WorldWideScience

Sample records for arabidopsis yellow variegated2

  1. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Science.gov (United States)

    Zhu, Bo; Peng, Ri-He; Fu, Xiao-Yan; Jin, Xiao-Fen; Zhao, Wei; Xu, Jing; Han, Hong-Juan; Gao, Jian-Jie; Xu, Zhi-Sheng; Bian, Lin; Yao, Quan-Hong

    2012-01-01

    2,4,6-Trinitrotoluene (TNT) is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3) gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  2. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    Full Text Available 2,4,6-Trinitrotoluene (TNT is released in nature from manufacturing or demilitarization facilities, as well as after the firing or detonation of munitions or leakage from explosive remnants of war. Environmental contamination by TNT is associated with human health risks, necessitating the development of cost-effective remediation techniques. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. In this study, we present a system for TNT phytoremediation by overexpressing the old yellow enzyme (OYE3 gene from Saccharomyces cerevisiae. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerances and a strikingly higher capacity to remove TNT from their media. The current work indicates that S. cerevisiae OYE3 overexpression in Arabidopsis is an efficient method for the phytoremoval and degradation of TNT. Our findings have the potential to provide a suitable remediation strategy for sites contaminated by TNT.

  3. Evaluation of Seed Transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana.

    Science.gov (United States)

    de Assis Filho, F M; Sherwood, J L

    2000-11-01

    ABSTRACT The mechanism of virus transmission through seed was studied in Arabidopsis thaliana infected with Turnip yellow mosaic virus (TYMV) and Tobacco mosaic virus (TMV). Serological and biological tests were conducted to identify the route by which the viruses reach the seed and subsequently are located in the seed. Both TYMV and TMV were detected in seed from infected plants, however only TYMV was seed-transmitted. This is the first report of transmission of TYMV in seed of A. thaliana. Estimating virus seed transmission by grow-out tests was more accurate than enzyme-linked immunosorbent assay due to the higher frequency of antigen in the seed coat than in the embryo. Virus in the seed coat did not lead to seedling infection. Thus, embryo invasion is necessary for seed transmission of TYMV in A. thaliana. Crosses between healthy and virus-infected plants indicated that TYMV from either the female or the male parent could invade the seed. Conversely, invasion from maternal tissue was the only route for TMV to invade the seed. Pollination of flowers on healthy A. thaliana with pollen from TYMV-infected plants did not result in systemic infection of healthy plants, despite TYMV being carried by pollen to the seed.

  4. Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.

    Science.gov (United States)

    Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-07-01

    Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl-apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes.

  5. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis.

    Directory of Open Access Journals (Sweden)

    Heng-Hsuan eChu

    2013-07-01

    Full Text Available Several members of the Yellow Stripe1-Like (YSL family of transporter proteins are able to transport metal-nicotianamine (NA complexes. Substantial progress has been made in understanding the roles of the Arabidopsis YSLs that are most closely related to the founding member of the family, ZmYS1 (e.g., AtYSL1, AtYSL2 and AtYSL3, but there is little information concerning members of the other two well-conserved YSL clades. Here, we provide evidence that AtYSL4 and AtYSL6, which are the only genes in Arabidopsis belong to YSL Group II, are localized to vacuole membranes and to internal membranes resembling endoplasmic reticulum. Both single and double mutants for YSL4 and YSL6 were rigorously analyzed, and have surprisingly mild phenotypes, in spite of the strong and wide-ranging expression of YSL6. However, in the presence of toxic levels of Mn and Ni, plants with mutations in YSL4 and YSL6 and plants overexpressing GFP-tagged YSL6 showed growth defects, indicating a role for these transporters in heavy metal stress responses.

  6. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  7. An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method.

    Science.gov (United States)

    Schirawski, J; Planchais, S; Haenni, A L

    2000-04-01

    An improved method for preparation of protoplasts of Arabidopsis thaliana cells grown in suspension culture is presented. This method is fast, reliable and can be used for the production of virtually an unlimited number of protoplasts at any time. These protoplasts can be transformed efficiently with RNA from turnip yellow mosaic tymovirus (TYMV) by polyethyleneglycol-mediated transfection. The simple transfection procedure has been optimized at various steps. Replication of TYMV can be monitored routinely by detection of the coat protein in as few as 2 x 10(4) infected protoplasts.

  8. Yellow fever.

    Science.gov (United States)

    Monath, Thomas P; Vasconcelos, Pedro F C

    2015-03-01

    Yellow fever, a mosquito-borne flavivirus disease occurs in tropical areas of South America and Africa. It is a disease of major historical importance, but remains a threat to travelers to and residents of endemic areas despite the availability of an effective vaccine for nearly 70 years. An important aspect is the receptivity of many non-endemic areas to introduction and spread of yellow fever. This paper reviews the clinical aspects, pathogenesis, and epidemiology of yellow fever, with an emphasis on recent changes in the distribution and incidence of the disease. Recent knowledge about yellow fever 17D vaccine mechanism of action and safety are discussed.

  9. Laser yellowing

    Indian Academy of Sciences (India)

    M B Sai Prasad; Salvatore Siano

    2010-12-01

    Over the past few years there has been an increasing interest in researches related to the application of lasers in conservation, analysis and diagnostics of artwork surfaces. Among the many interesting problems to be tackled, one issue was drawing more interest because of the limitations it can impose on the use of lasers. Laser yellowing is a phenomenon wherein artwork surfaces assume a yellow hue when cleaned with Q-switched Nd:YAG (1064 nm) lasers in particular. Here the effect of yellowing has been studied and quantified for artwork surfaces (marble) using SFR Nd:YAG and LQS Nd:YAG lasers. Colorimetric measurements by employing a spectroradiometer helps to quantify the effect of yellowing by analysing three variables (chromaticity coordinates) of interest.

  10. Yellow fever

    Directory of Open Access Journals (Sweden)

    Prata Aluízio

    2000-01-01

    Full Text Available With the infestation by Aedes aegypti, urban yellow fever might already exist. This did not occur because of either the lacking of a sufficient contact between the diseased individual and the A. aegypti or perhaps because this, after sixty years without transmitting the virus, needs an adaptation phase to infecting again.

  11. Yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Dixit Ramakant

    2007-01-01

    Full Text Available A case of yellow nail syndrome is described in a forty year old male patient who presented with classical triad of this syndrome i.e. deformed yellow nails, lymph-edema and chronic recurrent pleural effusion. The practical problems in the di-agnosis are also briefly discussed with emphasis on awareness of this rare clinical entity.

  12. The yellow Light Offensive

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Arevised traffic regulation, seen as the harshest ever by many, took effect on January 1. Accordingly, drivers who run yellow lights will have six points deducted from the 12 allocated on their licenses. Those who have any part of their vehicles crossing the line at the time of change will not be punished.

  13. Eat Healthy, Eat Yellow

    Institute of Scientific and Technical Information of China (English)

    Cindy Gu

    2011-01-01

    What comes to mind when you think of yellow? Sunflowers, the school bus or the smiley face? As a food-junkie and a health nut, when I hear the word yellow, savory soy beans, munchy bananas and sweet corn are things that pop into my mind. That's how much I love food. Hopeless? Perhaps.

  14. Asian Yellow Goat Cloned

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ It was released on August 24,2005 by Prof. CHEN Dayuan (Da-Yuan Chen) from the CAS Institute of Zoology that the first success in cloning the Asian Yellow Goat by nuclear transfer had recently been achieved in east China's Shandong Province.

  15. Yellow Fever Vaccine: What You Need to Know

    Science.gov (United States)

    ... www. immunize. org/ vis 1 What is yellow fever? Yellow fever is a serious disease caused by the ... serious cases) 2 How can I prevent yellow fever? Yellow fever vaccine Yellow fever vaccine can prevent yellow ...

  16. Identification of Yellow Pigmentation Genes in Brassica rapa ssp. pekinensis Using Br300 Microarray

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Jung

    2014-01-01

    Full Text Available The yellow color of inner leaves in Chinese cabbage depends on its lutein and carotene content. To identify responsible genes for yellow pigmentation in leaves, the transcriptome profiles of white (Kenshin and yellow leaves (Wheessen were examined using the Br300K oligomeric chip in Chinese cabbage. In yellow leaves, genes involved in carotene synthesis (BrPSY, BrPDS, BrCRTISO, and BrLCYE, lutein, and zeaxanthin synthesis (BrCYP97A3 and BrHYDB were upregulated, while those associated with carotene degradation (BrNCED3, BrNCED4, and BrNCED6 were downregulated. These expression patterns might support that the content of both lutein and total carotenoid was much higher in the yellow leaves than that in the white leaves. These results indicate that the yellow leaves accumulate high levels of both lutein and β-carotene due to stimulation of synthesis and that the degradation rate is inhibited. A large number of responsible genes as novel genes were specifically expressed in yellow inner leaves, suggesting the possible involvement in pigment synthesis. Finally, we identified three transcription factors (BrA20/AN1-like, BrBIM1, and BrZFP8 that are specifically expressed and confirmed their relatedness in carotenoid synthesis from Arabidopsis plants.

  17. Arabidopsis hybrid speciation processes.

    Science.gov (United States)

    Schmickl, Roswitha; Koch, Marcus A

    2011-08-23

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation.

  18. Febre amarela Yellow fever

    Directory of Open Access Journals (Sweden)

    Pedro Fernando da Costa Vasconcelos

    2003-04-01

    Full Text Available A febre amarela é doenca infecciosa não-contagiosa causada por um arbovírus mantido em ciclos silvestres em que macacos atuam como hospedeiros amplificadores e mosquitos dos gêneros Aedes na África, e Haemagogus e Sabethes na América, são os transmissores. Cerca de 90% dos casos da doença apresentam-se com formas clínicas benignas que evoluem para a cura, enquanto 10% desenvolvem quadros dramáticos com mortalidade em torno de 50%. O problema mostra-se mais grave em África onde ainda há casos urbanos. Nas Américas, no período de 1970-2001, descreveram-se 4.543 casos. Os países que mais diagnosticaram a doença foram o Peru (51,5%, a Bolívia (20,1% e o Brasil (18,7%. Os métodos diagnósticos utilizados incluem a sorologia (IgM, isolamento viral, imunohistoquímica e RT-PCR. A zoonose não pode ser erradicada, mas, a doença humana é prevenível mediante a vacinação com a amostra 17D do vírus amarílico. A OMS recomenda nova vacinação a cada 10 anos. Neste artigo são revistos os principais conceitos da doença e os casos de mortes associados à vacina.Yellow fever is an infectious and non-contagious disease caused by an arbovirus, the yellow fever virus. The agent is maintained in jungle cycles among primates as vertebrate hosts and mosquitoes, especially Aedes in Africa, and Haemagogus and Sabethes in America. Approximately 90% of the infections are mild or asymptomatic, while 10% course to a severe clinical picture with 50% case-fatality rate. Yellow fever is largely distributed in Africa where urban epidemics are still reported. In South America, between 1970-2001, 4,543 cases were reported, mostly from Peru (51.5%, Bolivia (20.1% and Brazil (18.7%. The disease is diagnosed by serology (detection of IgM, virus isolation, immunohistochemistry and RT-PCR. Yellow fever is a zoonosis and cannot be eradicated, but it is preventable in man by using the 17D vaccine. A single dose is enough to protect an individual for at least

  19. The Red and the Yellow

    Institute of Scientific and Technical Information of China (English)

    QiuJianghong

    2004-01-01

    THE China film market is based on the so-called battle of the yellow, green and red.Yellow is American Kodak,green Japanese Fuji color, and red China's Lucky film, local counterweight to the two world-famous foreigners.

  20. Ankeny - Yellow Flag Iris Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project aims to inventory and map all existing stands of yellow flag iris within wetland habitats at Ankeny NWR, treat them with herbicide in late spring and...

  1. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase I protein is present in sporophytic and gametophytic cells and undergoes endocytosis

    NARCIS (Netherlands)

    Kwaaitaal, M.A.C.J.; Vries, de S.C.; Russinova, E.T.

    2005-01-01

    Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected

  2. Smog Yellows Taj Mahal

    Science.gov (United States)

    2007-01-01

    Built as a monument to the favorite wife of the Mughal Emperor Shah Jahan, the Taj Mahal has watched over the city of Agra, India, since the mid-seventeenth century with its pillars of gleaming white marble. By the spring of 2007, however, one of the world's most visited landmarks was turning yellow, and a panel of India's parliament had little trouble identifying the culprit: pollution. The panel blamed particles of soot and dirt suspended high in the atmosphere for the Taj Mahal's dinginess. The Taj Mahal's home, Agra, sits not far from the base of the Himalaya, and smog regularly collects along the southern side of the mountain range. On May 16, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image of the area around Agra, India. The closeup image shows the immediate vicinity of the Taj Majal. The larger image shows the surrounding area. In both pictures, dingy, gray-beige haze obscures the satellite's view of the land surface. India had tried to minimize the adverse impact of air pollution on the famous landmark. According to the BBC, in the late 1990s, India's Supreme Court ordered the closure of thousands of iron foundries and kilns that had belched smoke near the monument. Many of the 3 million tourists who visited the Taj Majal each year approached the monument on horse-drawn carriages or battery-operated buses as fossil-fuel-powered vehicles could not drive within 2 kilometers (1.5 miles). Since those efforts have failed to save the Taj Majal's complexion, Indian officials have considered applying a cleansing mud pack to the monument's surface to draw out the dirt. As India industrializes, smog results, and the Taj Mahal's gleaming whiteness is only one casualty. Pollution has been blamed for a decrease in Indian rice harvests, which had soared during the 'Green Revolution' of the 1960s and 1970s. Haze and dust also appear to bring on the region's monsoon rains earlier than normal.

  3. Yellow River, Cradle of China

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    THE Yellow River is the Mother River of China. In the hearts of the Chinese people, it is not just an ancient river measuring 4,845 kilometers long that passes through nine provinces and regions, but also a symbol. The poets say that the waterway is the image of ancient China. Thephilosophers say the river is the shadow of a dragon. The river

  4. Reference: 517 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available d isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to iden...tify components of the Arabidopsis seed that contribute to seed dormancy and to lea

  5. Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

    Directory of Open Access Journals (Sweden)

    Mohsen Mohamed Elsharkawy

    2013-06-01

    Full Text Available Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI. CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

  6. The Scientific Challenges of Yellow River Study

    Institute of Scientific and Technical Information of China (English)

    Liu Xiaoyan; Sun Yangbo

    2005-01-01

    @@ The Yellow River is famous for its complex and unique physical conditions which give great challenges to the river management. Based on the study and analysis of the existing problems and research progress, this paper indicated that the most significant challenges of Yellow River studies are: long term hydrological and morphological changes; the optimized hydrology and sediment conditions to maintain the healthy life of the River; and simulation of Yellow River through mathematical model and physical models.

  7. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  8. Isolation of yellow catfish β-actin promoter and generation of transgenic yellow catfish expressing enhanced yellow fluorescent protein.

    Science.gov (United States)

    Ge, Jiachun; Dong, Zhangji; Li, Jingyun; Xu, Zhiqiang; Song, Wei; Bao, Jie; Liang, Dong; Li, Junbo; Li, Kui; Jia, Wenshuang; Zhao, Muzi; Cai, Yongxiang; Yang, Jiaxin; Pan, Jianlin; Zhao, Qingshun

    2012-10-01

    Yellow catfish (Pelteobagrus fulvidraco Richardson) is one of the most important freshwater farmed species in China. However, its small size and slow growth rate limit its commercial value. Because genetic engineering has been a powerful tool to develop and improve fish traits for aquaculture, we performed transgenic research on yellow catfish in order to increase its size and growth rate. Performing PCR with degenerate primers, we cloned a genomic fragment comprising 5'-flanking sequence upstream of the initiation codon of β-actin gene in yellow catfish. The sequence is 1,017 bp long, containing the core sequence of proximal promoter including CAAT box, CArG motif and TATA box. Microinjecting the transgene construct Tg(beta-actin:eYFP) of the proximal promoter fused to enhanced yellow fluorescent protein (eYFP) reporter gene into zebrafish and yellow catfish embryos, we found the promoter could drive the reporter to express transiently in both embryos at early development. Screening the offspring of five transgenic zebrafish founders developed from the embryos microinjected with Tg(ycbeta-actin:mCherry) or 19 yellow catfish founders developed from the embryos microinjected with Tg(beta-actin:eYFP), we obtained three lines of transgenic zebrafish and one transgenic yellow catfish, respectively. Analyzing the expression patterns of the reporter genes in transgenic zebrafish (Tg(ycbeta-actin:mCherry)nju8/+) and transgenic yellow catfish (Tg(beta-actin:eYFP)nju11/+), we found the reporters were broadly expressed in both animals. In summary, we have established a platform to make transgenic yellow catfish using the proximal promoter of its own β-actin gene. The results will help us to create transgenic yellow catfish using "all yellow catfish" transgene constructs.

