WorldWideScience

Sample records for arable crop protection

  1. Dedicated biomass crops can enhance biodiversity in the arable landscape.

    Science.gov (United States)

    Haughton, Alison J; Bohan, David A; Clark, Suzanne J; Mallott, Mark D; Mallott, Victoria; Sage, Rufus; Karp, Angela

    2016-11-01

    Suggestions that novel, non-food, dedicated biomass crops used to produce bioenergy may provide opportunities to diversify and reinstate biodiversity in intensively managed farmland have not yet been fully tested at the landscape scale. Using two of the largest, currently available landscape-scale biodiversity data sets from arable and biomass bioenergy crops, we take a taxonomic and functional trait approach to quantify and contrast the consequences for biodiversity indicators of adopting dedicated biomass crops on land previously cultivated under annual, rotational arable cropping. The abundance and community compositions of biodiversity indicators in fields of break and cereal crops changed when planted with the dedicated biomass crops, miscanthus and short rotation coppiced (SRC) willow. Weed biomass was consistently greater in the two dedicated biomass crops than in cereals, and invertebrate abundance was similarly consistently higher than in break crops. Using canonical variates analysis, we identified distinct plant and invertebrate taxa and trait-based communities in miscanthus and SRC willows, whereas break and cereal crops tended to form a single, composite community. Seedbanks were shown to reflect the longer term effects of crop management. Our study suggests that miscanthus and SRC willows, and the management associated with perennial cropping, would support significant amounts of biodiversity when compared with annual arable crops. We recommend the strategic planting of these perennial, dedicated biomass crops in arable farmland to increase landscape heterogeneity and enhance ecosystem function, and simultaneously work towards striking a balance between energy and food security.

  2. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management

    DEFF Research Database (Denmark)

    Askegaard, M; Olesen, Jørgen E; Rasmussen, Ilse Ankjær;

    2011-01-01

    in the manured treatments the application rate was lower than crop demand. The results identify management of crop and soil during autumn as the main determinant of N leaching. Nitrate leaching was lowest for a catch crop soil cover during autumn and winter (avg. 20 kg N ha−1), a soil cover of weeds......Two main challenges facing organic arable farming are the supply of nitrogen (N) to the crop and the control of perennial weeds. Nitrate leaching from different organic arable crop rotations was investigated over three consecutive four-year crop rotations in a field experiment at three locations...... in Denmark (12 years in total). The experimental treatments were: (i) crop rotation, (ii) catch crop and (iii) animal manure. Nitrate leaching was estimated from measured soil nitrate concentration in ceramic suction cells and modelled drainage. There were significant effects on annual N leaching of location...

  3. Assessment on the Impact of Arable Land Protection Policies in a Rapidly Developing Region

    Directory of Open Access Journals (Sweden)

    Jiadan Li

    2016-05-01

    Full Text Available To investigate the effect of arable land protection policies in China, a practical framework that integrates geographic information systems (GIS, soil quality assessment and landscape metrics analysis was employed to track and analyze arable land transformations and landscape changes in response to rampant urbanization within the Ningbo region (China from 2005 to 2013. The results showed that arable land loss and degradation have continued, despite the development of a comprehensive legal framework for arable land protection. The implementation of arable land protection policies is judged to be effective, but not entirely successful, because it guarantees the overall amount of arable land but does not consider soil quality and spatial distribution. In addition, there are distinct variations in arable land change dynamics between two temporal intervals. From 2005–2009, the transformation of arable land was diversified, with intensified conversion among arable land, built-up land, water and orchards. Moreover, many new arable land parcels were adjacent to built-up land, and are in danger of being occupied again through urban sprawl. By 2009–2013, most of the arable land was occupied by urban expansion, whereas a majority of newly increased arable land was reclaimed from coastal tideland. Although the newly increased arable land was contiguous and far from the urban area, it is of poor quality and has limited use. The permanent loss of high-quality arable land due to intensified urban sprawl may threaten sustainable development and food security on a larger scale.

  4. Grass-clover undersowing affects nitrogen dynamics in a grain legume–cereal arable cropping system

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2012-01-01

    A field experiment was carried out in an arable organic cropping system and included a sequence with sole cropped fababean (Vicia faba L.), lupin (Lupinus angustifolius L.), pea (Pisum sativum L.), oat (Avena sativa L.) and pea–oat intercropping with or without an undersown perennial ryegrass...

  5. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    Science.gov (United States)

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level.

  6. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  7. Effect of rural-urban migrants’ remittances on arable crop production in Delta State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ofuoku Albert U.

    2015-01-01

    Full Text Available This study was conducted in Delta State, Nigeria, to investigate the effect of rural-urban remittances on arable crop production. Twenty percent (20% of the registered arable crop farmers in Delta State were selected to arrive at 131 respondents for the study. Questionnaire and structured interview schedule were used to collect data from the respondents. Descriptive and inferential statistics and contingency tables were used to treat the collected data. It was discovered that most (69.5% of rural-urban migrants were in the 11-30 age bracket. The remittances from rural farm households were far higher than the remittances from rural-urban migrants. The little remittances from the rural-urban migrants were added to the funds of the rural farm household, farm labour and inputs. The remittances from rural-urban migrants did not make any meaningful contribution to arable crop production. It was recommended that governments should make the rural areas attractive to young school learners/graduates, embark on enlightenment programme to expose the youths to agriculture related self-employment opportunities in the rural areas; and create enabling environment for the youths to operate as self-employed individuals in the rural areas.

  8. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    organic arable crop rotations with different sources of N supply. Data from long-term field experiments at three different locations in Denmark were used to analyse three different organic cropping systems (‘Slurry’, ‘Biogas’ and ‘Mulching’), one conventional cropping system (‘Conventional’) and a “No...... input” system as reference systems. The ‘Slurry’ and ‘Conventional’ rotations received slurry and mineral fertilizer, respectively, whereas the ‘No input’ was unfertilized. The ‘Mulching’ and ‘Biogas’ rotations had one year of grass-clover instead of a faba bean crop. The grass-clover biomass...... was incorporated in the soil in the ‘Mulching’ rotation and removed and used for biogas production in the ‘Biogas’ rotation (and residues from biogas production were simulated to be returned to the field). A method was suggested for allocating effects of fertility building crops in life cycle assessments...

  9. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops

    NARCIS (Netherlands)

    Melander, B.; Munier-Jolain, N.M.; Charles, R.; Wirth, J.; Schwarz, J.; Weide, van der R.Y.; Bonin, L.; Jensen, P.K.; Kudsk, P.K.

    2013-01-01

    Noninversion tillage with tine- or disc-based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape, and maize in Europe. However, new regulations on pesticide use might hinder further expansion of reduc

  10. Enhanced Yields in Organic Arable Crop Production by Eco-Functional Intensification using Intercropping

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Bedoussac, Laurent; Carlsson, Georg;

    2015-01-01

    Organic agriculture (OA) faces challenges to enhance food production per unit area and simultaneously reduce the environmental and climate impacts, e.g. nitrate leaching per unit land and green-houses gases (GHG) emissions per kg product. Eco-functional intensification (EFI) is suggested as a means...... are examples of spatial crop diversification, which based on eco-functional intensification may enhance yield by the interspecies competitive production principle, only partly niche overlap and complementarity in resource use in time and space. Intercropping of species is based on the ecological principles...... of competition, facilitation and complementarity. We show that intercropping of cereals and grain legumes in European arable OA systems is an efficient tool for enhancing grain yields compared to the growing of sole crops. Simultaneously, we display how eco-functional intensification by intercropping can be used...

  11. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  12. Monitoring the Sequential Cropping Index of Arable Land in Zhejiang Province of China Using MODIS-NDVI

    Institute of Scientific and Technical Information of China (English)

    PENG Dai-liang; HUANG Jing-feng; JIN Hui-min

    2007-01-01

    The sequential cropping index of arable land is important agricultural information. The aim of this article is to monitor and analyze the parameter, and offer reference for agricultural production. The cropping index of arable land in Zhejiang Province, China from 2001 to 2004 was calculated using the second order difference based MODIS (moderate resolution imagine spectroradimeter) vegetation data from NASA (National Aeronautic and Space Administration) in America and the land use map with a scale of 1:25 000. It was found that the peak of the time series of the NDVI curve indicated that the ground biomass of crops reached the maximum, and fluctuated with the crops growing processes such as sowing,seeding, heading, ripeness, and harvesting within one year. Thus, the sequential cropping index was defined as the number of peaks of the time series of the NDVI curve. The sequential cropping index of all cities in Zhejiang Province,China was worked out. It is seen from the spatial distribution that the cropping index in the southwest Zhejiang Province is larger than that in the northeast. As for the temporal distribution, the sequential cropping index decreased from 2001 to 2003, whereas it increased slightly from 2003 to 2004. However, the index of arable land was relatively low, as far as the geographic position and climatic resource were concerned, and the potential of the sequential cropping index was great.

  13. Weed Biomass and Weed Species Diversity of Juvenile Citrus Trees Intercrop with some Arable Crops

    Directory of Open Access Journals (Sweden)

    Patience Mojibade OLORUNMAIYE

    2012-02-01

    Full Text Available A preliminary study was carried out to evaluate the performances of eight crops in the intercrop of citrus with arable crops at the National Horticultural Research Institute (NIHORT Ibadan, Nigeria. Eight arable crops: maize, cucumber, sweet potato, Corchorus olitorius, large green, grain amaranth, Mucuna pruriens var. utilis, and groundnut were intercropped with young citrus trees in the early planting season of 2010 with sole citrus as control. The experiment was laid out in a completely randomized block design with three replicates. Data were collected on weed flora, weed density and weed dry weight. Results showed that the relative frequencies of weeds in all the plots were less than 4% at both 6 and 9WAP. Gomphrena celosoides, Oldenlandia corymbosa and Tridax procumbens were most preponderant in appearing in all the plots. Tridax procumbens had a consistent relative frequency (2.34% in all the plots except in citrus/maize plot (0.78% at 9 WAP. Significantly lower broadleaf weed densities were obtained in citrus/sweet potato, citrus/large green, control plot and citrus/cucumber (28.67, 45.00, 50.00 and 76.33 m-2 respectively than in citrus/groundnut plot (143.00 m-2. Similarly, significantly lower grass weed densities were produced in citrus/Mucuna and citrus/sweet potato (0.33 m-2 each plots than the control plot (11.33 m-2. Whereas citrus/corchorus plot produced significantly lower broadleaf weed dry weight (37.59 g m-2 than citrus/Mucuna plot (126.47 g m-2 at 3WAP, citrus/large green plot (16.15 g m-2 and citrus/groundnut plot (123.25 g m-2 followed the same trend at 6 WAP. Sedges dry weights were less than 7 g m-2 in all the plots compared with control plot.

  14. Reducing pesticide use while preserving crop productivity and profitability on arable farms.

    Science.gov (United States)

    Lechenet, Martin; Dessaint, Fabrice; Py, Guillaume; Makowski, David; Munier-Jolain, Nicolas

    2017-03-01

    Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century(1). Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities(2). The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies(3-5); however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable(6-17). Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.

  15. Less or More Intensive Crop Arable Systems of Alentejo Region of Portugal: what is the sustainable option?

    Directory of Open Access Journals (Sweden)

    Carlos Marques

    2015-03-01

    Full Text Available Competitiveness of traditional arable crop system of Alentejo region of Portugal has been questioned for long. Discussion and research on the sustainability of the system has evolved on two contrasted alternative options for production technologies to traditional system. On the one hand reduced and no tillage systems aim to more extensive technical operations reducing costs and maintaining production, or even to increase it in the long run as soil fertility improves. On the other hand, input intensification using irrigation, as a complement in the last stage of crop cycle or always when needed, aimed to increase system production levels. To evaluate competitiveness and sustainability of arable crop system we evaluated traditional rotation technology and alternative no tillage and irrigation systems and analyze their farm economic results as well as their energy efficiency and environmental impacts. The analysis of the impact of no tillage and irrigation on arable land production system showed that both alternatives contributed to cost savings and profit earnings, energy savings and reduced GHG emissions, increasing physical and economic factor efficiency. Research and technological development of both options are worthwhile to promote competitiveness and sustainability of arable crop production systems of the Alentejo region in Portugal.

  16. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops.

    Science.gov (United States)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean-Pierre; Kiss, Jozsef; Köhl, Jürgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initiatives are often fragmented. The operational outputs of national efforts would benefit from closer collaboration among stakeholders via transnationally coordinated approaches, as most economically important pests are similar across Europe. This paper proposes a common European framework on biocontrol R&I. It identifies generic R&I bottlenecks and needs as well as priorities for three crop types (arable, vegetable and perennial crops). The existing gap between the market offers of biocontrol solutions and the demand of growers, the lengthy and expensive registration process for biocontrol solutions and their varying effectiveness due to variable climatic conditions and site-specific factors across Europe are key obstacles hindering the development and adoption of biocontrol solutions in Europe. Considering arable, vegetable and perennial crops, a dozen common target pests are identified for each type of crop and ranked by order of importance at European level. Such a ranked list indicates numerous topics on which future joint transnational efforts would be justified. © 2016 Society of Chemical Industry.

  17. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  18. Paradox of Arable Land Protection in China and Exploration for Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The protection of arable land in China is facing unprecedented challenges in the process of rapid urbanization. On the one hand, about 13 to 15 million farmers enter cities annually, resulting inevitably in the expansion of urban areas. On the other

  19. Crop Protection in Medieval Agriculture

    NARCIS (Netherlands)

    Zadoks, J.C.

    2013-01-01

    Mediterranean and West European pre-modern agriculture (agriculture before 1600) was by necessity ‘organic agriculture’. Crop protection is part and parcel of this agriculture, with weed control in the forefront. Crop protection is embedded in the medieval agronomy text books but specialised section

  20. Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2014-01-01

    The effects of projected changes in climate and atmospheric CO2 concentration on productivity and nitrogen (N) leaching of characteristic arable and pig farming rotations in Denmark were investigated with the FASSET simulation model. The LARS weather generator was used to provide climatic data...... in Denmark, differing in soil and climate, and representative of the selected production systems. The CO2 effects were modelled using projected CO2 concentrations for the A1B emission scenario. Crop rotations were irrigated (sandy soil) and unirrigated (sandy loam soil), and all included systems...... rather than single crops for impact assessments. Potato and sugar beet in arable farming and grain maize in pig farming contributed most to the productivity increase in the future scenarios. The highest productivity was obtained in the arable system on the sandy loam soil, with an increase of 20...

  1. The ability of cover crops to reduce nitrogen and phosphorus losses from arable land in southern Scandinavia and Finland

    DEFF Research Database (Denmark)

    Aronsson, H.; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2016-01-01

    This review summarizes current knowledge from the literature and experimental studies on the role of cover crops (CCs) in reducing nitrogen (N) leaching and phosphorus (P) losses to waters under the marine and humid continental climate conditions of southern Scandinavia and Finland. Field leaching...... CC biomass. CCs have been implemented to varying degrees into agri-environmental programs. They are mandatory in Denmark and subsidized in Norway, Sweden, and Finland. CCs are grown on 8% of arable land in Denmark, 5% in Sweden, 1% in Finland, and 0.5% in Norway, but CC area is now increasing...... dramatically in Finland due to a new subsidy program. In all countries there is a need, and potential, for increased use of CCs, but there are several constraints, particularly reduced interest among farmers. There is a clear need to identify CC systems and develop implementation strategies for appropriate...

  2. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types

    DEFF Research Database (Denmark)

    Chirinda, N.; Carter, Mette Sustmann; Albert, Kristian Rost

    2010-01-01

    . The main objective of this study was to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticum aestivum L.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study......Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year...... was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha−1 in the form of NH4NO3, while the organic rotations received 100...

  3. Responsive Polymers for Crop Protection

    Directory of Open Access Journals (Sweden)

    Serban F. Peteu

    2010-08-01

    Full Text Available This review outlines the responsive polymer methods currently in use with their potential application to plant protection and puts forward plant-specific mechanisms as stimuli in newly devised methods for smart release of crop protection agents (CPAs. CPAs include chemicals (fungicides, insecticides, herbicides, biochemicals (antibiotics, RNA-based vaccines for plant viruses, semiochemicals (pheromones, repellents, allomones, microbial pesticides, growth regulators (insect and plant or micronutrients, all with crop protection effects. This appraisal focuses on emerging uses of polymer nano-encapsulated CPAs. Firstly, the most interesting advances in controlled release methods are critically discussed with their advantages and drawbacks. Secondly, several plant-specific stimuli-based smart methods are anticipated for use alongside the polymer nano- or micro-capsules. These new CPA release methods are designed to (i protect plants against infection produced by fungi or bacteria, and (ii apply micro-nutrients when the plants need it the most. Thus, we foresee (i the responsive release of nano- encapsulated bio-insecticides regulated by plant stress enzymes, and (ii the delivery of micro-nutrients synchronized by the nature or intensity of plant root exudates. Such continued advances of nano-scale smart polymer-based CPAs for the protection of crops herald a “small revolution” for the benefit of sustainable agriculture.

  4. Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe

    NARCIS (Netherlands)

    Zingore, S.; Manyame, C.; Nyamugafata, P.; Giller, K.E.

    2005-01-01

    Subsistence farmers in Africa depend largely on the soil organic matter to sustain crop productivity. Long-term changes in soil organic carbon and nitrogen were measured after woodland clearance for smallholder subsistence farming or for commercial farming. The contents of organic carbon and nitroge

  5. The significance of nitrous oxide emission from biofuel crops on arable land: a Swedish perspective

    Directory of Open Access Journals (Sweden)

    Å. Kasimir Klemedtsson

    2011-07-01

    Full Text Available The current regulations governing biofuel production in the European Union require that they have to mitigate climate change, by producing >35 % less greenhouse gases (GHG than fossil fuels. There is a risk that this may not be achievable, since land use for crop production inevitably emits the strong GHG nitrous oxide (N2O, due to nitrogen fertilisation and cycling in the environment. We conclude that efficient agricultural crop production resulting in a good harvest and low N2O emission can fulfill the EU standard, and is possible under certain conditions for the Swedish agricultural and refinery production systems. However, in years having low crop yields total GHG emissions can be even higher than those released by burning of fossil fuels. In general, the N2O emission size in Sweden and northern Europe is such that there is a >50 % chance that the 35 % saving requirement will not be met. Thus ecosystem N2O emissions have to be convincingly assessed. Here we compare Swedish emission data with values estimated by means of statistical models and by a global, top-down, procedure; the measurements and the predictions often show higher values that would fail to meet the EU standard and thus prevent biofuel production development.

  6. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    crops, respectively. Nevertheless, SOC levels in 2008 were similar across systems. The cumulative soil respiration for the period February to August 2008 ranged between 2 and 3 t CO2–C ha-1 and was correlated (r = 0.95) with average C inputs. In the organic cropping systems, pig slurry application......: total soil organic carbon (SOC), total N, microbial biomass N (MBN), potentially mineralizable N (PMN), and levels of potential ammonium oxidation (PAO) and denitrifying enzyme activity (DEA). In situ measurements of soil heterotrophic carbon dioxide (CO2) respiration and nitrous oxide emissions were...... and inclusion of catch crops generally increased soil respiration, PMN and PAO. At field capacity, relative gas diffusivity at 0–5 cm depth was >50% higher in the organic than the inorganic fertilizer-based system (P

  7. European Perspectives on the Adoption of Non-Chemical Weed Management in Reduced Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, B.; Munier-Jolan, N.; Schwarz, J.

    2012-01-01

    expansion of reduced tillage systems. European agriculture is asked to become less dependent on pesticide use and promote crop protection programmes based on integrated pest management (IPM) principles. Non-inversion tillage systems rely entirely on the availability of glyphosate products and herbicide...... consumption appears to be slightly higher as compared to plough based cropping systems. Annual grass weeds and stickywilly often constitute the principal weed problems when the soil is not inverted because crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign...

  8. Fibre crops as alternative land use for radioactively contaminated arable land.

    Science.gov (United States)

    Vandenhove, H; Van Hees, M

    2005-01-01

    The transfer of radiocaesium, one of the most important and widespread contaminants following a nuclear accident, to the fibre crops hemp (Cannabis sativa L.) and flax (Linum usitatissimum L.) as well as the distribution of radiocaesium during crop conversion were studied for sandy soil under greenhouse and lysimeters conditions. Soil parameters did not unequivoqually explain the transfer factors (TF) observed. TFs to flax stems ranged from 1.34 to 2.80x10(-3) m2 kg(-1). TFs to seeds are about a factor of 4 lower. During the retting process for separating the fibres from the straw, more than 95% of the activity was removed with the retting water. For hemp, the TF to the stem was about 0.6x10(-3) m2 kg(-1). For hemp, straw and fibres were mechanically separated and TF to straw was about 0.5x10(-3) m2 kg(-1) and to fibres 1.0x10(-3) m2 kg(-1). Generally, the TFs to the useable plant parts both for hemp and flax, are low enough to allow for the production of clean end-products (fibre, seed oil, biofuel) even on heavily contaminated land. Given the considerable decontamination during retting, contamination levels in flax fibres would only exceed the exemption limits for fibre use after production in extreme contamination scenarios (>12,300kBq m(-2)). Since hemp fibres are mechanically separated, use of hemp fibres is more restricted (contamination oil production and flour is possible almost without restriction for flax but due to the high TFs to seed observed for hemp (up to 3x10(-3) m2 kg(-1)) consumption of hemp seed products should be considered with care.

  9. Fibre crops as alternative land use for radioactively contaminated arable land

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H. [Belgian Nuclear Research Centre, SCK-CEN, Department of Radiation Protection Research, Radioecology Section, Boeretang 200, 2400 Mol (Belgium)]. E-mail: hvandenh@sckcen.be; Van Hees, M. [Belgian Nuclear Research Centre, SCK-CEN, Department of Radiation Protection Research, Radioecology Section, Boeretang 200, 2400 Mol (Belgium)

    2005-07-01

    The transfer of radiocaesium, one of the most important and widespread contaminants following a nuclear accident, to the fibre crops hemp (Cannabis sativa L.) and flax (Linum usitatissimum L.) as well as the distribution of radiocaesium during crop conversion were studied for sandy soil under greenhouse and lysimeters conditions. Soil parameters did not unequivoqually explain the transfer factors (TF) observed. TFs to flax stems ranged from 1.34 to 2.80 x 10{sup -3} m{sup 2} kg{sup -1}. TFs to seeds are about a factor of 4 lower. During the retting process for separating the fibres from the straw, more than 95% of the activity was removed with the retting water. For hemp, the TF to the stem was about 0.6 x 10{sup -3} m{sup 2} kg{sup -1}. For hemp, straw and fibres were mechanically separated and TF to straw was about 0.5 x 10{sup -3} m{sup 2} kg{sup -1} and to fibres 1.0 x 10{sup -3} m{sup 2} kg{sup -1}. Generally, the TFs to the useable plant parts both for hemp and flax, are low enough to allow for the production of clean end-products (fibre, seed oil, biofuel) even on heavily contaminated land. Given the considerable decontamination during retting, contamination levels in flax fibres would only exceed the exemption limits for fibre use after production in extreme contamination scenarios (>12 300 kBq m{sup -2}). Since hemp fibres are mechanically separated, use of hemp fibres is more restricted (contamination <740 kBq m{sup -2}). Use of stems as biofuel is restricted to areas with contamination levels of <250 and 1050 kBq m{sup -2} for flax and hemp, respectively. Use of seeds for edible oil production and flour is possible almost without restriction for flax but due to the high TFs to seed observed for hemp (up to 3 x 10{sup -3} m{sup 2} kg{sup -1}) consumption of hemp seed products should be considered with care.

  10. Carbon dynamics with prolonged arable cropping soils in the Dano district (Southwest Burkina-Faso)

    Science.gov (United States)

    Hounkpatin, Ozias; Welp, Gerhard; Amelung, Wulf

    2016-04-01

    The conversion of natural ecosystems into agricultural land affects the atmospheric CO2 concentration whose increase contributes to global warming. In the low activity clay soils (LAC) of the tropics, farming is largely dependent on the level of soil organic carbon (SOC) for sustainable crop production. In this study, we investigated the changes in SOC in Plinthosols along a cultivation chronosequence in the Dano district (Southwest Burkina-Faso). The chronosequence consisted of undisturbed savannah (Y0) and 11 agricultural fields with short and long histories of cultivation ranging from 1-year-old cropland to 29-year-old cropland (Y29). About 14 soil profiles were described and soil composite samples were taken per horizon. Particulate organic matter (POM) was fractionated according to particle size: fraction 2000 - 250 μm (POM1), 250 μm - 53 μm (POM2), 53 μm - 20 μm (POM3), and POM1 > POM3 > POM2 carbon no matter the duration of land use. However, SOC losses occurred not only in the labile C pools but also in the stabile nonPOM fraction with increasing duration of agricultural land use. Compared to the initial carbon content in the Y0 field, about 59% of carbon content loss occurred in the POM1 (> 250 μm), 53% in the POM2 (250 - 53 μm), 52 % in the POM3 (53 - 20 μm) and 47% in the nonPOM fraction (organo-mineral associations are a key parameter for carbon stabilization, its depletion with increasing cultivation intensity suggests that the destruction of aggregates in these fields increased the vulnerability of this pool to microbial degradation. Keywords: Soil organic carbon, Plinthosols, low activity clay soil, POM

  11. Crop protection by seed coating.

    Science.gov (United States)

    Ehsanfar, S; Modarres-Sanavy, S A M

    2005-01-01

    Providence of sufficient and healthy food for increasing human population clears the importance of notice to increasing crop production in company with environmental loss reduction. Growth and yield of every plant with sexual reproduction, depends on germination & emergence of sown seeds. Seed is a small alive plant that its biological function is protection and nutrition of embryo. Biological, chemical and physiological characteristics of seed, affect on plant performance & its resistance to undesirable environmental conditions, and even on its total yield. So attention to seed and try to increase its performance is so important. One of the factors that cause reduction in germination percentage and seedling establishment, is seed disease. It's possible to control these diseases by treating the seed before planting it. Coating the seed with pesticides, is one of the ways to gain this goal. Seed coating is a technique in which several material as fertilizers, nutritional elements, moisture attractive or repulsive agents, plant growth regulators, rhizobium inocolum, chemical & pesticide etc, add to seed by adhesive agents and cause to increase seed performance and germination. Seed coating, leads to increase benefits in seed industry, because seeds can use all of their genetic vigor. This technique is used for seeds of many garden plants, valuable crops (such as corn, sunflower, canola, alfalfa,...) and some of the grasses. In this technique that was first used in coating cereal seeds in 1930, a thin and permeable layer of pesticide is stuck on seed surface and prevent damage of seedborn pathogens. This layer is melted or splited after absorption of moisture and suitable temperature by seed, and let the radical to exit the seed. In this approach materials are used accurately with seed, evaporation & leakage of pesticide and also adverse effects of some pesticides on seeds are diminished, and these factors cause to increase the accuracy and performance of pesticide

  12. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  13. Crop protection in organic agriculture

    NARCIS (Netherlands)

    Letourneau, D.; Bruggen, van A.H.C.

    2006-01-01

    The authors describe pests and diseases and their management in organic versus conventional agriculture. Also two case studies are described: 1. Pest and pathogen regulation in organic versus conventional cereal crops in Europe and 2. Pest and pathogen regulation in organic versus conventional tomat

  14. Innovation in Crop Protection: Trends in Research.

    Science.gov (United States)

    Stetter; Lieb

    2000-05-15

    In the absence of the remarkable levels of growth in the yields of important crops, neither the rapid increase in living standards in industrialized countries nor the adequate standard of nutrition for the greater part of the world's population would have been possible. Alongside high-yielding varieties, improved agricultural techniques, and rapid mechanization, the chemical industry has also contributed substantially to progress in agriculture since roughly the middle of the nineteenth century. From the chemists "kitchens" came two "magic weapons": artificial fertilisers and chemical agents for crop protection. Today both have become indispensable to modern yield- and quality-orientated agriculture. This review spans the development of the crop-protection industry from its earliest beginnings to the present day and attempts to portray how the research-based crop-protection industry is prepared for current and future challenges. Considerable space is thus dedicated to the discussion of trends in research.

  15. Integration method of accomplishments of arable land from province level to national level based on equal standard crop yields%基于平衡转换的国家级农用地分等成果汇总方法

    Institute of Scientific and Technical Information of China (English)

    孔祥斌; 张青璞; 郧文聚; 王洪波; 谭敏; 赵晶

    2013-01-01

    and technology of land evaluation, but also provided accurate data basis for management of arable land protection in China based on arable land quantity and quality. The key technique developed in the accomplishment of Chinese national arable land grading was adopted in the arable land grade transferring from provincial to national level. Thus, analyzing the accuracy of the method is very important for identifying the scientific method and providing useful tool for the arable land grading at different levels. The database of arable land grade in 12 provinces and the standard crop yields from a sample of 13,302 at plot level were employed to the compared analysis. The results presented in the article indicated the following:1)the balance transferring method based on the standard crop yields of arable land could fulfill the achievements in arable land grade conversion from provincial to national level;2) the accuracy of the arable land grade at provincial level was the principal result of this method; 3) the scientific calculation of the standard crop yields of arable land was critical factor to the accuracy of the method;4) the accomplishments of arable land grade in the western of 12 provinces at national level were in accordance with the characteristics of distribution of productivity of arable land. The method of the balance transferring based on the standard crop yields of arable land grade could be used for different levels such as county’s and provincial levels.

  16. Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management

    NARCIS (Netherlands)

    Vasileiadisa, V.P.; Sattin, M.; Weide, van der R.Y.

    2011-01-01

    Maize-based cropping systems (MBCSs), with different frequency of maize in the crop sequence, are common in European arable systems. Pesticide use differs according to the type of active ingredients and target organisms in different regions. Within the EU Network of Excellence ENDURE, two expert-bas

  17. Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Jørnsgaard, B.; Kinane, J.;

    2008-01-01

    in Denmark over three consecutive cropping seasons including dual grain legume (pea, faba bean and lupin)-barley intercropping as compared to the respective sole crops (SC). Yield stability of intercrops (IC) was not greater than that of grain legume SC, with the exception of the IC containing faba bean....... Faba bean and lupin had lower yield stability than pea and fertilized barley. However, the different IC used environmental resources for plant growth up to 50% (LER=0.91-1.51) more effectively as compared to the respective SC, but with considerable variation over location, years and crops. The SC...... was comparable; however, it tended to be the highest in sole cropped faba bean, lupin and unfertilized barley, where the application of urea to barley reduced the weed infestation by around 50%. Reduction in disease was observed in all IC systems compared to the corresponding SC, with a general disease reduction...

  18. Crop Monitoring Using SPOT-VGT NDVIs S10 Time-Series Product for the Arable Land of Bulgaria

    Science.gov (United States)

    Vassilev, Vassil

    2013-12-01

    The objects of investigation are the major crops in Bulgaria (winter wheat, winter barley, sunflower and maize). The purpose of this paper is to 1) identify major crops using satellite data with low spatial resolution of 1000 m using agro-phenological information; 2) monitoring based on NDVI time-series values for the years 2007, 2008 and 2010, where anomaly events occur based on the information in the National Institute of Meteorology and Hydrology at the Bulgarian Academy of Sciences (NIMH-BAS) agrometeorological monthly bulletins. The current paper shows the massive potential of using low spatial resolution satellite data in identfying crops and monitoring the development anomalies on crops. This research will contribute in applying and elaborating JRC MARS methodology in Bulgaria by using low resolution SPOT-VGT NDVIs S10 satellite product.

  19. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  20. RNAi-mediated crop protection against insects.

    Science.gov (United States)

    Price, Daniel R G; Gatehouse, John A

    2008-07-01

    Downregulation of the expression of specific genes through RNA interference (RNAi), has been widely used for genetic research in insects. The method has relied on the injection of double-stranded RNA (dsRNA), which is not possible for practical applications in crop protection. By contrast, specific suppression of gene expression in nematodes is possible through feeding with dsRNA. This approach was thought to be unfeasible in insects, but recent results have shown that dsRNA fed as a diet component can be effective in downregulating targeted genes. More significantly, expression of dsRNA directed against suitable insect target genes in transgenic plants has been shown to give protection against pests, opening the way for a new generation of insect-resistant crops.

  1. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil

    NARCIS (Netherlands)

    Pulleman, M.M.; Marinissen, J.C.Y.

    2004-01-01

    Depending on agricultural management, soil aggregation can provide physical protection of organic matter against rapid decomposition. Within a given soil series, farm management affects the quality and quantity of organic inputs, soil disturbance and biological activity, and thereby the processes of

  2. Giant reed (Arundo donax L. for biogas production: land use saving and nitrogen utilisation efficiency compared with arable crops

    Directory of Open Access Journals (Sweden)

    Federico Dragoni

    2015-12-01

    Full Text Available Aiming to improve the sustainability of biogas supply chains, the research for alternative feedstocks is a key issue and giant reed (Arundo donax L. is a promising no-food crop to be used in anaerobic digestion. In fact, giant reed is a perennial species characterised by low nutrient requirements and is able to provide promising biogas yields. Its suitability for anaerobic digestion is influenced by harvest time, since plant characteristics vary noticeably along the season. Moreover, ensiling is a storage technique that can assure a good preservation of the biomass over time, but also influence the methane yields. Therefore, the aim of this study was to assess the suitability for biogas production of giant reed silage, according to different cutting regimes, and to evaluate the efficiency in saving land and nitrogen for fuelling biogas plants, in comparison with maize and two sorghum varieties. Methane yields per hectare (Nm3 CH4 ha–1 were determined by multiplying the biochemical methane potential of each substrate by the aboveground biomass of the corresponding crop. The land use coefficient (LU, namely the land needed to fuel one kW power (ha kWe–1, was calculated from the estimated methane yields per hectare. Finally, nitrogen utilisation efficiency (NUtE, which is the ratio between the estimated methane yield and the nitrogen uptake per hectare (Nm3 CH4 kgN–1, was determined for each crop species and according to the harvest time and frequency of giant reed. Overall, a good suitability for ensiling was observed in giant reed. When harvested in September, the crop yielded about 9900 Nm3 CH4 ha–1, while in double harvest systems biomethane was about 12,000 Nm3 CH4 ha–1, +35% and +70% than maize and sorghum respectively. Moreover, giant reed under double harvest management was the most land-conservative option, as LU was about 0.22 ha kWe–1, while in annual crops it was about 0.35 ha kWe–1. The higher NUtE was observed in single

  3. 76 FR 44199 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Science.gov (United States)

    2011-07-22

    ... Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions; Proposed Rule... OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 407 RIN 0563-AC25 Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions AGENCY: Federal Crop...

  4. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  5. Identifying obstacles and ranking common biological control research priorities for Europe to manage most economically important pests in arable, vegetable and perennial crops

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Bischoff-Schaefer, Monika; Bluemel, Sylvia; Dachbrodt-Saaydeh, Silke; Dreux, Laure; Jansen, Jean Pierre; Kiss, Jozsef; Kohl, Jurgen; Kudsk, Per; Malausa, Thibaut; Messéan, Antoine; Nicot, Philippe C.; Ricci, Pierre; Thibierge, Jérôme; Villeneuve, François

    2017-01-01

    EU agriculture is currently in transition from conventional crop protection to integrated pest management (IPM). Because biocontrol is a key component of IPM, many European countries recently have intensified their national efforts on biocontrol research and innovation (R&I), although such initi

  6. The Resistance of Crops in Plant Protection

    Institute of Scientific and Technical Information of China (English)

    MIRZAEVA Gulnara

    2008-01-01

    @@ World crop production requires highly-productive varieties of agricultural crops,which are resistant to pest organisms.Such varieties are also of great importance for the Uzbekistan.Their deficiency may prove to be an obstacle to securing the production of foodstuffs and providing commerce with agricultural products.The cultivation of varieties,which are resistant to insects and mites,provides an opportunity to decrease the number of applied insecticides and acaricides.In addition to the considerable economic advantage,including energy consumption,the growing of resistant varieties is of great ecological importance,protecting environment and health (as a result the risk of chemical pollution becomes less and conditions for agricultural workers are improved).All this,allows us to state that exploration of the theoretical basis of plant resistance to pests and the selection of resistant arieties are a fundamental scientific and real national economic problems.It is known that an immunogenetic system of any organism is called up to protect their morpho-functional integrity.Plant resistance to in sects and mites,as well as other mesophauna,is characterized by many factors that reflect the essence of versatile interrelations that arose in the evolutionary process.

  7. 78 FR 38483 - Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions

    Science.gov (United States)

    2013-06-26

    ... Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions; Final Rule #0...; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 407 RIN 0563-AC25 Area Risk Protection Insurance Regulations and Area Risk Protection Insurance Crop Provisions AGENCY: Federal...

  8. Rush for cash crops and forest protection

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone; Broegaard, Rikke Brandt; Mertz, Ole;

    2016-01-01

    In many countries with large tracts of tropical forests, there is a dual focus on enhancing forest protection and increasing commercial agriculture for economic development. Laos is a case in point for this development as the Government of Laos (GoL) has a strong commitment to economic growth...... forest cover and prepares for REDD+ (reducing deforestation and forest degradation). This paper explores how the recent boom in cash crops is impacting land use and livelihoods of local communities, as well as affecting forest conservation in Hua Meuang District of Huaphan Province in northeastern Laos....... We also examine how local authorities react to these changes and navigate the contradicting policies. Furthermore, the paper analyzes to what extent the land sparing intention of land- and forest-land allocation policies are fulfilled. We found that the production of maize has rapidly expanded in Hua...

  9. Integrating large-scale data and RNA technology to protect crops from fungal pathogens

    Directory of Open Access Journals (Sweden)

    Ian Joseph Girard

    2016-05-01

    Full Text Available With a rapidly growing human population it is expected that plant science researchers and the agricultural community will need to increase food productivity using less arable land. This challenge is complicated by fungal pathogens and diseases, many of which can severely impact crop yield. Current measures to control fungal pathogens are either ineffective or have adverse effects on the agricultural enterprise. Thus, developing new strategies through research innovation to protect plants from pathogenic fungi is necessary to overcome these hurdles. RNA sequencing technologies are increasing our understanding of the underlying genes and gene regulatory networks mediating disease outcomes. The application of invigorating next generation sequencing strategies to study plant-pathogen interactions has and will provide unprecedented insight into the complex patterns of gene activity responsible for crop protection. However, questions remain about how biological processes in both the pathogen and the host are specified in space directly at the site of infection and over the infection period. The integration of cutting edge molecular and computational tools will provide plant scientists with the arsenal required to identify genes and molecules that play a role in plant protection. Large scale RNA sequence data can then be used to protect plants by targeting genes essential for pathogen viability in the production of stably transformed lines expressing RNA interference molecules, or through foliar applications of double stranded RNA.

  10. Micrometeorological principles of protected cultivation for fruit crops

    Science.gov (United States)

    Protected cultivation is a broad term commonly used among producers of specialty crops. Techniques can range from complex fixed structures to field site selection, to straightforward cultural practices in the field. This introduction to the ASHS workshop "Protected cultivation for fruit crops" consi...

  11. Integrated and Ecological Crop Protection (I/ECP)

    NARCIS (Netherlands)

    Sukkel, W.; Garcia Diaz, A.

    2002-01-01

    Information on integrated/ecological crop protection, which is the prevention or minimisation of economical damage to crops caused by harmful species with a minimum of negative effects on the environment. The main elements of an integrated strategy are: Prevention; Establish need of treatment; Treat

  12. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y fertilización nitrogenada Organic carbon fractions in the arable layer: cropping systems and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Maximiliano J Eiza

    2005-07-01

    Full Text Available Nuestro objetivo fue evaluar el efecto de siete sistemas de cultivo (SC en un experimento de larga duración: pastura permanente (PP, agricultura permanente bajo siembra directa (SD (SD100 y labranza convencional (LC (LC100, rotación agricultura pastura (50%-50% del tiempo bajo SD (SD50 y LC (LC50, rotación agricultura pastura (75%-25% del tiempo bajo SD (SD75 y LC (LC75 y dos dosis de fertilización nitrogenada: 0 y 120 kg N ha-1, sobre el carbono orgánico total (COT y particulado (COP, para 0-20 cm en 1994 y para 0-5, 5-20 y 0-20 cm de profundidad en 2003. En 1994, los mayores COP y COT se asociaron a manejos con períodos agrícolas previos cortos. En 2003, se encontraron diferencias entre SC en COT en la capa de 0-5 cm de profundidad, siendo PP, LC50 y SD50 los tratamientos con mayor COT. El COP fue más alto bajo PP, LC50 y SD50 a 0-5 y 0-20 cm de profundidad. A 0-5 cm COP bajo SD fue significativamente mayor que bajo LC. A 5-20 cm de profundidad, las diferencias en COP no fueron claras entre SC aunque, tendió a disminuir con los años bajo agricultura. La fertilización determinó mayor COP a 5-20 y 0-20 cm de profundidad. Las diferencias en la variación entre 1994 y 2003 entre SC fueron significativas para COP y COT. Por otro lado, la variación relativa de COP fue más alta que la de las otras variables. Se concluye que las rotaciones cortas de agricultura-pastura, la SD y la fertilización nitrogenada mejoran el COP y el COT. Para las condiciones de este experimento, COP ha sido un indicador más sensible que COT y sería capaz de detectar los efectos de las prácticas de manejo.In the southeastern Buenos Aires Province (Argentina unsuitable combination of crop rotation and tillage systems (cropping systems, SC has reduced soil organic matter content. Our aim was to evaluate the effect of seven SC in a long term experiment (since 1976 started in 1994: permanent pasture (PP, permanent cropping under no tillage (SD (SD100 and

  13. GM as a route for delivery of sustainable crop protection.

    Science.gov (United States)

    Bruce, Toby J A

    2012-01-01

    Modern agriculture, with its vast monocultures of lush fertilized crops, provides an ideal environment for adapted pests, weeds, and diseases. This vulnerability has implications for food security: when new pesticide-resistant pest biotypes evolve they can devastate crops. Even with existing crop protection measures, approximately one-third yield losses occur globally. Given the projected increase in demand for food (70% by 2050 according to the UN), sustainable ways of preventing these losses are needed. Development of resistant crop cultivars can make an important contribution. However, traditional crop breeding programmes are limited by the time taken to move resistance traits into elite crop genetic backgrounds and the limited gene pools in which to search for novel resistance. Furthermore, resistance based on single genes does not protect against the full spectrum of pests, weeds, and diseases, and is more likely to break down as pests evolve counter-resistance. Although not necessarily a panacea, GM (genetic modification) techniques greatly facilitate transfer of genes and thus provide a route to overcome these constraints. Effective resistance traits can be precisely and conveniently moved into mainstream crop cultivars. Resistance genes can be stacked to make it harder for pests to evolve counter-resistance and to provide multiple resistances to different attackers. GM-based crop protection could substantially reduce the need for farmers to apply pesticides to their crops and would make agricultural production more efficient in terms of resources used (land, energy, water). These benefits merit consideration by environmentalists willing to keep an open mind on the GM debate.

  14. Applications of Trichoderma formulations in crop protection

    Institute of Scientific and Technical Information of China (English)

    Monte E; Rodríguez A; Rey M; Axpilicueta A; Gómez M I; de la Vina G; Grondona I; Llobell A

    2004-01-01

    @@ The choice of active Trichoderma strains is important in designing effective and safe biocontrol applications. Many species of Trichoderma have multiple strategies for fungal antagonism and indirect effects on plant health, such as growth promotion, systemic resistance induction and fertility improvements. Some strains are powerful antibiotic producers, and their suitability for use in biocontrol systems must be carefully assessed. However, many other active strains have no antibiotic capacity, and these are likely to be more useful in food production systems since they have not adverse effects on important groups of beneficial soil organisms. We have assessed the performance of selected naturally occurring Trichoderma strains (singly and in combination) and developed TUSAL , a mixture of Trichoderma harzianum and T. viride that has demonstrated to be effective against major pathogens in sugar beet and horticulture. TUSAL , has been bulked up and tested under field conditions, showing positive effects on precocity and root development, and increasing the crop production in field trials carried out in different pathosystems. The environmental impact of TUSAL strains on beneficial organisms in the environment were assessed before release, and molecular detection methods were developed to monitor the presence and performance of strains in the field.

