WorldWideScience

Sample records for arabidopsis thaliana results

  1. Gravitropism in Arabidopsis thaliana: violation of the sine- and resultant-law

    Science.gov (United States)

    Galland, Paul

    We investigated the gravitropic bending of hypocotyls and roots of seedlings of Arabidopsis tha-liana in response to long-term centrifugal accelerations in a range of 5 x 10-3 to 4 x g. The so-cal-led resultant law of gravitropism, a corollary of the so called sine law, claims that during centri-fugation a gravitropic organ aligns itself parallel to the resultant stimulus vector. We show here that neither of the two empirical “laws” is apt to describe the complex gravitropic behaviour of seedlings of Arabidopsis. Hypocotyls obey reasonably well the resultant law while roots display a complex behaviour that is clearly at variance with it. Horizontally centrifuged seedlings sense minute accelerations acting parallel to the longitudinal axis. If the centrifugal vector points to-ward the cotyledons, then the bending of hypocotyls and roots is greatly enhanced. If the centri-fugal vector points, however, toward the root tip, then only the bending of roots is enhanced by accelerations as low as 5 x 10-3 x g (positive tonic effect). The absolute gravitropic thresholds were determined for hypocotyls and roots in a clinostat-centrifuge and found to be near 1.5 x 10-2 x g. A behavioural mutant, ehb1-2 (Knauer et al. 2011), displays a lower gravitropic threshold for roots, not however, for hypocotyls. The complex gravitropic behaviour of seedlings of Arabi-dopsis is at odds with the classical sine- as well as the resultant law and can indicates the eminent role that is played by the acceleration vector operating longitudinally to the seedling axis.

  2. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  3. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  4. Flavonoid-specific staining of Arabidopsis thaliana.

    Science.gov (United States)

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana. PMID:1282347

  5. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law.

    Science.gov (United States)

    Dümmer, Michaela; Forreiter, Christoph; Galland, Paul

    2015-09-15

    Gravitropic bending of seedlings of Arabidopsis thaliana in response to centrifugal accelerations was determined in a range between 0.0025 and 4×g to revisit and validate the so-called resultant law, which claims that centrifugation causes gravitropic organs to orient parallel to the resultant stimulus vector. We show here for seedlings of A. thaliana that this empirical law holds for hypocotyls but surprisingly fails for roots. While the behavior of hypocotyls could be modeled by an arc tangent function predicted by the resultant law, roots displayed a sharp maximum at 1.8×g that substantially overshoots the predicted value and that represents a novel phenomenon, diagravitropism elicited by centrifugal acceleration. The gravitropic bending critically depended on the orientation of the seedling relative to the centrifugal acceleration. If the centrifugal vector pointed toward the cotyledons, gravitropic bending of hypocotyls and roots was substantially enhanced. The complex behavior of Arabidopsis seedlings provides strong evidence that gravitropic bending entails a cosine component (longitudinal stimulus) to which the seedlings were more sensitive than to the classical sine component. The absolute gravitropic thresholds of hypocotyls and roots were determined in a clinostat-centrifuge and found to be below 0.015×g. A tropism mutant lacking the EHB1 protein, which interacts with ARF-GAP (ARF GTPase-activating protein) and thus indirectly with a small ARF-type G protein, displayed a lower gravitropic threshold for roots and also enhanced bending, while the responses of the hypocotyls remained nearly unaffected. PMID:26496692

  6. Control of differential petiole growth in Arabidopsis thaliana

    NARCIS (Netherlands)

    van Zanten, M.

    2009-01-01

    Plants react quickly and profoundly to changes in their environment. For example, complete submergence and low light intensities induce differential petiole growth, resulting in upward leaf movement (hyponastic growth) in Arabidopsis thaliana. This thesis deals with the physiological-, genetic- and

  7. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    Science.gov (United States)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  8. Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, C.; Poirier, Y.; Somerville, C. (Carnegie Institution of Washington, Stanford, CA (United States))

    1994-12-20

    In the bacterium Alcaligenes eutrophus, three genes encode the enzymes necessary to catalyze the synthesis of poly[(R)-(-)-3-hydroxybutyrate] (PHB) from acetyl-CoA. In order to target these enzymes into the plastids of higher plants, the genes were modified by addition of DNA fragments encoding a pea chloroplast transit peptide, a constitutive plant promoter, and a poly(A) addition sequence. Each of the modified bacterial genes was introduced into Arabidopsis thaliana by Agrobacterium-mediated transformation, and plants containing all three genes were obtained by sexual crosses. These plans accumulated PHB up to 14% of the dry weight as 0.2- to 0.7-[mu]m granules within plastids. In contrast to earlier experiments in which expression of the PHB biosynthetic pathway in the cytoplasm led to a deleterious effect on growth, expression of the PHB biosynthetic pathway in plastids had no obvious effect on the growth or fertility of the transgenic plants and resulted in a 100-fold increase in the amount of PHB in higher plants. The high level of PHB accumulation also suggests that the synthesis of plastid acetyl-CoA is regulated by a mechanism which responds to metabolic demand. 20 refs., 6 figs.

  9. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  10. Arabidopsis thaliana glucuronosyltransferase in family GT14

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT 14A in cell elongation. AtGlcAt14A belongs to the family GT14...... in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT 14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT 14A. Evidently, two...... other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT 14B and AtGlcAT 14C, respectively. © 2014 Landes Bioscience....

  11. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  12. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  13. Inheritance beyond plain heritability : variance controlling genes in Arabidopsis thaliana

    OpenAIRE

    Xia Shen; Mats Pettersson; Lars Rönnegård; Örjan Carlborg

    2012-01-01

    Author Summary The most well-studied effects of genes are those leading to different phenotypic means for alternative genotypes. A less well-explored type of genetic control is that resulting in a heterogeneity in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana GWAS dataset to detect genetic effects on the variance heterogeneity, and our results indicate that the environmental variance is under extensive genetic control by a large number of variance-co...

  14. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions.

  15. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    OpenAIRE

    Pandey, Neha; Ranjan, Alok; Pant, Poonam; Tripathi, Rajiv K; Ateek, Farha; Pandey, Haushilla P; Patre, Uday V; Sawant, Samir V

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolish...

  16. Demographic history of european populations of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Olivier François

    2008-05-01

    Full Text Available The model plant species Arabidopsis thaliana is successful at colonizing land that has recently undergone human-mediated disturbance. To investigate the prehistoric spread of A. thaliana, we applied approximate Bayesian computation and explicit spatial modeling to 76 European accessions sequenced at 876 nuclear loci. We find evidence that a major migration wave occurred from east to west, affecting most of the sampled individuals. The longitudinal gradient appears to result from the plant having spread in Europe from the east approximately 10,000 years ago, with a rate of westward spread of approximately 0.9 km/year. This wave-of-advance model is consistent with a natural colonization from an eastern glacial refugium that overwhelmed ancient western lineages. However, the speed and time frame of the model also suggest that the migration of A. thaliana into Europe may have accompanied the spread of agriculture during the Neolithic transition.

  17. The pattern of polymorphism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.

  18. Identification of Polyadenylation Sites within Arabidopsis Thaliana

    KAUST Repository

    Kalkatawi, Manal

    2011-09-01

    Machine Learning (ML) is a field of artificial intelligence focused on the design and implementation of algorithms that enable creation of models for clustering, classification, prediction, ranking and similar inference tasks based on information contained in data. Many ML algorithms have been successfully utilized in a variety of applications. The problem addressed in this thesis is from the field of bioinformatics and deals with the recognition of polyadenylation (poly(A)) sites in the genomic sequence of the plant Arabidopsis thaliana. During the RNA processing, a tail consisting of a number of consecutive adenine (A) nucleotides is added to the terminal nucleotide of the 3’- untranslated region (3’UTR) of the primary RNA. The process in which these A nucleotides are added is called polyadenylation. The location in the genomic DNA sequence that corresponds to the start of terminal A nucleotides (i.e. to the end of 3’UTR) is known as a poly(A) site. Recognition of the poly(A) sites in DNA sequence is important for better gene annotation and understanding of gene regulation. In this study, we built an artificial neural network (ANN) for the recognition of poly(A) sites in the Arabidopsis thaliana genome. Our study demonstrates that this model achieves improved accuracy compared to the existing predictive models for this purpose. The key factor contributing to the enhanced predictive performance of our ANN model is a distinguishing set of features used in creation of the model. These features include a number of physico-chemical characteristics of relevance, such as dinucleotide thermodynamic characteristics, electron-ion interaction potential, etc., but also many of the statistical properties of the DNA sequences from the region surrounding poly(A) site, such as nucleotide and polynucleotide properties, common motifs, etc. Our ANN model was compared in performance with several other ML models, as well as with the PAC tool that is specifically developed for

  19. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  20. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering.

  1. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering. PMID:27058920

  2. Herkogamy and its effects on mating patterns in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yonghai Luo

    Full Text Available The evolution of mating systems, which exhibit an extraordinary diversity in flowering plants, is of central interest in plant biology. Herkogamy, the spatial separation of sexual organs within flowers, is a widespread floral mechanism that is thought to be an adaptive trait reducing self-pollination in hermaphroditic plants. In contrast with previous studies of herkogamy that focused on plants with relatively large floral displays, we here characterized herkogamy in Arabidopsis thaliana, a model plant with a strong selfing syndrome. Developmental features, reproductive consequences, and genetic architecture of herkogamy were exploited using naturally variable A. thaliana accessions, under both greenhouse and natural conditions. Our results demonstrate that the degree of herkogamy can strongly influence the mating patterns of A. thaliana: approach herkogamy can effectively promote outcrossing, no herkogamy is also capable of enhancing the opportunity for outcrossing, and reverse herkogamy facilitates efficient self-pollination. In addition, we found that the expression of herkogamy in A. thaliana was environment-dependent and regulated by multiple quantitative trait loci. This study reveals how minor modifications in floral morphology may cause dramatic changes in plant mating patterns, provides new insights into the function of herkogamy, and suggests the way for dissecting the genetic basis of this important character in a model plant.

  3. Arabidopsis CDS blastp result - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ontents Results of blastp searches against Arabidopsis thaliana CDSs Data file File name: kome_arabidopsis_c...b/view/kome_arabidopsis_cds_blastp_result#en Data acquisition method Predicted CDSs of Arabidopsis thaliana used for the searche...er. 5. Data analysis method Performed blastp searches with the full-length cDNA sequences against predicted

  4. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  5. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, H; Maluszynska, J

    2000-01-01

    Recent development of cytogenetic techniques has facilitated significant progress in Arabidopsis thaliana karyotype studies. Double-target FISH with rRNA genes provides makers that allow individual chromosome in the genome to be distinguished. Those studies have revealed that the number and position of rDNA loci is ecotype-specific. Arabidopsis is believed to be a true diploid (x = 5) with numerous ecotypes (accessions) and only a very few natural polyploid populations reported. Few studies were undertaken to induce polyploidy in Arabidopsis, however none of those gave the cytogenetic characteristics of polyploid plants. Our analysis of chromosome pairing of colchicine-induced autotetraploid Arabidopsis (Wilna ecotype) revealed preferential bivalent pairing in PMCs (pollen mother cells). In order to attempt to explain this phenomenon, first of all more detailed cytogenetic studies of autopolyploid plants have been undertaken. The localization of 45S and 5S rDNA loci in the diploid and autotetraploid plants revealed that Wilna ecotypes belongs to the group of Arabidopsis accessions with only two 5S rDNA loci present in a genome. Furthermore, the rearrangement of 45S rDNA locus in autopolyploid, when compared to the diploid plants of the same ecotype, was revealed. These results are interesting also in the context of the recently emphasised role of polyploidy in plant evolution and speciation. Arabidopsis, despite having small chromosomes, is a good system to study chromosome behaviour in relation to diploidization of autopolyploids and to evaluate the degree of chromosomal rearrangements during this process. PMID:11433970

  6. Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.

    Science.gov (United States)

    Savitch, L V; Barker-Astrom, J; Ivanov, A G; Hurry, V; Oquist, G; Huner, N P; Gardeström, P

    2001-12-01

    The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold

  7. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis

    Directory of Open Access Journals (Sweden)

    Zhang Sufang

    2012-12-01

    Full Text Available Abstract Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers.

  8. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    Science.gov (United States)

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.

  9. Cerium toxicity, uptake and translocation in Arabidopsis thaliana seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; LIN Yousheng; LIU Dongwu; XU Hengjian; LIU Tao; ZHAO Fengyun

    2012-01-01

    Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity,uptake and translocation of rare earth elements (REEs).The results showed that Ce could be largely absorbed by the roots of A.thaliana and translocated to the shoots.But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots.Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall.At higher concentration,Ce could also enter cell,destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A.thaliana.Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots,decreased chlorophyll content,rosette diameter and fresh mass of plants.The damage increased with the increase of Ce concentration in culture medium,although primary root elongation,chlorophyll content,and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce.Thus,it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.

  10. Omics analysis of high-energy Arabidopsis thaliana

    OpenAIRE

    Liang, Chao; 梁超

    2014-01-01

    Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to both chloroplasts and mitochondria. Overexpression (OE) of AtPAP2 in Arabidopsis thaliana was reported to speed up plant growth and promote flowering, seed yield and biomass at maturity in a previous study. Under long-day (16 hours light at 22°C / 8 hours dark at 18°C) growth conditions, the leaves of 20-day-old OE lines contained significant higher sucrose and glucose than the wild-type (WT) plants, r...

  11. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn;

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... quite different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  12. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana.

    OpenAIRE

    Rivera-Madrid, R.; Mestres, D; Marinho, P.; Jacquot, J P; Decottignies, P; Miginiac-Maslow, M; Meyer, Y.

    1995-01-01

    Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presenc...

  13. Differentiation between MAMP Triggered Defenses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Madlen Vetter

    2016-06-01

    Full Text Available A first line of defense against pathogen attack for both plants and animals involves the detection of microbe-associated molecular patterns (MAMPs, followed by the induction of a complex immune response. Plants, like animals, encode several receptors that recognize different MAMPs. While these receptors are thought to function largely redundantly, the physiological responses to different MAMPs can differ in detail. Responses to MAMP exposure evolve quantitatively in natural populations of Arabidopsis thaliana, perhaps in response to environment specific differences in microbial threat. Here, we sought to determine the extent to which the detection of two canonical MAMPs were evolving redundantly or distinctly within natural populations. Our results reveal negligible correlation in plant growth responses between the bacterial MAMPs EF-Tu and flagellin. Further investigation of the genetic bases of differences in seedling growth inhibition and validation of 11 candidate genes reveal substantial differences in the genetic loci that underlie variation in response to these two MAMPs. Our results indicate that natural variation in MAMP recognition is largely MAMP-specific, indicating an ability to differentially tailor responses to EF-Tu and flagellin in A. thaliana populations.

