WorldWideScience

Sample records for arabidopsis thaliana protein

  1. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  2. Phosphorylation of plastoglobular proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Lohscheider, Jens N; Friso, Giulia; van Wijk, Klaas J

    2016-06-01

    Plastoglobules (PGs) are plastid lipid-protein particles with a small specialized proteome and metabolome. Among the 30 core PG proteins are six proteins of the ancient ABC1 atypical kinase (ABC1K) family and their locations in an Arabidopsis mRNA-based co-expression network suggested central regulatory roles. To identify candidate ABC1K targets and a possible ABC1K hierarchical phosphorylation network within the chloroplast PG proteome, we searched Arabidopsis phosphoproteomics data from publicly available sources. Evaluation of underlying spectra and/or associated information was challenging for a variety of reasons, but supported pSer sites and a few pThr sites in nine PG proteins, including five FIBRILLINS. PG phosphorylation motifs are discussed in the context of possible responsible kinases. The challenges of collection and evaluation of published Arabidopsis phosphorylation data are discussed, illustrating the importance of deposition of all mass spectrometry data in well-organized repositories such as PRIDE and ProteomeXchange. This study provides a starting point for experimental testing of phosho-sites in PG proteins and also suggests that phosphoproteomics studies specifically designed toward the PG proteome and its ABC1K are needed to understand phosphorylation networks in these specialized particles. PMID:26962209

  3. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  4. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    OpenAIRE

    Jianhua eYang; Kim eOsman; Mudassar eIqbal; Stekel, Dov J; Zewei eLuo; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa ...

  5. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  6. Arabidopsis thaliana mTERF proteins: evolution and functional classification

    Directory of Open Access Journals (Sweden)

    Tatjana eKleine

    2012-10-01

    Full Text Available Organellar gene expression (OGE is crucial for plant development, photosynthesis and respiration, but our understanding of the mechanisms that control it is still relatively poor. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate translation. In metazoans, proteins of the mitochondrial Transcription tERmination Factor (mTERF family interact with the mitochondrial chromosome and regulate transcriptional initiation and termination. Sequencing of the Arabidopsis thaliana genome led to the identification of a diversified MTERF gene family but, in contrast to mammalian mTERFs, knowledge about the function of these proteins in photosynthetic organisms is scarce. In this hypothesis article, I show that tandem duplications and one block duplication contributed to the large number of MTERF genes in A. thaliana, and propose that the expansion of the family is related to the evolution of land plants. The MTERF genes - especially the duplicated genes - display a number of distinct mRNA accumulation patterns, suggesting functional diversification of mTERF proteins to increase adaptability to environmental changes. Indeed, hypothetical functions for the different mTERF proteins can be predicted using co-expression analysis and gene ontology annotations. On this basis, mTERF proteins can be sorted into five groups. Members of the chloroplast and chloroplast-associated clusters are principally involved in chloroplast gene expression, embryogenesis and protein catabolism, while representatives of the mitochondrial cluster seem to participate in DNA and RNA metabolism in that organelle. Moreover, members of the mitochondrion-associated cluster and the low expression group may act in the nucleus and/or the cytosol. As proteins involved in OGE and presumably nuclear gene expression, mTERFs are ideal candidates for the coordination of the expression of organelle and nuclear

  7. Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.

    Science.gov (United States)

    Jacques, Silke; Ghesquière, Bart; De Bock, Pieter-Jan; Demol, Hans; Wahni, Khadija; Willems, Patrick; Messens, Joris; Van Breusegem, Frank; Gevaert, Kris

    2015-05-01

    Reactive oxygen species such as hydrogen peroxide can modify proteins via direct oxidation of their sulfur-containing amino acids, cysteine and methionine. Methionine oxidation, studied here, is a reversible posttranslational modification that is emerging as a mechanism by which proteins perceive oxidative stress and function in redox signaling. Identification of proteins with oxidized methionines is the first prerequisite toward understanding the functional effect of methionine oxidation on proteins and the biological processes in which they are involved. Here, we describe a proteome-wide study of in vivo protein-bound methionine oxidation in plants upon oxidative stress using Arabidopsis thaliana catalase 2 knock-out plants as a model system. We identified over 500 sites of oxidation in about 400 proteins and quantified the differences in oxidation between wild-type and catalase 2 knock-out plants. We show that the activity of two plant-specific glutathione S-transferases, GSTF9 and GSTT23, is significantly reduced upon oxidation. And, by sampling over time, we mapped the dynamics of methionine oxidation and gained new insights into this complex and dynamic landscape of a part of the plant proteome that is sculpted by oxidative stress.