  15. Potential and actual uses of zeolites in crop protection.

    Science.gov (United States)

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection.

  16. A large-scale crop protection bioassay data set

    Science.gov (United States)

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J. P.; Bellis, Louisa J.; Bento, A. Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P.

    2015-07-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database.

  17. A large-scale crop protection bioassay data set.

    Science.gov (United States)

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J P; Bellis, Louisa J; Bento, A Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P

    2015-01-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database.

  18. Effect of organic and conventional crop rotation, fertilization, and crop protection practices on metal contents in wheat (Triticum aestivum).

    Science.gov (United States)

    Cooper, Julia; Sanderson, Roy; Cakmak, Ismail; Ozturk, Levent; Shotton, Peter; Carmichael, Andrew; Haghighi, Reza Sadrabadi; Tetard-Jones, Catherine; Volakakis, Nikos; Eyre, Mick; Leifert, Carlo

    2011-05-11

    The effects of organic versus conventional crop management practices (crop rotation, crop protection, and fertility management strategies) on wheat yields and grain metal (Al, Cd, Cu, Ni, Pb, and Zn) concentrations were investigated in a long-term field trial. The interactions between crop management practices and the season that the crop was grown were investigated using univariate and redundancy analysis approaches. Grain yields were highest where conventional fertility management and crop protection practices were used, but growing wheat after a previous crop of grass/clover was shown to partially compensate for yield reductions due to the use of organic fertility management. All metals except for Pb were significantly affected by crop management practices and the year that the wheat was grown. Grain Cd and Cu levels were higher on average when conventional fertility management practices were used. Al and Cu were higher on average when conventional crop protection practices were used. The results demonstrate that there is potential to manage metal concentrations in the diet by adopting specific crop management practices shown to affect crop uptake of metals.

  19. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Science.gov (United States)

    Zhao, Jun; Ni, Tian; Li, Yong; Xiong, Wu; Ran, Wei; Shen, Biao; Shen, Qirong; Zhang, Ruifu

    2014-01-01

    Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  20. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October. All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005 and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.

  1. Microbial Diversity-Based Novel Crop Protection Products

    Energy Technology Data Exchange (ETDEWEB)

    Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

    2007-05-10

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

  2. Crop wild relatives in the Netherlands: actors and protection measures

    NARCIS (Netherlands)

    Hoekstra, R.; Veller, van M.G.P.; Odé, B.

    2008-01-01

    This book text presents methodologies and case studies that provide recommendations for the conservation and use of crop wild relatives. In a national, regional or global context, the status of crop wild relatives, that are closely related to crop plants, is examined. Conservation of crop wild relat

  3. Neem Oil and Crop Protection: From Now to the Future

    Science.gov (United States)

    Campos, Estefânia V. R.; de Oliveira, Jhones L.; Pascoli, Mônica; de Lima, Renata; Fraceto, Leonardo F.

    2016-01-01

    A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future. PMID:27790224

  4. Neem oil and crop protection: from now to the future

    Directory of Open Access Journals (Sweden)

    Estefânia Campos

    2016-10-01

    Full Text Available In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we investigate the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future.

  5. 典型地区耕地保护补偿实践述评%Review on the Practices of the Compensation for the Arable Land Protection in the Typical Region

    Institute of Scientific and Technical Information of China (English)

    卢艳霞; 高魏; 韩立

    2011-01-01

    研究目的:对典型地区耕地保护补偿实践进行对比分析、归纳总结,以期为今后进一步深化研究及制定相关政策提供借鉴。研究方法:实证分析法、对比分析法、归纳分析法。研究结果:各地补偿模式有针对农民的货币补偿、针对基层政府和农村集体经济组织的耕地保护工作经费补助、针对地方政府官员的政绩补偿、针对耕地质量提高的建设补偿、针对地区经济发展的区域间的资源产业协作;地方实践在直接货币补偿政策效力、资金来源、补偿对象和范围确定、基础工作等方面还面临一些问题。研究结论:建立耕地保护补偿机制对统筹城乡发展十分重要,今后可从加大财政转移支付、整合相关支农政策等方面来拓宽资金来源,同时因地制宜探索多元补偿,充分发挥补偿政策效果。%The paper comparatively analyzed and summarized the practices of the compensation for the arable land protection and will be the reference for the policy making and the further research. The empirical analysis, comparative analysis and inductive analysis methods were applied in this study. It concludes that the approaches of the compensation for the arable land protection are as followings: the monetary compensation to the farmer; the financial compensation to the funding of the arable land protection for the local government and the rural collective economic organization; the compensation to the political achievement for the local government official; the compensation to the construction of improving the arable land quality; the regional cooperation among resource sectors for the regional development. However, local practices are still facing obstacles, such as the efficiency of the directly monetary compensation policy, the funding source, the determination of the compensation object and extent and other basic work. It is important for the integrated development of

  6. A practical case of crop protection strategies in de Southwest of the Netherlands

    NARCIS (Netherlands)

    Sukkel, W.; Rovers, J.A.J.M.

    2002-01-01

    Two types of integrated extensive vegetable crop protection systems and one organic extensive vegetable system were tested at one location. The choice of crops in both systems was based on the region and soil. For both systems, the same main crops were planted.

  7. Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards

    NARCIS (Netherlands)

    Mouron, P.; Heijne, B.; Naef, A.; Strassemever, J.; Haver, F.; Avilla, J.

    2012-01-01

    Crop protection in general and apple crop protection in particular often rely on pesticides, although several alternative pest management measures are available. In this context European agricultural policy requires the implementation of Integrated Pest Management (IPM) by 2014. Within IPM, more tha

  8. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  9. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection.

    Science.gov (United States)

    Mitchell, Carolyn; Brennan, Rex M; Graham, Julie; Karley, Alison J

    2016-01-01

    Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

  10. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection

    Directory of Open Access Journals (Sweden)

    Carolyn Mitchell

    2016-07-01

    Full Text Available Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.

  11. Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways.

    Science.gov (United States)

    Pickett, John A; Aradottír, Gudbjorg I; Birkett, Michael A; Bruce, Toby J A; Hooper, Antony M; Midega, Charles A O; Jones, Huw D; Matthes, Michaela C; Napier, Johnathan A; Pittchar, Jimmy O; Smart, Lesley E; Woodcock, Christine M; Khan, Zeyaur R

    2014-04-05

    To reduce the need for seasonal inputs, crop protection will have to be delivered via the seed and other planting material. Plant secondary metabolism can be harnessed for this purpose by new breeding technologies, genetic modification and companion cropping, the latter already on-farm in sub-Saharan Africa. Secondary metabolites offer the prospect of pest management as robust as that provided by current pesticides, for which many lead compounds were, or are currently deployed as, natural products. Evidence of success and promise is given for pest management in industrial and developing agriculture. Additionally, opportunities for solving wider problems of sustainable crop protection, and also production, are discussed.

  12. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    Science.gov (United States)

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  13. Factors Influencing the Conversion of Arable Land to Urban Use and Policy Implications in Beijing, China

    Directory of Open Access Journals (Sweden)

    Daquan Huang

    2014-12-01

    Full Text Available Rapid urban land expansion and the resulting arable land loss have put food security in China at risk. This paper investigates the characteristics and mechanism of arable land conversion in Beijing using a logistic model based on land-use data for 2001 and 2010. The results suggest that (1 arable land conversion tends to occur near built-up areas, city centers and major roads; (2 arable land that lies closer to irrigation canals and country roads is less likely to be converted to urban use; (3 arable land that is bigger in size and has a more regular shape has a lower probability of conversion to urban use; and (4 the Prime Farmland Protection policy and related land-use plan have played a positive role in preserving arable land, demonstrated by the probability for arable land conversion inside a prime farmland boundary is 63.9 percent less than for land outside the boundary. Based on these findings and on sustainable-development principles, we suggest that, rather than an exclusive focus on controlling the quantity of arable land, the location and characteristics of the arable land should be a primary consideration when designing urban policies and plans.

  14. Biotechnology for Sustainable Crop Production and Protection: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    T. M. Manjunath

    2010-07-01

    Full Text Available In 2009, transgenic crops were grown on 134 million hectares in 25 countries, including India, in six continents by about 14million farmers, marking an 80-fold increase in the area since their first commercialization on 1.7 m ha in the USA and fiveother countries in 1996. The dominant transgenic traits were herbicide tolerance and insect resistance, deployed either alone orboth stacked in the same plant. A recent survey of the global impact of biotech crops estimated that in 2008 alone, the totalcrop production gain globally for the 4 principal biotech crops - maize, soybean, cotton and canola - was 29.6 million metrictons while the net economic benefit to the biotech farmers was US$ 9.2 billion. The cumulative benefits for the period 1996-2008 were yield gains of 167 million tons and economic returns of US$ 51.9 billion. In India, the area planted with Bt-cottonincreased significantly from year to year since its introduction in 2002 and reached 8.4 million hectares in 2009. The overallbenefits from Bt-cotton included an yield increase of up to 63% due to effective control of bollworms, pesticide reduction by50%, net profit to farmers up to Rs.10,000/hectare and turned India from an importer to a major exporter of cotton. Theseindicate that biotechnology has made significant contributions to higher productivity, lower costs of production and increasedeconomic benefits and that it has enormous potential for the future with new traits, events and crops. Over 60 countries,including India, are engaged in research on about 55 crop species to incorporate transgenes to bestow various traits such asresistance to pests, diseases or herbicides; tolerance to environmental stresses like drought, cold or salinity; enhanced cropyields, nutrition or shelf-life, etc. However, unreasonable opposition to biotechnology and undue delays in regulatoryapprovals are some of the major challenges that need to be addressed so as to make full use of this technology which

  15. A brief survey of computerized expert systems for crop protection being used in India

    Institute of Scientific and Technical Information of China (English)

    Pinaki Chakraborty; Dilip Kumar Chakrabarti

    2008-01-01

    In the recent years, a plethora of computerized expert systems has been developed for various sectors of agriculture in India. The availability of low-cost computers, agricultural knowledge and information technology professionals are the principal reasons for the development of so many agricultural expert systems. Among all agricultural expert systems, the expert systems for crop protection need special mention. These expert systems are meant to be used by farmers and other persons without much experience of using computers. Hence, special care must be taken while developing them. The current paper develops a taxonomy for the expert systems for crop protection and briefly discusses four such expert systems for crop protection being used in India.

  16. Accumulation of cadmium and uranium in arable soils in Switzerland.

    Science.gov (United States)

    Bigalke, Moritz; Ulrich, Andrea; Rehmus, Agnes; Keller, Armin

    2017-02-01

    Mineral phosphorus (P) fertilizers contain contaminants that are potentially hazardous to humans and the environment. Frequent mineral P fertilizer applications can cause heavy metals to accumulate and reach undesirable concentrations in agricultural soils. There is particular concern about Cadmium (Cd) and Uranium (U) accumulation because these metals are toxic and can endanger soil fertility, leach into groundwater, and be taken up by crops. We determined total Cd and U concentrations in more than 400 topsoil and subsoil samples obtained from 216 agricultural sites across Switzerland. We also investigated temporal changes in Cd and U concentrations since 1985 in soil at six selected Swiss national soil monitoring network sites. The mean U concentrations were 16% higher in arable topsoil than in grassland topsoil. The Cd concentrations in arable and grassland soils did not differ, which we attribute to soil management practices and Cd sources other than mineral P fertilizers masking Cd inputs from mineral P fertilizers. The mean Cd and U concentrations were 58% and 9% higher, respectively, in arable topsoil than in arable subsoil, indicating that significant Cd and U inputs to arable soils occurred in the past. Geochemical mass balances confirmed this, indicating an accumulation of 52% for Cd and 6% for U. Only minor temporal changes were found in the Cd concentrations in topsoil from the six soil-monitoring sites, but U concentrations in topsoil from three sites had significantly increased since 1985. Sewage sludge and atmospheric deposition were previously important sources of Cd to agricultural soils, but today mineral P fertilizers are the dominant sources of Cd and U. Future Cd and U inputs to agricultural soils may be reduced by using optimized management practices, establishing U threshold values for mineral P fertilizers and soils, effectively enforcing threshold values, and developing and using clean recycled P fertilizers.

  17. Comprehensive Evaluation of Unsafe State of Arable Land Resources:A Case Study of Chengdu City

    Institute of Scientific and Technical Information of China (English)

    Li; DENG; Jin; WEI

    2013-01-01

    We establish the unsafe state indicator system reflecting the unsafe state of arable land within the scope of the city. Using analytic hierarchy process and entropy method,we determine the weight of indicator; using linear weighted method,we conduct comprehensive evaluation of unsafe operation of arable land resource system in Chengdu City during the period 1999-2010. Through the unsafe state analysis,we draw the following conclusion: the share of arable land area in total land area,effective irrigation area,the area of low-yielding field,application rate of chemical fertilizer per unit area of arable land,and application rate of pesticide per unit area of arable land,are the key factors for easing the unsafe state in the short term. Finally we put forth the following recommendations: strengthening profound understanding of the seriousness of unsafe state of arable land; strengthening the basic arable land protection; continuing to tap the quality enhancement potential of arable land; consistently implementing the guideline and policy of " Combination of Use and Maintenance" .

  18. The Balanced Scorecard as a Management Tool for Arable Farming

    Directory of Open Access Journals (Sweden)

    Margit Paustian

    2015-07-01

    Full Text Available Management requirements for crop farming are high and will rise in the future. Arable farms are challenged by volatile markets, growing administrative burdens, increasing operating costs and growing competition for land. Management skills have become much more important for farmers in recent years and this trend will continue in the future. There are numerous instruments like accounting software or crop field cards integrated in daily management practice, but there is a deficiency of a fully integrated management system to give an overview of all areas of the farming business. This gap can be closed by the management tool Balanced Scorecard (BSC that provides an overview of all production and management activities on a farm. Therefore, with the aim to transfer the BSC concept to crop farming, German farmers and agricultural advisors were surveyed to get insights into the success factors and key performance indicators in the four BSC perspectives they consider most relevant for the operational success of arable farms. By the use of a cluster analysis, three different farm types were identified according to their visions and strategies. For the three farm types the key performance indicators that the respondents considered most relevant for farm performance were figured out. Implementation of the BSC to crop farming can result in a big benefit for management practice. The BSC focuses vision and long-term strategy with the main goal to ensure consistency of the farm and increase farm performance.

  19. Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes

    NARCIS (Netherlands)

    Arts, G.H.P.; Buijse-Bogdan, L.L.; Belgers, J.D.M.; Rhenen-Kersten, van C.H.; Wijngaarden, van R.P.A.; Roessink, I.; Maund, S.J.; Brink, van den P.J.; Brock, T.C.M.

    2006-01-01

    Outdoor aquatic ditch mesocosms were treated with a range of pesticides to simulate various spray drift rates resulting from a typical crop protection program used in the cultivation of potatoes in The Netherlands. The main experimental aims of the present study were to provide information on the fa

  20. Consumer and farmer safety evaluation of application of botanical pesticides in black pepper crop protection

    NARCIS (Netherlands)

    Hernandez-Moreno, J.; Soffers, A.E.M.F.; Wiratno,; Falke, H.E.; Rietjens, I.; Murk, A.J.

    2013-01-01

    This study presents a consumer and farmer safety evaluation on the use of four botanical pesticides in pepper berry crop protection. The pesticides evaluated include preparations from clove, tuba root, sweet flag and pyrethrum. Their safety evaluation was based on their active ingredients being euge

  1. Uses of glyphosate in German arable farming – operational aspects

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clusters allows deep insights into arable farm structures. The farm types can be distinguished regarding their tillage system and similar to this differentiation also concerning their intensity of glyphosate application. Furthermore, it becomes obvious that farm clusters with a higher level of glyphosate usage are characterized by a lower number of labourers per hectare, more arable land and/or enhanced cover cropping. Moreover, groups of farmers who rely more on glyphosate are more likely to state that they need glyphosate for herbicide resistance management. Farmers’ assessments of the economic importance of glyphosate usage vary depending on the type of farm. By means of the farm clusters, the most important situations of glyphosate usage can be further analyzed economically and scenarios for impact assessments can be made.

  2. Recent changes of arable weeds flora and management as a basis for future adaptations

    Directory of Open Access Journals (Sweden)

    Breitsameter, Laura

    2014-02-01

    Full Text Available In the course of the past decennia, numerous shifts of the arable weeds flora have been observed as a result of climate change and of changes of land use and agricultural management practice. These shifts necessitate appropriate adaptations of weed management. The present study depicts alterations of the arable weeds flora of Lower Saxony based on data from two different sources, and describes recent changes of arable weeds management. We firstly conducted a questionnaire-based survey among plant protection consultants and experts of agronomy and plant protection in industry and the federal agriculture authorities. This survey was aimed at identifying which weed taxa have gained or lost relevance for management, and which tendencies with regard to their relevance is expected according to expert knowledge. In addition, the experts were asked for information on possible adaptations and challenges of weed management expected for the future. Secondly, we used protocols of plant protection trails published by the Lower Saxony chamber of agriculture in order to determine alterations of the weed management practice since the 1980s. The screened data gave a clear indication of an increase of the relevance during the past 30 years for a number of weed taxa, in particular for several millet taxa, Geranium species, Alopecurus myosuroides and Chenopodium album. In the evaluation of changes of the relevance of individual weed taxa, the impact of climate change cannot be segregated from effects of altered agricultural practices, which are in turn themselves influenced by climate change. Records of the agricultural practice have pointed out shifts in herbicide application dates which parallel altered sowing dates, e. g., an increase in the frequency of herbicide application in autumn rather than in spring for winter wheat. The recent shifts of weed flora and management practices can serve as a basis for the development of management adaptations for the future

  3. Flash Flooding and 'Muddy Floods' on Arable Land

    Science.gov (United States)

    Boardman, J.

    2012-04-01

    Flash flooding is often associated with upland, grazed catchments. It does, however, occur in lowland arable-dominated areas. In southern England, notable examples have occurred at Rottingdean (Brighton) in 1987, at Faringdon (Oxfordshire) in 1993 and at Breaky Bottom vineyard (near Brighton) in 1987 and 2000. All resulted in damage to nearby property. Runoff was largely from recently cultivated ground. The characteristics of such floods are: Rapid runoff from bare soil surfaces. Saturated excess overland flow is likely in the early parts of storms but high intensity rainfall on loamy soils results in crusting and Hortonian overland flow; High rates of erosion; Sediment transport to downvalley sites causing property damage ('muddy flooding'). Muddy floods are known from several areas of Europe e.g. Belgium, northern France, South Limburg (Netherlands) and Slovakia (Boardman et al 2006). In other areas they occur but have gone unreported or are classified under different terms. The necessary conditions for occurrence are areas of arable land which is bare at times of the year when there is a risk of storms. For muddy floods to cause damage (and hence be reported), vulnerable property must lie downstream from such areas of arable land. In some areas the incidence of muddy floods relates to autumn and early winter rainfall and winter cereal crops (e.g. southern England). In continental Europe, flooding is more common in summer and is associated with convectional storms and land uses including sugar beet, maize and potatoes. Predictions of increased numbers of high-intensity storms with future climate change, suggest that arable areas will continue to generate both flash floods and muddy floods.

  4. Soil organic matter dynamics after the conversion of arable land to pasture

    NARCIS (Netherlands)

    Römkens, Paul F.A.M.; Plicht, Johannes van der; Hassink, Jan

    1999-01-01

    Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and C-13 analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organ

  5. Soil organic matter dynamics after the conversion of arable land to pasture

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1999-01-01

    Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and 13C analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organi

  6. Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

    Directory of Open Access Journals (Sweden)

    Christin Zachow

    2013-11-01

    Full Text Available Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

  7. 长江中下游地区耕地复种指数变化特征与潜力分析%Variation characteristics and developmental potentials on multiple cropping index of arable land in the middle and lower reaches of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    金姝兰; 刘春燕; 毛端谦

    2011-01-01

    基于1979-2007年统计资料,对长江中下游六省一市耕地面积、农作物总播种面积、粮食播种面积和耕地复种指数的变化特征进行了分析,并采用最大复种指数与热量、水资源之间的定量化关系模型计算分析了该地区的复种指数理论潜力和可挖掘潜力.结果表明:2007年与1979年相比长江中下游地区耕地面积、农作物总播种面积、粮食播种面积和总产量减少,耕地复种指数下降.以研究区2007年的耕地复种指数为参照,该区耕地复种指数理论可挖掘潜力为108.37%,其中最大的是浙江为160.5%,其次是湖北、江西、上海,分别为130.7%,113.0%,110.6%,其余各地也较大.复种指数的下降,严重影响了粮食生产.如何挖掘本区耕地复种指数潜力,提高农业机械化水平,进行土地制度创新等措施值得借鉴.%Based on the statistical data from 1979 to 2007, this paper analyzed the changes of the total area of arable land, crops, grain and the multiple cropping index (MCI) in the middle and lower reaches of Yangtze River, then calculated the theoretical potential of MCI in each province (municipality) in the middle and lower reaches of Yangtze River by using the model of the quantitative relationship between the maximum of MCI and the heat and water resources.The results showed that the arable land area, grain sown area and yield, the total sown area of crops and MCI decreased in the middle and lower reaches of Yangtze River from 1997 to 2007.By reference to the MCI in 2007, the potential of MCI in the area was 108.37%, Zhejiang was the biggest province in this area whose potential of MCI was 160.5%, followed by Hubei ( 130.7% ), Jiangxi ( 113.0% ) and Shanghai ( 110.6% ), and the potential of MCI of other provinces in this place was big too.The decline of MCI made serious influences on food production.The measures of tapping the potential of multiple cropping indexes in this area, improving the level

  8. Exploiting phytochemicals for developing a 'push-pull' crop protection strategy for cereal farmers in Africa.

    Science.gov (United States)

    Khan, Zeyaur R; Midega, Charles A O; Bruce, Toby J A; Hooper, Antony M; Pickett, John A

    2010-10-01

    Lepidopteran stemborers and parasitic weeds in the genus Striga are major constraints to efficient production of cereals, the most important staple food crops in Africa. Smallholder farmers are resource constrained and unable to afford expensive chemicals for crop protection. Development of a push-pull approach for integrated pest and weed management is reviewed here. Appropriate plants were discovered that naturally emit signalling chemicals (semiochemicals). Plants highly attractive for egg laying by stemborer pests were selected and employed as trap crops (pull), to draw pests away from the main crop. Of these, Napier grass, Pennisetum purpureum (Schumach), despite its attractiveness, supported minimal survival of the pests' immature stages. Plants that repelled stemborer pests, notably molasses grass, Melinis minutiflora P. Beauv., and forage legumes in the genus Desmodium, were selected as intercrops (push). Desmodium intercrops suppress Striga hermonthica (Del.) Benth. through an allelopathic mechanism. Their root exudates contain novel flavonoid compounds, which stimulate suicidal germination of S. hermonthica seeds and dramatically inhibit its attachment to host roots. The companion crops provide valuable forage for farm animals while the leguminous intercrops also improve soil fertility and moisture retention. The system is appropriate as it is based on locally available plants, not expensive external inputs, and fits well with traditional mixed cropping systems in Africa. To date it has been adopted by more than 30,000 smallholder farmers in East Africa where maize yields have increased from ∼1 t ha(-1) to 3.5 t ha(-1). Future directions for semiochemical delivery by plants including biotechnological opportunities are discussed.

  9. The microbiology of arable soil surfaces

    OpenAIRE

    Jeffery, Simon

    2007-01-01

    Whilst much is known about the physics and erosion of soil surfaces on a millimetre scale, little is known about the associated microbiology, particularly in temperate arable systems. The vast majority of research regarding microbial interactions at soil surfaces has concerned microbiotic crusts. However, such surface crusts take many years to form and then only in relatively undisturbed soil systems. Arable soil surfaces are subject to relatively extreme environmental conditio...

  10. Remediation of degraded arable steppe soils in Moldova using vetch as green manure

    Science.gov (United States)

    Wiesmeier, M.; Lungu, M.; Hübner, R.; Cerbari, V.

    2015-05-01

    In the Republic of Moldova, non-sustainable arable farming led to severe degradation and erosion of fertile steppe soils (Chernozems). As a result, the Chernozems lost about 40% of their initial amounts of soil organic carbon (SOC). The aim of this study was to remediate degraded arable soils and promote carbon sequestration by implementation of cover cropping and green manuring in Moldova. Thereby, the suitability of the legume hairy vetch (Vicia sativa) as cover crop under the dry continental climate of Moldova was examined. At two experimental sites, the effect of cover cropping on chemical and physical soil properties as well as on yields of subsequent main crops was determined. The results showed a significant increase of SOC after incorporation of hairy vetch mainly due to increases of aggregate-occluded and mineral-associated OC. This was related to a high above- and belowground biomass production of hairy vetch associated with a high input of carbon and nitrogen into arable soils. A calculation of SOC stocks based on equivalent soil masses revealed a sequestration of around 3 t C ha-1yr-1 as a result of hairy vetch cover cropping. The buildup of SOC was associated with an improvement of the soil structure as indicated by a distinct decrease of bulk density and a relative increase of macroaggregates at the expense of microaggregates and clods. As a result, yields of subsequent main crops increased by around 20%. Our results indicated that hairy vetch is a promising cover crop to remediate degraded steppe soils, control soil erosion and sequester substantial amounts of atmospheric C in arable soils of Moldova.

  11. A repellent net as a new technology to protect cabbage crops.

    Science.gov (United States)

    Martin, T; Palix, R; Kamal, A; Delétré, E; Bonafos, R; Simon, S; Ngouajio, M

    2013-08-01

    Floating row covers or insect-proof nets with fine mesh are effective at protecting vegetable crops against aphids but negatively impact plant health, especially under warm conditions. Furthermore, in control of cabbage insect pests, aphid parasitoids cannot enter the fine-mesh nets, leading to frequent aphid outbreaks. To surmount these difficulties, a 40-mesh-size repellent net treated with alphacypermethrin was studied in laboratory and field tests. Results showed both irritant and repellent effects of the alphacypermethrin-treated net on Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its parasitoid Aphidius colemani (Haliday) (Hymenoptera: Braconidae). Under field conditions, there were no pests on cabbage protected with the repellent net. The repellent net allowed combining a visual and repellent barrier against aphids. Because of this additive effect, repellent nets allowed covering cabbage permanently with adequate protection against all pests.

  12. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  13. Total Factor Evaluation and Influencing Factor Analysis about Arable Land Productivity In Kaifeng City

    Institute of Scientific and Technical Information of China (English)

    Yongying HUANG; Liutao LIANG

    2016-01-01

    This paper uses DEA and Malmquist index to analyze the changes in arable land productivity in Kaifeng City during 2003- 2012.The results show that during 2003- 2011,Kaifeng’s arable land productivity was inefficient in DEA-terms,indicating that the production resources were not rationally used; in 2012,Kaifeng’s arable land productivity was efficient in DEA-terms,indicating that the ratio of input to output in 2012 was optimal; with the lapse of time,the Malmquist total factor productivity showed a trend of " increase-decrease-increase-decrease-increase",and the average technical efficiency was greater than 1,indicating that the agricultural production technology continues to advance. Using Tobit model,we analyze the factors that affect arable land productivity,and results show that the number of large and medium tractors and policy dummy variable have a significantly positive impact,while grain sown area has a significantly negative impact. Therefore,in order to improve arable land productivity in Kaifeng City,it is necessary to adhere to long-term stable agricultural support policy,improve the technological level of new agricultural modernization,increase investment in agricultural science and technology,and expand the sown area of cash crops.

  14. Review of anthraquinone applications for pest management and agricultural crop protection.

    Science.gov (United States)

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  15. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document)

    NARCIS (Netherlands)

    Zijlstra, C.; Lund, I.; Justesen, A.; Nicolaisen, M.; Bianciotto, V.; Posta, K.; Balestrini, R.; Przetakiewicz, A.; Czembor, E.; Zande, van de J.

    2011-01-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the prese

  16. Protection of food crops during rapid development of the Palinpinon Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Darby, d' E.C. (KRTA Ltd., Auckland, New Zealand); de Jesus, A.C.

    1981-10-01

    A tropical water plant known as kangkong is cultivated in the Okoy River. Many hundreds of people are involved in growing this important green vegetable which is harvested up to 12 times per year, hence the need to avert major damage to crops is clear. Trials suggest that kangkong is sensitive to lower levels of arsenic than boron, but because of the relative amounts of these elements in geothermal waters boron is likely to be the limiting element in regard to surface waste-water discharges. Arsenic or boron toxicity symptoms were more severe in the presence of sulphate, while high calcium levels delayed the onset or reduced the severity of the symptoms. Plants tolerated thermal shocks up to about 50/sup 0/C for 30 minutes. Under the test conditions the maximum continuously tolerable level of geothermal fluid was about 8% and of As and B about 3 mg/kg and 5 mg/kg, respectively. For purposes of crop protection during project development, however, wastewater discharges from wells under test are normally regulated so that the level of B upstream of the cropping area does not normally exceed about 3 mg/kg.

  17. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-11-01

    Full Text Available Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes and invertebrates included among the macrofauna of soils (arthropods and annelids that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  18. Advances in induced resistance by natural compounds: towards new options for woody crop protection

    Directory of Open Access Journals (Sweden)

    Eugenio Llorens

    Full Text Available ABSTRACT: The activation of defensive responses of plants is a promising tool for controlling pests in conventional agriculture. Over the last few years, several compounds have been studied to protect crops from pests, without displaying direct toxicity for pathogenic organisms. These compounds have the ability to induce a priming state on the plants that results in resistance (or tolerance against subsequent infection by a pathogen. In terms of molecular response, induced plant defense involves a broad number of physical and biochemical changes such as callose deposition or phenolic compounds, activation of salicylic and/or jasmonic acid pathways or synthesis of defense-related enzymes. Despite the large number of studies performed to ascertain the physiological and biochemical basis of induced resistance, only a few resistance-activating compounds have been studied as a real alternative to classic means of control and the studies geared towards incorporating induced resistance into disease management programs are relatively rare. The incorporation of natural resistance inducer in pest management programs of woody crops, alone or in combination with classical methods, could be a reliable method for reducing the amount of chemical residues in the environment. In this review, we discuss the current knowledge of induced resistance in woody crops, focusing on the mode of action of compounds authorized for conventional agriculture. We conclude by discussing the environmental and economic advantages of applying resistance inducers to conventional agriculture with special emphasis on natural compounds.

  19. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    Science.gov (United States)

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  20. The Arable Weeds of Plešivica Hills (NW Croatia

    Directory of Open Access Journals (Sweden)

    Dubravka Dujmović Purgar

    2008-09-01

    Full Text Available The arable weeds (segetal flora were explored on Plešivica hills (NW Croatia during vegetational seasons 2002 and 2003 at 10 locations. The common methods of plant recording, collecting and identification were applied in the research of the arable weeds. Th e nomenclature of plants was according to Tutin et al. (1964-1980, 1993. The total of 107 taxa of arable weeds that classified to 32 families was noted. The most represented families were Poaceae, Asteraceae and Fabaceae. Therophytes were dominant in the fields that were the subject of this research. Most of the species were the cosmopolites and the Euroasian origin. 78 weed species were noted in dense crop fi elds (wheat, barley. Some of them (Chamomilla recutita (L. Rausch., Cirsium arvense (L.Scop., Galium aparine L., Papaver rhoeas L., Stellaria media(L.Vill. and Veronica persica Poir. are the most harmful weeds of dense crops. 62 weeds were noted in maize fields. Some of them were typically row crop weeds, as for instance: Amaranthus retrofl exus L., Chenopodium album L., Ch. polyspermum L., Cirsium arvense, Convolvulus arvensis L., Digitaria sanguinalis (L. Scop., Echinochloa crus-galli (L. PB., Polygonum lapathifolium L. and Sorghum halepense (L. Pers. Very invasive species Abutilon theophrasti Med. was found on the row crop fields. Very dangerous aeroallergenic species Ambrosia artemisiifolia L. was dispersed in many of the researched fields.

  1. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewski

    2014-08-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  2. Ecology of microarthropods in arable soil.

    NARCIS (Netherlands)

    Vreeken-Buijs, M.J.

    1998-01-01

    Soil microarthropods are all free-living mites and collembolans, living in the soil. The study presented in this thesis formed part of the Dutch Programme on Soil Ecology of Arable Farming Systems, an integrated multidisciplinary research programme, focused on the functioning of two differently mana

  3. Ecological impacts of arable intensification in Europe

    NARCIS (Netherlands)

    Stoate, C.; Boatman, N.D.; Borralho, R.J.; Rio Carvalho, C.; Snoo, de G.R.; Eden, P.

    2001-01-01

    Although arable landscapes have a long history, environmental problems have accelerated in recent decades. The effects of these changes are usually externalised, being greater for society as a whole than for the farms on which they operate, and incentives to correct them are therefore largely lackin

  4. N-management in grass-arable crop rotations

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Hansen, Elly Møller

    2006-01-01

    Nitrogen accumulation in grazed grassland is difficult to utilize efficiently, but appropriate farm management can minimize nitrate leaching.......Nitrogen accumulation in grazed grassland is difficult to utilize efficiently, but appropriate farm management can minimize nitrate leaching....

  5. Water consumption and soil moisture distribution in melon crop with mulching and in a protected environment

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2013-06-01

    Full Text Available Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.

  6. Lead generation in crop protection research: a portfolio approach to agrochemical discovery.

    Science.gov (United States)

    Loso, Michael R; Garizi, Negar; Hegde, Vidyadhar B; Hunter, James E; Sparks, Thomas C

    2017-04-01

    The need for increased food and feed supply to support future global demand with the added challenges of resistance pressure and an evolving regulatory environment necessitates the discovery of new crop protection agents for growers of today and tomorrow. Lead generation is the critical 'engine' for maintaining a robust pipeline of new high-value products. A wide variety of approaches exist for the generation of new leads, many of which have demonstrated success. Each approach features some degree of merit or benefit while also having some inherent drawback or level of risk. While risk for any single approach can be mitigated in a variety of different ways depending on the approach, long-term viability of a successful lead generation program merits utilization of a portfolio of different approaches and methodologies for the generation of new leads. © 2016 Society of Chemical Industry.

  7. Energy Use and Energy Efficiency in Selected Arable Farms in Central and South Eastern Europe

    Directory of Open Access Journals (Sweden)

    Gerhard Moitzi

    2014-03-01

    Full Text Available The main objective of the project “Mechanization and Energy use in selected arable farms in Central and South Eastern Europe (CASEE” was to analyse energy characteristics of arable farming in Slovak Republic, Romania, Serbia and Austria, to compare results and identify possibilities of its improvements. The large scale farms are: the university farm of the Slovak University of Agriculture (SK with 1.112 ha arable land, a cooperative farm in Risnovice (SK with an arable land of 1.266 ha, a family farm in Apahida-Transylvania (RO with 400 ha, a farm in Viisoara-Transylvania (RO with 600 ha, a family farm in Sremska Mitrovica (SRB with an arable land of 115 ha, a family farm near Novi Sad (SRB with an arable land of 450 ha and a family farm in Ansfelden/Linz (A with 368 ha. The farms were visited by the interviewer once or more times and the relevant data, used machinery, quantity of inputs, e.g. fuel, pesticides, fertilizer, seed and yields of harvested crops, were recorded, for the production season 2012. After collection of the basic data all energy inputs and outputs, energy content of crops, were calculated in accordance with data and procedure defined by CIGR (International Commission of Agricultural and Biosystems Engineering, Handbook Volume V – Energy and Biomass Engineering (1999. Energy input and net energy gain, expressed in MJ/ha, were used to calculate energy characteristics of crops’ production: energy productivity - kg/MJ, energy efficiency index, energy ratio, energy intensity - MJ/kg, fuel intensity - L/kg. The intensity of all used farm inputs (fuel, seeds, fertilizer and pesticide in crop production systems influences the energy efficiency. The fuel consumption for winter wheat production of the analysed farms ranges between 54 and 91 l/ha. The mean energy ratio (energy-output/energy-input for winter wheat is 5.6 with ranges between 4.8 and 7.1. Besides the fuel consumption the energy-input via the nitrogen-fertilizer is

  8. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning; Klimaschutz und Energiepflanzenanbau. Potenziale zur Treibhausgasemissionsminderung durch Fruchtfolge- und Anbauplanung

    Energy Technology Data Exchange (ETDEWEB)

    Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin

    2015-07-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  9. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.

    Science.gov (United States)

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-07-01

    Biomass will play a role in the UK meeting EU targets on renewable energy use. Short Rotation Coppice (SRC) and miscanthus are potential biomass feedstocks; however, supply will rely on farmer willingness to grow these crops. Despite attractive crop establishment grants for dedicated energy crops (DECs) in the UK, uptake remains low. Drawing on results from an on-farm survey with 244 English arable farmers, 81.6% (87.7%) of farmers would not consider growing miscanthus (SRC), while respectively, 17.2% (11.9%) would consider growing and 1.2% (0.4%) were currently growing these crops. Farmer age, location, land ownership, farm type, farm size and farmer education level were not significant factors in determining acceptance of DECs. The main reasons cited for not growing DECs were impacts on land quality, lack of appropriate machinery, commitment of land for a long period of time, time to financial return and profitability. Reasons cited for willingness to grow DECs included land quality, ease of crop management, commitment of land for a long period of time, and profitability. Farmers cited a range of 'moral' (e.g. should not be using land for energy crops when there is a shortage of food), land quality, knowledge, profit and current farming practice comments as reasons for not growing DECs, while those willing to grow DECs cited interest in renewable energy, willingness to consider new crops, and low labour needs as rationale for their interest. Farm business objectives indicated that maximising profit and quality of life were most frequently cited as very important objectives. Previous research in the UK indicates that farmers in arable areas are unlikely to convert large areas of land to DECs, even where these farmers have an interest and willingness to grow them. Assuming that those farmers interested in growing DECs converted 9.29% (average percentage of arable land set-aside between 1996 and 2005) of their utilised agricultural area to these crops, 50,700

  10. Relationship between physicochemical properties and maximum residue levels and tolerances of crop-protection products for crops set by the USA, European Union and Codex.

    Science.gov (United States)

    Thorbek, P; Hyder, K

    2006-08-01

    Residues on foodstuffs resulting from the use of crop-protection products are a function of many factors, e.g. environmental conditions, dissipation and application rate, some of which are linked to the physicochemical properties of the active ingredients. Residue limits (maximum residue levels (MRLs) and tolerances) of fungicides, herbicides and insecticides set by different regulatory authorities are compared, and the relationship between physicochemical properties of the active ingredients and residue limits are explored. This was carried out using simple summary statistics and artificial neural networks. US tolerances tended to be higher than European Union MRLs. Generally, fungicides had the highest residue limits followed by insecticides and herbicides. Physicochemical properties (e.g. aromatic proportion, non-carbon proportion and water solubility) and crop type explained up to 50% of the variation in residue limits. This suggests that physicochemical properties of the active ingredients may control important aspects of the processes leading to residues.

  11. Analysis of Multi-Scale Changes in Arable Land and Scale Effects of the Driving Factors in the Loess Areas in Northern Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Lina Zhong

    2014-04-01

    Full Text Available In this study, statistical data on the national economic and social development, including the year-end actual area of arable land, the crop yield per unit area and 10 factors, were obtained for the period between 1980 and 2010 and used to analyze the factors driving changes in the arable land of the Loess Plateau in northern Shaanxi, China. The following areas of arable land, which represent different spatial scales, were investigated: the Baota District, the city of Yan’an, and the Northern Shaanxi region. The scale effects of the factors driving the changes to the arable land were analyzed using a canonical correlation analysis and a principal component analysis. Because it was difficult to quantify the impact of the national government policies on the arable land changes, the contributions of the national government policies to the changes in arable land were analyzed qualitatively. The primary conclusions of the study were as follows: between 1980 and 2010, the arable land area decreased. The trends of the year-end actual arable land proportion of the total area in the northern Shaanxi region and Yan’an City were broadly consistent, whereas the proportion in the Baota District had no obvious similarity with the northern Shaanxi region and Yan’an City. Remarkably different factors were shown to influence the changes in the arable land at different scales. Environmental factors exerted a greater effect for smaller scale arable land areas (the Baota District. The effect of socio-economic development was a major driving factor for the changes in the arable land area at the city and regional scales. At smaller scales, population change, urbanization and socio-economic development affected the crop yield per unit area either directly or indirectly. Socio-economic development and the modernization of agricultural technology had a greater effect on the crop yield per unit area at the large-scales. Furthermore, the qualitative analysis

  12. Weed vegetation ecology of arable land in Salalah, Southern Oman.

    Science.gov (United States)

    El-Sheikh, Mohamed A

    2013-07-01

    This paper applies multivariate statistical methods to a data set of weed relevés from arable fields in two different habitat types of coastal and mountainous escarpments in Southern Oman. The objectives were to test the effect of environmental gradients, crop plants and time on weed species composition, to rank the importance of these particular factors, and to describe the patterns of species composition and diversity associated with these factors. Through the application of TWINSPAN, DCA and CCA programs on data relating to 102 species recorded in 28 plots and farms distributed in the study area, six plant communities were identified: I- Dichanthium micranthum, II- Cynodon dactylon-D. micranthum, III- Convolvulus arvensis, IV- C. dactylon-Sonchus oleraceus, V- Amaranthus viridis and VI- Suaeda aegyptiaca-Achyranthes aspera. The ordination process (CCA) provided a sequence of plant communities and species diversity that correlated with some anthropogenic factors, physiographic variables and crop types. Therefore, length of time since farm construction, disturbance levels and altitude are the most important factors related to the occurrence of the species. The perennial species correlated with the more degraded mountain areas of new farm stands, whereas most of the annuals correlated with old lowland and less disturbed farms.

  13. A Demonstration Project in New York and Virginia: Retrofitting Cost-Effective Roll-over Protective Structures (CROPS) on Tractors.

    Science.gov (United States)

    Hard, D L; McKenzie, E A; Cantis, D; May, J; Sorensen, J; Bayes, B; Madden, E; Wyckoff, S; Stone, B; Maass, J

    2015-07-01

    The NIOSH cost-effective roll-over protective structure (CROPS) demonstration project sought to determine whether three prototype roll-over protective structures (ROPS) designed to be retrofitted on Ford 8N, Ford 3000, Ford 4000, and Massey Ferguson 135 tractors could be installed in the field and whether they would be acceptable by the intended end users (farmers). There were a total of 50 CROPS. demonstrators (25 in New York and 25 in Virginia), with 45 observers attending the New York CROPS demonstrations and 36 observers attending the Virginia CROPS demonstrations, for a total of 70 participants in New York and 61 in Virginia. The oldest retrofitted tractors were 77 to 62 years old, while the newest retrofitted tractors were 40 to 37 years old. The most frequently retrofitted tractor in the CROPS demonstration project was a Ford 3000 series tractor (n = 19; 38%), followed by Ford 4000 (n = 11; 22%), Massey Ferguson 135 (n = 11; 22%), and Ford 8N (n = 9; 18%). A major issue of CROPS retrofitting was the rear wheel fenders. The effort involved in disassembling the fenders (removing the old bolts was often faster by cutting them with a torch), modifying the fender mounting brackets, and then reinstalling the fenders with the CROPS generally required the most time. In addition, various other semi-permanent equipment attachments, such as front-end loaders, required additional time and effort to fit with the CROPS. Demonstrators were asked to rank the reasons why they had not retrofitted their tractors with ROPS until they had enrolled in the CROPS demonstration program. ROPS "cost too much" was ranked as the primary reason for participants in both states (80% for New York and 88% for Virginia). The second highest ranked reasons were "ROPS wasn't available" for Virginia (80%) and "hassle to find ROPS" for New York (69%). The third highest ranked reasons were "not enough time to find ROPS" for New York (67%) and "hassle to find ROPS" for Virginia (79%). All

  14. Purification and Phytotoxic Analysis of Botrytis cinerea Virulence Factors: New Avenues for Crop Protection

    Directory of Open Access Journals (Sweden)

    Maria R. Davis

    2012-07-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus infecting over 230 plant species worldwide. This highly adaptable pathogen can afflict agricultural products from seed to storage, causing significant economic losses and instability in the food supply. Small protein virulence factors secreted by B. cinerea during infection play an important role in initiation and spread of disease. BcSnod1 was found to be abundantly expressed upon exposure to media containing strawberry extract. From sequence similarity, BcSnod2 was also identified and both were recognized as members of the Ceratoplatanin family of small phytotoxic proteins. Recombinant BcSnod1 was shown to have a phytotoxic effect and play an important role in pathogenicity while the role of BcSnod2 remains less clear. Both bacterial and yeast production systems are reported, though the bacterial protein is less toxic and mostly unfolded relative to that made in yeast. Compared to BcSnod1, recombinant bacterial BcSnod2 shows similar, but delayed phytotoxicity on tomato leaves. Further studies of these critical virulence factors and their inhibition promise to provide new avenues for crop protection.