  14. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Toorop, P.E.; Barroco, R.M.; Engler, G.; Groot, S.P.C.; Hilhorst, H.W.M.

    2005-01-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was undetectab

  15. HAL1 mediate salt adaptation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter.Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds.Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants' genomes.The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis.Phenotypes of transgenic plants have no differences with wild type plants.Several samples of transformants were self-pollinated,and progenies from transformed and non-transformed plants(controls)were evaluated for salt tolerance and gene expression.Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress.Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.

  16. Cleaning the GenBank Arabidopsis thaliana data set

    DEFF Research Database (Denmark)

    Korning, Peter G.; Hebsgaard, Stefan M.; Rouze, Pierre;

    1996-01-01

    extracted a data set from the A. thaliana entries in GenBank. A number of simple `sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly......Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we...

  17. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  18. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  19. Quantitative trait loci for floral morphology in Arabidopsis thaliana.

    OpenAIRE

    Juenger, T; Purugganan, M.; Mackay, T F

    2000-01-01

    A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these...

  20. Hybrid inflorescences derived from gamma-fusion of Arabidopsis thaliana with Bupleurum scorzonerifolium.

    Science.gov (United States)

    Wang, Minqin; Peng, Zhenying; Hong, Sheng; Zhi, Daying; Xia, Guangmin

    2012-01-01

    In our early experiments, a variety of Bupleurum scorzonerifolium-like somatic hybrid plants were obtained from protoplast fusion between Arabidopsis thaliana and UV-treated/untreated B. scorzonerifolium. To compare the effects of UV and γ-ray irradiation on the B. scorzonerifolium partner and obtain Arabidopsis-like hybrids, we designed a novel combination of somatic hybridization between A. thaliana and B. scorzonerifolium. Before protoplast isolation and fusion, the suspension cells of B. scorzonerifolium were irradiated by gamma ray ((60)Co, 50 Gy with 1.3 Gy min(-1)). Both parental protoplasts lost regeneration capacity, but over 100 somatic hybrids restored the capacity and developed to Arabidopsis-like inflorescences and flowers with some characteristics of B. scorzonerifolium. Some hybrid flowers showed yellow sepal, petal, or carpel, whose color was similar to the petal of B. scorzonerifolium; the others had silique of Arabidopsis with angularity of B. scorzonerifolium, and their parts possessed five stamens, the same as B. scorzonerifolium. Cytological analysis showed that three hybrids had Arabidopsis-like karyotypes. Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeats (SSR) profiles revealed that both parental fragments were amplified from these hybrids. These results indicated chromatin introgression from B. scorzonerifolium to A. thaliana, which may be related to the complementation of hybrid inflorescence and flower generation. PMID:21484475

  1. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions

    Science.gov (United States)

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P.

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  2. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  3. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  4. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  5. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  6. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  7. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  8. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  9. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  10. A proteomics study of auxin effects in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Meiqing Xing; Hongwei Xue

    2012-01-01

    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  11. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  12. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  13. Diuretics prime plant immunity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  14. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana.

    Science.gov (United States)

    Ågrena, Jon; Oakley, Christopher G; McKay, John K; Lovell, John T; Schemske, Douglas W

    2013-12-24

    Organisms inhabiting different environments are often locally adapted, and yet despite a considerable body of theory, the genetic basis of local adaptation is poorly understood. Unanswered questions include the number and effect sizes of adaptive loci, whether locally favored loci reduce fitness elsewhere (i.e., fitness tradeoffs), and whether a lack of genetic variation limits adaptation. To address these questions, we mapped quantitative trait loci (QTL) for total fitness in 398 recombinant inbred lines derived from a cross between locally adapted populations of the highly selfing plant Arabidopsis thaliana from Sweden and Italy and grown for 3 consecutive years at the parental sites (>40,000 plants monitored). We show that local adaptation is controlled by relatively few genomic regions of small to modest effect. A third of the 15 fitness QTL we detected showed evidence of tradeoffs, which contrasts with the minimal evidence for fitness tradeoffs found in previous studies. This difference may reflect the power of our multiyear study to distinguish conditionally neutral QTL from those that reflect fitness tradeoffs. In Sweden, but not in Italy, the local genotype underlying fitness QTL was often maladaptive, suggesting that adaptation there is constrained by a lack of adaptive genetic variation, attributable perhaps to genetic bottlenecks during postglacial colonization of Scandinavia or to recent changes in selection regime caused by climate change. Our results suggest that adaptation to markedly different environments can be achieved through changes in relatively few genomic regions, that fitness tradeoffs are common, and that lack of genetic variation can limit adaptation.

  15. Riboflavin-induced Priming for Pathogen Defense in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shujian Zhang; Xue Yang; Maowu Sun; Feng Sun; Sheng Deng; Hansong Dong

    2009-01-01

    Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.

  16. Lagging adaptation to warming climate in Arabidopsis thaliana

    Science.gov (United States)

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  17. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    OpenAIRE

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for gene balance control, gene expression and regulation, and may affect the plant’s phenotype. Moreover, chromosome changes, in particular polyploidy, inversions and translocations play a signif...

  18. The Genomic and Morphological Effects of Bisphenol A on Arabidopsis thaliana.

    Science.gov (United States)

    Frejd, Derek; Dunaway, Kiera; Hill, Jennifer; Van Maanen, Jesse; Carlson, Clayton

    2016-01-01

    The environmental toxin bisphenol A (BPA) is a known mammalian hormone disrupter but its effects on plants have not been well established. The effect of BPA on gene expression in Arabidopsis thaliana was determined using microarray analysis and quantitative gene PCR. Many hormone responsive genes showed changes in expression after BPA treatment. BPA disrupted flowering by a mechanism that may involve disruption of auxin signaling. The results presented here indicate that BPA is a plant hormone disrupter. PMID:27631104

  19. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    OpenAIRE

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-prote...

  20. Strictly NO3- Nutrition Alleviates Iron Deficiency Chlorosis in Arabidopsis thaliana Plants

    Directory of Open Access Journals (Sweden)

    Najoua Msilini

    2014-03-01

    Full Text Available The effects of NO3- nutrition on iron deficiency responses were investigated in Arabidopsis thaliana. Plants were grown with or without 5 µM Fe, and with NO3- alone or a mixture of NO3- and NH4+. The results indicated that, NO3- nutrition induced higher dry matter production, regardless the Fe concentration. Fe deficiency reduced growth activity, photosynthetic pigment concentration and Fe content of plants, whatever the N forms. This decrease was more pronounced in plants grown with mixed N source; those plants presented the highest EL and MDA and anthocyanin contents compared to plants grown under Fe sufficient conditions. In iron free-solutions, with NO3- as the sole nitrogen source, enhanced FC-R activity in the roots was observed. However, in the presence of NH4+, plants displayed some decrease in in FC-R and PEPC activities. The presence of NH4+ modified typical Fe stress responses in Arabidopsis thaliana plants.

  1. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    Directory of Open Access Journals (Sweden)

    Aarti eGupta

    2016-06-01

    Full Text Available Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study establishes a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen induced

  2. Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust.

    Science.gov (United States)

    Cheng, Yulin; Zhang, Hongchang; Yao, Juanni; Han, Qingmei; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng

    2013-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. We report the use of the non-host plant Arabidopsis thaliana to identify the basis of resistance to Pst at the cytological and molecular levels. No visible symptoms were observed on Arabidopsis leaves inoculated with Pst. Microscopic observations showed that significantly reduced numbers of Pst urediospores had successfully achieved penetration in Arabidopsis compared with those in wheat. There were significant differences in the frequency of stomatal penetration but not in fungal growth among different Pst races in Arabidopsis. The fungus failed to successfully form haustoria in Arabidopsis and attempted infection induced an active response including accumulation of phenolic compounds and callose deposition in plant cells. A set of defence-related genes were also up regulated during the Pst infection. Compared with wild type plants, increased fungal growth was observed in an npr1-1 mutant and in NahG transformed plants, which both are insensitive to salicylic acid. However, treatment of Arabidopsis plants with cytochalasin B, an inhibitor of actin microfilament polymerization, did not increase susceptibility to Pst. Our results demonstrate that Arabidopsis can be used to study mechanisms of non-host resistance to wheat stripe rust, and highlight the significance of participation of salicylic acid in non-host resistance to rust fungi.

  3. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  4. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  5. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT, E.C. 2.6.1.2, is a pyridoxal-5'-phosphate-dependent (PLP enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1 knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s previously observed.

  6. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  7. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  8. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    Science.gov (United States)

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  9. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  10. Arabidopsis CDS blastp result: AK061395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061395 006-305-E02 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  11. Arabidopsis CDS blastp result: AK104882 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104882 001-044-H04 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  12. Arabidopsis CDS blastp result: AK066854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066854 J013075C10 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  13. Arabidopsis CDS blastp result: AK101318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101318 J033034D12 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  14. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  15. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  16. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  17. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  18. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  19. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  20. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  2. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  3. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  4. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  6. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  7. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  8. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  9. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  10. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  11. Arabidopsis CDS blastp result: AK111576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111576 J013075J23 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  12. Arabidopsis CDS blastp result: AK120838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120838 J023022B11 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  13. Arabidopsis CDS blastp result: AK111921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111921 001-013-A10 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly i...dentical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profil

  14. Arabidopsis CDS blastp result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 0.0 ...

  15. Arabidopsis CDS blastp result: AK287662 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287662 J065112L10 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-65 ...

  16. Arabidopsis CDS blastp result: AK242094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242094 J075142E09 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 2e-33 ...

  17. Arabidopsis CDS blastp result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-122 ...

  18. Arabidopsis CDS blastp result: AK287488 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287488 J043029O04 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 4e-27 ...

  19. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Mano, Eriko; Horiguchi, Gorou; Tsukaya, Hirokazu

    2006-02-01

    In higher plants, stems and roots show negative and positive gravitropism, respectively. However, current knowledge on the graviresponse of leaves is lacking. In this study, we analyzed the positioning and movement of rosette leaves of Arabidopsis thaliana under light and dark conditions. We found that the radial positioning of rosette leaves was not affected by the direction of gravity under continuous white light. In contrast, when plants were shifted to darkness, the leaves moved upwards, suggesting negative gravitropism. Analysis of the phosphoglucomutase and shoot gravitropism 2-1 mutants revealed that the sedimenting amyloplasts in the leaf petiole are important for gravity perception, as is the case in stems and roots. In addition, our detailed physiological analyses revealed a unique feature of leaf movement after the shift to darkness, i.e. movement could be divided into negative gravitropism and nastic movement. The orientation of rosette leaves is ascribed to a combination of these movements.

  20. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba;

    2003-01-01

    and contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg...... IF per 1 kg wet weight. The dried plants still retained 60% of the IF activity. The purified IF preparation consisted of a 50-kDa glycosylated protein with the N-terminal sequence of mature IF. Approximately one-third of the protein was cleaved at the internal site em leader PSNP downward arrow GPGP...... to recombinant IF and gastric IF were alike, as was the interaction of recombinant and native IF with the specific receptor cubilin. The data presented show that recombinant plants have a great potential as a large-scale source of human IF for analytical and therapeutic purposes....

  1. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus.

    Science.gov (United States)

    Balasubramaniam, Muthukumar; Ibrahim, Amr; Kim, Bong-Suk; Loesch-Fries, L Sue

    2006-11-01

    The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs. PMID:16875753

  2. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  3. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.

  4. The recombination landscape in Arabidopsis thaliana F2 populations.

    Science.gov (United States)

    Salomé, P A; Bomblies, K; Fitz, J; Laitinen, R A E; Warthmann, N; Yant, L; Weigel, D

    2012-04-01

    Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild. PMID:22072068

  5. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  6. Homeopathic Treatment of Arabidopsis thaliana Plants Infected with Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Devika Shah-Rossi

    2009-01-01

    Full Text Available Homeopathic basic research is still in the screening phase to identify promising model systems that are adapted to the needs and peculiarities of homeopathic medicine and pharmacy. We investigated the potential of a common plant-pathogen system, Arabidopsis thaliana infected with the virulent bacteria Pseudomonas syringae, regarding its response towards a homeopathic treatment. A. thaliana plants were treated with homeopathic preparations before and after infection. Outcome measure was the number of P. syringae bacteria in the leaves of A. thaliana, assessed in randomized and blinded experiments. After a screening of 30 homeopathic preparations, we investigated the effect of Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol (a homeopathic complex remedy, and Biplantol 30x on the infection rate in five or six independent experiments in total. The screening yielded significant effects for four out of 30 tested preparations. In the repeated experimental series, only the homeopathic complex remedy Biplantol induced a significant reduction of the infection rate (p = 0.01; effect size, d = 0.38. None of the other four repeatedly tested preparations (Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol 30x yielded significant effects in the overall evaluation. This phytopathological model yielded a small to medium effect size and thus might be of interest for homeopathic basic research after further improvement. Compared to Bion (a common SAR inducer used as positive control, the magnitude of the treatment effect of Biplantol was about 50%. Thus, homeopathic formulations might have a potential for the treatment of plant diseases after further optimization. However, the ecological impact should be investigated more closely before widespread application.

  7. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    Science.gov (United States)

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  8. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1 (E.C.: 4.4.1.5 and 2 (E.C.3.1.2.6, has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

  9. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  10. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chongsheng eHe

    2013-11-01

    Full Text Available Polycomb group (PcG proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb repressive complexes 1 and 2 (PRC1 and PRC2, respectively. The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli.

  11. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].

    Science.gov (United States)

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai

    2010-11-01

    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  12. Determination of Arabidopsis thaliana telomere length by PCR.

    Science.gov (United States)

    Vaquero-Sedas, María I; Vega-Palas, Miguel A

    2014-07-02

    In humans, telomere length studies have acquired great relevance because the length of telomeres has been related to natural processes like disease, aging and cancer. However, very little is known about the influence of telomere length on the biology of wild type plants. The length of plant telomeres has been usually studied by Terminal Restriction Fragment (TRF) analyses. This technique requires high amounts of tissue, including multiple cell types, which might be the reason why very little is known about the influence of telomere length on plant natural processes. In contrast, many of the human telomere length studies have focused on homogenous cell populations. Most of these studies have been performed by PCR, using telomeric degenerated primers, which allow the determination of telomere length from small amounts of human cells. Here, we have adapted the human PCR procedure to analyze the length of Arabidopsis thaliana telomeres. This PCR approach will facilitate the analysis of telomere length from low amounts of tissue. We have used it to determine that CG and non CG DNA methylation positively regulates Arabidopsis telomere length.

  13. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana

    NARCIS (Netherlands)

    Zandleven, J.S.; Sorensen, S.; Harbolt, J.; Beldman, G.; Schols, H.A.; Scheller, H.V.; Voragen, A.G.J.

    2007-01-01

    Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH)

  14. Arabidopsis thaliana and Thlaspi caerulescens respond comparably to low zinc supply

    NARCIS (Netherlands)

    Talukdar, S.; Aarts, M.G.M.