  8. Inferring the Brassica rapa Interactome Using Protein-Protein Interaction Data from Arabidopsis thaliana.

    Science.gov (United States)

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F Chris H

    2012-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability. PMID:23293649

  9. Inferring the Brassica rapa interactome using protein-protein interaction data from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Jianhua eYang

    2013-01-01

    Full Text Available Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI data are available from the major PPI databases. It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i A. thaliana PPI data from three major databases, BioGRID, IntAct and TAIR. (ii ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i ortholog predictions, (ii identification of gene duplication based on synteny and collinearity, and (iii BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability.

  10. Inferring the Brassica rapa Interactome Using Protein–Protein Interaction Data from Arabidopsis thaliana

    OpenAIRE

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F. Chris H.

    2013-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein–protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B....

  11. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds.

    OpenAIRE

    Charmont, Stéphane; Jamet, Elisabeth; Pont-Lezica, Rafael; Canut, Hervé

    2005-01-01

    Arabidopsis thaliana seedlings grown in liquid culture were used to recover proteins secreted from the whole plant. The aim was to identify apoplastic proteins that may be lost during classical extraction procedures such as preparation of cell walls. The inclusion of polyvinyl-polypyrrolidone (PVPP) in the protocol of purification of secreted proteins allowed a more efficient identification of proteins after their separation by two-dimensional gel electrophoresis (2-DE) and mass spectrometry ...

  12. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis.

    OpenAIRE

    Borderies, Gisèle; Jamet, Elisabeth; Lafitte, Claude; Rossignol, Michel; Jauneau, Alain; Boudart, Georges; Monsarrat, Bernard; Esquerré-Tugayé, Marie-Thérèse; Boudet, Alain; Pont-Lezica, Rafael

    2003-01-01

    The complete sequencing of the Arabidopsis thaliana genome allows the use of the recently developed mass spectrometry techniques to identify the cell wall proteins (CWPs). Most proteomic approaches depend on the quality of sample preparation. Extraction of CWPs is particularly complex since the proteins may be free in the apoplast or are embedded in a polysaccharide matrix where they are retained by Van der Waals interactions, hydrogen bonds, hydrophobic or ionic interactions, or cross-linked...

  13. Funktionelle Charakterisierung zweier Lipid Transfer Proteine in der Arabidopsis thaliana Pathogenantwort

    OpenAIRE

    Bieber, Michael

    2013-01-01

    Die Multigenfamilie der Lipid Transfer Proteine (LTP) stellt eine Gruppe von kleinen Proteinen dar, welche in allen höheren Landpflanzen vorkommen. In der Modellpflanze Arabidopsis thaliana werden 92 Proteine zur Klasse der LTPs gezählt. Die Benennung der Proteinfamilie basiert auf dem beobachteten in vitro Transfer von Lipiden zwischen zwei Membranen. Alle LTPs weisen ein konserviertes, 8 Cysteine beinhaltendes Motiv und eine hydrophobe Tasche auf, welche für die Bindung hydrophober Moleküle...

  14. Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Qing-Bo Yu; Yong-Lan Cui; Kang Chong; Yi-Xue Li; Yu-Hua Li; Zhongming Zhao; Tie-Liu Shi; Zhong-Nan Yang; Guang Li; Guan Wang; Jing-Chun Sun; Peng-Cheng Wang; Chen Wang; Hua-Ling Mi; Wei-Min Ma; Jian Cui

    2008-01-01

    Chloroplast is a typical plant cell organeUe where photosynthesis takes place.In this study,a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions.We then constructed a chloroplast protein interaction network primarily based on these core protein interactions.The network had 22 925 protein interaction pairs which involved 2 214 proteins.A total of 160 previously uncharacterized proteins were annotated in this network.The subunits of the photosynthetic complexes were modularized,and the functional relationships among photosystem Ⅰ (PSI),photosystem Ⅱ (PSII),light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network.We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis.Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.