  9. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  10. Thoracic surgical implications of the yellow nail syndrome.

    Science.gov (United States)

    David, I; Crawford, F A; Hendrix, G H; Harley, R A; Tucker, T

    1986-05-01

    Idiopathic lymphedema associated with yellow discoloration of the nail beds constitutes the yellow nail syndrome. Pleural effusions and chronic sinusitis are also frequently present. This report describes a case of yellow nail syndrome in a 65-year-old woman.

  11. [Pleuritis in yellow nail syndrome].

    Science.gov (United States)

    Kossakowski, C A; Schmiegelow, P; Müller, K-M

    2012-03-01

    A 76-year-old man presented clinically with coughing and shortness of breath and was diagnosed radiologically to have massive pleural effusion as a combined feature of yellow nail syndrome. A lung biopsy was taken and revealed histologically: chronic non-specific inflammation in the pleuropulmonary border, intrapleural edema with eightfold pleural thickening in comparison to normal, angiogenesis in both the nutritive and functional intrapleural blood vessels, no abnormalities of lymphatic vessels with normal topographical distribution as detected by immunohistochemistry for antibody D2-40, granulomatous chronic foreign body reaction as a consequence of pleural effusion therapy by talcum pleurodesis.The histopathological findings of chronic non-specific pleuritis with angiogenesis and increased permeability of blood vessels led to massive intrapleural edema with pleural effusion. Abnormalities of lymphatic vessels could not be confirmed. Considering the features of this disease, they are probably secondary to chronic r infectious or immunological inflammation or paraneoplastic complications with angiogenesis (in about 19%).

  12. Novel Synthetic Promoters from the Cestrum Yellow Leaf Curling Virus.

    Science.gov (United States)

    Sahoo, Dipak Kumar; Sarkar, Shayan; Maiti, Indu B; Dey, Nrisingha

    2016-01-01

    Constitutive promoters direct gene expression uniformly in most tissues and cells at all stages of plant growth and development; they confer steady levels of transgene expression in plant cells and hence their demand is high in plant biology. The gene silencing due to promoter homology can be avoided by either using diverse promoters isolated from different plant and viral genomes or by designing synthetic promoters. The aim of this chapter was to describe the basic protocols needed to develop and analyze novel, synthetic, nearly constitutive promoters from Cestrum yellow leaf curling virus (CmYLCV) through promoter/leader deletion and activating cis-sequence analysis. We also describe the methods to evaluate the strength of the promoters efficiently in various transient expression systems like agroinfiltration assay, gene-gun method, and assay in tobacco protoplasts. Besides, the detailed methods for developing transgenic plants (tobacco and Arabidopsis) for evaluation of the promoter using the GUS reporter gene are also described. The detailed procedure for electrophoretic mobility shift assay (EMSA) coupled with super-shift EMSA analysis are also described for showing the binding of tobacco transcription factor, TGA1a to cis-elements in the CmYLCV distal promoter region.

  13. Nonsense mutation inside anthocyanidin synthase gene controls pigmentation in yellow raspberry (Rubus idaeus L..

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Rafique

    2016-12-01

    Full Text Available Yellow raspberry fruits have reduced anthocyanin contents and offer unique possibility to study the genetics of pigment biosynthesis in this important soft fruit. Anthocyanidin synthase catalyzes the conversion of leucoanthocyanidin to anthocyanidin, a key committed step in biosynthesis of anthocyanins. Molecular analysis of the Ans gene enabled to identify an inactive ans allele in a yellow fruit raspberry (Anne. A 5-bp insertion in the coding region was identified and designated as ans+5. The insertion creates a premature stop codon resulting in a truncated protein of 264 amino acids, compared to 414 amino acids wild type ANS protein. This mutation leads to loss of function of the encoded protein that might also result in transcriptional downregulation of Ans gene as a secondary effect i.e. nonsense-mRNA mediated decay. Further, this mutation results in loss of visible and detectable anthocyanin pigments. Functional characterization of raspberry Ans/ans alleles via complementation experiments in the Arabidopsis thaliana ldox mutant supports the inactivity of encoded protein through ans+5 and explains the proposed block in the anthocyanin biosynthetic pathway in raspberry. Taken together, our data shows that the mutation inside Ans gene in raspberry is responsible for yellow fruit phenotypes.

  14. Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.).

    Science.gov (United States)

    Rafique, Muhammad Z; Carvalho, Elisabete; Stracke, Ralf; Palmieri, Luisa; Herrera, Lorena; Feller, Antje; Malnoy, Mickael; Martens, Stefan

    2016-01-01

    Yellow raspberry fruits have reduced anthocyanin contents and offer unique possibility to study the genetics of pigment biosynthesis in this important soft fruit. Anthocyanidin synthase (Ans) catalyzes the conversion of leucoanthocyanidin to anthocyanidin, a key committed step in biosynthesis of anthocyanins. Molecular analysis of the Ans gene enabled to identify an inactive ans allele in a yellow fruit raspberry ("Anne"). A 5 bp insertion in the coding region was identified and designated as ans(+5). The insertion creates a premature stop codon resulting in a truncated protein of 264 amino acids, compared to 414 amino acids wild-type ANS protein. This mutation leads to loss of function of the encoded protein that might also result in transcriptional downregulation of Ans gene as a secondary effect, i.e., nonsense-mediated mRNA decay. Further, this mutation results in loss of visible and detectable anthocyanin pigments. Functional characterization of raspberry Ans/ans alleles via complementation experiments in the Arabidopsis thaliana ldox mutant supports the inactivity of encoded protein through ans(+5) and explains the proposed block in the anthocyanin biosynthetic pathway in raspberry. Taken together, our data shows that the mutation inside Ans gene in raspberry is responsible for yellow fruit phenotypes.

  15. Hippocrates, cardiology, Confucius and the Yellow Emperor.

    Science.gov (United States)

    Cheng, T O

    2001-12-01

    Although Hippocrates (460-c.375 BC) has been traditionally recognized as the Father of Medicine, the fact that he was seminal in the development of cardiology is much less well known. Evidence is presented to support the notion that Hippocrates could also be considered the Father of Cardiology. Hippocrates also had many of the teachings and practices in common with Confucius (c.551-c.479 BC) and the Yellow Emperor of China (2695-2589 BC). Whereas Confucius was not a physician, the Yellow Emperor was an ancient Chinese physician whose Huang Di Neijing, the Yellow Emperor's Canon of Internal Medicine, is the oldest known treatise of medicine in existence.

  16. Clara Maass, yellow fever and human experimentation.

    Science.gov (United States)

    Chaves-Carballo, Enrique

    2013-05-01

    Clara Louise Maass, a 25-year-old American nurse, died of yellow fever on August 24, 1901, following experimental inoculation by infected mosquitoes in Havana, Cuba. The human yellow fever experiments were initially conducted by MAJ Walter Reed, who first used written informed consent and proved the validity of Finlay's mosquito-vector hypothesis. Despite informed consent form and an incentive of $100 in U.S. gold, human subjects were exposed to a deadly virus. The deaths of Clara Maass and two Spanish immigrants resulted in a public outcry and the immediate cessation of yellow fever human experiments in Cuba.

  17. Reference: 774 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available an essential gene, the disruption of which causes embryonic lethality. Plants carrying a hypomorphic smg7 mu...e progression from anaphase to telophase in the second meiotic division in Arabidopsis. Arabidopsis SMG7 is

  18. Reference: 398 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plays attenuated chloroplast movements under intermediate and high light intensitie...hese movements. In this work, we describe plastid movement impaired 2 (pmi2), a mutant in Arabidopsis (Arabidopsis thaliana) that dis

  19. Reference: 173 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available mical approaches to elucidate the action mechanisms of sirtinol in Arabidopsis. A...tic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. 8 3129-34 15710899 2005 Feb P

  20. Reference: 718 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available displayed a moderate but significant decrease in germination in the presence of D...NA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis. Arabidopsis UEV

  1. Arabidopsis CDS blastp result: AK068856 [KOME

    Lifescience Database Archive (English)

    Full Text Available eme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 GB:AF132475; annotation upd...ated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ...

  2. Arabidopsis CDS blastp result: AK104955 [KOME

    Lifescience Database Archive (English)

    Full Text Available B:AF132475; annotation updated per Seth J. Davis at University of Wisconsin-Madison 3e-90 ... ...heme oxygenase (HY1) [Arabidopsis thaliana] GI:4877362, heme oxygenase 1 [Arabidopsis thaliana] GI:4530591 G

  3. Reference: 110 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on process. Our study shows that an Arabidopsis SNM protein, although structurally closer to the SNM1/PSO2 members, shares some prope...rties with ARTEMIS but also has novel characteristics. Arabidopsis plants defective

  4. Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures.

    Science.gov (United States)

    Menges, Margit; Murray, James A H

    2004-02-01

    We have recently described Arabidopsis cell suspension cultures that can be effectively synchronised. Here, we describe procedures that allow clonal-transformed cell suspension lines to be produced using Agrobacterium-mediated transformation, and an optimised and straightforward procedure for the cryopreservation and recovery of both parental and transformed lines. Frozen cultures show 90% viability and rapid re-growth after recovery. We show that the cryopreservation procedure is equally applicable to the frequently used tobacco bright yellow (BY)2 cell suspension culture, and that cell cycle synchronisation capacity of parental lines is maintained after both transformation and recovery from cryopreservation. The techniques require no specialised equipment, and are suitable for routine laboratory use, greatly facilitating the handling and maintenance of cell cultures and providing security against both contamination and cumulative somaclonal variation. Finally, the ability to store easily large numbers of transformed lines opens the possibility of using Arabidopsis cell suspension cultures for high-throughput analysis.

  5. Johnston Atoll - Eradication of Yellow Crazy Ants

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — While on a research and monitoring cruise that visited Johnston Atoll in late January 2010, USFWS employees found an infestation of Anoplolepis gracilipes, or yellow...

  6. 1999 Yellow River Aerial Photos, Central Wisconsin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The 25-mile stretch of the Yellow River adjacent to the Necedah National Wildlife Refuge in Central Wisconsin provides valuable habitat to numerous species of...

  7. Yellow River Delta Faces a Historic Opportunity

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2010-01-01

    @@ China's State Council has endorsed the Development Plan of an Efficient Eco-Economic Zone at Yellow River Delta. The plan is meant to create a more ecologically sustainable economic zone along the river delta.

  8. Yellow River Delta Faces a Historic Opportunity

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2011-01-01

    @@ China's State Council has endorsed the Development Plan of an Efficient Eco-Economic Zone at Yellow River Delta.The plan is meant to create a more ecologically sustainable economic zone along the river delta.

  9. Lost trust: a yellow fever patient response.

    Science.gov (United States)

    Runge, John S

    2013-12-13

    In the 19th century, yellow fever thrived in the tropical, urban trade centers along the American Gulf Coast. Industrializing and populated, New Orleans and Memphis made excellent habitats for the yellow fever-carrying Aedes aegypti mosquitoes and the virulence they imparted on their victims. Known for its jaundice and black, blood-filled vomit, the malady terrorized the region for decades, sometimes claiming tens of thousands of lives during the near annual summertime outbreaks. In response to the failing medical community, a small, pronounced population of sick and healthy laypeople openly criticized the efforts to rid the Gulf region of yellow jack. Utilizing newspapers and cartoons to vocalize their opinions, these critics doubted and mocked the medical community, contributing to the regional and seasonal dilemma yellow fever posed for the American South. These sentient expressions prove to be an early example of patient distrust toward caregivers, a current problem in clinical heath care.

  10. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  11. Redox alters yellow dragonflies into red.

    Science.gov (United States)

    Futahashi, Ryo; Kurita, Ryoji; Mano, Hiroaki; Fukatsu, Takema

    2012-07-31

    Body color change associated with sexual maturation--so-called nuptial coloration--is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait.

  12. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Xia Li

    Full Text Available Yellow seed is a desirable quality trait of the Brassica oilseed species. Previously, several seed coat color genes have been mapped in the Brassica species, but the molecular mechanism is still unknown. In the present investigation, map-based cloning method was used to identify a seed coat color gene, located on A9 in B. rapa. Blast analysis with the Arabidopsis genome showed that there were 22 Arabidopsis genes in this region including at4g09820 to at4g10620. Functional complementation test exhibited a phenotype reversion in the Arabidopsis thaliana tt8-1 mutant and yellow-seeded plant. These results suggested that the candidate gene was a homolog of TRANSPARENT TESTA8 (TT8 locus. BrTT8 regulated the accumulation of proanthocyanidins (PAs in the seed coat. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. In addition, no mRNA expression of BrTT8 was detected in the yellow-seeded line. It indicated that the natural transposon might have caused the loss in function of BrTT8. BrTT8 encodes a basic/helix-loop-helix (bHLH protein that shares a high degree of similarity with other bHLH proteins in the Brassica. Further expression analysis also revealed that BrTT8 was involved in controlling the late biosynthetic genes (LBGs of the flavonoid pathway. Our present findings provided with further studies could assist in understanding the molecular mechanism involved in seed coat color formation in Brassica species, which is an important oil yielding quality trait.

  13. Yellowing disease in zucchini squash produced by mixed infections of Cucurbit yellow stunting disorder virus and Cucumber vein yellowing virus.

    Science.gov (United States)

    Gil-Salas, Francisco M; Peters, Jeff; Boonham, Neil; Cuadrado, Isabel M; Janssen, Dirk

    2011-11-01

    Zucchini squash is host to Cucurbit yellow stunting disorder virus (CYSDV), a member of the genus Crinivirus, and Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, both transmitted by the whitefly Bemisia tabaci. Field observations suggest the appearance of new symptoms observed on leaves of zucchini squash crops when both viruses were present. When infected during controlled experiments with CYSDV only, zucchini plants showed no obvious symptoms and the virus titer decreased between 15 and 45 days postinoculation (dpi), after which it was no longer detected. CVYV caused inconspicuous symptoms restricted to vein clearing on some of the apical leaves and the virus accumulated progressively between 15 and 60 dpi. Similar accumulations of virus followed single inoculations with the potyvirus Zucchini yellow mosaic virus (ZYMV) and plants showed severe stunting, leaf deformation, and mosaic yellowing. However, in mixed infections with CYSDV and CVYV, intermediate leaves showed chlorotic mottling which evolved later to rolling, brittleness, and complete yellowing of the leaf lamina, with exception of the veins. No consistent alteration of CVYV accumulation was detected but the amounts of CYSDV increased ≈100-fold and remained detectable at 60 dpi. Such synergistic effects on the titer of the crinivirus and symptom expression were not observed when co-infected with ZYMV.

  14. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  15. Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element.