    2008-01-01

    The main objective of this research was to study the response of Arabidopsis thaliana L. and Thlaspi caerulescens J. & C. Presl to different Zn supplies. The A. thaliana plants were exposed to Zn-deficiency (0 and 0.05 ¿M Zn) and compared to the plants grown on media containing standard Zn (2 ¿M

  15. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    OpenAIRE

    Jianhua eYang; Kim eOsman; Mudassar eIqbal; Stekel, Dov J; Zewei eLuo; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa ...

  16. Inferring the Brassica rapa Interactome Using Protein–Protein Interaction Data from Arabidopsis thaliana

    OpenAIRE

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B....

  17. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  18. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds.

    Science.gov (United States)

    Yao, N; Ai, L; Dong, Y Y; Liu, X M; Wang, D Z; Wang, N; Li, X W; Wang, F W; Li, Xk; Li, H Y; Jiang, C

    2016-01-01

    Recombinant human anti-tumor necrosis factor (TNF)-α scFv-Fc was expressed in TKO mutant Arabidopsis thaliana seeds using plant-specific codons. Immunoblotting using a human IgG1 antibody detected the expression of anti-TNF-α proteins in plants. Results from qRT-PCR analysis demonstrated that the time of harvest significantly affected the protein yield and quality. Our results indicate that the Phaseolus vulgaris β-phaseolin promoter directed anti-TNF-α scFv-Fc expression in A. thaliana seeds, with a maximum yield obtained at 20-days of development. Although the yield of anti-TNF-α scFv-Fc protein was not very high, accumulation of recombinant proteins in seeds is an attractive and simple method that can be used to purify biologically active anti-TNF-α scFv-Fc. PMID:27420937

  19. AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Kinesins and kinesin-like proteins (KLPs) constitute a large family of microtubule-based motors that play important roles in many fundamental cellular and developmental processes. To date, a number of kinesins or KLPs have been identified in plants including Arabidopsis thaliana. Here, a polyclonal antibody against AtKP1 (kinesin-like protein 1 in A.thaliana) was raised by injection the expressed AtKP1 specific C-terminal polypeptides in rabbits, and immunoblot analysis was conducted with the affinity-purified anti-AtKP1 antibody. The results indicated that this antibody recognized the AtKP1 fusion proteins expressed in E. coli and proteins of ~125 kDa in the soluble fractions of Arabidopsis extracts. The molecular weight was consistent with the calculated molecular weight based on deduced amino acids sequence of AtKP1. To acquire the subcellular localization of the protein, AtKP1 in Arabidopsis root cells was observed by indirect immunofluorescence microscopy. AtKP1 was localized to particle-like organelles in interphase or dividing cells, but not to mitotic microtubule arrays. Relatively more AtKP1 was found in isolated mitochondria fraction on immunoblot of the subcellular fractions. The AtKP1 protein could not be released following a 0.6 M KI washing,indicating that AtKP1 is tightly bind to mitochondria and might function associated with this kind of organelles.

  20. Germination of arabidopsis thaliana seeds irradiated by MeV ions

    International Nuclear Information System (INIS)

    Dry seeds of Arabidopsis thaliana were irradiated with F ions and H ions with the energy range from keV to MeV, respectively. The inhibition of germination was investigated to display the influences of ion mass, energy and fluence. The results show that H ion irradiation is more effective in decreasing the germination rate than heavier F ion irradiation. After irradiation of F ions, a decrease-increase-decease type of germination rate-fluence response curve was found and the ion fluence at the peak position decreases with ion energy increase. The possible mechanism of above experimental results is discussed in this paper. (authors)

  1. Allelopathic Effects of Plant-Derived Aerosol Smoke on Seed Germination of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    The role that plant-derived smoke plays in promoting seed germination is well documented, but little is known about its ability to inhibit seed germination. To better understand this phenomenon, we tested the effects of eight aerosol smoke treatments on the Columbia-3 ecotype of non dormant Arabidopsis thaliana (L.) Heynh. seeds. Our results revealed that aerosol smoke significantly inhibits germination when seeds were exposed to prolonged periods of aerosol smoke. Short durations of smoke treatments significantly promoted the rate of germination of A. thaliana seed. We briefly discuss this dual regulation of smoke and its possible impact on conservation and restoration practices. We also propose that plant-derived smoke may be another vehicle by which allelo chemicals can be introduced into the environment.

  2. Evaluation of Seed Transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana.

    Science.gov (United States)

    de Assis Filho, F M; Sherwood, J L

    2000-11-01

    ABSTRACT The mechanism of virus transmission through seed was studied in Arabidopsis thaliana infected with Turnip yellow mosaic virus (TYMV) and Tobacco mosaic virus (TMV). Serological and biological tests were conducted to identify the route by which the viruses reach the seed and subsequently are located in the seed. Both TYMV and TMV were detected in seed from infected plants, however only TYMV was seed-transmitted. This is the first report of transmission of TYMV in seed of A. thaliana. Estimating virus seed transmission by grow-out tests was more accurate than enzyme-linked immunosorbent assay due to the higher frequency of antigen in the seed coat than in the embryo. Virus in the seed coat did not lead to seedling infection. Thus, embryo invasion is necessary for seed transmission of TYMV in A. thaliana. Crosses between healthy and virus-infected plants indicated that TYMV from either the female or the male parent could invade the seed. Conversely, invasion from maternal tissue was the only route for TMV to invade the seed. Pollination of flowers on healthy A. thaliana with pollen from TYMV-infected plants did not result in systemic infection of healthy plants, despite TYMV being carried by pollen to the seed.

  3. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  4. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Z2 snoRNA gene cluster,consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the Z2 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the intergenic spacers of the gene cluster encode the 'hairpin' structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  5. Individual Leaf Development in Arabidopsis thaliana: a Stable Thermal‐time‐based Programme

    OpenAIRE

    GRANIER, CHRISTINE; Massonnet, Catherine; TURC, OLIVIER; Muller, Bertrand; Chenu, Karine; Tardieu, François

    2002-01-01

    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non‐crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant‐to‐plant variability in the studied isogenic line of the Columbia ecotype: 100‐fold differences in leaf area among plants sown on the same date ...

  6. Arabidopsis thaliana mTERF proteins: evolution and functional classification

    Directory of Open Access Journals (Sweden)

    Tatjana eKleine

    2012-10-01

    Full Text Available Organellar gene expression (OGE is crucial for plant development, photosynthesis and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes - especially the duplicated genes - display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the chloroplast and chloroplast-associated clusters are principally involved in chloroplast gene expression, embryogenesis and protein catabolism, while representatives of the mitochondrial cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the mitochondrion-associated cluster and the low expression group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression, mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear

  7. Noise-plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana.

    Science.gov (United States)

    Hirao, Koudai; Nagano, Atsushi J; Awazu, Akinori

    2015-12-21

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions (called gene expression "noise" or phenotype "fluctuation"). In yeast and Escherichia coli, positive correlations have been found between such gene expression noise and "plasticity" with environmental variations. To determine the universality of such correlations in both unicellular and multicellular organisms, we focused on the relationships between gene expression "noise" and "plasticity" in Arabidopsis thaliana, a multicellular model organism. In recent studies on yeast and E. coli, only some gene groups with specific properties of promoter architecture, average expression levels, and functions exhibited strong noise-plasticity correlations. However, we found strong noise-plasticity correlations for most gene groups in Arabidopsis; additionally, promoter architecture, functional essentiality of genes, and circadian rhythm appeared to have only a weak influence on the correlation strength. The differences in the characteristics of noise-plasticity correlations may result from three-dimensional chromosomal structures and/or circadian rhythm.

  8. Hydrogen Sulfide Regulates Ethylene-induced Stomatal Closure in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhihui Hou; Lanxiang Wang; Jing Liu; Lixia Hou; Xin Liu

    2013-01-01

    Hydrogen sulfide (H2S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years,but its function in stomatal movement is unclear.In plants,H2S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes).AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh.plants were generated and used to investigate gene expression patterns,and results showed that AtD-/L-CDes can be expressed in guard cells.We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP,and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm,respectively.The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure.Among these factors,ACC,a precursor of ethylene,has the most significant effect,which indicates that the H2S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure.Meanwhile,H2S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis.Ethylene treatment caused an increase of H2S production and of AtD-/L-CDes activity in Arabidopsis leaves.AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however,the effect was not observed in the Atd-cdes and Atl-cdes mutants.In conclusion,our results suggest that the D-/L-CDes-generated H2S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.

  9. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jixian Zhai

    2008-04-01

    Full Text Available Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC, a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42 were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.

  10. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    Science.gov (United States)

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  11. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    Science.gov (United States)

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  12. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  13. Properties of serine: glyoxylate aminotransferase purified from Arabidopsis thaliana leaves

    Institute of Scientific and Technical Information of China (English)

    Maria Kendziorek; Andrzej Paszkowski

    2008-01-01

    The photorespiratory enzyme L-serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The final enzyme was approximately 80% pure as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis.The molecular mass estimated by gel filtration chromatography on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa,42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum Ph value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55% of that observed with L-serine and glyoxylate, The lower Km value (1.25 Mm) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approximately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 Mm for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1: 7 for the recombinant SGAT

  14. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.

    Science.gov (United States)

    Jacques, Silke; Ghesquière, Bart; De Bock, Pieter-Jan; Demol, Hans; Wahni, Khadija; Willems, Patrick; Messens, Joris; Van Breusegem, Frank; Gevaert, Kris

    2015-05-01

    Reactive oxygen species such as hydrogen peroxide can modify proteins via direct oxidation of their sulfur-containing amino acids, cysteine and methionine. Methionine oxidation, studied here, is a reversible posttranslational modification that is emerging as a mechanism by which proteins perceive oxidative stress and function in redox signaling. Identification of proteins with oxidized methionines is the first prerequisite toward understanding the functional effect of methionine oxidation on proteins and the biological processes in which they are involved. Here, we describe a proteome-wide study of in vivo protein-bound methionine oxidation in plants upon oxidative stress using Arabidopsis thaliana catalase 2 knock-out plants as a model system. We identified over 500 sites of oxidation in about 400 proteins and quantified the differences in oxidation between wild-type and catalase 2 knock-out plants. We show that the activity of two plant-specific glutathione S-transferases, GSTF9 and GSTT23, is significantly reduced upon oxidation. And, by sampling over time, we mapped the dynamics of methionine oxidation and gained new insights into this complex and dynamic landscape of a part of the plant proteome that is sculpted by oxidative stress.

  15. Molecule mechanism of stem cells in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wenjin Zhang

    2014-01-01

    Full Text Available Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  16. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.

    Science.gov (United States)

    Geisler-Lee, Jane; Wang, Qiang; Yao, Ying; Zhang, Wen; Geisler, Matt; Li, Kungang; Huang, Ying; Chen, Yongsheng; Kolmakov, Andrei; Ma, Xingmao

    2013-05-01

    The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.

  17. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant. PMID:27419873

  18. Internet Resources for Gene Expression Analysis in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2008-09-01

    The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant((R)) databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments. PMID:19506727

  19. The Simultaneous Repression of CCR and CAD, Two Enzymes of the Lignin Biosynthetic Pathway, Results in Sterility and Dwarfism in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Johanne Thévenin; Brigitte Pollet; Bruno Letarnec; Luc Saulnier; Lionel Gissot; Alessandra Maia-Grondard; Catherine Lapierre; Lise Jouanina

    2011-01-01

    Cinnamoyl CoA reductase(CCR)and cinnamyl alcohol dehydrogenase(CAD)catalyze the last steps of monolignol biosynthesis.In Arabidopsis,one CCR gene(CCR1,At1g15950)and two CAD genes(CAD C At3g19450 and CAD D At4g34230)are involved in this pathway.A triple cad c cad d ccr1 mutant,named ccc,was obtained.This mutant displays a severe dwarf phenotype and male sterility.The lignin content in ccc mature stems is reduced to 50% of the wild-type level.In addition,stem lignin structure is severely affected,as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde,sinapaldehyde,and ferulic acid.Male sterility is due to the lack of lignification in the anther endothecium,which causes the failure of anther dehiscence and of pollen release.The ccc hypolignified stems accumulate higher amounts of flavonol glycosides,sinapoyl malate and feruloyl malate,which suggests a redirection of the phenolic pathway.Therefore,the absence of CAD and CCR,key enzymes of the monolignol pathway,has more severe consequences on the phenotype than the individual absence of each of them.Induction of another CCR(CCR2,At1g80820)and another CAD(CAD1,At4g39330)does not compensate the absence of the main CCR and CAD activities.This lack of CCR and CAD activities not only impacts lignification,but also severely affects the development of the plants.These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.

  20. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  1. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  2. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa

    Directory of Open Access Journals (Sweden)

    Levy Maggie

    2005-12-01

    Full Text Available Abstract Background Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. Results We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3 and frequency of serine residues (~11%. We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Conclusion Comparative phylogenetic analyses indicate that the major IQD gene lineages

  3. Affinity Purification of O-Acetylserine(thiollyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Giovanna Salbitani

    2014-08-01

    Full Text Available In the unicellular green alga Chlorella sorokiniana (211/8 k, the protein O-acetylserine(thiollyase (OASTL, representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32–34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species.

  4. An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data

    Science.gov (United States)

    Mishra, Hrishikesh; Singh, Nitya; Misra, Krishna; Lahiri, Tapobrata

    2011-01-01

    Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by genetic algorithm was employed to predict the class of data with a window size of 41. A dataset comprising of 2992 data vectors representing both promoter and non-promoter regions, chosen randomly from probe intensity vectors for whole genome of Arabidopsis thaliana generated through tilling microarray technique was used. The classifier model shows prediction accuracy of 69.73% and 65.36% on training and validation sets, respectively. Further, a concept of distance based class membership was used to validate reliability of classifier, which showed promising results. The study shows the usability of micro-array probe intensities to predict the promoter regions in eukaryotic genomes. PMID:21887014

  5. Spatial relationship between chromosomal domains in diploid and autotetraploid Arabidopsis thaliana nuclei.

    Science.gov (United States)

    Sas-Nowosielska, H; Bernas, T

    2016-04-25

    Polyploids constitute more than 80% of angiosperm plant species. Their DNA content is often further increased by endoreplication, which occurs as a part of cell differentiation. Here, we explore the relationship between 3D chromatin architecture, number of genome copies and their origin in the model plant, Arabidopsis thaliana. Spatial proximity between pericentromeric, interstitial and subtelomeric domains of chromosomes 1 and 4 was quantified over a range of distances. The results indicate that average nuclear volume as well as chromatin density increase with the genome copy number. Similar dependence is observed when association of homologous chromosomes (in 2C/ endopolyploid nuclei) and sister chromatid separation (in endopolyploid nuclei) is studied. Moreover, clusters of chromosomal domains are detectable at the spatial scale above microscopy resolution. Subtelomeric, interstitial and pericentromeric chromosomal domains are affected to different extent by these processes, which are modulated by endopolyploidy. This factor influences fusion of heterochromatin as well. Nonetheless, local chromatin architecture of Arabidopsis thaliana depends mainly on endopolyploidy level, and to lesser extend on polyploidy. PMID:27310308

  6. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana.