  15. Dynamics of organic carbon stock of Estonian arable and grassland peat soils

    Science.gov (United States)

    Kauer, Karin; Tammik, Kerttu; Penu, Priit

    2016-04-01

    Peat soils represent globally a major reserve of soil organic carbon (SOC). Estimation of changes in SOC stocks is important for understanding soil carbon sequestration and dynamics of greenhouse gas emissions. The aim of this study was to estimate the SOC stock of Estonian agricultural peat soils and SOC stock change depending on land use type (arable land and long-term grasslands (over 5 years)). The soils were classified as Histosols according to WRB classification. Generally the arable land was used for growing cereals, oilseed rape, legumes and used as ley in crop rotation. The main technique of soil cultivation was ploughing. During 2002-2015 the soil samples of 0-20 cm soil layer (one average soil sample per 1-5 ha) were collected. The SOC content was measured by NIRS method. The SOC stock was calculated by assuming that soil mean bulk density is 0.3 g cm-3. The SOC stock change in arable land was estimated during 3-13 years (N=91) and in grassland 4-13 year (N=163). The average SOC content of peat soils varied from 150.6 to 549.0 mg g-1. The initial SOC stock of arable land was 271.3 t ha-1 and of grassland 269.3 t ha-1. The SOC stock declined in arable peat soils faster (-2.57 t ha-1 y-1) compared to the changes in grassland peat soils (-0.67 t ha-1 y-1). According to the length of the study period the SOC stock change per year varied from -5.14 to 6.64 t ha-1 y-1 in grasslands and from -14.78 to 0.83 t ha-1 y-1 in arable land, although there was no clear relationship between the SOC stock change and the length of the study period. More detailed information about the properties of agricultural land and land use history is needed to analyse the causes of the SOC stock changes in agricultural peat soils. However, from the current research we can conclude that the SOC stock of arable and grassland peat soils is declining during the cultivation. These decreases are important to specify when considering the role of peat soils in atmospheric greenhouse gas

  16. To be or not to be - common and endangered arable weed species in the face of Global Climate Change

    Directory of Open Access Journals (Sweden)

    Rühl, Anna Theresa

    2014-02-01

    Full Text Available Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land use management with the application of herbicides and fertilisers, enhanced seed cleaning, simplified crop rotations and abandonment of marginal arable sites are the main causes for the continuous decline of arable weeds. However, besides these changes in land use also global climate change may challenge the adaptability of arable weeds. Most scientists agree that the frequency of extreme meteorological conditions will increase in the future. As a consequence, plants of Central Europe will be subject to higher temperatures and reduced water supply due to longer intervals without precipitation during the growing season. We exposed seeds of five common and five endangered arable weed species to different temperatures and water potentials to study i how this plant group responds to higher temperatures and lower moisture during germination in general and ii whether there is a significant difference between common and endangered species in this respect.

  17. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    Science.gov (United States)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  18. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices.

    Science.gov (United States)

    Lugato, Emanuele; Bampa, Francesca; Panagos, Panos; Montanarella, Luca; Jones, Arwyn

    2014-11-01

    Bottom-up estimates from long-term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan-European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha(-1)  yr(-1) , while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101-336 Mt CO2 eq. by 2020 and 549-2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta-analysis confirmed the robustness of these estimates.

  19. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann

    2014-01-01

    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding......). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20 and 40 cm soil depths (i.e., within and below the nominal plough layer) using the two measurement...

  20. Genomics generates new insights into host plant defense and offers novel strategies for crop protection

    Science.gov (United States)

    Plant diseases and insect pests are the important threats to agricultural production, and crop losses to diseases and insects can be greater than about 30% of the annual global production. Managing the health of crop plants to assure sustainable agricultural production can be very challenging. How...

  1. Environmental and economic assessment of protected crops in four European scenarios

    NARCIS (Netherlands)

    Torrellas, M.; Antón, A.; Ruijs, M.N.A.; Garcia Victoria, N.; Stanghellini, C.; Montero, J.I.

    2012-01-01

    In this study we analysed the environmental and economic profile of current agricultural practices for greenhouse crops, in cold and warm climates in Europe, using four scenarios as reference systems: tomato crop in a plastic greenhouse in Spain, and in glasshouses in Hungary and the Netherlands, an

  2. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    Science.gov (United States)

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  3. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.

    Science.gov (United States)

    Lechenet, Martin; Bretagnolle, Vincent; Bockstaller, Christian; Boissinot, François; Petit, Marie-Sophie; Petit, Sandrine; Munier-Jolain, Nicolas M

    2014-01-01

    Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.). We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded) and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management.

  4. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.

    Directory of Open Access Journals (Sweden)

    Martin Lechenet

    Full Text Available Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.. We assessed cropping system sustainability using a set of economic, environmental and social indicators. We failed to detect any positive correlation between pesticide use intensity and both productivity (when organic farms were excluded and profitability. In addition, there was no relationship between pesticide use and workload. We found that crop rotation diversity was higher in cropping systems with low pesticide use, which would support the important role of crop rotation diversity in integrated and organic strategies. In comparison to conventional systems, integrated strategies showed a decrease in the use of both pesticides and nitrogen fertilizers, they consumed less energy and were frequently more energy efficient. Integrated systems therefore appeared as the best compromise in sustainability trade-offs. Our results could be used to re-design current cropping systems, by promoting diversified crop rotations and the combination of a wide range of available techniques contributing to pest management.

  5. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2010-10-01

    Full Text Available Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.

  6. Economic assessment of alternatives for glyphosate application in arable farming

    Directory of Open Access Journals (Sweden)

    Kehlenbeck, Hella

    2016-02-01

    Full Text Available Application and sales of herbicides with glyphosate have strongly increased in Germany during the past 10 years. This has raised a number of questions and discussions concerning glyphosate use. Therefore, this paper identifies and evaluates alternatives with an efficacy almost equivalent to glyphosate for different treatmentareas in terms of economic consequences for farms in comparison to glyphosate use by way of example. With the help of exemplary crop rotations uses in arable farming for winter wheat, winter oilseed rape, winter barley, maize and summer barley were analyzed. Within a “worst case scenario” a complete abandonment of glyphosate applications was assumed. Different tillage systems (plough, no-plough were considered. The only alternatives with an efficacy almost equivalent to glyphosate were mechanical measures. For the analyzed treatment-areas (desiccation, pre-sowing, stubble no approved and efficient chemical alternative could be identified. The economic advantages and disadvantages of substituting glyphosate by mechanical alternatives were strongly depending on the treatment-area, the efficacy concerning yield expectations (in comparison to glyphosate use, the tillage system, the necessity of grain drying as well as further operational factors such as the availability of sufficient field work days and mechanical equipment.

  7. Influencing factors on regional differences in glyphosate use in North German arable farming

    Directory of Open Access Journals (Sweden)

    Andert, Sabine

    2016-02-01

    Full Text Available Glyphosate is the worldwide mostly used herbicide substance. Glyphosate use in arable cropping is under strong discussion in scientific and public communities. In the present study, we investigated the use of glyphosate from 15 farms in four districts in North German arable farming from 2005 until 2014. Objective of our research is to reveal influencing factors on glyphosate use intensity. The farm structures differ between two West districts (Diepholz, Uelzen and two East districts (Fläming, Oder-Spree. We used the Standardised Treatment Index (STI to quantify pesticide use intensity. We used multiple regressions to estimate the relationship between farm characteristics and glyphosate use. Glyphosate use intensity differs substantially between the study districts and crops. Farmers in the Eastern districts (Fläming and Oder-Spree used significantly larger amounts of glyphosate. We further proved that the variability of glyphosate use was mainly influenced by the factor “Farm”. Moreover, we could show that glyphosate use is significantly influenced by the factors tillage, farm type, farm size and on-farm labour. Non-inversion tillage and glyphosate use co-incidences mainly on large farms in the East German districts. Hence, we conclude that these farms either regionally adapt their cropping systems due to climatic reasons or for economic profit.

  8. Team-up Crop Diversification and Weed Management: PRODIVA

    DEFF Research Database (Denmark)

    Gerowitt, B.; Melander, B.; Krawczyk, R.;

    2015-01-01

    the results. Neither are crop diversification methods restricted to Organic Farming, nor can IWM (Integrated Weed Management) be successfully implemented without respecting the role of weeds in agro-ecosystems. The project “PRODIVA - Crop diversification and weeds“ is supported within the ERA-net CORE Organic......The research-network PRODIVA focuses on a better utilization of crop diversification for weed management in North European arable cropping systems. The goal is to maintain diverse arable weed vegetation that is manageable in the long-term and could fulfil other necessary systemfunctions including...

  9. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens.

    Science.gov (United States)

    Kalunke, Raviraj M; Tundo, Silvio; Benedetti, Manuel; Cervone, Felice; De Lorenzo, Giulia; D'Ovidio, Renato

    2015-01-01

    Polygalacturonase inhibiting proteins (PGIPs) are cell wall proteins that inhibit the pectin-depolymerizing activity of polygalacturonases secreted by microbial pathogens and insects. These ubiquitous inhibitors have a leucine-rich repeat structure that is strongly conserved in monocot and dicot plants. Previous reviews have summarized the importance of PGIP in plant defense and the structural basis of PG-PGIP interaction; here we update the current knowledge about PGIPs with the recent findings on the composition and evolution of pgip gene families, with a special emphasis on legume and cereal crops. We also update the information about the inhibition properties of single pgip gene products against microbial PGs and the results, including field tests, showing the capacity of PGIP to protect crop plants against fungal, oomycetes and bacterial pathogens.

  10. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices

    Directory of Open Access Journals (Sweden)

    Fried Guillaume

    2010-09-01

    Full Text Available Abstract Background Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops. Results We used data derived from an extensive national monitoring network of approximately 700 arable fields scattered across France to quantify the degree of specialisation of 152 weed species using six different ecological methods. We then explored the impact of the level of disturbance occurring in arable fields by comparing the degree of specialisation of weed communities in contrasting field situations. The classification of species as specialist or generalist was consistent between different ecological indices. When applied on a large-scale data set across France, this classification highlighted that monoculture harbour significantly more specialists than crop rotations, suggesting that crop rotation increases abundance of generalist species rather than sets of species that are each specialised to the individual crop types grown in the rotation. Applied to a diachronic dataset, the classification also shows that the proportion of specialist weed species has significantly decreased in cultivated fields over the last 30 years which suggests a biotic homogenization of agricultural landscapes. Conclusions This study shows that the concept of generalist/specialist species is particularly relevant to understand the effect of anthropogenic disturbances on the evolution of plant community composition and that

  11. Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land

    NARCIS (Netherlands)

    Korthals, G.W.; Smilauer, P.; Van Dijk, C.; Van der Putten, W.H.

    2001-01-01

    1. This study investigates the effects of experimental plant communities on different trophic levels in the soil food web of abandoned arable land. 2. In April 1996, a biodiversity experiment commenced using a continuation of agricultural crop rotation (CCR), spontaneous succession with naturally co

  12. Prospects of herbivore egg-killing plant defenses for sustainable crop protection

    NARCIS (Netherlands)

    Fatouros, Nina E.; Cusumano, Antonino; Danchin, Etienne G.J.; Colazza, Stefano

    2016-01-01

    Due to a growing demand of food production worldwide, new strategies are suggested to allow for sustainable production of food with minimal effects on natural resources. A promising alternative to the application of chemical pesticides is the implementation of crops resistant to insect pests. Pla

  13. Energy Use and Energy Efficiency in Selected Arable Farms in Central and South Eastern Europe

    Directory of Open Access Journals (Sweden)

    Gerhard Moitzi

    2014-05-01

    Full Text Available Normal 0 21 false false false DE-AT X-NONE X-NONE Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} The main objective of the project “Mechanization and Energy use in selected arable farms in Central and South Eastern Europe (CASEE” was to analyse energy characteristics of arable farming in Slovak Republic, Romania, Serbia and Austria, to compare results and identify possibilities of its improvements. The large scale farms are: the university farm of the Slovak University of Agriculture (SK with 1.112 ha arable land, a cooperative farm in Risnovice (SK with an arable land of 1.266 ha, a family farm in Apahida-Transylvania (RO with 400 ha, a farm in Viisoara-Transylvania (RO with 600 ha, a family farm in Sremska Mitrovica (SRB with an arable land of 115 ha, a family farm near Novi Sad (SRB with an arable land of 450 ha and a family farm in Ansfelden/Linz (A with 368 ha. The farms were visited by the interviewer once or more times and the relevant data, used machinery, quantity of inputs, e.g. fuel, pesticides, fertilizer, seed and yields of harvested crops, were recorded, for the production season 2012. After collection of the basic data all energy inputs and outputs, energy content of crops, were calculated in accordance with data and procedure defined by CIGR (International Commission of Agricultural and Biosystems Engineering, Handbook Volume V

  14. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland.

    Directory of Open Access Journals (Sweden)

    John Cussans

    Full Text Available Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1 pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2 pollination success could be enhanced because of increased pollinator abundance in the vicinity.We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L. or next to a cereal crop (wheat, Triticum spp.. Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season. We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.

  15. Potassium Bicarbonate as a Potential Sulphur Substitute in Protected Organic Cropping

    OpenAIRE

    Koller, Martin

    2011-01-01

    Powdery mildew attacks several important crops in greenhouses (e.g. tomatoes, cucumbers). Compared to other airborne pathogens, such as downy mildews (e.g. Pseudoperonospora cubensis or Phytophthora infestans) or Botrytis, the damage is often not very severe. However, an effective control of powdery mildew with organic fungicides gives the possibility to optimize climate conditions to also prevent downy mildews and gray mold. Sulphur, a well established fungicide, is rated as slightly to very...

  16. Plant species richness and composition in the arable land of Kosovo

    Directory of Open Access Journals (Sweden)

    A. Mehmeti

    2009-03-01

    Full Text Available This study investigates today’s plant species richness and composition in cultivated and recently abandoned arable land of Kosovo. Relationships between these aspects of vegetation and both environmental features and agricultural management measures are studied at the regional and plot scale. In 2006, 432 vegetation relevés with a standard plot size of 25 m² were recorded in cultivated fields. In 2007, data collection focussed on 41 plots in arable fields that had been abandoned the year before. With respect to the environment, data analysis accounts for topography, soil base-richness and moisture, and geographic location. As to the management, crops and weed control are considered. A total number of 235 species was documented. In comparison to literature dating back to about 1980, the regional weed flora considerably changed. At the plot scale, today’s weed flora of Kosovo is fairly species-poor and species composition is rather uniform between plots. According to General Regression Model analyses, Indicator Species Analyses and Detrended Correspondence Analyses, species richness and composition mainly differ between crops and weed management, with highest mean species richness in recently abandoned and lowest in herbicide-treated maize fields.

  17. Assessment of cadmium (Cd) concentration in arable soil in China.

    Science.gov (United States)

    Zhang, Xiuying; Chen, Dongmei; Zhong, Taiyang; Zhang, Xiaomin; Cheng, Min; Li, Xinhui

    2015-04-01

    Cadmium (Cd) concentration in arable soil has drawn broad public attention due to its direct effect on Cd concentration in food. However, there have been few studies of surveying Cd accumulation on the national scale in China. This paper collected 486 studies of Cd concentrations in Chinese arable soil. The results showed that the average Cd concentration was 0.27 mg/kg, higher than its background value, indicating that Cd had been introduced into arable soil by human activity. The Cd concentrations in areas of mining and smelting, urban areas, and areas irrigated by wastewater were obviously higher than that in remote areas. Spatially, Cd concentrations were lower in the north than those in the south, and many hotspots existed throughout China due to mining and smelting activities. Most Cd in the arable soil were accumulated from external sources in all investigated provinces except Ningxia Hui Autonomous Region.

  18. Use of rare earth oxide tracers to determine source areas for sediment eroded from arable hillslopes

    Science.gov (United States)

    Deasy, C.; Quinton, J. N.

    2009-04-01

    Soil erosion from arable hillslopes has both on-site and off-site effects. On-site, erosion and redistribution of sediment can lead to the loss of productive field area and a reduction in organic matter and nutrient content in topsoil. Off-site, the transport and deposition of eroded sediment in downstream waters is associated with turbidity, sedimentation and reduced water quality, as sediments are associated with the transport of nutrients, particularly phosphorus (P) and nitrogen (N), heavy metals and pesticides. Arable land is a major source for these sediments, with studies in the UK estimating the cultivated fields may be responsible for up to 80% of particulate P in rivers. Previous studies at Loddington in Leicestershire, UK have demonstrated that most of the P and much of the N eroded from hillslope is in particulate form, transported in association with sediment suspended in runoff. Results also suggest that tramlines are the principal pathway for erosion from arable fields containing combinable crops. As tramlines are regularly spaced over the whole field, they potentially act as conduits for runoff, sediment and sediment-associated nutrients to be lost from the hillslope. However, it is not yet clear where the source areas are for sediment eroded via this pathway. To understand the movement of sediment on arable hillslopes, a hillslope-scale tracer experiment was undertaken in one year at the same site. The aims of this study were (1) to develop an application method for rare earth oxide tracers suitable for using on a hillslope scale to assess sediment movement over a number of storm events, (2) to determine the erosion rates of different contributing hillslope areas, (3) to determine the relative contributions of sediment eroded from each of these areas in order to assess the importance of different hillslope source areas for soil erosion. Different rare earth oxide tracers were applied in solution using a knapsack sprayer to four areas of the

  19. Is the possibility of replacing seed dressings containing neonicotinoids with other means of protection viable in major Polish agricultural crops?

    Directory of Open Access Journals (Sweden)

    Matyjaszczyk Ewa

    2015-12-01

    Full Text Available Following the limitations regarding the use of the neonicotinoids: clothianidin, thiamethoxam and imidacloprid there are no currently available insecticide seed dressings for oilseed rape in Poland. For maize here is only one seed dressing containing methiocarb available with a very narrow registered scope of use. The impact of limitations on protection possibilities of other major Polish agricultural crops is either negligible or non-existent. In consequence a group of economically important insect pests of maize [dungbeetles (Melolonthidae; click beetles (Elateridae; noctuid moths (Agrotinae] and oilseed rape [leaf miners (Agromyzidae, turnip sawfly (Athalia colibri Christ., cabbage weevils (Curculionidae, cabbage root fly (Hylemyia brassicae Bche., diamond-back moth (Plutella maculipennis Curt.] is left without any legal possibility of chemical control. For the other important pests of the early growth stage of oilseed rape development, there are only pyrethroids available together with one product containing chloropiryfos that can be applied once per vegetation season. Since both maize and oilseed rape are grown in Poland on the area of approximately 1 million ha (each crop, this situation raises concerns about production possibilities as well as development of pest resistance.

  20. The value and adaptation of plant uptake models in international trade of produce treated with crop protection products

    DEFF Research Database (Denmark)

    Kennedy, C.; Anderson, J.; Snyder, N.;

    2010-01-01

    residues based on limited data sets affords business value by enabling informed product development decisions about the likelihood for MRL compliance for varied product use scenarios. Predicted residues can additionally support the design and conduct of time-constrained interdependent studies required......Crop Protection Product (CPP) national registrations and/or international trade require magnitude and decline of residue data for treated produce. These data are used to assess human dietary risk and establish legal limits (Maximum Residue Limits, MRLs) for traded produce. The ability to predict...... for product registrations. While advances in predicting residues for the case of foliar applications of CPPs have been achieved, predictions for the case of soil applications of CPPs provide additional challenge. The adaptation of a newly developed dynamic model to CPP product use scenarios will be explored...

  1. Management of air-borne viruses by "optical barriers" in protected agriculture and open-field crops.

    Science.gov (United States)

    Antignus, Yehezkel

    2014-01-01

    The incurable nature of viral diseases and the public awareness to the harmful effects of chemical pest control to the environment and human health led to the rise of the integrated pest management (IPM) concept. Cultural control methods serve today as a central pivot in the implementation of IPM. This group of methods is based on the understanding of the complex interactions between disease agents and their vectors as well as the interactions between the vectors and their habitat. This chapter describes a set of cultural control methods that are based on solar light manipulation in a way that interferes with vision behavior of insects, resulting in a significant crop protection against insect pests and their vectored viruses.

  2. Uses of glyphosate in German arable farming – aspects of weed management and arable practice

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Data on glyphosate use, personal attitudes and farm characteristics were collected in a Germany-wide inventory from 2026 farms. About 1700 farms could be analyzed in detail. Categories of glyphosate users were split into: non-users, low proportion users and high proportion users. The latter apply glyphosate on > 20% of their arable land are characterized by a high amount of non-inversion tillage, low labor effort and aboveaverage farm size. Perennial weeds play a less important role for glyphosate use than managing weed populations that are regarded as less susceptible to regular herbicides. Non-users and users of glyphosate differ in their attitude towards the benefits of glyphosate and the amount of glyphosate use in agriculture.

  3. Analytical evaluation of the protection offered by sealed tractor cabins during crop pulverization with fenitrothion.

    Science.gov (United States)

    Barcellos, Michelle; Faletti, Milena Michele; Madureira, Luiz Augusto Dos Santos; Bauer, Fernando Cesar

    2016-12-01

    The practice of large-scale agriculture requires the use of pesticides in order to maximize production. This activity has gained increasing attention in recent years, especially from rural workers, due to the risks associated with long-term exposure to pesticides. To minimize these risks, personal protection equipment (e.g., covers, gloves, and goggles) and collective protection equipment (e.g., agricultural tractors with sealed cabins) have been developed. In general, these approaches are intended to reduce the contact of farmers and agricultural machinery operators with the more toxic and stable compounds, an example of which is fenitrothion. In this study, fenitrothion was used as a marker to evaluate the protection afforded inside a sealed tractor cabin. To simulate the pesticide exposure, tests were performed using artificial cotton targets as passive adsorptive agents inside the cabin during the pesticide application. Samples were extracted according to the US Environmental Protection Agency (USEPA) procedure using ultrasonic extraction and as proposed by the Brazilian Standard for Solid Waste Classification (NBR 10004). The extracts were analyzed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The chromatographic method was optimized using a factorial design. The combined results indicated that the best conditions were achieved using a mobile phase with a water/acetonitrile ratio of 35:65, a column temperature of 40 °C, and a flow rate of 1.0 mL/min, with a total analysis time of precision was evaluated on different days and the relative standard deviations were between 0.17 and 3.41 %. In relation to the accuracy, recovery values of 95 to 104 % were obtained. The detection and quantification limits were 0.18 and 0.50 mg/kg, respectively. None of the target cottons showed concentrations of fenitrothion above the limit of detection of 0.18 mg/kg.

  4. Huisvuilcompost en zuiveringsslib als organische meststoffen voor bouwlandgewassen op een zware rivierkleigrond in de Bommelerwaard, in vergelijking met stalmest, groenbemesting en turfmolm = Refuse compost and sewage sludge as organic manures for arable crops on a heavy fluviatile clay in the Bommelerwaard, compared with farmyard manure, green manure and peat moss

    NARCIS (Netherlands)

    Haan, de S.; Lubbers, J.

    1984-01-01

    In the period 1952-1980 experiments were carried out with potato, sugar beet and spring wheat grown in a fixed rotation. The parameters measured included chemical composition of the soil and of the organic materials applied, crop yields, underwater weight of potatoes and micro-elements (heavy metals

  5. Arable land increase in northern China: facts and findings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on investigations between 1986 and 1996 in the four provinces of northern China, major problems on land reclamation were discovered. The increase of arable land was mainly low quality fields from barren land and was susceptible to disertification and water-induced soil erosion. In the meantime, large area of grassland and forestland was lost or degraded, and original fertile arable land was occupied for residential and industrial use. As a result the environment deteriorated. This change was mainly caused by economic development, population growth, inferior natural conditions, and irrational management strategies. Finally some positive measures were suggested to stop this negative cycle.

  6. Financial benefit of using crop protection decision rules over systematic spraying strategies.

    Science.gov (United States)

    Fabre, F; Plantegenest, M; Yuen, J

    2007-11-01

    ABSTRACT Decision rule models are considered to be one of the main cornerstones of the implementation of integrated pest management (IPM) programs. Even if the need for such programs to offer cost advantages over conventional strategies is a major incentive for IPM adoption, few studies focus on this financial dimension. In this article, a modeling approach of the response of a pathosystem to a disease control method and of the predictive performance of decision rules is used to explore how some basic factors act on the likelihood of adoption of decision rule models strategies (such as using an IPM system) over systematic strategies (such as systematic-spraying and never-spraying strategies). Even if the average cost of using the decision rule strategies is always lower than the average cost of systematic strategies in several different scenarios, the models developed here showed strong effects of different pathosystems and decision rules on financial benefits. The number of production situations where decision rules are of interest is highly correlated with their accuracy. However, because of the inescapable trade-offs between decision rule accuracy and limiting factors such as its user-friendly characteristics, the use of decision rules is unlikely to reduce costs to <70% of the costs of systemic strategies. In more general terms, this study provides quantitative guidelines on the financial advantage that decision rules can offer in plant protection as well as a better understanding of their potential usefulness.

  7. Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Roncossek, Svenja Doreen; Heckrath, Goswin Johann;

    2014-01-01

    Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat at shoulder......Crop root residues are an important source of soil organic carbon (SOC) in arable systems. However, the spatial distribution of root biomass in arable systems remains largely unknown. In this study, we determined the spatial distribution of macro-root and shoot biomass of winter wheat...... to simulate or predict C dynamics and crop productivity should consider topography-controlled variations in root C input and SOC redistribution as well as their effects on soil properties, root growth and crop productivity....

  8. The Crop Journal: A new scientific journal for the global crop science community

    OpenAIRE

    Jianmin Wan

    2013-01-01

    As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their na...

  9. A RAINFALL SIMULATOR STUDY OF INFILTRATION INTO ARABLE SOILS

    NARCIS (Netherlands)

    WIERDA, A; VEEN, AWL

    1992-01-01

    Since Hortonian surface runoff is one possible mechanism for the fast transport of agricultural chemicals from arable soils to surface water, more information is needed on its significance in agricultural areas. The present study concerns the sandy soils of the Dutch Cover Sands area, and is based o

  10. Arable weed flora in the Western Siberian grain belt

    Directory of Open Access Journals (Sweden)

    Kämpf, Immo

    2016-02-01

    Full Text Available Between Ekaterinburg and Nowosibirsk, in the Western Siberian grain belt, spring wheat is grown on fertile Chernozem soils. Field and farm sizes are large but the land-use intensity per area is low compared to Central Europe. Fertilizers and pesticides are applied only in low to moderate quantities and yields range between 10 and 20 dt ha-1. We studied the arable weed flora in the northern forest steppe zone of Tyumen region using a randomized sampling design. Surprisingly, the species richness was only moderate, on average 9.8 ± 3.8 species per 100 m². Compared to weed communities of Bashkiria (Southern Ural and less intensively used arable land of Central Europe these numbers are rather low. Moreover, most of the recorded species were cosmopolitans or widely distributed throughout the temperate zone. We suggest that the land use intensity was high enough to reduce the density of a number of weed species in a way that they were not registered by our random sampling design. The limited conservational value of the weed vegetation of large grain fields in Tyumen leads to the conclusion that if intensification of land use is unavoidable, it should be directed to arable land and not to ex-arable land or ancient grassland, which is of higher conservation value.

  11. Purchase of Catastrophe Insurance by Dutch Dairy and Arable Farmers

    NARCIS (Netherlands)

    Ogurtsov, V.; Asseldonk, van M.A.P.M.; Huirne, R.B.M.

    2009-01-01

    This article analyzed the impact of risk perception, risk attitude, and other farmer personal and farm characteristics on the actual purchase of catastrophe insurance by Dutch dairy and arable farmers. The specific catastrophe insurance types considered were hail–fire–storm insurance for buildings,

  12. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document).

    Science.gov (United States)

    Zijlstra, Carolien; Lund, Ivar; Justesen, Annemarie F; Nicolaisen, Mogens; Jensen, Peter Kryger; Bianciotto, Valeria; Posta, Katalin; Balestrini, Raffaella; Przetakiewicz, Anna; Czembor, Elzbieta; van de Zande, Jan

    2011-06-01

    The possibility of combining novel monitoring techniques and precision spraying for crop protection in the future is discussed. A generic model for an innovative crop protection system has been used as a framework. This system will be able to monitor the entire cropping system and identify the presence of relevant pests, diseases and weeds online, and will be location specific. The system will offer prevention, monitoring, interpretation and action which will be performed in a continuous way. The monitoring is divided into several parts. Planting material, seeds and soil should be monitored for prevention purposes before the growing period to avoid, for example, the introduction of disease into the field and to ensure optimal growth conditions. Data from previous growing seasons, such as the location of weeds and previous diseases, should also be included. During the growing season, the crop will be monitored at a macroscale level until a location that needs special attention is identified. If relevant, this area will be monitored more intensively at a microscale level. A decision engine will analyse the data and offer advice on how to control the detected diseases, pests and weeds, using precision spray techniques or alternative measures. The goal is to provide tools that are able to produce high-quality products with the minimal use of conventional plant protection products. This review describes the technologies that can be used or that need further development in order to achieve this goal.

  13. Sustrates and nutrient solutions for obtaining pipper seedlings and its influences on the production in crops protected

    Directory of Open Access Journals (Sweden)

    Mairely Sarduy Díaz

    2016-10-01

    Full Text Available To achieve the productive success in the production of the pepper (Capsicum annum L. in protected crop is necessary to guarantee the quality of the seedlings. For that the objective of this investigation was to evaluate mixtures with crowd + coconut fiber and worm humus as substrates and three nutritious solutions for the production of seedlings of pepper and its later influence on the production. In the nursery phase an assay in a design totally randomized was used in factorial arrangement 32, being the factors, substrate and nutritious solution where variables of growth and development were evaluated, in 25 seedlings for treatment. In the experiment in field phase was given pursuit to the plants coming from the nine treatments of the nursery phase in a design at random blocks with four replicas, where components of the yield were evaluated in 10 plants by parcel and the yield in the total parcel. The data were processed by means of a variance analysis using the statistical package SPSS version 15. The employment of worm humus with the nutritious solution B and the humus with the crowd and coconut plus the application of the nutritious solutions A and B allows obtaining pepper seedlings with the established quality. These combinations stand out in the production phase for the percentage of flourishing plants, mass of the fruits and the yield, for that the employment of these substrates, constitute new alternatives for this technology.

  14. Evaluating the Sustainable Intensification of arable farms.

    Science.gov (United States)

    Gadanakis, Yiorgos; Bennett, Richard; Park, Julian; Areal, Francisco Jose

    2015-03-01

    Sustainable Intensification (SI) of agriculture has recently received widespread political attention, in both the UK and internationally. The concept recognises the need to simultaneously raise yields, increase input use efficiency and reduce the negative environmental impacts of farming systems to secure future food production and to sustainably use the limited resources for agriculture. The objective of this paper is to outline a policy-making tool to assess SI at a farm level. Based on the method introduced by Kuosmanen and Kortelainen (2005), we use an adapted Data Envelopment Analysis (DEA) to consider the substitution possibilities between economic value and environmental pressures generated by farming systems in an aggregated index of Eco-Efficiency. Farm level data, specifically General Cropping Farms (GCFs) from the East Anglian River Basin Catchment (EARBC), UK were used as the basis for this analysis. The assignment of weights to environmental pressures through linear programming techniques, when optimising the relative Eco-Efficiency score, allows the identification of appropriate production technologies and practices (integrating pest management, conservation farming, precision agriculture, etc.) for each farm and therefore indicates specific improvements that can be undertaken towards SI. Results are used to suggest strategies for the integration of farming practices and environmental policies in the framework of SI of agriculture. Paths for improving the index of Eco-Efficiency and therefore reducing environmental pressures are also outlined.

  15. Ecological Intensification Through Pesticide Reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming

    Science.gov (United States)

    Petit, Sandrine; Munier-Jolain, Nicolas; Bretagnolle, Vincent; Bockstaller, Christian; Gaba, Sabrina; Cordeau, Stéphane; Lechenet, Martin; Mézière, Delphine; Colbach, Nathalie

    2015-11-01

    Amongst the biodiversity components of agriculture, weeds are an interesting model for exploring management options relying on the principle of ecological intensification in arable farming. Weeds can cause severe crop yield losses, contribute to farmland functional biodiversity and are strongly associated with the generic issue of pesticide use. In this paper, we address the impacts of herbicide reduction following a causal framework starting with herbicide reduction and triggering changes in (i) the management options required to control weeds, (ii) the weed communities and functions they provide and (iii) the overall performance and sustainability of the implemented land management options. The three components of this framework were analysed in a multidisciplinary project that was conducted on 55 experimental and farmer's fields that included conventional, integrated and organic cropping systems. Our results indicate that the reduction of herbicide use is not antagonistic with crop production, provided that alternative practices are put into place. Herbicide reduction and associated land management modified the composition of in-field weed communities and thus the functions of weeds related to biodiversity and production. Through a long-term simulation of weed communities based on alternative (?) cropping systems, some specific management pathways were identified that delivered high biodiversity gains and limited the negative impacts of weeds on crop production. Finally, the multi-criteria assessment of the environmental, economic and societal sustainability of the 55 systems suggests that integrated weed management systems fared better than their conventional and organic counterparts. These outcomes suggest that sustainable management could possibly be achieved through changes in weed management, along a pathway starting with herbicide reduction.

  16. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    Science.gov (United States)

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.

  17. About the value of species diversity in arable weeds for weed management

    Directory of Open Access Journals (Sweden)

    Gerowitt, Bärbel

    2016-02-01

    Full Text Available Arable weeds accompany arable land use – we define them based on their affiliation to ar able systems. They are adapted to such a degree that most of them cannot exist without arable land use. Weeds are part of the total biodiversity on arable fields, as primary producers they are basic for important functions within the ecosystem. This paper elaborates the relevance of species diversity in arable weeds for their management. Arable systems can be regarded for the number of different methods for preventive and direct weed control which are realized. Historical arable land use is roughly divided into three periods, which differ concerning the diversity of weed management and the occurring diversity in weed species. Obviously divers weed management in arable systems and diversity in weed species depend on each other, this is illustrated with a simple abstract picture. Arable systems, which are characterised by simpleness, favor the domination of few species which ensure an effective use of the resources within the ecosystem. One consequence under continuous pressure of an overused tool in weed management is that the genetic diversity within a dominating weed population is exploited to ensure this resource use. Current herbicides represent this tool – the results are herbicide resistant biotypes within the weed populations. Species diversity in arable weeds as a rationale within arable production can assist to prevent this development.

  18. Integrating ecosystem services into crop protection and pest management: Case study with the soil fumigant 1,3-dichloropropene and its use in tomato production in Italy.

    Science.gov (United States)

    Deacon, Samantha; Alix, Anne; Knowles, Steve; Wheeler, James; Tescari, Enzo; Alvarez, Lara; Nicolette, Joseph; Rockel, Mark; Burston, Peter; Quadri, Giorgia

    2016-10-01

    Ecosystems provide the conditions for producing food, regulating water, and providing wildlife habitats; these, among others, are known as ecosystem services (ESs). Food production is both economically and culturally important to southern European farmers, particularly in Italy where farmers grow flavorsome tomatoes with passion and pride. Growers rely on pesticides for crop protection, the potential environmental impact of which is often questioned by regulators and other stakeholders. The European regulatory system for the approval of pesticides includes a thorough evaluation of risks to the environment and is designed to be protective of ecosystems. The consideration of ESs in environmental decision making is a growing trend, and the present case study provides an example of how ESs evaluation could be used to enhance agricultural practices and regulatory policy for crop protection. By attacking plant roots, nematodes may affect the growth and yield of fruit and vegetable crops, and the income earned by farmers at harvest time. Available solutions include chemical treatments such as 1,3-dichloropropene (1,3-D), physical treatments (solarization), and biological treatments (biofumigation). In order to characterize the risks and benefits associated with the use of 1,3-D in crop protection, ESs and socioeconomic analyses were applied to its use in the control of nematodes in tomato cultivation in southern Italy. The present study confirmed the benefits of 1,3-D to tomato production in Italy, with significant positive effects on production yields and farm income when compared to limited and transient potential impacts on services such as soil function. It was confirmed that 1,3-D allows farm income to be maintained and secures tomato production in these regions for the future. Integr Environ Assess Manag 2016;12:801-810. © 2016 SETAC.

  19. Structural and functional effects of conventional and low pesticide input crop-protection programs on benthic macroinvertebrate communities in outdoor pond mesocosms.

    Science.gov (United States)

    Auber, Arnaud; Roucaute, Marc; Togola, Anne; Caquet, Thierry

    2011-11-01

    The impacts of current and alternative wheat crop protection programs were compared in outdoor pond mesocosms in a 10-month long study. Realistic exposure scenarios were built based upon the results of modelling of drift, drainage and runoff of pesticides successively applied under two environmental situations characteristics of drained soils of northern France. Each situation was associated to two crop protection programs ("Conventional" and "Low-input") differing in the nature of pesticides used, number of treatments and application rate. Both programs induced significant direct negative effects on various invertebrate groups. Bifenthrin and cyprodynil were identified as the main responsible for these effects in conventional and low-input program, respectively. Indirect effects were also demonstrated especially following treatments with cyprodynil. Litter breakdown was significantly reduced in all treated mesocosms as the functional consequence of the decrease in the abundance of shredders (asellids, Gammarus pulex) illustrating the link between structural and functional effects of pesticides on macroinvertebrate communities. Recovery was observed for many taxa before the end of the study but not for the most sensitive non mobile taxa such as G. pulex. No influence of the agropedoclimatic situation on the effects was shown, suggesting than the main impacts were associated to inputs from drift. The results confirm that the proposed low-input program was less hazardous than the conventional program but the observed structural and functional impact of the low-input program suggest that further improvement of alternative crop protection programs is still needed.

  20. Patterns of bryophyte diversity in arable fields of Lithuania

    Directory of Open Access Journals (Sweden)

    Danguolė Andriušaitytė

    2013-03-01

    Full Text Available The paper presents research data on bryophyte diversity in arable land throughout the territory of Lithuania. The bryoflora was analyzed regarding systematic structure and morphological forms, life-history strategies, mode of reproduction and frequency of species. Bryophyte diversity in arable fields of Lithuania was compared with that of Slovakia and the British Isles, which are positioned in different geographical regions of Europe. A total of 97 species of bryophytes of 25 families and 48 genera were ascertained. Dominance of acrocarpous mosses and thalloid liverworts, high representation of Pottiaceae, Bryaceae, Mielichhoferiaceae and Ricciaceae families as well as Bryum, Dicranella, Pohlia and Riccia genera, wide distribution of annual shuttles and ephemeral colonists, high reproduction effort of the species (frequent sporophytes and asexual propagules were specific features of the bryophytes of the studied habitats as a result of adaptations to regular disturbances. The distribution of species into six frequency groups seemed to be uneven. The most abundant group of species with the lowest frequency (1–3 records covered 53.6% of all species. The group contained about 90% of all many-year potential life span species recorded in the habitat. Species with short life span were distributed quite evenly throughout frequency groups. No regionally-specific species were ascertained in the studied habitat. Most of arable-land-specific species recorded in Lithuania is distributed throughout different regions of Europe.

  1. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  2. Pests, diseases and crop protection practices in the smallholder sweetpotato production system of the highlands of Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Geoff M. Gurr

    2016-12-01

    Full Text Available Sweetpotato (Ipomea batatans is a food crop of global significance. The storage roots and foliage of crop are attacked by a wide range of pests and diseases. Whilst these are generally well controlled in developed countries using approaches such as clean planting material and monitoring with pheromone traps to guide insecticide use, research into methods suitable for developing countries has lagged. In Papua New Guinea (PNG, sweetpotato is grown extensively as a subsistence crop and commercial production as a cash crop is developing. We report results from a survey of 33 smallholder producers located in the Highlands of PNG where the crop is of particular importance. Surveys of interviewees’ crops showed high levels of pest and disease impact to foliage, stems and storage roots, especially in crops that were several years old. Weevils (Curculionidae were reportedly the most damaging pests and scab (caused by the fungus Elisnoe batatus the most damaging disease. Most producers reported root damage from the former and foliar damage from the latter but the general level of knowledge of pest and disease types was low. Despite the apparency of pest and disease signs and symptoms and recognition of their importance by farmers, a large majority of producers reported practiced no active pest or disease management. This was despite low numbers of farmers reporting use of traditional cultural practices including phytosanitary measures and insecticidal plants that had the scope for far wider use. Only one respondent reported use of insecticide though pesticides were available in nearby cities. This low level of pest and disease management in most cases, likely due to paucity in biological and technical knowledge among growers, hampers efforts to establish food security and constrains the development of sweetpotato as a cash crop.

  3. Biosafety management and commercial use of genetically modified crops in China.

    Science.gov (United States)

    Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming

    2014-04-01

    As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.

  4. Effect of storage conditions on losses and crop utilization of nitrogen from solid cattle manure

    NARCIS (Netherlands)

    Shah, G.M.; Shah, G.A.; Groot, J.C.J.; Oenema, O.; Raza, A.S.; Lantinga, E.A.

    2016-01-01

    The objectives of the present study were to quantify the effects of contrasting methods for storing solid cattle manure on: (i) total carbon (C) and nitrogen (N) balances during storage, and (ii) crop apparent N recovery (ANR) following manure application to arable land, with maize as a test crop

  5. Innovation and Diffusion of Site-specific Crop Management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2006-01-01

    Site-specific crop management or precision farming is a highly complex managementsystem for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS)is the backbone of the system. To conduct precision farming several technical systems...

  6. Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool.

    Science.gov (United States)

    Hooks, Cerruti R R; Fereres, Alberto

    2006-09-01

    Barrier plants are a management tool based on secondary plants used within or bordering a primary crop for the purpose of disease control. Aphid-transmitted viruses account for approximately 50% of the 600 known viruses with an invertebrate vector. Barrier plants may act as real natural sinks for non-persistent aphid-transmitted viruses and have proved in the past to be an effective crop management strategy to protect against virus infection. Increasing the knowledge on aphid host seeking and flying behaviour, and on how barrier plants may affect the behaviour of aphids and their natural enemies will allow further development of this environmentally-friendly habitat manipulation strategy. An ideal plant barrier should be a non-host for the virus and the vector, but appealing to aphid landing and attractive to their natural enemies and should allow sufficient residence time to allow aphid probing before taking-off occurs. In this review, we have addressed why aphids are manageable by barrier cropping, the mechanisms by which barrier plants affect the occurrence of non-persistently aphid-transmitted viruses and the limitations of using barrier plants as a virus control strategy. Finally, we have pointed out future directions of research that should be conducted to integrate barrier cropping with other disease management strategies, and optimise and extend the use of barrier plants as a strategy for managing aphid-transmitted virus diseases.