    Science.gov (United States)

    Melnikova, Larisa; Kostuchenko, Margarita; Silicheva, Margarita; Georgiev, Pavel

    2008-04-01

    There is ample evidence that the enhancers of a promoterless yellow locus in one homologous chromosome can activate the yellow promoter in the other chromosome where the enhancers are inactive or deleted, which is indicative of a high specificity of the enhancer-promoter interaction in yellow. In this paper, we have found that the yellow sequence from -100 to -69 is essential for stimulation of the heterologous eve (TATA-containing) and white (TATA-less) promoters by the yellow enhancers from a distance. However, the presence of this sequence is not required when the yellow enhancers are directly fused to the heterologous promoters or are activated by the yeast GAL4 activator. Unexpectedly, the same promoter proximal region defines previously described promoter-specific, long-distance repression of the yellow promoter by the gypsy insulator on the mod(mdg4) ( u1 ) background. These finding suggest that proteins bound to the -100 to -69 sequence are essential for communication between the yellow promoter and upstream regulatory elements.

  16. Chromosomal proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Moehs, C P; McElwain, E F; Spiker, S

    1988-07-01

    In plants with large genomes, each of the classes of the histones (H1, H2A, H2B, H3 and H4) are not unique polypeptides, but rather families of closely related proteins that are called histone variants. The small genome and preponderance of single-copy DNA in Arabidopsis thaliana has led us to ask if this plant has such families of histone variants. We have thus isolated histones from Arabidopsis and analyzed them on four polyacrylamide gel electrophoretic systems: an SDS system; an acetic acid-urea system; a Triton transverse gradient system; and a two-dimensional system combining SDS and Triton-acetic acid-urea systems. This approach has allowed us to identify all four of the nucleosomal core histones in Arabidopsis and to establish the existence of a set of H2A and H2B variants. Arabidopsis has at least four H2A variants and three H2B variants of distinct molecular weights as assessed by electrophoretic mobility on SDS-polyacrylamide gels. Thus, Arabidopsis displays a diversity in these histones similar to the diversity displayed by plants with larger genomes such as wheat.The high mobility group (HMG) non-histone chromatin proteins have attracted considerable attention because of the evidence implicating them as structural proteins of transcriptionally active chromatin. We have isolated a group of non-histone chromatin proteins from Arabidopsis that meet the operational criteria to be classed as HMG proteins and that cross-react with antisera to HMG proteins of wheat.

  17. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  18. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  19. The salty tale of Arabidopsis.

    Science.gov (United States)

    Sanders, D

    2000-06-29

    High concentrations of sodium chloride are toxic to most plant species. New insights into the mechanisms by which plants tolerate salt have emerged from the identification of genes in Arabidopsis thaliana that play a critical part in physiological resistance to salt.

  20. Yellow fever vaccination in the Americas.

    Science.gov (United States)

    1984-01-01

    Outbreaks of yellow fever in recent years in the Americas have prompted concern about the possible urbanization of jungle fever. Vaccination, using the 17D strain of yellow fever virus, provides an effective, practical method of large scale protection against the disease. Because yellow fever can reappear in certain areas after a 2-year dormancy period, some countries maintain routine vaccination programs in areas where jungle yellow fever is endemic. The size of the endemic area (approximately half of South America), transportation and communication difficulties, and the inability to ensure a reliable cold chain are problems facing these programs. In addition, the problem of reaching dispersed and isolated populations has been addressed by the use of mobile teams, radio monitoring, and educational methods. During yellow fever outbreaks, many countries institute massive vaccination campaigns, targeted at temporary workers and migrants. Because epidemics in South America may involve extensive areas, these campaigns may not effectively address the problem. The ped-o-jet injector method, used in Brazil and Colombia, should be used in outbreak situations, as it is effective for large-scale vaccination. Vaccine by needle, suggested for maintenance programs, should be administered to those above 1 year of age. An efficient monitoring method to avoid revaccination, and to assess immunity, should be developed. The 17D strain produces seroconversion in 95% of recipients, and most is prepared in Brazil and Colombia. But, problems with storage methods, instability in seed lots, and difficulties in large-scale production were identified in 1981 by the Pan American Health Organization and WHO. The group recommended modernization of current production techniques and further research to develop a vaccine that could be produced in cell cultures. Brazil and Colombia have acted on these recommendations, modernizing vaccine production and researching thermostabilizing media for

  1. Yellow Nail Syndrome - a Case Report

    Directory of Open Access Journals (Sweden)

    Paravina Mirjana

    2015-06-01

    Full Text Available Yellow nail syndrome is a rare disease of unknown etiology. It is clinically characterized by a triad of yellow nails, lymphedema at one or more sites, and chronic respiratory disease (bronchitis, bronchiectasis and rhinosinusitis. All nails may be affected, but some may be spared. The nail plates are yellowish green, thickened, occasionally with transverse ridging and onycholysis, with increased longitudinal and transversal over-curvature, with partial or complete separation of the nail plate from the nail bed, without lunula and cuticle and slow nail growth rate. The lymphedema is usually peripheral, affecting the lower limbs, or in the form of pleural effusion.

  2. Evolution of Modern Yellow River Delta Coast

    Institute of Scientific and Technical Information of China (English)

    尹延鸿; 周永青; 丁东

    2004-01-01

    This paper deals with the development and evolution of modem Yellow River delta and the erosion or deposition rates of its different sections. In June, 1996,Yellow Rivers terminal course was artificially turned eastwards to empty into the sea and then the 11th lobe of the modern Yellow River delta began to form. This course change may mark the beginning of the 3rd subdelta formation. As a result of that, the Yellow River delta advances towards east by north with the 1st, 2nd and 3rd subdeltas arranged in succession. Coast zone in the deltaic area is divided into 7 different sections according to their different erosion or deposition rates: the relatively stable section from Dakou River to Shunjiang Stream, the weakly retreating section from Shun jiang Stream to the Tiaohe River mouth, the strongly retreating section from the Tiaohe River mouth to the station 106, the artificially stable section due to stone dam protection from the station 106 to Gudong Oilfield, the strong deposition section from Gudong Oilfield to Dawenliu Haipu, the weakly deposition section from Dawenliu Haipu to the Zimai Stream mouth, and the stable section from the Zimai Stream mouth to the Jiaolai River mouth. It is predicted that the erosion and deposition situations of the sections will nearly remain the same in 10 years, but the retreating and silting-up rates will tend to become slower gradually. Human activities have an evident influence on the changes of the coastline.

  3. A Hopi tradition: Yellow firing ceramics

    Science.gov (United States)

    Canouts, Veletta; Bishop, Ronald

    1995-09-01

    The famed Hopi yellow-ware vessels of the American southwest were not the product of any single technological variable, firing technique, clay, or temper Instead, all of these factors worked together in a technological system affected by the desires, knowledge, and effectualness of the people producing the pottery.

  4. Hornets yellow cuticle microstructure : A photovoltaic system

    NARCIS (Netherlands)

    Ishay, JS; Goldstein, O; Rosenzweig, E; Kalicharan, D; Jongebloed, WL

    1997-01-01

    This paper describes cuticular structures on the abdomen of the Oriental hornet (Vespa orientalis, Vespinae, Hymenoptera) in the region of the yellow stripes. A cross section in this region reveals the cuticle to resemble a notebook with more than 30 pages, the topmost pages (analogous to layers) be

  5. 7 CFR 28.441 - Strict Middling Yellow Stained Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Yellow Stained Color. 28.441 Section... Strict Middling Yellow Stained Color. Strict Middling Yellow Stained Color is color which is deeper than that of Strict Middling Tinged Color....

  6. 49 CFR 173.188 - White or yellow phosphorus.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false White or yellow phosphorus. 173.188 Section 173... Class 7 § 173.188 White or yellow phosphorus. Phosphorus, white or yellow, when offered for... pound) of phosphorus with screw-top closures; or (2) Steel drums (1A1) not over 250 L (66...

  7. 21 CFR 573.1020 - Yellow prussiate of soda.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Yellow prussiate of soda. 573.1020 Section 573.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.1020 Yellow prussiate of soda. Yellow prussiate of soda...

  8. Reference: 710 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 tr...anscript accumulation within 30 min. The gene was also activated under various abiotic stre...sses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an At...MYB44 promoter-driven beta-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature... and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more

  9. Structural determination of unknown subsidiary colors in food yellow no. 5 (Sunset yellow FCF).

    Science.gov (United States)

    Yamada, M; Nakamura, M; Yamada, T; Maitani, T; Goda, Y

    1996-08-01

    Major unknown subsidiary colors A (Sub A) and B (Sub B) in commercial Sunset Yellow FCF (Food Yellow No. 5 in Japan) have been isolated by preparative HPLC. Spectroscopic analyses of Sub A and Sub B revealed that their structures are trisodium salt of 6-hydroxy-7-(4-sulfophenyl)-5-(4-sulfophenylazo)-2-naphthale nesulfonic acid, and disodium salt of 3-hydroxy-4-(4-sulfophenylazo)-2-naphthalenesulfonic acid, respectively.

  10. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Science.gov (United States)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  11. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2011-01-01

    Full Text Available Abstract Herein we are the first to report that single-walled carbon nanotubes (SWCNTs exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  12. Flavonoids in white and yellow perianths and yellow anthers of tulips (Tulipa gesneriana L.

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2013-12-01

    Full Text Available The content of flavonoids in white and yellow perianths and yellow anthers of a few tulip cultivars were determined at the stage of full flowering. To analyses of flavonols a HPLC method was used. In anthers (yellow of all analyzed cultivars (Oscar, Pax, Profesor Wóycicki, Biała Dama, White Virgin, Calypso, Diana high content of quercetin (2,35 - 6,01 mg·g-1 F.W., kaempferol (1,09 - 9,47 mg·g-1 F.W. and apigenin (1,34 - 8,24 mg·g-1 F.W. was found. In analyzed white perianth of cvs. Oscar and White Virgin also high content of quercetin (1,3 - 1,80 mg·g-1 F.W. and kaempferol (1,90 mg·g-1 F.W. was documented and only traces of apigenin was found. In the yellow perianth of cv. Profesor Wóycicki the level of quercetin and kaempferol was much lower than in perianth of cvs. Oscar and White Virgin, and apigenin was absent. Thus, yellow anthers and white and yellow perianth of tulip cultivars are a rich source of flavonols.

  13. [Evolution process and related driving mechanisms of Yellow River Delta since the diversion of Yellow River].

    Science.gov (United States)

    Han, Guang-Xuan; Li, Yun-Zhao; Yu, Jun-Bao; Xu, Jing-Wei; Wang, Guang-Mei; Zhang, Zhi-Dong; Mao, Pei-Li; Liu, Yu-Hong

    2011-02-01

    Based on the 23 sheets of remote sensing images from 1976 to 2009, in combining with the water and sediment data from Lijin station and the annual precipitation data of Yellow River Basin from 1976 to 2008, this paper quantitatively analyzed the features of water and sediment discharge from Yellow River, and the evolution process of Yellow River Delta and related driving mechanisms. In 1976-2008, the annual runoff and the annual sediment discharge into sea changed largely and frequently, but overall, presented a decreasing trend. Since the course of the Yellow River changed its direction to Qingshui channel in 1976, the Delta coastline and area were generally in a silting-up state. The evolution process of the Delta could be approximately divided into three stages, i.e., 1976-1985, 1986-1995, and 1996-2009, and the increasing rate of the Delta decreased with the stages. The coastline and area of the Delta were significantly exponentially correlated to the sediment accumulated at Lijin station, and the inter-annual variation of the precipitation of the Yellow River Basin had a strong correlation with that of the sediment at Lijin station, suggesting that the annual variation of the precipitation in Yellow River Basin was the main factor affecting the runoff and sediment discharge into sea.

  14. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  15. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  16. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  17. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.1 68418.m07918 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  18. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  19. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  20. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.2 68418.m07919 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  1. Arabidopsis CDS blastp result: AK241761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241761 J065205C18 At5g63090.4 68418.m07921 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 5e-32 ...

  2. Arabidopsis CDS blastp result: AK240652 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240652 J023098G11 At5g63090.3 68418.m07920 LOB domain protein / lateral organ boundaries... protein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 1e-13 ...

  3. Arabidopsis CDS blastp result: AK105527 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105527 001-127-G05 At5g63090.4 LOB domain protein / lateral organ boundaries prot...ein (LOB) identical to LOBa [Arabidopsis thaliana] GI:17484100, SP|Q9FML4 LATERAL ORGAN BOUNDARIES protein {Arabidopsis thaliana} 3e-52 ...

  4. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  5. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  6. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  7. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  8. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  9. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  10. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  11. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  12. Reference: 631 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ggest that atRZ-1a has a negative impact on seed germination and seedling growth of Arabidopsis under salt o...binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thali

  13. Assessing the freshwater distribution of yellow eel

    Directory of Open Access Journals (Sweden)

    Lasne É.

    2009-04-01

    Full Text Available In the global context of the decline in wild species, modeling the distribution of populations is a crucial aspect of ecological management. This can be a major challenge, especially for species, such as the European eel, that have complex life cycles, exhibit cryptic behavior, or migrate over long distances. A review of the literature suggests that eel size data could be used to assess and analyze freshwater distribution of eel. We argue that analyses based on small yellow eels (≤ 300 mm along the longitudinal course of rivers could provide a valuable tool for population monitoring. We propose a standardized catchment recruitment index and a colonization index based on the probability of occurrence (presence/absence data using logistic models for different size classes. The model developed here provides a convenient guide for assessing yellow eel stages in freshwater areas, and should have concrete applications for management of the species.

  14. Cytotoxicity of yellow sand in lung epithelial cells

    Indian Academy of Sciences (India)

    Y H Kim; K S Kim; N J Kwak; K H Lee; S A Kweon; Y Lim

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 ± 0.001 mm. Major elements of yellow sand were Si(27.7 ± 0.6%), Al(6.01 ± 0.17%), and Ca(5.83 ± 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  15. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  16. Yellow fever in China is still an imported disease.

    Science.gov (United States)

    Chen, Jun; Lu, Hongzhou

    2016-05-23

    Yellow fever is a vector-borne disease endemic to tropical regions of Africa and South America. A recent outbreak in Angola caused hundreds of deaths. Six cases of yellow fever imported from Angola were reported recently in China. This raised the question of whether it will spread in China and how it can be prevented. This article discusses the possibility of yellow fever transmission in China and the strategies to counter it.

  17. Yellow fever cases in Asia: primed for an epidemic

    OpenAIRE

    Sean Wasserman; Paul Anantharajah Tambyah; Poh Lian Lim

    2016-01-01

    There is currently an emerging outbreak of yellow fever in Angola. Cases in infected travellers have been reported in a number of other African countries, as well as in China, representing the first ever documented cases of yellow fever in Asia. There is a large Chinese workforce in Angola, many of whom may be unvaccinated, increasing the risk of ongoing importation of yellow fever into Asia via busy commercial airline routes. Large parts of the region are hyperendemic for the related Flavivi...

  18. Reference: 572 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2007 May. Plant J. 50(3):439-51. Although glycine-rich RNA-binding protein 2 (GRP2) has been implicated in plant re...sponses to environmental stresses, the function and importance of GRP2 in stress responses are largely unknown. Here...haliana under high-salinity, cold or osmotic stress. GRP2 affects seed germination of Arabidopsis plants under salt stre...ss, but does not influence seed germination and seedling growth of Arabidopsis plants under osmotic stre...ss. GRP2 accelerates seed germination and seedling growth in Arabidopsis plants under cold stre

  19. Reference: 446 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rk E et al. 2006 Nov. Plant Physiol. 142(3):1004-13. Arabidopsis (Arabidopsis thaliana) QUARTET (QRT) genes are require...d for pollen separation during normal floral development. In qrt mutants, the four products of microsporogenesis re...main fused and pollen grains are released as tetrads. In Arabid...opsis, tetrad analysis in qrt mutants has been used to map all five centromeres, easily distinguish sporophy...tic from gametophytic mutations, and accurately assess crossover interference. Using a combination of forward and re

  20. Urbanisation of yellow fever in Santa Cruz, Bolivia.

    Science.gov (United States)

    Van der Stuyft, P; Gianella, A; Pirard, M; Cespedes, J; Lora, J; Peredo, C; Pelegrino, J L; Vorndam, V; Boelaert, M

    1999-05-08

    Until recently, urban yellow fever had not been reported from the Americas since 1954, but jungle yellow fever increasingly affects forest dwellers in Bolivia, Brazil, Colombia, Ecuador, and Peru. The reinvasion by Aedes aegypti of cities in the Americas now threatens to urbanize yellow fever. After yellow fever infection was identified in a resident of Santa Cruz, Bolivia, in December 1997, all subsequent suspected cases were investigated. Active surveillance of yellow fever was introduced in the Santa Cruz area, with hospitals and selected urban and rural health centers reporting all suspected cases. Patients were serologically screened for yellow fever, dengue, hepatitis A and B, and leptospirosis; clinical and epidemiological data were collected from patients' records and through interviews; and a population-based serosurvey was conducted in the neighborhood of one case. Between December 1997 and June 1998, symptomatic yellow fever infection was confirmed in 6 residents of Santa Cruz, of whom 5 died. 5 lived in the southern sector of the city. 2 cases did not leave the city during their incubation period, and 1 had visited only an area in which sylvatic transmission was deemed impossible. Of the 281 people covered in the serosurvey, 16 (6%) were positive for IgM antibody to yellow fever. Among 5 people for whom that result could not be explained by recent vaccination, there were 2 pairs of neighbors. This instance of urban yellow fever transmission was limited in both time and space.