    Science.gov (United States)

    Onouchi, H; Nishihama, R; Kudo, M; Machida, Y; Machida, C

    1995-06-25

    Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic beta-glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.

  7. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  8. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natacha Bodenhausen

    Full Text Available Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root and habitat (epiphytes vs endophytes structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024, while the reverse is true for the leaves (P = 0.032. Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001. The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.

  9. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  10. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides.

  11. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nair Prasanth

    2012-11-01

    Full Text Available Abstract Background We have previously shown that lipophilic components (LPC of the brown seaweed Ascophyllum nodosum (ANE improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5% in comparison with untreated plants. A total of 463 genes (2% were up regulated while 650 genes (3% were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.

  12. The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ting; LIN Jie; SHAO Xue-feng; OU Xiao-ming; WANG Zong-hua; LU Guo-dong

    2009-01-01

    Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection.

  13. The Hidden Geometries of the Arabidopsis thaliana Epidermis

    KAUST Repository

    Staff, Lee

    2012-09-11

    The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 ?m2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length:width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area:perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT) were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5°) for the largest angles and 110° (± 5°) for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (?500 ?m2) tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of \\'geometrical rules\\'. © 2012 Staff et al.

  14. The hidden geometries of the Arabidopsis thaliana epidermis.

    Directory of Open Access Journals (Sweden)

    Lee Staff

    Full Text Available The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col. adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 µm(2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length:width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area:perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5° for the largest angles and 110° (± 5° for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (≥ 500 µm(2 tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of 'geometrical rules'.

  15. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana *

    OpenAIRE

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S; Maxwell, Anthony

    2015-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase ...

  16. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    Science.gov (United States)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  17. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  18. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait.

    Science.gov (United States)

    Iakovidis, Michail; Teixeira, Paulo J P L; Exposito-Alonso, Moises; Cowper, Matthew G; Law, Theresa F; Liu, Qingli; Vu, Minh Chau; Dang, Troy Minh; Corwin, Jason A; Weigel, Detlef; Dangl, Jeffery L; Grant, Sarah R

    2016-09-01

    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.

  19. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  20. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  1. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  2. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    Directory of Open Access Journals (Sweden)

    Vaibhav Bhardwaj

    Full Text Available The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  3. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  4. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  5. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    OpenAIRE

    Fridborg, I.; Johansson, A; Lagensjo, J.; Leelarasamee, N.; Floková, K. (Kristýna); Tarkowská, D. (Danuše); Meijer, J.; Bejai, S.

    2013-01-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants we...

  6. The control of starch degradation in Arabidopsis thaliana leaves at night

    OpenAIRE

    Feike, Doreen

    2013-01-01

    The aim of this work was to understand how Arabidopsis thaliana plants control starch degradation at night. Starch is the major energy reserve in Arabidopsis. It is broken down at night to maintain growth and metabolism of the plant, when photosynthesis is not possible. The rate of starch degradation follows a linear pattern and is matched to the length of the night period such that almost all starch is exhausted by dawn. The mechanisms and the proteins involved in controlling ...

  7. Arabidopsis CDS blastp result: AK073532 [KOME

    Lifescience Database Archive (English)

    Full Text Available ical to ARL2 G-protein (Halimasch; HAL; TITAN5) GI:20514265 from [Arabidopsis thaliana]; identical to cDNA A...AK073532 J033046D12 At2g18390.1 ADP-ribosylation factor-like protein 2 (ARL2) ident

  8. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  9. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  10. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  11. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  12. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  13. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  14. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  15. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  16. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  17. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  18. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  19. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  20. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  1. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  2. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  3. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  4. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  7. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  8. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  9. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  10. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  11. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  12. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  13. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  14. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  15. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  16. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  17. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  18. Arabidopsis CDS blastp result: AK241312 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241312 J065141L09 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 3e-40 ...

  19. Arabidopsis CDS blastp result: AK243352 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243352 J100060L07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 1e-28 ...

  20. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  1. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  2. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  3. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  4. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  5. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  6. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  7. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  8. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  9. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  10. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  11. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  12. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  13. Arabidopsis CDS blastp result: AK242807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242807 J090060H17 At5g37500.1 68418.m04516 guard cell outward rectifying K+ chann...el (GORK) identical to guard cell outward rectifying K+ channel [Arabidopsis thaliana] gi|11414742|emb|CAC17

  14. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 1e-151 ...

  15. Arabidopsis CDS blastp result: AK242797 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-23 ...

  16. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-12 ...

  17. Arabidopsis CDS blastp result: AK243428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243428 J100067L15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  18. Arabidopsis CDS blastp result: AK288699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288699 J090061C22 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  19. Arabidopsis CDS blastp result: AK243271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243271 J100049K04 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 4e-35 ...

  20. Arabidopsis CDS blastp result: AK241812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241812 J065210K15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 1e-22 ...

  1. Arabidopsis CDS blastp result: AK241549 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241549 J065176M15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-32 ...

  2. Arabidopsis CDS blastp result: AK241615 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241615 J065186D02 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-35 ...

  3. Arabidopsis CDS blastp result: AK288487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288487 J090040H24 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 5e-37 ...

  4. Arabidopsis CDS blastp result: AK287469 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287469 J043021L20 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-36 ...

  5. Arabidopsis CDS blastp result: AK241370 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241370 J065154C10 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-31 ...

  6. Arabidopsis CDS blastp result: AK288415 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288415 J090031E07 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-37 ...

  7. Arabidopsis CDS blastp result: AK240830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240830 J065014C16 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  8. Arabidopsis CDS blastp result: AK121431 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121431 J023138G19 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  9. Arabidopsis CDS blastp result: AK064987 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064987 J013001D03 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  10. Arabidopsis CDS blastp result: AK241627 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241627 J065187G05 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  11. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  12. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  13. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  14. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  15. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  16. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  17. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  18. Arabidopsis CDS blastp result: AK072218 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072218 J013167O21 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 1e-150 ...

  19. Arabidopsis CDS blastp result: AK287576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287576 J065037D19 At1g28300.1 68414.m03473 transcriptional factor B3 family protein / leaf...y cotyledon 2 (LEC2) nearly identical to LEAFY COTYLEDON 2 [Arabidopsis thaliana] GI:15987516; contains Pfam profile PF02362: B3 DNA binding domain 5e-13 ...

  20. Arabidopsis CDS blastp result: AK243493 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243493 J100074A10 At2g23380.1 68415.m02792 curly leaf protein (CURLY LEAF) / poly...comb-group protein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 0.0 ...

  1. Arabidopsis CDS blastp result: AK111743 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111743 J023052J10 At2g23380.1 curly leaf protein (CURLY LEAF) / polycomb-group pr...otein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 3e-22 ...

  2. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  3. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  4. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  5. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  6. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  8. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  9. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  10. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  11. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  12. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  13. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  14. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  15. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  16. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  17. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  18. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  19. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  20. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  2. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  3. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  4. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  5. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  6. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  7. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  8. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  9. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  10. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  12. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  13. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  14. Arabidopsis CDS blastp result: AK119521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119521 001-202-D09 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 1e-173 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  15. Arabidopsis CDS blastp result: AK108403 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108403 002-142-G06 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 5e-36 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  16. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  17. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  18. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  19. Arabidopsis CDS blastp result: AK105299 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105299 001-116-H10 At1g72660.1 developmentally regulated GTP-binding protein, put...ative very strong similarity to developmentally regulated GTP binding protein (DRG1) [Arabidopsis thaliana] GI:2345150 0.0 ...

  20. Arabidopsis CDS blastp result: AK111540 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111540 J013037H01 At1g72660.1 developmentally regulated GTP-binding protein, puta...tive very strong similarity to developmentally regulated GTP binding protein (DRG1) [Arabidopsis thaliana] GI:2345150 0.0 ...

  1. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  2. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 1e-41 ...

  3. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 8e-22 ...

  4. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-27 ...

  5. Arabidopsis CDS blastp result: AK121171 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121171 J023081C04 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-37 ...

  6. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-56 ...

  7. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-32 ...

  8. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-28 ...

  9. Arabidopsis CDS blastp result: AK069331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069331 J023019N01 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-58 ...

  10. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  11. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-18 ...

  12. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-15 ...

  13. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 6e-43 ...

  14. Arabidopsis CDS blastp result: AK105724 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  15. Arabidopsis CDS blastp result: AK072243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  16. Arabidopsis CDS blastp result: AK287911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287911 J065213B08 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 3e-85 ...

  17. Arabidopsis CDS blastp result: AK318551 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318551 J075138M12 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 4e-27 ...

  18. Arabidopsis CDS blastp result: AK241823 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241823 J065212G21 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 1e-150 ...

  19. Arabidopsis CDS blastp result: AK243378 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243378 J100063A13 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 5e-18 ...

  20. Arabidopsis CDS blastp result: AK288351 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288351 J090024C17 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 2e-24 ...

  1. Arabidopsis CDS blastp result: AK242252 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242252 J075182G16 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 6e-88 ...

  2. Arabidopsis CDS blastp result: AK243008 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243008 J090097H12 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  3. Arabidopsis CDS blastp result: AK242849 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242849 J090072M15 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  4. Arabidopsis CDS blastp result: AK243505 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243505 J100074N19 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  5. Arabidopsis CDS blastp result: AK288959 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288959 J090084E19 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  6. Arabidopsis CDS blastp result: AK287577 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287577 J065037N08 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  7. Arabidopsis CDS blastp result: AK288072 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288072 J075161I05 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  8. Arabidopsis CDS blastp result: AK065706 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065706 J013038P03 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted (...GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; cont

  9. Arabidopsis CDS blastp result: AK120746 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120746 J023004K12 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted (...GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; cont

  10. Arabidopsis CDS blastp result: AK243178 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243178 J100036P15 At5g48030.1 68418.m05935 DNAJ heat shock protein, mitochondrially targeted... (GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:2

  11. Arabidopsis CDS blastp result: AK058985 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058985 001-020-E06 At5g48030.1 DNAJ heat shock protein, mitochondrially targeted ...(GFA2) 99.8% identical to mitochondrially targeted DnaJ protein GFA2 [Arabidopsis thaliana] GI:21429604; con

  12. Arabidopsis CDS blastp result: AK103126 [KOME

    Lifescience Database Archive (English)

    Full Text Available 0S proteasome beta subunit PBB1 (PBB1) GB:AAC32066 [Arabidopsis thaliana] (Genetics 149 (2), 677-692 (1998)); contains Pfam profile: PF00227 proteasome A-type and B-type; 1e-129 ...

  13. Arabidopsis CDS blastp result: AK288349 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288349 J090023P19 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting... germination 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 1e-23 ...

  14. Arabidopsis CDS blastp result: AK068893 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068893 J023001G24 At4g15090.1 far-red impaired response protein (FAR1) / far-red impaired... responsive protein (FAR1) identical to far-red impaired response protein FAR1 [Arabidopsis thaliana] gi|5764395|gb|AAD51282; contains Pfam:PF03101 domain: FAR1 family 1e-39 ...

  15. Arabidopsis CDS blastp result: AK241728 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241728 J065199H08 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 3e-36 ...

  16. Arabidopsis CDS blastp result: AK240645 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240645 J023003B03 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 1e-17 ...

  17. Arabidopsis CDS blastp result: AK243302 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243302 J100054J17 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-82 ...

  18. Arabidopsis CDS blastp result: AK241015 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241015 J065054A13 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 8e-37 ...

  19. Arabidopsis CDS blastp result: AK288091 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288091 J075184D14 At1g50310.1 68414.m05640 monosaccharide transporter (STP9) iden...tical to monosaccharide transporter STP9 protein [Arabidopsis thaliana] GI:15487254; contains Pfam profile PF00083: major facilitator superfamily protein 4e-29 ...

  20. Arabidopsis CDS blastp result: AK241402 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241402 J065159A02 At4g19070.1 68417.m02810 cadmium-responsive protein / cadmium i...nduced protein (AS8) identical to cadmium induced protein AS8 SP:P42735 from [Arabidopsis thaliana] 3e-11 ...

  1. Arabidopsis CDS blastp result: AK110694 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110694 002-170-A08 At5g59560.2 sensitivity to red light reduced protein (SRR1) id...entical to sensitivity to red light reduced protein [Arabidopsis thaliana] GI:25527089; supporting cDNA gi|25527088|gb|AY127047.1| 1e-18 ...

  2. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  3. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  4. Arabidopsis CDS blastp result: AK287566 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287566 J065027L04 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 2e-77 ...

  5. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  6. Arabidopsis CDS blastp result: AK289209 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289209 J100058I16 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-12 ...

  7. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.1 68418.m02891 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  8. Arabidopsis CDS blastp result: AK243061 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243061 J100014C18 At5g24520.3 68418.m02893 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 1e-102 ...

  9. Arabidopsis CDS blastp result: AK243285 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243285 J100051N01 At1g34790.1 68414.m04337 transparent testa 1 protein (TT1) / zi...nc finger (C2H2 type) protein TT1 identical to transparent testa 1 GI:18253279 from [Arabidopsis thaliana]; contains Pfam profile PF00096: Zinc finger, C2H2 type 1e-24 ...

  10. Arabidopsis CDS blastp result: AK288081 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288081 J075172F18 At5g24520.2 68418.m02892 transparent testa glabra 1 protein (TTG1) identical to transpar...ent testa glabra 1 (Ttg1) protein (GI:10177852) {Arabidopsis thaliana}; contains Pfam PF00400: WD domain, G-beta repeat (4 copies,1 weak); 4e-13 ...

  11. Arabidopsis CDS blastp result: AK100613 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100613 J023107M18 At4g10180.1 light-mediated development protein 1 / deetiolated1... (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  12. Arabidopsis CDS blastp result: AK058683 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058683 001-019-A06 At4g10180.1 light-mediated development protein 1 / deetiolated...1 (DET1) identical to Light-mediated development protein DET1 (Deetiolated1) (Swiss-Prot:P48732) [Arabidopsis thaliana] 0.0 ...

  13. Arabidopsis CDS blastp result: AK240809 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240809 J065006K12 At4g17030.1 68417.m02569 expansin-related identical to SWISS-PROT:O23547 expansi...n-related protein 1 precursor (At-EXPR1)[Arabidopsis thaliana]; related to expansins, http://www.bio.psu.edu/expansins/ 2e-21 ...

