l-arginine. However, only in the last decade we have started to appreciate how these changes might cause dysfunctions in cells of both adaptive and innate immune system. The knowledge of these complex and partially interconnected metabolic pathways is offering new targets for an integrated pharmacological approach aiming at freeing tumor-specific T lymphocytes from the latches of cancer influence.

  17. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    Science.gov (United States)

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  18. Optimization of Mortierella Isabellina culture medium conditions in fermentation of arachidonic acid by response surface methodology%响应面法优化深黄被孢霉发酵生产花生四烯酸的培养基条件

    Institute of Scientific and Technical Information of China (English)

    于新新; 于长青

    2013-01-01

    为了降低深黄被孢霉YZ-124生产花生四烯酸的成本,研究了不同添加量的玉米黄浆水对发酵的影响,与葡萄糖培养基相比,在发酵培养基中添加一定量的玉米黄浆水对发酵产量无显著影响.在单因素实验的基础上,利用Design Expert设计了响应面实验,研究了葡萄糖浓度、不同添加量的玉米黄浆水和初始pH对花生四烯酸产量的影响.结果表明,最佳的培养基条件是葡萄糖浓度为90g/L、添加体积分数为25%的玉米黄浆水、初始pH6时,花生四烯酸(ARA)产量达到最大,为3.11g/L.%Fermentative production arachidonic acid of Mortierella isabellina using waste water from maize paste was investigated to reduce the cost,adding waste water from maize paste into the culture medium had no obvious effect on the fermentation. On the basis of single factor tests .response surface analysis was designed by Design Expert,and the glucose concentration,different quality of waste water from maize paste and pH were investigated. The results showed that the optimal culture medium conditions were the glucose concentration was 90g/L,the maize paste waste water was 25% in the culture medium and pH was 6. Under this condition,the yield of arachidonic acid was 3.11g/L.

  19. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates.

  20. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  1. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  2. Fatty acid metabolism in infants with functional and inflamatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Marushko RV

    2014-06-01

    Full Text Available Summary. Over past years, considerable attention is paid to the role of fatty acids, especially polyunsaturated, in the development of various gastrointestinal diseases, among which the most common are functional and inflammatory bowel diseases. The need for studies of fatty acid disorders is to clarify the pathogenetic mechanisms in which fatty acids participate in the development intestinal pathology. The aim of this study to elaborate the optimal preventive and therapeutic measures to reduce the incidence of these diseases and provide the effective treatment, especially in early childhood . Objective: To study the profile features of fatty acids in infants with functional and inflammatory bowel diseases. Patients and methods: Were examined 149 children aged from 6 months to 3 years, divided into 3 groups: 52 children with chronic non-ulcerative non-specific colitis, 49 children with functional constipation and 47 children with functional diarrhea. Verification of diagnoses was provided in accordance with the «Standardised cinical protocols of medical care for children with digestive diseases». Analysis of fatty acid's profile was evaluated by the method blood gas chromatography. Results: All the examined children had fatty acid disorders. The level of saturated fatty acids was decreased and the concentration of polyunsaturated fatty acids was increased in the expence of omega 6 polyunsaturated fatty acids (PUFA, in particularly, linoleic and arachidonic acids. The greatest changes were observed in patients with chronic non-ulcerative non-specific colitis which can be considered as important links in the pathogenesis of chronic inflammation. In functional bowel disorders imbalance of fatty acids is likely to be a risk factor in development significant lesions in the intestinal mucosa. Conclusions: Given the presence of lipid imbalance in inflammatory bowel disease as well as in intestinal functional disorders, which is characterized by a

  3. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis.

    Science.gov (United States)

    Guichardant, Michel; Calzada, Catherine; Bernoud-Hubac, Nathalie; Lagarde, Michel; Véricel, Evelyne

    2015-04-01

    Numerous epidemiological studies and clinical trials have reported the health benefits of omega-3 polyunsaturated fatty acids (PUFA), including a lower risk of coronary heart diseases. This review mainly focuses on the effects of alpha-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on some risk factors associated with atherothrombosis, including platelet activation, plasma lipid concentrations and oxidative modification of low-density lipoproteins (LDL). Special focus is given to the effects of marine PUFA on the formation of eicosanoids and docosanoids, and to the bioactive properties of some oxygenated metabolites of omega-3 PUFA produced by cyclooxygenases and lipoxygenases. The antioxidant effects of marine omega-3 PUFA at low concentrations and the pro-oxidant effects of DHA at high concentrations on the redox status of platelets and LDL are highlighted. Non enzymatic peroxidation end-products deriving from omega-3 PUFA such as hydroxy-hexenals, neuroketals and EPA-derived isoprostanes are also considered in relation to atherosclerosis. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

  4. The yin and yang of 15-lipoxygenase-1 and delta-desaturases: Dietary omega-6 linoleic acid metabolic pathway in prostate

    Directory of Open Access Journals (Sweden)

    Kelavkar Uddhav

    2006-03-01

    Full Text Available Abstract One of the major components in high-fat diets (Western diet is the omega (ω, n-6 polyunsaturated fatty acid (PUFA called linoleic acid (LA. Linoleic acid is the precursor for arachidonic acid (AA. These fatty acids are metabolized to an array of eicosanoids and prostaglandins depending upon the enzymes in the pathway. Aberrant expression of the catabolic enzymes such as cyclooxygenases (COX-1 and/or -2 or lipoxygenases (5-LO, 12-LO, 15-LO-1, and 15-LO-2 that convert PUFA either AA and/or LA to bioactive lipid metabolites appear to significantly contribute to the development of PCa. However, PUFA and its cellular interactions in PCa are poorly understood. We therefore examined the mRNA levels of key enzymes involved in the LA and AA pathways in 18 human donor (normal prostates compared to 60 prostate tumors using the Affymetrix U95Av2 chips. This comparative (normal donor versus prostate cancer study showed that: 1 the level of 15-LO-1 expression (the key enzyme in the LA pathway is low (P P P = 0.001, elongase (P = 0.16 and 15-lipoxygenase-2 (15-LO-2, P = 0.74 are higher in donor (normal prostates, and 2 Contrary to the observation in the normal tissues, significantly high levels of only 15-LO-1; whereas low levels of delta-6 desaturase, elongase, delta-5 desaturase and 15-LO-2 respectively, were observed in PCa tissues. Although the cyclooxygenase (COX-1 and COX-2 mRNA levels were high in PCa, no significant differences were observed when compared in donor tissues. Our study underscores the importance of promising dietary intervention agents such as the omega-3 fatty acids as substrate competitors of LA/AA, aimed primarily at high 15-LO-1 and COX-2 as the molecular targets in PCa initiation and/or progression.

  5. The function of very long chain polyunsaturated fatty acids in the pineal gland.

    Science.gov (United States)

    Catalá, Angel

    2010-02-01

    The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.

  6. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DEFF Research Database (Denmark)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models...... of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux...... to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source...

  7. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Directory of Open Access Journals (Sweden)

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  8. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  9. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  10. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  11. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Science.gov (United States)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  12. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    Science.gov (United States)

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  13. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  14. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Energy Technology Data Exchange (ETDEWEB)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  15. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    M. Allegra

    2014-01-01

    A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h modest inhibition, followed by a progressive (3–12 h concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  16. Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.

    Directory of Open Access Journals (Sweden)

    Jessica Karlsson

    Full Text Available In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG and anandamide (AEA by cyclooxygenase-2 (COX-2 and fatty acid amide hydrolase (FAAH, respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen.COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1 and arachidonic acid and 2-AG (for COX-2. FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds.It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.

  17. Inhibition of Endocannabinoid Metabolism by the Metabolites of Ibuprofen and Flurbiprofen

    Science.gov (United States)

    Karlsson, Jessica; Fowler, Christopher J.

    2014-01-01

    Background In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. Methodology/Principal Findings COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4′-hydroxyflurbiprofen and possibly also 3′-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. Conclusions/Significance It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo. PMID:25061885

  18. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Directory of Open Access Journals (Sweden)

    Blanka Stibůrková

    Full Text Available OBJECTIVE: Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. METHODS: The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables. RESULTS: The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations. CONCLUSION: Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  19. Subchronic (13-week) oral toxicity study, preceded by an in utero exposure phase, with arachidonate-enriched triglyceride oil (SUNTGA40S) in rats

    NARCIS (Netherlands)

    Lina, B.A.R.; Wolterbeek, A.P.M.; Suwa, Y.; Fujikawa, S.; Ishikura, Y.; Tsuda, S.; Dohnalek, M.

    2006-01-01

    Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA) and docosahexaenoic acid (DHA) are natural constituents found in human milk, fish oil or egg yolk. Until recently, infant formulas, though providing the essential fatty acid precursors for these PUFAs, did not contain preformed ARA

  20. Metabolic engineering for microbial production of aromatic amino acids and derived compounds.

    Science.gov (United States)

    Bongaerts, J; Krämer, M; Müller, U; Raeven, L; Wubbolts, M

    2001-10-01

    Metabolic engineering to design and construct microorganisms suitable for the production of aromatic amino acids and derivatives thereof requires control of a complicated network of metabolic reactions that partly act in parallel and frequently are in rapid equilibrium. Engineering the regulatory circuits, the uptake of carbon, the glycolytic pathway, the pentose phosphate pathway, and the common aromatic amino acid pathway as well as amino acid importers and exporters that have all been targeted to effect higher productivities of these compounds are discussed.