  1. Yellow nail syndrome: does protein leakage play a role?

    Science.gov (United States)

    D'Alessandro, A; Muzi, G; Monaco, A; Filiberto, S; Barboni, A; Abbritti, G

    2001-01-01

    Yellow nail syndrome is characterized by primary lymphoedema, recurrent pleural effusion and yellow discoloration of the nails. Although mechanical lymphatic obstruction is assumed to be the underlying pathology, it cannot explain the common finding of high albumin concentration in the pleural space. This paper describes a case of yellow nail syndrome presenting with the classical triad of lymphoedema, recurrent pleural effusion and yellow discoloration of the nails, associated with persistent hypoalbuminaemia and increased enteric loss of albumin. Based on the findings in this case and those in the literature, it is speculated that increased microvascular permeability may contribute to the pathogenesis of this syndrome.

  2. Yellow nail syndrome following thoracic surgery: A new association?

    Directory of Open Access Journals (Sweden)

    Banta D

    2009-01-01

    Full Text Available An 80-year-old man presented with the characteristic triad of yellow nail syndrome (chronic respiratory disorders, primary lymphedema and yellow nails in association with coronary artery bypass graft surgery. Treatment with mechanical pleurodesis and vitamin E resulted in near complete resolution of the yellow nails, pleural effusions, and lower extremity edema. The etiology of the yellow nail syndrome has been described as an anatomical or functional lymphatic abnormality. Several conditions have previously been described as associated with this disease. This is the first report of the association of this syndrome with thoracic surgery.

  3. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  4. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  6. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  8. Reference: 488 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Inactivation of ATAB2 strongly affects Arabidopsis development and thylakoid mem...n center subunits is decreased and the association of their mRNAs with polysomes is affected. ATAB2 is a chl

  9. Reference: 212 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (...C75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTO

  10. Reference: 480 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available activity was analyzed. Compared to all other Suc transporters, AtSUC9 had an ult...abidopsis (Arabidopsis thaliana) L. Heynh., was expressed in Xenopus (Xenopus laevis) oocytes, and transport

  11. Reference: 507 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available een them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cro...ss-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA inserti

  12. Reference: 278 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available functional ERA1 gene, which encodes the beta-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects...gnaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsi

  13. Reference: 185 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available organisms, we suggest that AtARP4 is likely to exert its effects on plant develop...nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including ear

  14. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  15. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  16. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  17. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  18. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  19. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  20. Arabidopsis CDS blastp result: AK103387 [KOME

    Lifescience Database Archive (English)

    Full Text Available ntical to SC35-like splicing factor SCL28, 28 kD [Arabidopsis thaliana] GI:9843655; contains Pfam profile PF00076: RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) 2e-34 ...

  1. Reference: 564 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 39-44 17360695 2007 Feb Proceedings of the National Academy of Sciences of the Un...tion in plants. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. 9 36

  2. Reference: 796 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ceedings of the National Academy of Sciences of the United States of America DeBolt...required for normal microtubule dynamics and organization in Arabidopsis. 46 18064-9 19004800 2008 Nov Pro

  3. Reference: 67 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available A complete knockout of AGD2 renders embryos inviable. We suggest that AGD2 synthesizes an important amino a...no acid-derived molecule important for activating defense signaling. Divergent roles in Arabidopsis thaliana

  4. Reference: 420 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available are found in various compartments in plant cells. The cytosolic and chloroplast APXs appear to play important...d development, suggesting that APX3 may not be an important antioxidant enzyme in Arabidopsis, at least unde

  5. Reference: 771 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available RCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regula...l elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important

  6. Reference: 797 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available that the level of GMPase activity regulates Arabidopsis sensitivity to NH(4)(+). Further analysis showed that defective N-glycosylati...on of proteins, unfolded protein response, and cell death in the roots are likely i

  7. Arabidopsis CDS blastp result: AK241712 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241712 J065197H24 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-27 ...

  8. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-28 ...

  9. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  10. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 2e-45 ...

  11. Arabidopsis CDS blastp result: AK106306 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106306 002-101-C10 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 3e-89 ...

  12. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 1e-88 ...

  13. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-88 ...

  14. Arabidopsis CDS blastp result: AK109848 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109848 002-148-F05 At4g37750.1 ovule development protein aintegumenta (ANT) ident...ical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-73 ...

  15. Arabidopsis CDS blastp result: AK287673 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287673 J065121E18 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 6e-17 ...

  16. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g37750.1 68417.m05344 ovule development protein aintegumenta... (ANT) identical to ovule development protein aintegumenta (ANT) (GI:1244708) ) [Arabidopsis thaliana] 5e-85 ...

  17. Reference: 142 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available te S-glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochem...ical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the th

  18. Reference: 522 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tol phosphate (InsP) and phosphoinositide phosphate (PtdInsP) substrates. Arabidopsis thaliana has 15 genes encoding 5PTases. Biochem...ical analyses of a subgroup of 5PTase enzymes suggest th

  19. Reference: 459 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake ...capacity in Arabidopsis roots under nitrogen-deficiency conditions. Additive contribution

  20. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  1. Reference: 645 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rter AtDUR3 in nitrogen nutrition in Arabidopsis. In transgenic lines expressing ... impaired growth on urea as a sole nitrogen source were used to investigate a role of the H+/urea co-transpo

  2. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  3. Reference: 711 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the RLK signaling pathway, which also mediates adaptation to Na(+) stress. RLK pathway components, known... The Arabidopsis kinase-associated protein phosphatase regulates adaptation to Na+ stress. 2 612-22 18162596

  4. Reference: 734 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available umi et al. 2008 Apr. Development 135(7):1335-45. CAPRICE (CPC) encodes a small protein with an R3 MYB motif ...doreduplication. Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development

  5. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  6. Reference: 733 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available role in this transition. Specifically, two autonomous factors in the Arabidopsis...tes FCA alternative polyadenylation and promotes flowering as a novel factor in the autonomous pathway. Firs

  7. Reference: 343 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the characterization of a T-DNA insertion mutant of the Arabidopsis CAP-C gene. Analysis of the progeny of selfe...matin was observed between segregating mitotic chromosomes in pollen produced by selfed heterozygotes. Addit

  8. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 3e-19 ...

  9. Arabidopsis CDS blastp result: AK241243 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 6e-11 ...

  10. Arabidopsis CDS blastp result: AK243188 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 8e-23 ...

  11. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available 2 protein) [Arabidopsis thaliana]; a false single bp exon was added to circumvent a single basepair insertion in the genomic sequence, supported by cDNA/genome alignment. 1e-17 ...

  12. Reference: 30 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ponse to various biotic and abiotic stresses. However the physiological role of t...his pathway remains obscure. To elucidate its role in plants, we analyzed Arabidopsis T-DNA knockout mutants

  13. Arabidopsis CDS blastp result: AK062082 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062082 001-044-F11 At3g59970.3 methylenetetrahydrofolate reductase 1 (MTHFR1) ide...ntical to methylenetetrahydrofolate reductase MTHFR1 [Arabidopsis thaliana] GI:5911425 4e-81 ...

  14. Reference: 783 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sis ACBP6 was confirmed by analyses of transgenic Arabidopsis expressing autofluorescence-tagged ACBP6 and w... mRNA encoding phospholipase Ddelta. Lipid profiling analyses of rosettes from co

  15. Reference: 789 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis...d CHL27 proteins. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene exp

  16. Reference: 352 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available em II and has a specific function distinct from 2-Cys peroxiredoxin in protecting photosynthesis. Its absenc...f Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis

  17. Reference: 21 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ication of a number of mutant lines with altered Chl fluorescence characteristics. Analysis of photosynthesis...cation of mutants of Arabidopsis defective in acclimation of photosynthesis to th

  18. Reference: 413 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ollination and fertilization, and, in the absence of fertilization, flowers senesce. In the Arabidopsis thal...ARF8 acts as an inhibitor to stop further carpel development in the absence of fertilization and the generat

  19. Reference: 405 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available as previously thought. These mutants will prove to be valuable resources for understanding laccase functions in vivo. Mutant identifi...cation and characterization of the laccase gene family in Arabidopsis. 11 2563-9 16

  20. Reference: 263 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available idopsis leaves GLB1 expression and PII protein levels were not significantly affected by either the day/nigh...bolism. Physiological characterisation of Arabidopsis mutants affected in the expression of the putative reg

  1. Reference: 160 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available excessive accumulation of these toxic compounds impairs cell death containment and counteracts the effect...iveness of the plant defenses to restrict pathogen infection. Arabidopsis SHMT1, a

  2. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  3. Reference: 301 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study...ntracellular calcium levels. In this study, we provide evidence that At5PTase13 m

  4. Reference: 724 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available is required in the roots during early signaling steps of rhizobacteria-mediated ...ISR. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis.

  5. Reference: 289 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available f flavonoids in Arabidopsis seed coat. 11 2966-80 16243908 2005 Nov The Plant cell Caboche Michel|Debeaujon Isabelle|Kerhoas Lucien|Lepiniec Loïc|Pourcel Lucille|Routaboul Jean-Marc

  6. Reference: 684 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available cellular proliferation and expansion at nanomolar concentrations. PSY1 is widely expressed in various Arabi...ulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. 46 18333-8 17989228 20

  7. Reference: 147 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the region-specific control of trichome development of Arabidopsis. 3 389-98 15604688 2004 May Plant molecular biology Hulskamp Mart...in|Kirik Victor|Schiefelbein John|Simon Marissa|Wester Katja

  8. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  9. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  10. Reference: 798 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available iption factors, control the delicately tuned reorientation and timing of cell div...EZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. 6 913-22 1908

  11. The involvement of ethylene in regulation of Arabidopsis gravitropism

    Science.gov (United States)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow

  12. Arabidopsis CDS blastp result: AK071710 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071710 J023110L07 At4g14030.1 selenium-binding protein, putative contains Pfam profile PF05694: 56kDa sele...nium binding protein (SBP56); identical to Putative selenium-binding protein (Swiss...-Prot:O23264) [Arabidopsis thaliana]; similar to selenium binding protein (GI:15485232) [Arabidopsis thalian...a]; identical to cDNA from partial mRNA for selenium binding protein (sbp gene) GI:15485231 1e-162 ...

  13. Reference: 221 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ell cycle. In addition, RAD51 is required for meiosis and its Arabidopsis (Arabidopsis thaliana) ortholog is important... cell cultures, the RAD51 paralog RAD51C is also important for mitotic homologous...ortant for recombination and DNA repair in the mitotic c...chromosome (homolog) pairing, synapsis, and recombination. The budding yeast (Saccharomyces cerevisiae) RAD51 gene is known to be imp

  14. Reference: 598 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omoter is markedly reduced in the cdkc;2 and cyct1;5 mutants, indicating that the kinase complexes are important... flowering. These results establish Arabidopsis CDKC kinase complexes as important...T1;4 and CYCT1;5, play important roles in infection with Cauliflower mosaic virus...hat Arabidopsis thaliana CDK9-like proteins, CDKC;1 and CDKC;2, and their interacting cyclin T partners, CYC

  15. 7 CFR 28.442 - Middling Yellow Stained Color.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Yellow Stained Color. 28.442 Section 28.442... Stained Color. Middling Yellow Stained Color is American Upland cotton which in color is deeper than Middling Tinged Color. below color grade cotton...

  16. Ups and Downs of the Yellow Phosphorus Market in 2007

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Surplus capacity The rapid growth of the economy in China promoted drastic development of the yellow phosphorus sector from 1985 to 2004. The capacity of yellow phosphorus expanded rapidly from 100 000 t/a in 1985 to 1.2 million t/a in 2004 with an average annual growth of around 14.0%.

  17. Biofortified yellow cassava and Vitamin A status of Kenyan children

    NARCIS (Netherlands)

    Talsma, E.F.; Brouwer, I.D.; Verhoef, Hans; Mbera, G.N.K.; Mwangi, A.M.; Demir, A.Y.; Maziya-Dixon, B.; Boy, Erick; Zimmermann, M.B.; Melse-Boonstra, Alida

    2016-01-01

    Background: Whereas conventional white cassava roots are devoid of provitamin A, biofortified yellow varieties are naturally rich in b-carotene, the primary provitamin A carotenoid. Objective: We assessed the effect of consuming yellow cassava on serum retinol concentration in Kenyan schoolchildr

  18. 21 CFR 184.1973 - Beeswax (yellow and white).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Beeswax (yellow and white). 184.1973 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1973 Beeswax (yellow and white). (a) Beeswax (CAS.... Beeswax is prepared from honeycombs after removal of the honey by draining or centrifuging. The combs...

  19. 33 CFR 117.225 - Yellow Mill Channel.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Yellow Mill Channel. 117.225 Section 117.225 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.225 Yellow Mill Channel....

  20. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).

    Science.gov (United States)

    Klinsupa, Worawan; Phansiri, Salak; Thongpradis, Panida; Yongsmith, Busaba; Pothiratana, Chetsada

    2016-01-10

    To breed industrially useful strains of a slow-growing, yellow pigment producing strain of Monascus sp., protoplasts of Monascus purpureus yellow mutant (ade(-)) and rapid-growing M. purpureus white mutant (prototroph) were fused and fusants were selected on minimal medium (MM). Preliminary conventional protoplast fusion of the two strains was performed and the result showed that only white colonies were detected on MM. It was not able to differentiate the fusants from the white parental prototroph. To solve this problem, the white parental prototroph was thus pretreated with 20mM iodoacetamide (IOA) for cytoplasm inactivation and subsequently taken into protoplast fusion with slow-growing Monascus yellow mutant. Under this development technique, only the fusants, with viable cytoplasm from Monascus yellow mutant (ade(-)), could thus grow on MM, whereas neither IOA pretreated white parental prototroph nor yellow auxotroph (ade(-)) could survive. Fifty-three fusants isolated from yellow colonies obtained through this developed technique were subsequently inoculated on complete medium (MY agar). Fifteen distinguished yellow colonies from their parental yellow mutant were then selected for biochemical, morphological and fermentative properties in cassava starch and soybean flour (SS) broth. Finally, three most stable fusants (F7, F10 and F43) were then selected and compared in rice solid culture. Enhancement of yellow pigment production over the parental yellow auxotroph was found in F7 and F10, while enhanced glucoamylase activity was found in F43. The formation of fusants was further confirmed by monacolin K content, which was intermediate between the two parents (monacolin K-producing yellow auxotroph and non-monacolin K producing white prototroph).