  14. Arabidopsis CDS blastp result: AK107208 [KOME

    Lifescience Database Archive (English)

    Full Text Available Ala hydrolase, putative virtually identical to gr1-protein from [Arabidopsis thaliana] GI:3559811; similar t...AK107208 002-125-B11 At1g44350.1 IAA-amino acid hydrolase 6, putative (ILL6) / IAA-

  15. Arabidopsis CDS blastp result: AK059353 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059353 001-026-D01 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  16. Arabidopsis CDS blastp result: AK066771 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066771 J013083K07 At1g01170.1 ozone-responsive stress-related protein, putative s...imilar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 2e-29 ...

  17. Arabidopsis CDS blastp result: AK059160 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059160 001-023-D05 At1g01170.1 ozone-responsive stress-related protein, putative ...similar to stress-related ozone-induced protein AtOZI1 (GI:790583) [Arabidopsis thaliana]; contains 1 predicted transmembrane domain; 3e-28 ...

  18. Arabidopsis CDS blastp result: AK242200 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242200 J075166M12 At3g20740.1 68416.m02624 fertilization-independent endosperm pr...otein (FIE) contains 6 WD-40 repeats (PF00400); identical to fertilization-independent endosperm protein (GI:4567095) [Arabidopsis thaliana] 1e-142 ...

  19. Arabidopsis CDS blastp result: AK111761 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111761 J023058F21 At3g20740.1 fertilization-independent endosperm protein (FIE) c...ontains 6 WD-40 repeats (PF00400); identical to fertilization-independent endosperm protein (GI:4567095) [Arabidopsis thaliana] 1e-158 ...

  20. Arabidopsis CDS blastp result: AK243221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243221 J100043L21 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 5e-40 ...

  1. Arabidopsis CDS blastp result: AK288592 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288592 J090051B06 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 1e-145 ...

  2. Arabidopsis CDS blastp result: AK243602 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243602 J100084P18 At5g15410.2 68418.m01803 cyclic nucleotide-regulated ion channel / cyclic... nucleotide-gated channel (CNGC2) identical to cyclic nucleotide-gated cation channel GI:3894399 from [Arabidopsis thaliana] 2e-98 ...

  3. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 9e-20 ... ...AK241942 J075088H12 At2g24450.1 68415.m02922 fasciclin-like arabinogalactan family

  4. Arabidopsis CDS blastp result: AK121828 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121828 J033099G20 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like arab...inogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-87 ...

  5. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-21 ... ...AK241942 J075088H12 At3g12660.1 68416.m01578 fasciclin-like arabinogalactan family

  6. Arabidopsis CDS blastp result: AK108772 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108772 002-150-H07 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 1e-35 ...

  7. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857 2e-15 ... ...AK241942 J075088H12 At4g31370.1 68417.m04448 fasciclin-like arabinogalactan family

  8. Arabidopsis CDS blastp result: AK241942 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 1e-21 ... ...AK241942 J075088H12 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  9. Arabidopsis CDS blastp result: AK109762 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109762 002-146-G11 At3g12660.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan-protein 1 [Arabidopsis thaliana] gi|13377776|gb|AAK20857; 3e-24 ...

  10. Arabidopsis CDS blastp result: AK289211 [KOME

    Lifescience Database Archive (English)

    Full Text Available protein similar to fasciclin-like arabinogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 4e-90 ... ...AK289211 J100060N06 At3g46550.1 68416.m05053 fasciclin-like arabinogalactan family

  11. Arabidopsis CDS blastp result: AK119375 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119375 001-132-A06 At3g46550.1 fasciclin-like arabinogalactan family protein similar to fasciclin-like ara...binogalactan protein FLA8 [Arabidopsis thaliana] gi|10880493|gb|AAG24276 2e-85 ...

  12. Arabidopsis CDS blastp result: AK241364 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241364 J065152E11 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-20 ...

  13. Arabidopsis CDS blastp result: AK287447 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287447 J043016O04 At2g46590.1 68415.m05811 Dof zinc finger protein DAG2 / Dof affecting germination... 2 (DAG2) identical to SP|Q9ZPY0 DOF zinc finger protein DAG2 (Dof affecting germination 2) {Arabidopsis thaliana} 2e-30 ...

  14. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 3e-23 ...

  15. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-16 ...

  16. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  17. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-17 ...

  18. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-40 ...

  19. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-29 ...

  20. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 8e-38 ...

  1. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  2. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-24 ...

  3. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair elongation (IRE) / protein kin...ase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 0.0 ...

  4. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 9e-31 ...

  5. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-21 ...

  6. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-23 ...

  7. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-35 ...

  8. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  9. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  10. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 6e-29 ...

  11. Arabidopsis CDS blastp result: AK100867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100867 J023124E13 At2g29640.1 josephin family protein contains Pfam domain PF02099: Jose...phin; similar to Josephin-like protein (Swiss-Prot:O82391) [Arabidopsis thaliana] 7e-59 ...

  12. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata

    Directory of Open Access Journals (Sweden)

    de la Chaux Nicole

    2012-02-01

    Full Text Available Abstract Background Transposable elements (TEs are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs.

  13. Inferring the Brassica rapa Interactome Using Protein-Protein Interaction Data from Arabidopsis thaliana.

    Science.gov (United States)

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F Chris H

    2012-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability. PMID:23293649

  14. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Jianhua eYang

    2013-01-01

    Full Text Available Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i A. thaliana PPI data from three major databases, BioGRID, IntAct and TAIR. (ii ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i ortholog predictions, (ii identification of gene duplication based on synteny and collinearity, and (iii BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability.

  15. Requirement of KNAT1/BP for the Development of Abscission Zones in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qun Wang; Wei-Hui Xu; Li-Geng Ma; Zhi-Ming Fu; Xing-Wang Deng; Jia-Yang Li; Yong-Hong Wang

    2006-01-01

    The KNAT1 gene is a member of the Class Ⅰ KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana.Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques,and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Microarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.

  16. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  17. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  18. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum)

    Institute of Scientific and Technical Information of China (English)

    Abdul Qayyum RAO; Muhammad IRFAN; Zafar SALEEM; Idrees Ahmad NASIR; Sheikh RIAZUDDIN; Tayyab HUSNAIN

    2011-01-01

    The phytochrome B (PHYB) gene of Arabidopsis thaliana was introduced into cotton through Agrobacterium tumefaciens. Integration and expression of PHYB gene in cotton plants were confirmed by molecular evidence.Messenger RNA (mRNA) expression in one of the transgenic lines, QCC11, was much higher than those of control and other transgenic lines. Transgenic cotton plants showed more than a two-fold increase in photosynthetic rate and more than a four-fold increase in transpiration rate and stomatal conductance. The increase in photosynthetic rate led to a 46% increase in relative growth rate and an 18% increase in net assimilation rate. Data recorded up to two generations,both in the greenhouse and in the field, revealed that overexpression ofArabidopsis thaliana PHYB gene in transgeniccotton plants resulted in an increase in the production of cotton by improving the cotton plant growth, with 35% more yield. Moreover, the presence of the Arabidopsis thaliana PHYB gene caused pleiotropic effects like semi-dwarfism,decrease in apical dominance, and increase in boll size.

  19. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  20. Impact of elevated CO2 on growth and development of Arabidopsis thaliana L

    NARCIS (Netherlands)

    van der Kooij, T.A W; De Kok, L.J.

    1996-01-01

    After germination, Arabidopsis thaliana L (cv. Landsberg) was grown at 350 mu l l(-1) (control) or 700 mu l l(-1) (elevated) CO2. Total shoot biomass at the end of the vegetative growth period was increased by 56% due to a short transient stimulation of the relative growth rate by elevated CO2 at th

  1. Sucrose regulated translational control of bZip genes in Arabidopsis thaliana

    NARCIS (Netherlands)

    Rahmani, F.

    2007-01-01

    Sucrose can translationally regulate the expression of bZIP11 and four other S-class bZip transcription factors in Arabidopsis thaliana. Sequence encoding 28 amino acids (SC-peptide) in the leader of the bZIP11 is sufficient to mediate sucrose induced translational control. A model proposes that suc

  2. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.These compounds are known to regulate various facets of plant growth and differentiation, so mutants lacking one

  3. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo;

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (J...

  4. Effects of Preconditioning and Temperature During Germination of 73 Natural Accessions of Arabidopsis thaliana

    OpenAIRE

    Schmuths, Heike; Bachmann, Konrad; WEBER, W. EBERHARD; Horres, Ralf; Matthias H Hoffmann

    2006-01-01

    • Background and Aims Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined.

  5. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    Science.gov (United States)

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  6. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana

    Science.gov (United States)

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen was still elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 8...

  7. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  8. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana

    NARCIS (Netherlands)

    Yakushevska, AE; Jensen, PE; Keegstra, W; van Roon, H; Scheller, HV; Boekema, EJ; Dekker, JP; Yakushevska, Alevtyna E.; Jensen, Poul E.; Scheller, Henrik V.; Dekker, Jan P.

    2001-01-01

    The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSI

  9. Study of natural variation for Zn deficiency tolerance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Campos, A.C.A.L.

    2015-01-01

    English summary Zinc is an important structural component and co-factor of proteins in all living organisms. The model plant species for genetic and molecular studies, Arabidopsis thaliana, expresses more than 2,000 proteins with one or more Zn binding domains. Low Zn availability i

  10. Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis thaliana to External Potassium Supply

    NARCIS (Netherlands)

    Armengaud, Patrick; Breitling, Rainer; Amtmann, Anna

    2010-01-01

    The ability to adjust growth and development to the availability of mineral nutrients in the soil is an essential life skill of plants but the underlying signaling pathways are poorly understood. In Arabidopsis thaliana, shortage of potassium (K) induces a number of genes related to the phytohormone

  11. An En/Spm based transposable element system for gene isolation in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Aarts, M.G.M.

    1996-01-01

    At the start of the research described in this thesis, the main aim was to develop, study and apply an efficient En/Spm-I/dSpm based transposon tagging system in Arabidopsis thaliana to generate tagged mutants and to provide insights in the possibilities for future applications of such a transposon

  12. Regeneration from leaf protoplasts of Arabidopsis thaliana ecotype estland.

    Science.gov (United States)

    Gandhi, R; Khurana, P

    2001-07-01

    Protoplasts (2 x 10(7)/g fresh wt) were isolated from leaves of A. thaliana ecotype estland, with a viability of more than 90%. Protoplasts cultured in calcium alginate beads or layers showed division while culture in liquid or agarose beads failed to elicit any division. Effect of culture density showed highest frequency of division occurring at 5 x 10(5) while no division was seen when cultured at a density of 5 x 10(4). Culture in MS medium resulted in higher division frequency and better sustenance of microcolonies as compared to B5 medium. Under optimized conditions, macrocolonies were formed at a frequency of 1.8%. Shoot regeneration was seen in 50% of microcalli transferred to shoot induction medium for regeneration. Shoots were rooted and plantlets transferred to pots. The plants produced flowers and were fertile. PMID:12019766

  13. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Science.gov (United States)

    Maldonado-González, M. Mercedes; Bakker, Peter A. H. M.; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  14. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7.

    Science.gov (United States)

    Maldonado-González, M Mercedes; Bakker, Peter A H M; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  15. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Science.gov (United States)

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  16. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bernier Georges

    2003-01-01

    Full Text Available Abstract Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes.

  17. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  18. Identification of quantitative trait loci controlling high Calcium response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wenlong Li

    Full Text Available Natural variation for primary root growth response to high Ca stress in Arabidopsis thaliana was studied by screening a series of accessions (ecotypes under high Calcium (40 mM CaCl2 conditions. The genetic basis of this variation was further investigated by QTL analysis using recombinant inbred lines from Landsberg erecta (Ler × Cape Verde Islands (Cvi cross. Four QTLs were identified in chromosome 1, 2 and 5,and named response to high Calcium (RHCA 1-4. The three QTLs (RHCA1, RHCA2 and RHCA4 were further confirmed by analysis of near isogenic lines harboring Cvi introgression fragments in Ler background. Real-time PCR analysis showed that several genes associated with high Ca response including SMT1 and XHT25 have changed expression pattern between Ler and near isogenic lines. These results were useful for detecting molecular mechanisms of plants for high Ca adaption.

  19. The initiation and connection of vessel elements in Arabidopsis thaliana (Brassicaceae) seedlings

    Institute of Scientific and Technical Information of China (English)

    BI Dongling; WANG Mao; KONG Ling'an; ZHOU Shumin

    2005-01-01

    This research used confocal laser scanning microscopy to examine the initiation and connection of vessel elements in Arabidopsis thaliana (L.) Heynh seedlings. The results indicated that vessel elements differentiated first in the lower portion of cotyledon-node zone (CNZ) 2 h after germination, and then extended downwards to the hypocotyl and root and upwardly to the middle portion of CNZ. 10 h after germination, vessel elements developed in the lower portion of cotyledon blade, the second initiating site, connecting gradually with that initiated in cotyledon node and forming pinnate-marginal venation. The connection of vessel elements occurred between the upper portions of CNZ and epicotyl-shoot zone 7 d after germination. By then, the complete connection of vessel elements in the axial and lateral organs had formed.

  20. A Direct Screening Procedure for Gravitropism Mutants in Arabidopsis thaliana (L.) Heynh. 1

    Science.gov (United States)

    Bullen, Bertha L.; Best, Thérèse R.; Gregg, Mary M.; Barsel, Sara-Ellen; Poff, Kenneth L.

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  1. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Bullen, B L; Best, T R; Gregg, M M; Barsel S-E; Poff, K L

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  2. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.

    Science.gov (United States)

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E; Segerson, Nicholas A; Kannan, Latha; Mor, Tsafrir S

    2013-04-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  3. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  4. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT......[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  5. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...... be expected in the transgenic lines relative to the wild type. In practice the reductions achieved were highly variable both between lines and within a given line on different occasions when the plants were grown. Possible reasons for this variability are discussed with reference to current models of gene...... silencing. The metabolite profiles of the transgenic lines were examined for unintended effects of the modification. An apparently major effect on the glucosinolate composition was shown to result from an unusual genetic variation in the ecotype and not from the modification. The modification did produce...

  6. Genomic Conflicts that Cause Pollen Mortality and Raise Reproductive Barriers in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Matthieu; Durand, Stéphanie; Pluta, Natacha; Gobron, Nicolas; Botran, Lucy; Ricou, Anthony; Camilleri, Christine; Budar, Françoise

    2016-07-01

    Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in the offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using both classical and quantitative genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility (CMS) controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in hybrids with either cytoplasm. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e., CMS nuclear determinants and pollen killers. Furthermore, natural variation at these loci in A. thaliana is associated with different male-sterility phenotypes in intraspecific hybrids. Our results suggest that the genomic conflicts that underlie segregation distorters and CMS can concurrently lead to reproductive barriers between distant strains within a species. This study provides a new framework for identifying molecular mechanisms and the evolutionary history of loci that contribute to reproductive isolation, and possibly to speciation. It also suggests that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations.