  1. How prevalent is crassulacean acid metabolism among vascular epiphytes?

    Science.gov (United States)

    Zotz, Gerhard

    2004-01-01

    The occurrence of crassulacean acid metabolism (CAM) in the epiphyte community of a lowland forest of the Atlantic slope of Panama was investigated. I hypothesized that CAM is mostly found in orchids, of which many species are relatively small and/or rare. Thus, the relative proportion of species with CAM should not be a good indicator for the prevalence of this photosynthetic pathway in a community when expressed on an individual or a biomass basis. In 0.4 ha of forest, 103 species of vascular epiphytes with 13,099 individuals were found. As judged from the C isotope ratios and the absence of Kranz anatomy, CAM was detected in 20 species (19.4% of the total), which were members of the families Orchidaceae, Bromeliaceae, and Cactaceae. As predicted, the contribution of CAM epiphytes to the total number of individuals and to total biomass (69.6 kg ha(-1)) was considerably lower (3.6% or 466 individuals and, respectively, 3.0% or 2.1 kg ha(-1)).

  2. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review.

    Science.gov (United States)

    Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-07-01

    It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.

  3. Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study.

    Science.gov (United States)

    Porenta, Shannon R; Ko, Yi-An; Gruber, Stephen B; Mukherjee, Bhramar; Baylin, Ana; Ren, Jianwei; Djuric, Zora

    2013-11-01

    A Mediterranean diet increases intakes of n-3 and n-9 fatty acids and lowers intake of n-6 fatty acids. This can impact colon cancer risk as n-6 fatty acids are metabolized to proinflammatory eicosanoids. The purpose of this study was to evaluate interactions of polymorphisms in the fatty acid desaturase (FADS) genes, FADS1 and FADS2, and changes in diet on fatty acid concentrations in serum and colon. A total of 108 individuals at increased risk of colon cancer were randomized to either a Mediterranean or a Healthy Eating diet. Fatty acids were measured in both serum and colonic mucosa at baseline and after six months. Each individual was genotyped for four single-nucleotide polymorphisms in the FADS gene cluster. Linear regression was used to evaluate the effects of diet, genotype, and the diet by genotype interaction on fatty acid concentrations in serum and colon. Genetic variation in the FADS genes was strongly associated with baseline serum arachidonic acid (n-6) but serum eicosapentaenoic acid (n-3) and colonic fatty acid concentrations were not significantly associated with genotype. After intervention, there was a significant diet by genotype interaction for arachidonic acid concentrations in colon. Subjects who had all major alleles for FADS1/2 and were following a Mediterranean diet had 16% lower arachidonic acid concentrations in the colon after six months of intervention than subjects following the Healthy Eating diet. These results indicate that FADS genotype could modify the effects of changes in dietary fat intakes on arachidonic acid concentrations in the colon.

  4. Effects of Fatty Acids on Intracellular [Ca2+], Mitochondrial Uncoupling and Apoptosis in Rat Pachytene Spermatocytes and Round Spermatids.

    Directory of Open Access Journals (Sweden)

    Joaquín Paillamanque

    Full Text Available The aim of this work was to explore the ability of free arachidonic acid, palmitic acid and the unsaturated fatty acids oleic acid and docosahexaenoic acid to modify calcium homeostasis and mitochondrial function in rat pachytene spermatocytes and round spermatids. In contrast to palmitic acid, unsaturated fatty acids produced significant increases in intracellular calcium concentrations ([Ca2+]i in both cell types. Increases were fatty acid specific, dose-dependent and different for each cell type. The arachidonic acid effects on [Ca2+]i were higher in spermatids than in spermatocytes and persisted when residual extracellular Ca2+ was chelated by EGTA, indicating that the increase in [Ca2+]i originated from release of intracellular calcium stores. At the concentrations required for these increases, unsaturated fatty acids produced no significant changes in the plasma membrane potential of or non-specific permeability in spermatogenic cells. For the case of arachidonic acid, the [Ca2+]i increases were not caused by its metabolic conversion to eicosanoids or anandamide; thus we attribute this effect to the fatty acid itself. As estimated with fluorescent probes, unsaturated fatty acids did not affect the intracellular pH but were able to induce a progressive decrease in the mitochondrial membrane potential. The association of this decrease with reduced reactive oxygen species (ROS production strongly suggests that unsaturated fatty acids induced mitochondrial uncoupling. This effect was stronger in spermatids than in spermatocytes. As a late event, arachidonic acid induced caspase 3 activation in a dose-dependent manner both in the absence and presence of external Ca2+. The concurrent but differential effects of unsaturated fatty acids on [Ca2+]i and mitochondrial functions are additional manifestations of the metabolic changes that germ cells undergo during their differentiation.

  5. Clinical relevance of the bile acid receptor TGR5 in metabolism

    DEFF Research Database (Denmark)

    van Nierop, F Samuel; Scheltema, Matthijs J; Eggink, Hannah M

    2016-01-01

    The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohep......The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex...

  6. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus.

    Science.gov (United States)

    Atek-Mebarki, Feriel; Hichami, Aziz; Abdoul-Azize, Souleymane; Bitam, Arezki; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2015-02-01

    The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus.

  7. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    Science.gov (United States)

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss.

  8. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    DEFF Research Database (Denmark)

    Drachmann, Tue

    dairy fat in general and phytanic acid on metabolic parameters, we performed several studies. First, we investigated effects on hepatic lipid metabolism, glucose homeostasis, and circulating metabolic markers, of high fat diets based on butter from high- or low-yield production, a diet based on high...... oleic acid sunflower oil, and a diet based on grape-seed oil with high amount of linoleic acid, in diet induced obese mice. Second, we investigated phytanic acid effects on similar parameters in obese mice, both as dose response in butter based diets, and in grape-seed oil based diets with and without...... addition of phytanic acid. Third, we investigated butter and phytanic acid effects on human T-cell polarization, both by in vitro incubation with phytanic acid, and by a 12 weeks intervention with intake of butter. Finally, we performed two human interventions, first one with intake of butter and cheese...

  9. [Systematic analysis and metabolic regulation of physiological functions for lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Liu, Liming

    2012-01-01

    As cell factories, lactic acid bacteria are widely used in food, agriculture, medicine and other industries, and play a great role in industrial processes. However, lactic acid bacteria encounter various environmental stresses both in industrial processes and in the gastrointestinal tract, which impair their physiological functions and food manufacture efficiency. Recently, the development of metabolic engineering and system biology brings unprecedented opportunity for the physiological modification of lactic acid bacteria. In this review, we addresses the progress of lactic acid bacterium system biology, and based on this, the metabolic engineering strategies for manipulating and optimizing lactic acid bacteria physiological function were summarized.

  10. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4.

    Science.gov (United States)

    Sakuradani, Eiji; Ando, Akinori; Shimizu, Sakayu; Ogawa, Jun

    2013-10-01

    Researches related with the application of functional lipids such as polyunsaturated fatty acids (PUFAs) have been conducted in various fields with a view to health and dietary requirements. Novel rich sources other than known natural sources such as plant seeds and fish oils are required for increasing demands of PUFAs. The filamentous fungus Mortierella alpina 1S-4 produces triacylglycerols rich in arachidonic acid, i.e., ones reaching 20 g/l in concentration and containing 30-70% arachidonic acid as total fatty acids. Various mutants derived from M. alpina 1S-4 have led to the production of oils containing various PUFAs. Molecular breeding of M. alpina strains by means of manipulation of the genes involved in PUFA biosynthesis facilitates improvement of PUFA productivity and elucidation of the functions of their enzymes. This review describes practical PUFA production through mutant breeding, functional analyses of the genes of the enzymes involved in PUFA biosynthesis, and recent advances in unique PUFA production through molecular breeding.

  11. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    Science.gov (United States)

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100 µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC.

  12. Fatty acid digestion, synthesis and metabolism in broiler chickens and pigs

    NARCIS (Netherlands)

    Smink, W.

    2012-01-01


    The impact of variation in the composition of dietary fat on digestion, metabolism and synthesis of fatty acids was studied in broiler chickens and in pigs. In young broiler chickens, digestion of unsaturated fatty acids was substantially higher compared with that of saturated fatty acids. Po

  13. Role of bile acids in the regulation of the metabolic pathways

    Institute of Scientific and Technical Information of China (English)

    Hiroki; Taoka; Yoko; Yokoyama; Kohkichi; Morimoto; Naho; Kitamura; Tatsuya; Tanigaki; Yoko; Takashina; Kazuo; Tsubota; Mitsuhiro; Watanabe

    2016-01-01

    Recent studies have revealed that bile acids(BAs)are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions.Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs.BAs regulate their own homeostasis via signaling pathways.BAs also affect diverse metabolic pathways including glucose metabolism,lipid metabolism and energy expenditure.This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.

  14. The role of fatty acid oxidation in the metabolic reprogramming of activated T cells

    Directory of Open Access Journals (Sweden)

    Craig Alan Byersdorfer

    2014-12-01

    Full Text Available Activation represents a significant bioenergetic challenge for T cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T cell metabolism, will be discussed.