  7. Faba bean in cropping systems

    DEFF Research Database (Denmark)

    Steen Jensen, Erik; Peoples, Mark B.; Hauggaard-Nielsen, Henrik

    2010-01-01

    bean may prove to be a key component of future arable cropping systems where declining supplies and high prices of fossil energy are likely to constrain the affordability and use of fertilizers. This will help address the increasing demand by consumers and governments for agriculture to reduce its...... impact on the environment and climate through new, more sustainable approaches to food production. The aims of this paper are to review the role of faba bean in global plant production systems, the requirements for optimal faba bean production and to highlight the beneficial effects of faba bean...

  8. Assessment of Crop Damage by Protected Wild Mammalian Herbivores on the Western Boundary of Tadoba-Andhari Tiger Reserve (TATR), Central India

    Science.gov (United States)

    Bayani, Abhijeet; Tiwade, Dilip; Dongre, Ashok; Dongre, Aravind P.; Phatak, Rasika; Watve, Milind

    2016-01-01

    Crop raiding by wild herbivores close to an area of protected wildlife is a serious problem that can potentially undermine conservation efforts. Since there is orders of magnitude difference between farmers’ perception of damage and the compensation given by the government, an objective and realistic estimate of damage was found essential. We employed four different approaches to estimate the extent of and patterns in crop damage by wild herbivores along the western boundary of Tadoba-Andhari Tiger Reserve in the state of Maharashtra, central India. These approaches highlight different aspects of the problem but converge on an estimated damage of over 50% for the fields adjacent to the forest, gradually reducing in intensity with distance. We found that the visual damage assessment method currently employed by the government for paying compensation to farmers was uncorrelated to and grossly underestimated actual damage. The findings necessitate a radical rethinking of policies to assess, mitigate as well as compensate for crop damage caused by protected wildlife species. PMID:27093293

  9. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection.

    Science.gov (United States)

    Djami-Tchatchou, Arnaud T; Sanan-Mishra, Neeti; Ntushelo, Khayalethu; Dubery, Ian A

    2017-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.

  10. Humus form development of former arable soils under forest and fallow systems

    Science.gov (United States)

    Marcinkonis, Saulius

    2010-05-01

    Soil humus is a multi-component organic media and most dynamic part of soil, even humus amount itself under natural vegetation is relatively stable and predetermined by climatic conditions and landscape. Soil cultivation including common farming practices - mechanical soil tillage, use of mineral fertilizers (especially nitrogen) and ameliorants aimed to increase crop production. Agricultural soils beside many environmentally unfavorable more or less controlled processes of soil degradation (nutrient leaching, soil erosion) have unstable level and quality of soil humus (qualitative composition). These humus fluctuations are controlled through organic matter development processes - accelerating or inhabitation of mineralization and humification. During last decades economical drivers in Lithuania stimulated land uses changes (LUC) in less-favored farming areas with regions attributing to large proportions of low fertile soils, hilly landscape and ecological vulnerability. Prevailed types of LUC - arable land to grassland, land afforestration or land abandonment prompt agro ecosystems to return to land primeval state (under natural vegetation) and initial humus level through self-regulation. But listed transformations having own process drivers and prevailing soil humus development directions. Experimental field at the Voke branch of LIA was established (in 1995) and studies conducted with the aim to monitor soil properties transformation, to explore variation of soil quality under different stages of renaturalisation. The experiment was designed with four sites (treatments) on former arable land: 1) left as a cropland site (control) (I); 2) transformed to grassland (II); 3) uncultivated or transformed to fallow (III) and 4) pine afforested site (IV). Assuming 10 years of experimental results (1995-2004) it was concluded that transition of agricultural land characterized as complex of factors having strong effect on energy and nutrients turnover, however soil testing

  11. Halophytes As Bioenergy Crops.

    Science.gov (United States)

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  12. Distinct germination response of endangered and common arable weeds to reduced water potential.

    Science.gov (United States)

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species.

  13. 植物保护的发展现状与新世纪展望%Crop Protection:Current Progress and Prospects for the New Millennium

    Institute of Scientific and Technical Information of China (English)

    黄鸿章

    2000-01-01

    Protection of crops against disease, insect pests and weeds is vital in modern agriculture.Since the end of World War Ⅱ , numerous synthetic chemical pesticides have been developed and used successfully in the control of crop disease and pests. Several decades later, we have begun to realize the deleterious effects of chemical pesticides on the environment and recognize the need for alternative pest management technologies that are environmentally friendly and sustainable. This review focuses on advances of plant protection during the last half of the 20th century, with emphasis on problems associated with technological advancement and a discussion on prospects in plant protection in the new millennium.%植物保护是现代化农业生产体系中不可缺少的一环.自二次大战后,由于化学农药与肥料的急速发展与应用,使农业生产有突破性的进展.本文旨在回顾20世纪下半叶,植物保护的进展情形,植物保护科技应用所涉及的问题以及植物保护科技在新纪元里的发展趋势.

  14. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and physiological parameters in rats.

    Science.gov (United States)

    Srednicka-Tober, Dominika; Barański, Marcin; Gromadzka-Ostrowska, Joanna; Skwarło-Sońta, Krystyna; Rembiałkowska, Ewa; Hajslova, Jana; Schulzova, Vera; Cakmak, Ismail; Öztürk, Levent; Królikowski, Tomasz; Wiśniewska, Katarzyna; Hallmann, Ewelina; Baca, Elżbieta; Eyre, Mick; Steinshamn, Håvard; Jordon, Teresa; Leifert, Carlo

    2013-02-01

    Very little is known about the effects of an organic or conventional diet on animal physiology and health. Here, we report the effect of contrasting crop protection (with or without chemosynthetic pesticides) and fertilization (manure or mineral fertilizers) regimes on feed composition and growth and the physiological parameters of rats. The use of manure instead of mineral fertilizers in feed production resulted in lower concentrations of protein (18.8 vs 20.6%) and cadmium (3.33 vs 4.92 μg/100 g) but higher concentrations of polyphenols (1.46 vs 0.89 g/100 g) in feeds and higher body protein (22.0 vs 21.5%), body ash (3.59 vs 3.51%), white blood cell count (10.86 vs 8.19 × 10³/mm³), plasma glucose (7.23 vs 6.22 mmol/L), leptin (3.56 vs 2.78 ng/mL), insulin-like growth factor 1 (1.87 vs 1.28 μg/mL), corticosterone (247 vs 209 ng/mL), and spontaneous lymphocyte proliferation (11.14 vs 5.03 × 10³ cpm) but lower plasma testosterone (1.07 vs 1.97 ng/mL) and mitogen stimulated proliferation of lymphocytes (182 vs 278 × 10³ cpm) in rats. There were no main effects of crop protection, but a range of significant interactions between fertilization and crop protection occurred.

  15. Pheromone dispensers, including organic polymer fibers, described in the crop protection literature: comparison of their innovation potential.

    Science.gov (United States)

    Hummel, Hans E; Langner, S S; Eisinger, M-T

    2013-01-01

    Pheromone dispensers, although known in a variety of different designs, are one of the few remaining technical bottlenecks along the way to a sustainable pheromone based strategy in integrated pest management (IPM). Mating disruption with synthetic pheromones is a viable pest management approach. Suitable pheromone dispensers for these mating disruption schemes, however, are lagging behind the general availability of pheromones. Specifically, there is a need for matching the properties of the synthetic pheromones, the release rates suitable for certain insect species, and the environmental requirements of specific crop management. The "ideal" dispenser should release pheromones at a constant but pre-adjustable rate, should be mechanically applicable, completely biodegradable and thus save the costs for recovering spent dispensers. These should be made from renewable, cheap organic material, be economically inexpensive, and be toxicologically and eco-toxicologically inert to provide satisfactory solutions for the needs of practicing growers. In favourable cases, they will be economically competitive with conventional pesticide treatments and by far superior in terms of environmental and eco-toxicological suitability. In the course of the last 40 years, mating disruption, a non-toxicological approach, provided proof for its potential in dozens of pest insects of various orders and families. Applications for IPM in many countries of the industrialized and developing world have been reported. While some dispensers have reached wide circulation, only few of the key performing parameters fit the above requirements ideally and must be approximated with some sacrifice in performance. A fair comparison of the innovation potential of currently available pheromone dispensers is attempted. The authors advance here the use of innovative electrospun organic fibers with dimensions in the "meso" (high nano- to low micrometer) region. Due to their unique multitude of adjustable

  16. 2. symposium energy crops 2009; 2. Symposium Energiepflanzen 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-27

    Within the meeting '2nd Symposium energy plants 2009', held at 17th to 18th November, 2009, in Berlin (Federal Republic of Germany), the following lectures were held: (1) The bio energy policy of the Federal Government in the area of attention between climatic protection, ecology and economy (Ilse Aigner); (2) Chances and threatens of cultivation of energy plants for a sustainable energy supply (Alois Heissenhuber); (3) Certification as a prerequisite of the global exploration of bio energy (Andreas Feige); (4) A project support in the field of cultivation of energy plants, a review (Andreas Schuette); (5) Results from the investigation of the crop rotation in the EVA network (Armin Vater); (6) Optimisation of the cultivation technology of sorghum millets (Christian Roehricht); (7) The two-culture utilization system - a comparison between ecologic and conventional cultivation (Reinhold Stuelpnagel); (8) Crop rotation with energy plants - Chances and threatens for the plant protection (Baerbel Gerowitt); (9) Efficiency of utilization of water for energy plants (Siegfried Schittenhelm); (10) Utilization of arable food grasses and permanent grassland as a substrate for biogas (Matthias Benke); (11) Economical evaluation of plant fermentation substrates (Dominik Reus); (12) Energy plants as a challenge for the agricultural engineering (Heiner Bruening); (13) Influence of the design of cultivation on the subsequent effects of the cultivation of energy plants (Michael Glemnitz); (14) Energy plants and waters protection - Key aspects and possible options of action (Heike Nitsch); (15) Neophytes as energy plants - Chances and threatens (Werner Kuhn); (16) Manifold in te landscape - extensive cultivation systems with renewable raw materials as an option for nature protection? (Peer Heck); (17) Ecologic aspects of agro forestry systems (Holger Gruenewald); (18) Enhancement of the potential of energy yield of winter wheat (Wolfgang Friedt); (19) Interspersed silphie

  17. The effect of adjuvants and reduced rates of crop protection agents on weed infestation, health and lodging of spring barley (Hordeum sativum L.

    Directory of Open Access Journals (Sweden)

    Cezary A. Kwiatkowski

    2012-12-01

    Full Text Available A field experiment in the cultivation of spring barley was carried out in the period 2007-2009 at the Experimental Farm in Czesławice (central Lublin region on grey-brown podzolic soil derived from loess (soil quality class II. The study involved 3 rates of herbicides, growth retardant and fungicides (100%, 75%, 50% as well as different adjuvant types (oil, surface- active, mineral adjuvant. Plots without any adjuvant were the control treatment. Conventional tillage was used, while mineral fertilization was adjusted to high initial soil nutrient availability. A hypothesis was made that the reduction of pesticide rates by 25-50%, with the simultaneous addition of adjuvants, would allow health, weed infestation and lodging of spring barley to be maintained at a level similar to that obtained under the conditions when maximum rates are applied without any adjuvant. It was also assumed that particular adjuvants could show different interactions with the tested groups of crop protection agents. It was proved that the application of full recommended rates of pesticides gave the best values of the indicators relating to weed infestation, health and lodging of spring barley. However, thanks to the addition of adjuvants to the spray solution, the application of pesticide doses reduced by 25% produced similar results. A higher reduction of pesticide rates (by 50% had an adverse effect on the traits in question. In such case, there was noted higher weed infestation of the spring barley crop, compensation of some weed species, and increased stem-base infection by the fungal disease complex. On the other hand, less radical changes were observed in the case of spring barley lodging. The above-mentioned situation occurred in spite of the fact that the action of pesticides was aided by adjuvants. From the group of adjuvants under comparison, the oil adjuvant Atpolan 80 EC showed the best interaction with the crop protection agents under consideration.

  18. An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant–pathogen interactions for better crop protection.

    Directory of Open Access Journals (Sweden)

    Abdellah eBarakate

    2016-06-01

    Full Text Available Modern omics platforms have made the determination of susceptible/resistance genes feasible in any species generating huge numbers of potential targets for crop protection. However, the efforts to validate these targets have been hampered by the lack of a fast, precise and efficient gene targeting system in plants. Now, the repurposing of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/CRISPR-associated protein 9 (Cas9 system has solved this problem. CRISPR/Cas9 is the latest synthetic endonuclease that has revolutionised basic research by allowing facile genome editing in prokaryotes and eukaryotes. Gene knockout is now feasible at an unprecedented efficiency with the possibility of multiplexing several targets and even genome-wide mutagenesis screening. In a short time, this powerful tool has been engineered for an array of applications beyond gene editing. Here we briefly describe the CRISPR/Cas9 system, its recent improvements and applications in gene manipulation and single DNA/RNA molecule analysis. We summarise a few recent tests targeting plant pathogens and discuss further potential applications in pest control and plant–pathogen interactions that will inform plant breeding for crop protection.

  19. From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy.

    Science.gov (United States)

    Cellura, Maurizio; Ardente, Fulvio; Longo, Sonia

    2012-01-01

    In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling.

  20. Research Progress on Vegetable Soil Microbial Obstacles in Protected Cropping Systems%设施菜田土壤微生物学障碍研究进展

    Institute of Scientific and Technical Information of China (English)

    田永强; 王敬国; 高丽红

    2013-01-01

    单一种植(连作和简单轮作)和水肥高投入是我国设施蔬菜种植中的普遍现象,这使得设施菜田土壤极易出现微生物多样性下降、病原菌增多和寄生线虫为害等土壤微生物学障碍问题。土壤微生物学障碍已对我国设施蔬菜种植体系土壤的可持续利用构成了很大的威胁。土壤微生物是影响植物生长、进化进程和生产力的重要因素之一。目前我国有关设施菜田土壤微生物学障碍的研究已取得了显著的进展。但是,多数研究侧重于人为管理对土壤微生物学因子影响的一般性变化的了解,缺乏对土壤生态服务功能变化的深入研究。为此,本文阐述了国内外土壤微生物学障碍研究,并在此基础上概述了土壤微生物-作物互作的生态学效应,分析了设施菜田土壤微生物学障碍研究的关键点。此外,本文简要介绍了目前我国设施菜田土壤微生物学障碍调控的主要生态措施,并对未来深入揭示设施菜田土壤微生物学障碍的潜在成因的关键切入点提出了建议。%Simple cropping(including continuous cropping and simple rotation)and excessive water and fertilizer input are 2 common phenomenon in Chinese protected vegetable cultivation.This phenomenon results in the problems of soil biological obstacles:as reduction of microbial diversity of protected vegetable soil,increasing of microbial pathogens, and damage of plant-parasitic nematodes, etc.Soil microbial obstacles have greatly threatened the sustainable utilization of soils in protected vegetable production systems in China.Soil microbe is one of the important factors that influence the plant growth,evolutionary process and productivity.Currently studies on vegetable soil microbial obstacles in protected cropping system have made significant progress.However,most of the study efforts are mainly focused on the general changes of soil microbial communities responding to

  1. Towards domestication of Dimorphotheca pluvialis : Studies on the genetic improvement of a potential oilseed crop for industrial applications

    NARCIS (Netherlands)

    Hof, L.

    2000-01-01

    World-wide, but particularly in Western Europe and the USA, the interest in arable crops for non-food use has increased substantially over the past few decades. Surpluses of the major food crops and the industrial interest for renewable resources have led to research and development programmes aimin

  2. Basis for the development of a scenario for ground water risk assessment of plant protection products to banana crop in the frame work of regulation 1107/2009

    Science.gov (United States)

    Alonso-Prados, Elena; Fernández-Getino, Ana Patricia; Alonso-Prados, Jose Luis

    2014-05-01

    The risk assessment to ground water of pesticides and their main metabolites is a data requirement under regulation 1107/2009, concerning the placing of plant protection products on the market. Predicted environmental concentrations (PEC) are calculated according to the recommendations of Forum for the Co-ordination of pesticide fate models and Their Use (FOCUS). The FOCUS groundwater working group developed scenarios for the main crops in European Union. However there are several crops which grow under specific agro-environmental conditions not covered by these scenarios and it is frequent to use the defined scenarios as surrogates. This practice adds an uncertainty factor in the risk assessment. One example is represented by banana crop which in Europe is limited to sub-tropical environmental conditions and with specific agronomic practices. The Canary Islands concentrates the higher production of banana in the European Union characterized by volcanic soils. Banana is located at low altitudes where soils have been eroded or degraded, and it is a common practice to transport soil materials from the high-mid altitudes to the low lands for cultivation. These cultivation plots are locally named "sorribas". These volcanic soils, classified as Andosols according to the FAO classification, have special physico-chemical properties due to noncrystalline materials and layer silicates. The good stability of these soils and their high permeability to water make them relatively resistant to water erosion. Physical properties of volcanic clayey soils are strongly affected by allophone and Fe and Al oxyhidroxides. The rapid weathering of porous volcanic material results in accumulation of stable organo-mineral complexes and short-range-order mineral such as allophane, imogolite and ferrihydrite. These components induce strong aggregation that partly favors properties such as: reduced swelling, increased aggregate stability of clay minerals, high soil water retention capacity

  3. Evaluation of repeated bio disinfestation using Brassica carinata pellets to control Meloidogyne incognita in protected pepper crops

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Diaz, M. M.; Lacasa-Martinez, C. M.; Hernandez-Pinera, A.; Martinez-Alarcon, V.; Lacasa Plasencia, A.

    2013-06-01

    The nematode Meloidogyne incognita is responsible for substantial losses in greenhouse-grown peppers in southeastern Spain. This study evaluates the use of biodisinfestation (BS) (organic amendment + solarisation) as an alternative to using methyl bromide (MB) over three consecutive years to control the nematode in greenhouse conditions. Brassica carinata (BP) pellets or B. carinata (BP) + fresh sheep manure (M) were evaluated in treatments which began on two different dates (August and October) and the results were compared with MB-disinfested and untreated controls. During the third year, the gall index for BP was lower than that obtained for BP +M and in the August treatment than in the October treatment. The commercial crop of pepper fruit obtained with the biodisinfestation treatments begun in August was similar to or higher than that obtained with MB, and higher than that obtained with both October biodisinfestation treatments. The yield of the October biodisinfestation treatments was higher than that of the untreated one. In August of all the years studied, the accumulated exposure times were greater than the thresholds required to kill M. incognita populations at 15 cm depth. The incidence of the nematode did not correspond to the reduction achieved during solarisation, and seemed to increase during the crop cycle. Further studies should look at why high temperatures do not produce a sustained reduction in the populations of Meloidogyne incognita. (Author) 56 refs.

  4. The destination of arable land in a marginal agricultural landscape in South Portugal: an exploration of land use change determinants

    NARCIS (Netherlands)

    Doorn, van A.M.; Bakker, M.M.

    2007-01-01

    This research attempts to investigate what drives three conversions of arable land during the period 1985¿2000 in a marginal agricultural landscape in Southern Portugal: afforestation of arable land, abandonment of arable land and regeneration of the agro-silvo-pastoral system. This was done by expl

  5. 河北省耕地占用与GDP增长的脱钩分析%Decoupling Analysis between Arable Land Occupation and GDP Growth in Hebei Province

    Institute of Scientific and Technical Information of China (English)

    杨克; 陈百明; 宋伟

    2009-01-01

    With opening to the outside world, China' s economy has made signiciant progress during last three decades. Rapid growth of economy inevitably requires a large quantity of resources, particularly arable lands. Arable land plays an important role in ensuring food security. The conflict between protection of arable land and growth of economy will become more and more intense, which draws much concern from the world. The problem that a large quantity of high quality arable lands is being occupied by construction has been an issue on the sustainable development of the economy in China. The relationship between occupied arable land and growth of economy has therefore been a meaningful focus. Based on a theory of decoupling, the authors employed indices of decoupling proposed by the Organization for Economic Co-operation and Development (OECD) and the status of decoupling proposed by Tapio to develop a model of decoupling. Then, the elasticity of decoupling was calculated and a coordinate graph of decoupling degree was produced.. In particular, the authors investigated the relationship between occupied arable land and growth of economy in Hebei province, China, from 1988 to 2007. Also, we discussed the status of decoupling at different stages, analyzed the results and tried to find out reasons associated with arable land occupied in order to address the problems. It was concluded that at the first stage from 1990 to 1999, elasticity values of decoupling vary smoothly, changing from a kind of strong decoupling status to a re-coupling status. The pressure from arable land occupied by construction increased. At the second stage from 2000 to 2005, elasticity values of decoupling changed significantly, showing a transition from a strong decoupling to a re-coupling. The pressure from arable land occupied by construction first decreased significantly and then increased. At the third stage from 2006 to 2007, elasticity values of decoupling decreased, showing the status becoming

  6. The importance of regulatory data protection or exclusive use and other forms of intellectual property rights in the crop protection industry.

    Science.gov (United States)

    Carroll, Michael J

    2016-09-01

    In order for a chemical plant protection product to be authorised for sale a registration dossier has to be assembled to demonstrate safety and efficacy to the satisfaction of government regulators. These studies and tests are protected for a period of 10 years in Europe, North America and some other jurisdictions from the date of first product authorisation so that only the data owner can gain commercial benefit from the data. Subsequent regulatory reviews which require new studies should not result in further periods of regulatory data protection exclusive use for the new data but compensation should be payable to the data generator. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  7. Short rotation coppice improve the phosphorus (P) supply of arable land through translocation of P from subsoil to topsoil

    Science.gov (United States)

    Doering, K.; Kaupenjohann, M.

    2011-12-01

    Even if the agricultural use of P will not increase during the next decades, the stock of phosphorous (P) in global mineral deposits is predicted to last for only less than 50 to 100 years. This will cause a much more severe problem than the shortage of fossil energy because P as an element essential to all life is not substitutable through any other material. Thus, efforts have to be made to close the P-cycle and it will in the near future be no more justifiable to disperse P or dump it at places where it cannot be recovered from. Additionally, new resources of P have to be explored to cover increasing P demand and to compensate for inevitable losses. Subsoil, which is hardly explored by arable crops may contain such P reserves. Deep rooting perennial plants like trees have access to these P resources and may be used to introduce subsoil P into the agricultural P cycle. Using literature data we followed the question to what extent the introduction of short rotation coppice of energy - Populus, Salix and Robinia into the agricultural crop rotation could support the P supply to annual food crops. Leaf litter of Populs, Salix and Robinia will transfer 3 to 13, 5 to 12 and 5 to 12 kg P and ha-1 a-1 to the soil surface, respectively. The large variation is mainly explained by site conditions (soil and climate). Assuming that 30 % of the nutrient requirement of the trees is assimilated from the subsoil, 1 to 5 kg of P ha-1 a-1 may be translocated to the topsoil. The knowledge about root content of P of the three tree species is very scarce. Based on information about other broadleaf trees, we consider that root litter may transfer amounts of P to the topsoil similar to leaf litter. Thus, in total the annual translocation of subsoil-P to the topsoil may range between 2 to 10 kg ha-1 in short rotation plantations. These amounts are far below the annual P removal from soils through food crops which may range from 20 to 40 kg P ha-1 a-1. Therefore subsoil P cannot replace P

  8. Process and mechanism of arable land change in Hebei Province during the past 50 years

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hebei Province is one of the regions with most densely population, fastest economic growth and most intensive land use in China. The contradiction of land shortage sharpened by high-speed economic development with population growth has become a serious problem, which has restricted regional sustainable development. This paper revealed the basic process, regional differences of change and the gravity center of arable land area according to the long-series statistical data of arable land during the past 50 years. On the basis of the above mentioned, the major driving forces that influence the changes of the arable land are discussed. The research results indicate that there is a trend of obvious fluctuating decrease in arable land area during the last 50 years. The changes of aruble land area undergo the process from increase to sharp decrease to gently decrease.The regional disparity of change in arable land area is very notable and the gravity center of arable land area moves to the northeast 49.22 km. Regarding the decrease in arable land, the direct driving forces include adjustments of agricultural structure and reclamation, and indirect driving forces include advance in technology, economic interest and population growth etc.

  9. Evaluation of biological nematicides on the control of root-knot nematode (Meloidogyne incognita Chitwood at protected crops house in tomato (Lycopersicon esculentum Mill.

    Directory of Open Access Journals (Sweden)

    Pedro Fidel Fuentes Chaviano

    2011-06-01

    Full Text Available This research was carried out on Tomato (Lycopersicon esculentum Mill. variety HA 3105 at the protected crops houses in Empresa Azucarera Melanio Hernández of Sancti Spiritus, located at the southwest of Tuinucú, from November 2009 to May 2010 with the objective of evaluating the effectiveness of biological nematicides on the control of the root-knot nematode, Meloidogyne incognita Chitwood. Three treatments were used: Agrocelhone, biological nematicide HeberNem and HeberNem + Trichoderma. Biological nematicides showed better results than Agrocelhone regarding the length of the leaf, the height of the plant, the yield of tomato and the control of nematodes HeberNem showed the best results in the control of the nematode, decreasing the infestation from degree V to degree II.

  10. Weed infestation of crops in different soils in the protective zone of Roztocze National Park. Part I. Winter and spring cereals

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of crops in different soils in the protective zone of RPN was conducted in the years 1991-1995. The characterization of weed infestation of winter and spring cereals was based on 306 phytosociological records. made with the use of Braun-Blanquet method. The degree of weed infestation in the fields in the protective zone of RPN depended on environment conditions. Both winter and spring cereals in majority of soils were most infested by: Cenaturea cyanus, Apera spica-venti and Vicia hirsta. In the lightest podsolic soils, made of loose sand and slightly loamy sand. winter and spring cereals were additionally infested by Equisetum arvense and two acidophylic species: Seleranthus annuus and Spergula arvensis. The crops in brown loess soil were infested by Matricaria maritima subsp. inodora. The most difficult weed species in brown soil formed from gaizes and limestone soil were: Convolvulus arvensis, Papaver rhoeas and Galium aparine. Moreover winter cercals in limestone soil showed high or medium infestation with Consolida regalis, Aethusa cynapium, Lathyrus tuberosus and low infestation with Apera spica-venti and Centaurea cyanus. Spring cereals were less infested than winter cereals. Apera spica-venti and Centaurea cyanus were less common with spring cereals than with winter cereals. Also, spring cereals showed high or medium infestation with Convolvulus arvensis. Spring cereals in some soil units were infested by Chenopodium album and Stellaria media. There was also higher infestation of spring cereals in limestone soils with Avena fatua, Veronica persica, Sinapis arvensis and Sonchus arvensis, compared to winter cereals in limestone soils.

  11. Assessment of leaching loss estimates and gross load of nitrogen from arable land in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Markus (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences)

    1999-01-01

    The focus of this thesis is on calculating N leaching loss estimates and gross loads of nitrogen. Calculations were done at two different scales, from field resolution in a small catchment to calculations at a large scale for the south and central part of Sweden. The latter study was initiated by Swedish commitments to international agreements concerning a decrease in N emissions to the Baltic Sea. Three of the papers deal with leaching of nitrogen in different periods: as it may have been in the 19[sup th] century, the current situation, and suggestions for a decrease with different countermeasures. The tools used in making these estimations were the SOIL/SOILN models. Calculations indicate that average N leaching was about the same in the 19[sup th] century as it is today at the end of the 20[sup th] century. The main reasons for high losses in the 19[sup th] century were high mineralisation rates in newly ploughed grassland, crop stress due to unfavourable conditions caused poor utilisation of N by crops, and large areas of bare fallow. N leaching was at its lowest in the 1930's due to larger N utilisation, a general termination of enhanced mineralisation and a large acreage of ley. Since then leaching has increased by on average about 60%, and more in the south of Sweden. Results also indicate that the draining of lakes has considerably decreased the retention capacity and is, along with the increase in gross load, one of the main causes of increased net load to the sea. A decrease in N leaching was estimated for the period 1985-1994. The decrease was mostly due to a smaller total area of arable land and an increase in the acreage of ley at the expense of cereals. The increase in the percentage of ley in the ten-year period (1985-1994) was the largest occurring in such a short time in the last 130 years in Sweden. Scenario calculations indicate that there is a potential for a decrease in the gross load of approximately 10 ktonnes from the current level of

  12. Tolerância da cultura do tomate à salinidade do solo em ambiente protegido Tolerance of tomato crop to salinity of soil in protected ambient

    Directory of Open Access Journals (Sweden)

    Pedro R. F. Medeiros

    2012-01-01

    Full Text Available Com o intuito de contribuir com os dados disponíveis na literatura sobre tolerância das culturas à salinidade do solo oriunda de sais fertilizantes, o presente trabalho tem, como objetivo, determinar a tolerância da cultura do tomate a salinidade do solo, a partir de dois manejos de fertirrigação e seis níveis iniciais de salinidade (1,0; 2,0; 3,0; 4,0; 5,0 e 6,0 dS m-1 a partir das variáveis produção e componentes de produção, em ambiente protegido com solo franco-argiloso. O experimento foi realizado no Departamento de Engenharia de Biossistemas da ESALQ/USP, Piracicaba,SP. O delineamento estatístico foi aleatorizado em blocos, com 4 repetições, concluindo que a produção e os componentes de produção da cultura do tomate foram afetados estatisticamente, tanto pelo tipo de manejo de fertirrigação quanto pelos níveis de salinidade do solo, com redução na tolerância da cultura do tomate, passando a ser classificada sensível à salinidade do solo.In order to contribute to data available in the literature on tolerance of crops to soil salinity derived from fertilizer salts, the present study aims to determine the tolerance of tomato crop to the soil salinity, based on two managements of fertirrigation and six initial levels of salinity (1.0; 2.0; 3.0; 4.0; 5.0 and 6.0 dS m-1 from the variables production and components of production, in a protected environment with sandy-clay soil. The experiment was conducted at the Department of Biosystems Engineering of ESALQ/USP, Piracicaba/SP. The experimental design was in randomized blocks, with 4 repetitions. Concluding that the production and the components of production of tomato crop were significantly affected both by the type of management of fertirrigation and by the levels of soil salinity, with a reduction in the tolerance of tomato crop, being classified as sensitive to soil salinity.

  13. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.

    Science.gov (United States)

    Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra

    2013-01-01

    Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential interactions with several insect midgut proteins that facilitate the formation of an oligomeric structure and induce its insertion into the membrane, forming a pore that kills midgut cells. We review recent progress in our understanding of the mechanism of action of these Cry toxins and focus our attention on the different mechanisms of resistance that insects have evolved to counter their action, such as mutations in cadherin, APN and ABC transporter genes. Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, including those affected in the ABC transporter and the role of dominant negative mutants as antitoxins, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity. Knowledge of the action of 3d-Cry toxin and the resistance mechanisms to these toxins will set the basis for a rational design of novel toxins to overcome insect resistance, extending the useful lifespan of Cry toxins in insect control programs.

  14. Real-time monitoring of nitrate transport in the deep vadose zone under a crop field - implications for groundwater protection

    Science.gov (United States)

    Turkeltaub, Tuvia; Kurtzman, Daniel; Dahan, Ofer

    2016-08-01

    Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed - in real time - a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection-dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.

  15. Spatial Distribution of Fungal Communities in an Arable Soil

    Science.gov (United States)

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  16. Spatial Distribution of Fungal Communities in an Arable Soil.

    Directory of Open Access Journals (Sweden)

    Julia Moll

    Full Text Available Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a ploughed soil in 0-10 cm, b rooted soil in 40-50 cm, c root-free soil in 60-70 cm soil depth and d maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit, occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment.

  17. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil.

    Science.gov (United States)

    Bol, Roland; Poirier, Natacha; Balesdent, Jérôme; Gleixner, Gerd

    2009-08-30

    The composition and molecular residence time of soil organic matter (SOM) in four particle-size fractions (POM >200 microm, POM 63-200 microm, silt and clay) were determined using Curie-point pyrolysis/gas chromatography coupled on-line to mass spectrometry. The fractions were isolated from soils, either continuously with a C(3) wheat (soil (13)C value = -26.4 per thousand), or transferred to a C(4) maize (soil (13)C value = -20.2 per thousand) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20-300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant-derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo-mineral interactions. Selective preservation of plant-derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. 'truly' stabilized, or potentially still 'labile' but just not accessible C).

  18. On arable land changes in Shandong Province and their driving forces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The decrease of total cultivated area and the lower per capitaavailable arable land resource are now serious problems in Shandong Province, a major agricultural province in China. These problems will become more serious along with the further development of economy. In this paper,based on the statistical information at provincial and county levels, the changes of arable land in Shandong Province and their driving forces during the last 50 years are analyzed. The general changing trends of arable land and per capita available arable land are reducing, and the trends of decrease will continue when the economy is developing. The result of GIS spatial analysis shows that the change of the arable land use in Shandong Province has a regional difference. Eight variables having influences on cultivated land change are analyzed by principal component analysis. The results show that the dynamic development of economy, pressure of social system and progress of scientific techniques in agriculture are the main causes for cultivated land reduction. The principal factors which can be considered as driving forces for arable land change include per capita net living space, total population and per ha grain yield. By using regressive equation, along with analysis on population growth and economic development, cultivated areas in Shandong Province in 2005 and 2010 are predicted respectively. The predicted cultivated areas in Shandong will be 6435.47 thousand hain 2005 and 6336.23 thousand ha in 2010 respectively.

  19. Comparative Analysis on Eco-Efficiency of Arable Land Ecological Footprint in Hubei

    Institute of Scientific and Technical Information of China (English)

    CHENG Bihai; WANG Qing; LIU Jianxing

    2006-01-01

    This paper uses the ecological footprint model to make comparison of the eco-efficiency of arable land ecological footprint in different years in Hubei Province, and makes comparison of that in Hubei and some countries. The results indicate that, since 1965, the eco-efficiency of arable land ecological footprint in Hubei has been improved year by year. However, the efficiency of arable land ecological footprint, compared with some other areas in the world, is much lower. In 1965, average eco-efficiency of world arable land ecological footprint is 3 421 US dollar/hm2 while that of Hubei Province is 134 US dollar/hm2, about 1/26 of the world's average level. The eco-efficiency of arable land ecological footprint for 2003 in Hubei Province, however, has become about 1/9 of the world's average level for the same year. Finally the author puts forward the ways to raise the eco-efficiency of arable land ecological footprint.

  20. Two-spotted spider mite and its natural enemies on strawberry grown as protected and unprotected crops in Norway and Brazil.

    Science.gov (United States)

    Castilho, Raphael C; Duarte, Vanessa S; de Moraes, Gilberto J; Westrum, Karin; Trandem, Nina; Rocha, Luiz Carlos D; Delalibera, Italo; Klingen, Ingeborg

    2015-08-01

    Cultivation of strawberry in plastic tunnels has increased considerably in Norway and in southeastern Brazil, mainly in an attempt to protect the crop from unsuitable climatic factors and some diseases as well as to allow growers to expand the traditional production season. It has been hypothesized that cultivation under tunnels could increase the incidence of one of its major pests in many countries where strawberry is cultivated, including Norway and Brazil, the two spotted spider mite, Tetranychus urticae. The objective of this study was to evaluate the effect of the use of tunnels on the incidence of T. urticae and on its natural enemies on strawberry in two ecologically contrasting regions, Norway (temperate) and southeastern Brazil (subtropical). In both countries, peak densities of T. urticae in tunnels and in the open fields were lower than economic thresholds reported in the literature. Factors determining that systematically seem to be the prevailing relatively low temperature in Norway and high relative humidity in both countries. The levels of occurrence in Norway and Brazil in 2010 were so low that regardless of any potential effect of the use of tunnel, no major differences were observed between the two cropping systems in relation to T. urticae densities. In 2009 in Norway and in 2011 in Brazil, increase in T. urticae population seemed to have been restrained mainly by rainfall in the open field and by predatory mites in the tunnels. Phytoseiids were the most numerous predatory mite group of natural occurrence on strawberry, and the prevalence was higher in Brazil, where the most abundant species on strawberry leaves were Neoseiulus anonymus and Phytoseiulus macropilis. In Norway, the most abundant naturally occurring phytoseiids on strawberry leaves were Typhlodromus (Anthoseius) rhenanus and Typhlodromus (Typhlodromus) pyri. Predatory mites were very rare in the litter samples collected in Norway. Infection rate of the pest by the fungus Neozygites

  1. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  2. Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production.

    Science.gov (United States)

    Brueggeman, Andrew J; Kuehler, Daniel; Weeks, Donald P

    2014-09-01

    Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides.

  3. State and trends of oil crops production in China

    Directory of Open Access Journals (Sweden)

    Yang Tiankui

    2016-11-01

    Full Text Available This paper attempts to present a full picture of current situation and future trends of Chinese oil crop production. The total oil crop production remained broadly constant during 2011–2014. The top three oil crops are soybean, peanut and rapeseed, together accounting for more than 70% of total oil crop production. The area under cultivation and the production of peanuts will keep steadily increasing because most Chinese like its pleasant roasted flavor. Because of their high content in polyunsaturated fatty acids and the natural minor functional components in their oils, more attention is being paid to sunflower seed and rice bran. The diminishing availability of arable land and concern over the security of edible oil supplies is driving both a change in cultivation structure of crops and improvements in the efficiency of oilseed production in China.

  4. The Dynamic Change in the Total Arable Land and its Driving Forces in Tongling City of Anhui Province

    Institute of Scientific and Technical Information of China (English)

    Yan; LI; Zhongxiang; YU

    2014-01-01

    According to Anhui Statistical Yearbook( 2003-2012) and the second national land survey data,this article analyzes the current situation of land use and the dynamic change in the total arable land in Tongling City. On the basis of this,using grey relational analysis,this article analyzes the driving forces for arable land changes in Tongling City. Studies show that population growth,the improvement of level of urbanization and the rapid development of the economy are the main driving forces for arable land changes. Based on the findings,the strategies are put forth in order to ensure the dynamic balance of total arable land.

  5. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China.

    Science.gov (United States)

    Xu, Yueqing; McNamara, Paul; Wu, Yanfang; Dong, Yue

    2013-10-15

    Arable land in China has been decreasing as a result of rapid population growth and economic development as well as urban expansion, especially in developed regions around cities where quality farmland quickly disappears. This paper analyzed changes in arable land utilization during 1993-2008 in the Pinggu district, Beijing, China, developed a multinomial logit (MNL) model to determine spatial driving factors influencing arable land-use change, and simulated arable land transition probabilities. Land-use maps, as well as social-economic and geographical data were used in the study. The results indicated that arable land decreased significantly between 1993 and 2008. Lost arable land shifted into orchard, forestland, settlement, and transportation land. Significant differences existed for arable land transitions among different landform areas. Slope, elevation, population density, urbanization rate, distance to settlements, and distance to roadways were strong drivers influencing arable land transition to other uses. The MNL model was proved effective for predicting transition probabilities in land use from arable land to other land-use types, thus can be used for scenario analysis to develop land-use policies and land-management measures in this metropolitan area.

  6. Quantitative Study on the Relationship between Arable Land and Its Influencing Factors in Southern Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    Bin; GUO; Lin; PEI

    2015-01-01

    With the Southern Loess Plateau as the object of study,we select the nonbiological factors( physical factors),biological factors and human factors that affect the landscape of arable land to build indicator system. Using GIS,we perform the visualization expression and hierarchical storage of influencing factors to build 1 km × 1 km integrated vector and raster database of arable land landscape pattern and its influencing factors. Using spatial regression analysis,we determine the quantitative relationship between arable land landscape and its influencing factors. The results show that the arable land in the Southern Loess Plateau is mainly distributed in the regions with high temperature,great average annual precipitation,high altitude,high soil N content,small slope,GDP per unit area of land,low ≥10℃ accumulated temperature,and short distance away from the rivers and roads. The study provides a scientific basis for clarifying the relationship between arable land landscape and its influencing factors.

  7. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alexander; Leonhartsberger, Christian; Amon, Barbara; Amon, Thomas [University of Natural Resources and Applied Life Sciences, Division of Agricultural Engineering, Vienna (Austria); Boesch, Peter; Friedl, Anton [Vienna University of Technology, Vienna (Austria)

    2010-04-15

    Currently an increasing demand for renewable energy can be observed. A part of this demand could be covered by the production of energy from agrarian biomass. Due to the limited availability of arable land, food and feed production are starting to compete for agrarian resources. A way out of this dilemma is to develop concepts that are based on otherwise unused agrarian biomass like straw and include new technologies for the fermentation of lignocellulosic biomass. In this paper, the energy potentials of two different cropping systems are compared. In the energy-based crop rotation system all crops were used either for biogas or ethanol production. In the biorefinery-based approach, the various crops were used in cascades for the production of food as well as feed. Experimental laboratory work and field trials were combined to calculate energy and biomass yields of the crops under investigation. The results demonstrate that steam explosion pretreatment of wheat straw led to a 30% increase in the specific methane yield. The calculated energy output of the biorefinery-based crop rotation system amounted to a total of 126 GJ ha{sup -1} year{sup -1}. Extrapolating this energy output to the total arable land of the EU-27 member states, 13,608 PJ of energy could be produced. Therefore, biorefinery-based crop rotation systems could provide approximately three times more energy to the European population than energy-based crop rotation systems. (orig.)

  8. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.

  9. The PIP training programme: building of ACP experts capacities in crop protection and food safety to support local companies to comply with EU regulations on pesticides residues.

    Science.gov (United States)

    Schiffers, B C; Schubert, A; Schiffers, C; Fontaine, S; Gumusboga, N; Werner, B; Webb, M; Lugros, H; Stinglhamber, G

    2006-01-01

    Regulatory requirements, and in particular phytosanitary quality standards change rapidly. As ACP producers/exporters race to become more competitive, to keep their market share and to satisfay their customers' commercial demands (e.g. EUREP-GAP certification), the need for competent staff who are aware of the company's quality objectives and trained to follow instructions is crucial. Mastering sanitary quality is only possible if matched with a programme to build the skills of companies' human resources. The Pesticide Initiative Programme (PIP), mindful of the importance of making operators autonomous and of training them to monitor EU food safety regulations and technology on their own, has successfully developed a training programme while building a quality network of local/ACP service providers. By building the capacities of ACP experts and then securing their services as trainers, PIP also guarantees companies' access to expertise and the sustainability of their efforts to comply with new EU regulations. The training strategy developed by PIP rests on two pilars: instructor training and collective training. Instructor training consists in reinforcing the technical knowledge of local experts (agronomists, hygienists, etc.) by providing them with active teaching methods. Once the ACP experts have gained enough technical knowledge of the key areas of crop protection--mainly pesticides management--and food safety, and have demonstrated their capacity to train the technical staff of local companies, the PIP has carried out a collective training programme in 2004, 2005 and 2006. To date, more than 130 consultants covering about 15 ACP countries have received instructor training, and more than 700 people have participated in collective and in-company training sessions.

  10. Application of target partial least squares for analysis of Fourier transform infrared-attenuated total reflection hyperspectral images for characterization of the distribution of crop protection products on the leaf surface.

    Science.gov (United States)

    Budevska, Boiana O

    2009-09-01

    Target partial least squares (PLS) is applied to Fourier transform infrared-attenuated total reflection (FT-IR-ATR) hyperspectral images of plant leaf surface treated with crop protection products. Detection of active ingredient is demonstrated at application rates of 50 g active ingredient per hectare. This sensitivity could not be achieved without the application of multivariate analysis. Quantitative information appears to be easily recovered through analysis of combined images with known and unknown amounts of active ingredient.

  11. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    Science.gov (United States)

    Replacing fossil fuel with biofuel is environmentally viable only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level bal...