  7. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rassadina Valentina

    2009-04-01

    Full Text Available Abstract Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+ was subjected to a magnetic field around 65 microtesla (0.65 Gauss and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed

  8. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  9. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  10. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana.

    Science.gov (United States)

    Ueda, Masamichi; Tsutsumi, Nobuhiro; Fujimoto, Masaru

    2016-06-10

    Salt stress is a major environmental stress for plants, causing hyperosmotic, ionic and drought-like stresses. Plasma membrane intrinsic protein 2;1 (PIP2;1), which forms a water channel that regulates water flux thorough the plasma membrane (PM), is constitutively trafficked between the PM and the trans-Golgi network (TGN) in Arabidopsis thaliana. Salt stress is known to relocalize PIP2;1 to intracellular compartments, probably to decrease the water permeability of the root. However, the destination of internalized PIP2;1 and the mechanism by which PIP2;1 is internalized remain unclear. Here, we examined the effects of salt stress and inhibitors of endocytosis on the intracellular localization of green fluorescent protein-fused PIP2;1 (GFP-PIP2;1) in Arabidopsis thaliana root epidermal cells. Salt stress decreased the fluorescence of GFP-PIP2;1 at the PM and increased it in the vacuolar lumen as shown by staining of the vacuolar membrane. The internalization of PIP2;1 was suppressed by an inhibitor of clathrin-mediated endocytosis and by inhibitors of two kinases that appear to have roles in salt stress, phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4-kinase (PI4K). Inhibiting PI4K suppressed the salt-induced endocytosis of GFP-PIP2;1 at the PM, whereas inhibiting PI3K suppressed the trafficking of GFP-PIP2;1 after its internalization. These results suggest that salt stress induces the internalization of PIP2;1 from the PM to the vacuolar lumen, and that these processes are dependent on clathrin, PI3K and PI4K. PMID:27163638

  11. Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system.

    Science.gov (United States)

    Yamagishi, H.; Landgren, M.; Forsberg, J.; Glimelius, K.

    2002-05-01

    Application of the protoplast culture method developed for Brassica protoplasts to protoplasts of Arabidopsis thaliana has increased the opportunities for interspecific hybridizations involving Arabidopsis. A more-efficient and much-simpler method was established compared to the earlier-reported protocol developed for A. thaliana protoplasts in which alginate beads were utilized. Mesophyll protoplasts of A. thaliana (ecotypes 'Landsberg erecta' and 'Wassilewskija') were cultured in the modified 8p liquid medium, which had been developed for Brassica protoplasts. For comparison, protoplasts were cultured in sodium alginate beads supplied with B5 medium according to the protocol for A. thaliana. The protoplasts divided with high frequencies in the 8p medium, and calli proliferated more rapidly than in the sodium alginate beads. High frequencies of shoot differentiation and regeneration were observed in calli of both ecotypes, from about 30% in the ecotype 'Wassilewskija' to about 60% for 'Landsberg erecta'. The more-rapidly the calli developed, the higher the regeneration frequencies were. Asymmetric hybrids between A. thaliana and Brassica napus were obtained by treating the protoplasts of A. thaliana with iodoacetamide (IOA) and B. napus protoplasts with UV-irradiation before fusion with polyethylene glycol (PEG). By using the culture procedure developed for Brassica protoplasts, calli developed and plants were regenerated. Although most of the plants regenerated after cell fusion were A. thaliana-like and were judged to be escapes from IOA treatment, more than ten plants showed hybrid features of both morphological and molecular characters. Among the hybrids that have flowered so far, both male-fertile and male-sterile plants have been obtained. Back-crossings to A. thaliana are now in progress as is morphological and molecular characterization of the plants. PMID:12582600

  12. Transcriptomic Profiling Analysis of Arabidopsis thaliana Treated with Exogenous Myo-Inositol

    Science.gov (United States)

    Ye, Wenxing; Ren, Weibo; Kong, Lingqi; Zhang, Wanjun; Wang, Tao

    2016-01-01

    Myo-insositol (MI) is a crucial substance in the growth and developmental processes in plants. It is commonly added to the culture medium to promote adventitious shoot development. In our previous work, MI was found in influencing Agrobacterium-mediated transformation. In this report, a high-throughput RNA sequencing technique (RNA-Seq) was used to investigate differently expressed genes in one-month-old Arabidopsis seedling grown on MI free or MI supplemented culture medium. The results showed that 21,288 and 21,299 genes were detected with and without MI treatment, respectively. The detected genes included 184 new genes that were not annotated in the Arabidopsis thaliana reference genome. Additionally, 183 differentially expressed genes were identified (DEGs, FDR ≤0.05, log2 FC≥1), including 93 up-regulated genes and 90 down-regulated genes. The DEGs were involved in multiple pathways, such as cell wall biosynthesis, biotic and abiotic stress response, chromosome modification, and substrate transportation. Some significantly differently expressed genes provided us with valuable information for exploring the functions of exogenous MI. RNA-Seq results showed that exogenous MI could alter gene expression and signaling transduction in plant cells. These results provided a systematic understanding of the functions of exogenous MI in detail and provided a foundation for future studies. PMID:27603208

  13. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation. PMID:25488978

  14. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sho Nishida

    2015-04-01

    Full Text Available Excessive accumulation of nickel (Ni can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe-regulated transporter1 (IRT1, mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i Zn deficiency induces short-term Ni2+ absorption and (ii Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  15. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

  16. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines

  17. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus

    Directory of Open Access Journals (Sweden)

    Jaramillo Alfonso

    2008-08-01

    Full Text Available Abstract Background Tobacco etch potyvirus (TEV has been extensively used as model system for the study of positive-sense RNA virus infecting plants. TEV ability to infect Arabidopsis thaliana varies among ecotypes. In this study, changes in gene expression of A. thaliana ecotype Ler infected with TEV have been explored using long-oligonucleotide arrays. A. thaliana Ler is a susceptible host that allows systemic movement, although the viral load is low and syndrome induced ranges from asymptomatic to mild. Gene expression profiles were monitored in whole plants 21 days post-inoculation (dpi. Microarrays contained 26,173 protein-coding genes and 87 miRNAs. Results Expression analysis identified 1727 genes that displayed significant and consistent changes in expression levels either up or down, in infected plants. Identified TEV-responsive genes encode a diverse array of functional categories that include responses to biotic (such as the systemic acquired resistance pathway and hypersensitive responses and abiotic stresses (droughtness, salinity, temperature, and wounding. The expression of many different transcription factors was also significantly affected, including members of the R2R3-MYB family and ABA-inducible TFs. In concordance with several other plant and animal viruses, the expression of heat-shock proteins (HSP was also increased. Finally, we have associated functional GO categories with KEGG biochemical pathways, and found that many of the altered biological functions are controlled by changes in basal metabolism. Conclusion TEV infection significantly impacts a wide array of cellular processes, in particular, stress-response pathways, including the systemic acquired resistance and hypersensitive responses. However, many of the observed alterations may represent a global response to viral infection rather than being specific of TEV.

  18. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels.

    Directory of Open Access Journals (Sweden)

    Todd A Sangster

    Full Text Available The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine

  19. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  20. Arabidopsis thaliana WAPL is essential for the prophase removal of cohesin during meiosis.

    Directory of Open Access Journals (Sweden)

    Kuntal De

    2014-07-01

    Full Text Available Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin's α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants.

  1. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.

    Science.gov (United States)

    MacAlister, Cora A; Ortiz-Ramírez, Carlos; Becker, Jörg D; Feijó, José A; Lippman, Zachary B

    2016-01-01

    Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.

  2. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    Science.gov (United States)

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses.

  3. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  4. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  5. Structural and Functional Studies of the Mitochondrial Cysteine Desulfurase from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Valeria R; Turowski; Maria V.Busi; Diego F.Gomez-Casati

    2012-01-01

    AtNfs1 is the Arabidopsis thaliana mitochondrial homolog of the bacterial cysteine desulfurases NifS and lscS,having an essential role in cellular Fe-S cluster assembly.Homology modeling of AtNfs1m predicts a high global similarity with E.coli IscS showing a full conservation of residues involved in the catalytic site,whereas the chloroplastic AtNfs2 is more similar to the Synechocystis sp.SufS.Pull-down assays showed that the recombinant mature form,AtNfs1m,specifically binds to Arabidopsis frataxin (AtFH).A hysteretic behavior,with a lag phase of several minutes,was observed and hysteretic parameters were affected by pre-incubation with AtFH.Moreover,AtFH modulates AtNfs1m kinetics,increasing Vmax and decreasing the S0.5 value for cysteine.Results suggest that AtFH plays an important role in the early steps of Fe-S cluster formation by regulating AtNfs1 activity in olant mitochondria.

  6. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity.

    Science.gov (United States)

    Gouhier-Darimont, Caroline; Schmiesing, André; Bonnet, Christelle; Lassueur, Steve; Reymond, Philippe

    2013-01-01

    Insect egg deposition activates plant defence, but very little is known about signalling events that control this response. In Arabidopsis thaliana, oviposition by Pieris brassicae triggers salicylic acid (SA) accumulation and induces the expression of defence genes. This is similar to the recognition of pathogen-associated molecular patterns (PAMPs), which are involved in PAMP-triggered immunity (PTI). Here, the involvement of known signalling components of PTI in response to oviposition was studied. Treatment with P. brassicae egg extract caused a rapid induction of early PAMP-responsive genes. In addition, expression of the defence gene PR-1 required EDS1, SID2, and, partially, NPR1, thus implicating the SA pathway downstream of egg recognition. PR-1 expression was triggered by a non-polar fraction of egg extract and by an oxidative burst modulated through the antagonistic action of EDS1 and NUDT7, but which did not depend on the NADPH oxidases RBOHD and RBOHF. Searching for receptors of egg-derived elicitors, a receptor-like kinase mutant, lecRK-I.8, was identified which shows a much reduced induction of PR-1 in response to egg extract treatment. These results demonstrate the importance of the SA pathway in response to egg-derived elicitor(s) and unravel intriguing similarities between the detection of insect eggs and PTI in Arabidopsis.

  7. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.

    Science.gov (United States)

    Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Giorgetti, Alejandro; Dominici, Paola; Astegno, Alessandra

    2016-08-01

    In addition to the well-known Ca(2+) sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca(2+) and Mg(2+) binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca(2+) ion with micromolar affinity (Kd ∼ 12 µM) and the presence of 10 mM Mg(2+) decreases the Ca(2+) affinity by ∼5-fold. Although binding of Ca(2+) to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca(2+) sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role. PMID:27124620

  8. Efficient Silencing of Endogenous MicroRNAs Using Artificial MicroRNAs in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Andrew L. Eamens; Claire Agius; Neil A. Smith; Peter M. Waterhouse; Ming-Bo Wang

    2011-01-01

    We report here that the expression of endogenous microRNAs (miRNAs) can be efficiently silenced in Arabidopsis thaliana (Arabidopsis) using artificial miRNA (amiRNA) technology. We demonstrate that an amiRNA designed to target a mature miRNA directs silencing against all miRNA family members, whereas an amiRNA designed to target the stem-loop region of a miRNA precursor transcript directs silencing against only the individual family member targeted.Furthermore, our results indicate that amiRNAs targeting both the mature miRNA and stem-loop sequence direct RNA silencing through cleavage of the miRNA precursor transcript, which presumably occurs in the nucleus of a plant cell during the initial stages of miRNA biogenesis. This suggests that small RNA (sRNA)-guided RNA cleavage in plants occurs not only in the cytoplasm, but also in the nucleus. Many plant miRNA gene families have been identified via sequencing and bioinformatic analysis, but, to date, only a small tranche of these have been functionally characterized due to a lack of effective forward or reverse genetic tools. Our findings therefore provide a new and powerful reverse-genetic tool for the analysis of miRNA function in plants.

  9. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  10. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.

    Science.gov (United States)

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs). We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3, and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3 and RPS15 in

  11. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    Directory of Open Access Journals (Sweden)

    Wenchuan eXie

    2015-10-01

    Full Text Available Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs. We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA and Support Vector Machine (SVM method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3 and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3

  12. Arabidopsis CDS blastp result: AK062144 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062144 001-045-G08 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/homogentis...ate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase... (EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 1e-155 ...

  13. Arabidopsis CDS blastp result: AK065189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065189 J013002E07 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/homogentis...ate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase (EC 1.13.11.5) (Homogenti...sicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 0.0 ...

  14. Arabidopsis CDS blastp result: AK064381 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064381 002-108-E01 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain famil...y cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  15. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  16. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  17. Arabidopsis CDS blastp result: AK242789 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242789 J090057B20 At2g31510.1 68415.m03850 IBR domain-containing protein / ARIADN...E-like protein ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contai...ns similarity to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 8e-12 ...

  18. Arabidopsis CDS blastp result: AK110331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110331 002-164-D12 At2g31510.1 IBR domain-containing protein / ARIADNE-like prote...in ARI7 (ARI7) identical to ARIADNE-like protein ARI7 [Arabidopsis thaliana] GI:29125028; contains similarit...y to Swiss-Prot:Q94981 ariadne-1 protein (Ari-1) [Drosophila melanogaster]; contains Pfam profile PF01485: IBR domain 3e-59 ...

  19. Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana

    Science.gov (United States)

    Bukowski, Alexandra R; Petermann, Jana S

    2014-01-01

    Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession

  20. Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana.

    Science.gov (United States)

    Bukowski, Alexandra R; Petermann, Jana S

    2014-06-01

    Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession

  1. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.

  2. LEA (Late Embryogenesis Abundant proteins and their encoding genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-03-01

    Full Text Available Abstract Background LEA (late embryogenesis abundant proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE and/or low temperature response (LTRE elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for

  3. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 (∼61.4 %) responsive genes to ν -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H2O2 scavenging activity in leaves were applied

  4. Identification and Expression Profiling of Radiation-sensitive Genes Using Plant Model System, Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sub; Kang, Si-Yong; Lee, Geung-Joo; Kim, Jin-Baek

    2008-06-15

    The purpose of this study is to characterize genes specifically expressed in response to ionizing energy (gamma-rays) of acute irradiation and elucidate signalling mechanisms via functional analysis of isolated genes in Arabidopsis thaliana. Recent improvements in DNA microarray technologies and bioinformatics have made it possible to look for common features of ionizing radiation-responsive genes and their regulatory regions. It has produced massive quantities of gene expression and other functional genomics data, and its application will increase in plant genomics. In this study, we used oligonucleotide microarrays to detect the Arabidopsis genes expressed differentially by a gamma-irradiation during the vegetative (VT, 21 DAG) and reproductive (RT, 28 DAG) stages. Wild-type (Ler) Arabidopsis was irradiated with gamma-rays with 100 and 800 Gy doses. Among the 21,500 genes represented in the Agilent chip, approximately 13,500 ({sup {approx}}61.4 %) responsive genes to {nu} -irradiation were expressed with signal intensity greater than 192 when compared to the combined control (non-irradiated vegetative and reproductive pool). Expression patterns of several radiation inducible genes were confirmed by RT-PCR and Northern blotting. Our microarray results may contribute to an overall understanding of the type and quantities of genes that are expressed by an acute gamma-irradiation. In addition, to investigate the oxidative damage caused by irradiation, RT-PCR analysis for the expression of antioxidant isoenzyme genes, and a Transmission Electron Microscope (TEM) observation for visualizing the H{sub 2}O{sub 2} scavenging activity in leaves were applied.