  15. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1999-01-01

    Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants......Palmitic acid, oleic acid, linoleic acid, arachidonic acid, sheep erythrocyte ghosts, transporting elements, transport kinetics, fatty acid transport, transport rate constants...

  16. (13)C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids.

    Science.gov (United States)

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E K; Shymansky, Chris; Keasling, Jay D; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined (13)C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.

  17. Polymorphisms in genes encoding acetylsalicylic acid metabolizing enzymes are unrelated to upper gastrointestinal health in cardiovascular patients on acetylsalicylic acid.

    NARCIS (Netherlands)

    Oijen, M.G.H. van; Huybers, S.; Peters, W.H.M.; Drenth, J.P.H.; Laheij, R.J.F.; Verheugt, F.W.A.; Jansen, J.B.M.J.

    2005-01-01

    BACKGROUND: As acetylsalicylic acid is metabolized by UDP-glucuronosyltransferase 1A6 (UGT1A6) and cytochrome P450 2C9 (CYP2C9), interindividual differences in activity of these enzymes may modulate the effects and side-effects of acetylsalicylic acid. The objective of this study was to assess wheth

  18. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism.

    NARCIS (Netherlands)

    Vlaardingerbroek, H.; Hornstra, G.; Koning, T.J.; Smeitink, J.A.M.; Bakker, H.D.; Klerk, H. de; Rubio-Gozalbo, M.E.

    2006-01-01

    Essential fatty acids (EFAs), and their longer-chain more-unsaturated derivatives (LCPUFAs) in particular, are essential for normal growth and cognitive development during childhood. Children with inborn errors of amino acid metabolism represent a risk population for a reduced LCPUFA status because

  19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  20. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Science.gov (United States)

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  1. Mechanistic Perspectives of Maslinic Acid in Targeting Inflammation

    Directory of Open Access Journals (Sweden)

    Wei Hsum Yap

    2015-01-01

    Full Text Available Chronic inflammation drives the development of various pathological diseases such as rheumatoid arthritis, atherosclerosis, multiple sclerosis, and cancer. The arachidonic acid pathway represents one of the major mechanisms for inflammation. Prostaglandins (PGs are lipid products generated from arachidonic acid by the action of cyclooxygenase (COX enzymes and their activity is blocked by nonsteroidal anti-inflammatory drugs (NSAIDS. The use of natural compounds in regulation of COX activity/prostaglandins production is receiving increasing attention. In Mediterranean diet, olive oil and table olives contain significant dietary sources of maslinic acid. Maslinic acid is arising as a safe and novel natural pentacyclic triterpene which has protective effects against chronic inflammatory diseases in various in vivo and in vitro experimental models. Understanding the anti-inflammatory mechanism of maslinic acid is crucial for its development as a potential dietary nutraceutical. This review focuses on the mechanistic action of maslinic acid in regulating the inflammation pathways through modulation of the arachidonic acid metabolism including the nuclear factor-kappa B (NF-κB/COX-2 expression, upstream protein kinase signaling, and phospholipase A2 enzyme activity. Further investigations may provide insight into the mechanism of maslinic acid in regulating the molecular targets and their associated pathways in response to specific inflammatory stimuli.

  2. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects.

    Science.gov (United States)

    Tremblay-Mercier, Jennifer; Tessier, Daniel; Plourde, Mélanie; Fortier, Mélanie; Lorrain, Dominique; Cunnane, Stephen C

    2010-07-01

    Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.

  3. Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate.

    Science.gov (United States)

    Yin, Huiyong; Havrilla, Christine M; Morrow, Jason D; Porter, Ned A

    2002-07-03

    Autoxidation of polyunsaturated fatty acids and esters leads to a complex mixture containing hydroperoxides and cyclic peroxides. Prostaglandin bicyclic endoperoxides have been detected from the autoxidation of cholesteryl arachidonate by LC-MS and GC-MS techniques. All four possible types (I-IV) of bicyclic endoperoxides have been found starting from different regioisomeric hydroperoxides of cholesteryl arachidonate. Furthermore, the stereochemistry of Type IV bicyclic endoperoxides has been determined by conversion to pentafluorobenzyl (PFB) ester, trimethylsilyl (TMS) derivatives, and comparison with synthetic standards by the use of GC-MS. All eight possible diastereomers of the derivatized isoprostanes were observed and were separated by gas chromatography. The bicyclic endoperoxides with the two alkyl chains syn on the cyclopentane ring were formed preferentially to those with anti configuration, a result anticipated from earlier work. Substantial amounts of the anti-substituted isoprostanes, including PGF(2)(alpha), were, however, observed in the product mixture.

  4. In vitro skin absorption and metabolism of benzoic acid, p-aminobenzoic acid, and benzocaine in the hairless guinea pig.

    Science.gov (United States)

    Nathan, D; Sakr, A; Lichtin, J L; Bronaugh, R L

    1990-11-01

    The percutaneous absorption and metabolism of three structurally related compounds, benzoic acid, p-aminobenzoic acid (PABA), and ethyl aminobenzoate (benzocaine), were determined in vitro through hairless guinea pig skin. Benzocaine was also studied in human skin. Absorption of benzocaine was rapid and similar through both viable and nonviable skin. The absorption of the two acidic compounds, benzoic acid and PABA, was greater through nonviable skin. A small portion (6.9%) of absorbed benzoic acid was conjugated with glycine to form hippuric acid. Although N-acetyl-benzocaine had not been observed as a metabolite of benzocaine when studied by other routes of administration, both PABA and benzocaine were extensively N-acetylated during percutaneous absorption. Thus, the metabolism of these compounds should be considered in an accurate assessment of absorption after topical application.

  5. Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Adrian Thomas E

    2003-01-01

    Full Text Available Abstract The essential fatty acids, linoleic acid and arachidonic acid play an important role in pancreatic cancer development and progression. These fatty acids are metabolized to eicosanoids by cyclooxygenases and lipoxygenases. Abnormal expression and activities of both cyclooxygenases and lipoxygenases have been reported in pancreatic cancer. In this article, we aim to provide a brief summary of (1 our understanding of the roles of these enzymes in pancreatic cancer tumorigenesis and progression; and (2 the potential of using cyclooxygenase and lipoxygenase inhibitors for pancreatic cancer treatment and prevention.

  6. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Science.gov (United States)

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  7. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Directory of Open Access Journals (Sweden)

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites.

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-08-23

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a "one pot" suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using (13)C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems.

  9. Gut microbiota and nuclear receptors in bile acid and lipid metabolism : bile acids, more than soaps

    NARCIS (Netherlands)

    Out, Carolien

    2014-01-01

    Metabolic syndrome refers to the combination of obesity, hypertension, dyslipidemia and insulin resistance. Metabolic syndrome increases the chance on cardiovascular disease and type 2 diabetes. Strategies to prevent and treat these metabolic derangements are therefore urgently needed. For this purp

  10. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  11. Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein.

    Science.gov (United States)

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Martín, Héctor García; Gin, Jennifer; Benke, Peter I; Keasling, Jay D

    2010-01-01

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully (13)C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  12. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  13. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired compou

  14. [Metabolic pathway and metabolites of total diterpene acid isolated from Pseudolarix kaempferi].

    Science.gov (United States)

    Liu, Peng; Guo, Hong-Zhu; Sun, Jiang-Hao; Xu, Man; Guo, Hui; Sun, Shi-Feng; Guo, De-An

    2014-08-01

    The preliminary metabolic profile of total diterpene acid (TDA) isolated from Pseudolarix kaempferi was investigated by using in vivo and in vitro tests. Pseudolaric acid C2 (PC2) was identified as the predominant metabolite in plasma, urine, bile and feces after both oral and intravenous administrations to rats using HPLC-UV and HPLC-ESI/MS(n), and demethoxydeacetoxypseudolaric acid B (DDPB), a metabolite proposed to be the glucoside of PC2 (PC2G), as well as pseudolaric acid C (PC), pseudolaric acid A (PA), pseudolaric acid A O-beta-D glucopyranoside (PAG), pseudolaric acid B O-beta-D glucopyranoside (PBG) and deacetylpseudolaric acid A (DPA) originated from TDA could also be detected. It was demonstrated by tests that the metabolism of TDA is independent of intestinal microflora, and neither of pepsin and trypsin is in charge of metabolism of TDA, TDA is also stable in both pH environments of gastric tract and intestinal tract. The metabolites of TDA in whole blood in vitro incubation were found to be PC2, DDPB and PC2G, which demonstrated that the metabolic reaction of TDA in vivo is mainly occurred in blood and contributed to be the hydrolysis of plasma esterase to ester bond, as well as the glucosylation reaction. These results clarified the metabolic pathway of TDA for the first time, which is of great significance to the in vivo active form and acting mechanism research of P. kaempferi.

  15. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities.