  12. Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil

    NARCIS (Netherlands)

    Vermeulen, G.D.; Mosquera Losada, J.

    2009-01-01

    Some organic arable and vegetable farms in the Netherlands use cm-precise guidance of machinery to restrict wheel traffic to fixed traffic lanes and to achieve non-trafficked cropping zones with optimized soil structure in between the lanes. Contrary to controlled traffic farming (CTF) the traffic l

  13. The impact of management and climate on soil nitric oxide fluxes from arable land in the Southern Ukraine

    Science.gov (United States)

    Medinets, Sergiy; Gasche, Rainer; Skiba, Ute; Medinets, Volodymyr; Butterbach-Bahl, Klaus

    2016-07-01

    NO fluxes from soils are a significant source for tropospheric NOx, though global and regional estimates of the soil source strength are constrained by the paucity of measurements. In a continuous 18 month effort (2012-2014) soil NO fluxes from an intensively managed arable site in the black soil region of the Southern Ukraine (Odessa region) were measured using an automated dynamic chamber system. Measurements revealed three periods of peak NO emissions (fertigation, re-wetting of soils, and to a lower extend during winter), with a pulse emission peak during soil re-wetting in summer of 88.4 μg N m-2 h-1. The mean annual NO flux was 5.1 ± 8.9 μg N m-2 h-1 and total annual NO emissions were 0.44 ± 0.78 kg N ha-1 yr-1. The fertilizer induced emission factor for NO was 0.63% under beetroot. The combined effect of soil temperature, soil moisture and soil DIN (NH4+ and NO3-) concentrations were identified as drivers of the temporal and spatial variability of soil NO fluxes. This work shows that long-term measurements are needed for estimating annual fluxes and the importance of soils as a source for tropospheric NOx as the contribution of different seasons and crop growing periods to the annual budget differed markedly.

  14. CROPS Clever Robots for Crops

    NARCIS (Netherlands)

    Bontsema, J.; Hemming, J.; Pekkeriet, E.J.

    2015-01-01

    In the EU-funded CROPS project robots are developed for site-specific spraying and selective harvesting of fruit
    and fruit vegetables. The robots are being designed to harvest crops, such as greenhouse vegetables, apples,
    grapes and for canopy spraying in orchards and for precision target sp

  15. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  16. Soil organic 14C dynamics: effects of pasture installation on arable land

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Plicht, van der J.; Hassink, J.

    1998-01-01

    In a study addressing composition and recovery of soil carbon following pasture installation on arable land, radiocarbon isotope ratios were measured in size-and density-separated soil organic matter (SOM) fractions in a pasture and maize plot. The average soil carbon age increased with depth from 4

  17. Soil organic (14)C dynamics : Effects of pasture installation on arable land

    NARCIS (Netherlands)

    Romkens, P.F A M; Hassink, J; van der Plicht, Johannes

    1998-01-01

    In a study addressing composition and recovery of soil carbon following pasture installation on arable land, radiocarbon isotope ratios were measured in size- and density-separated soil organic matter (SOM) fractions in a pasture and maize plot. The average soil carbon age increased with depth from

  18. The role of production risks in the conversion to more sustainable arable farming

    NARCIS (Netherlands)

    Buck, de A.J.

    2001-01-01

    The objective of the research described in this thesis was to determine the role of production risks in the conversion to more sustainable production systems of arable farming in The Netherlands. More specifically, the research goals were: (1) to specify the typical production risks that prevent far

  19. Sensitive indicators of side-effects of pesticides on the epigeal fauna of arable land.

    NARCIS (Netherlands)

    Everts, J.W.

    1990-01-01

    The main objective of the present study was to evaluate the possible impact of pesticides on epigeal arthropods in arable land. It was also envisaged to develop a predictive model for possible undesirable effects of pesticides on the epigeal arthropod fauna using an indicator species from the field.

  20. Change We Can Fight Over: The Relationship between Arable Land Supply and Substate Conflict

    Science.gov (United States)

    2010-01-01

    experienced a period of arable land growth, followed by a sudden plateau (or cliff) in that trajectory . One could imagine a study structured quite similarly...Conflict. Respect: Sudanese Journal for Human Rights, Culture and Issues of Cultural Diversity 1, 1-25. Theisen, Ole Magnus . 2008. Blood and Soil

  1. Projekt OK-NET-ARABLE : mahetootmiseks vajalik teave tuleb tuua praktikuteni / Airi Vetemaa

    Index Scriptorium Estoniae

    Vetemaa, Airi

    2015-01-01

    OK-NET-ARABLE, mida võiks tõlkida kui põllukultuuride kasvatuse alast maheteabe võrgustikku, on ELi teadusrahastu Horisont 2020 projekt, mille eesmärk on vahendada innovaatilist ja traditsioonilist teavet mahetootjate, nõustajate ja teadlaste vahel, suurendamaks mahepõllukultuuride produktiivsust ja kvaliteeti üle Euroopa

  2. Biodiversity of soil biota and plants in abandoned arable fields and grasslands under restoration management

    NARCIS (Netherlands)

    Brussaard, L.; Bakker, J.P.; Olff, H.

    1996-01-01

    The currently widespread abandoning of agricultural land use in Western Europe offers new opportunities for ecological restoration and nature conservation. This is illustrated for abandoned arable fields and for permanent grasslands cut for hay after the cessation of fertilizer application. Although

  3. Functional agro biodiversity in Dutch arable farming: results of a three year pilot

    NARCIS (Netherlands)

    Rijn, van P.A.; Alebeek, van F.A.N.; Belder, den E.

    2008-01-01

    A pilot on 400 ha of Dutch arable farms during 2004-2007 perennial grassy field margins and functional annual flower strips were created on potato and wheat fields. Monitoring information on pests and natural enemies was directly communicated to the farmers to support pest management decisions. Due

  4. Effect of vegetation manipulation of abandoned arable land on soil microbial properties

    NARCIS (Netherlands)

    Maly, S.; Korthals, G.W.; Van Dijk, C.; Van der Putten, W.H.; De Boer, W.

    2000-01-01

    The effect of vegetation composition on various soil microbial properties in abandoned arable land was investigated 2 years after agricultural practice had terminated. Microbial numbers and processes were determined in five replicate plots of each of the following treatments: continued agricultural

  5. Species richness and weed abundance in the vegetation of arable field boundaries.

    NARCIS (Netherlands)

    Kleijn, D.

    1997-01-01

    In the modem arable landscape, the vegetation of perennial field boundaries have important ecological functions such as providing a habitat for farmland wildlife, providing overwintering sites for predatory insects, providing movement corridors, reducing soil erosion and acting as an agrochemical bu

  6. Analysing Profits and Economic Behaviour of Organic and Conventional Dutch arable farms

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Jensma, K.

    2003-01-01

    This paper uses a micro-econometric model to analyse differences in variable profits and economic behaviour between organic and conventional arable farms. Insight in factors underlying these differences is essential in designing policy measures that aim at encouraging the transition to a more sustai

  7. Nitrate leaching and residual effect in dairy crop rotations with grass-clover leys as influenced by sward age, grazing, cutting and fertilizer regimes

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Askegaard, Margrethe; Rasmussen, Jim;

    2015-01-01

    Intensive dairy farming, with grass-arable crop rotations is challenged by low N use efficiency that may have adverse environmental consequences. We investigated nitrate leaching and N fertility effects of grass–clover leys for five years in two organic crop rotations with different grassland...... proportions (33 and 67%) and five grassland managements in terms of cutting, grazing, fertilization and combinations thereof. In grass–clover, the combination of fertilization and grazing caused excessive leaching (average 60 kg N ha−1) but leaving out either fertilization or full-time grazing substantially...... and fertilization and lowest without fertilization or cutting-only management and was not influenced by grassland age. The arable part of the mixed crop rotation was nitrate leaky where crop coverage in autumn was insufficient. Nitrate leaching following the crops may roughly be divided into four groups: (1) low...

  8. Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field.

    Science.gov (United States)

    Jahangir, M M R; Minet, E P; Johnston, P; Premrov, A; Coxon, C E; Hackett, R; Richards, K G

    2014-05-01

    Over-winter green cover crops have been reported to increase dissolved organic carbon (DOC) concentrations in groundwater, which can be used as an energy source for denitrifiers. This study investigates the impact of a mustard catch crop on in situ denitrification and nitrous oxide (N2O) emissions from an aquifer overlain by arable land. Denitrification rates and N2O-N/(N2O-N+N2-N) mole fractions were measured in situ with a push-pull method in shallow groundwater under a spring barley system in experimental plots with and without a mustard cover crop. The results suggest that a mustard cover crop could substantially enhance reduction of groundwater nitrate NO3--N via denitrification without significantly increasing N2O emissions. Mean total denitrification (TDN) rates below mustard cover crop and no cover crop were 7.61 and 0.002 μg kg(-1) d(-1), respectively. Estimated N2O-N/(N2O-N+N2-N) ratios, being 0.001 and 1.0 below mustard cover crop and no cover crop respectively, indicate that denitrification below mustard cover crop reduces N2O to N2, unlike the plot with no cover crop. The observed enhanced denitrification under the mustard cover crop may result from the higher groundwater DOC under mustard cover crop (1.53 mg L(-1)) than no cover crop (0.90 mg L(-1)) being added by the root exudates and root masses of mustard. This study gives insights into the missing piece in agricultural nitrogen (N) balance and groundwater derived N2O emissions under arable land and thus helps minimise the uncertainty in agricultural N and N2O-N balances.

  9. Medium-term effect of perennial energy crops on soil organic carbon storage

    Directory of Open Access Journals (Sweden)

    Enrico Ceotto

    2011-11-01

    Full Text Available The scope of this study was to evaluate the effect of perennial energy crops on soil organic carbon (SOC storage. A field experiment was undertaken in 2002 at Anzola dell’Emilia in the lower Po Valley, Northern Italy. Five perennial energy crops were established on a land area which had been previously cultivated with arable crops for at least 20 years. The compared crops are: the herbaceous perennials giant reed and miscanthus, and the woody species poplar, willow and black locust, managed as short rotation coppice (SRC. SOC was measured in 2009, seven years after the start of the experiment, on an upper soil layer of 0.0-0.2 m and a lower soil layer of 0.2-0.4 m. The study aimed to compare the SOC storage of energy crops with alternative land use. Therefore, two adjacent areas were sampled in the same soil layers: i arable land in steady state, cultivated with rainfed annual crops; ii natural meadow established at the start of the experiment. The conversion of arable land into perennial energy crops resulted in SOC storage, in the upper soil layer (0.0-0.2 m ranging from 1150 to 1950 kg C ha-1 year-1 during the 7-year period. No significant differences were detected in SOC among crop species. We found no relationship between the harvested dry matter and the SOC storage. The conversion of arable land into perennial energy crops provides a substantial SOC sequestration benefit even when the hidden C cost of N industrial fertilizers is taken into account. While the SOC increased, the total N content in the soil remained fairly constant. This is probably due to the low rate of nitrogen applied to the perennial crops. However, our data are preliminary and the number of years in which the SOC continues to increase needs to be quantified, especially for the herbaceous species giant reed and miscanthus, with a supposedly long duration of the useful cropping cycle of 20 years or longer.

  10. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  11. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  12. Teaching Future Crop Protection Practitioners through the Use of On-Line Cases: Practicing IPM Spray Decisions in New Zealand Apple Orchards

    Science.gov (United States)

    Stewart, Terry Mark

    2015-01-01

    Purpose: There are many complexities to be considered when selecting tactical control options in crops grown under an Integrated Pest Management (IPM) regime. Students being trained in IPM are made aware of this complexity but do not always get the chance to experience IPM decision-making first-hand. This case study describes a web-based…

  13. Impacts of the cultivation of energy crops for generation of biogas on the landscape structure and avifauna; Auswirkungen des Energiepflanzenanbaus zur Biogaserzeugung auf Landschaftsstruktur und Avifauna

    Energy Technology Data Exchange (ETDEWEB)

    Ruehmkorf, Hilke

    2011-07-01

    In its effort to implement new climate and energy policies, Germany has been heavily promoting the adoption of renewable energies. This has brought about a dramatic change in the use of arable land during the last years. The primary objective of this study was therefore to assess the effect of energy cropping on existing landscape structures in intensively cultivated regions in the course of the year. According to the available structural parameters an investigation was conducted to ascertain the fallout of energy plant cultivation on both migratory and overwintering birds. The period covered entailed the winter months. Both the advent of the energy crops as well as the associated biogas facilities that sprang up outside built-in areas seem to have reshaped the existing agricultural landscape. Hence, an additional aim of this study was to identify birds that use biogas plants for breeding or as a feeding habitat in winter. In conclusion, it can be asserted that energy crops can definitely contribute to the expansion of structural diversity in the agricultural landscape provided those energy crops were not cultivated on a large scale prior to the advent of the biogas facilities. Hence, there is still room for further energy crop diversification as its potential has not been exhausted. During the winter months mostly common species such as the carrion crow or the wood pigeon consider the maize fields as a viable source of nutrition. Cranes are seen as newcomers, as they probably started resting in the 'Boerde' precisely due to the advent of energy maize cultivation. And more availability of nourishment when the ground is covered by snow is another benefit the avifauna reaps from biogas plants. However, for endangered farmland birds this type of nutrition is a rarely used source, as it runs counter to their escape strategies and food preferences. For these species the habitat function and the food availability depends especially on how the land is managed (e

  14. Sustainability Assessment of Plant Protection Strategies in Swiss Winter Wheat and Potato Production

    Directory of Open Access Journals (Sweden)

    Patrik Mouron

    2016-01-01

    Full Text Available Production of arable crops in Switzerland is subsidized for services performed within the Proof of Ecological Performance (PEP program, the crop protection part of which is based on IPM principles. Within PEP, chemical insect control must rely on those approved insecticides that are deemed harmless for beneficial arthropods. Approved insecticides potentially impacting beneficial arthropods may also be applied, but only if unavoidable and with an official permit. In order to assess the ecological and economic sustainability of this PEP program, a reference insecticide strategy illustrating the current PEP requirements was compared with other strategies. For this purpose, a sustainability assessment taking account of ecotoxicological risks and economic viability in addition to the preservation of beneficial arthropods was performed according to the SustainOS methodology. The results show that the one-off use of Audienz (spinosad to control cereal leaf beetle (Oulema melanopus—a key pest in winter wheat—would significantly improve sustainability vis-à-vis the reference (Nomolt (teflubenzuron plus Biscaya (thiacloprid. However, in the case of the Colorado potato beetle (Leptinotarsa decemlineata, in potato crops, where Audienz is considered the reference, no alternative would exhibit better sustainability. Moreover, the study shows that strategies using Novodor (Bacillus thuringiensis protect beneficial species well but have the drawbacks of increased yield risk and higher costs. The conclusions drawn from these analyses allow recommendations for modifications of the PEP requirements for these two pest insects. The SustainOS methodology, a multi-step process combining expert knowledge with quantitative assessments including a sensitivity analysis of key target parameters and a rule-based aggregation of assessment results, yielded valuable insights into the sustainability of different crop protection strategies.

  15. Assessment of arsenic (As) occurrence in arable soil and its related health risk in China.

    Science.gov (United States)

    Zhang, Xiuying; Zhong, Taiyang; Chen, Dongmei; Cheng, Min; Liu, Lei; Zhang, Xiaomin; Li, Xinhui

    2016-06-01

    Arsenic (As) is a major global environmental pollutant due to its high toxicity on human and animal health. This study collected 427 relevant papers to study As concentrations in Chinese arable soil and evaluate the health risk of exposure to As for humans. Results showed that the average of As concentration was 9.46 mg/kg in Chinese arable soil. Soil As concentrations in Hunan Province and Guangxi Zhuang Autonomous Region posed high carcinogenic and non-cancer risks on human health through diet, Yunnan, Guizhou, Guangdong, and Xinjiang provinces had relative high health risks, while As concentrations in the other provinces posed low health risks on humans. The physical factors controlled the spatial pattern of health risk on a provincial scale, but the As-related human activities introduced high health risk on people, particularly the agricultural activities such as sewage irrigation and fertilizer application should be given more attention due to its large area.

  16. Layout method for monitoring sample point of arable land quality level based on combination of factors%基于因素组合的耕地质量等级监测样点布控方法

    Institute of Scientific and Technical Information of China (English)

    余述琼; 张蚌蚌; 相慧; 孔祥斌

    2014-01-01

    coefficient), income level (e.g., land use structure and mode, the input and output of arable land, land economic coefficient), and reference cropping system to form a monitoring reference arable land unit. We illustrate this new method using the Dianqian plateau mountain area as a case study. Spatial overlay analysis of main factors and geostatistics method using GIS were employed to test this method. Specific steps of factors’ combination method are as follows: 1) we preliminarily determine the number of monitoring reference samples according to the type of factors’ combination; 2) on the basis of the proportion of arable land area at each grade accounting for the total area, we then revise the number of monitoring samples and supplement monitoring samples for those gradations which have relatively few monitoring samples;3) based on GIS analysis results, if the same factors’ combination distributes in the different space positions of second zone and meets the requirements of monitoring sample, multiple figure spots of the factors’ combination will be kept at the same time, and eventually figure spot of the grading unit will be determined;4) given overlay the map spot of grading unit and the national standard sample and the provincial standard sample respectively, we take the national standard sample or provincial standard sample as the monitoring sample for those overlaying parts;then convert the remaining figure spots of grading into a point as the monitoring sample, and determine the final number of monitoring samples, spatial location and its source;5) we build up model on representative index of area of monitoring sample and adopt the geo-statistical method to carry on the representative test for monitoring sample to optimize the monitoring sample. The results show that 144 monitoring reference sample units include 7 from the national standard sample, 44 from provincial standard sample and 93 from arable land grading unit, and they were selected as a whole for

  17. Sensitive indicators of side-effects of pesticides on the epigeal fauna of arable land.

    OpenAIRE

    1990-01-01

    The main objective of the present study was to evaluate the possible impact of pesticides on epigeal arthropods in arable land. It was also envisaged to develop a predictive model for possible undesirable effects of pesticides on the epigeal arthropod fauna using an indicator species from the field. The strategy was the following. In the field, species were identified that were (1) sensitive to a number of pesticides, (2) abundant, (3) regular in time and space and (4) easy to sample and iden...

  18. Assessing the environmental performance of English arable and livestock holdings using data from the Farm Accountancy Data Network (FADN).

    Science.gov (United States)

    Westbury, D B; Park, J R; Mauchline, A L; Crane, R T; Mortimer, S R

    2011-03-01

    Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a

  19. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  20. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  1. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    Science.gov (United States)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  2. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.;

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil suppresiveness....... From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B.V. All rights reserved....

  3. Geochemical background values for trace elements in arable soils developed from sedimentary rocks of glacial origin.

    Science.gov (United States)

    Czarnowska, K; Gworek, B

    1990-12-01

    The total content of trace elements was examined in some arable soils developed from boulder loam and silt formations of the Middle Poland and Baltic glaciations (62 profiles). Mean element concentrations calculated on the basis of chemical and statistical analyses were as follows: Mn = 322; Zn = 36; Cr = 30; Ni = 12.7; Pb = 10.3; Cu = 8.8; Co = 4.7; and Cd = 0.27 in mg kg(-1) of soil dry weight. The authors propose to accept these figures as the geochemical background values for soils derived from sedimentary rocks of glacial origin.

  4. Analysis of arable land loss and its impact on rural sustainability in Southern Jiangsu Province of China.

    Science.gov (United States)

    Liu, Y S; Wang, J Y; Long, H L

    2010-01-01

    Rapid urbanization and industrialization in southern Jiangsu Province have consumed a huge amount of arable land. Through comparative analysis of land cover maps derived from TM images in 1990, 2000 and 2006, we identified the trend of arable land loss. It is found that most arable land is lost to urbanization and rural settlements development. Urban settlements, rural settlements, and industrial park-mine-transport land increased, respectively, by 87 997 ha (174.65%), 81 041 ha (104.52%), and 12 692 ha (397.99%) from 1990 to 2006. Most of the source (e.g., change from) land covers are rice paddy fields and dryland. These two covers contributed to newly urbanized areas by 37.12% and 73.52% during 1990-2000, and 46.39% and 38.86% during 2000-2006. However, the loss of arable land is weakly correlated with ecological service value, per capita net income of farmers, but positively with grain yield for some counties. Most areas in the study site have a low arable land depletion rate and a high potential for sustainable development. More attention should be directed at those counties that have a high depletion rate but a low potential for sustainable development. Rural settlements should be controlled and rationalized through legislative measures to achieve harmonious development between urban and rural areas, and sustainable development for rural areas with a minimal impact on the ecoenvironment.

  5. Combining close-range and remote sensing for local assessment of biophysical characteristics of arable land

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Clevers, J.G.P.W.; Schut, A.G.T.

    2007-01-01

    For crop management, information on the actual status of the crop is important for taking decisions on nitrogen supply, water supply or harvesting. One would also like to take into account the local spatial variation of the crop. Remote sensing has proved to be a useful technique for estimating and

  6. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  7. How much Nitrous Oxide is produced in cultivation of biofuels on arable land in Sweden?; Hur mycket lustgas blir det vid odling av biobraenslen paa aakermark i Sverige?

    Energy Technology Data Exchange (ETDEWEB)

    Kasimir Klemedtsson, Aasa (Univ. of Goeteborg, Dept. of Earth Sciences, Goeteborg (Sweden). Physical Geography)

    2010-03-15

    Several methods that can be used to estimate the emission of nitrous oxide from arable land are discussed, all of them with their pros and cons. 1 The base for all estimation methods is field measurements, well executed with a technique designed for the production of high quality data. Published field data of good quality were collected from areas in north Europe and America, both from grain and rape crops and unfertilised grasslands where natural background emission is assumed. The compilation shows that grasslands emit in average 0.3 +- 0.1 kg N{sub 2}O-N/ha/year. In crop systems where a high amount of nitrogen is repeatedly added to the soil, the soil N store will contribute to N{sub 2}O emission coming years. This is one reason why emission is higher for unfertilised arable land (where nitrogen have been added previous years) compared to unfertilised grassland, 1 +- 0.1 kg N{sub 2}O-N/ha/year. Fertilised arable lands have higher emission, in average around 3 kg N{sub 2}O-N/ha/year. In comparison, field measurements in Sweden have shown lower emission, 0.6 and 2 kg N{sub 2}O-N/ha/year from clay and sandy soil respectively. 2 The IPCC method is the best known, where the emission from arable land is estimated as a function of added nitrogen. In reality there is no correlation between a low N-addition and the emission of nitrous oxide since the N-addition needs to be high to have influence on the nitrous oxide emission..25 or the new factor 1% of added N has been used in many LCA's as an estimator for nitrous oxide and the uncertainty span of 0,3 and 3% is seldom used. The method underestimates the size of nitrous oxide emission in many systems and cannot estimate a true emission from individual fields. 3 Globally there is a connection between the increase in reactive nitrogen and the increase of atmospheric nitrous oxide, which is the base for a method suggested by Crutzen et al. Nitrous oxide emission has been estimated to be 3-5% of both biological nitrogen

  8. Development and validation of a confirmative LC-MS/MS methode for the determination of ß-exotoxin thuringiensin in plant protection products and selected greenhouse crops

    NARCIS (Netherlands)

    Rijk, de T.C.; Dam, van R.C.J.; Zomer, P.; Boers, E.A.M.; Waard, de P.; Mol, J.G.J.

    2013-01-01

    Bacterial products based on Bacillus thuringiensis are registered in many countries as plant protection products (PPPs) and are widely used as insecticides and nematocides. However, certain B. thuringiensis strains produce harmful toxins and are therefore not allowed to be used as PPPs. The serotype

  9. Growth rate of Heterobasidion annosum in Picea abies established on forest land and arable land

    Energy Technology Data Exchange (ETDEWEB)

    Bendz-Hellgren, M.; Johansson, Martin; Swedjemark, G.; Stenlid, J. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Brandtberg, P.O. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research

    1999-07-01

    The growth rates of Heterobasidion annosum in Norway spruce were investigated in southern Sweden. In one study, stump and tree roots in stands established on previous forest or arable land were inoculated with H. annosum-infested sawdust. After 1-3 yrs, the linear extent of colonization by the fungus was measured, based on detection of its conidiophores on incubated samples. The average growth rate was 25 cm yr{sup -1} in stump roots and 9 cm yr{sup -1} in tree roots, neither of which differed significantly between forest and arable land. The feeling of a decayed tree could enhance the spread of H. annosum within root systems. In the second study, the height of discoloration and extent of colonization by H. annosum, measured as above, were assessed in naturally infected trees. On average, discoloration moved through the roots and stem at a rate of 36 cm yr{sup -1}. Heterobasidion annosum was found 60 cm in advance of the discoloration, corresponding to a growth rate of 52 cm yr{sup -1}.

  10. Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe

    NARCIS (Netherlands)

    Graves, A.R.; Burgess, P.J.; Palma, J.; Keesman, K.J.; Werf, van der W.; Dupraz, C.; Keulen, van H.; Herzog, F.; Mayus, M.

    2010-01-01

    Silvoarable agroforestry, the integration of trees and arable crops on the same area, has the potential to offer production, ecological, and societal benefits. However, the uptake of such systems in Europe has been limited by a combination of unsupportive policies and uncertainty concerning their pr

  11. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil

    Science.gov (United States)

    Jiang, X.; Bol, R.; Willbold, S.; Vereecken, H.; Klumpp, E.

    2015-11-01

    To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. Alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2-20, 0.45-2 and citrate-bicarbonate (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the P associated with a- and c-Fe/Al oxides in both alkaline extraction and the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline-extractable P was in the a-Fe/Al oxide fraction (42-47 % of total P), most of which was ortho-phosphate (36-41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to these oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (11-15 % of total P) and c-Fe oxides (7-13 % of total P) in various aggregate-sized fractions, suggesting that it was likely occluded

  12. Simulating Stochastic Crop Management in Cropping Systems

    Science.gov (United States)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  13. Effects of GM crops on non-target organisms

    Science.gov (United States)

    Crop genetically engineered to provide resistance to specific groups of insect pests have been adopted by millions of growers throughout the world. GM crops have become important tools in crop production and protection in many countries and contribute significantly to overall IPM programs. There, ...

  14. Evaluation of changes in weed flora in arable fields of Nordic countries - based on danish long-term surveys

    DEFF Research Database (Denmark)

    Andreasen, Christian; Streibig, Jens Carl

    2011-01-01

    During the last 50 years, agricultural productivity has increased tremendously, as have changes in the weed flora. In several European countries, weed surveys have been conducted regularly, of which the most frequent and consistent ones are Danish surveys conducted in 1911–1915, 1945, 1960......–1970, 1987–1989 and 2001–2004. The surveys were carried out on fields not sprayed with herbicide in the sampling year. On the basis of this frame of reference, we discuss the changes in the weed flora during this period and relate them to findings in other Nordic countries and review the role of different...... farming practices on the weed flora of the past. Numerous agronomic factors and political initiatives to protect the environment have operated in concert. During the last 30 years, winter-sown crops have increased by almost 70%, at the expense of spring annual crops and grass leys, and this has favoured...

  15. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation

    DEFF Research Database (Denmark)

    Brozyna, Michal Adam; Petersen, Søren O; Chirinda, Ngoni

    2013-01-01

    little or no effect on N2O emissions. Periods of high N2O emissions coincided with cover crop and grass-clover residue turnover, with little added effect of digested manure application. Annual N2O emissions did not vary between fertilization treatments, but the +M treatment had cash crop dry matter...... and cash-crop yields in an organic arable crop rotation on a sandy loam soil in a cool temperate climate. The four-course crop rotation included spring barley (with undersown grass-clover), grass-clover, potato and winter wheat (with undersown cover crop). Two fertilization treatments were compared: “−M......” where plant material from grass-clover cuts was left in the field to decompose and no fertilizer or manure was applied to any crop in the rotation; and “+M” where plant material from grass-clover cuts was harvested and equivalent amounts of N in digested manure used for fertilization of cash crops...

  16. Remote sensing of the link between arable field and elephant (Loxodonta africana) distribution change along a tsetse eradication gradient in the Zambezi valley, Zimbabwe

    NARCIS (Netherlands)

    Murwira, A.; Skidmore, A.K.; Huizing, H.G.J.; Prins, H.H.T.

    2010-01-01

    We investigated whether the proportion of remotely sensed arable fields increased along a tsetse eradication gradient in the Sebungwe region. We also investigated whether and to what extent this increase in arable fields affected the distribution of the African elephant (Loxodonta africana) between

  17. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    Soil organic carbon (SOC) concentration is an essential factor in biomass production and soil functioning. SOC concentration values are often obtained by prediction but the prediction accuracy depends much on the method used. Currently, there is a lack of evidence in the soil science literature...... as to the advantages and shortcomings of the different commonly used prediction methods. Therefore, we compared and evaluated the merits of the median approach, analysis of covariance, mixed models and random forests in the context of prediction of SOC concentrations of mineral soils under arable management in the A......-horizon. Three soil properties were used in all of the developed models: soil type, physical clay content (particle size

  18. URBANIZATION OF ARABLE LAND IN LAHORE CITY IN PAKISTAN; A CASE-STUDY

    Directory of Open Access Journals (Sweden)

    Khaliq Uz Zaman

    2012-02-01

    Full Text Available This paper is intended to explore the extent of converting arable land for urban use andthe pace of construction activities on the residential housing schemes. In most of the schemesmore than half of the plots are inbuilt because by-laws are very flexible and owners of vacantplots have no fear of cancellation and they consider this investment a better safeguard againstinflation. Moreover, speculators invested their money in the plots because no cost / taxes areinvolved in the keeping of vacant plots. By implementing strict by-laws and imposing capitalgains tax on vacant land and converting the collected taxes from the schemes to create revolvingfunds for house building for really needy, low-middle income groups, the extent of conversionarable land into housing schemes can be reducedKeywords speculators, pace, conversion, vacant plots, density, land policy. 

  19. URBANIZATION OF ARABLE LAND IN LAHORE CITY IN PAKISTAN; A CASE-STUDY

    Directory of Open Access Journals (Sweden)

    Khaliq-Uz-Zaman

    2012-02-01

    Full Text Available This paper is intended to explore the extent of converting arable land for urban use andthe pace of construction activities on the residential housing schemes. In most of the schemesmore than half of the plots are inbuilt because by-laws are very flexible and owners of vacantplots have no fear of cancellation and they consider this investment a better safeguard againstinflation. Moreover, speculators invested their money in the plots because no cost / taxes areinvolved in the keeping of vacant plots. By implementing strict by-laws and imposing capitalgains tax on vacant land and converting the collected taxes from the schemes to create revolvingfunds for house building for really needy, low-middle income groups, the extent of conversionarable land into housing schemes can be reducedKeywords speculators, pace, conversion, vacant plots, density, land policy.

  20. Anthrosols in Iron Age Shetland: Implications for Arable and Economic Activity

    DEFF Research Database (Denmark)

    2008-01-01

    The soils surrounding three Iron Age settlements on South Mainland, Shetland, were sampled and compared for indicators of soil amendment. Two of the sites (Old Scatness and Jarlshof) were on lower-lying, better-drained, sheltered land; the third (Clevigarth) was in an acid, exposed environment...... at a higher elevation. The hypothesis, based on previous regional assessments, soil thicknesses, and excavations at Old Scatness, was that the lowland sites would have heavily fertilized soils and that the thin upland soil would show little if any amendment. Our findings indicate that the Middle Iron Age...... soils at Old Scatness had extremely high phosphorus levels, while the soil at Jarlshof had lower levels of enhancement. At Clevigarth, where charcoal from the buried soil was 14C dated to the Neolithic and Bronze Age, there was no evidence of arable activity or soil amendment associated with the Iron...

  1. Arsenic Content in Arable Land of the Ząbkowice District

    Directory of Open Access Journals (Sweden)

    Kaszubkiewicz Jarosław

    2014-06-01

    Full Text Available The aim of this study was to determine the content of arsenic in soils used for agriculture in the Ząbkowicki district. The content of arsenic in collected soil samples ranged 1.1-569.5 mg·kg-1. The standard for arable lands of Group B has been exceeded in 24 out of 231 test points. The highest concentrations occurred in the Złoty Stok commune. This is due to the output of arsenic and gold in this area. Exceeding the standard also occurred in neighboring communes: Kamieniec Ząbkowicki and Ziębice. This is due to the blowing and washing pollutions form the source of contamination, the arsenic mines in the Złoty Stok commune.

  2. The Use of Organic vs. Chemical Fertilizer with a Mineral Losses Tax: The Case of Dutch Arable Farmers

    NARCIS (Netherlands)

    Feinerman, E.; Komen, M.H.C.

    2005-01-01

    The paper focuses on farm-level nitrogen fertilization strategies of Dutch arable farmers for analyzing the substitution of organic fertilizers (manure) with chemical fertilizers. The model developed investigates the impact of the major parameters affecting the inferiority of manure compared with ch

  3. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    NARCIS (Netherlands)

    Boon, GT; Bouwman, LA; Bloem, J; Romkens, PFAM

    1998-01-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field wer

  4. Effects of a copper tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    NARCIS (Netherlands)

    Boon, G.T.; Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.

    1998-01-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experimentfour pH/copper combinations from this field were

  5. Systematic planning and cultivation of agricultural fields using a geo-spatial arable field optimization service: Opportunities and obstacles

    NARCIS (Netherlands)

    Bruin, de S.; Lerink, P.; Riviere, la I.J.; Vanmeulebrouk, B.

    2014-01-01

    This paper describes a geo-spatial arable field optimization service (GAOS) and an assessment of users' experiences after three years of experimental operation. The service was developed in close cooperation with farmers. It allows farmers to optimize the locations of tracks within their fields, exp

  6. Relationship between magnetic parameters and heavy element contents of arable soil around a steel company, Nanjing

    Institute of Scientific and Technical Information of China (English)

    BLAHA; U; ROESLER; W; APPEL; E

    2010-01-01

    Magnetic parameters and element contents were determined in core NJ008 collected from the uppermost ca. 40 cm in a steel company in southwest Nanjing. The results showed that magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM) and anhysteretic remanent magnetization (ARM) were enhanced in the uppermost 20 cm, with a mean magnetic susceptibility value of 112.5×10-8 m3 kg-1. Below 20 cm, χ decreased sharply with a mean value of 27.8×10-8m3 kg-1. Low-coercivity minerals such as magnetite dominate in arable soils, while the relative content of antiferromagnetic minerals increases below 20 cm. Heavy metals (Ni, Cu, Fe, Pb, V, and Zn) have similar vertical trends as χ. Principal component analysis reveals common high loadings of the same factor for magnetic concentration parameters (χ, ARM, and SIRM) and elements (Ni, Cu, Fe, Pb, V, and Zn) with an excellent linear correlation (0.69≤R≤0.98) between them. Magnetic susceptibility of paddy soil core NJ013, which had the same parent material as NJ008 but was far from pollution sources, showed stable values of magnetic concentration parameters along the whole core. Absolute values correspond to the so-called magnetic background value (below 20 cm) of NJ008. This indicates that pesticide and fertilizer had little effect on magnetic signals of the upper part of core NJ008 and the extremely enhanced magnetic concentration parameters originate from the steel company emission. Although, the arable soil does not reveal the pollution history and transportation due to annual ploughing, the significant linear relationship between magnetic concentration parameters and heavy metal contents suggests that magnetic parameters can serve as a proxy for quickly detecting soil metallic pollution and estimating the extent of contamination.

  7. Factors Influencing of Urban and Rural Residents' Willingness to Pay for Non-market Value of Arable Land%城乡居民对耕地非市场价值支付意愿的影响因素

    Institute of Scientific and Technical Information of China (English)

    谢昕昕; 赵凯; 徐艳

    2013-01-01

    155 effective data from Huludao City, Liaoning were analyzed by Pearson related coefficient and multiple regression model based on CVM theory to study the factors influencing willingness to pay of urban and rural residents for non-market value of arable land for perfecting the protection policy of arable land and maintain microcosmic body interest of arable land protection. The results showed that the factors influencing willingness to pay of urban residents were age, annual family income, education status, acceptant level to externality of arable land utilization and the factors influencing willingness to pay of rural residents were family income level, family population number, education status, whether or not village cadre and annual family agricultural income. The common factors influencing willingness to pay of urban and rural residents were age, annual family income, family population number and education level.%研究影响城乡居民对耕地资源非市场价值支付意愿的因素对于完善耕地保护政策,切实维护耕地保护微观主体利益具有重要的理论和实践价值.根据在辽宁葫芦岛市调研的155个有效样本数据,结合CVM理论,运用Pearson相关系数和多元回归模型从城乡居民支付意愿视角对影响耕地资源非市场价值的因素进行了研究.结果表明,影响城镇居民支付意愿的因素主要有年龄、家庭年收入、文化程度和对耕地利用外部性的认可程度;影响农村居民的支付意愿的因素主要有家庭收入水平、家庭人口数、文化程度、是否为村干部和家庭年农业收入;城乡居民的共同影响因素主要有年龄、家庭年收入、家庭人口数和文化程度.

  8. Winter cereal yields as affected by animal manure and green manure in organic arable farming

    DEFF Research Database (Denmark)

    Olesen, Jørgen E; Askegaard, Margrethe; Rasmussen, Ilse Ankjær

    2009-01-01

    left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops. Application of 50 kg NH4-N ha-' in manure increased average wheatgrain yield by 0.4-0.9 Mg DM ha-1, whereas the use of catch crops did...... not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100-600 kg N ha-1 year-1) accumulated in the mulched...

  9. Modelagem da proteção do solo por plantas de cobertura no sul de Minas Gerais = Modeling of soil protection by cover crops in southern Minas Gerais, Brazil.

    Directory of Open Access Journals (Sweden)

    Diego Antonio França de Freitas

    2012-08-01

    used in this experiment. Plants grown on irrigated bean straw demonstrated a high rate of soil cover, which may be related to the increased availability of nutrients left by this culture in the straw and the largest water reserve in the soil, promoted by irrigation of beans. The level and millet grown on the millet straw and jack-bean had the lowest rate of coverage among the plants valuated. In the region southern of Minas Gerais, the precipitation pattern is predominant duirng October to March, with an increase in December and January. In this period the soil should be protected from raindrop impact, because the risk of erosion is greater. Thus, the use of cover crops is of great importance, because they protect the soil from direct impact of raindrops and reduce temperature peaks of the soil, since they must be grown, preferably on the bean straw.

  10. Comparing net ecosystem carbon dioxide exchange at adjacent commercial bioenergy and conventional cropping systems in Lincolnshire, United Kingdom

    Science.gov (United States)

    Morrison, Ross; Brooks, Milo; Evans, Jonathan; Finch, Jon; Rowe, Rebecca; Rylett, Daniel; McNamara, Niall

    2016-04-01

    The conversion of agricultural land to bioenergy plantations represents one option in the national and global effort to reduce greenhouse gas emissions whilst meeting future energy demand. Despite an increase in the area of (e.g. perennial) bioenergy crops in the United Kingdom and elsewhere, the biophysical and biogeochemical impacts of large scale conversion of arable and other land cover types to bioenergy cropping systems remain poorly characterised and uncertain. Here, the results of four years of eddy covariance (EC) flux measurements of net ecosystem CO2 exchange (NEE) obtained at a commercial farm in Lincolnshire, United Kingdom (UK) are reported. CO2 flux measurements are presented and compared for arable crops (winter wheat, oilseed rape, spring barely) and plantations of the perennial biofuel crops Miscanthus x. giganteus (C4) and short rotation coppice (SRC) willow (Salix sp.,C3). Ecosystem light and temperature response functions were used to analyse and compare temporal trends and spatial variations in NEE across the three land covers. All three crops were net in situ sinks for atmospheric CO2 but were characterised by large temporal and between site variability in NEE. Environmental and biological controls driving the spatial and temporal variations in CO2 exchange processes, as well as the influences of land management, will be analysed and discussed.

  11. Development model for energy crop plantations in the Czech Republic for the years 2008-2030

    Energy Technology Data Exchange (ETDEWEB)

    Havlickova, Kamila; Suchy, Jiri [Department of Phytoenergy, Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Publ. Res. Inst., Kvetnove nam. 391, 252 43 Pruhonice (Czech Republic)

    2010-09-15

    This paper deals with modelling the development of plantations for intentional biomass production. The model of plots for the areas of interest consider the following biomass sources: intentionally produced biomass from SRC of fast-growing trees and non-woody energy crops (sorrel, reed grass and triticale). Statistical data for the entire area of interest (NUTS1 size) and data for a part of this area (NUTS3 size - 18% of total area of interest) were used to determine data on the area of arable land and permanent grasslands in the initial year. This paper presents a model of the development of production plots for the period 2008-2030. Yields are calculated of selected energy crops with regard to their growing cycle using so-called triangular method. The core of the algorithm for calculation of growing area of energy crop is an optimalization of processes regarding economic and technical demands for long-term and sustainable production of biomass. (author)

  12. Nest success of Lapwings (Vanellus vanellus) on organic and conventional arable farms in the Netherlands

    NARCIS (Netherlands)

    Kragten, S.; Snoo, de G.R.

    2007-01-01

    Increasing agricultural intensification has put farmland bird populations under great stress. Although organically managed farms tend to have higher densities of farmland birds than conventionally managed holdings, differences in crop management may also lead to differences in breeding success. With

  13. Rainfed intensive crop systems

    DEFF Research Database (Denmark)

    Olesen, Jørgen E

    2014-01-01

    This chapter focuses on the importance of intensive cropping systems in contributing to the world supply of food and feed. The impact of climate change on intensive crop production systems is also discussed....

  14. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  15. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively......, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis...... with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude...

  16. Micronutrients in cereal crops

    OpenAIRE

    Hamnér, Karin

    2016-01-01

    Seven elements essential for plants are defined as micronutrients: boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni) and zinc (Zn). Deficiency of these nutrients can cause yield losses in crops and impaired crop quality. The overall aim of this thesis work was to increase the knowledge how micronutrients in Swedish cereal crops are affected by nutrient management and soil properties in order to improve crop status and avoid yield losses. Data from long term and s...

  17. Effects of climate change on yield potential of wheat and maize crops in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands); Van Diepen, C.A. [DLO the Winand Staring Centre, Wageningen (Netherlands)

    1995-12-31

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined. Subsequent analyses were made using climate change scenarios with and without the direct effects of increased atmospheric CO{sub 2}. The impact of crop management in a changed climate was also assessed. The various climate change scenarios used appear to yield considerably different changes in yield, both for each location and for the EU as a whole. 4 figs., 2 tabs., 6 refs.

  18. Sorghums as energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  19. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    Science.gov (United States)

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.

  20. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...... systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... strategies that seek to maintain the status quo through management actions that reduce perturbations due to CC; ii) Resilience strategies requiring systemic adaptation at field and farm level for increasing the adaptive capacity after a climate disturbance; iii) Transformative strategies addressing needs...

  1. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, Karin; Kollmann, Johannes;

    2010-01-01

    Reforestation of ex-arable land in temperate regions increases the area of potential habitat for forest plants. However, the herbaceous plant layer of these plantations contains fewer forest species than comparable plantations at continuously forested sites. One of the reasons for this might......-generation forest plantations on ex-arable land and re-planted clear-cuts on continuously forested land. There was no recruitment following the experimental sowing of six commonwoody species (Alnus glutinosa, Betula pendula, Frangula alnus, Sambucus nigra, Sorbus aucuparia and Sorbus intermedia). Thus......, the colonization of forest plantations by native shrubs and trees appears to be habitat-limited; the only exception being Rhamnus catharticus, for which poor dispersal ability may be more important. Post-dispersal seed predation of forest shrubs and trees was marked, especially in relatively small and isolated...