  1. Viscerotropic disease following yellow fever vaccination in Peru.

    Science.gov (United States)

    Whittembury, Alvaro; Ramirez, Gladys; Hernández, Herminio; Ropero, Alba Maria; Waterman, Steve; Ticona, María; Brinton, Margo; Uchuya, Jorge; Gershman, Mark; Toledo, Washington; Staples, Erin; Campos, Clarense; Martínez, Mario; Chang, Gwong-Jen J; Cabezas, Cesar; Lanciotti, Robert; Zaki, Sherif; Montgomery, Joel M; Monath, Thomas; Hayes, Edward

    2009-10-09

    Five suspected cases of yellow fever vaccine-associated viscerotropic disease (YEL-AVD) clustered in space and time following a vaccination campaign in Ica, Peru in 2007. All five people received the same lot of 17DD live attenuated yellow fever vaccine before their illness; four of the five died of confirmed YEL-AVD. The surviving case was classified as probable YEL-AVD. Intensive investigation yielded no abnormalities of the implicated vaccine lot and no common risk factors. This is the first described space-time cluster of yellow fever viscerotropic disease involving more than two cases. Mass yellow fever vaccination should be avoided in areas that present extremely low risk of yellow fever.

  2. What a rheumatologist needs to know about yellow fever vaccine.

    Science.gov (United States)

    Oliveira, Ana Cristina Vanderley; Mota, Licia Maria Henrique da; Santos-Neto, Leopoldo Luiz Dos; Tauil, Pedro Luiz

    2013-04-01

    Patients with rheumatic diseases are more susceptible to infection, due to the underlying disease itself or to its treatment. The rheumatologist should prevent infections in those patients, vaccination being one preventive measure to be adopted. Yellow fever is one of such infectious diseases that can be avoided.The yellow fever vaccine is safe and effective for the general population, but, being an attenuated live virus vaccine, it should be avoided whenever possible in rheumatic patients on immunosuppressive drugs. Considering that yellow fever is endemic in a large area of Brazil, and that vaccination against that disease is indicated for those living in such area or travelling there, rheumatologists need to know that disease, as well as the indications for the yellow fever vaccine and contraindications to it. Our paper was aimed at highlighting the major aspects rheumatologists need to know about the yellow fever vaccine to decide about its indication or contraindication in specific situations.

  3. Yellow Fever outbreaks in unvaccinated populations, Brazil, 2008-2009.

    Science.gov (United States)

    Romano, Alessandro Pecego Martins; Costa, Zouraide Guerra Antunes; Ramos, Daniel Garkauskas; Andrade, Maria Auxiliadora; Jayme, Valéria de Sá; Almeida, Marco Antônio Barreto de; Vettorello, Kátia Campomar; Mascheretti, Melissa; Flannery, Brendan

    2014-03-01

    Due to the risk of severe vaccine-associated adverse events, yellow fever vaccination in Brazil is only recommended in areas considered at risk for disease. From September 2008 through June 2009, two outbreaks of yellow fever in previously unvaccinated populations resulted in 21 confirmed cases with 9 deaths (case-fatality, 43%) in the southern state of Rio Grande do Sul and 28 cases with 11 deaths (39%) in Sao Paulo state. Epizootic deaths of non-human primates were reported before and during the outbreak. Over 5.5 million doses of yellow fever vaccine were administered in the two most affected states. Vaccine-associated adverse events were associated with six deaths due to acute viscerotropic disease (0.8 deaths per million doses administered) and 45 cases of acute neurotropic disease (5.6 per million doses administered). Yellow fever vaccine recommendations were revised to include areas in Brazil previously not considered at risk for yellow fever.

  4. First report of the cucurbit yellow vine disease caused by Serratia marcescens in watermelon and yellow squash in Alabama

    Science.gov (United States)

    Symptoms typical of cucurbit yellow vine disease (CYVD) were first observed in a 2 ha watermelon field in Crawford, Russell County, Alabama on 8 June 2010. Watermelon plants, cv. 'Jubilee,' exhibited a yellow or chlorotic appearance and some plants were completely wilted. On 24 June plant samples ...

  5. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  6. Yellow pseudochromhidrosis in a young female.

    Science.gov (United States)

    Nair, Pragya A; Kota, Rahul Krishna S; Surti, Nishit K; Diwan, Nilofar G; Gandhi, Shailee S

    2017-01-01

    Chromhidrosis is a rare disorder in which there is pigmentation of sweat in a variety of colors. It can be classified into apocrine, pseudoeccrine, and true eccrine chromhidrosis. Pseudochromhidrosis is a condition in which the excreted sweat is colorless, but later acquires color due to contact with chromogenic chemicals. Systemic and topical antibiotics are the mainstay of treatment. Although it does not constitute a major health issue, it causes psychological stress and social embarrassment. A 20-year-old female presented to us with yellow-colored sweat and discoloration of clothes since 1 month. Routine laboratory investigations were normal. Skin scrapings were negative for fungus and bacteria. Skin biopsy was also normal. She was labelled as a case of pseudochromhidrosis, and oral and topical antibiotics were prescribed, to which she responded well.

  7. Insect Vectors of Rice Yellow Mottle Virus

    Directory of Open Access Journals (Sweden)

    Augustin Koudamiloro

    2015-01-01

    Full Text Available Rice yellow mottle virus (RYMV is the major viral constraint to rice production in Africa. RYMV was first identified in 1966 in Kenya and then later in most African countries where rice is grown. Several studies have been conducted so far on its evolution, pathogenicity, resistance genes, and especially its dissemination by insects. Many of these studies showed that, among RYMV vectors, insects especially leaf-feeders found in rice fields are the major source of virus transmission. Many studies have shown that the virus is vectored by several insect species in a process of a first ingestion of leaf material and subsequent transmission in following feedings. About forty insect species were identified as vectors of RYMV since 1970 up to now. They were essentially the beetles, grasshoppers, and the leafhoppers. For this review, we presented the chronology of their identification. Also, the biology, ecology, host range, distribution, and caused damage of these insects were briefly summarized.

  8. "When you have seen the Yellow Mountains"

    DEFF Research Database (Denmark)

    Bruun, Ole

    2014-01-01

    This article reflects upon a visit to the Yellow Mountains (Huangshan) National Park, Anhui, China, a World Heritage site with millions of visitors each year. Visitors are guided through the same paths, where a series of prearranged sensations play on Chinese cultural themes framed in nature....... The set routes and restricted atmosphere create a very different experience when compared to national parks elsewhere. Economic exploitation seems to have taken the upper hand to conservation. The article will expand on these immediate experiences taking into account the background of the park...... and historical uses of the mountains and examine the processes that have shaped the park’s present condition. The article will argue that coexisting approaches to nature are inherent in the history and culture of any complex society, including China, and point to their historical and present balance as well...

  9. Biological pretreatment of Yellow River water

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-guang; TANG Xiao-yan; WU Wei-zhong; WEN Dong-hui; WANG Zhan-sheng

    2005-01-01

    Bio-ceramic filter(BF) and moving-bed biofilm reactor(MBBR) were used for biological pretreatment of Yellow River water in this study. The BF only had slight advantage over MBBR for TOC and ammonia removal. However, like UV254, the average removal rate of THMFP in the BF was much higher than that in the MBBR. UV254 removal did not show obvious correlation with trihalomethane formation potential(THMFP) removal. Hexachlorocyclohexane could be effectively removed in both BF and MBBR. As for diatom and cyanobateria removal the MBBR had better performance than the BF, which was contrary to the average chlorophyll-a (Chi-a) removal rate. The proposal was made in this study that biological flocculation and sedimentation of sloughed biofilm should play a more important role on algae removal in the MBBR than in the BF. The BF and MBBR could effectively remove microcystins. Moreover, MBBR could be a promising technology for biological pretreatment.

  10. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    Science.gov (United States)

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  11. The yellow-red-black bladder diary: red-yellow-black is not just for wounds.

    Science.gov (United States)

    Faller, Nancy Ann

    2009-12-01

    The Red-Yellow-Black (RYB) wound classification system was introduced to the US in the late 1980s for the purpose of simplifying wound assessment and guiding treatment. Although the color system was found to have limitations for wound care, the colors (in revised order) may be useful for a bladder diary. Colored pencils are used to record fluid intake and voided output. For fluid intake, yellow signifies nonirritants (water); red, low bladder irritants (alcoholic, artificially sweetened, carbonated, or citrus beverages); and black, high bladder irritants (caffeinated beverages). For voided output, yellow denotes continent voids and red, incontinent voids. Output quantity is measured using a commode "hat". The completed diary allows the practitioner to tabulate the colored daily rows and quickly assess progress weekly or monthly and provide appropriate treatment/advice. The YRB diary was used successfully by a 78-year old woman with urge incontinence without evidence of stress incontinence. Modifications to the YRB diary can be made when additional data need to be collected. Studies to evaluate optimal usage criteria of bladder diaries are needed.

  12. Reference: 91 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n was observed by using a ACA9-yellow fluorescence protein (YFP) fusion that display...ed plasma membrane localization. Mutant aca9 pollen displayed a reduced growth potential and a high frequ

  13. Simultaneous silencing of two arginine decarboxylase genes alters development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Diana eSánchez-Rangel

    2016-03-01

    Full Text Available Polyamines (PAs are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2 catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC. The generated transgenic lines (amiR:ADC-L1 and -L2 showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  14. Yellow fever cases in Asia: primed for an epidemic

    Directory of Open Access Journals (Sweden)

    Sean Wasserman

    2016-07-01

    Full Text Available There is currently an emerging outbreak of yellow fever in Angola. Cases in infected travellers have been reported in a number of other African countries, as well as in China, representing the first ever documented cases of yellow fever in Asia. There is a large Chinese workforce in Angola, many of whom may be unvaccinated, increasing the risk of ongoing importation of yellow fever into Asia via busy commercial airline routes. Large parts of the region are hyperendemic for the related Flavivirus dengue and are widely infested by Aedes aegypti, the primary mosquito vector of urban yellow fever transmission. The combination of sustained introduction of viraemic travellers, an ecology conducive to local transmission, and an unimmunized population raises the possibility of a yellow fever epidemic in Asia. This represents a major global health threat, particularly in the context of a depleted emergency vaccine stockpile and untested surveillance systems in the region. In this review, the potential for a yellow fever outbreak in Asia is discussed with reference to the ecological and historical forces that have shaped global yellow fever epidemiology. The limitations of surveillance and vector control in the region are highlighted, and priorities for outbreak preparedness and response are suggested.

  15. Yellow fever cases in Asia: primed for an epidemic.

    Science.gov (United States)

    Wasserman, Sean; Tambyah, Paul Anantharajah; Lim, Poh Lian

    2016-07-01

    There is currently an emerging outbreak of yellow fever in Angola. Cases in infected travellers have been reported in a number of other African countries, as well as in China, representing the first ever documented cases of yellow fever in Asia. There is a large Chinese workforce in Angola, many of whom may be unvaccinated, increasing the risk of ongoing importation of yellow fever into Asia via busy commercial airline routes. Large parts of the region are hyperendemic for the related Flavivirus dengue and are widely infested by Aedes aegypti, the primary mosquito vector of urban yellow fever transmission. The combination of sustained introduction of viraemic travellers, an ecology conducive to local transmission, and an unimmunized population raises the possibility of a yellow fever epidemic in Asia. This represents a major global health threat, particularly in the context of a depleted emergency vaccine stockpile and untested surveillance systems in the region. In this review, the potential for a yellow fever outbreak in Asia is discussed with reference to the ecological and historical forces that have shaped global yellow fever epidemiology. The limitations of surveillance and vector control in the region are highlighted, and priorities for outbreak preparedness and response are suggested.

  16. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  17. Water Quality Criteria for Colored Smokes: Solvent Yellow 33

    Science.gov (United States)

    1987-11-01

    10 in skin, and consequently, a decrease in its allergic potential. The USFDA has approved D&C Yellow No. 10 for use in a wider variety of products...perivascular lymphocyte aggregates (p < 0.001), alveolitis (p < 0.05), and mild rnd severe foreign-b,’dy reaction charac- torized by the presence of alveoli...No. 11 and simultaneous reaction to Quinoline Yellow. C Bj8rkner, B. and B. Niklasson. 1983. Contact allergic reaction to D & C Yellow No. 11 and

  18. Fifty shades of yellow: a review of the xanthodermatoses.

    Science.gov (United States)

    Frew, John W; Murrell, Dédée F; Haber, Richard M

    2015-10-01

    The xanthodermatoses consist of a heterogeneous group of cutaneous disorders characterized by the macroscopic yellow hue seen on examination. This hue is attributable to the chemical structure of the accumulating substances within the skin or surrounding tissues. The most common culprits are lipids (cholesterol and triglycerides), elastin, and bilirubin. Exogenous sources of yellow pigment include yellow dyes (including hennas) and metal salts. This article will focus on recognition of these entities, classified in terms of morphology and the site of initial eruption, in order to support the recognition and diagnosis of these widely variable conditions.

  19. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  20. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  1. 42 CFR 71.3 - Designation of yellow fever vaccination centers; Validation stamps.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Designation of yellow fever vaccination centers... Designation of yellow fever vaccination centers; Validation stamps. (a) Designation of yellow fever vaccination centers. (1) The Director is responsible for the designation of yellow fever vaccination...

  2. Mid-Columbia - Yellow-flag Iris Control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Yellow-flag iris is an escaped ornamental rhizomatous perennial herb that forms dense vegetative mats in riparian and wetland areas. These mats can displace most...

  3. Mid-Columbia - Yellow-flag Iris Eradication 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The project as described was to attempt to eradicate yellow-flag iris from Toppenish, McNary and Columbia National Wildlife Refuges using chemical and, where...

  4. Mid-Columbia - Eradication of Yellow-flag Iris 2013

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The project as described was to attempt to eradicate yellow-flag iris from Toppenish, McNary and Columbia National Wildlife Refuges using chemical and, where...

  5. The Yellow and Red Supergiants of M33

    CERN Document Server

    Drout, Maria R; Meynet, Georges

    2012-01-01

    Yellow and red supergiants are evolved massive stars whose numbers and locations on the HR diagram can provide a stringent test for models of massive star evolution. Previous studies have found large discrepancies between the relative number of yellow supergiants observed as a function of mass and those predicted by evolutionary models, while a disagreement between the predicted and observed locations of red supergiants on the HR diagram was only recently resolved. Here we extend these studies by examining the yellow and red supergiant populations of M33. Unfortunately, identifying these stars is difficult as this portion of the color-magnitude diagram is heavily contaminated by foreground dwarfs. We identify the red supergiants through a combination of radial velocities and a two-color surface gravity discriminant and, after re-characterizing the rotation curve of M33 with our newly selected red supergiants, we identify the yellow supergiants through a combination of radial velocities and the strength of the...

  6. Distribution of dinoflagellate cysts in Yellow Sea sediments

    Institute of Scientific and Technical Information of China (English)

    SHIN Hyeon Ho; LIM Dhongil; PARK Soung-Yun; HEO Seung; KIM So-Young

    2013-01-01

    To investigate the distribution, abundance, and species composition of dinoflagellate cysts in the Yellow Sea, surface sediment samples were collected at 37 sites, including the Korean dump site. Twenty-one di-noflagellate cyst taxa were identified, with the assemblages dominated mainly by Spiniferites bulloideus, Operculodinium centrocarpum, and cyst of Alexandrium catenella/tamarense type. A high frequency of O. centrocarpum in the Yellow Sea was observed for the first time, and it is likely that this can be attributed to the dynamics of the Yellow Sea Cold Water Mass and the Changjiang (Yangtze) River runoff. Total cyst concentrations ranged from 23 to 48 442 cysts/g dry weight, and high cyst concentrations were recorded adjacent to the dumping site. This result suggests that anthropogenic activities such as ocean dumping s-timulate the growth of dinoflagellates in the Yellow Sea, which in turn leads to high levels of dinoflagellate cyst production.

  7. Puccinia jaceae var.solstitialis teliospore priming on yellow starthistle

    Science.gov (United States)

    Following the introduction of Puccinia jaceae var. solstitialis to California for biological control of yellow starthistle (Centaurea solstitialis, Asteraceae), teliospores, pycnia, and multiple urediniospore generations have been observed in the field. Because urediniospores have a relatively short...