  16. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil K; Diwan, Vishal; Brown, Lindsay

    2011-10-01

    Epidemiological, human, animal, and cell culture studies show that n-3 fatty acids, especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), reduce the risk factors of cardiovascular diseases. EPA and DHA, rather than ALA, have been the focus of research on the n-3 fatty acids, probably due to the relatively inefficient conversion of ALA to EPA and DHA in rodents and humans. This review will assess our current understanding of the effects and potential mechanisms of actions of individual n-3 fatty acids on multiple risk factors of metabolic syndrome. Evidence for pharmacological responses and the mechanism of action of each of the n-3 fatty acid trio will be discussed for the major risk factors of metabolic syndrome, especially adiposity, dyslipidemia, insulin resistance and diabetes, hypertension, oxidative stress, and inflammation. Metabolism of n-3 and n-6 fatty acids as well as the interactions of n-3 fatty acids with nutrients, gene expression, and disease states will be addressed to provide a rationale for the use of n-3 fatty acids to reduce the risk factors of metabolic syndrome.

  17. Dietary fatty acids affecting hepatic metabolism and atherosclerosis - mechanisms unravelled using a proteomics approach

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gutierrez, G.; Roos, B. de

    2009-07-01

    Dietary fatty acids play an important role in the aetiology of coronary heart disease. The effects of dietary fatty acids on lipoprotein metabolism are well described, but additional or alternative mechanisms relating to potential influence on coronary heart disease are not known. This review describes how proteomics techniques have been used to identify proteins that are differentially regulated by dietary fatty acids. Such proteins may reveal pathways by which dietary fatty acids influence disease risk. (Author) 40 refs.

  18. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias

    2015-01-01

    conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon......, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism......The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from...

  19. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.

    Science.gov (United States)

    He, Lian; Xiao, Yi; Gebreselassie, Nikodimos; Zhang, Fuzhong; Antoniewiez, Maciek R; Tang, Yinjie J; Peng, Lifeng

    2014-03-01

    We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.

  20. Transcellular lipoxygenase metabolism between monocytes and platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bigby, T.D.; Meslier, N. (Univ. of California, San Francisco (USA))

    1989-09-15

    We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.

  1. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  2. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome.

    Science.gov (United States)

    Volek, Jeff S; Fernandez, Maria Luz; Feinman, Richard D; Phinney, Stephen D

    2008-09-01

    Abnormal fatty acid metabolism and dyslipidemia play an intimate role in the pathogenesis of metabolic syndrome and cardiovascular diseases. The availability of glucose and insulin predominate as upstream regulatory elements that operate through a collection of transcription factors to partition lipids toward anabolic pathways. The unraveling of the details of these cellular events has proceeded rapidly, but their physiologic relevance to lifestyle modification has been largely ignored. Here we highlight the role of dietary input, specifically carbohydrate intake, in the mechanism of metabolic regulation germane to metabolic syndrome. The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels. Several of these processes are the subject of intense investigation at the cellular level. We see the need to integrate these cellular mechanisms with results from low-carbohydrate diet trials that have shown reduced cardiovascular risk through improvement in hepatic, intravascular, and peripheral processing of lipoproteins, alterations in fatty acid composition, and reductions in other cardiovascular risk factors, notably inflammation. From the current state of the literature, however, low-carbohydrate diets are grounded in basic metabolic principles and the data suggest that some form of carbohydrate restriction is a candidate to be the preferred dietary strategy for cardiovascular health beyond weight regulation.

  3. Gluconeogenesis and amino acids metabolism in ovarian clear cell carcinoma

    OpenAIRE

    2013-01-01

    Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2013 Tumor cells may exhibit different metabolic profiles compared to normal tissues from which they are derived. Those observations gave rise to the new concept that tumorigenesis requires metabolic alterations to sustain cell proliferation. Several studies reveal that increased cell proliferation is accompanied by increased glucose consumption. In OCCC, a typical morphol...

  4. Zonation of glucose and fatty acid metabolism in the liver : Mechanism and metabolic consequences

    NARCIS (Netherlands)

    Hijmans, Brenda S.; Greffiorst, Aldo; Oosterveer, Maaike H.; Groen, Albert K.

    2014-01-01

    The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic featu

  5. Fatty acid metabolism and metabolic inflammation : two important players in the development of insulin resistance

    NARCIS (Netherlands)

    Vroegrijk, Irene Olga Cornelia Maria

    2013-01-01

    The metabolic syndrome is a multi-component condition that includes obesity hypertriglyceridemia and insulin resistance. The prevalence of the metabolic syndrome is rising world-wide and is associated with an increased risk for the development of cardiovascular diseases and type 2 diabetes. In the p

  6. Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism.

    Science.gov (United States)

    Shabalina, Irina G; Backlund, Emma C; Bar-Tana, Jacob; Cannon, Barbara; Nedergaard, Jan

    2008-01-01

    In the present investigation, we have utilized the availability of UCP1(-/-) mice to examine a wide range of previously proposed lipid activators of Uncoupling Protein 1 (UCP1) in its native environment, i.e. in the brown-fat cells. A non-metabolizable fatty acid analogue, beta,beta cent-methyl-substituted hexadecane alpha,omega-dicarboxylic acid (Medica-16) is a potent UCP1 (re)activator in brown-fat cells, despite its bipolar structure. All-trans-retinoic acid activates UCP1 within cells, whereas beta-carotene only does so after metabolism. The UCP1-dependent effects of fatty acids are positively correlated with their chain length. Medium-chain fatty acids are potent UCP1 activators in cells, despite their lack of protonophoric properties in mitochondrial membranes. Thus, neither the ability to be metabolized nor an innate uncoupling/protonophoric ability is a necessary property of UCP1 activators within brown-fat cells.

  7. Metabolism of chicoric acid by rat liver microsomes and bioactivity comparisons of chicoric acid and its metabolites.

    Science.gov (United States)

    Liu, Qian; Wang, Yutang; Xiao, ChunXia; Wu, Wanqiang; Liu, Xuebo

    2015-06-01

    Chicoric acid has recently become a hot research topic due to its potent bioactivities. However, there are few studies relevant to this acid's pharmacokinetic characteristics and the pharmacological activities of its metabolites. To compare the abilities of chicoric acid and its metabolites in scavenging free radicals and their effects on the viability of 3T3-L1 preadipocytes, an in vitro study of the metabolism of chicoric acid in rat liver microsomes was performed using liquid tandem mass spectrometry (HPLC-MS/MS). The results indicated that caffeic acid and caftaric acid were the hepatic phase I metabolites of chicoric acid. These three compounds had strong capacities for scavenging free radicals and had been demonstrated to increase intracellular ROS levels in 3T3-L1 preadipocytes, thereby reducing cell vitality. Finally, the pharmacological activities of chicoric acid were significantly stronger than those of its metabolites within a certain concentration range.

  8. Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial.

    LENUS (Irish Health Repository)

    Phelan, Niamh

    2012-02-01

    BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by an adverse metabolic profile. Although dietary changes are advocated, optimal nutritional management remains uncertain. Polyunsaturated fatty acids (PUFAs), particularly long-chain (LC) n-3 (omega-3) PUFAs, improve metabolic health, but their therapeutic potential in PCOS is unknown. OBJECTIVES: We aimed to determine the associations between plasma PUFAs and metabolic and hormonal aspects of PCOS to investigate the efficacy of LC n-3 PUFA supplementation and to support the findings with mechanistic cellular studies. DESIGN: We selected a cross-sectional PCOS cohort (n = 104) and conducted a principal component analysis on plasma fatty acid profiles. Effects of LC n-3 PUFA supplementation on fasting and postprandial metabolic and hormonal markers were determined in PCOS subjects (n = 22) by a randomized, crossover, placebo-controlled intervention. Direct effects of n-6 (omega-6) compared with n-3 PUFAs on steroidogenesis were investigated in primary bovine theca cells. RESULTS: Cross-sectional data showed that a greater plasma n-6 PUFA concentration and n-6:n-3 PUFA ratio were associated with higher circulating androgens and that plasma LC n-3 PUFA status was associated with a less atherogenic lipid profile. LC n-3 PUFA supplementation reduced plasma bioavailable testosterone concentrations (P < 0.05), with the greatest reductions in subjects who exhibited greater reductions in plasma n-6:n-3 PUFA ratios. The treatment of bovine theca cells with n-6 rather than with n-3 PUFAs up-regulated androstenedione secretion (P < 0.05). CONCLUSIONS: Cross-sectional data suggest that PUFAs modulated hormonal and lipid profiles and that supplementation with LC n-3 PUFAs improves androgenic profiles in PCOS. In bovine theca cells, arachidonic acid modulated androstenedione secretion, which suggests an indirect effect of n-3 PUFAs through the displacement of or increased competition with n-6 PUFAs. This trial was

  9. Effect of dietary n-3 fatty acids supplementation on fatty acid metabolism in atorvastatin-administered SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    Science.gov (United States)

    Al Mamun, Abdullah; Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Tsuchikura, Satoru; Hossain, Shahdat; Shido, Osamu