  5. Transcriptional consequence and impaired gametogenesis with high-grade aneuploidy in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Kuan-Lin Lo

    Full Text Available Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+ in the Arabidopsis (Arabidopsis thaliana AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collectively accounted for a tertiary trisomy 2. Morphologic, cytogenetic and genetic analyses of aur2-1 progeny showed impaired male and female gametogenesis to various degrees and a tight association of the aur2-1 allele with the tertiary trisomy that was preferentially inherited. Transcriptome analysis showed overlapping and distinct gene expression profiles between primary and tertiary trisomy 2 plants, particularly genes involved in response to stress and various types of external and internal stimuli. Additionally, transcriptome and gene ontology analyses revealed an overrepresentation of nuclear-encoded organelle-related genes functionally involved in plastids, mitochondria and peroxisomes that were differentially expressed in at least three if not all Arabidopsis trisomics. These observations support a previous hypothesis that aneuploid cells have higher energy requirement to overcome the detrimental effects of an unbalanced genome. Moreover, our findings extend the knowledge of the complex nature of the T-DNA insertion event influencing plant genomic integrity by creating high-grade trisomy. Finally, gene expression profiling results provide useful information for future research to compare primary and tertiary trisomics for the effects of aneuploidy on plant cell physiology.

  6. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide.

  7. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Engelsberger Wolfgang R

    2010-07-01

    Full Text Available Abstract Background Protein phosphorylation is an important post-translational modification influencing many aspects of dynamic cellular behavior. Site-specific phosphorylation of amino acid residues serine, threonine, and tyrosine can have profound effects on protein structure, activity, stability, and interaction with other biomolecules. Phosphorylation sites can be affected in diverse ways in members of any species, one such way is through single nucleotide polymorphisms (SNPs. The availability of large numbers of experimentally identified phosphorylation sites, and of natural variation datasets in Arabidopsis thaliana prompted us to analyze the effect of non-synonymous SNPs (nsSNPs onto phosphorylation sites. Results From the analyses of 7,178 experimentally identified phosphorylation sites we found that: (i Proteins with multiple phosphorylation sites occur more often than expected by chance. (ii Phosphorylation hotspots show a preference to be located outside conserved domains. (iii nsSNPs affected experimental phosphorylation sites as much as the corresponding non-phosphorylated amino acid residues. (iv Losses of experimental phosphorylation sites by nsSNPs were identified in 86 A. thaliana proteins, among them receptor proteins were overrepresented. These results were confirmed by similar analyses of predicted phosphorylation sites in A. thaliana. In addition, predicted threonine phosphorylation sites showed a significant enrichment of nsSNPs towards asparagines and a significant depletion of the synonymous substitution. Proteins in which predicted phosphorylation sites were affected by nsSNPs (loss and gain, were determined to be mainly receptor proteins, stress response proteins and proteins involved in nucleotide and protein binding. Proteins involved in metabolism, catalytic activity and biosynthesis were less affected. Conclusions We analyzed more than 7,100 experimentally identified phosphorylation sites in almost 4,300 protein

  8. Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana

    OpenAIRE

    Kuan-Lin Lo; Long-Chi Wang; I-Ju Chen; Yu-Chen Liu; Mei-Chu Chung; Wan-Sheng Lo

    2014-01-01

    Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collective...

  9. Design, Implementation and Maintenance of a Model Organism Database for Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Seung Y. Rhee

    2006-04-01

    Full Text Available The Arabidopsis Information Resource (TAIR is a web-based community database for the model plant Arabidopsis thaliana. It provides an integrated view of genes, sequences, proteins, germplasms, clones, metabolic pathways, gene expression, ecotypes, polymorphisms, publications, maps and community information. TAIR is developed and maintained by collaboration between software developers and biologists. Biologists provide specification and use cases for the system, acquire, analyse and curate data, interact with users and test the software. Software developers design, implement and test the database and software. In this review, we briefly describe how TAIR was built and is being maintained.

  10. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Jensen, Erik Østergaard

    2008-01-01

    -symbiotic hemoglobin gene, GLB2, in Arabidopsis thaliana. Lines with GLB1 silencing had a significant delay of bolting and after bolting, shoots reverted to the rosette vegetative phase by formation of aerial rosettes at lateral meristems. Lines with overexpression of GLB1 or GLB2 bolted earlier than wild type plants...... molecule, NO. So far, NO scavenging has only been demonstrated for class 1 non-symbiotic hemoglobins. A direct assay in Arabidopsis leaf cells shows that GLB1 as well as the class 2 non-symbiotic hemoglobin, GLB2, scavenge NO in vivo. NO has also been demonstrated to be a growth stimulating signal...

  11. Establishment of an Indirect Genetic Transformation Method for Arabidopsis thaliana ecotype Bangladesh

    Directory of Open Access Journals (Sweden)

    Bulbul AHMED

    2011-11-01

    Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.

  12. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana*

    Science.gov (United States)

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S.; Maxwell, Anthony

    2016-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides. PMID:26663076

  13. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  14. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  15. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Mamta [School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States); Moriyama, Hideaki, E-mail: hmoriyama2@unl.edu [Department of Chemistry, e-Toxicology and Biotechnology, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States); School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States)

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  16. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    OpenAIRE

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2007-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...

  17. Electron transfer reactivity of the Arabidopsis thaliana sulfhydryl oxidase AtErv1

    DEFF Research Database (Denmark)

    Farver, Ole; Vitu, Elvira; Wherland, Scot;

    2009-01-01

    The redox reactivity of the three disulfide bridges and the flavin present in each protomer of the wild-type Arabidopsis thaliana mitochondrial sulfhydryl oxidase (AtErv1) homodimer has been investigated. Pulse radiolytically produced CO2- radical ions were found to reduce the disulfide bridges to...... the active site disulfide bridge increased the stability of the flavin semiquinone making it a long-lived product. Relevance of these observations to the design and function of the sulfhydryl oxidases is discussed....

  18. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might...... using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p expression pattern. By using sequence data...

  19. An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data

    OpenAIRE

    Mishra, Hrishikesh; Singh, Nitya; Misra, Krishna; Lahiri, Tapobrata

    2011-01-01

    Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by genetic algorithm was ...

  20. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana

    OpenAIRE

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-01

    Background Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fat...

  1. Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana.

    OpenAIRE

    Weinig, Cynthia; Dorn, Lisa A; Kane, Nolan C.; German, Zachary M; Halldorsdottir, Solveig S; Ungerer, Mark C.; Toyonaga, Yuko; Mackay, Trudy F. C.; Purugganan, Michael D.; Schmitt, Johanna

    2003-01-01

    Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanc...

  2. Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana

    OpenAIRE

    Skirycz, Aleksandra

    2008-01-01

    Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To ...

  3. Global and targeted proteomics in Arabidopsis thaliana: A study of secondary metabolism and phytohormone signaling

    OpenAIRE

    Slade Jr, William O

    2013-01-01

    Proteomics is defined as a tool to explore how proteins control and regulate important molecular and physiological processes. Further, peptide-centric approaches, or bottom-up methods, provide more comprehensive coverage of a proteome compared to whole-protein approaches. This body of work assesses the technical feasibility of several bottom-up proteomics technologies applied to Arabidopsis thaliana, including gel-based methods, those that require peptide derivitization, and those that do n...

  4. Induction of oxidative stress related responses in Arabidopsis thaliana following uranium exposure

    OpenAIRE

    Vanhoudt, Nathalie; Vandenhove, H.; Opdenakker, Kelly; Remans, Tony; Smeets, Karen; MARTINEZ BELLO, Daniel; van Hees, M.; Wannijn, J.; Vangronsveld, Jaco; Cuypers, Ann

    2009-01-01

    The reactive oxygen species (ROS)-signaling pathway is very important in heavy metal toxicity. Induction of the antioxidative defense mechanism, comprising ROS-scavenging enzymes and metabolites, in plants after environmental uranium contamination has been insufficiently studied in the past. This study aimed to analyze oxidative stress related responses in Arabidopsis thaliana after uranium exposure. Seventeen-day-old seedlings were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 3 days. Afte...

  5. Kontrolle der Expression des UNUSUAL FLORAL ORGANS (UFO) Gens in Arabidopsis thaliana

    OpenAIRE

    Hobe, Martin

    2004-01-01

    Die vorliegende Arbeit befaßt sich mit der Kontrolle des Expressionsmusters des UNUSUAL FLORAL ORGANS (UFO) Gens von Arabidopsis thaliana. UFO wird im Sproß- und Blütenmeristemen aller Entwicklungsstadien der Pflanze exprimiert. In Blütenmeristemen agiert UFO als Kofaktor von LEAFY (LFY) bei der Aktivierung der Organidentitätsgene des zweiten und dritten Wirtels. UFO stellt also einen generellen Faktor der Musterbildung in Meristemen dar. Um regulatorische Gene, die die Expression von UFO bee...

  6. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  7. A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana

    OpenAIRE

    Liu, Junli; Brazier-Hicks, Melissa; Edwards, Robert

    2009-01-01

    Abstract Glutathione transferases (GSTs) catalyse the detoxification of a range of xenobiotics, including crop protection agents in plants. Recent studies in cultures of the model plant Arabidopsis thaliana have shown that the herbicide safener fenclorim (4,6-dichloro-2-phenylpyrimidine) is conjugated by GSTs acting in the cytosol which are induced in response to this chemical treatment. The primary glutathione conjugates are then hydrolyzed to S-(4-chloro-2-phenylpyrimidin-6-yl)-c...

  8. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    OpenAIRE

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to...

  9. Identification of novel regulators of COP1-controlled morphogenesis in Arabidopsis thaliana

    OpenAIRE

    Schrader, Andrea

    2011-01-01

    In Arabidopsis thaliana, COP1 is an essential element of light signal transduction acting downstream of photoreceptors and upstream of light-regulated gene expression. The COP1 protein acts as part of an E3 ligase complex to suppress photomorphogenic gene expression by ubiquitin-dependent degradation of light-regulated transcription factors. In dark-grown seedlings, the repression of photomorphogenesis involves the inhibition of hypocotyl growth, anthocyanin accumulation, expre...

  10. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    Warnasooriya, Sankalpi N.; Porter, Katie J.; Montgomery, Beronda L

    2011-01-01

    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  11. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds.

    OpenAIRE

    Charmont, Stéphane; Jamet, Elisabeth; Pont-Lezica, Rafael; Canut, Hervé

    2005-01-01

    Arabidopsis thaliana seedlings grown in liquid culture were used to recover proteins secreted from the whole plant. The aim was to identify apoplastic proteins that may be lost during classical extraction procedures such as preparation of cell walls. The inclusion of polyvinyl-polypyrrolidone (PVPP) in the protocol of purification of secreted proteins allowed a more efficient identification of proteins after their separation by two-dimensional gel electrophoresis (2-DE) and mass spectrometry ...

  12. The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development

    OpenAIRE

    Odunlami, Benjamin Oladipo

    2009-01-01

    Seed development in Arabidopsis thaliana, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between ...

  13. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana

    OpenAIRE

    Smeets, Karen; RUYTINX, Joske; Van Belleghem, Frank; Semane, Brahim; Lin, Dan; Vangronsveld, Jaco; Cuypers, Ann

    2008-01-01

    Arabidopsis thaliana is one of the most widely used model organisms in plant sciences. Because of the increasing knowledge in the understanding of its molecular pathways, a reproducible and stable growth set-up for obtaining uniform plants becomes more important. In order to be able to easily harvest and study both roots and shoots, and to allow simple exposure to water-soluble toxic substances, a hydroponic system is the desired cultivation method for controlled plant growth. Based o...

  14. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants

    OpenAIRE

    Mathieu, Laura; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2015-01-01

    Background Well-developed and functional roots are critical to support plant life and reach high crop yields. Their study however, is hampered by their underground growth and characterizing complex root system architecture (RSA) therefore remains a challenge. In the last few years, several phenotyping methods, including rhizotrons and x-ray computed tomography, have been developed for relatively thick roots. But in the model plant Arabidopsis thaliana, in vitro culture remains the easiest and...

  15. Funktionelle Charakterisierung zweier Lipid Transfer Proteine in der Arabidopsis thaliana Pathogenantwort

    OpenAIRE

    Bieber, Michael

    2013-01-01

    Die Multigenfamilie der Lipid Transfer Proteine (LTP) stellt eine Gruppe von kleinen Proteinen dar, welche in allen höheren Landpflanzen vorkommen. In der Modellpflanze Arabidopsis thaliana werden 92 Proteine zur Klasse der LTPs gezählt. Die Benennung der Proteinfamilie basiert auf dem beobachteten in vitro Transfer von Lipiden zwischen zwei Membranen. Alle LTPs weisen ein konserviertes, 8 Cysteine beinhaltendes Motiv und eine hydrophobe Tasche auf, welche für die Bindung hydrophober Moleküle...

  16. Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana

    OpenAIRE

    Andrew C Diener

    2013-01-01

    Abstract Background Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, ...

  17. Physico-chemical property of rare earths-effects on the energy regulation of photosystem II in Arabidopsis thaliana.

    Science.gov (United States)

    Xiaoqing, Liu; Hao, Huang; Chao, Liu; Min, Zhou; Fashui, Hong

    2009-08-01

    Photosystem II (PSII) from Arabidopsis thaliana treated by lanthanum (La(3+)), cerium (Ce(3+)), and neodymium (Nd(3+)) were isolated to investigate the effects of 4f electron characteristics and alternation valence of rare earth elements (REEs) on PSII function regulation comparatively. Results showed that REE treatment could induce the generous expression of LhcII b in A. thaliana and increase the content of light-harvesting complex II and its trimer on the thylakoid membrane significantly. Meanwhile, the light absorption in the red and blue region and fluorescence quantum yield near 683 nm were obviously increased; oxygen evolution rate was greatly improved too, suggesting that REEs could enhance the efficiency of light absorption, regulate excitation energy distribution from photosystem I (PSI) to PSII, and thus increase the activity of photochemical reaction and oxygen evolution accordingly. The efficiency order of the four treatments was Ce(3+) > Nd(3+) > La(3+) > control.