  8. Reference: 510 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ch stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isofo...rms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were re...ally. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less... efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to re...duced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the muta

  9. Reference: 600 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n M et al. 2007 Jun. Plant J. 50(5):810-24. A novel abscisic acid (ABA)-deficient mutant, aba4, was identified in a scre...en for paclobutrazol-resistant germination. Compared with wild-type, the mutant showed reduced e...by map-based cloning, and found to be a unique gene in the Arabidopsis genome. The predicted protein has fou...r putative helical transmembrane domains and shows significant similarity to pred...icted proteins from tomato, rice and cyanobacteria. Constitutive expression of the ABA4 gene in Arabidopsis

  10. Reference: 59 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 59 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u14563930i Kaczorowski Kare...naling network in Arabidopsis, we used a sensitized genetic screen for deetiolation-defective seedlings. Two allelic mutants were... isolated that exhibited reduced sensitivity to both continuous red and far-re...d light, suggesting involvement in both phyA and phyB signaling. The molecular lesions res...ponsible for the phenotype were shown to be mutations in the Arabidopsis PSEUDO-RESPONSE REGULATOR7 (PRR7) g

  11. Reference: 640 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available er Alois et al. 2007 Jul. Plant Cell 19(7):2213-24. Wound signaling pathways in plants are mediated by mitog...en-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis th...ed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, ...we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-re... significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetra

  12. Reference: 756 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available elle et al. 2008 Jun. Plant Physiol. 147(2):595-610. Treatment of Arabidopsis (Arabidopsis thaliana) alterna...tive oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compare...d with ecotype Columbia (Col-0), as evidenced by a 10-fold incre...ase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and re...duced root growth at the early stages of seedling growth. Analysis of metabolite profiles re

  13. Reference: 457 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available n et al. 2006 Oct. Plant J. 48(2):238-48. The Arabidopsis BAP1 gene encodes a small protein with a C2-like domain. Here...er and is associated with membranes in vivo. We identify multiple roles of BAP1 in negatively re...gulating defense responses and cell death in Arabidopsis thaliana. The loss of BAP1 function ...confers an enhanced disease resistance to virulent bacterial and oomycete pathogens. The enhanced resistance... is mediated by salicylic acid, PAD4 and a disease resistance gene SNC1. BAP1 is

  14. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning.

  15. The pulsating yellow supergiant V810 Centauri

    CERN Document Server

    Kienzle-Focacci, M N; Burnet, M; Meynet, G

    1998-01-01

    The F8Ia supergiant V810 Centauri is part of a long-term high-precision photometric monitoring program on long period variables started twenty years ago. Time series analysis of this unique set of 500 data points, spanning almost fifteen years in the homogeneous Geneva photometric system, is presented. Cluster membership, physical parameters and evolutionary status of the star are reinvestigated. Radial velocity data do not support the cluster membership to Stock 14}. Ultraviolet and optical spectrophotometry is combined with optical and infrared photometry to evaluate the physical parameters of the yellow supergiant (Teff = 5970 K, M_bol = -8.5, R = 420 R_sun) and of its B0III companion. From theoretical stellar evolutionary tracks, an initial mass of 25 M_sun is estimated for V810 Cen, which is actually at the end of its first redward evolution. V810 Cen is a multi-periodic small amplitude variable star, whose amplitudes are variable with time. The period of the main mode, 156 d, is in agreement with the Pe...

  16. Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic Flare Compositions

    Science.gov (United States)

    2015-03-11

    Conference Presentation 3. DATES COVERED (From - To) 2002-2015 4. TITLE AND SUBTITLE Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic...increasing government regulations to limit ground water contamination. A perchlorate-free yellow flare composition for future implementation into the Mk 144...utilizes sodium nitrate , barium nitrate , and polyvinyl chloride as alternative oxidizers to produce Na emission lines in the orange region of the spectrum

  17. Global Warming May Trigger Water Crisis in Yellow River

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The temperature of the upper reaches of the Yellow River, the second longest river in China,is clearly related to the worldwide warming trend, according to a study conducted by CAS researchers and their colleagues from Administration of Hydrology and Water Resources of the Upper Reaches of the Yellow River. They warn that, due to the possible temperature hike and drastic decline in local precipitation, the runoff in the reaches may face a trend of continued decrease over the next decade.

  18. [Studies on rejected food yellow no. 5 (sunset yellow FCF) aluminum lake].

    Science.gov (United States)

    Tsuji, S; Umino, Y; Nakamura, Y; Tonogai, Y

    2001-01-01

    One out of two sunset yellow FCF aluminum lakes (Y-5Als) did not comply with the specifications in JSFA-VII in the official inspection of tar colors in fiscal year 2000. A sub-spot was detected in the paper chromatography test. This rejected sample was analyzed by HPLC for the subsidiary color, raw materials and intermEdiates in Y-5. The sub-spot was identified as sulfanilic acid azo R salt color, and its content was estimated at 4.5% as the content of Y-5 in Y-5Al being 100.0%.

  19. Community structure changes of macrobenthos in the South Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junlong; XU Fengshan; LIU Ruiyu

    2012-01-01

    The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms.In this study,data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure.The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied.Five communities were recognized by cluster analysis:1.The Yellow Sea Cold Water Mass community dominated by cold water species,which changed slightly in species composition since the 1950s; 2.The mixed community with the coexistence of cold water species and warm water species,as had been reported previously; 3.The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4.The Changjiang (Yangtze) River Estuarine community,with some typical estuarine species; 5.The community affected by the Yellow Sea Warm Current.The greatest change occurred in the coastal area,which indicated that the change may be caused by human activities.Macrobenthos in the central region remained almost unchanged,particularly the cold water species shielded by the Yellow Sea Cold Water Mass.The depth,temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.

  20. FLOOD AND FLOOD CONTROL OF THE YELLOW RIVER

    Institute of Scientific and Technical Information of China (English)

    Wenxue LI; Huirang WANG; Yunqi SU; Naiqian JIANG; Yuanfeng ZHANG

    2002-01-01

    The Yellow River is the cradle of China. It had long been the center of politics, economics and culture of China in history. Large coverage flood disaster occurred frequently in the Yellow River basin and the losses were often heavy. Thus, the Yellow River is also considered as the serious hidden danger of China. Since the founding of new China, structural and non-structural systems of flood control have been established basically. Tremendous successes have been made on flood control. Into the 21century, flood control standard of the Lower Yellow River has been increased significantly with the operation of the Xiaolangdi Reservoir. However, problems of the Yellow River are complicated and the tasks for solving these problems are arduous. Particularly, the sedimentation problem can't be solved completely in the near future. The situation of "suspended river" and threat of flood will long exist.Therefore, supported by rapid social and economical development of the nation and relied on advanced technology, the flood control system shall be perfected. Meantime, study of the Yellow River shall be enhanced in order to better understand the flood, get with it and use it thus to reduce flood disaster.

  1. Relocation of the Yellow River estuary in 1855 AD recorded in the sediment core from the northern Yellow Sea

    Science.gov (United States)

    Zhou, Xin; Jia, Nan; Cheng, Wenhan; Wang, Yuhong; Sun, Liguang

    2013-12-01

    Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855 AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/Al2O3, Cr/Al2O3, Ni/Al2O3 and Se/Al2O3 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.

  2. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  3. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  6. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  8. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  9. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  10. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  11. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  12. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  14. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  17. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  18. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  19. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  20. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  1. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  2. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  5. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  6. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  8. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  9. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  10. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  11. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  12. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  14. Reference: 415 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available study focuses on the seven other Arabidopsis CAD for which functions are not yet elucidated. Their expression patterns were determine...ession of CAD 1, B1, and G genes was determined using their promoters fused to the GUS reporter gene. CAD 1

  15. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 1e-151 ...

  16. Arabidopsis CDS blastp result: AK242797 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-23 ...

  17. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-12 ...

  18. Reference: 767 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Arabidopsis thaliana genome. Mutation analysis of 25 of the 27 member genes representing 13 of the 14 sub-families... of the UBP gene family revealed that single-gene mutants of three genes in two sub-families exhibit v

  19. Reference: 158 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available onika et al. 2005 Feb. Plant J. 41(3):386-99. Cullin proteins, which belong to multigenic families in all eu...ic search revealed the existence of at least 76 BTB-domain proteins in Arabidopsis belonging to 11 major families.... Yeast two-hybrid experiments indicate that representative members of certain families are able to phy

  20. Reference: 456 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available h other Spo11/topo VIA proteins, but their functional relationship during meiosis or other processes is not ...s. Thus, the three Arabidopsis Spo11 homologues appear to function in two discrete processes, i.e. AtSPO11-1

  1. Reference: 412 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the tobacco arcA gene, mediates hormone responses and plays a regulatory role in multiple developmental processes...in RACK1A confer defects in multiple developmental processes including seed germination, leaf production, an...ltiple hormone responsiveness and developmental processes in Arabidopsis. 11 2697-708 16829549 2006 Journal

  2. Reference: 51 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available urce of acetyl-CoA formation in the plastids of plants and is composed of multiple copies of four different ...astidic E2 (dihydrolipoyl acetyltransferase) subunit, plE2, of the complex in Arabidopsis destroys the expre

  3. Reference: 567 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ith findings that noxy2 and mutants with defective 9-LOX activity showed increased numbers of lateral roots,...or of lateral root formation. Histochemical and molecular analyses revealed that 9-HOT activated events comm...in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.

  4. Arabidopsis CDS blastp result: AK287911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287911 J065213B08 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 3e-85 ...

  5. Arabidopsis CDS blastp result: AK318551 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318551 J075138M12 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 4e-27 ...

  6. Arabidopsis CDS blastp result: AK241823 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241823 J065212G21 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 1e-150 ...

  7. Arabidopsis CDS blastp result: AK243378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243378 J100063A13 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 5e-18 ...

  8. Arabidopsis CDS blastp result: AK288351 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288351 J090024C17 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 2e-24 ...

  9. Arabidopsis CDS blastp result: AK242252 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242252 J075182G16 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 6e-88 ...

  10. Arabidopsis CDS blastp result: AK073411 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073411 J033041P20 At4g02060.1 prolifera protein (PRL) / DNA replication licensing... factor Mcm7 (MCM7) identical to DNA replication licensing factor Mcm7 SP|P43299 PROLIFERA protein {Arabidopsis thaliana}; contains Pfam profile PF00493: MCM2/3/5 family 0.0 ...

  11. Arabidopsis CDS blastp result: AK100867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100867 J023124E13 At2g29640.1 josephin family protein contains Pfam domain PF02099: Jose...phin; similar to Josephin-like protein (Swiss-Prot:O82391) [Arabidopsis thaliana] 7e-59 ...

  12. Arabidopsis CDS blastp result: AK241402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241402 J065159A02 At4g19070.1 68417.m02810 cadmium-responsive protein / cadmium i...nduced protein (AS8) identical to cadmium induced protein AS8 SP:P42735 from [Arabidopsis thaliana] 3e-11 ...

  13. Proteomics of Arabidopsis seed germination and priming

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2003-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-

  14. Arabidopsis CDS blastp result: AK241096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241096 J065076O13 At3g10520.1 68416.m01262 non-symbiotic hemoglobin 2 (HB2) (GLB2...) identical to SP|O24521 Non-symbiotic hemoglobin 2 (Hb2) (ARAth GLB2) {Arabidopsis thaliana} 1e-40 ...

  15. Arabidopsis CDS blastp result: AK240885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240885 J065029A17 At3g10520.1 68416.m01262 non-symbiotic hemoglobin 2 (HB2) (GLB2...) identical to SP|O24521 Non-symbiotic hemoglobin 2 (Hb2) (ARAth GLB2) {Arabidopsis thaliana} 6e-34 ...

  16. Arabidopsis CDS blastp result: AK241096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241096 J065076O13 At2g16060.1 68415.m01841 non-symbiotic hemoglobin 1 (HB1) (GLB1...) identical to SP|O24520 Non-symbiotic hemoglobin 1 (Hb1) (ARAth GLB1) {Arabidopsis thaliana} 1e-59 ...

  17. Arabidopsis CDS blastp result: AK240885 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240885 J065029A17 At2g16060.1 68415.m01841 non-symbiotic hemoglobin 1 (HB1) (GLB1...) identical to SP|O24520 Non-symbiotic hemoglobin 1 (Hb1) (ARAth GLB1) {Arabidopsis thaliana} 3e-49 ...

  18. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  19. Arabidopsis CDS blastp result: AK241728 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241728 J065199H08 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 3e-36 ...

  20. Arabidopsis CDS blastp result: AK240645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240645 J023003B03 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 1e-17 ...

  1. Arabidopsis CDS blastp result: AK243302 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243302 J100054J17 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-82 ...

  2. Arabidopsis CDS blastp result: AK241015 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241015 J065054A13 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 8e-37 ...

  3. Arabidopsis CDS blastp result: AK288091 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288091 J075184D14 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-29 ...

  4. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  5. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  6. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  7. Reference: 346 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 346 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16496096i Todd Christopher...midohydrolase activity from Arabidopsis thaliana. 5 1108-13 16496096 2006 Apr Planta Polacco Joe C|Todd Christopher D

  8. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  9. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  10. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  11. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  12. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  13. Arabidopsis CDS blastp result: AK100613 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100613 J023107M18 At4g10180.1 light-mediated development protein 1 / deetiolated1... (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  14. Arabidopsis CDS blastp result: AK058683 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058683 001-019-A06 At4g10180.1 light-mediated development protein 1 / deetiolated...1 (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  15. Arabidopsis CDS blastp result: AK241645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241645 J065189N07 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  16. Arabidopsis CDS blastp result: AK243043 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243043 J100008P08 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  17. Arabidopsis CDS blastp result: AK241277 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241277 J065134P20 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  18. Arabidopsis CDS blastp result: AK241074 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241074 J065068E03 At5g20000.1 68418.m02380 26S proteasome AAA-ATPase subunit, putative almost... identical to 26S proteasome AAA-ATPase subunit RPT6a GI:6652888 from [Arabidopsis thaliana]; almost

  19. Reference: 386 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 386 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16698900i Hricová Andrea...d mesophyll cell proliferation in Arabidopsis. 3 942-56 16698900 2006 Jul Plant physiology Hricová Andrea|Micol José Luis|Quesada Victor

  20. Reference: 394 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 394 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16766689i Rudella Andrea...and defects in chloroplast biogenesis in Arabidopsis. 7 1704-21 16766689 2006 Jul The Plant cell Alonso Jose M|Ecker Joseph R|Friso Giulia|Rudella Andrea|van Wijk Klaas J

  1. Arabidopsis CDS blastp result: AK243428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243428 J100067L15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  2. Arabidopsis CDS blastp result: AK288699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288699 J090061C22 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  3. Arabidopsis CDS blastp result: AK243271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243271 J100049K04 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 4e-35 ...

  4. Arabidopsis CDS blastp result: AK241812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241812 J065210K15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 1e-22 ...

  5. Arabidopsis CDS blastp result: AK241549 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241549 J065176M15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-32 ...

  6. Arabidopsis CDS blastp result: AK241615 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241615 J065186D02 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-35 ...

  7. Arabidopsis CDS blastp result: AK288487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288487 J090040H24 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 5e-37 ...

  8. Arabidopsis CDS blastp result: AK287469 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287469 J043021L20 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-36 ...

  9. Arabidopsis CDS blastp result: AK241370 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241370 J065154C10 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-31 ...

  10. Arabidopsis CDS blastp result: AK288415 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288415 J090031E07 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-37 ...

  11. Arabidopsis CDS blastp result: AK287447 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287447 J043016O04 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-30 ...

  12. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  13. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  14. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  15. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  16. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  17. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  18. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  19. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  20. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  1. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  2. Arabidopsis CDS blastp result: AK062144 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062144 001-045-G08 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/ho... (EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 1e-155 ...