    2017-01-01

    The effects of cholesterol-lowering statins, which substantially benefit future cardiovascular events, on fatty acid metabolism have remained largely obscured. In this study, we investigated the effects of atorvastatin on fatty acid metabolism together with the effects of TAK-085 containing highly purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ethyl ester on atorvastatin-induced n-3 polyunsaturated fatty acid lowering in SHR.Cg-Lepr(cp)/NDmcr (SHRcp) rats, as a metabolic syndrome model. Supplementation with 10mg/kg body weight/day of atorvastatin for 17 weeks significantly decreased plasma total cholesterol and very low density lipoprotein cholesterol. Atorvastatin alone caused a subtle change in fatty acid composition particularly of EPA and DHA in the plasma, liver or erythrocyte membranes. However, the TAK-085 consistently increased both the levels of EPA and DHA in the plasma, liver and erythrocyte membranes. After confirming the reduction of plasma total cholesterol, 300mg/kg body weight/day of TAK-085 was continuously administered for another 6 weeks. Supplementation with TAK-085 did not decrease plasma total cholesterol but significantly increased the EPA and DHA levels in both the plasma and liver compared with rats administered atorvastatin only. Supplementation with atorvastatin alone significantly decreased sterol regulatory element-binding protein-1c, Δ5- and Δ6-desaturases, elongase-5, and stearoyl-coenzyme A (CoA) desaturase-2 levels and increased 3-hydroxy-3-methylglutaryl-CoA reductase mRNA expression in the liver compared with control rats. TAK-085 supplementation significantly increased stearoyl-CoA desaturase-2 mRNA expression. These results suggest that long-term supplementation with atorvastatin decreases the EPA and DHA levels by inhibiting the desaturation and elongation of n-3 fatty acid metabolism, while TAK-085 supplementation effectively replenishes this effect in SHRcp rat liver.

  10. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Science.gov (United States)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  11. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application.

    Science.gov (United States)

    Yoshii, Yukie; Furukawa, Takako; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2015-01-28

    Understanding cancer-specific metabolism is important for identifying novel targets for cancer diagnosis and therapy. Induced acetate/acetyl CoA metabolism is a notable feature that is related to fatty acid synthesis supporting tumor growth. In this review, we focused on the recent findings related to cancer acetate/acetyl CoA metabolism. We also introduce [1-¹¹C]acetate positron emission tomography (PET), which is a useful tool to visualize up-regulation of acetate/acetyl CoA metabolism in cancer, and discuss the utility of [1-¹¹C]acetate PET in cancer diagnosis and its application to personalized medicine.

  12. Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals

    Science.gov (United States)

    Ni, Yan; Zhao, Linjing; Yu, Haoyong; Ma, Xiaojing; Bao, Yuqian; Rajani, Cynthia; Loo, Lenora W.M.; Shvetsov, Yurii B.; Yu, Herbert; Chen, Tianlu; Zhang, Yinan; Wang, Congrong; Hu, Cheng; Su, Mingming; Xie, Guoxiang; Zhao, Aihua; Jia, Wei; Jia, Weiping

    2015-01-01

    Background Obesity is not a homogeneous condition across individuals since about 25–40% of obese individuals can maintain healthy status with no apparent signs of metabolic complications. The simple anthropometric measure of body mass index does not always reflect the biological effects of excessive body fat on health, thus additional molecular characterizations of obese phenotypes are needed to assess the risk of developing subsequent metabolic conditions at an individual level. Methods To better understand the associations of free fatty acids (FFAs) with metabolic phenotypes of obesity, we applied a targeted metabolomics approach to measure 40 serum FFAs from 452 individuals who participated in four independent studies, using an ultra-performance liquid chromatograph coupled to a Xevo G2 quadruple time-of-flight mass spectrometer. Findings FFA levels were significantly elevated in overweight/obese subjects with diabetes compared to their healthy counterparts. We identified a group of unsaturated fatty acids (UFAs) that are closely correlated with metabolic status in two groups of obese individuals who underwent weight loss intervention and can predict the recurrence of diabetes at two years after metabolic surgery. Two UFAs, dihomo-gamma-linolenic acid and palmitoleic acid, were also able to predict the future development of metabolic syndrome (MS) in a group of obese subjects. Interpretation These findings underscore the potential role of UFAs in the MS pathogenesis and also as important markers in predicting the risk of developing diabetes in obese individuals or diabetes remission after a metabolic surgery. PMID:26629547

  13. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  14. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  15. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  16. Dissolution kinetics of nickel laterite ore using different secondary metabolic acids

    Directory of Open Access Journals (Sweden)

    S. Sahu

    2011-06-01

    Full Text Available The dissolution kinetics of nickel laterite ore in aqueous acid solutions of three metabolic acids, i.e., citric acid, oxalic acid and acetic acid were investigated in a batch reactor individually. It was determined that experimental data comply with a shrinking core model. The diffusion coefficients for citric acid, oxalic acid and acetic acid were found to be 1.99×10-9 cm²/s, 2.59×10-8 cm²/s and 1.92×10-10 cm²/s respectively. The leaching ability of each acid was observed and it was found that oxalic acid was better than the other two.

  17. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    NARCIS (Netherlands)

    Heinzelmann, S.M.; Villanueva, L.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; Van der Meer, M.T.J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriche

  18. Microbial transglutaminase production by Streptoverticillium mobaraense: Analysis of amino acid metabolism using mass balances

    NARCIS (Netherlands)

    Zhu, Y.; Rinzema, A.; Bonarius, H.P.J.; Tramper, J.; Bol, J.

    1998-01-01

    Metabolic flows, especially those of amino acids, were determined and analyzed at different stages of a batch fermentation for microbial transglutaminase production by Streptoverticillium mobaraense. The method is mainly based on mass balances and measurements of amino acids and other metabolites. T

  19. Metabolic Effects of Bile Acids in the Gut in Health and Disease

    NARCIS (Netherlands)

    Boesjes, Marije; Brufau Dones, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bil

  20. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase....

  1. Red blood cell fatty acid composition and the metabolic syndrome: NHLBI GOLDN study

    Science.gov (United States)

    Different fatty acids may vary in their effect on the metabolic syndrome (MetS). We tested whether fatty acid classes measured in red blood cells (RBC) are associated with the MetS or its components. Included were men (n=497, 49+/-16 y) and women (n=539, 48+/-16 y) from 187 families in the Genetics ...

  2. Alteration of bile acid metabolism in pseudo germ-free rats [corrected].

    Science.gov (United States)

    Bhowmik, Salil Kumar; An, Ji Hye; Lee, Soo Hyun; Jung, Byung Hwa

    2012-11-01

    To characterize the impact of gut microbiota on host bile acid metabolism, we investigated the metabolic profiles of oxysterols and bile acids (BAs) in a conventional rat model (SD) (n=5) and its pseudo germ-free (GF) equivalent (n=5). GF rats were developed by the oral administration of bacitracin, neomycin and streptomycin (200 mg/kg, each) twice a day for 6 days. Urinary levels of oxysterols and bile acid metabolites were quantified using gas chromatography-mass spectrometry (GC-MS). The activity levels of enzymes involved in the bile acid metabolic pathway were determined through urinary concentration ratio between product to precursor. Cholic acid (CA) and α-/β-muricholic acid (α-/β-MCA) were significantly elevated at pseudo germ-free condition. An increase of hydroxylase (cholesterol 7α-hydroxylase, oxysterol 7α-hydroxylase and cytochrome P450 scc) and a significant decrease of 7α-dehydroxylase were observed. The urinary concentration ratio of primary bile acids, a marker for hepatotoxicity, increased in pseudo germfree conditions. Therefore, it was found that gut microbiota could play a significant role in the bile acids homeostasis and metabolism.

  3. The Farnesoid X receptor - A molecular link between bile acid and lipid and glucose metabolism

    NARCIS (Netherlands)

    Claudel, T; Staels, B; Kuipers, F

    2005-01-01

    Bile acids are the end products of cholesterol metabolism. They are synthesized in the liver and secreted via bile into the intestine, where they aid in the absorption of fat-soluble vitamins and dietary fat. Subsequently, bile acids return to the liver to complete their enterohepatic circulation. T

  4. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-10-31

    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  5. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    DEFF Research Database (Denmark)

    Chen, Xiao

    Saccharomyces cerevisiae is widely used in microbial production of chemicals, metabolites and proteins, mainly because genetic manipulation of S. cerevisiae is relatively easy and experiences from its wide application in the existing industrial fermentations directly benefit new S. cerevisiae-based...... processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which......, by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in S. cerevisiae, the isobutanol yield was improved from 0.16 to 0.97 mg per g glucose in anaerobic fermentation in mineral medium. Isobutanol yield was further improved by two times by the additional overexpression...

  6. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation.

    Science.gov (United States)

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.

  7. Studies on the metabolism of beta-hydroxy- aspartic acid

    Directory of Open Access Journals (Sweden)

    Ikegami,Takuma

    1975-08-01

    Full Text Available The content of beta-hydroxyaspartic acid was measured in the urine of man and several species of animals. The configuration of urinary beta-hydroxyaspartic acid was deduced to be L-erythro in form by chromatographic comparisons with authentic samples. An increased excretion of urinary beta-hydroxyaspartic acid was observed in cats when serine or thiamine was administered with glycine. Glycine-1-14C administered to rats was incorporated into the urinary beta-hydroxyaspartic acid. The formation of beta-hydroxyaspartic acid in pig-liver homogenate increased in the presence of glutamate and thiamine pyrophosphate. These results were discussed in relation to the author's working hypothesis on the biosynthesis of beta-hydroxyaspartic acid.