  2. Post-dispersal seed predation of woody forest species limits recolonization of forest plantations on ex-arable land

    DEFF Research Database (Denmark)

    Bruun, Hans Henrik; Valtinat, Karin; Kollmann, Johannes

    2010-01-01

    be differences in recruitment. The present study addresses post-dispersal seed predation, mainly of woody plants, as the factor limiting the recolonization of young oak plantations in southern Sweden. Our objectives were to investigate differences in dispersal and post-dispersal seed predation between first......, the colonization of forest plantations by native shrubs and trees appears to be habitat-limited; the only exception being Rhamnus catharticus, for which poor dispersal ability may be more important. Post-dispersal seed predation of forest shrubs and trees was marked, especially in relatively small and isolated...... plantations on ex-arable land. There was a high seed predation of Crataegus monogyna, Sorbus aucuparia and Viburnum opulus on ex-arable land, while that of Frangula alnus and Sambucus racemosa was not associated with site placement and land-use history. Seed predation is probably a more important factor...

  3. Laccase activity is proportional to the abundance of bacterial laccase-like genes in soil from subtropical arable land.

    Science.gov (United States)

    Feng, Shuzhen; Su, Yirong; Dong, Mingzhe; He, Xunyang; Kumaresan, Deepak; O'Donnell, Anthony G; Wu, Jinshui; Chen, Xiangbi

    2015-12-01

    Laccase enzymes produced by both soil bacteria and fungi play important roles in refractory organic matter turnover in terrestrial ecosystems. We investigated the abundance and diversity of fungal laccase genes and bacterial laccase-like genes in soil from subtropical arable lands, and identified which microbial group was associated with laccase activity. Compared with fungal laccase genes, the bacterial laccase-like genes had greater abundance, richness and Shannon-Wiener diversity. More importantly, laccase activity can be explained almost exclusively by the bacterial laccase-like genes, and their abundance had significant linear relationship with laccase activity. Thus, bacterial laccase-like gene has great potential to be used as a sensitive indicator of laccase enzyme for refractory organic matter turnover in subtropical arable lands.

  4. Application of Remote Sensing and GIS Technology to the Study of Desertification of Arable Lands in North Shaanxi, China

    Institute of Scientific and Technical Information of China (English)

    Mushtak Talib Jabbar; HU Guangdao; ZHANG Zhenfei

    2004-01-01

    The policy of the Chinese government concerning the horizontal expansion of the cultivated land through the reclamation of desert soils result in a total increase of 665.985 km2 during the period 1987-1999 in North Shaanxi. This increase is less than the loss in arable land by urbanization. The accelerated rate of change in agricultural areas calls for more rapid surveys of urbanization and loss of arable land. Remote sensing has a number of advantages over ground-based methods for such surveys. The multi-scale concept of remote sensing data help us study the problem in four towns. Several maps were produced to analyze the situation of urban coverage in different times. The evaluation of the status, rate and risk of urbanization are based on an accepted average of urban increase as 2% of population growth per year.

  5. Micrometeorological principles of protected cultivation

    Science.gov (United States)

    Protected cultivation is a broad term commonly used among producers of specialty crops. Techniques can range from complex fixed structures to field site selection, to straightforward cultural practices in the field. This introduction to the ASHS workshop "Protected cultivation for fruit crops" consi...

  6. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    Science.gov (United States)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  7. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

    DEFF Research Database (Denmark)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R;

    2014-01-01

    the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results...... and biosolids, accelerates the introduction of these compounds into arable lands and crops. Despite the low concentrations of pharmaceuticals usually found, the continuous introduction into the environment from different pathways makes them 'pseudo-persistent'. Several reviews have been published regarding....... This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation...

  8. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Science.gov (United States)

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  9. Human Activity and Soil Fertility—Nutrients Depletion of Arable Soils in China

    Institute of Scientific and Technical Information of China (English)

    LURU-KUN

    1991-01-01

    The reserve of soil nutrients is limited.In case of irrational use of land,nutrients would be depleted sooner.Before the 1950s the low grain production in China was maintained only by expanding the cultivated area and by recycling of nutrients in agriculture.Calculation of nutrients balance showed that in the year of 1949 there were great deficits of N,P and K elements in agriculture of China.It revealed that there would have really been danger of soil nutrients exhaustion if such a situation had continued.Things have changed since the beginning of 1950s.The nutrients balance in agriculture has been getting better and better.In the year 1987 N and P balance got rid of their great deficits.But for K and deficit grew even larger.This resulted in a rapid expansion of soil area deficient in K in China since the mid 1970s.In spite of the fact that the P balance in the arable land of the whole country was positive,the field which did not receive P fertilizer had become deficient in P.So the area deficient in P also increased.It is stressed that great attention should be paid to the depletion of soil nutrients,especially K in the northern part of China where the soil is relatively rich in K.Of course,soil sulfur and microelements should be considered next.

  10. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  11. Use of the Regularities of Within-Field Variability of Arable Soil Fertility in Precision Agrotechnologies

    Directory of Open Access Journals (Sweden)

    Afanasyev Rafail Aleksandrovich

    2015-04-01

    Full Text Available The paper states the regularities of the within-field variation of soil fertility which are important for variable rate fertilizer application under conditions of precision agrotechnologies including the technologies which limit the agroeconomic efficiency. As it is well known, the usual (traditional fertilizer practice stipulates their application taking into account average indices of soil fertility: mobile plant food elements (N, P, K etc. content in the plow layer. At the same time, one part of the plants gets excess of mineral nutrition, and the other part – its deficiency. That results in shortage of agricultural products, their deterioration and also the pollution of the environment and the soil with the excesses of agrochemicals in overfertilized plots. In the last decades traditional technologies give place to high-precision agrotechnologies with differentiated fertilizer application taking into account within-field heterogeneity of soil fertility. There are several constraints for widespread adoption of high-precision agrotechnologies including the underestimation of the character of within-field variability of soil quality. Our investigations reveal eight regularities of the within-field variation of agrochemical indices, which characterize soil fertility in arable soils. These regularities would allow to more seriously estimate the efficiency of variable rate fertilizer application under conditions of precision agrotechnologies.

  12. Evaluation on ecological value of arable land in hilly land consolidation region of Shandong province%山东低山丘陵土地整治区耕地生态价值评价

    Institute of Scientific and Technical Information of China (English)

    王瑷玲; 刘文鹏; 纪广韦; 李英

    2013-01-01

    . Gas regulation value was estimated by using carbon sequestration-oxygen making of crop and the substitution method. Before land consolidation, when the study area had no irrigation, peanuts were planting outdoors, biomass was lower, gas regulation value was 2.1848 million Yuan. After land consolidation, gas regulation value was 4.9441 million Yuan, the increase was 2.7593 million Yuan for production conditions improvement, mulching planting peanuts and biomass substantial increase. Nutrient recycling value was estimated by using soil pool nutrient cycling and market pricing method. After land consolidation, arable land area and soil thickness increased significantly, soil bulk density decreased and soil nutrient content decreased slightly. Nutrient cycling value was 1.3082 and 1.5855 million Yuan before and after land consolidation respectively, the increase was 277,300 Yuan after land consolidation. Water conservation value was estimated by using water conservation and market pricing method. For the study area was mainly sandy loam and lack of irrigation facilities, water conservation value was 88,900 Yuan before land consolidation. After land consolidation, water conservation value was 425,600 Yuan, and the increase was 336,700 Yuan for soil texture was slightly improved and new water storage facilities were built. Soil conservation value was estimated by using the amount of soil nutrients remains and market pricing method. The study area was hilly area, so range of terrain slopes were relatively large. Taking different measures, such as land leveling, setting up the sloping terrace, etc., the soil erosion was reduced and soil nutrients were maintained. The amount of potential soil erosion, realistic soil erosion and soil conservation were measured with universal soil loss equation (USLE) before land consolidation, then soil conservation value were obtained, which were 704,200 Yuan. The same method was used to calculate the soil conservation value after land

  13. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    Science.gov (United States)

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  14. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    Science.gov (United States)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  15. Urban land expansion and arable land loss of the major cities in China in the 1990s

    Institute of Scientific and Technical Information of China (English)

    TAN Minghong; LI Xiubin; LU Changhe

    2005-01-01

    Based on the land-use data in 1990 and 2000, determined by interpreting Landsat Thematic Mapper (TM) imagery, this paper defines the extent of urban construction land, and extracts patches of urban construction land of 145 cities with the largest areas in 1990 and arable land patches around these cities. With these data, this paper analyzes the characteristics of urban construction land expansion and the consequent arable land loss in East, Middle and West China, and further identifies the social, economic and spatial factors of the urban land use changes, using GIS (Geographical Information System) and multivariate regression approaches. The results show that total urban land of the 145 cities expanded by 39.8%, with about 70% of the new urban land converted from arable land in the 1990s. The urban land expansion varied among the three regions, with a value of 43.0% in the East, 33.1% in the West (33.1%) and 17.8% in the Middle. Moreover, mean urban construction land per capita increased by10.7% in the East, but it decreased by 7.7% in the Middle, 1.4% in the West. Statistical analysis indicated that total wages of staff and workers could best explain the differences of urban land expansion.

  16. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis

    Directory of Open Access Journals (Sweden)

    Hualin Xie

    2014-05-01

    Full Text Available The level of arable land-use intensity has important impacts on food security and rural sustainable development. Using the emergy method, we investigate the spatial disparities and driving forces of arable land-use intensity in China from 1999 to 2008 at the national, regional and provincial levels. The empirical results show that chemical fertilizer was the largest component of agricultural inputs and that agricultural diesel oil recorded the highest growth rate. The degree of heterogeneities in arable land-use intensity in China showed a decreasing trend, which resulted mainly from the differences among the eastern, northeastern, central and western regions. The regional disparities in labor, pesticides and plastic sheeting decreased from 1999 to 2008. The per capita annual net incomes of household operations and the agricultural policies had a significant positive correlation with total inputs, fertilizer inputs, pesticide inputs and agricultural plastic sheeting. In addition, the nonagricultural population had a greater impact on agricultural plastic sheeting. Finally, we suggest that there is an urgent need to focus on the effects of chemical fertilizer and pesticide inputs on the ecological environment. Agricultural support policies should be introduced for the poor agricultural production provinces.

  17. Integrated crop protection as a system approach

    NARCIS (Netherlands)

    Haan, de J.J.; Wijnands, F.G.; Sukkel, W.

    2005-01-01

    New farming systems in vegetable production are required as demands for high quality products that do not pollute the environment are rising, and production risks are large and incomes low. The methodology of prototyping new systems is described, especially the themes, parameters and target values c

  18. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-10-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM occluded in micro-structures found in the chemical extraction residue (OM(ER. Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY and the ratio of soil organic carbon content to soil surface area (SOC/SSA. This indicates that the OM(PY fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition

  19. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005; Biodegradation des litieres et sequestration du carbone dans les ecosystemes cultives et perennes. Rapport final des travaux Avril 2005

    Energy Technology Data Exchange (ETDEWEB)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie Laon-Reims-Mons (France); Balesdent, J. [CNRS-CEA-Univ.de la Mediterranee, UMR 6191, Lab. d' Ecologie Microbienne de la Rhizosphere, 13 - Saint Paul lez Durance (France); Dambrine, E.; Zeller, B. [Institut National de Recherches Agronomiques (INRA), Unite Biogeochimie des Ecosystemes Forestiers, 54 - Nancy (France); Loiseau, P.; Personeni, E. [Institut National de Recherches Agronomiques (INRA), Unite d' Agronomie, 63 - Clermont-Ferrand (France)

    2002-07-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as {sup 13}C for carbon, based on the use of enriched or depleted {sup 13}C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on

  20. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  1. Effects of season and urea treatment on infection of stumps of Picea abies by Heterobasidion annosum in stands on former arable land

    Energy Technology Data Exchange (ETDEWEB)

    Brandtberg, P.O. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research; Johansson, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Seeger, P. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Statistics

    1996-09-01

    Between 1986 and 1990, a series of thinnings were made in previously unthinned first rotation stands on former arable land located in the southern half of Sweden. The aim was to evaluate the effects of season and urea treatment on the frequency of infection of stumps of Norway spruce (Picea abies (L.) Karst.) by the root-rot fungus Heterobasidion annosum (Fr.) Bref. Untreated stumps, resulting from 60 thinnings (22-100 stumps each, altogether ca 3000 stumps) made at different times of year, were investigated 3-24 months after cutting to determine whether they were infected with H. annosum. On average only 2% of the stumps from thinnings made in November-February were infected, whereas the incidence of infection among stumps thinned in June-July was 34%. Two methods of treating stumps with urea to prevent stump infection by H. annosum after thinning were evaluated in terms of effectiveness. The freshly cut stumps were treated with a 20% urea solution, transformed to a gel by adding 0.2% carboxymethyl cellulose, or with a 30% urea solution. On average, the reduction in infection rate obtained was 62% with the first method and 85% with the latter. In a separate study involving a concentration series of urea, there was a considerable drop in protection efficiency, from 89% to 58%, when the concentration was decreased from 30% to 15%. 38 refs, 3 figs, 1 tab

  2. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established

  3. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.

    Science.gov (United States)

    Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam

    2015-01-01

    The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.

  4. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  5. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture.

  6. Thallium in French agrosystems--I. Thallium contents in arable soils.

    Science.gov (United States)

    Tremel, A; Masson, P; Sterckeman, T; Baize, D; Mench, M

    1997-01-01

    The thallium (Tl) content of the upper horizons of 244 French soils was determined as the first step towards the creation of a reference data bank for total Tl content of arable soils. Forty soil samples were collected in the vicinity of potential anthropogenic sources of Tl, but the remainder came from rural areas. The distribution of Tl concentrations in soils was characterized by a median value of 0.29 mg Tl kg(-1) and a 90th percentile value of 1.54 mg Tl kg(-1). Very high pedogeochemical contents were found (up to 55 mg Tl kg(-1)) but none could be attributed to obvious anthropogenic pollution. Areas of very high Tl concentration belong to an epihercynian transgression zone with a contact between a sedimentary basin and a crystalline massif. This contact is associated with stratified mineralizations (Zn, Pb, F, Sb, Ba, Tl and pyrites). High Tl concentrations were common in limestone, marl or granite derived soils, and the Tl in limestones or marls is probably concentrated in the sulfides contained in these rocks because Tl has a high affinity to S. In granites, Tl may be in the micas and feldspars because Tl+ can replace K+ in these minerals. Silty or clay-silty soils showed the highest concentrations. These granulometric fractions contain the majority of the minerals, which are supposed to be the major hosts of Tl in soils, i.e. clay minerals, oxides and micas. Tl in the soils was positively correlated with Ba, V, Pb, Fe, Ni, Cd, Zn, Co, As and especially Mn. A significant proportion of Tl may be in the Mn oxides: in oxidizing conditions, Tl(III) could enter the Mn oxides by sorption, or Tl(I) could replace K(I) in the oxide.

  7. A compilation and meta-analysis of rainfall simulation data on arable soils

    Science.gov (United States)

    Fiener, P.; Seibert, S. P.; Auerswald, K.

    2011-10-01

    SummaryRainfall simulations are a useful and important tool in studying infiltration, surface runoff generation, soil erosion and nutrient as well as agro-chemical transport from arable land. Such simulations are time-consuming and costly and hence are usually only carried out under a limited variation of settings necessary to answer specific research questions. Therefore, it is difficult to use rainfall simulation data for hypothesis testing in a more general sense or to parameterize hydrological or erosion models applicable under a wider range of environmental conditions. To overcome these restrictions and to set-up a broader basis for following up studies, we analyzed, harmonized and filled gaps of a large set of existing rainfall simulations carried out by five different research groups in Germany. This covered 726 rainfall simulations (24,384 runoff measurements) carried out on 209 plots under a wide range of conditions for which 4 rain properties, 5 plot properties, 20 soil properties, 5 land use properties and 2 runoff properties were compiled. These data were quality controlled and made available for public use ( Seibert et al., 2011). The most important deficiencies were smoothed runoff measurements, missing time to ponding data, different soil descriptions including frequent gaps in stone content, inconsistent moisture measurements and sometimes rather rough measurements of surface cover. The calculation of the geometric mean particle diameter, time since tillage and the application of different site specific procedures supported harmonization and helped to overcome several of these deficiencies. A satisfying gap filling procedure was developed for time to ponding. The most important inconsistencies that could not be removed were different depths of moisture measurement. Hence, there is a need to define a set of basic variables that always should be measured and documented with defined standards to enable comparison between different studies, to assess

  8. In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil.

    Science.gov (United States)

    Nunan, N; Wu, K; Young, I M; Crawford, J W; Ritz, K

    2002-11-01

    Very little is known about the spatial organization of soil microbes across scales that are relevant both to microbial function and to field-based processes. The spatial distributions of microbes and microbially mediated activity have a high intrinsic variability. This can present problems when trying to quantify the effects of disturbance, management practices, or climate change on soil microbial systems and attendant function. A spatial sampling regime was implemented in an arable field. Cores of undisturbed soil were sampled from a 3 x 3 x 0.9 m volume of soil (topsoil and subsoil) and a biological thin section, in which the in situ distribution of bacteria could be quantified, prepared from each core. Geostatistical analysis was used to quantify the nature of spatial structure from micrometers to meters and spatial point pattern analysis to test for deviations from complete spatial randomness of mapped bacteria. Spatial structure in the topsoil was only found at the microscale (micrometers), whereas evidence for nested scales of spatial structure was found in the subsoil (at the microscale, and at the centimeter to meter scale). Geostatistical ranges of spatial structure at the micro scale were greater in the topsoil and tended to decrease with depth in the subsoil. Evidence for spatial aggregation in bacteria was stronger in the topsoil and also decreased with depth in the subsoil, though extremely high degrees of aggregation were found at very short distances in the deep subsoil. The data suggest that factors that regulate the distribution of bacteria in the subsoil operate at two scales, in contrast to one scale in the topsoil, and that bacterial patches are larger and more prevalent in the topsoil.

  9. Storage of catch crops to produce biogas

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    Catch crop biomass is a promising co-substrate for manure-based biogas plants in Denmark since the cultivation of catch crops is mandatory to retain nutrients in the soil, contributing to protect the aquatic environment. In general, the growth period for catch crops is from harvest of the previous...... crop in July-August to the end of the growing season and harvest in late October. Hence, for use of the biomass in biogas production there is a need for storage of the biomass. Storage as silage would guarantee the availability of the feedstock for biogas production during the whole year. A proper...... ensiling process determines the storage loss and the quality of the final silage and, thus, the possible use of it as a substrate for biogas production. Moreover, silage has been considered as a pre-treatment since it partially hydrolyses organic matter improving cellulose convertibility. Since a large...

  10. Impact changes of climatic extremes on arable farming in the north of the Netherlands

    NARCIS (Netherlands)

    Schaap, B.F.; Blom, M.; Hermans, C.M.L.; Meerburg, B.G.; Verhagen, A.

    2011-01-01

    Agriculture is vulnerable to climate change in multiple ways. Here, we use the northern region of the Netherlands as a case study to explore how risk assessments for climate change impacts on crop production can address multiple vulnerabilities. We present a methodology, which we call agro climate c

  11. Emissions of nitrous oxide from Irish arable soils: effects of tillage and reduced N input

    DEFF Research Database (Denmark)

    Abdalla, M.; Jones, M.B.; Ambus, Per;

    2010-01-01

    . Reduced tillage had no significant effect on N2O fluxes from soils or crop grain yield. Multiple regression analysis revealed that soil moisture and an interaction between soil moisture and soil nitrate are the main significant factors affecting N2O flux. The derived emission factor was 0...

  12. Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops

    Science.gov (United States)

    Copeland, Nichola; Cape, J. Neil; Heal, Mathew R.

    2012-12-01

    Miscanthus × giganteus and short rotation coppice (SRC) willow (Salix spp.) are increasingly important bioenergy crops. Above-canopy fluxes and mixing ratios of volatile organic compounds (VOCs) were measured in summer for the two crops at a site near Lincoln, UK, by proton transfer reaction mass spectrometry (PTR-MS) and virtual disjunct eddy covariance. The isoprene emission rate above willow peaked around midday at ˜1 mg m-2 h-1, equivalent to 20 μg gdw-1 h-1 normalised to 30 °C and 1000 μmol m-2 s-1 PAR, much greater than for conventional arable crops. Average midday peak isoprene mixing ratio was ˜1.4 ppbv. Acetone and acetic acid also showed small positive daytime fluxes. No measurable fluxes of VOCs were detected above the Miscanthus canopy. Differing isoprene emission rates between different bioenergy crops, and the crops or vegetation cover they may replace, means the impact on regional air quality should be taken into consideration in bioenergy crop selection.

  13. Carbon Turnover in a Crop Rotation Under Free Air CO2 Enrichment (FACE)

    Institute of Scientific and Technical Information of China (English)

    H. J. WEIGEL; K. LEWIN; J. NAGY; A. PACHOLSKI; S. BURKART; M. HELAL; O. HEINEMEYER; B. KLEIKAMP; R. MANDERSCHEID; C. FR(U)HAUF; G. F. HENDREY

    2005-01-01

    Mostly based on assumptions derived from controlled-environment studies, predicted future atmospheric CO2 concentrations [CO2] are expected to have considerable impacts on carbon (C) turnover in agro-ecosystems. In order to allow the in situ examination of C-transformations in the plant-soil system of arable crop rotations under future [CO2], a free air carbon dioxide enrichment (FACE) experiment (550 μmol mol-1 CO2) was started at Braunschweig, Germany in 1999.The crop rotation under investigation comprised winter barley, a cover crop (ryegrass), sugar beets and winter wheat.Assessments of CO2 effects included the determination of above- and belowground biomass production, measurements of canopy CO2- and H2O- fluxes, soil microbial biomass and in situ soil respiration. The results obtained during the 1st crop rotation cycle (3 years) showed that for the selected crops elevated [CO2] entailed significant positive effects (P<0.05) on aboveground (6%-14% stimulation) and belowground biomass production (up to 90% stimulation), while canopy evapotranspiration was reduced. This resulted in increased soil water content. Also, depending on crop type and season, high CO2 stimulated in situ soil respiration (up to 30%), while soil microbial biomass did not show significant respoases to elevated [CO2] during the first rotation cycle.

  14. Numerical simulation of cropping

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2014-01-01

    Cropping is a cutting process whereby opposing aligned blades create a shearing failure by exerting opposing forces normal to the surfaces of a metal sheet or plate. Building on recent efforts to quantify cropping, this paper formulates a plane strain elastic-plastic model of a plate subject...... shearing accompanying the cutting process. Specifically, it provides insight into the influence of the material's microscopic shear strength and toughness on the total work of cropping. The computational model does not account for deformation of the cropping tool, friction between sliding surfaces...

  15. Review of crop pests targeted by neonicotinoid seed treatments

    Science.gov (United States)

    Seed treatment with neonicotinoid insecticides is an increasingly popular crop protection practice, intended to reduce damage due to early season pests. A large proportion of major U.S. crops are planted with neonicotinoid-treated seed. Use of the three most popular neonicotinoids (imidacloprid, thi...

  16. Are Agricultural Measures for Groundwater Protection Beneficial When Compared to Purification of Polluted Groundwater?

    OpenAIRE

    Hasler, Berit; Lundhede, Thomas

    2005-01-01

    The groundwater resource, the drinking water areas and the surface water quality can be protected by measures, e.g. by reductions of pesticide and nutrient applications, conversion of arable land to grasslands or forests etc. The objective of the paper is to estimate the benefits of groundwater protection by the valuation method choice experiments. This method allows for separate estimation and comparison of the different attributes connected to groundwater protection i.e. the effects on drin...

  17. Separation of agroclimatic areas for optimal crop growing within the framework of the natural-agricultural zoning of Russia

    Science.gov (United States)

    Bulgakov, D. S.; Rukhovich, D. I.; Shishkonakova, E. A.; Vil'chevskaya, E. V.

    2016-09-01

    The separation of agroclimatic areas for optimal crop growing within is suggested within the framework of the natural-agricultural zoning of Russia developed under the supervision of I. Karmanov. Overall, 64 agroclimatic areas have been separated in Russia. They are specified by the particular soil and agroclimatic conditions and by the particular crops recommended for cultivation. The biological potential of these crops should correspond to the soil potential of the given area. A combined scheme of the natural-agricultural zoning of Russia and the separated agroclimatic areas is presented. It is argued that the information contained in this scheme can be used for developing landscape-adaptive farming systems, land cadaster, and land valuation; it is also helpful for terrain and remote sensing monitoring of soil fertility on arable lands and for soilecological monitoring.

  18. The dynamics of cultivation and floods in arable lands of central Argentina

    Directory of Open Access Journals (Sweden)

    E. F. Viglizzo

    2008-08-01

    Full Text Available Although floods in watersheds have been associated with land-use change since ancient times, the dynamics of flooding is still incompletely understood. In this paper we explored the relations between rainfall, groundwater level, and cultivation to explain the dynamics of floods in the extremely flat and valuable arable lands of the Quinto river watershed, in central Argentina. The analysis involved an area of 12.4 million hectare during a 26-y period (1978–2003, which comprised two extensive flooding episodes in 1983–1988 and 1996–2003. Supported by information from surveys as well as field and remote sensing measurements, we explored the correlation among precipitation, groundwater levels, flooded area and land use. Flood extension was associated to the dynamics of groundwater level, but these two variables displayed a poor association with rainfall, being particularly decoupled from it during the rainy periods. Correlations between groundwater level and flood extension were positive in all cases, but while highly significant relations (P<0.01 were found in highlands, non significant relations (P>0.05 predominate in lowlands. Our analysis supports the existence of a cyclic mechanism driven by the reciprocal influence between cultivation and groundwater levels in highlands. This cycle would involve the following stages: (a cultivation boosts the elevation of groundwater levels through decreased evapotranspiration; (b as groundwater level rises, floods spread causing a decline of land cultivation; (c flooding propitiates higher evapotranspiration favouring its own retraction; (d cultivation expands following the retreat of floods. Thus, cultivation would trigger a destabilizing feedback self affecting future cultivation in the highlands. It is unlikely that such sequence can work in lowlands. The results suggest that rather than responding directly and solely to the same mechanism, floods in lowlands may be the combined result

  19. Structural properties of dissolved organic carbon in deep horizons of an arable soil.

    Science.gov (United States)

    Lavaud, A.; Croué, Jp; Berwick, L.; Steffens, M.; Chabbi, A.

    2010-05-01

    The objective of this work is to quantity the DOC that percolates in deep horizons of an arable soil, and to characterize the structural properties of the main fractions. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site-France. DOC collected using lysimeter plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. The hydrophilic fraction is purified according the protocol proposed by Aiken and Leenheer (1993). The isolated fractions were subjected to several characterization tools: UV/Vis, fluorescence EEM, HPSEC/UV/DOC, 13C NMR, 14C dating, FT-IR, pyrolysis, thermochemolysis and MSSV GC/MS. The DOC content ranged from 1 to 2.5 mg / L between winter and the middle of spring and then to 4-5 mg / L in summer time. For all isolated fractions HPSEC analyses indicated the predominance of low molecular structures with a low aromatic character. Fluorescence EEM confirmed the non-humic character of the DOM. 13C-NMR spectra showed that the aromatic character decreased from HPO to TPH, and HPI character. Molecular size follows the same trend. HPI DOM was found to be strongly enriched in carboxyl groups. The 14C concentration of the HPO fraction corresponds to an apparent calibrated age around AD 1500. For the same fraction isolated from the 0 - 30 cm horizon, the measured 14C concentration 131.9 pMC corresponds to that in the atmosphere around AD 1978. Significant input of terpenoid derived organic matter was confirmed in the HPO fraction of DOC

  20. Effect of Phosphate Addition on Cadmium Precipitation and Adsorption in Contaminated Arable Soil with a Low Concentration of Cadmium.

    Science.gov (United States)

    Kim, Sung Un; Owens, Vance N; Kim, Yong Gyun; Lee, Sang Mong; Park, Hyean Cheal; Kim, Keun Ki; Son, Hong Joo; Hong, Chang Oh

    2015-11-01

    The objectives of this study were to determine (1) the phosphorus (P) level required to induce cadmium (Cd) precipitation in a contaminated arable soil with low concentrations of Cd and (2) the primary mechanism of Cd immobilization at different P levels. Phosphorus was added at levels of 0 800, 1600, and 16,000 mg P kg(-1) to a soil containing 5.57 mg Cd kg(-1). The concentration of 1 M NH4OAc extractable Cd decreased significantly with P levels up to 1600 mg kg(-1) due to an increase in soil pH and negative charge of soil (psoil containing low levels of this heavy metal.

  1. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Science.gov (United States)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  2. Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping.

    Science.gov (United States)

    Boucher, T Jude; Ashley, Richard; Durgy, Robert; Sciabarrasi, Michael; Calderwood, William

    2003-04-01

    A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks.

  3. Marginalization of Arable Land and its Correlation with Rural Labor Migration——A Case of Tongcheng County,Hubei Province,China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the introduction of the connotation of marginalization,the index of diagnosing the marginalization degree is put forward.According to the 685 copies of questionnaires on peasant households in Tongcheng County of Hubei Province and the statistical data of local government,marginalization of arable land and its correlation with rural labor migration in Tongcheng County are studied by using aggregative indicator method,clustering analysis method and correlation analysis method.Result shows that marginalization of arable land has happened two times in Tongcheng County since 1985.Dry land has severer marginalization degree than paddy field.There is significant correlation between marginalization degree of arable land and rural labor migration;and the correlation between marginalization degree and rural labor migration in paddy field is greater than that in dry land.Marginalization of arable land will advance the rural labor migration,while in response to the poor current circulation of lands;the rural labor migration will further deepen the marginalization degree.Marginalization of arable land is one of the important factors affecting the labor migration in rural areas.

  4. Soil types will alter the response of arable agroecosystems to future rainfall patterns

    Science.gov (United States)

    Zaller, J. G.; Schwarz, T.; Hall, R.; Ziss, E.; von Hohberg und Buchwald, C.; Hösch, J.; Baumgarten, A.

    2012-04-01

    Regional climate change scenarios for eastern Austria (pannonian region) predict fewer but heavier rains during the vegetation period without substantial changes in the total annual amount of rainfall. While many studies investigated the effects of rainfall patterns on ecosystem properties, very little is known on how different soil types might alter ecosystem responses. In order to test this, we conducted an experiment at the AGES lysimeter station using 18 3 m2 lysimeters where we simultaneously manipulated rainfall patterns according to regional climate scenarios (current vs. prognosticated rain) on the three main soil types of the region (sandy calcaric phaeozem, gleyic phaeozem and calcic chernozem). Lysimeters were cultivated according to good farming practice using crop varieties and crop rotations typically for the region. Here, we present results of the response of field peas (Pisum sativum) on important agricultural parameters. Lysimeters under progn. rain showed lower crop cover than under curr. rain while soil types had no effect. Total aboveground biomass production (comprising crops plus weeds) was significantly lower under progn. rain; sandy calcaric phaeozem showed the lowest plant biomass. Pea yields under progn. rain were substantially lower than under curr. rain; again, yields under sandy soils were lower than under the other two soil types. Root growth was significantly higher in progn. rain than in curr. rain; there was a trend towards less root growth in the gleyic soils. Mycorrhization of roots was not influenced by soil types, however under progn. rain colonization rates were lower than under curr. rain. Weed establishment and growth was increased under progn. rain in gleyic soils but decreased in the other soil types. Weed biomass was not affected by rainfall, however sandy soils had less weed biomass than the other soil types. Abundance of the insect pest pea moth (Cydia nigricana) was almost twice as high under progn. rain than under curr

  5. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    Science.gov (United States)

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  6. Evaluation of cover crop and reduced cultivation for reducing nitrate leaching in Ireland.

    Science.gov (United States)

    Hooker, K V; Coxon, C E; Hackett, R; Kirwan, L E; O'Keeffe, E; Richards, K G

    2008-01-01

    Nitrate (NO(3)) loss from arable systems to surface and groundwater has attracted considerable attention in recent years in Ireland. Little information exists under Irish conditions, which are wet and temperate, on the effects of winter cover crops and different tillage techniques on NO(3) leaching. This study investigated the efficacy of such practices in reducing NO(3) leaching from a spring barley (Hordeum vulgare L.) system in the Barrow River valley, southeast Ireland. The study compared the effect of two tillage systems (plow-based tillage and noninversion tillage) and two over-winter alternatives (no vegetative cover and a mustard cover crop) on soil solution NO(3) concentrations at 90 cm depth over two winter drainage seasons (2003/04 and 2004/05). Soil samples were taken and analyzed for inorganic N. During both years of the study, the use of a mustard cover crop significantly reduced NO(3) losses for the plowed and reduced cultivation treatments. Mean soil solution NO(3) concentrations were between 38 and 70% lower when a cover crop was used, and total N load lost over the winter was between 18 and 83% lower. Results from this study highlight the importance of drainage volume and winter temperatures on NO(3) concentrations in soil solution and overall N load lost. It is suggested that cover crops will be of particular value in reducing NO(3) loss in temperate regions with mild winters, where winter N mineralization is important and high winter temperatures favor a long growing season.

  7. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    Science.gov (United States)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  8. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  9. The impact of the EU regulatory constraint of transgenic crops on farm income.

    Science.gov (United States)

    Park, Julian; McFarlane, Ian; Phipps, Richard; Ceddia, Graziano

    2011-07-01

    World population and the need for nutritious food continue to grow. For 14 years farmers from a range of countries across the globe have been accessing transgenic technologies either to reduce crop production costs, increase yield and/or to exploit a range of rotational benefits. In 2009 134 Mha of transgenic crops was grown. The arable area of the EU 27 is approximately 102 Mha; however, only about 0.1 Mha of transgenic crops, mainly maize in Spain, is grown in the EU. This is in part due to limited approvals before the establishment of a moratorium on the cultivation of transgenic crops. In this paper we estimate the revenue foregone by EU farmers, based on the potential hectarages of IR and HT transgenic crops that have been economically successful elsewhere if they were to be grown in areas of the EU where farmers could expect an overall financial benefit. This benefit would accrue primarily from reduced input costs. We estimate that if the areas of transgenic maize, cotton, soya, oil seed rape and sugar beet were to be grown where there is agronomic need or benefit then farmer margins would increase by between €443 and €929 M/year. It is noted that this margin of revenue foregone is likely to increase if the current level of approval and growth remains low, as new transgenic events come to market and are rapidly taken up by farmers in other parts of the world.

  10. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.

    Science.gov (United States)

    Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti

    2014-10-01

    Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.

  11. Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China

    Science.gov (United States)

    Niu, Lili; Xu, Chao; Zhu, Siyu; Bao, Huiming; Xu, Yang; Li, Hongyi; Zhang, Zhijian; Zhang, Xichang; Qiu, Jiguo; Liu, Weiping

    2016-12-01

    Due to the adverse impact of DDTs on ecosystems and humans, a full fate assessment deems a comprehensive study on their occurrence in soils over a large region. Through a sampling campaign across China, we measured the concentrations, enantiomeric fractions (EFs), compound-specific carbon isotope composition of DDT and its metabolites, and the microbial community in related arable soils. The geographically total DDT concentrations are higher in eastern than western China. The EFs and δ13C of o,p’-DDT in soils from western China show smaller deviations from those of racemic/standard compound, indicating the DDT residues there mainly result from atmospheric transport. However, the sources of DDT in eastern China are mainly from historic application of technical DDTs and dicofol. The inverse dependence of o,p’-DDT and p,p’-DDE on temperature evidences the transformation of parent DDT to its metabolites. Initial usage, abiotic parameters and microbial communities are found to be the main factors influencing the migration and transformation of DDT isomers and their metabolites in soils. In addition, a prediction equation of DDT concentrations in soils based on stepwise multiple regression analysis is developed. Results from this study offer insights into the migration and transformation pathways of DDTs in Chinese arable soils, which will allow data-based risk assessment on their use.

  12. Responses of plasmid-mediated quinolone resistance genes and bacterial taxa to (fluoro)quinolones-containing manure in arable soil.

    Science.gov (United States)

    Xiong, Wenguang; Sun, Yongxue; Ding, Xueyao; Zhang, Yiming; Zhong, Xiaoxia; Liang, Wenfei; Zeng, Zhenling

    2015-01-01

    The aim of the present study was to investigate the fate of plasmid-mediated quinolone resistance (PMQR) genes and the disturbance of soil bacterial communities posed by (fluoro)quinolones (FQNs)-containing manure in arable soil. Representative FQNs (enrofloxacin (ENR), ciprofloxacin (CIP) and norfloxacin (NOR)), PMQR genes (qepA, oqxA, oqxB, aac(6')-Ib-cr and qnrS) and bacterial communities in untreated soil, +manure and +manure+FQNs groups were analyzed using culture independent methods. The significantly higher abundance of oqxA, oqxB and aac(6')-Ib-cr, and significantly higher abundance of qnrS in +manure group than those in untreated soil disappeared at day 30 and day 60, respectively. All PMQR genes (oqxA, oqxB, aac(6')-Ib-cr and qnrS) dissipated 1.5-1.7 times faster in +manure group than those in +manure+FQNs group. The disturbance of soil bacterial communities posed by FQNs-containing manure was also found. The results indicated that significant effects of PMQR genes (oqxA, oqxB, aac(6')-Ib and qnrS) on arable soils introduced by manure disappeared 2 month after manure application. FQNs introduced by manure slowed down the dissipation of PMQR genes. The presence of high FQNs provided a selective advantage for species affiliated to the phylum including Acidobacteria, Verrucomicrobia and Planctomycetes while suppressing Proteobacteria and Actinobacteria.

  13. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields.

    Science.gov (United States)

    Rotchés-Ribalta, Roser; Boutin, Céline; Blanco-Moreno, José M; Carpenter, David; Sans, F Xavier

    2015-07-01

    The decline of arable species characteristic of winter cereal fields has often been attributed to different factors related to agricultural intensification but most importantly to herbicide use. Herbicide phytotoxicity is most frequently assessed using short-term endpoints, primarily aboveground biomass. However, short-term sensitivity is usually not sufficient to detect actual effects because plants may or may not recover over time following sublethal herbicide exposures. Therefore, it is important to assess the long-term effects of herbicide applications. Annual species rely on renewable seed production to ensure their persistence; hence, assessment of herbicide sensitivity is more accurately estimated through effects on reproduction. Here we aim to assess the phytotoxicity of two commonly used herbicides: tribenuron and 2,4-D on eight plant species belonging to four families, each with one rare and one more common species. Specifically we examined the pattern of sensitivity using short-term and long-term endpoints (total aboveground biomass, total seed biomass and number of seeds) of these species; we determined the levels of and time to recovery in terms of stem length and fruit number, and assessed whether their rarity relates to their sensitivity to herbicide application. Our results suggest that although differences in herbicide sensitivity are not a direct cause of rarity for all species, it may be an important driver of declining arable plants.

  14. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    Science.gov (United States)

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  15. Fenologia, produção e teor de antocianinas de cultivares de morangueiro em ambiente protegido Phenology, production and content of strawberry crops cultivars anthocyanins produced under protected environment

    Directory of Open Access Journals (Sweden)

    Eunice Oliveira Calvete

    2008-06-01

    Full Text Available A diversidade de cultivares de morangueiro exige estudos quanto à adaptação no local de cultivo. Por sua vez, a maior exigência do consumidor por produtos mais saudáveis requer informações a respeito das características nutracêuticas dos produtos. Este trabalho objetivou determinar as cultivares com maior adaptação ao cultivo protegido na região do Planalto Médio do Rio Grande do Sul, os teores de antocianinas, bem como a época de plantio que proporcionam maior produtividade. O experimento foi conduzido em um ambiente protegido de 280 m², coberto com filme de polietileno de baixa densidade (PEBD, de 150 µm, com aditivo anti UV. O delineamento foi em blocos ao acaso, com três repetições, e os tratamentos em parcelas subdivididas, sendo as épocas de plantio das mudas (28 de abril e 13 de maio as parcelas principais, e as cultivares (Dover, Tudla, Comander, Oso Grande, Campinas, Chandler, Serrano e Camarosa, as subparcelas. Foram avaliadas características fenológicas e componentes do rendimento. Os teores de antocianinas foram determinados por espectrofotometria, com comprimento de onda de 528 nm. Não houve interação entre cultivares e épocas de plantio sobre as características avaliadas. A maior produtividade foi do morangueiro cultivado precocemente, em abril. As cultivares Camarosa, Dover, Oso Grande e Tudla são as mais indicadas, pelo maior rendimento e escalonamento da produção, e a cultivar Serrano, pelo maior teor de antocianinas.The diversification of strawberry cultivars demands studies about their adaptation in the cultivation place and, the increase of the consumer's requirement for healthier products require studies about the products nutraceutica characteristics. In such a way, this work aimed to determine the cultivars with higher adaptation under protected environment in Rio Grande do Sul, Planalto Médio region, the contents of anthocyanins, as well as the period that provides more productivity. The

  16. Pattern Change of Arable Intensification in Jiangsu Province%江苏省耕作集约性格局变化分析

    Institute of Scientific and Technical Information of China (English)

    金涛; 陶凯俐; 钱思航; 朱志伟

    2013-01-01

      Through the method of factor analysis to indicators of spatial unit of county, the paper gives an integrated quantitative evaluation on the arable intensification of Jiangsu province in 1999 and 2009. The results show that the intensity declined obviously in the surroundings of Tai lake and coastal areas along the Yangtze River from 1999 to 2009, and there was a marked regional difference in the intensity characters of cultivation, which southern Jiangsu represented by Tai lake areas, now has the low multi-cropping index (MCI) and low input of agrochemicals but high productivity, while the Huaibei region shows the high MCI with high labor and agrochemicals input. The findings imply that revelant measures should be taken to deal with the issues such as the irrigation and drainage engineering in Huai river basin, and the high intensity of agrochemicals in Huaibei areas.%  以县级行政区为基本空间单元,对江苏省1999年和2009年反映耕作集约性状况指标进行定量综合评估。结果表明:环太湖和近海的沿江地区耕作集约性相对有所减弱;集约性特征南北分化明显,以太湖农区为代表的苏南地区,复种指数低、农用化学品投入少而经济产出率高,而淮北农区则复种指数高、农业化学化程度高、劳动密集。洪泽湖以东淮河流域的农田水利化建设、以及淮北地区较高的农用化学品投入强度等问题值得重视。

  17. Crop stress detection and classification using hyperspectral remote sensing

    Science.gov (United States)

    Irby, Jon Trenton

    Agricultural production has observed many changes in technology over the last 20 years. Producers are able to utilize technologies such as site-specific applicators and remotely sensed data to assist with decision making for best management practices which can improve crop production and provide protection to the environment. It is known that plant stress can interfere with photosynthetic reactions within the plant and/or the physical structure of the plant. Common types of stress associated with agricultural crops include herbicide induced stress, nutrient stress, and drought stress from lack of water. Herbicide induced crop stress is not a new problem. However, with increased acreage being planting in varieties/hybrids that contain herbicide resistant traits, herbicide injury to non-target crops will continue to be problematic for producers. With rapid adoption of herbicide-tolerant cropping systems, it is likely that herbicide induced stress will continue to be a major concern. To date, commercially available herbicide-tolerant varieties/hybrids contain traits which allow herbicides like glyphosate and glufosinate-ammonium to be applied as a broadcast application during the growing season. Both glyphosate and glufosinate-ammonium are broad spectrum herbicides which have activity on a large number of plant species, including major crops like non-transgenic soybean, corn, and cotton. Therefore, it is possible for crop stress from herbicide applications to occur in neighboring fields that contain susceptible crop varieties/hybrids. Nutrient and moisture stress as well as stress caused by herbicide applications can interact to influence yields in agricultural fields. If remotely sensed data can be used to accurately identify specific levels of crop stress, it is possible that producers can use this information to better assist them in crop management to maximize yields and protect their investments. This research was conducted to evaluate classification of specific

  18. Cereal Crops Research Unit

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Cereal Crops Research Unit is to 1) conduct basic research to identify and understand the biological processes affecting the growth, development...