  15. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eDe Meyer

    2014-09-01

    Full Text Available A wide variety of recombinant proteins has been produced in the dicot model plant, Arabidopsis thaliana. Many of these proteins are targeted for secretion by means of an N terminal endoplasmic reticulum (ER signal peptide. In addition, they can also be designed for ER retention by adding a C terminal H/KDEL-tag. Despite extensive knowledge of the protein trafficking pathways, the final protein destination, especially of such H/KDEL-tagged recombinant proteins, is unpredictable. In this respect, glycoproteins are ideal study objects. Microscopy experiments reveal their deposition pattern and characterization of their N-glycans aids in elucidating the trafficking. Here, we combine microscopy and N glycosylation data generated in Arabidopsis leaves and seeds, and highlight the lack of a decent understanding of heterologous protein trafficking.

  16. AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Kinesins and kinesin-like proteins (KLPs) constitute a large family of microtubule-based motors that play important roles in many fundamental cellular and developmental processes. To date, a number of kinesins or KLPs have been identified in plants including Arabidopsis thaliana. Here, a polyclonal antibody against AtKP1 (kinesin-like protein 1 in A.thaliana) was raised by injection the expressed AtKP1 specific C-terminal polypeptides in rabbits, and immunoblot analysis was conducted with the affinity-purified anti-AtKP1 antibody. The results indicated that this antibody recognized the AtKP1 fusion proteins expressed in E. coli and proteins of ~125 kDa in the soluble fractions of Arabidopsis extracts. The molecular weight was consistent with the calculated molecular weight based on deduced amino acids sequence of AtKP1. To acquire the subcellular localization of the protein, AtKP1 in Arabidopsis root cells was observed by indirect immunofluorescence microscopy. AtKP1 was localized to particle-like organelles in interphase or dividing cells, but not to mitotic microtubule arrays. Relatively more AtKP1 was found in isolated mitochondria fraction on immunoblot of the subcellular fractions. The AtKP1 protein could not be released following a 0.6 M KI washing,indicating that AtKP1 is tightly bind to mitochondria and might function associated with this kind of organelles.

  17. Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana.

    Science.gov (United States)

    Kolukisaoglu, H Uner; Bovet, Lucien; Klein, Markus; Eggmann, Thomas; Geisler, Markus; Wanke, Dierk; Martinoia, Enrico; Schulz, Burkhard

    2002-11-01

    Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers. PMID:12430019

  18. Affinity Purification of O-Acetylserine(thiollyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Giovanna Salbitani

    2014-08-01

    Full Text Available In the unicellular green alga Chlorella sorokiniana (211/8 k, the protein O-acetylserine(thiollyase (OASTL, representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32–34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species.

  19. Expression and detection of the FMDV VP1 transgene and expressed structural protein in Arabidopsis thaliana

    OpenAIRE

    Pan, Li; Zhang, Yongguang; Wang, Yonglu; Lv, Jianliang; Zhou, Peng; Zhang, Zhongwang

    2011-01-01

    To explore the feasibility of developing a new type of plantderived foot-and-mouth disease virus (FMDV) oral vaccine, the plant seed-specific expression vector p7SBin438/VP1 carrying the VP1 gene of the FMDV strain O/China/99 was constructed and transformed into Agrobacterium tumefaciens strain GV3101. This strain was used for transformation of Arabidopsis thaliana via the floral-dip method. The kanamycin-resistant transgenic plants were selected, and the VP1 gene and protein expressions were...

  20. Arabidopsis thaliana Somatic Embryogenesis Receptor Kinase I protein is present in sporophytic and gametophytic cells and undergoes endocytosis

    NARCIS (Netherlands)

    Kwaaitaal, M.A.C.J.; Vries, de S.C.; Russinova, E.T.

    2005-01-01

    Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected

  1. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  2. MADS on the move : a study on MADS domain protein function and movement during floral development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Urbanus, S.L.

    2010-01-01

    In this thesis we investigated the behaviour of fluorescently-tagged MADS domain proteins during floral development in the model plant Arabidopsis thaliana, and explored the importance of intercellular transport via plasmodesmata for MADS domain transcription factor functioning. The MADS domain tran

  3. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    Science.gov (United States)

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html . PMID:27338257

  4. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    Science.gov (United States)

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html .