  8. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  9. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Science.gov (United States)

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-08-21

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  10. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  11. AMINO ACID METABOLISM IN COWS DURING THE TRANSITION PERIOD IN BALANCING DIET ON THE EXCHANGE PROTEIN AND DIGESTIBLE AMINO ACIDS

    Directory of Open Access Journals (Sweden)

    Ryadchikov V. G.

    2014-02-01

    Full Text Available Application of a factorial method for determining the needs in metabolic protein and essential amino acids, helps to deepen knowledge on physiology of protein and amino acid supply and allow to improve the standards for dairy cows during the transition period; in insufficient of metabolic protein and essential amino acids increased coefficients of their transformation into net protein and absorptive amino acids as a result of mobilization of body of cows; with an optimal protein nutrition their transformation in net milk protein, lysine and methionine accordingly amounted to 0.67, 0,83 and 0,82. The most significant changes in the concentration of methionine, proline, glutamate, glutamine, glycine were observed in cows before calving and immediately after birth, stabilization of their level starts with a 24 lactation day, that is connected with the peculiarities of the feeding behavior of the cows and the gradual intensification of the processes of metabolism and milk production. To control the status of protein metabolism we have offered benchmarks compositions of free amino acids in cows’ blood plasma phases: 21-0 days before calving, 0-21 and 22-120 days after calving

  12. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    DEFF Research Database (Denmark)

    Hoeft, B.; Linseisen, J.; Beckmann, L.

    2010-01-01

    Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...... as contributing factor to colon carcinogenesis. We examined the association between genetic variability in 43 fatty acid metabolism-related genes and colorectal risk in 1225 CRC cases and 2032 controls participating in the European Prospective Investigation into Cancer and Nutrition study. Three hundred...

  13. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (pomega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.

  14. Dietary protein, physiological condition and metabolic amino acid utilisation.

    NARCIS (Netherlands)

    Weijs, P.J.M.

    1993-01-01

    This thesis describes the investigated effects of the level of dietary protein intake and the physiological condition of the animal on the percental oxidation of leucine. This measure reflects which part of the free leucine pool was used for protein and energy metabolism. The employed technique cons

  15. Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultivar

    Science.gov (United States)

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-01-01

    The chlorotic tea variety Huangjinya, a natural mutant, contains enhanced levels of free amino acids in its leaves, which improves the drinking quality of its brewed tea. Consequently, this chlorotic mutant has a higher economic value than the non-chlorotic varieties. However, the molecular mechanisms behind the increased levels of free amino acids in this mutant are mostly unknown, as are the possible effects of this mutation on the overall metabolome and biosynthetic pathways in tea leaves. To gain further insight into the effects of chlorosis on the global metabolome and biosynthetic pathways in this mutant, Huangjinya plants were grown under normal and reduced sunlight, resulting in chlorotic and non-chlorotic leaves, respectively; their leaves were analyzed using transcriptomics as well as targeted and untargeted metabolomics. Approximately 5,000 genes (8.5% of the total analyzed) and ca. 300 metabolites (14.5% of the total detected) were significantly differentially regulated, thus indicating the occurrence of marked effects of light on the biosynthetic pathways in this mutant plant. Considering primary metabolism, including that of sugars, amino acids, and organic acids, significant changes were observed in the expression of genes involved in both nitrogen (N) and carbon metabolism. The suite of changes not only generated an increase in amino acids, including glutamic acid, glutamine, and theanine, but it also elevated the levels of free ammonium, citrate, and α-ketoglutarate, and lowered the levels of mono- and di-saccharides and of caffeine as compared with the non-chlorotic leaves. Taken together, our results suggest that the increased levels of amino acids in the chlorotic vs. non-chlorotic leaves are likely due to increased protein catabolism and/or decreased glycolysis and diminished biosynthesis of nitrogen-containing compounds other than amino acids, including chlorophyll, purines, nucleotides, and alkaloids.

  16. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids

    Science.gov (United States)

    Stovall, Iris; Cole, Michael

    1978-01-01

    Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized 14C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular components (cell wall + membrane, nucleic acids, and protein). PMID:16660386

  17. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  18. Physiological and biochemical studies of bacterial amino acid amide metabolism

    NARCIS (Netherlands)

    Hermes, Hubertus Franciscus Maria

    2008-01-01

    Amino acids represent a class of versatile chiral building blocks for a whole range of fine chemicals, used in the pharmaceutical and agro-chemical industry. Considerable experience currently is available with a wide variety of chemo-enzymatic processes for the synthesis of amino acids, which is app

  19. Beyond intestinal soap-bile acids in metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Bloks, Vincent W.; Groen, Albert K.

    2014-01-01

    Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bi

  20. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria

    OpenAIRE

    Shabalina, Irina G.; Kalinovich, Anastasia V.; Cannon, Barbara; Nedergaard, Jan

    2015-01-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse b...

  1. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    Science.gov (United States)

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  2. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  3. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients

    Directory of Open Access Journals (Sweden)

    Calder P.C.

    2003-01-01

    Full Text Available Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6. Linoleic acid is the precursor of arachidonic acid (20:4n-6. In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

  4. Metabolic engineering of carbon and redox flow in the production of small organic acids.

    Science.gov (United States)

    Thakker, Chandresh; Martínez, Irene; Li, Wei; San, Ka-Yiu; Bennett, George N

    2015-03-01

    The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high

  5. Metabolomics reveals metabolic biomarkers of Crohn's disease

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, J.K.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P.

    2009-06-01

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.

  6. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Science.gov (United States)

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  7. Exploratory investigation reveals parallel alteration of plasma fatty acids and eicosanoids in coronary artery disease patients.

    Science.gov (United States)

    Xu, Yong-Jiang; Ho, Wanxing Eugene; Xu, Fengguo; Wen, Tao; Ong, Choon Nam

    2013-10-01

    Fatty acids and eicosanoids are two important classes of signaling lipid molecules involved in the pathogenesis of cardiovascular diseases. To investigate the physiological functions and interplay between fatty acids and eicosanoids in coronary artery disease (CAD) patients, we developed an analytical approach for parallel quantitative analysis of plasma fatty acids and eicosanoids, using gas chromatography-tandem mass spectrometry (GC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, 26 fatty acids and 12 eicosanoids were confidently detected in 12 patients with confirmed coronary artery disease and 11 healthy subjects. Pattern recognition analysis (principal components analysis, orthogonal partial least-square discriminate analysis, and hierarchical clustering analysis) demonstrated that the plasma lipid profile of fatty acids and eicosanoids enabled robust discrimination of CAD patients versus healthy subjects. Significant differences in six fatty acids and five eicosanoids were noted among CAD patients and healthy subjects. The development of cardiovascular disease-induced metabolic change of fatty acids and eicosanoids, such as eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid, hydroxyeicosatetraenoic acids and hydroxyoctadecadienoic acid, were consistent with previous isolated observations. Moderate-strong correlations between three plasma fatty acids and three eicosanoids from arachidonic acid metabolism were also observed. In brief, findings from this exploratory study offered a new insight on the roles of various bioactive lipid molecules in the development of coronary artery disease biomarkers.

  8. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Institute of Scientific and Technical Information of China (English)

    Purnima Guda; Chittibabu Guda; Shankar Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  9. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    Science.gov (United States)

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism.

  10. Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions.

    Science.gov (United States)

    Dunn, Michael Frederick

    2015-01-01

    Rhizobia are bacteria in the α-proteobacterial genera Rhizobium, Sinorhizobium, Mesorhizobium, Azorhizobium and Bradyrhizobium that reduce (fix) atmospheric nitrogen in symbiotic association with a compatible host plant. In free-living and/or symbiotically associated rhizobia, amino acids may, in addition to their incorporation into proteins, serve as carbon, nitrogen or sulfur sources, signals of cellular nitrogen status and precursors of important metabolites. Depending on the rhizobia-host plant combination, microsymbiont amino acid metabolism (biosynthesis, transport and/or degradation) is often crucial to the establishment and maintenance of an effective nitrogen-fixing symbiosis and is intimately interconnected with the metabolism of the plant. This review summarizes past findings and current research directions in rhizobial amino acid metabolism and evaluates the genetic, biochemical and genome expression studies from which these are derived. Specific sections deal with the regulation of rhizobial amino acid metabolism, amino acid transport, and finally the symbiotic roles of individual amino acids in different plant-rhizobia combinations.

  11. In vitro Metabolism of Strychnine by Human Cytochrome P450 and Its Interaction with Glycyrrhetic Acid

    Institute of Scientific and Technical Information of China (English)

    LIU Li; XIAO Juan; PENG Zhi-hong; WU Wen-hua; DU Peng; CHEN Yong

    2012-01-01

    Objective To investigate the metabolism of strychnine (STN) and the metabolic interaction between STN and glycyrthetic acid (GA) in vitro.Methods Human liver microsomes (HLM) and human recombinant cytochrome P450 (CYP) isoforms were employed to study the metabolism of STN and the metabolic interaction of STN with GA in vitro.Results In HLM,the Km,Vmax,and clearance of STN were 88.50 μmol/L,0.88 nmol/(mg·min),and 9.93 mL/(mg·min),respectively.STN was metabolized mainly by CYP3A4.However,STN noncompetitively inhibited CYP3A4-catalyzed testosterone 6β-hydroxylation with IC50 value of 5.9 μtmol/L and Ki value of 5.5μmol/L.Moreover,GA competitively inhibited STN metabolism with IC5o value of 10.6 μmol/L and Ki value of 17.7 μmol/L.Conclusion Although STN is mainly metabolized by CYP3A4 in vitro,STN has noncompetitive inhibition on CYP3A4-catalyzed testosterone 6β-hydroxylation.Moreover,GA could competitively inhibit STN metabolism.The present work is helpful to elucidate the metabolic interaction between STN and GA.