  18. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    Science.gov (United States)

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  19. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  20. Regulation of Arabidopsis thaliana Em genes : role of AB15

    NARCIS (Netherlands)

    Carles, C.; Bies-Etheve, N.; Aspart, L.; Léon-Kloosterziel, K.M.; Koornneef, M.; Echeverria, M.; Delseny, M.

    2002-01-01

    In order to identify new factors involved in Em (a class I Late Embryogenesis Abundant protein) gene expression, Arabidopsis mutants with an altered expression of an Em promoter GUS fusion construct and a modified accumulation of Em transcripts and proteins were isolated. Germination tests on ABA sh

  1. Genetic basis for dosage sensitivity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Isabelle M Henry

    2007-04-01

    Full Text Available Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI, exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and

  2. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  3. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Directory of Open Access Journals (Sweden)

    M. Mercedes eMaldonado-González

    2015-04-01

    Full Text Available The effective management of Verticillium wilts, diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control Verticillium wilt of olive caused by the highly-virulent, defoliating (D pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i olive D and non-defoliating (ND V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii strain PICF7 controls Verticillium wilt (VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

  4. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-12-31

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally ``light``-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  5. The Transcriptomic Response of Arabidopsis thaliana to Zinc Oxide: A Comparison of the Impact of Nanoparticle, Bulk, and Ionic Zinc

    OpenAIRE

    Landa, P.; Přerostová, S. (Sylva); Petrová, Š. (Šárka); V. Knirsch; Vaňková, R. (Radomíra); Vaněk, T. (Tomáš)

    2015-01-01

    The impact of nanosize was evaluated by comparing of the transcriptomic response of Arabidopsis thaliana roots to ZnO nanopartides (nZnO), bulk ZnO, and ionic Zn2+. Microarray analyses revealed 416 up- and 961 down-regulated transcripts (expression difference >2-fold, p [FDR] < 0.01) after a seven-day treatment with nZnO (average particle size 20 nm, concentration 4 mg L-1). Exposure to bulk ZnO resulted in 816 up- and 2179 down-regulated transcripts. The most dramatic changes (1711 transcrip...

  6. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  7. A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Nicolas Gobron

    Full Text Available Gynodioecy, the coexistence of hermaphrodites and females (i.e. male-sterile plants in natural plant populations, most often results from polymorphism at genetic loci involved in a particular interaction between the nuclear and cytoplasmic genetic compartments (cytonuclear epistasis: cytoplasmic male sterility (CMS. Although CMS clearly contributes to the coevolution of involved nuclear loci and cytoplasmic genomes in gynodioecious species, the occurrence of CMS genetic factors in the absence of sexual polymorphism (cryptic CMS is not easily detected and rarely taken in consideration. We found cryptic CMS in the model plant Arabidopsis thaliana after crossing distantly related accessions, Sha and Mr-0. Male sterility resulted from an interaction between the Sha cytoplasm and two Mr-0 genomic regions located on chromosome 1 and chromosome 3. Additional accessions with either nuclear sterility maintainers or sterilizing cytoplasms were identified from crosses with either Sha or Mr-0. By comparing two very closely related cytoplasms with different male-sterility inducing abilities, we identified a novel mitochondrial ORF, named orf117Sha, that is most likely the sterilizing factor of the Sha cytoplasm. The presence of orf117Sha was investigated in worldwide natural accessions. It was found mainly associated with a single chlorotype in accessions belonging to a clade predominantly originating from Central Asia. More than one-third of accessions from this clade carried orf117Sha, indicating that the sterilizing-inducing cytoplasm had spread in this lineage. We also report the coexistence of the sterilizing cytoplasm with a non-sterilizing cytoplasm at a small, local scale in a natural population; in addition a correlation between cytotype and nuclear haplotype was detected in this population. Our results suggest that this CMS system induced sexual polymorphism in A. thaliana populations, at the time when the species was mainly outcrossing.

  8. Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana.

    Science.gov (United States)

    Szymańska, Renata; Kołodziej, Karolina; Ślesak, Ireneusz; Zimak-Piekarczyk, Paulina; Orzechowska, Aleksandra; Gabruk, Michał; Żądło, Andrzej; Habina, Iwona; Knap, Wiesław; Burda, Květoslava; Kruk, Jerzy

    2016-06-01

    In the present study we analyze the effect of seed treatment by a range of nano-TiO2 concentrations on the growth of Arabidopsis thaliana plants, on the vitamin E content and the expression of its biosynthetic genes, as well as activity of antioxidant enzymes and lipid peroxidation. To conduct the mechanistic analysis of nano-TiO2 on plants growth and antioxidant status we applied nanoparticles concentrations that are much higher than those reported in the environment. We find that as the concentration of nano-TiO2 increases, the biomass, and chlorophyll content in 5-week-old Arabidopsis thaliana plants decrease in a concentration dependent manner. In opposite, higher nano-TiO2 concentration enhanced root growth. Our results indicate that a high concentration of nano-TiO2 induces symptoms of toxicity and elevates the antioxidant level. We also find that the expression levels of tocopherol biosynthetic genes were either down- or upregulated in response to nano-TiO2. Thermoluminescence analysis shows that higher nano-TiO2 concentrations cause lipid peroxidation. To the best of our knowledge, this is the first report concerning the effect of nano-TiO2 on vitamin E status in plants. We conclude that nano-TiO2 affects the antioxidant response in Arabidopsis thaliana plants. This could be an effect of a changes in vitamin E gene expression that is diminished under lower tested nano-TiO2 concentrations and elevated under 1000 μg/ml. PMID:27060280

  9. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Sun, Qiao [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Xu, Wei; Li, Fanghua [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Li, Huasheng; Lu, Jinying [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Liu, Min [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Bian, Po [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China)

    2015-03-15

    Highlights: • The effects of microgravity on the radiation-induced bystander effects (RIBE) were definitely demonstrated. • The effects of microgravity on RIBE might be divergent for different biological events. • The microgravity mainly modified the generation or transport of bystander signals at early stage. - Abstract: Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.

  10. MULTIPLEX POLYMERASE CHAIN REACTION FOR GENOTYPING OF Arabidopsis thaliana ECOTYPES USING SSLP MARKERS

    Directory of Open Access Journals (Sweden)

    Zimina O. V.

    2014-08-01

    Full Text Available The goal of the work was, using the database «The Arabidopsis Information Resource» TAIR, to select 12 SSLP-markers distributed along the Arabidopsis chromosomes and chromosome arms, to optimize the conditions of amplification of each fragment and for simultaneous amplification of several fragments. For identification of A. thaliana ecotypes and their hybrid, the SSLP sequences were used. These DNA markers are highly polymorphic in Arabidopsis and easy to use. Using this database, the primers were selected for 12 SSLP-markers distributed along all chromosomes and their arms. A. thaliana ecotypes Columbia and Landsberg erecta were used. The experiments revealed that two-stage PCR using two annealing temperatures of primers in each cycle allows efficient amplification of all the fragments considered. The conditions for carrying out two multiplex PCR, each of which allows the two fragments were amplified and a single multiplex PCR allowing three markers for amplification were defined. The developed system of DNA markers can be used to study the behavior and inheritance of each chromosome of maternal and paternal genomes of Arabidopsis hybrids and enables quick and efficient genetic analysis.

  11. DNA sequence and structure properties analysis reveals similarities and differences to promoters of stress responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Pan; Zhou, Yanhong; Zhang, Libin; Ma, Chuang

    2015-01-01

    Understanding regulatory mechanisms of stress response in plants has important biological and agricultural significances. In this study, we firstly compiled a set of genes responsive to different stresses in Arabidopsis thaliana and then comparatively analysed their promoters at both the DNA sequence and three-dimensional structure levels. Amazingly, the comparison revealed that the profiles of several sequence and structure properties vary distinctly in different regions of promoters. Moreover, the content of nucleotide T and the profile of B-DNA twist are distinct in promoters from different stress groups, suggesting Arabidopsis genes might exploit different regulatory mechanisms in response to various stresses. Finally, we evaluated the performance of two representative promoter predictors including EP3 and PromPred. The evaluation results revealed their strengths and weakness for identifying stress-related promoters, providing valuable guidelines to accelerate the discovery of novel stress-related promoters and genes in plants.

  12. Composition and function of P bodies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  13. Epigenetic Control of CACTA Transposon Mobility in Arabidopsis thaliana

    OpenAIRE

    Kato, Masaomi; Takashima, Kazuya; Kakutani, Tetsuji

    2004-01-01

    Epigenetic mutation, heritable developmental variation not based on a change in nucleotide sequence, is widely reported in plants. However, the developmental and evolutionary significance of such mutations remains enigmatic. On the basis of our studies of the endogenous Arabidopsis transposon CACTA, we propose that the inheritance of epigenetic gene silencing over generations can function as a transgenerational genome defense mechanism against deleterious movement of transposons. We previousl...

  14. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    Science.gov (United States)

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  15. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.

    Science.gov (United States)

    Salanoubat, M; Lemcke, K; Rieger, M; Ansorge, W; Unseld, M; Fartmann, B; Valle, G; Blöcker, H; Perez-Alonso, M; Obermaier, B; Delseny, M; Boutry, M; Grivell, L A; Mache, R; Puigdomènech, P; De Simone, V; Choisne, N; Artiguenave, F; Robert, C; Brottier, P; Wincker, P; Cattolico, L; Weissenbach, J; Saurin, W; Quétier, F; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Benes, V; Wurmbach, E; Drzonek, H; Erfle, H; Jordan, N; Bangert, S; Wiedelmann, R; Kranz, H; Voss, H; Holland, R; Brandt, P; Nyakatura, G; Vezzi, A; D'Angelo, M; Pallavicini, A; Toppo, S; Simionati, B; Conrad, A; Hornischer, K; Kauer, G; Löhnert, T H; Nordsiek, G; Reichelt, J; Scharfe, M; Schön, O; Bargues, M; Terol, J; Climent, J; Navarro, P; Collado, C; Perez-Perez, A; Ottenwälder, B; Duchemin, D; Cooke, R; Laudie, M; Berger-Llauro, C; Purnelle, B; Masuy, D; de Haan, M; Maarse, A C; Alcaraz, J P; Cottet, A; Casacuberta, E; Monfort, A; Argiriou, A; flores, M; Liguori, R; Vitale, D; Mannhaupt, G; Haase, D; Schoof, H; Rudd, S; Zaccaria, P; Mewes, H W; Mayer, K F; Kaul, S; Town, C D; Koo, H L; Tallon, L J; Jenkins, J; Rooney, T; Rizzo, M; Walts, A; Utterback, T; Fujii, C Y; Shea, T P; Creasy, T H; Haas, B; Maiti, R; Wu, D; Peterson, J; Van Aken, S; Pai, G; Militscher, J; Sellers, P; Gill, J E; Feldblyum, T V; Preuss, D; Lin, X; Nierman, W C; Salzberg, S L; White, O; Venter, J C; Fraser, C M; Kaneko, T; Nakamura, Y; Sato, S; Kato, T; Asamizu, E; Sasamoto, S; Kimura, T; Idesawa, K; Kawashima, K; Kishida, Y; Kiyokawa, C; Kohara, M; Matsumoto, M; Matsuno, A; Muraki, A; Nakayama, S; Nakazaki, N; Shinpo, S; Takeuchi, C; Wada, T; Watanabe, A; Yamada, M; Yasuda, M; Tabata, S

    2000-12-14

    Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes. PMID:11130713

  16. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  17. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  18. Natural variation in DNA methylation in ribosomal RNA genes of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Richards Eric J

    2008-09-01

    Full Text Available Abstract Background DNA methylation is an important biochemical mark that silences repetitive sequences, such as transposons, and reinforces epigenetic gene expression states. An important class of repetitive genes under epigenetic control in eukaryotic genomes encodes ribosomal RNA (rRNA transcripts. The ribosomal genes coding for the 45S rRNA precursor of the three largest eukaryotic ribosomal RNAs (18S, 5.8S, and 25–28S are found in nucleolus organizer regions (NORs, comprised of hundreds to thousands of repeats, only some of which are expressed in any given cell. An epigenetic switch, mediated by DNA methylation and histone modification, turns rRNA genes on and off. However, little is known about the mechanisms that specify and maintain the patterns of NOR DNA methylation. Results Here, we explored the extent of naturally-occurring variation in NOR DNA methylation among accessions of the flowering plant Arabidopsis thaliana. DNA methylation in coding regions of rRNA genes was positively correlated with copy number of 45S rRNA gene and DNA methylation in the intergenic spacer regions. We investigated the inheritance of NOR DNA methylation patterns in natural accessions with hypomethylated NORs in inter-strain crosses and defined three different categories of inheritance in F1 hybrids. In addition, subsequent analysis of F2 segregation for NOR DNA methylation patterns uncovered different patterns of inheritance. We also revealed that NOR DNA methylation in the Arabidopsis accession Bor-4 is influenced by the vim1-1 (variant in methylation 1-1 mutation, but the primary effect is specified by the NORs themselves. Conclusion Our results indicate that the NORs themselves are the most significant determinants of natural variation in NOR DNA methylation. However, the inheritance of NOR DNA methylation suggests the operation of a diverse set of mechanisms, including inheritance of parental methylation patterns, reconfiguration of parental NOR DNA

  19. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  20. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.

    Science.gov (United States)

    Zhang, Lihong; Ackley, Ashley R; Pilon-Smits, Elizabeth A H

    2007-03-01

    Selenium (Se) is an essential element for many organisms but also toxic at higher levels. The objective of this study was to identify accessions from the model species Arabidopsis thaliana that differ in Se tolerance and accumulation. Nineteen Arabidopsis accessions were grown from seed on agar medium with or without selenate (50 microM) or selenite (20 microM), followed by analysis of Se tolerance and accumulation. Tissue sulfur levels were also compared. The Se Tolerance Index (root length+Se/root length control) varied among the accessions from 0.11 to 0.44 for selenite and from 0.05 to 0.24 for selenate. When treated with selenite, the accessions differed by two-fold in shoot Se concentration (up to 250 mgkg(-1)) and three-fold in root Se concentration (up to 1000 mgkg(-1)). Selenium accumulation from selenate varied 1.7-fold in shoot (up to 1000 mgkg(-1)) and two-fold in root (up to 650 mgkg(-1)). Across all accessions, a strong correlation was observed between Se and S concentration in both shoot and root under selenate treatment, and in roots of selenite-treated plants. Shoot Se accumulation from selenate and selenite were also correlated. There was no correlation between Se tolerance and accumulation, either for selenate or selenite. The F(1) offspring from a cross between the extreme selenate-sensitive Dijon G and the extreme selenate-tolerant Estland accessions showed intermediate selenate tolerance. In contrast, the F(1) offspring from a cross between selenite-sensitive and -tolerant accessions (Dijon GxCol-PRL) were selenite tolerant. The results from this study give new insight into the mechanisms of plant selenium (Se) tolerance and accumulation, which may help develop better plants for selenium phytoremediation or as fortified foods. PMID:16513208