  5. LEA (Late Embryogenesis Abundant proteins and their encoding genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hincha Dirk K

    2008-03-01

    Full Text Available Abstract Background LEA (late embryogenesis abundant proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE and/or low temperature response (LTRE elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for

  6. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.

  7. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana.

    Science.gov (United States)

    Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Giorgetti, Alejandro; Dominici, Paola; Astegno, Alessandra

    2016-08-01

    In addition to the well-known Ca(2+) sensor calmodulin, plants possess many calmodulin-like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca(2+) and Mg(2+) binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS-based fluorescence, to evaluate the structural effects of metal binding and metal-induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca(2+) ion with micromolar affinity (Kd ∼ 12 µM) and the presence of 10 mM Mg(2+) decreases the Ca(2+) affinity by ∼5-fold. Although binding of Ca(2+) to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca(2+) sensors, but causes only localized structural changes in the unique functional EF-hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role. PMID:27124620

  8. Sorbitol dehydrogenase is a cytosolic protein required for sorbitol metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Aguayo, María Francisca; Ampuero, Diego; Mandujano, Patricio; Parada, Roberto; Muñoz, Rodrigo; Gallart, Marta; Altabella, Teresa; Cabrera, Ricardo; Stange, Claudia; Handford, Michael

    2013-05-01

    Sorbitol is converted to fructose in Rosaceae species by SORBITOL DEHYDROGENASE (SDH, EC 1.1.1.14), especially in sink organs. SDH has also been found in non-Rosaceae species and here we show that the protein encoded by At5g51970 in Arabidopsis thaliana (L.) Heynh. possesses the molecular characteristics of an SDH. Using a green fluorescent protein-tagged version and anti-SDH antisera, we determined that SDH is cytosolically localized, consistent with bioinformatic predictions. We also show that SDH is widely expressed, and that SDH protein accumulates in both source and sink organs. In the presence of NAD+, recombinant SDH exhibited greatest oxidative activity with sorbitol, ribitol and xylitol as substrates; other sugar alcohols were oxidized to a lesser extent. Under standard growth conditions, three independent sdh- mutants developed as wild-type. Nevertheless, all three exhibited reduced dry weight and primary root length compared to wild-type when grown in the presence of sorbitol. Additionally, under short-day conditions, the mutants were more resistant to dehydration stress, as shown by a reduced loss of leaf water content when watering was withheld, and a greater survival rate on re-watering. This evidence suggests that limitations in the metabolism of sugar alcohols alter the growth of Arabidopsis and its response to drought.

  9. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  10. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases.

    Science.gov (United States)

    Jensen, Jacob Krüger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

    2014-10-01

    The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by β-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a β-1,4 linkage, establishing this protein as a xylan β-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins. PMID:25139408

  11. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana

    Science.gov (United States)

    Moseyko, N.; Feldman, L. J.

    2001-01-01

    This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non-invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH-sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH-sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole-root tissues of A. thaliana is reported. The utility of pH-sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.

  12. Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein.

    Science.gov (United States)

    Li, Bo; Makino, Shin-Ichi; Beebe, Emily T; Urano, Daisuke; Aceti, David J; Misenheimer, Tina M; Peters, Jonathan; Fox, Brian G; Jones, Alan M

    2016-10-01

    Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full-length AtRGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell-free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses. PMID:27164033

  13. Identification of Adenyl Cyclase Activity in a Disease Resistance Protein in Arabidopsis thaliana

    KAUST Repository

    Hussein, Rana

    2012-11-01

    Cyclic nucleotide, cAMP, is an important signaling molecule in animals and plants. However, in plants the enzymes that synthesize this second messenger, adenyl cyclases (ACs), remain elusive. Given the physiological importance of cAMP in signaling, particularly in response to biotic and abiotic stresses, it is thus important to identify and characterize ACs in higher plants. Using computational approaches, a disease resistance protein from Arabidopsis thaliana, At3g04220 was found to have an AC catalytic center motif. In an attempt to prove that this candidate has adenyl cyclases activity in vitro, the coding sequence of the putative AC catalytic domain of this protein was cloned and expressed in E. coli and the recombinant protein was purified. The nucleotide cyclase activity of the recombinant protein was examined using cyclic nucleotide enzyme immunoassays. In parallel, the expression of At3g04220 was measured in leaves under three different stress conditions in order to determine under which conditions the disease resistance protein could function. Results show that the purified recombinant protein has Mn2+ dependent AC activity in vitro, and the expression analysis supports a role for At3g04220 and cAMP in plant defense.