  3. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  4. Reference: 119 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of the Arabidopsis homolog of MSH4 (AtMSH4). We demonstrate that AtMSH4 expression can only be detected in floral tissues, consisten...chromosomes. A T-DNA insertional mutant (Atmsh4) exhibited normal vegetative growth but a severe reduction in fertility, consistent

  5. Reference: 428 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available on was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient...icient repair of photodamaged photosystem II. 4-5 567-75...he involvement of this lumenal protein in the recovery process of PSII. A Psb27 homologue in Arabidopsis thaliana is required for eff

  6. Arabidopsis CDS blastp result: AK105724 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  7. Arabidopsis CDS blastp result: AK072243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  8. Arabidopsis CDS blastp result: AK243221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243221 J100043L21 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 5e-40 ...

  9. Arabidopsis CDS blastp result: AK067626 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067626 J013112I06 At5g15410.1 cyclic nucleotide-regulated ion channel / cyclic nu...cleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 0.0 ...

  10. Arabidopsis CDS blastp result: AK243602 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243602 J100084P18 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 2e-98 ...

  11. Arabidopsis CDS blastp result: AK288592 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288592 J090051B06 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 1e-145 ...

  12. Arabidopsis CDS blastp result: AK060339 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060339 001-008-C12 At5g15410.2 cyclic nucleotide-regulated ion channel / cyclic n...ucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 1e-175 ...

  13. Arabidopsis CDS blastp result: AK069395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069395 J023011N07 At1g71440.1 tubulin folding cofactor E / Pfifferling (PFI) almo...st identical to tubulin folding cofactor E (Pfifferling; PFI) GI:20514267 from [Arabidopsis thaliana]; identical to cDNA tubulin folding cofactor E, GI:20514266 7e-41 ...

  14. Arabidopsis CDS blastp result: AK102150 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102150 J033086D17 At3g10220.1 tubulin folding cofactor B identical to tubulin folding... cofactor B GI:20514259 from [Arabidopsis thaliana]; identical to cDNA tubulin folding cofactor B GI:20514258 6e-91 ...

  15. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions

    OpenAIRE

    Miklós Pogány; Tamás Dankó; Evelin Kámán-Tóth; Ildikó Schwarczinger; Zoltán Bozsó

    2015-01-01

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is s...

  16. Reference: 566 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available utations in the MKK3-MPK6 cascade, which indicates important roles in JA signaling. We provide a model expla...tress - into three different sets of responses in Arabidopsis. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important

  17. Reference: 392 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available pment. The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in ho...olyadenylated RNA within the nucleus, indicating that SAR1 and SAR3 are required for mRNA export. Our results demonstrate the importa...nt role of the plant NPC in hormone signaling and develo

  18. Reference: 438 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ity and drought tolerance in Arabidopsis thaliana. 18 6902-12 16943431 2006 Sep Molecular and cellular bio...logy Chen Zhizhong|Gong Zhizhong|Hong Xuhui|Jablonowski Daniel|Ren Xiaozhi|Schaffrath Raffael|Zhang Hairong|Zhou Xiaofeng|Zhu Jian-Kang

  19. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  20. Arabidopsis CDS blastp result: AK059353 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059353 001-026-D01 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  1. Arabidopsis CDS blastp result: AK066771 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066771 J013083K07 At1g01170.1 ozone-responsive stress-related protein, putative s...imilar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  2. Arabidopsis CDS blastp result: AK059160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059160 001-023-D05 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 3e-28 ...

  3. Reference: 234 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 234 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15980261i Stepanova ...ion of two root-specific ethylene-insensitive mutants in Arabidopsis. 8 2230-42 15980261 2005 Aug The Plant cell Alonso Jose M|Hamilton Alexandra A|Hoyt Joyce M|Stepanova Anna N

  4. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  5. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  6. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  7. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  8. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  9. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  10. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  11. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affect...ing germination 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  12. Reference: 396 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ht to be encoded in Arabidopsis by the ATS1 locus. A number of genetic mutants deficient in this activity have been described. How...hosphatidylglycerol raised the question of whether an alternative pathway of phosphatidylglycerol assembly in the plastid exists. How

  13. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  14. Reference: 750 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 750 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18390594i Fulton Daniel...in Arabidopsis chloroplasts. 4 1040-58 18390594 2008 Apr The Plant cell Dorken Gary|Eicke Simona|Francisco Perigio|Fulton Daniel

  15. Reference: 161 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available sis have not been identified. We tested whether several Arabidopsis thaliana enzy...ith the fact that GH3.6 was active on each of these auxins. By contrast, GH3.6 and the other five enzymes tested

  16. Reference: 267 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tien et al. 2005 Sep. Plant J. 43(6):824-36. The sucrose transporter gene AtSUC5 was studied as part of a programme aimed at identify...ing and studying the genes involved in seed maturation in Arabidopsis. Expression p

  17. Arabidopsis CDS blastp result: AK242807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242807 J090060H17 At5g37500.1 68418.m04516 guard cell outward rectifying K+ chann...el (GORK) identical to guard cell outward rectifying K+ channel [Arabidopsis thaliana] gi|11414742|emb|CAC17

  18. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  19. Arabidopsis CDS blastp result: AK110694 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110694 002-170-A08 At5g59560.2 sensitivity to red light reduced protein (SRR1) id...entical to sensitivity to red light reduced protein [Arabidopsis thaliana] GI:25527089; supporting cDNA gi|25527088|gb|AY127047.1| 1e-18 ...

  20. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  1. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  2. Arabidopsis CDS blastp result: AK287566 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287566 J065027L04 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 2e-77 ...

  3. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  4. Arabidopsis CDS blastp result: AK289209 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289209 J100058I16 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-12 ...

  5. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  6. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  7. Arabidopsis CDS blastp result: AK243285 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243285 J100051N01 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-24 ...

  8. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  9. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  10. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  12. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  13. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  14. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  15. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  16. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  17. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  18. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  19. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  20. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  1. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  2. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  4. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  5. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  6. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  7. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  8. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  9. Reference: 204 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ified in Arabidopsis based on a growth defect of the dark-grown hypocotyl and an abnormal composition of the...on defects of cells in the central cylinder. These defects were accompanied by changes in the non-cellulosic polysaccharide compositi...on, including the accumulation of ectopic callose. Interestingly, in contrast to ot

  10. Reference: 207 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available generated Arabidopsis transgenic lines showing various albino patterns caused by IspH transgene-induced gen...he late dark period (4-6 h). The expression patterns of DXS and IspG are similar to that of IspH, indicating

  11. Reference: 747 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 747 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18364466i Hong Yueyu...dance. Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. 3 803-16 18364466 2008 Mar The Plant cell Hong Yueyun|Pan Xiangqing|Wang Xuemin|Welti Ruth

  12. Arabidopsis CDS blastp result: AK240809 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240809 J065006K12 At4g17030.1 68417.m02569 expansin-related identical to SWISS-PROT:O23547 expansi...n-related protein 1 precursor (At-EXPR1)[Arabidopsis thaliana]; related to expansins, http://www.bio.psu.edu/expansins/ 2e-21 ...

  13. Reference: 504 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 504 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17202180i Iwama Ayako et al. 2007 Fe...ion through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. 2 375-80 17202180 2007 Fe

  14. Reference: 143 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available of AtMYB32 and AtMYB4 expression may influence pollen development by changing the flux along the phenylpropanoid pathways, affe...for normal pollen development in Arabidopsis thaliana. 6 979-95 15584962 2004 Dec The Plant journal Heazlewood Joshua|Li Song Feng|Parish Roger W|Preston Jeremy|Wheeler Janet

  15. Reference: 727 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available s established in tobacco BY-2 cells. In Arabidopsis, sdg4 knockout showed reproductive defects. Tissue-specific expression analyse...sed in the pollen. Immunological analyses demonstrated that SDG4 was involved in the methylation of histone

  16. Reference: 88 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 88 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15155874i Field Ben e...biosynthesis in Arabidopsis. 2 828-39 15155874 2004 Jun Plant physiology Botterman Johan|Cardon Guillermo|Field Ben|Mithen Richard|Traka Maria|Vancanneyt Guy

  17. Reference: 389 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 389 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16716192i Jolivet Sy...of the Ski8/Rec103 homolog in Arabidopsis. 6 615-22 16716192 2006 Jun Genes to cells Froger Nicole|Jolivet Sylvie|Mercier Raphaël|Vezon Daniel

  18. Arabidopsis CDS blastp result: AK108796 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108796 002-151-C01 At2g25320.1 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 3e-97 ...

  19. Arabidopsis CDS blastp result: AK105718 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105718 001-201-F09 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 5e-22 ...

  20. Arabidopsis CDS blastp result: AK102133 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102133 J033085E13 At5g43560.2 meprin and TRAF homology domain-containing protein / MATH... domain-containing protein weak similarity to ubiquitin-specific protease 12 [Arabidopsis thaliana] GI:11993471; contains Pfam profile PF00917: MATH domain 1e-146 ...

  1. Reference: 239 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 239 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16015335i Bundock Paul et al. 2005 Jul. Natur...functions. An Arabidopsis hAT-like transposase is essential for plant development. 7048 282-4 16015335 2005 Jul Nature Bundock Paul|Hooykaas Paul

  2. Reference: 71 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ific functions among family members. Type-A Arabidopsis response regulators are partially...ary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partia...lly redundant function of these genes in cytokinin signaling. The arr mutants show

  3. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  4. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 1e-41 ...

  5. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-18 ...

  6. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 8e-22 ...

  7. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-56 ...

  8. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 6e-43 ...

  9. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-28 ...

  10. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  11. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-15 ...

  12. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-32 ...

  13. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-27 ...

  14. Arabidopsis CDS blastp result: AK069331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069331 J023019N01 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-58 ...

  15. Arabidopsis CDS blastp result: AK121171 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121171 J023081C04 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-37 ...

  16. Reference: 218 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available rpenes found in the Arabidopsis floral volatile blend. Two independent mutant lines with T-DNA insertions in...version of farnesyl diphosphate into over 15 sesquiterpenes in similar proportions to those found in the floral volatile blend

  17. Reference: 616 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-rela... exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected

  18. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 2e-15 ... ...AK241942 J075088H12 At4g31370.1 68417.m04448 fasciclin-like arabinogalactan family

  19. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 9e-20 ... ...AK241942 J075088H12 At2g24450.1 68415.m02922 fasciclin-like arabinogalactan family

  20. Arabidopsis CDS blastp result: AK108772 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108772 002-150-H07 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 1e-35 ...

  1. Arabidopsis CDS blastp result: AK119375 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119375 001-132-A06 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 2e-85 ...

  2. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 1e-21 ... ...AK241942 J075088H12 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  3. Arabidopsis CDS blastp result: AK121828 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121828 J033099G20 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like arab...inogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-87 ...

  4. Arabidopsis CDS blastp result: AK289211 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-90 ... ...AK289211 J100060N06 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  5. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-21 ... ...AK241942 J075088H12 At3g12660.1 68416.m01578 fasciclin-like arabinogalactan family

  6. Arabidopsis CDS blastp result: AK109762 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109762 002-146-G11 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-24 ...

  7. Arabidopsis CDS blastp result: AK071407 [KOME

    Lifescience Database Archive (English)

    Full Text Available ain protein 6 (LBD6) / asymmetric leaves2 (AS2) identical to SP|O04479 LOB domain protein 6 (ASYMMETRIC LEAVES2) {Arabidopsis thaliana} 3e-43 ... ...AK071407 J023089G14 At1g65620.1 LOB domain protein 6 / lateral organ boundaries dom

  8. Arabidopsis CDS blastp result: AK119575 [KOME

    Lifescience Database Archive (English)

    Full Text Available main protein 6 (LBD6) / asymmetric leaves2 (AS2) identical to SP|O04479 LOB domain protein 6 (ASYMMETRIC LEAVES2) {Arabidopsis thaliana} 3e-43 ... ...AK119575 002-117-B04 At1g65620.1 LOB domain protein 6 / lateral organ boundaries do

  9. Arabidopsis CDS blastp result: AK064839 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064839 J013000F24 At2g18600.1 RUB1-conjugating enzyme, putative strong similarity... to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 6e-69 ...

  10. Arabidopsis CDS blastp result: AK104158 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104158 006-210-H05 At2g18600.1 RUB1-conjugating enzyme, putative strong similarit...y to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 3e-58 ...

  11. Arabidopsis CDS blastp result: AK070541 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070541 J023056A05 At2g18600.1 RUB1-conjugating enzyme, putative strong similarity... to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 5e-75 ...

  12. Arabidopsis CDS blastp result: AK111080 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111080 002-175-F03 At3g13550.1 ubiquitin-conjugating enzyme (COP10) identical to ubiquitin-conjugating... enzyme COP10 [Arabidopsis thaliana] GI:20065779; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 3e-59 ...

  13. Arabidopsis CDS blastp result: AK288520 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288520 J090043N16 At2g18600.1 68415.m02166 RUB1-conjugating enzyme, putative stro...ng similarity to gi:6635457 RUB1 conjugating enzyme [Arabidopsis thaliana]; contains Pfam profile PF00179: Ubiquitin-conjugating enzyme 1e-11 ...

  14. Reference: 604 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 604 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17478634i Schwarte Sandra...phoglycolate phosphatase, PGLP1, in Arabidopsis. 3 1580-6 17478634 2007 Jul Plant physiology Bauwe Hermann|Schwarte Sandra

  15. Reference: 713 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available between the galactosyl side-chain structure of pectin and its physical properties...with correct hydration properties. 12 4007-21 18165329 2007 Dec The Plant cell Carpita Nicholas C|Dean Gilli.... The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage

  16. Reference: 620 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 620 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17543866i Nodine Michael...or-like kinases redundantly required for arabidopsis embryonic pattern formation. 6 943-56 17543866 2007 Jun Developmental cell Nodine Michael D|Tax Frans E|Yadegari Ramin

  17. Reference: 25 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available le role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ad...o-Met and lower S-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio

  18. Arabidopsis CDS blastp result: AK107645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107645 002-131-F06 At4g35800.1 DNA-directed RNA polymerase II largest subunit (RP...B205) (RPII) (RPB1) nearly identical to P|P18616 DNA-directed RNA polymerase II largest subunit (EC 2.7.7.6) {Arabidopsis thaliana} 2e-16 ...

  19. Arabidopsis CDS blastp result: AK243065 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243065 J100015N03 At1g64480.1 68414.m07310 calcineurin B-like protein 8 (CBL8) identical to calcine...urin B-like protein 8 (GI:15866276) [Arabidopsis thaliana]; similar to CALCINEURIN B SUBUNIT GB:P25296 from [Saccharomyces cerevisiae] 3e-66 ...

  20. Reference: 135 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 135 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15546354i Wubben Martin...Arabidopsis roots. 5 712-24 15546354 2004 Dec The Plant journal Baum Thomas J|Rodermel Steven R|Wubben Martin J E 2nd

  1. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  2. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  3. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  4. Reference: 632 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Ludmila et al. 2007 Sep. Plant J. 51(5):874-85. One of the earliest responses of plants to environmental str...elopment in reaction to adverse environmental conditions. We show that the AtCHR12 chromatin-remodeling gene...R12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental

  5. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 3e-23 ...

  6. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-16 ...

  7. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  8. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-17 ...

  9. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-40 ...

  10. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-29 ...

  11. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 8e-38 ...

  12. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  13. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-24 ...

  14. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair elongation (IRE) / protein kin...ase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 0.0 ...

  15. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 9e-31 ...

  16. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-21 ...

  17. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-23 ...

  18. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-35 ...

  19. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  20. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  1. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 6e-29 ...