  12. Effects of Diet High in Palmitoleic Acid on Serum Lipid Levels and Metabolism

    Science.gov (United States)

    2000-07-01

    postprandial tipidLipoprotein metabolism . Funded by the Almond Boar’d of vitamin E supplement use, body mass index, exercise , and intakes of California...High in Palmitoleic Acid on Serum Lipid Levels and Metabolism , Phase 2 PRINCIPAL INVESTIGATOR: Jesse David Curb, M.D., MPH CONTRACTING ORGANIZATION... response , including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

  13. Synergism interaction between arachidonic acid by 5-hydroxytryptamine in human platelet aggregation is mediated through multiple signalling pathways%多种信号途径介导花生四烯酸与5-羟色胺在促人类血小板凝集中的协同作用

    Institute of Scientific and Technical Information of China (English)

    Sheikh Arshad SAEED; Huma RASHEED; Anwar-ul-Hassan GILANI

    2003-01-01

    AIM: To examine the signalling mechanisms involved in the synergistic interaction of 5-hydroxytryptamine (5-HT)and arachidonic acid (AA) in human platelet aggregation. METHODS: Blood was obtained from healthy human subjects, mixed with 3.8 % sodium citrate (9:1), and centrifuged to prepare platelet rich plasma (PRP). Aggregation was monitored using a Dual-channel Lumi-aggregometer. The agonist-induced influx of Ca2+ was measured using Fura-2 AM. TXA2 formation was studied using radiochemical method. RESULTS: Subthreshold concentration of 5-HT (2 μmol/L) potentiated the effect of low dose of AA (0.2 mmol/L) in human platelets. This synergistic effect was blocked by 5-HT2 receptor antagonist (methysergide IC50=5.2 nmol/L; cyproheptadine IC50=0.6 nmol/L), and thromboxane A2 receptor antagonist (SQ 29 548; IC50=30 nmol/L), showing that the effect is receptor-mediated.To examine the down-stream signalling pathways, we found that such an interaction was inhibited by calcium channel blockers (diltiazem; IC50=3 μmol/L and verapamil; IC50=5 μmol/L), phospholipase C (PLC) inhibitor (U73122;IC50=4 μmol/L), cyclooxygenase inhibitor, (indomethacin; IC50=0.2 μmol/L) and mitogen-activated protein (MAP)kinase inhibitor (PD98059; IC50=3 μmol/L). The effect was also inhibited by a specific tyrosine light chain kinase (TLCK) inhibitor, herbimycin A with IC50 value of 5 μmol/L. Pretreatment of platelet with 5-HT and AA induced rise in intracellular calcium and this effect was blocked by verapamil. CONCLUSION: The synergism between 5-HT and AA in platelet aggregation involves activation of PLC/Ca2+, COX, and MAP kinase pathways.

  14. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  15. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.

    Science.gov (United States)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo

    2011-02-01

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.

  16. Metabolism of dicarboxylic acids in vivo and in the perfused kidney of the rat.

    Science.gov (United States)

    Bergseth, S; Hokland, B M; Bremer, J

    1988-07-01

    After intraperitoneal injection of (1-14C)-labelled suberic or dodecanedioic acid, the acids themselves and their metabolites were excreted in urine and as 14CO2. There was a striking difference in the capacity to oxidize the two dicarboxylic acids. Most of the suberic acid was excreted unchanged in the urine, and less was recovered as 14CO2. A trace was excreted as adipic acid. Dodecanedioic acid was more efficiently oxidized; 2-3-times more was expired as 14CO2, and the urine contained only a trace of the unchanged acid. Adipic acid was the main metabolite. Kidney perfusion experiments confirmed these results by showing that unmetabolized suberic acid was actively excreted by the kidneys. Dodecanedioic acid was oxidized and shorter dicarboxylic acids were excreted. The perfused hindquarter did not metabolize the dicarboxylic acids. Our results show that dodecanedioic acid can be completely oxidized both in the whole animal and in the kidneys. Dicarboxylic acids in the urine may to a significant extent be formed in the kidneys themselves.

  17. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    DEFF Research Database (Denmark)

    Vrieze, Anne; Out, Carolien; Fuentes, Susana

    2014-01-01

    in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d....... At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...

  18. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation

    OpenAIRE

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    International audience; This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [ 1-$^{14}$C] -lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells ($94.8 \\pm 2.2\\%$ of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low ($24.6 \\pm 4.2\\%$ of initial radioactivity after...

  19. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  20. [Effect of the B-group vitamin complex on the blood content of saturated and unsaturated fatty acids in patients with ischemic heart disease and hypertension].

    Science.gov (United States)

    Vodoevich, V P; Buko, V U

    1986-01-01

    Gas-liquid chromatography was used to study the blood content of saturated and unsaturated fatty acids, under the influence of the functionally-associated vitamin-B complex, in 45 patients with coronary heart disease and essential hypertension. The vitamins were given daily in the following doses: thiamine diphosphate 50 mg, riboflavine 40 mg, calcium pantothenate 200 mg, nicotinic acid 200 mg and lipoic acid 50 mg. Favourable shifts leading to positive clinical effects were recorded in the fatty acid metabolism after 10-day taking the vitamin-B complex: the content of unsaturated (linoleic and arachidonic) fatty acids increased while that of saturated (stearic and palmitic) fatty acids decreased.

  1. Studies of citric acid metabolism in heart muscle

    NARCIS (Netherlands)

    Meduski, J.W.

    1950-01-01

    1. The pentabromoacetone method for the determination of citric acid was studied; a modification of the procedure of Natelson, Lugovoy and Pincus was used. 2. Two tissue preparations were obtained. The first by washing with water, the second by washing with water and then with 0.5% sodium bicarbo

  2. Metabolic Effects of Dietary Proteins, Amino Acids and The Other Amine Consisting Compounds on Cardiovascular System.

    Directory of Open Access Journals (Sweden)

    Elif Uğur

    2017-02-01

    Full Text Available During the prevention and treatment of cardiovascular diseases, first cause of deaths in the world, diet has a vital role. While nutrition programs for the cardiovascular health generally focus on lipids and carbohydrates, effects of proteins are not well concerned. Thus this review is written in order to examine effect of proteins, amino acids, and the other amine consisting compounds on cardiovascular system. Because of that animal or plant derived proteins have different protein composition in different foods such as dairy products, egg, meat, chicken, fish, pulse and grains, their effects on blood pressure and regulation of lipid profile are unlike. In parallel amino acids made up proteins have different effect on cardiovascular system. From this point, sulfur containing amino acids, branched chain amino acids, aromatic amino acids, arginine, ornithine, citrulline, glycine, and glutamine may affect cardiovascular system in different metabolic pathways. In this context, one carbon metabolism, synthesis of hormone, stimulation of signaling pathways and effects of intermediate and final products that formed as a result of amino acids metabolism is determined. Despite the protein and amino acids, some other amine consisting compounds in diet include trimethylamine N-oxide, heterocyclic aromatic amines, polycyclic aromatic hydrocarbons and products of Maillard reaction. These amine consisting compounds generally increase the risk for cardiovascular diseases by stimulating oxidative stress, inflammation, and formation of atherosclerotic plaque.

  3. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    DEFF Research Database (Denmark)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner;

    2016-01-01

    OBJECTIVE: Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS: To identify pathways related t...... catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D....... methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate...... fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS: Our data indicate that impaired muscle BCAA...

  4. Metabolic analysis of the removal of formic acid by unacclimated activated sludge.

    Science.gov (United States)

    Viggi, Carolina Cruz; Dionisi, Davide; Miccheli, Alfredo; Valerio, Mariacristina; Majone, Mauro

    2010-06-01

    This paper investigates the removal of formic acid by unacclimated biomass from a municipal activated sludge wastewater treatment plant. The biomass was initially able to remove formic acid, but its removal rate and Oxygen Uptake Rate (OUR) decreased with time, until formic acid removal stopped before the formic acid had been exhausted. Formaldehyde was removed in a similar way, whereas the same biomass was simultaneously able to grow and store PHAs when acetic acid was used as substrate. Batch tests with glycine and (13)C NMR analysis were performed, showing that unacclimated biomass was not able to synthesize all the metabolic intermediates from formic acid alone. At least glycine needed to be externally supplemented, in order to activate the serine synthesis pathway. A small amount of formic acid removal in the absence of growth was also possible through formaldehyde formation and its further conversion to formalin (1,2-formaldehyde dimer), whereas no PHAs were formed.