  14. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  15. Calcium-Dependent Protein Kinase CPK21 Functions in Abiotic Stress Response in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Sandra Franz; Britta Ehlert; Anja Liese; Joachim Kurth; Anne-Claire Cazalé; Tina Romeis

    2011-01-01

    Calcium-dependent protein kinases(CDPKs)comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule.So far,a biological function in abiotic stress signaling has only been reported for few CDPK isoforms,whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown.Here,we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress.Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation.In transgenic Arabidopsis complementation lines in the cpk21 mutant background,in which either CPK21 wildtype,or a full-length enzyme variant carrying an amino-acid substitution were stably expressed,stress responsitivity was restored by CPK21 but not with the kinase inactive variant.The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain,N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity,suggesting a crucial role for the N-terminal EF-hand pair.Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.

  16. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  17. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  18. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana

    OpenAIRE

    Umezawa, Taishi; Yoshida, Riichiro; Maruyama, Kyonoshin; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2004-01-01

    Protein phosphorylation/dephosphorylation are major signaling events induced by osmotic stress in higher plants. Here, we showed that a SNF1-related protein kinase 2 (SnRK2), SRK2C, is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis plants. Knockout mutants of SRK2C exhibited drought hypersensitivity in their roots, suggesting that SRK2C is a positive regulator of drought tolerance in Arabidopsis roots. Addition...

  19. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  20. The structure of the karrikin-insensitive protein (KAI2 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rohan Bythell-Douglas

    Full Text Available KARRIKIN INSENSITIVE 2 (KAI2 is an α/β hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P2(1 2(1 2(1 (a =63.57 Å, b =66.26 Å, c =78.25 Å and P2(1 (a =50.20 Å, b =56.04 Å, c =52.43 Å, β =116.12° to 1.55 and 2.11 Å respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.

  1. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  2. A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ravindran Vijay Bhaskar

    Full Text Available Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.

  3. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  4. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  5. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of SDF2-like protein from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Overexpression, purification, crystallization and preliminary X-ray diffraction of the stromal-cell-derived factor 2-like protein of Arabidopsis thaliana are reported. The crystals belonged to the space group P61 and diffracted to 1.95 Å resolution. The stromal-cell-derived factor 2-like protein of Arabidopsis thaliana (AtSDL) has been shown to be highly up-regulated in response to unfolded protein response (UPR) inducing reagents, suggesting that it plays a crucial role in the plant UPR pathway. AtSDL has been cloned, overexpressed, purified and crystallized using the vapour-diffusion method. Two crystal forms have been obtained under very similar conditions. The needle-shaped crystals did not diffract X-rays, while the other form diffracted to 1.95 Å resolution using a synchrotron-radiation source and belonged to the hexagonal space group P61, with unit-cell parameters a = b = 96.1, c = 69.3 Å

  6. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana

    OpenAIRE

    WANG, YANPING; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2015-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 m...

  7. Development of Bimolecular Fluorescence Complementation reagents for the detection of Arabidopsis thaliana KAT1 protein-protein interactions using the Golden Braid cloning system

    OpenAIRE

    MOSSI ALBIACH, ALEJANDRO

    2016-01-01

    [EN] KAT1 is an Arabidopsis thaliana potassium voltage-gated channel of the Shaker family. This ion channel is fundamental for the control of membrane conductance in guard cells, leading to stomatal opening or closing in response to environmental changes. The stomatal movement controls the gas exchange, as well as the amount of water lost due to transpiration. Therefore, the underlying mechanisms of these stomatal movements will likely be influenced by proteins that regulate KAT1 ...

  8. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Böhm Siegfried

    2004-07-01

    Full Text Available Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81% are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1 that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members, earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or

  9. Cold Shock Domain Protein 3 Regulates Freezing Tolerance in Arabidopsis thaliana*

    OpenAIRE

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-01-01

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also fu...