  2. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  3. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  4. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  5. Reference: 603 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 603 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17476526i Schmidt Robert...opment in Arabidopsis thaliana. 4 805-13 17476526 2007 Sep Planta Koch Wolfgang|Schmidt Roberto|Stransky Harald

  6. Reference: 259 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available velopment in Arabidopsis. 1 163-73 16113228 2005 Sep Plant physiology Braybrook Siobhan A|Fischer Robert L|Fujioka Shozo|Goldberg Rob...ert B|Harada John J|Nagata Noriko|Pelletier Julie|Yamagishi Kazutoshi|Yee Kelly Matsudaira|Yoshida Shigeo

  7. Yellow and Red Supergiants in the Large Magellanic Cloud

    CERN Document Server

    Neugent, Kathryn F; Skiff, Brian; Meynet, Georges

    2012-01-01

    Due to their transitionary nature, yellow supergiants provide a critical challenge for evolutionary modeling. Previous studies within M31 and the SMC show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here we extend this study to the LMC while also investigating the galaxy's red supergiant content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper motions and the LMC's large systemic radial velocity (\\sim278 km/s) to separate out these foreground dwarfs. After observing nearly 2,000 stars, we identified 317 probable yellow supergiants, 6 possible yellow supergiants and 505 probable red supergiants. Foreground contamination of our yellow supergiant sample was \\sim80%, while that of the the red supergiant sample was only 3%. By placing the yellow supergiants on the H-R diagram and comparing them against the evolutionary tracks, we find that new Geneva...

  8. Sediment transportation and bed morphology reshaping in Yellow River Delta

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Yellow River Delta supports the ecological function as a typical estuarine foreshore wetland. The wetland area is changing greatly every year because of sediment deposition and erosion, which influences the wetland function tremendously. Application of environmental fluid dynamics code (EFDC) to the Yellow River Delta is on the basis of the mobile bed dynamic model and wetting-drying process. Careful calibration is carried out for the numerical model which is set up for the Yellow River Delta, the sediment transport process of the model is compatible to the Yellow River situation. The simulated bed elevation by considering the sediment deposition in the Mouth is particularly focused on, the numerical results are in agreement with the measured bed morphology within 1992 2000. Simulation in this paper indicates that most of the sediment deposited just out of the Mouth which makes the mouth move forward into the sea 2.5 km per year. This paper presents good results in simulation of varying sediment deposition and provides further methods to predict the future morphology and area of the Yellow River Delta.

  9. Yellow fever, Asia and the East African slave trade.

    Science.gov (United States)

    Cathey, John T; Marr, John S

    2014-05-01

    Yellow fever is endemic in parts of sub-Saharan Africa and South America, yet its principal vectors--species of mosquito of the genus Aedes--are found throughout tropical and subtropical latitudes. Phylogenetic analyses indicate that yellow fever originated in Africa and that its spread to the New World coincided with the slave trade, but why yellow fever has never appeared in Asia remains a mystery. None of several previously proposed explanations for its absence there is considered satisfactory. We contrast the trans-Atlantic slave trade, and trade across the Sahara and to the Arabian Peninsula and Mesopotamia, with that to Far East and Southeast Asian ports before abolition of the African slave trade, and before the scientific community understood the transmission vector of yellow fever and the viral life cycle, and the need for shipboard mosquito control. We propose that these differences in slave trading had a primary role in the avoidance of yellow fever transmission into Asia in the centuries before the 20(th) century. The relatively small volume of the Black African slave trade between Africa and East and Southeast Asia has heretofore been largely ignored. Although focal epidemics may have occurred, the volume was insufficient to reach the threshold for endemicity.

  10. Photosynthesis and Yellow Vine Syndrome of American Cranberry

    Directory of Open Access Journals (Sweden)

    Harvey J. M. Hou

    2012-06-01

    Full Text Available The American cranberry (Vaccinium macrocarpon Ait. contains rich antioxidants and has significant health benefits in fighting a variety of human diseases. In the past ten years, cranberry growers have reported yellow vine syndrome, which is associated with reduced photosynthetic performance, in the cranberry bogs. It has been found that the yellow vine syndrome of cranberry is associated with nutritional imbalance; it might be an issue for cranberry quality and food security as well as the crop production. This review evaluates the present state of knowledge of yellow vine syndrome, together with recent advances that are resulting from an improved mechanistic understanding and a possible solution that will be of considerable value to cranberry growers. This review also includes results from the author’s own laboratory. Water stress, nutritional imbalance, and photoinhibition are the likely reasons for producing yellow vine of cranberry. Future endeavors should be placed on the combination of genetic, biochemical, and biophysical techniques at the molecular level and plant physiology at the field and greenhouse level. This may provide specific information in order to understand the molecular details of yellow vine of cranberry as well as a tool for guiding future breeding efforts and management practices.

  11. COEXISTENCE YELLOW NAIL SYNDROME WITH SYSTEMIC SYMPTOMS - PRESENTATION OF CASES

    Directory of Open Access Journals (Sweden)

    Brzeziński Piotr

    2010-10-01

    Full Text Available Nail changes can accompany many systemic diseases and very often indicate the ongoing systemic process of illness. The yellow nail syndrome (YNS is very rare clinical entity characterized by marked thickening and yellow to yellow-green discoloration of the nails. Congenitally hypoplastic lymphostasis plays a major role in the clinical manifestation of that disease. Syndrome includes pleural effusions, lymphedema and yellow dystrophic nails. The pathogenesis stays still unknown.Aim: Presentation the coexistence of YNS with the systemic symptoms by analyzing cases of 3 patients.Material and methods: The analysis involved 3 patients with YNS (2 women and 1 man aged from 43 to 48 years.Results: We confirmed 3 cases of YNS, with the characteristic nails changes (yellow-greenish discoloration, absence of lunula, etc.. None of the patients had a family history of YNS. All suffered from chronic diseases: the first patient suffered from lymphedema and diabetes mellitus, second - from rheumatoid arthritis and the third complained of a chronic caught and sinusitis. All YNS`s symptoms occurred in the patients` forties. We observed fingers and toes involvement on 7-8 nails in each patient.Conclusions: The YNS offen associated with systemic disease, most commonly lymphedema and bronchiectasis. However, the literature describes some connections with carcinoma and autoimmune diseases. Therefore, each patient with YNS should be examined for cancer detection and stay under periodic medical control.

  12. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  13. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  14. Complete mitochondrial genome of Nanjiang Yellow goat (Capra hircus).

    Science.gov (United States)

    Li, Haijun; Meng, Xiangren; Zhang, Hao; Duan, Xiaoyue; Niu, Lili; Wang, Linjie; Li, Li; Zhang, Hongping; Wu, Hongda; Zhong, Tao

    2016-01-01

    Nanjiang Yellow goat (Capra hircus) is the first cultured mutton breed in China. In this study, the complete mitochondrial genome sequence of Nanjiang Yellow goat has been identified for the first time. The total length of the mitochondrial genome was 16,639 bp, with the base composition of 33.54% A, 26.05% C, 13.11% G and 27.30% T. It contained 37 genes (22 transfer RNA genes, 2 ribosomal RNA genes, and 13 protein-coding genes) and a major non-coding control region (D-loop). Most of the genes have ATG initiation codons, whereas ND2, ND3 and ND5 start with ATA. The complete mitochondrial genome sequence of Nanjiang Yellow goat provides an important data set for further estimation on the phylogeographic structure of domestic goats.

  15. REGULATION OF FLOW AND SEDIMENT LOAD IN THE YELLOW RIVER

    Institute of Scientific and Technical Information of China (English)

    Wenxue LI; Jixiang LIU; Zhanwei WAN

    2007-01-01

    Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.

  16. Yellow luminescence of gallium nitride generated by carbon defect complexes.

    Science.gov (United States)

    Demchenko, D O; Diallo, I C; Reshchikov, M A

    2013-02-22

    We demonstrate that yellow luminescence often observed in both carbon-doped and pristine GaN is the result of electronic transitions via the C(N)-O(N) complex. In contrast to common isolated defects, the C(N)-O(N) complex is energetically favorable, and its calculated optical properties, such as absorption and emission energies, a zero phonon line, and the thermodynamic transition level, all show excellent agreement with measured luminescence data. Thus, by combining hybrid density functional theory and experimental measurements, we propose a solution to a long-standing problem of the GaN yellow luminescence.

  17. Yellow Nail Syndrome: Dystrophic Nails, Peripheral Lymphedema and Chronic Cough

    Directory of Open Access Journals (Sweden)

    Christian Dornia

    2011-01-01

    Full Text Available A case involving a 41-year-old man with yellow nail syndrome (YNS is reported. YNS is a rare disorder characterized by yellow, dystrophic nails, peripheral lymphedema and bronchiectasis with recurrent lower respiratory tract infections. YNS is often misdiagnosed because the syndrome is not well known. An interdisciplinary approach is required to recognize and collate the components of the syndrome accurately. Correct diagnosis is of utmost clinical importance because YNS can occur secondary to malignancies and autoimmune disorders. Hence, the diagnosis of YNS must prompt further investigation.

  18. Yellow fever vaccine: worthy friend or stealthy foe?

    Science.gov (United States)

    Seligman, Stephen J; Casanova, Jean-Laurent

    2016-06-01

    Recognition that the live yellow fever vaccine may rarely be associated with viscerotropic disease (YEL-AVD) has diminished its safety status. However, the vaccine remains the principal tool for limiting the occurrence of yellow fever, making large portions of Africa and South America more habitable. The subject has previously been exhaustively reviewed. Novel concepts in the current report include the description of a systematic method for deciding whom to vaccinate, recommendations for obtaining data helpful in making that decision, and suggestions for additional study. The vaccine is indeed a worthy friend, but its adverse reactions need to be recognized.

  19. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis.

    Science.gov (United States)

    Jacobsen, S E; Meyerowitz, E M

    1997-08-22

    Mutations in the SUPERMAN gene affect flower development in Arabidopsis. Seven heritable but unstable sup epi-alleles (the clark kent alleles) are associated with nearly identical patterns of excess cytosine methylation within the SUP gene and a decreased level of SUP RNA. Revertants of these alleles are largely demethylated at the SUP locus and have restored levels of SUP RNA. A transgenic Arabidopsis line carrying an antisense methyltransferase gene, which shows an overall decrease in genomic cytosine methylation, also contains a hypermethylated sup allele. Thus, disruption of methylation systems may yield more complex outcomes than expected and can result in methylation defects at known genes. The clark kent alleles differ from the antisense line because they do not show a general decrease in genomic methylation.

  20. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress

    KAUST Repository

    Ambrosone, Alfredo

    2015-03-17

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.

  1. Reference: 125 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available et al. 2004 Nov. Plant Physiol. 136(3):3616-27. The actin cytoskeleton mediates cellular processes through t...AP and AtPIR participate in a variety of growth and developmental processes. Mutations in AtNAP and AtPIR ca...ting trichome cell growth. Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes

  2. Reference: 2 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available at share 60 to 80% protein sequence identity. Gene disruptions of the yeast (Saccharomyces cerevisiae) ortho... that these syntaxins are not essential for growth in yeast. However, we have isolated and characterized gene disruption...s in two genes from each family, finding that disruption of individual syntaxins from these fami...lies is lethal in the male gametophyte of Arabidopsis. Complementation of the syp21-1 gene disruption

  3. Reference: 594 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available that serve as antiherbivore compounds in plant defence. A previously identified Arabidopsis thaliana activa...tion-tagged line, displaying altered levels of secondary metabolites, was shown here to be affe... by activation of the R2R3-MYB transcription factor gene HIG1 (HIGH INDOLIC GLUCOSINOLATE 1, also referred t...n of HIG1/MYB51 resulted in the specific accumulation of indolic glucosinolates without affecting auxin meta

  4. Reference: 20 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available erial pathogens to host cells. Plants express disease resistance (R) proteins that respond specifically to a... particular type III effector by activating immune responses. We demonstrated previously that two unre...lated type III effectors from Pseudomonas syringae target and modify the Arabidopsis RIN4 protein. Here..., we show that AvrRpt2, a third, unrelated type III effector, also targets RIN4 and induces ...its posttranscriptional disappearance. This effect is independent of the presence

  5. Reference: 341 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available owth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here..., a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a ...postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were... isolated, and six represent new loci. Triacylglycerol hydrolas...e assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that i

  6. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  7. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  8. Arabidopsis CDS blastp result: AK065189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065189 J013002E07 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/hom...(EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 0.0 ... ...ogentisate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase

  9. Arabidopsis CDS blastp result: AK241580 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241580 J065181H03 At4g23640.1 68417.m03404 potassium transporter / tiny root hair... 1 protein (TRH1) identical to tiny root hair 1 protein [Arabidopsis thaliana] gi|11181958|emb|CAC16137; KUP.../HAK/KT Transporter family member, PMID:11500563; identical to cDNA mRNA for tiny root hair 1 protein (trh1) GI:11181957 1e-139 ...

  10. Reference: 357 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ricia|Flores-Pérez Ursula|León Patricia|Martínez-García Jaime F|Rodríguez-Concepción Manuel|San Román Carolina|Sauret-Güeto Susanna ...of the methylerythritol phosphate pathway in Arabidopsis. 1 75-84 16531478 2006 May Plant physiology Boronat Albert|Botella-Pavía Pat

  11. Reference: 720 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ang et al. 2008 Mar. Plant Physiol. 146(3):1231-41. The 70-kD heat shock proteins (Hsp70s) have been shown to be important...from Deltacphsc70-1 seeds was further impaired, indicating that cpHsc70-1 is important for thermotolerance o...s. Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for therm

  12. Reference: 765 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 765 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18467451i Owens Daniel...ne family in Arabidopsis. 3 1046-61 18467451 2008 Jul Plant physiology Alerding Anne B|Bandara Aloka B|Crosby Kevin C|Owens Daniel K|Westwood James H|Winkel Brenda S J

  13. Arabidopsis CDS blastp result: AK110331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110331 002-164-D12 At2g31510.1 IBR domain-containing protein / ARIADNE-like prote...in ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contains similarit...y to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 3e-59 ...

  14. Arabidopsis CDS blastp result: AK242789 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242789 J090057B20 At2g31510.1 68415.m03850 IBR domain-containing protein / ARIADN...E-like protein ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contai...ns similarity to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 8e-12 ...

  15. Reference: 551 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 551 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17329563i Liu Yongxiu et al. 2007 Fe...in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. 2 433-44 17329563 2007 Feb The Plant cell Koornneef Maarten|Liu Yongxiu|Soppe Wim J J

  16. Reference: 715 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 715 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u18178585i Ito Shogo et al. 2008 Fe... role by forming a transcriptional feedback core loop together with the morning-e...rcuitry in Arabidopsis thaliana. 2 201-13 18178585 2008 Feb Plant & cell physiology Ito Shogo|Kawamura Hideaki|Mizuno Takeshi|Nakamichi Norihito|Niwa Yusuke|Yamashino Takafumi

  17. Reference: 17 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 17 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u12566580i Ullah Hemayet et al. 2003 Fe.... The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects... multiple developmental processes. 2 393-409 12566580 2003 Feb The Plant cell Alonso Jos辿 M|Boyes Douglas C|

  18. Reference: 18 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 18 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u12566581i Kim Kyung-Nam et al. 2003 Fe...t regulates abscisic acid and cold signal transduction in Arabidopsis. 2 411-23 12566581 2003 Feb The Plant cell Cheong Yong Hwa|Grant John J|Kim Kyung-Nam|Luan Sheng|Pandey Girdhar K

  19. Reference: 319 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 319 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16377756i Dai Ya et al. 2006 Fe...th the wild type, the bud1 plants develop significantly fewer lateral roots, simpler venation patterns, and ...yls at high temperature (29 degrees C) under light, which is a characteristic feature of defe...itectural abnormality in Arabidopsis. 2 308-20 16377756 2006 Feb The Plant cell D

  20. Reference: 662 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available chelle L et al. 2007. Nucleic Acids Res. 35(19):6490-500. In the absence of the telomerase, telomeres underg...that fusion of critically shortened telomeres in Arabidopsis proceeds with approximately the same efficiency in the presence or absen...ce of KU70, a key component of NHEJ. Here we report that DNA ligase IV (LIG4) is al