  5. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Science.gov (United States)

    Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  6. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  7. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Indian Academy of Sciences (India)

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  8. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    Science.gov (United States)

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  9. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  10. Role of inorganic carbon in lactic acid bacteria metabolism

    OpenAIRE

    Arsène-Ploetze, Florence; Bringel, Françoise

    2004-01-01

    International audience; Capnophiles are bacteria stimulated by bicarbonate and CO$_2$, the two major forms of inorganic carbon (IC) in physiological neutral liquids. Capnophiles are often pathogenic heterotrophs found in IC-rich ecological niches such as human cavities. Like capnophiles, the growth of lactic acid bacteria (LAB) such as Lactobacillus plantarum and Enterococcus faecalis is stimulated by IC. CO$_2$ or HCO$^{-}_3$ are substrates in carbamoyl phosphate (CP) synthesis and other car...

  11. The complex and important cellular and metabolic functions of saturated fatty acids

    OpenAIRE

    Legrand, Philippe; Rioux, Vincent

    2010-01-01

    This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The...

  12. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    OpenAIRE

    Carla Ferreri; Annalisa Masi; Anna Sansone; Giorgia Giacometti; Anna Vita Larocca; Georgia Menounou; Roberta Scanferlato; Silvia Tortorella; Domenico Rota; Marco Conti; Simone Deplano; Maria Louka; Anna Rosaria Maranini; Arianna Salati; Valentina Sunda

    2016-01-01

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the hu...

  13. Arterio-venous balance studies of skeletal muscle fatty acid metabolism: what can we believe?

    OpenAIRE

    Guo, ZengKui; Jensen, Michael D

    2013-01-01

    The arterio-venous balance (A-V balance/difference) technique has been used by a number of groups, including ours, to study skeletal muscle fatty acid metabolism. Several lines of evidence indicate that, like glycogen, intramyocellular triglycerides (imcTG) are an energy source for local use. As such, the report that increased release of free fatty acids (FFA) via lipolysis from skeletal muscle, but not from adipose tissue, is responsible for the increased systemic lipolysis during IL-6 infus...

  14. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Dalbach, Kristine Foged; Larsen, Mogens; Raun, Birgitte Marie Løvendahl;

    2011-01-01

    The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated by differ......The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated...

  15. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  16. Metabolic pathways and fermentative production of L-aspartate family amino acids.

    Science.gov (United States)

    Park, Jin Hwan; Lee, Sang Yup

    2010-06-01

    The L-aspartate family amino acids (AFAAs), L-threonine, L-lysine, L-methionine and L-isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L-threonine, L-lysine and L-methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.

  17. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    Energy Technology Data Exchange (ETDEWEB)

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  18. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    Science.gov (United States)

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM.

  19. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    Science.gov (United States)

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  20. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2016-07-01

    Full Text Available Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM. The activation of mammalian target of rapamycin complex 1 (mTORC1 by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  1. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  2. Metabolic acidosis

    Science.gov (United States)

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  3. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS.

    Science.gov (United States)

    Olde Damink, Steven W M; Jalan, Rajiv; Redhead, Doris N; Hayes, Peter C; Deutz, Nicolaas E P; Soeters, Peter B

    2002-11-01

    Ammonia is central to the pathogenesis of hepatic encephalopathy. This study was designed to determine the quantitative dynamics of ammonia metabolism in patients with cirrhosis and previous treatment with a transjugular intrahepatic portosystemic stent shunt (TIPSS). We studied 24 patients with cirrhosis who underwent TIPSS portography. Blood was sampled and blood flows were measured across portal drained viscera, leg, kidney, and liver, and arteriovenous differences across the spleen and the inferior and superior mesenteric veins. The highest amount of ammonia was produced by the portal drained viscera. The kidneys also produced ammonia in amounts that equaled total hepatosplanchnic area production. Skeletal muscle removed more ammonia than the cirrhotic liver. The amount of nitrogen that was taken up by muscle in the form of ammonia was less than the glutamine that was released. The portal drained viscera consumed glutamine and produced ammonia, alanine, and citrulline. Urea was released in the splenic and superior mesenteric vein, contributing to whole-body ureagenesis in these cirrhotic patients. In conclusion, hyperammonemia in metabolically stable, overnight-fasted patients with cirrhosis of the liver and a TIPSS results from portosystemic shunting and renal ammonia production. Skeletal muscle removes more ammonia from the circulation than the cirrhotic liver. Muscle releases excessive amounts of the nontoxic nitrogen carrier glutamine, which can lead to ammonia production in the portal drained viscera (PDV) and kidneys. Urinary ammonia excretion and urea synthesis appear to be the only way to remove ammonia from the body.

  4. Deoxyribonucleic acid synthesis and deoxynucleotide metabolism during bacterial spore germination.

    Science.gov (United States)

    Setlow, P

    1973-06-01

    Deoxyribonucleic acid (DNA) synthesis during germination of Bacillus megaterium spores takes place in two stages. In stage I (0-55 min) DNA synthesis is slow and there is no detectable net synthesis, whereas in stage II (from 55 min on) the rate of synthesis is much faster and net DNA synthesis occurs. Deoxyribonucleotide pool sizes match the rates of DNA synthesis in stages I and II. The level of deoxyribonucleotide triphosphates is not correlated with the level of deoxyribonucleotide kinases, but rather with that of ribonucleotide reductase activity.

  5. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon and nitrogen limited chemostat...... cultures. We first reconstructed a genome-scale metabolic model and used this for integrative analysis of multilevel omics data. Metabolite profiling and lipidomics was used to quantify the cellular physiology, while regulatory changes were measured using RNAseq. Analysis of the data showed that lipid...... accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  6. Cardiac metabolism of 15 (p-I-123 phenyl-) pentadecanoic acid after intracoronary tracer application

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Reichmann, K.; Knopp, R.; Winkler, C.; Koischwitz, D.; Machulla, H.J.; Simon, H.

    1984-05-01

    Myocardial turnover of ..omega..-(p/sup 123/I-Phenyl-) pentadecanoic acid and release of its metabolites into the coronary sinus and peripheral blood has been studied in patients with coronary artery and valvular heart disease. After intracoronary tracer injection myocardial extraction fractions of 45-53% in control subjects were observed. In patients with coronary artery disease (CAD) normal to reduced values (34-61%) were established. Hydrophilic catabolites of I-PPA, probably p/sup 123/I-benzoic and -hippuric acid as well as small amounts of the non-metabolized tracer were found in coronary sinus and peripheral blood. Myocardial tracer uptake and clearance patterns were clearly different in normal myocardium when compared to that obtained in patients with CAD. Thus, evaluation of myocardial I-PPA metabolism might provide a new diagnostic tool for assessment of integrity of the heart's muscular metabolic function.

  7. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids

    Science.gov (United States)

    The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

  8. A dynamic mechanistic model of lactic acid metabolism in the rumen

    NARCIS (Netherlands)

    Mills, J.A.N.; Crompton, L.A.; Ellis, J.L.; Dijkstra, J.; Bannink, A.; Hook, S.E.; Benchaar, C.; France, J.

    2014-01-01

    Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated

  9. Relationship between the hypothalamic-pituitary-adrenal-axis and fatty acid metabolism in recurrent depression

    NARCIS (Netherlands)

    Mocking, Roel J T; Ruhe, Eric; Assies, Johanna; Lok, Anja; Koeter, Maarten W J; Visser, Ieke; Bockting, Claudi L H; Schene, Aart H

    2013-01-01

    Alterations in hypothalamic-pituitary-adrenal (HPA)-axis activity and fatty acid (FA)-metabolism have been observed in (recurrent) major depressive disorder (MDD). Through the pathophysiological roles of FAs in the brain and cardiovascular system, a hypothesized relationship between HPA-axis activit

  10. Change of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    Hua-Ling Ruan; Li Zhao; Kun-Quan Guo; Kun Yang; Lin-Xiu Ye; Xue Sun

    2016-01-01

    Objective:To study the change situation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism.Methods:Eighty-one patients with hyperthyroidism who were treated in our hospital from May 2013 to October 2014 were selected as the observation group, while 81 healthy persons with health examination at the same period were the control group. Then, the serum oxygen free radical indexes and free amino acids of the two groups were respectively detected and compared, and the detection results of patients in the observation group with different etiologic types and basal metabolic rate were also compared. Results:The serum oxygen free radical related indexes of the observation group were all higher than those of the control group; the serum antioxidant related indexes were all lower than those of the control group; and the serum free amino acids levels were all obviously lower than those of the control group. Besides, the detection results of patients with severe hyperthyroidism in the observation group were worse than those of patients with mild and moderate disease, while the detection results of the observation group with different types of hyperthyroidism had no significant differences.Conclusions:The fluctuation of oxygen free radical metabolism and free amino acids of patients with hyperthyroidism are obvious, and the detection results of patients with different basal metabolic rates are also quite obvious.

  11. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis

    NARCIS (Netherlands)

    Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Fernie, A.R.; Blumwald, E.; Sadka, A.

    2011-01-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development

  12. Endogenous surfactant metabolism in critically ill infants measured with stable isotope labeled fatty acids

    NARCIS (Netherlands)

    Cogo, PE; Carnielli, VP; Bunt, JEH; Badon, T; Giordano, G