  19. Modes for Agricultural Land Protection in China

    Institute of Scientific and Technical Information of China (English)

    Shaojia; CAO; Xianshu; LI

    2013-01-01

    The main problem of agricultural land protection in China is the single farmland protection mode insuring arable land area only by issuing indicators,which brings great pressure to farmland’s production and service function. Through establishing the corresponding relationship between food structure and some land use types,this paper points out that there is asymmetry between farmland area and per capita food consumption structure in China in recent years. Based on the above study,the paper proposes four types for agricultural land production, namely subsistence,fairly well-off,ecological and discrete type. Finally,it concludes that establishing rational type for agricultural land protection and implementing diverse farmland protection modes is the trend of farmland protection in China in the future.

  20. EnviroAtlas - Acres of crops that have no nearby pollinator habitat for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset is a summary of crop acres without nearby pollinator habitat. Pollination habitat here is defined as trees (fruit, nut, deciduous, and evergreen). Crops...

  1. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Science.gov (United States)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  2. Enhancing crop innate immunity: new promising trends

    Directory of Open Access Journals (Sweden)

    Pin-Yao eHuang

    2014-11-01

    Full Text Available Plants are constantly exposed to potentially pathogenic microbes present in their surrounding environment. Due to the activation of the pattern-triggered immunity (PTI response that largely relies on accurate detection of pathogen- or microbe-associated molecular patterns by pattern-recognition receptors (PRRs, plants are resistant to the majority of potential pathogens. However, adapted pathogens may avoid recognition or repress plant PTI and resulting diseases significantly affect crop yield worldwide. PTI provides protection against a wide range of pathogens. Reinforcement of PTI through genetic engineering may thus generate crops with broad-spectrum field resistance. In this review, new approaches based on fundamental discoveries in PTI to improve crop immunity are discussed. Notably, we highlight recent studies describing the interfamily transfer of PRRs or key regulators of PTI signalling.

  3. Ozone Damages to Mediterranean Crops: Physiological Responses

    Directory of Open Access Journals (Sweden)

    Massimo Fagnano

    2011-02-01

    Full Text Available In this brief review we analyzed some aspects of tropospheric ozone damages to crop plants. Specifically, we addressed this issue to Mediterranean environments, where plant response to multiple stresses may either exacerbate or counteract deleterious ozone effects. After discussing the adequacy of current models to predict ozone damages to Mediterranean crops, we present a few examples of physiological responses to drought and salinity stress that generally overlap with seasonal ozone peaks in Southern Italy. The co-existence of multiple stresses is then analyzed in terms of stomatal vs. non-stomatal control of ozone damages. Recent results on osmoprotectant feeding experiments, as a non-invasive strategy to uncouple stomatal vs. non stomatal contribution to ozone protection, are also presented. In the final section, we discuss critical needs in ozone research and the great potential of plant model systems to unravel multiple stress responses in agricultural crops.

  4. Radioactivity in food crops

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  5. Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: Study over arable crops and a mature beech forest

    DEFF Research Database (Denmark)

    Gallagher, M.W.; Clayborough, R.; Beswick, K.M.

    2000-01-01

    obtained with correlation coefficients for the REA system ranging from 0.71 to 0.82, lending further confidence in the use of this technique, Daily averaged biogenic emissions from the wheat and barley canopies were significantly larger than expected, likely a result of harvesting. Fluxes measured over......A relaxed eddy accumulation (REA) system, based on the design by Beverland et al. (Journal of Geophysics Research 101 (D17) 22, 807-22, 815), for the measurement of biogenic VOC species was evaluated by intercomparison with an eddy correlation CO2 flux system over a mature deciduous beech canopy...... (Fagus Sylvatica) during the FOREXNOX program. Measurements from a site where winter wheat and barley (Hordeum Vulgare ann Triticum Aestivum) were being harvested are also presented. The system was inter-compared with two different eddy correlation systems for measuring CO2 fluxes. Good results were...

  6. Direct and selective small-molecule inhibition of photosynthetic PEP carboxylase: New approach to combat C4 weeds in arable crops.

    Science.gov (United States)

    Paulus, Judith Katharina; Förster, Kerstin; Groth, Georg

    2014-06-05

    Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of C4 photosynthesis. Besides, non-photosynthetic isoforms of PEPC are found in bacteria and all types of plants, although not in animals or fungi. A single residue in the allosteric feedback inhibitor site of PEPC was shown to adjust the affinity of the photosynthetic and non-photosynthetic isoforms for feedback inhibition by metabolites of the C4 pathway. Here, we applied computational screening and biochemical analyses to identify molecules that selectively inhibit C4 PEPC, but have no effect on the activity of non-photosynthetic PEPCs. We found two types of selective inhibitors, catechins and quinoxalines. Binding constants in the lower μM range and a strong preference for C4 PEPC qualify the quinoxaline compounds as potential selective herbicides to combat C4 weeds.

  7. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  8. 保定市农作物病虫害植保社会化服务的现状问题与对策%The Current Situation, Problems and Countermeasures in Social Service of Plant Protection against Crop Diseases and Insect Pests in Baoding City

    Institute of Scientific and Technical Information of China (English)

    陈红岩; 白颖

    2014-01-01

    阐述了发展植保专业化服务组织、开展统防统治的必要性。分析了保定市植保专业化服务组织的现状、类型(专业合作社型、专业协会型、专业服务公司型、农资企业型、基层农技部门型、村防治组织型、种植大户型、其他类型)和服务形式(出工代防代治、带药代防代治、全程承包防治、自防自治);指出了植保服务组织发展以及统防统治工作中存在的主要问题;从高度重视、加大投入、建章立制、多元发展、规模经营、机艺匹配、典型带动、提高素质8个方面,提出了保定市植保专业化统防统治的对策与建议。%The necessity of developing professional service organization in plant protection and launching unified prevention and control of crops diseases and insect pests was elaborated in this paper.The professional service organization in plant protection of Baoding City was analyzed in the aspects of the current situation, types ( including cooperatives, assosiations, service firms, agricultural enterprises, agricultural technical sectors at the grassroots level, rural orgnization for crop disease and insect control, farmer planting large and others ) , and service forms ( including crop disease and pest control for other farmers using pesticides paid by themselves or famers, or empolyed by farms, or self-empolyed ) .The main problems existing in the development of plant protection service organization and unified prevention and control of crops diseases and insect pests were pointed out.Eight proposals and countermeasures were put forward in respects of high attention , increasing investment , making rules, multi-development, scale management, machine matching technique, model promoting and improving the quality.

  9. Effects of crop rotation and soil tillage on weeds in organic farming

    Directory of Open Access Journals (Sweden)

    Schulz, Franz

    2014-02-01

    Full Text Available An organic long-term field experiment with two factors has been carried out since 1998 at the experimental station Gladbacherhof, University of Giessen. Effects of 3 different farm types (with lifestock raising, stockless farming with rotational set-aside, stockless farming only cash crops combined with 4 tillage treatments (mouldboard plough, two-layer-plough, reduced tillage depth and tillage without plough on plants, soil and environment have been investigated. This article presents results on the coverage rate of arable wild plants (weed coverage, the range of weed species, the abundance of C. arvense (L. Scop. (Canada thistle and the weed phytomass during harvest time of the main crops dependent on farm type and soil tillage. It can be concluded that, compared to conventional economic weed thresholds, the weed coverage was generally relatively low and only limited ranges of species were found. Wild arable plants probably did not have any impact on yields of the cultivated plants due to intensive mechanical regulatory measures. In stockless organic farming without alfalfa-grass in the crop rotation Cirsium arvense (L. Scop. (Canada thistle might become a problem whereas this perennial root-weed does not seem to raise a long term problem in a soil tillage system without ploughing. In all treatments the abundance of weeds like Galium aparine L. (catchweed bedstraw and Stellaria media L. (chickweed was high. However, none of the farm types or soil tillage systems succeeded in providing evidence of promoting rare species or encouraging biodiversity. In order to achieve this special support measures should be implemented.

  10. Modeling the effects of different N fertilizer rates on N2O emissions and nitrate leaching from arable soils in Korea

    Science.gov (United States)

    Kim, Y.; Berger, S.; Tenhunen, J. D.; Gebauer, G.; Kiese, R.

    2012-12-01

    Process-based biogeochemical models can be used to predict the impact of various agricultural management practices on plant nitrogen use efficiency and nitrogen losses to the environment such as greenhouse gas emissions and nitrate leaching by analyzing the interactions between management practices, primary drivers such as climate, soil properties, crop types, etc., and biogeochemical reactions. In this study we applied the Landscape-DNDC model, which combines and uniforms functions of the agricultural-DNDC and the Forest-DNDC for simulation of C and N turnover, GHG emissions, nitrate leaching, and plant growth for a Korean arable field cultivated with radish (Raphanus sativus L.). The annual average temperature is app. 8.5°C and the annual precipitation is app. 1,500 mm. According to farmers practice the study field received a basal fertilizer application of app. 200 kg N ha-1 before setting up four fertilizer treatments i.e. additionally 50, 150, 250 and 350 kg N ha-1. All N treatment plots were tilled a week after application of specific N fertilizer in order to make row and interrow. Just before radish seeding rows were covered with black plastic mulch which was removed after harvest. In spite the widespread usage of black mulch in Korea or even Asia; so far biogeochemical models do not consider impacts of mulch on soil environmental conditions and soil biogeochemistry. Based on field measurements we adjusted input information and used only half of the annual precipitation and the maximum temperature for simulation of row conditions, whereas the actual weather data were used for the interrow simulations. Simulated N2O emissions agreed well with measurements; however peak emissions after fertilization were slightly underestimated in row and interrow. Annual N2O emissions of the fertilizer treatments increased with increasing fertilization rates from around 1.5 to 3 kg N ha-1 in the row and lower emissions of app. 1.5 kg N ha-1 (for all N treatments) in the

  11. Tree colonisation of abandoned arable land after 27 years of horse-grazing: the role of bramble as a facilitator of oak wood regeneration

    NARCIS (Netherlands)

    Kuiters, A.T.; Slim, P.A.

    2003-01-01

    The impact of horse-grazing on natural tree regeneration on abandoned arable fields was studied in Baronie Cranendonck, a 98 ha nature reserve near the Dutch-Belgian border. The study area comprised a vegetation mosaic of Corynephorus grassland and dry heath with juniper shrub on former drift sand,

  12. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-03-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM stabilized in microstructures found in the chemical extraction residue (OM(ER. Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007 to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰. We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles

  13. Estimation of global NH3 emissions from synthetic fertilizers and animal manure applied to arable lands and grasslands

    NARCIS (Netherlands)

    Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H.

    2002-01-01

    One of the main causes of the low efficiency in nitrogen (N) use by crops is the volatilization of ammonia (NH3) from fertilizers. Information taken from 1667 NH3 volatilization measurements documented in 148 research papers was summarized to assess the influence on NH3 volatilization of crop type,

  14. Protection of plants against air pollutants: Role of chemical protectants

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, J.; Agrawal, M. (Banaras Hindu Univ., Varanasi (India))

    1993-03-01

    The protection of plants against air pollution damage can best be achieved either by developing pollution-tolerant cultivars or by using chemical protectants. Use of chemical protectants such as pesticides, growth regulators, anti-oxidants, fertilizers, etc. is a short-term solution to reduce the risk of air pollution damage. In addition, these protectants help in understanding the mechanism of air pollution toxicity and provide a scientific basis for assessing crop losses in field conditions. 95 refs.

  15. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops; Proteccion contra la erosion versus productividad en venidos. Ensayos de cubiertas vegetales en cultivos en pendiente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-07-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  16. Farmers' Interest in Nature and Its Relation to Biodiversity in Arable Fields

    Directory of Open Access Journals (Sweden)

    J. Ahnström

    2013-01-01

    Full Text Available Biodiversity declines in farmland have been attributed to intensification of farming at the field level and loss of heterogeneity at the landscape level. However, farmers are not solely optimizing production; their actions are also influenced by social factors, tradition and interest in nature, which indirectly influence biodiversity but rarely are incorporated in studies of farmland biodiversity. We used social science methods to quantify farmers' interest in nature on 16 farms with winter wheat fields in central Sweden, and combined this with biodiversity inventories of five organism groups (weeds, carabid beetles, bumblebees, solitary bees, and birds and estimates of landscape composition and management intensity at the field level. Agricultural intensity, measured as crop density, and farmers' interest in nature explained variation in biodiversity, measured as the proportion of the regional species richness found on single fields. Interest in nature seemed to incorporate many actions taken by farmers and appeared to be influenced by both physical factors, for example, the surrounding landscape, and social factors, for example, social motivations. This study indicates that conservation of biodiversity in farmland, and design of new agri-environmental subsidy systems, would profit from taking farmers' interest in nature and its relation to agricultural practices into account.

  17. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    approaches involving extension and other stakeholders will help meet the challenge of developing more robust cropping systems; (5) farmers can take advantage of Web 2.0 and other new technologies to make the exchange of updated information quicker and easier; (6) cooperation between historically...... compartmentalized experts in plant health and crop protection could help develop anticipation strategies; and (7) the current decline in skilled crop protection specialists in Europe should be reversed, and shortcomings in local human and financial resources can be overcome by pooling resources across borders......., cropping systems, and pests; (2) the unpredictable adaptation of pests to a changing environment primarily creates uncertainty and projected changes do not automatically translate into doom and gloom scenarios; (3) faced with uncertainty, policy, research, and extension should prepare for worst...

  18. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude...... and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies....

  19. Future-proof crops

    NARCIS (Netherlands)

    Kissoudis, Christos; Wiel, van de Clemens; Visser, R.G.F.; Linden, van der Gerard

    2016-01-01

    Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as pro

  20. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  1. Crop yields in intercropping

    NARCIS (Netherlands)

    Yu, Y.

    2016-01-01

    Abstract

    Intercropping, the cultivation of two or more crop species simultaneously in the same field, has been widely practiced by smallholder farmers in developing countries and is gaining increasing interest in developed countries. Intercropping can increase the yield per

  2. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D.S.

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  3. Economic Evaluation of Intensive Growing of Selected Crops

    Directory of Open Access Journals (Sweden)

    J. Homolka

    2013-06-01

    Full Text Available The submitted paper on the topic: “Economic Evaluation of Intensive Growing of Selected Crops” deals with an economic evaluation of growing of selected crops – winter oilseed rape, winter wheat, and sugar beet in Agro Žlunice a.s. where intensive growing technologies are used. Reached results are compared with results in the framework of the Czech Republic which represent average values for the mentioned crops. Agro Žlutice a.s. is situated in sugar beet production area in district Jičín and it farms on 1902 ha of agricultural land of which 1742 ha is arable land. A decisive subject of business here is plant production, animal production, and fruit growing. In the paper, an intensity and economics of growing of winter oilseed rape, winter wheat, and sugar beet in 2010, 2011 and 2012 is evaluated. Winter oilseed rape from a market view-point is an important crop for the chosen enterprise and Czech agriculture. In suitable growing it significantly contributes to a positive economic result. In winter wheat growing, from a view-point of competitiveness, it is important to reduce technological inputs which does not lead to decrease in yield and has provable economic benefit in evaluation of costs per a production unit. A favourable economics of growing of this crop is reached both in the intensive growing technology in the given enterprise, and within average growing conditions. A basic presumption whether to grow sugar beet is a possibility of the enterprise to supply this raw-material for processing either for sugar or bio-ethanol production. This crop in the mentioned enterprise and in the nationwide framework shows a favourable profitability. The reached growing and economic results of the enterprise Agro Žlunice a.s. in use of intensive growing technologies are more favourable in comparison with average results over the whole sector of agriculture.Pieces of knowledge introduced in this paper resulted from solution of an

  4. MICROELEMENTS IN SUNFLOWER CROPS

    Directory of Open Access Journals (Sweden)

    Buldykova I. A.

    2015-03-01

    Full Text Available The obtained experimental data show that the incorporation of trace elements into the system of the sunflower crop has a positive impact on the mineral nutrition of plants, the number and quality of the crop. Foliar feeding of sunflower crops with micronutrients improves nutrition of plants with nitrogen, phosphorus and potassium, thus creating the preconditions for the formation of highly agrocenosis. The seed yield of sunflower increased by variants with application of micronutrients 1.2-3.5 t/ha or 4.4-12.9 percent. The greatest impact of treatment with boron and copper, exceeding the background option 3.1-3.5 t/ha or 11.5-12.9% respectively. The crop is least influenced by manganese and molybdenum. The examined elements positively influenced the structure of the sunflower crop. The greatest influence on the diameter of the basket, the number of seeds, weight of seeds in the basket, the weight of 1000 seeds was provided by the zinc and copper. Trace elements contributed to the improvement of quality indicators of sunflower. For husk content, the greatest positive effect was cobalt, zinc, manganese and copper, increasing the background option 10.1, 10.4, 10.5 and 10, and 6%, respectively, on the oil content of sunflower seeds had cobalt, copper and zinc. The oil content on these options amounted 55,0, with 55.1 and 55.2%, respectively, increasing this figure by 1.5 to 1.7 %. The acid number at variants with boron, manganese and zinc was the same with the background option and amounted to 1.8. The greatest influence on iodine number provided molybdenum, zinc and copper, which accounted for 170,5, 171,2 and 171,4, exceeding the background option 10.2 and 11.1

  5. Crop kites: Determining crop-water production functions using crop coefficients and sensitivity indices

    Science.gov (United States)

    Smilovic, Mikhail; Gleeson, Tom; Adamowski, Jan

    2016-11-01

    The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield and is used to evaluate optimal irrigation depth and assess the potential of deficit and supplemental irrigation. A simple and easily applicable methodology to develop crop- and region-specific crop-water production functions using crop coefficients and sensitivity-indices is presented. Previous efforts to describe the crop-water production function have not accounted for the effects of the temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the ability of farmers to manage both the timing and amount of irrigation water may result in higher yields. We propose crop kites, a tool that explicitly acknowledges crop yield as a function of the temporal distribution of water use to both evaluate the complete space of water use and crop yield relationships, and extract from this space specific crop-water production functions. An example for winter wheat is presented using previously validated crop-specific sensitivity indices. Crop-water production functions are extracted from the crop kite related to specific irrigation schedules and temporal distributions of water use. Crop-water production functions associated with maximizing agricultural production agree with previous efforts characterizing the shape as a diminishing curvilinear function. Crop kites provide the tools for water managers and policy makers to evaluate crop- and region-specific agricultural production as it relates to water management and the associated economics, and to determine appropriate policies for developing and supporting the infrastructure to increase water productivity.

  6. CROPS : high tech agricultural robots

    NARCIS (Netherlands)

    Bontsema, J.; Hemming, J.; Pekkeriet, E.J.

    2014-01-01

    In the EU-funded CROPS (Clever Robots for Crops) project high tech robots are developed for site-specific spraying and selective harvesting of fruit and fruit vegetables. The harvesting robots are being designed to harvest high-value crops such as greenhouse vegetables, fruits in orchards and grapes

  7. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  8. Substrate Cultivation of Chrysanthemum: Plant performance in 6 cropping systems and the effect of parameters associated with root environment

    NARCIS (Netherlands)

    Guo, X.; Blok, C.

    2010-01-01

    Summary Chrysanthemum is an important greenhouse crop in Holland and is still cultivated in soil. To prevent the emission of nutrients and crop protecting agents, an emission:free cropping system should be developed. This experiment was conducted to that purpose. The objectives of this experiment we

  9. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  10. Brachypodium distachyon as a model system for studies of copper transport in cereal crops

    Directory of Open Access Journals (Sweden)

    Ha-il eJung

    2014-05-01

    Full Text Available Copper (Cu is an essential micronutrient that performs a remarkable array of functions in plants including photosynthesis, cell wall remodeling, flowering, and seed set. Of the world's major cereal crops, wheat, barley, and oat are the most sensitive to Cu deficiency. Cu deficient soils include alkaline soils, which occupy approximately 30% of the world’s arable lands, and organic soils that occupy an estimated 19% of arable land in Europe. We used Brachypodium distachyon (brachypodium as a proxy for wheat and other grain cereals to initiate analyses of the molecular mechanisms underlying their increased susceptibility to Cu deficiency. In this report, we focus on members of the CTR/COPT family of Cu transporters because their homologs in A. thaliana are transcriptionally upregulated in Cu-limited conditions and are involved either in Cu uptake from soils into epidermal cells in the root, or long-distance transport and distribution of Cu in photosynthetic tissues. We found that of five COPT proteins in brachypodium, BdCOPT3 and BdCOPT4 localize to the plasma membrane and are transcriptionally upregulated in roots and leaves by Cu deficiency. We also found that BdCOPT3, BdCOPT4, and BdCOPT5 confer low affinity Cu transport, in contrast to their counterparts in A. thaliana that confer high affinity Cu transport. These data suggest that increased sensitivity to Cu deficiency in some grass species may arise from lower efficiency and, possibly, other properties of components of Cu uptake and tissue partitioning systems and reinforce the importance of using brachypodium as a model for the comprehensive analyses of Cu homeostasis in cereal crops.

  11. [Cooperative relations between non-cropped habitats and soil animals in suburban farmland Landscape: A case in Shenbei New District in Shenyang, China].

    Science.gov (United States)

    Bian, Zhen-xing; Yu, Zhen-rong; Wang, Qiu-bing; Li, Jin-hong

    2015-12-01

    Non-cropped habitat in farm landscape plays a significant role in biodiversity, the functions of arable land and crop yields. This study focused on Shenbei New District in Shenyang City of Liaoning Province in Northeast China, which was a typical area with contradiction between biodiversity conservation and the high demand of agricultural production in the process of urbanization. Information entropy model, hand-picking and Baermann method were used for survey and identification of arthropods and nematodes in soils in urban suburban (US), urban fringe area (UFA) and rural area ( RA). The cooperative relations between the number of soil animals and types, structure as well as the total amount of non-cropped habitat were investigated in these three types of areas using linear regression. Our results showed that the area of single patch in non-cropped habitat was smaller than one hectare in Shenbei New District, and the types and the proportion of non-cropped habitat patches were increasing along with the increase of their distance to the urban center. But the proportion of non-cropped habitats areas appeared under an inverted U-type change. The proportion of non-cropped habitat patches was from 8.6% to 27.8%. The individual number of soil animals showed the U-type trend, while their species number changed irregularly. The individual number of soil animals increased with the increase of the proportion of non-cropped habitat patches in RA and US. There was no obvious correlation between the individual number of soil animal and the proportion of non-cropped habitat patches in UFA. The individual number of soil animals decreased with the increase of the proportion of non-cropped habitats areas. There was no cooperative relation in the proportion of non-cropped habitats and the number of soil animal species.

  12. Sterility and fertility: Keys for crop production in China

    Institute of Scientific and Technical Information of China (English)

    Sodmergen

    2010-01-01

    @@ Agricultural production is among the most important issues in China, since the country possesses a population exceeding 1.3 billion people.The arable land per capita, however,comprises only about 1/3 of the world average and continues to decrease owing to rapid urbanization.Consequently,China must produce as much food as possible from the limited arable areas remaining.

  13. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co......-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  14. Effect of almond shell biochar addition on the hydro-physical properties of an arable Central Valley soil

    Science.gov (United States)

    Lopez, V.; Ghezzehei, T. A.

    2014-12-01

    Biochar is composed of any carbonaceous matter pyrolyzed under low oxygen exposure. Its use as a soil amendment to address soil infertility has been accelerated by studies reporting positive effects of enhanced nutrient retention, cation exchange capacity, microbial activity, and vegetative growth over time. Biochar has also been considered as a carbon sequestration method because of its reported environmental persistence. While the aforementioned effects are positive benefits of biochar's use, its impact on soil physical properties and water flow are equally important in maintaining soil fertility. This study aims to show how soil physical and hydraulic properties change over time with biochar addition. To address these aims, we conducted a 9 week microcosm incubation experiment with local arable loamy sand soils amended with biochar. Biochar was created from locally collected almond shells and differs by pyrolysis temperatures (350°C, 700°C) and size (determining content of water stable aggregates remaining after wet sieving. This series of experiments is expected to provide a greater understanding on the impact biochar addition on soil physical and hydraulic properties. Furthermore, it provides insight into whether or not converting local agricultural waste into biochar for soil use will be beneficial, especially in agricultural systems undergoing climate stress.

  15. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  16. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  17. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer‐reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.

  18. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Devin eColeman-Derr

    2014-06-01

    Full Text Available The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions.

  19. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Derr, Devin [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, Susannah G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-06

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions

  20. 基于 NDVI 时间序列数据的江西省水稻种植制度变化研究%Study on Rice Cropping System in Jiangxi Province with Time-series NDVI Dataset

    Institute of Scientific and Technical Information of China (English)

    欧立业; 罗烈琴; 易明华

    2016-01-01

    Multiple cropping system is an important way to improve the grain yield , and cropping index as a statistical indicator can re-flect the degree of utilization of the arable land in the time scale .Cropping index of remote sensing monitoring on arable land resource assessment, security of food production , agricultural condition prediction has important practical significance .Jiangxi has always been a big agricultural province , has never been interrupted the export of marketable grain since the founding of state , made an important contribution to national food security .In this case, Jiangxi Province ,as the object of study , using SPOT VGT multi-temporal NDVI data, combined with the SRTM DEM data , remote sensing interpretation of the 2000-2010 three years’ arable land data in a five-year interval , analyze the change of the cultivated land area , crop growth situation , and farming system in Jiangxi province in these three years and the influence factors .%利用Savitzky-Golay滤波对覆盖江西省范围的SPOT VGT NDVI时间序列数据进行平滑处理的基础上,结合坡度数据,通过非监督分类的方法提取了江西省2000、2005和2010年水稻种植范围,并根据NDVI的年内动态变化,从水稻种植范围、水稻生长季起始时间、水稻复种指数和NDVI最大振幅等分析了江西省水稻种植和生长情况,探讨2000~2010年江西省水稻生产的变化。

  1. Genetically Modified Crops: Risks and Promise

    Directory of Open Access Journals (Sweden)

    Gordon Conway

    2000-07-01

    Full Text Available GM foods have the potential to provide significant benefits for developing countries. Over 800 million people are chronically undernourished, and 180 million children are severely underweight for their age. By 2020, there will be an extra two billion mouths to feed. Ecological approaches that underpin sustainable agriculture (e.g., integrated pest management and participatory approaches that strengthen farmers' own experimentation and decision making are key. Biotechnology will be an essential partner, if yield ceilings are to be raised, if crops are to be grown without excessive reliance on pesticides, and if farmers on less favored lands are to be provided with crops that are resistant to drought and salinity, and that can use nitrogen and other nutrients more efficiently. Over the past 10 years, in addition supporting ecological approaches, the Rockefeller Foundation has funded the training of some 400 developing-country scientists in the techniques of biotechnology. Most of the new crop varieties are the result of tissue culture and marker-aided selection. The Foundation also supports the production of genetically engineered rices, including a new rice engineered for beta carotene (the precursor of Vitamin A in the grain. Some specific steps can be taken by Monsanto that would improve acceptance of plant biotechnology in both the developing and the industrialized worlds: label; disavow gene protection (terminator systems; phase out the use of antibiotic resistance markers; agree (with big seed companies to use the plant variety protection system, rather than patents, in developing countries; establish an independently administered fellowship program to train developing-country scientists in crop biotechnology, biosafety, and intellectual property; donate useful technologies to developing countries; agree to share financial rewards from intellectual property rights on varieties such as basmati or jasmine rice with the countries of origin; and

  2. Tomato and cowpea crop evapotranspiration in an unheated greenhouse

    Institute of Scientific and Technical Information of China (English)

    Xu Junzeng; Peng Shizhang; Luo Yufeng; Jiao Xiyun

    2008-01-01

    With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001) and cowpea (2004) crop evapotranspiration (ETc) in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants' growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.

  3. Tomato and cowpea crop evapotranspiration in an unheated greenhouse

    Directory of Open Access Journals (Sweden)

    Xu Junzeng

    2008-06-01

    Full Text Available With the development of protected cultivation of vegetables in China, it is necessary to study the water requirements of crops in greenhouses. Lysimeter experiments were carried out to investigate tomato (2001 and cowpea (2004 crop evapotranspiration (ETc in an unheated greenhouse in Eastern China. Results showed remarkably reduced crop evapotranspiration inside the greenhouse as compared with that outside. ETc increased with the growth of the crops, and varied in accordance with the temperature inside the greenhouse and 20-cm pan evaporation outside, reaching its maximum value at the stage when plants’ growth was most active. Differences between the variation of crop evapotranspiration and pan evaporation inside the greenhouse were caused by shading of the pan in the later period when the crops were taller than the location where the pan was installed, 70 cm above ground. The ratio of crop evapotranspiration to pan evaporation was not constant as reported in previous studies, and the variation of the inside ratio αin lagged behind that of the outside ratio αout. Simulation of crop evapotranspiration based on 20-cm pan evaporation inside the greenhouse is more reasonable than that based on 20-cm pan evaporation outside, although pan evaporation outside is more consistent with ETc than that inside. The value of αin, calculated based on air temperature, relative humidity, and ground temperature inside, plays a dominant role in the calculation of ETc. As the crop height increases, altering the location of the inside pan and placing it above the canopy, out of the shade, would help to achieve more reasonable values of crop evapotranspiration.

  4. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    Science.gov (United States)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  5. Introduction of Alley Cropping

    Directory of Open Access Journals (Sweden)

    Sugeng Parmadi

    2004-01-01

    Full Text Available One of the efforts to preserve the sources of vegetarian, soil, and water is to rehabilitate the land and soil conservation. The aim of this rehabilitation is increasing and maintaining the produtivity of the land, so it can be preserved and used optimally. Therefore, it is necessary to a  develop a variety of good soil conservation, such as vegetative method and civil engineering. To find an appropriate technology, so it is necessary to develop some alternatives of soil conservation technique that are mainly implemented at dry land with its slope of more than 15% in the upstream area of discharge. One of the most suitable soil conservation technique today is Alley Cropping. Based on the research (trial and error in some areas, Alley Cropping could really provide a positive result in terms of erotion controlling and running off and maintain the land productivity. In addition, the technique is more easly operated and spends a cheaper cost than making a bench terrace.

  6. Crop demand of manganese.

    Science.gov (United States)

    Marton, Laszlo

    2012-01-01

    The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn(2+) levels and to determine the critical tissue concentration of Mn(2+) deficiency during early stages of growth. The minimum Mn(2+) concentration required in soil nutrient contents was 42.5 mg kg(-1) for sunflower, 24.3 mg kg(-1) for tobacco and 10.2 mg kg(-1) for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0-65.0 mg Mn(2+) kg(-1), 24.9-32.1 mg Mn( n+) kg(-1) and 28.7 to 29.6 mg Mn(2+) kg(-1), respectively. Critical shoot Mn(2+) concentration at early stages of growth was 53.6 mg kg(-1) in sunflower, 458.0 mg kg(-1) in tobacco and 193.8 mg kg(-1) in triticale. Our results demonstrate that the tolerance to low external Mn(2+) (triticale: crop species tested.

  7. Model-based design of protected cultivation system - first results and remaining challenges

    NARCIS (Netherlands)

    Henten, van E.J.; Vanthoor, B.H.E.; Stanghellini, C.; Visser, de P.H.B.; Hemming, S.

    2012-01-01

    Abstract: Protected cultivation systems are used throughout the world as a powerful instrument to produce crops. They protect the crops from unfavorable outdoor climate conditions and pests and offer the opportunity to modify the indoor climate to create an environment that is optimal for crop growt

  8. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency....

  9. International bioenergymarkets - the effects of biofuelpolicies on agriculture and arable area; Kansainvaelinen bioenergiakauppa. Biopolttoainetavoitteiden vaikutukset maatalouteen ja viljelyalan kaeyttoeoen

    Energy Technology Data Exchange (ETDEWEB)

    Rintamaeki, H.; Aro-Heinilae, E.

    2012-11-01

    is based on corn and the oil seed affects the prices of foods and weakens access of especially the world's poorest to the food market. Biofuels production has increased so direct as indirect changes into the use of the land. Direct changes refer to the introduction of the new land to the biofuels production. The indirect changes in the use of the land can be the result from biofuels production displacing services or commodities (food, feed, fiber products) on land currently in production. It is supposed the growth of the arable land in the different biofuel scenarios being 1-4 per cent at a global level compared with a situation without the production of biofuels. Growth pressure of arable land remain moderate, however effects to food prices with firs generation biofuels are high, which dilutes food security. This comes crucial when taken into account pressure that comes from population growth, as well as the fact that effects allocates the most towards the most poor which use prominent share of their income for staple foodstuff purchase. Development of second generation biofuels, which production is based on byproduct and wastes or biomass that is cultivated in marginal lands, is essential to meet political biofuel targets in sustainable manner. (orig.)

  10. [Characteristics of nutrient loss by runoff in sloping arable land of yellow-brown under different rainfall intensities].

    Science.gov (United States)

    Chen, Ling; Liu, De-Fu; Song, Lin-Xu; Cui, Yu-Jie; Zhang, Gei

    2013-06-01

    In order to investigate the loss characteristics of N and P through surface flow and interflow under different rainfall intensities, a field experiment was conducted on the sloping arable land covered by typical yellow-brown soils inXiangxi River watershed by artificial rainfall. The results showed that the discharge of surface flow, total runoff and sediment increased with the increase of rain intensity, while the interflow was negatively correlated with rain intensity under the same total rainfall. TN, DN and DP were all flushed at the very beginning in surface flow underdifferent rainfall intensities; TP fluctuated and kept consistent in surface flow without obvious downtrend. While TN, DN and DP in interflow kept relatively stable in the whole runoff process, TP was high at the early stage, then rapidly decreased with time and kept steady finally. P was directly influenced by rainfall intensity, its concentration in the runoff increased with the increase of the rainfall intensity, the average concentration of N and P both exceeded the threshold of eutrophication of freshwater. The higher the amount of P loss was, the higher the rain intensity. The change of N loss was the opposite. The contribution rate of TN loss carried by surface flow increased from 36.5% to 57.6% with the increase of rainfall intensity, but surface flow was the primary form of P loss which contributed above 90.0%. Thus, it is crucial to control interflow in order to reduce N loss. In addition, measures should be taken to effectively manage soil erosion to mitigate P loss. The proportion of dissolved nitrogen in surface flow elevated with the decrease of rainfall intensity, but in interflow, dissolved form was predominant. P was exported mainly in the form of particulate under different rainfall intensities and runoff conditions.

  11. The Community Abundance and Diversity of Arable Soil Insect Community Following Different Fertilizer Treatments in Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    LIN Ying-hua; LIU Hua; ZHANG Shu-qing; ZHANG Fu-dao

    2008-01-01

    The soil insect community was studied in grey desert soil district in September 2004.90 soil samples and 100 pitfalls were collected from 10 treatments,i.e.,abandonment(Aband.),CK,N,NP,NK,PK,NPK,MNPK(fertilizer N:organic N=3:7),1.5MNPK,and SNPK.4 915 soil insects(128 unknown),as individuals belonging to 9 orders and 33 families,were obtained by pitfall traps and modified Tullgren methods.The results showed that,based on the number of individuals and groups,the macro fauna in total reached their peaks in abandonment,whereas meso and micro fauna in N and PK,respectively.Of the 10 treatments,the most dominant of soil insect composition was in MNPK and most evenness was N.The result by Kruskal-Wallis test indicated that the distribution of the arable soil insect was significantly impacted by different fertilizer treatments(X0.05(9)= 23.38,P <0.005),and soil insect group of the abandonment was significantly different from that of other fertilizer treatments.The soil insect community was divided into five groups by non-metricMDS analysis:(1)NPK,MNPK,1.5MNPK,CK,(2)NP and PK,(3)NK and N,(4)SNPK,and(5)abandonment,which indicated that distribution of soil insect was related to the character of the fertilizer.In the principal component analysis,two factors explained 98.51% of the total variation among the 10 treatments,and the factor one explained that N and SNPK positively affected soil insect community,whereas factor two explained that 1.5MNPK positively affected soil insect community,which showed that the diversified fertilizer did not evenly affect the soil insect community.

  12. Development of a Crop Adapted Spray Application (CASA) sprayer for orchards

    NARCIS (Netherlands)

    Zande, van de J.C.; Doruchowski, G.; Balsari, P.; Wenneker, M.

    2010-01-01

    In the EU-FP6 ISAFRUIT project a Crop Adapted Spray Application system (CASA) for precision crop protection was developed (Doruchowski et al., 2009). The system ensures efficient and safe spray application in orchards according to actual needs and with respect to the environment. The developed CASA

  13. From natural forest to tree crops, co-domestication of forests and tree species: an overview.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    The process of domestication of tree crops has only been given limited attention. This process starts with the protection of natural forests and ends with the cultivation of domesticated tree crops. In this evolutionary process three types of human-influenced forest environments may be distinguished

  14. Crop Ontology: Vocabulary For Crop-related Concepts

    NARCIS (Netherlands)

    Matteis, L.; Chibon, P.Y.; Espinosa, H.; Skofic, M.; Finkers, H.J.; Bruskiewich, R.; Hyman, J.M.; Arnoud, E.

    2013-01-01

    Abstract. A recurrent issue for data integration is the lack of a common and structured vocabulary used by different parties to describe their data sets. The Crop Ontology (www.cropontology.org) project aims to provide a central place where the crop community can gather to generate such standardized

  15. Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: The case of Dutch arable farms

    NARCIS (Netherlands)

    Skevas, T.; Oude Lansink, A.G.J.M.; Stefanou, S.E.

    2012-01-01

    Pesticides’ dynamic effects and production uncertainty play an important role in farmers’ production decisions. Pesticides have a current production impact through reducing crop damage in the current period and a future impact through impacting the farm biodiversity which alters the future productio

  16. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    -OM). The cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...

  17. Biosolarization in garlic crop

    Science.gov (United States)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  18. EnviroAtlas - Fruit and vegetable crops for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes data on the area, yield, and number of fruit and vegetable crops grown per 12-digit Hydrologic Unit (HUC) in the conterminous USA....

  19. 'Waterstreams': A model for estimation of crop water demand, water supply, salt accumulation and discharge for soilless crops

    NARCIS (Netherlands)

    Voogt, W.; Swinkels, G.L.A.M.; Os, van E.A.

    2012-01-01

    Abstract: Closed growing systems are obligatory for soilless grown greenhouse crops in The Netherlands. It requires water sources of high quality as sodium (Na) accumulation is a potential risk and necessitates frequent discharge, which causes undesirable emission of nutrients and plant protection p

  20. Investigating the Effect of Variations in Irrigation Water Price on Cropping Pattern and Gross Margin under Uncertainty (Case Study: Khorasan Razavi

    Directory of Open Access Journals (Sweden)

    Mostafa Mardani

    2016-03-01

    Full Text Available Water shortage crisis is an issue that has led to drastic changes in different agricultural policies, especially in arid and semi-arid areas. Uncertainty in the amount of resources, e.g. water, used for agricultural production entails risk for farmers' income and cropping pattern changes. In the present study, the robust optimization model was used for optimal allocation of arable lands of Khorasan Razavi Province under uncertainty. During the allocation, the effect of water input price variations on total gross margin and cropping pattern was considered. It was found that under certain data, both parameters of total gross margin and total acreage are more than uncertain data. Given that water price variations resulted in tangible changes in wheat acreage, it is recommended to adopt appropriate policies to reduce its production risk.

  1. Irrigation modeling with AquaCrop

    Science.gov (United States)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  2. Genetically modified crops: Brazilian law and overview.

    Science.gov (United States)

    Marinho, C D; Martins, F J O; Amaral Júnior, A T; Gonçalves, L S A; dos Santos, O J A P; Alves, D P; Brasileiro, B P; Peternelli, L A

    2014-07-07

    In Brazil, the first genetically modified (GM) crop was released in 1998, and it is estimated that 84, 78, and 50% of crop areas containing soybean, corn, and cotton, respectively, were transgenic in 2012. This intense and rapid adoption rate confirms that the choice to use technology has been the main factor in developing national agriculture. Thus, this review focuses on understanding these dynamics in the context of farmers, trade relations, and legislation. To accomplish this goal, a survey was conducted using the database of the National Cultivar Registry and the National Service for Plant Variety Protection of the Ministry of Agriculture, Livestock and Supply [Ministério da Agricultura, Pecuária e Abastecimento (MAPA)] between 1998 and October 13, 2013. To date, 36 events have been released: five for soybeans, 18 for corn, 12 for cotton, and one for beans. From these events, 1395 cultivars have been developed and registered: 582 for soybean, 783 for corn and 30 for cotton. Monsanto owns 73.05% of the technologies used to develop these cultivars, while the Dow AgroScience - DuPont partnership and Syngenta have 16.34 and 4.37% ownership, respectively. Thus, the provision of transgenic seeds by these companies is an oligopoly supported by legislation. Moreover, there has been a rapid replacement of conventional crops by GM crops, whose technologies belong almost exclusively to four multinational companies, with the major ownership by Monsanto. These results reflect a warning to the government of the increased dependence on multinational corporations for key agricultural commodities.

  3. Soil erosion: perennial crop plantations

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Plantation agriculture is an important form of land-use in the tropics. Large areas of natural and regenerated forest have been cleared for growing oil palm, rubber, cocoa, coffee, and other perennial tree crops. These crops grown both on large scale plantations and by smallholders are important sou

  4. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  5. High plains cover crop research

    Science.gov (United States)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  6. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  7. Identification and analysis of demands by nature protection at the supply of electricity and heat from energy crop; Identifikation und Analyse naturschutzseitiger Anforderungen an die Strom- und Waermebereitstellung aus Energieholz

    Energy Technology Data Exchange (ETDEWEB)

    Wirkner, Ronny [Deutsches Biomasseforschungszentrum g GmbH (DBFZ), Leipzig (Germany). Bereich Bioenergiesysteme

    2013-10-01

    The energetic use of biomass is currently a dominating part concerning the use of renewable energies and both federal and country-specific strategies will be continuously expanded in the course. However, energy and environmental policy objectives need viable sustainability requirements (ecological, economic, social), which is not always consistent due partly contradictory approaches. The article ''Identification and analysis of conservation-sided demands on the electricity and heat supply from energy wood'' is primarily devoted to the environmental analysis from the perspective of nature conservation and landscape management (SRC/woody biomass from landscape planning). The focus of the analysis is the amended Renewable Energy Sources Act (EEG 2012), where you can find also in the field of solid fuels new requirements and levels of compensation which increase the attractiveness of selected material flows for the system operator and the resulting consequences for the nature protection and landscape conservation. These arise primarily from a change in the type and intensity of agricultural and forestry land use systems, but also the final form of the energy use of biomass itself. (orig.)

  8. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Toljander, Ylva K; Baum, Christel; Fransson, Petra M A; Taylor, Andy F S; Weih, Martin

    2012-11-01

    Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.

  9. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Science.gov (United States)

    2010-09-27

    ... March 30, 2010 (75 FR 15778-15891). Need for Correction As published, the final regulation contained... Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... make corrections relating to the insurance of cotton and macadamia nuts that published March 30,...

  10. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    Science.gov (United States)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the

  11. Responses of tropical root crops to climate change: implications for Pacific food security

    Science.gov (United States)

    Gleadow, R.; Webber, B.; Macness, N.; Lisson, S.; Nauluvula, P.; Hargraves, J.; Crimp, S. J.

    2013-12-01

    Cassava and taro are an important source of calories in many parts of the developing world and hold much promise for meeting the need for food security in equatorial regions. Communities in the Pacific Island countries reliant on agriculture-based livelihood systems have been identified as particularly at risk from climate change, due to likely increases in crop failure, new patterns of pests and diseases, lack of appropriate seed and plant material, loss of livestock and potential loss of arable land. Recent shortfalls in agricultural production resulting from changing export markets, commodity prices, climatic variation, and population growth and urbanisation, have contributed further to regional food insecurity concerns. Cassava and taro contain herbivore defense chemicals that are detrimental to human health (cyanogenic glucosides and calcium oxalate). Unprocessed cassava can cause acute cyanide intoxication, paralysis and even death, especially during droughts. A number of activities are already underway in the Pacific region to identify ways to ameliorate existing climate risk and enhance current agricultural production. Whilst these activities are important to ensure long-term agricultural sustainability, there remains a significant degree of uncertainty as to how effective these strategies may be in the face of a changing and increasingly variable future climate. We present our current understanding of the impact of climate change on key Pacific production systems - specifically those based on the staple root crops, taro and cassava. This includes (1) Our understanding of the responses of cassava and taro crops to existing environmental drivers (climate, soil and nutrient interactions); (2) The responses of cassava and taro crops to enhanced CO2 conditions; and (3) Efforts to model productivity responses (within the APSIM framework) and results for locations in the Pacific.

  12. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    Science.gov (United States)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  13. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  14. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    Science.gov (United States)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  15. Barriers and drivers towards the incorporation of crop residue in the soil. Analysis of Italian farmers’ opinion with the theory of planned behaviour

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2015-12-01

    Full Text Available Despite the benefits arising from incorporating crop residue in the soil, some farmers decide to burn or sell it. The objective of the work described in this paper was to quantify the adoption of crop residue incorporation by Italian farmers, and to identify the barriers and drivers that they perceive towards this agricultural management practice. We applied a behavioural approach, based on the theory of planned behaviour. In agriculture, this theory can be used to study individual farmer beliefs to understand the intention to adopt agricultural management practices. Based on preliminary semi-structured interviews with 24 farmers, we have prepared and disseminated a structured questionnaire in dairy farms in the plain of northern Italy, in arable farms in the plain of northern, central, and southern Italy, and in arable farms in the hill of central and southern Italy. The questionnaire contained questions to reveal subjective beliefs of the farmers on the outcomes of incorporating crop residue, and on the referents and control factors that might influence adoption. We have received 315 filled questionnaires from 16 regions and 54 provinces. The survey has identified major drivers and barriers towards the incorporation of crop residue in the soil. The main drivers were the expected improvement of soil quality (higher soil organic matter, improved structure and fertility, the expected increase of grain protein concentration in the following wheat crop, the availability of adequate machinery, the prohibition of burning crop residue, and the knowledge that incorporation is important (which emphasizes the importance of an effective advisory service. The main barriers were the costs of incorporation, the need to increase the use of nitrogen fertiliser when straw is incorporated, and the problems to sow the following crop in the presence of residue. While on the basis of the preliminary interviews we expected that the possibility to sell the straw and

  16. Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; LIANG Xueqing

    2006-01-01

    The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature.Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologioal statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value.

  17. The Crop Journal Call for Papers

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    We would like to invite you to submit your latest research accomplishments to The Crop Journal,an international,peer-reviewed research publication covering all aspects of crop sciences including crop genetics,breeding,agronomy,crop physiology,germplasm resources,grain chemistry,grain storage and processing,crop management practices,crop biotechnology,and biomathematics on a bimonthly basis.Article types considered include Original Research,Reviews,and Short Communications.The readership of

  18. Automatic image cropping for republishing

    Science.gov (United States)

    Cheatle, Phil

    2010-02-01

    Image cropping is an important aspect of creating aesthetically pleasing web pages and repurposing content for different web or printed output layouts. Cropping provides both the possibility of improving the composition of the image, and also the ability to change the aspect ratio of the image to suit the layout design needs of different document or web page formats. This paper presents a method for aesthetically cropping images on the basis of their content. Underlying the approach is a novel segmentation-based saliency method which identifies some regions as "distractions", as an alternative to the conventional "foreground" and "background" classifications. Distractions are a particular problem with typical consumer photos found on social networking websites such as FaceBook, Flickr etc. Automatic cropping is achieved by identifying the main subject area of the image and then using an optimization search to expand this to form an aesthetically pleasing crop. Evaluation of aesthetic functions like auto-crop is difficult as there is no single correct solution. A further contribution of this paper is an automated evaluation method which goes some way towards handling the complexity of aesthetic assessment. This allows crop algorithms to be easily evaluated against a large test set.

  19. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants. With the......Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay......-green cultivars do not display significant effects with regards to productivity. In several crops, the stay-green phenotype is observed to be associated with a higher drought resistance and a better performance under low nitrogen conditions. Among the approaches used to achieve stay-green phenotypes in transgenic...

  20. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik

    2012-01-01

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops......: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants...... and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow...

  1. Changes in soil C-isotopic composition in an agroecosystem under Free Air Carbon dioxide Enrichment (FACE) treatment during a crop rotation period.

    Science.gov (United States)

    Giesemann, Anette

    2005-01-01

    FACE (Free Air Carbon dioxide Enrichment) has been used since 1999 to evaluate the effects of future atmospheric CO(2) concentrations on an arable crop agroecosystem. The experiment conducted at the Institute of Agroecology at the Federal Research Centre in Braunschweig consists of a typical local crop rotation of winter barley, a cover crop, sugar beet and winter wheat. The atmospheric CO2 concentration of ambient air is about 375 ppm with a delta13C value of -7 to -9 per thousand, and 550 ppm (delta13C value = -20.2 per thousand) during daylight hours in the rings fumigated with additional CO2. Thus, the surplus C can be traced in the agricultural system. Over the course of the first experimental period (3-year crop rotation period), the C-isotopic composition and the C concentration in soil were monitored monthly. Plant samples were analysed according to the relevant developmental stages of the crop under cultivation. A 13C depletion was observed in plant parts, as well as in soil samples from the FACE rings under CO2 enrichment, indicating that labelled C has reached both respective ecosystem compartments. Albeit farming management practice (especially ploughing) leads to a mixing of 'old' and 'new' C compounds throughout all soil horizons down to the end of the ploughing layer and resulted in a heterogeneous distribution of newly formed C compounds in the soil, isotope analysis of soil C reflected where the surplus C went.

  2. Smallholder Farms as Stepping Stone Corridors for Crop-Raiding Elephant in Northern Tanzania: Integration of Bayesian Expert System and Network Simulator

    NARCIS (Netherlands)

    Pittiglio, C.; Skidmore, A.K.; Gils, van H.A.M.; McCall, M.K.; Prins, H.H.T.

    2014-01-01

    Crop-raiding elephants affect local livelihoods, undermining conservation efforts. Yet, crop-raiding patterns are poorly understood, making prediction and protection difficult. We hypothesized that raiding elephants use corridors between daytime refuges and farmland. Elephant counts, crop-raiding re

  3. Implementation of Sustainable Soil Management Practices to Improve Crop Production in the Different Ethiopian Agro Systems

    Science.gov (United States)

    García Moreno, R.; Gameda, S.; Diaz Alvarez, M. C.; Selasie, Y. G.

    2012-04-01

    Agriculture in Ethiopia is one of first priority since close to 10 In this context, the Ethiopian crop production faces to the following soil management challenges: lack of updated soil data, macro and micro nutrient depletion, acidity, salinity and soil surface erosion and crusting. One of the biggest issues is the loss of arable land, above 137 T/yr, reaching during some particularly dried periods until 300 T/yr. In this context, the authors constituted a working group of experts from Spanish and Ethiopian universities, local producers and international and governmental organisms to analyse the problems related to the different agro ecological zones found in Ethiopia and the management practices of different local producers. The study produced the trends to implement in the different areas to improve soil management practices in order to contribute to increase the crop production mainly to achieve food security problems. The analyse produced different working fields for the next years for addressing soil degradation, improving land resources management practices, increasing agricultural productivity, updating the available soil data, developing an international program of education, transferring of knowledge from similar study cases and implementing economical tools to help producers to assure income after severe edapho-climatic events. The practical work and the projects developed for the next period is addressed to smallholder farms belonging to the different 34 agro ecological zones identified in Ethiopia, each of them with very specific environmental, cultural and soil management practices.

  4. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Darija Bilandžija

    2016-01-01

    Full Text Available Nonsustainable agricultural practices often lead to soil carbon loss and increased soil carbon dioxide (CO2 emissions into the atmosphere. A research study was conducted on arable fields in central lowland Croatia to measure soil respiration, its seasonal variability, and its response to agricultural practices. Soil C-CO2 emissions were measured with the in situ static chamber method during corn (Zea mays L. and winter wheat (Triticum aestivum L. growing seasons (2012 and 2013, n = 288 in a field experiment with six different tillage treatments. During corn and winter wheat growing season, average monthly soil C-CO2 emissions ranged, respectively, from 6.2–33.6 and 22.1–36.2 kg ha−1 day−1, and were decreasing, respectively, from summer > spring > autumn and summer > autumn > spring. The same tillage treatments except for black fallow differed significantly between studied years (crops regarding soil CO2 emissions. Significant differences in soil C-CO2 emissions between different tillage treatments with crop presence were recorded during corn but not during winter wheat growing season. In these studied agroecological conditions, optimal tillage treatment regarding emitted C-CO2 is plowing to 25 cm along the slope, but it should be noted that CO2 emissions involve a complex interaction of several factors; thus, focusing on one factor, i.e., tillage, may result in a lack of consistency across studies.

  5. Nutrient biofortification of food crops.

    Science.gov (United States)

    Hirschi, Kendal D

    2009-01-01

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, but the advances in molecular biology are rapidly being exploited to engineer crops with enhanced key nutrients. Nutritional targets include elevated mineral content, improved fatty acid composition, increased amino acid levels, and heightened antioxidant levels. Unfortunately, in many cases the benefits of these "biofortified" crops to human nutrition have not been demonstrated.

  6. Comparison of GHG fluxes from conventional and energy crop production from adjacent fields in the UK, using novel technologies

    Science.gov (United States)

    Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve

    2016-04-01

    With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems

  7. Multivariate Analysis, Description, and Ecological Interpretation of Weed Vegetation in the Summer Crop Fields of Anhui Province, China

    Institute of Scientific and Technical Information of China (English)

    Sheng QIANG

    2005-01-01

    Two surveys were conducted to investigate weed vegetation in a 153-hm2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerun, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui

  8. Radiation Protection

    Science.gov (United States)

    ... EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View and download EPA radiation ...

  9. Development of an Autonomous Vehicle for Weed and Crop Registration

    DEFF Research Database (Denmark)

    Pedersen, Tom Søndergaard; Nielsen, Kirsten Mølgaard; Andersen, Palle

    degree of autonomy. The vehicle is part of an autonomous information system for crop and weed registration in fields which is developed at Aalborg University and The Danish Institute of Agricultural Science. The system consists of the vehicle and a stationary base station as well as a wireless......The extension of information technology and computers on farming tools results in new possibilities for crop/weed handling. In this paper a system using an autonomous field robot (vehicle) able to make images in the field is described. In the recent farming has come to rely on intensive use...... of chemicals for crop protection. A way to reduce the consumption of chemicals is to use precision techniques for placing chemicals where they have an optimal effect with minimal quantity. An important part of this is to locate the weed for automatic selective spraying. A camera placed on a sprayer may...

  10. Crop physiology calibration in CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2014-10-01

    Full Text Available Farming is using more terrestrial ground, as population increases and agriculture is increasingly used for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity and net ecosystem exchange from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC.

  11. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  12. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas;

    2015-01-01

    Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fiftee...

  13. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  14. Geosensors to Support Crop Production: Current Applications and User Requirements

    Directory of Open Access Journals (Sweden)

    Lammert Kooistra

    2011-06-01

    Full Text Available Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load.

  15. ESTABLISHING CROP PRODUCTIVITY USING RADARSAT-2

    OpenAIRE

    McNairn, H.; SHANG, J.; Jiao, X; B. Deschamps

    2012-01-01

    Crop productivity is influenced by a number of management and environmental conditions, and variations in crop growth can occur in-season due to, for example, unfavourable meteorological conditions. Consequently information on crop growth must be temporally frequent in order to adequately characterize crop productivity. Leaf Area Index (LAI) is a key indicator of crop productivity and a number of methods have been developed to derive LAI from optical satellite data. Integration of LAI estimat...

  16. 76 FR 71271 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Science.gov (United States)

    2011-11-17

    ... Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions AGENCY: Federal Crop Insurance... amend the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar Plan) Crop Provisions. The... Regulations (7 CFR part 457) by revising Sec. 457.139 Fresh Market Tomato (Dollar Plan) Crop Provisions, to...

  17. Multilayers Polyethylene Film for Crop Protection in Harsh Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Dehbi

    2017-01-01

    Full Text Available In this work the performance and durability of a new generation of greenhouse covers, in which the cover is composed of five layers, are investigated. A sand wind ageing was performed under different exposure conditions. Surface morphology and chemical, physical, and thermal characteristics were investigated by using optical microscopy, FTIR, and tensile test techniques. In addition, the mechanical integrity of the five-layer film was assessed. The analysis indicated that the sand wind treatments have a significant influence only on the performance of the film. An attempt has been done to compare the properties of the five-layer film with the monolayer and trilayer films with or without air bubble under similar conditions. The results revealed that the five-layer film proved to be a promising greenhouse covering film.

  18. Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L.

    Directory of Open Access Journals (Sweden)

    Łukasz Chachulski

    2014-01-01

    Full Text Available The influence of environmental factors on biomass partitioning of annual arable weed Centaurea cyanus was analysed. We investigated the effect of fertilisation, density and competition with the winter rye crop on the reproductive investment. Three fertiliser treatments and three density levels were applied. In Centaurea cyanus differences in the pattern of biomass allocation to reproduction are related to plant size. The relationship between reproductive and vegetative mass is close to linear. It is consistent with the model of linear size-dependent reproductive output. In Centaurea cyanus this model worked well for size differences that have been generated by interspecific competition, nutrients supply and density. Our data support the hypothesis that plastic changes in relationship between vegetative and generative biomass are environmentally-induced. Significantly different relationship between vegetative and reproductive biomass were detected among populations growing at different density and fertility levels. The fertilisation with mineral fertiliser and manure resulted in an increase of generative biomass allocated to flowerheads and a decrease of reproductive effort. Generative dry weight increased more rapidly with plant size in higher densities of population and at lower fertility levels. The experiment showed that the rate of weight allocated to reproductive structures was bigger under the pressure of competition with cereal crop. At low fertility level and high density, when the individuals were small, generative biomass increased faster with plant size. The production of seeds was not directly dependent on biomass allocated into total reproductive structures. At low level, of nutrient supply C. cyanus gave more offspring per gram of its biomass. We discuss the results in context of life-history theory. From the strategic point of view, size-dependent variation in reproductive effort and in efficiency of reproduction can be

  19. Genetically modified crops and small-scale farmers: main opportunities and challenges.

    Science.gov (United States)

    Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Khachak, Parisa Rafiaani; De Maeyer, Philippe; Witlox, Frank

    2016-01-01

    Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.

  20. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p mineralization differed significantly (p 

  1. Changes in Arable Land Demand for Food in India and China: A Potential Threat to Food Security

    Directory of Open Access Journals (Sweden)

    Reshmita Nath

    2015-04-01

    Full Text Available India and China are two similar developing countries with huge populations, rapid economic growth and limited natural resources, therefore facing the massive pressure of ensuring food security. In this paper, we will discuss the food security situations in these two countries by studying the historical changes of food supply-demand balance with the concept of agricultural land requirements for food (LRF from 1963–2009. LRF of a country is a function of population, per capita consumption/diet, cropping yield and cropping intensity. We have attempted to discuss and compare our results in a framework which links consumption of different groups of food items to diet patterns; then, to the total land requirement for food in a scenario when population is growing rapidly and diet diversification and urbanization due to economic reform impose excessive pressure on food security of both countries. We also elaborate on the role of technology dissemination and critically analyze the achievements and drawbacks of government policies to ensure food self-sufficiency and food security of nations. Our results show that the total LRF increases approximately by 42% and 40%, whereas per capita LRF decreases significantly by about 48% and 30% from 1963–2009, for India and China, respectively. Furthermore, our studies reveal that population growth dominates most of the increase in total LRF for India; whereas diet pattern change induced by income growth drives the major increase in LRF for China. Therefore, sustainable management of agricultural land resource is an urgent need both for India and China as there will be demand for more food to meet the diet requirement for the entire population. We also demonstrate the role of India and China in future global food security programs and the challenges to implement the new land reform policies domestically.

  2. Utilização do 'não tecido' de polipropileno como proteção da cultura de alface durante o inverno de Ponta Grossa - PR Use of non woven polypropylene protection under lettuce crop during winter season in Ponta Grossa, Brazil

    Directory of Open Access Journals (Sweden)

    Rosana Fernandes Otto

    2001-03-01

    Full Text Available O experimento foi realizado na UEPG, Ponta Grossa, PR. Estudou-se o efeito da proteção com 'não tecido' de polipropileno sobre o desenvolvimento, a qualidade e a produção de três cultivares de alface, transplantadas no inverno de 1998. O delineamento experimental foi inteiramente casualizado, distribuído segundo esquema fatorial 3x2 (cultivares x sistema de cultivo, com 5 repetições. As cultivares utilizadas foram Tainá, Elisa e Verônica, cultivadas sob a proteção do 'não tecido' de polipropileno (PP e em ambiente natural (AN. O uso do 'não tecido' como proteção de plantas de alface resultou em maior peso de matéria fresca de cabeça para todas as cultivares estudadas quando comparado ao AN. Verificou-se, para as cultivares Tainá e Verônica, incremento do índice de área foliar, com conseqüente aumento da biomassa das plantas produzidas sob o 'não tecido'. A cultivar Elisa apresentou limbo foliar com aspecto de estiolamento, perdendo a turgidez rapidamente após a colheita. Possivelmente, os níveis de radiação sob PP foram inferiores ao ponto de saturação fotossintética para a cv. Elisa. Recomenda-se o uso do 'não tecido' para as cultivares Verônica e Tainá, no inverno, para a região de Ponta Grossa, por apresentarem cabeças com ótima qualidade e peso comercial.A field experiment was carried out in ''Capão da Onça'' School Farm, at the Universidade Estadual de Ponta Grossa in Brazil. The effect of the protection of an spunbonded polypropylene non woven fabric on the development, quality and yield of three lettuce cultivars, transplanted during the winter of 1998 was studied. The experimental design was of complete randomized blocks, displayed in a factorial scheme 3x2 (cultivars x crop system, with five replications. The cultivars were Tainá, Elisa and Verônica growing under non woven polypropylene protection (PP and environmental conditions (EC. Greater head fresh weight was observed on woven protected

  3. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  4. CropIrri: A Decision Support System for Crop Irrigation Management

    OpenAIRE

    Zhang, Yi; Feng, Liping

    2010-01-01

    International audience; A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water balance model, crop phenology model, root growth model, crop water production function, and irrigation management model. The irrigation plan is made through predicating of soil water content in root zone and daily crop water requirement using historical and forecasting weather data, measured real time soil moisture data. CropIrri provided four decision modes of no...

  5. Proceeding of research on nitrogen fertilization model of crop%作物追氮模型的研究进展

    Institute of Scientific and Technical Information of China (English)

    陈青春; 蒋锋; 刘鹏飞; 王晓明

    2012-01-01

    As the world population increases and the reduction of arable land, food security is growing a big problem. How to use the limited arable land to create more food becomes an important research ob- ject to scientists. Without the supply of nitrogen and other nutrients, crop yields could not increase, therefore, more study focus on the ecological and efficient application of nitrogen fertilizer. In this paper, the research of static and dynamic nitrogen fertilization model were summarized with their adaantage and disadvantage. Some key issues of quantitative nitrogen fertilization research in future were pointed out.%随着世界人口的增加和耕地面积的减少,粮食安全问题日益受到关注,如何利用有限的耕地创造更多的粮食成为科学家研究的重要课题.作物产量的增加,离不开氮肥等营养物质的供应,如何生态、高效的施用氮肥成为目前研究的热点.文章对作物静态施氮和动态施氮两种方法进行了综述,并剖析其优缺点,同时提出了追氮模型发展的方向.

  6. Soil CO2 flux in relation to dissolved organic carbon, soil temperature and moisture in a subtropical arable soil of China

    Institute of Scientific and Technical Information of China (English)

    LOU Yun-sheng; LI Zhong-pei; ZHANG Tao-lin

    2003-01-01

    Soil CO2 emission from an arable soil was measured by closed chamber method to quantify year-round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2.23 kgCO2/(m2·a) for average annual soil CO2 flux. Regressed separately, the reasons for soil flux variability were 86.6% from soil temperature, 58.8% from DOC, and 26.3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85.2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2.49 kgCO2/(m2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO2 flux from arable soil in subtropical regions of China.

  7. Recent advances in fruit crop genomics

    Directory of Open Access Journals (Sweden)

    Qiang XU,Chaoyang LIU,Manosh Kumar BISWAS,Zhiyong PAN,Xiuxin DENG

    2014-02-01

    Full Text Available In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

  8. Herbaceous energy crops: planning for a renewed commitment. [Hay, silage, rapeseed, sugar and starch crops, hydrocarbon crops

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.J.; Cushman, J.H.

    1984-01-01

    In 1984, the US Department of Energy's Biomass Energy Technology Division (BETD) began a new program of research on the production of herbaceous crops for energy. In addition to the new Herbaceous Energy Crops (HEC) Program, ongoing BETD programs involve woody and aquatic energy crops. The goal of the HEC Program is to provide the technology base that will allow industry to develop commercially viable species and systems in order to produce herbaceous biomass for fuels and energy feedstocks. The program will concentrate on crop types that can contribute the most to energy supplies while minimizing the impact of producing energy from crops on food production and the environment. Research in the HEC Program will focus on crops suitable for marginal croplands and on winter crops that can be grown between plantings of conventional crops. 1 table.

  9. Sustainability of Switchgrass Cropping Systems

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  10. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph= Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rot are two of the most important fungal diseases of onion. The taxonomics of several of the n

  11. Defining and identifying crop landraces

    NARCIS (Netherlands)

    Camacho Villa, T.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B.

    2005-01-01

    Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity i

  12. Economic impact of GM crops

    Science.gov (United States)

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  13. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  14. Segurança das condições de trabalho de tratorista em aplicações de herbicidas em soja e amendoim e eficiência de equipamentos de proteção individual Safety work conditions for tractor operators in application of herbicides on soybean and peanut crops and effectiveness of personal protective equipment

    Directory of Open Access Journals (Sweden)

    Adriano B. Cristóforo

    2007-01-01

    Full Text Available Teve-se o objetivo de avaliar a eficiência de um conjunto de equipamentos de proteção individual no controle das exposições proporcionadas ao tratorista aplicando herbicidas nas culturas de soja e de amendoim com o pulverizador de barra e a segurança dessas condições de trabalho. Os pulverizadores utilizados foram os convencionais empregados nas duas culturas para as aplicações de herbicidas em pré-plantio incorporado (ppi, em pré-emergência (pré e em pós-emergência inicial (pós, com volumes de 200 L ha-1, e 150 L ha-1 apenas na aplicação em pós, na cultura de soja. As exposições sem EPIs foram de 102,77 mL de calda por dia nas aplicações em ppi, 39,62 em pré e 47,14 em pós-emergência. A eficiência dos EPIs no controle das exposições dérmicas foi de 76,5% em ppi, 50,9% em pré e 75,3% em pós-emergência. Na cultura de soja, foram seguras para o tratorista, sem ou com EPIs, as aplicações de pendimethalin, imazaquin e flumetsulam em ppi; de pendimethalin, acetochlor, clomazone, flumioxazin, imazaquin, metribuzin, sulfentrazone, dimethenamid e flumetsulamem em pré, e de bentazone, glyphosate, imazethapyr, quizalofop-ethyl, chlorimuron ethyl e oxasulfuron em pós. Na cultura de amendoim, sem e com EPIs, foi segura a aplicação de pendimethalin em ppi; em pré, a aplicação de alachlor foi classificada como insegura, sem ou com o uso dos EPIs.The aim of the study was to evaluate the effectiveness of a combination of personal protective equipments (PPE for the tractor operator applying herbicides on soybean and peanut crops with a tractor mounted boom sprayer and the safetyness of these work conditions. The application of the herbicides were in pre-planting soil-incorporated (ppi, pre-emergence (pre and post-emergence (post treatment, with volumes of 200 L ha-1, except in the post application for soybeans where it was 150 L ha-1. It was shown that exposure with PPE was 102.77 mL of spray per day in ppi, 39.62 in

  15. Net ecosystem exchange from five land-use transitions to bioenergy crops from four locations across the UK - The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project.

    Science.gov (United States)

    Xenakis, Georgios; Perks, Mike; Harris, Zoe M.; McCalmont, Jon; Rylett, Daniel; Brooks, Milo; Evans, Jonathan G.; Finch, Jon; Rowe, Rebecca; Morrison, Ross; Alberti, Giorgio; Donnison, Ian; Siebicke, Lukas; Morison, James; Taylor, Gail; McNamara, Niall P.

    2016-04-01

    A major part of international agreements on combating climate change is the conversion from a fossil fuel economy to a low carbon economy. Bioenergy crops have been proposed as a way to improve energy security while reducing CO2 emissions to help mitigate the effects of climate change. However, the impact of land-use change from a traditional land use (e.g., arable and grassland) to bioenergy cropping systems on greenhouse gas balance (GHG) and carbon stocks are poorly quantified at this time. The Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project was commissioned and funded by the Energy Technologies Institute (ETI) to provide scientific evidence within the UK on a range of land-use conversions (LUC) to bioenergy crops. The ELUM network consists of seven partners investigating five LUCs in four locations including Scotland, Wales, North and South England. Transitions included grasslands to short rotation forestry (SRF), to short rotation coppice willow (SRC) and to Miscanthus and arable to SRC and Miscanthus Measurements of net ecosystem exchange (NEE) along with continuous measurements of meteorological conditions were made at seven sub-sites over a two-year period. Results showed that, over two years, two of the land-uses, a grassland in South England and a grassland conversion to Miscanthus in Wales were net sources of carbon. The greatest carbon sink was into the SRF site in Scotland followed by the SRC willow in South England. The annual terrestrial ecosystem respiration (TER) for the SRC willow in North and South Sussex sites were similar, but the annual GPP at the South England site was about 27% higher than that the North England site. Establishing a long term network will allow us to continue monitoring the effects of land use change on whole ecosystem carbon balance, providing an insight into which types of LUC are suitable for bioenergy cropping in the UK.

  16. Nutritionally Enhanced Food Crops; Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2015-02-01

    Full Text Available Great progress has been made over the past decade with respect to the application of biotechnology to generate nutritionally improved food crops. Biofortified staple crops such as rice, maize and wheat harboring essential micronutrients to benefit the world’s poor are under development as well as new varieties of crops which have the ability to combat chronic disease. This review discusses the improvement of the nutritional status of crops to make a positive impact on global human health. Several examples of nutritionally enhanced crops which have been developed using biotechnological approaches will be discussed. These range from biofortified crops to crops with novel abilities to fight disease. The review concludes with a discussion of hurdles faced with respect to public perception, as well as directions of future research and development for nutritionally enhanced food crops.

  17. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by the Editorial Board of 85 international experts from various fields of crop sciences.

  18. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.;

    2014-01-01

    In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reaso...

  19. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    Science.gov (United States)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact

  20. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  1. Incentive Design for Introducing Genetically Modified Crops

    OpenAIRE

    Kingwell, Ross S.

    2000-01-01

    The introduction of genetically modified (GM) crops raises several issues. This paper looks at incentives required to reduce problems of illegal and improper use of GM proprietary technology used in growing GM crops. A simple model of producer behaviour describes some key influences of a farmer’s response to GM crops. The model is illustrated using the example of INGARD cotton grown in Australia. The key findings are that legitimate adoption of a GM crop by a farmer depends on their attitude ...

  2. Grain legumes in organic cropping systems

    OpenAIRE

    Hauggaard-Nielsen, Dr. Henrik

    2002-01-01

    Grain legumes are valuable protein and energy sources in animal feeds and in human diets low in meat. Furthermore, grain legumes strongly benefit the cropping system, via biological fixation of atmospheric N2 - a fundamental process for maintaining soil fertility in organic farming systems. Other positive effects in the crop rotations are recycled N-rich crop residues and the break-crop effect in cereals-rich rotations. However, yield variability in grain legumes is well known and related to...

  3. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed.

  4. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general

  5. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  6. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief of

  7. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.

  8. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in ScienceDirect.The Editor-in-Chief

  9. Crop diversity prevents serious weed problems

    DEFF Research Database (Denmark)

    Melander, Bo

    2016-01-01

    Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified.......Weed management in organic crop production could benefit from more diversification of today’s cropping systems. However, the potential of diversification needs better documentation and solid suggestions for employment in practise must be identified....

  10. Importance of Soil Quality in Environment Protection

    Directory of Open Access Journals (Sweden)

    Márta Birkás

    2007-03-01

    Full Text Available Soil quality can be characterised by the harmony between it’s physical and biological state and the fertility. From the practical crop production viewpoint, some important contrasting factors of soil quality are: (1 soil looseness – compaction; (2 aggregation – clod and dust formation; friable structure – smeared or cracked structure; (3 organic material: conservation – decrease; (4 soil moisture: conservation – loss; water transmission – water-logging; (5 at least soil condition as a result of the long term effect of land use moderates or strengthens climatic harm. In our long-term research project practical soil quality factors were examined in arable field and experimental conditions. We state that prevention of the soil quality deterioration can be done by the developing and maintaining harmony between land use and environment. Elements of the soil quality conditions such as looseness, aggregation, workability, organic matter, water transport are examined and the improving methods are suggested. Tillage and production factors which can be adopted to alleviate the harmful climatic impacts are also summarised.

  11. 基于MODIS NDVI多年时序数据的农作物种植识别%Crop information identification based on MODIS NDVI time-series data

    Institute of Scientific and Technical Information of China (English)

    许青云; 杨贵军; 龙慧灵; 王崇; 李鑫川; 黄登成

    2014-01-01

    Arable land is the foundation of the national economy. How to make the best of arable land resources has become a focus problem of modern science and technology information. The rapid development of agricultural condition remote sensing monitoring technology provides more scientific ways and information technology for monitoring the arable land in real-time. In order to obtain the information of Shaanxi Province agricultural condition monitoring for managing arable land more efficiently, this thesis aimed to study the crop planting patterns and types of arable land, and took the main crops (wheat, spring maize, summer maize, rice and rape) of arable land in Shaanxi Province as the research object. Firstly, the remote sensing datasets of 250 m MOD09Q1 time series during 2003-2012 were used, and the Savitzky-Golay filtering method of TIMESAT software was used to reconstruct the NDVI time series datasets. Secondly, combined with the agricultural meteorological station datasets, TM 30 m land cover classification data, and the main crops’ information and crop phenological information in Shaanxi Province, we extracted the change trends of typical terrain feature and determined the interannual dynamic thresholds. According to the threshold of a peak and crop growth period and other information, the crop planting patterns and crop types were identified. Thirdly, owing to the mixed pixel that the major factor affected the classification accuracy of the low spatial resolution remote sensing, therefore, the IDL optimization function (CONSTRAINED_MIN) was used to obtain each crop types’ abundance figure by the method of non-negative least squares. Two kinds of precision validation methods of spatial and quantitative were adopted in this paper. The total classification accuracy and Kappa coefficient were 88.18% and 59.64% respectively according to spatial comparative analysis. The classification results were revised by the crop types’ abundance figure, and the overall

  12. Managing cover crops: an economic perspective

    Science.gov (United States)

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  13. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain admis

  14. Cover crop effects on soil carbon and nitrogen under bioenergy sorghum crops

    Science.gov (United States)

    Cover crops can increase soil C and N storage and reduce the potential for N leaching under agronomic crops, but information on their benefits under bioenergy crops is scanty due to the removal of aboveground biomass. The objective of the study was to evaluate the effect of cover crops on soil organ...

  15. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Science.gov (United States)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  16. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.

    Science.gov (United States)

    Reijnders, L

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be maintained, there is scope for the removal of lignocellulosic harvest residues in several systems with much reduced tillage or no tillage. The scope for such removal might be increased when suitably treated residues from the conversion of harvest residues into biofuel are returned to cropland soils. For mineral cropland soils under conventional tillage, the scope for the production of liquid biofuels from harvest residues is likely to be less than in the case of no-till systems. When fertility of cropland soils is to be sustainable, nutrients present in suitably treated biofuel production residues have to be returned to these soils. Apparently, the actual return of carbon and nutrients present in residues of biofuel production from crop harvest residues to arable soils currently predominantly concerns the application of digestates of anaerobic digestion. The effects thereof on soil fertility and quality need further clarification. Further clarification about the effects on soil fertility and quality of chars and of co-products of lignocellulosic ethanol production is also needed.

  17. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co......, being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas...

  18. Transportation fuels from energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V.K.; Kulsrestha, G.N.; Padmaja, K.V.; Kamra, S.; Bhagat, S.D. (Indian Inst. of Petroleum, Dehra Dun (India))

    1993-01-01

    Biomass constituents in the form of energy crops can be used as starting materials in the production of transportation fuels. The potential of biocrudes obtained from laticiferous species belonging to the families of Euphorbiaceae, Asclepiadaceae, Apocynaceae, Moraceae and Convolvulaceae for the production of hydrocarbon fuels has been explored. Results of studies carried out on upgrading these biocrudes by catalytic cracking using a commercial catalyst are presented. (author)

  19. Understanding crop and farm management

    OpenAIRE

    Chongtham, Iman Raj

    2016-01-01

    Agriculture faces challenges in meeting rising demand for food, feed, fibre and fuel while coping with pressure from globalisation, limited natural resources and climate change. Farmers will choose management practices based on their goals and available resources and these practices will influence farm performance. The aim of this thesis was to understand farmers’ crop and farm management practices and their links to farm(er) characteristics, productivity, biodiversity, marketing channels and...

  20. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  1. Root characteristics of cover crops and their erosion-reducing potential during concentrated runoff

    Science.gov (United States)

    de Baets, S.; Poesen, J.

    2009-04-01

    In the loam region in central Belgium, a lot of research has been conducted on the effects of cover crops for preventing splash and interrill erosion and on their nutrient pumping effectiveness. As this is a very effective erosion and environment conservation technique, planting cover crops during the winter season is widely applied in the loess belt. Most of these cover crops freeze at the beginning of the winter period. Consequently, the above-ground biomass becomes less effective in protecting the soil from water erosion. Apart from the effects of the above-ground biomass in protecting the soil against raindrop impacts and reducing flow velocities by the retarding effects of their stems, plant roots also play an important role in improving soil strength. Previous research showed that roots contribute to a large extent to the resistance of topsoils against concentrated flow erosion. Unfortunately, information on root properties of common cover crops (e.g. Sinapis alba, Phacelia tanacetifoli, Lolium perenne, Avena sativa, Secale cereale, Raphanus sativus subsp. oleiferus) is very scarce. Therefore, root density distribution with depth and their erosion-reducing effects during concentrated flow erosion were assessed by conducting root auger measurements and concentrated flow experiments at the end of the growth period (December). The preliminary results indicate that the studied cover crops are not equally effective in preventing soil loss by concentrated flow erosion at the end of the growing season. Cover crops with thick roots, such as Sinapis alba and Raphanus sativus subsp. oleiferus are less effective than cover crops with fine-branched roots such as Phacelia tanacetifoli, Lolium perenne (Ryegrass), Avena sativa (Oats) and Secale cereale (Rye) in preventing soil losses by concentrated flow erosion. These results enable soil managers to select the most suitable crops and maximize soil protection.

  2. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  3. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2008-01-01

      In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass...... from moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather...

  4. Method for optimizing harvesting of crops

    DEFF Research Database (Denmark)

    2010-01-01

    In order e.g. to optimize harvesting crops of the kind which may be self dried on a field prior to a harvesting step (116, 118), there is disclosed a method of providing a mobile unit (102) for working (114, 116, 118) the field with crops, equipping the mobile unit (102) with crop biomass measuring...... moving the mobile unit on the field and the moisture content (109a, 109b), and determining an optimised drying time (104a, 104b) prior to the following harvesting step (116, 118) in response to the spatial crop biomass and crop moisture content characteristics map and in response to a weather forecast...

  5. 7th International Crop Science Congress Announcement

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    August 14–19,2016 Beijing,China Crop Science—Innovation and SustainabilityInternational Crop Science Congress(ICSC)is a regular forum for crop scientists from around the world to integrate current knowledge into a global context and international applications.The Congress is organized about every four years beginning in July,1992.The International Crop Science Society has primary oversight for general operations of Congresses.The location will rotate among countries that propose and are accepted to host the Congress.7th International Crop Science Congress(7th ICSC),jointly hosted by the Chinese Academy of

  6. Developing Process of Tropical Crop Machinery Standardization

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ General Situation Tropical crop machinery is a new special mechanical profession, which began to develop from 1950s to 1960s in China. Because the weather, soil and farm crops varieties in tropical region are greatly different from those in the other regions, most of the traditional farm machinery can't be directly used in tropical region or on the tropical crops. Tropical crop machinery needs a special design and manufacture. So some professional research institutes and education units were set up and some enterprises were built at that time, and the profession of tropical crop machinery was formed.

  7. Relevance of Crop Biology for Environmental Risk Assessment of Genetically Modified Crops in Africa

    OpenAIRE

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERAs). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for ERA include growth habit, ce...

  8. RELEVANCE OF CROP BIOLOGY FOR ENVIRONMENTAL RISK ASSESSMENT OF GENETICALLY MODIFIED CROPS IN AFRICA

    OpenAIRE

    2015-01-01

    Knowledge about the crop biology of economic crops in Africa is needed for regulators to accurately review dossiers and conduct comprehensive environmental risk assessments (ERA). This information allows regulators to decide whether biotech crops present a risk to biodiversity, since crossing between domesticated crops and their wild relatives could affect the adaptations of the wild species. The criteria that should be used in the evaluation of African crops for environmental risk assessmen...

  9. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the midwestern United States

    Science.gov (United States)

    It is critical to evaluate conservation practices that protect soil and water resources from climate change in the Midwestern United States, a region that produces one-quarter of the world’s soybeans and one-third of the world’s maize. An over-winter cover crop in a maize-soybean rotation offers mul...

  10. From crop domestication to super-domestication.

    Science.gov (United States)

    Vaughan, D A; Balázs, E; Heslop-Harrison, J S

    2007-11-01

    Research related to crop domestication has been transformed by technologies and discoveries in the genome sciences as well as information-related sciences that are providing new tools for bioinformatics and systems' biology. Rapid progress in archaeobotany and ethnobotany are also contributing new knowledge to understanding crop domestication. This sense of rapid progress is encapsulated in this Special Issue, which contains 18 papers by scientists in botanical, crop sciences and related disciplines on the topic of crop domestication. One paper focuses on current themes in the genetics of crop domestication across crops, whereas other papers have a crop or geographic focus. One feature of progress in the sciences related to crop domestication is the availability of well-characterized germplasm resources in the global network of genetic resources centres (genebanks). Germplasm in genebanks is providing research materials for understanding domestication as well as for plant breeding. In this review, we highlight current genetic themes related to crop domestication. Impressive progress in this field in recent years is transforming plant breeding into crop engineering to meet the human need for increased crop yield with the minimum environmental impact - we consider this to be 'super-domestication'. While the time scale of domestication of 10 000 years or less is a very short evolutionary time span, the details emerging of what has happened and what is happening provide a window to see where domestication might - and can - advance in the future.

  11. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Acosta Orlando

    2008-12-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  12. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access) in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,PhD,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  13. The Crop Journal Calls for Papers

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    <正>We would like to invite you to submit your latest research accomplishments to The Crop Journal(ISSN:2095-5421;Online ISSN:2214-5141,CN 10-1112/S),a new bimonthly academic journal co-sponsored by the Crop Science Society of China and the Institute of Crop Science,Chinese Academy of Agricultural Sciences.The Crop Journal is freely available online(Open Access)in Science Direct.The Editor-in-Chief of The Crop Journal is Professor Jianmin Wan,Ph D,Cheung Kong Scholar,Director of the Institute of Crop Science and Executive Vice President of the Crop Science Society of China,supported by

  14. Dichrostachys cinerea as a possible energy crop - facts and figures

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Daniel Travieso [University of Camaguey, Camaguey (Cuba); Kaltschmitt, Martin [Hamburg University of Technology, Hamburg (Germany)

    2012-03-15

    Biomass contributes already with more than 10% to cover the global energy demand. This contribution will continue to grow in the years to come due to increasing fossil fuel prices and climate protection. To make this happen, additional sustainable biomass resources must become available to be used as a source of energy. Against this background, the goal of this paper is it to analyse the properties of Dichrostachys cinerea (Marabu) as an energy crop. The investigation shows that this wood is characterised by properties comparable with other types of woody biomass with a longer crop period. Only the ash content is slightly higher. In addition, the airborne emissions released during combustion are relatively low in general. Thus, wood from D. cinerea (Marabu) can be seen as a promising fuel. (orig.)

  15. Temperature Stress and Redox Homeostasis in Agricultural Crops

    Directory of Open Access Journals (Sweden)

    Rashmi eAwasthi

    2015-03-01

    Full Text Available Plants are exposed to a wide range of environmental conditions and one of the major forces that shape the structure and function of plants are temperature stresses, which include low and high temperature stresses and considered as major abiotic stresses for crop plants. Due to global climate change, temperature stress is becoming the major area of concern for the researchers worldwide. The reactions of plants to these stresses are complex and have devastating effects on plant metabolism, disrupting cellular homeostasis and uncoupling major physiological and biochemical processes. Temperature stresses disrupt photosynthesis and increase photorespiration altering the normal homeostasis of plant cells. The constancy of temperature, among different metabolic equilibria present in plant cells, depends to a certain extent on a homeostatically regulated ratio of redox components, which are present virtually in all plant cells. Several pathways, which are present in plant cells, enable correct equilibrium of the plant cellular redox state and balance fluctuations in plant cells caused by changes in environment due to stressful conditions. In temperature stresses, high temperature stress is considered to be one of the major abiotic stresses for restricting crop production. The responses of plants to heat stress vary with extent of temperature increase, its duration and the type of plant. On other hand, low temperature as major environmental factor often affects plant growth and crop productivity and leads to substantial crop loses. The present review discusses how oxidative damage as a result of temperature stress is detrimental for various crops. Various strategies adapted by the plants to main redox homeostasis are described along with use of exogenous application of some stress protectants.

  16. Crop expansion and conservation priorities in tropical countries.

    Science.gov (United States)

    Phalan, Ben; Bertzky, Monika; Butchart, Stuart H M; Donald, Paul F; Scharlemann, Jörn P W; Stattersfield, Alison J; Balmford, Andrew

    2013-01-01

    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km(2) per year from 1999-2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential-while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones-may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having 'low vulnerability', in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy

  17. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    Science.gov (United States)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  18. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  19. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how...... improvement of NUE traits of individual crops affects the succeeding crops and the NUE of the crop rotation. Based on experimental results parameterization was altered for different types of improved NUE in the EU-Rotate_N model, e.g. through higher N harvest index, reduced litter loss or improved root depth...... penetration rate. The different ways of improving NUE have different effects on the cropping system, affecting either N uptake, the ability of the crop to hold on to N already taken up, or the fraction of crop N being harvested. Due to the different modes of action, the model simulations show...

  20. Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    The benefits of improving nitrogen use efficiency (NUE) in crops are typically studied through the performance of the individual crop. However, in order to increase yields in a sustainable way, improving NUE of the cropping systems must be the aim. We did a model simulation study to investigate how...... is analyzed for the whole cropping system. The environmental conditions, crop choices and management will all affect the fate of the N left in the soil, and whether this will contribute mainly to leaching loss or be used for production in later crops. As an example, increasing pre-crop fertilization was shown...... to affect the leaching after the following oilseed rape crop with up to 50 kg N ha-1 taken up before it was lost to the environment when pre-crop fertilization as well as root depth penetration rate was high. All in all, the simulations illustrate the concept of NUE as the result of interactions between...