  10. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana

    Science.gov (United States)

    Reymond, P.; Short, T. W.; Briggs, W. R.; Poff, K. L.

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

  11. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  12. Regulation of WRKY46 Transcription Factor Function by Mitogen-Activated Protein Kinases in Arabidopsis thaliana.

    Science.gov (United States)

    Sheikh, Arsheed H; Eschen-Lippold, Lennart; Pecher, Pascal; Hoehenwarter, Wolfgang; Sinha, Alok K; Scheel, Dierk; Lee, Justin

    2016-01-01

    Mitogen-activated protein kinase (MAPK) cascades are central signaling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs), such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defense as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defense. PMID:26870073

  13. Similar pathogen targets in Arabidopsis thaliana and homo sapiens protein networks.

    Directory of Open Access Journals (Sweden)

    Paulo Shakarian

    Full Text Available We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform [Formula: see text]-shell decomposition analysis on these networks - which groups the proteins into various "shells" based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.

  14. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana.

    Science.gov (United States)

    Castro, Alexandra; Vidal, Sabina; Ponce de León, Inés

    2016-01-01

    Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  15. Moss Pathogenesis-Related-10 protein enhances resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Alexandra eCastro

    2016-04-01

    Full Text Available Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.

  16. A bioinformatics approach to investigate the function of non specific lipid transfer proteins in Arabidopsis thaliana

    OpenAIRE

    Jayachandra Pandiyan, Muneeswaran

    2010-01-01

    Plant non specific lipid transfer proteins (nsLTPs) enhance in vitro transfer of phospholipids between membranes. Our analysis exploited the large amount of Arabidopsis transcriptome data in public databases to learn more about the function of nsLTPs. The analysis revealed that some nsLTPs are expressed only in roots, some are seed specific, and others are specific for tissues above ground whereas certain nsLTPs show a more general expression pattern. Only few nsLTPs showed a strong up or dow...

  17. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress.

    Science.gov (United States)

    Jülke, Sabine; Ludwig-Müller, Jutta

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana. PMID:27135222

  18. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP Gene Expression to the Clubroot Disease and Salt Stress

    Directory of Open Access Journals (Sweden)

    Sabine Jülke

    2015-12-01

    Full Text Available The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.

  19. Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana

    OpenAIRE

    Paudyal, R; Jamaluddin, A.; Warren, JP; Doyle, SM; Robert, S.; Warriner, SL; Baker, A.

    2014-01-01

    Auxin gradients are established and maintained by polarized distribution of auxin transporters that undergo constitutive endocytic recycling from the PM (plasma membrane) and are essential for the gravitropic response in plants. The present study characterizes an inhibitor of endomembrane protein trafficking, TE1 (trafficking and endocytosis inhibitor 1/TENin1) that reduces gravitropic root bending in Arabidopsis thaliana seedlings. Short-term TE1 treatment causes accumulation of PM proteins,...

  20. Solution structure of Arabidopsis thaliana protein At5g39720.1, a member of the AIG2-like protein family

    International Nuclear Information System (INIS)

    The solution structure of A. thaliana protein At5g39720.1 reported here is the first for a member of the AIG2-like family (PF06094). The three-dimensional structure shows similarity to those determined for members of the uncharacterized Pfam family UPF0131. The three-dimensional structure of Arabidopsis thaliana protein At5g39720.1 was determined by NMR spectroscopy. It is the first representative structure of Pfam family PF06094, which contains protein sequences similar to that of AIG2, an A. thaliana protein of unknown function induced upon infection by the bacterial pathogen Pseudomonas syringae. The At5g39720.1 structure consists of a five-stranded β-barrel surrounded by two α-helices and a small β-sheet. A long flexible α-helix protrudes from the structure at the C-terminal end. A structural homology search revealed similarity to three members of Pfam family UPF0131. Conservation of residues in a hydrophilic cavity able to bind small ligands in UPF0131 proteins suggests that this may also serve as an active site in AIG2-like proteins

  1. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana.

    Science.gov (United States)

    Xu, Mingli; Hu, Tieqiang; Zhao, Jianfei; Park, Mee-Yeon; Earley, Keith W; Wu, Gang; Yang, Li; Poethig, R Scott

    2016-08-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development. PMID:27541584

  2. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana

    Science.gov (United States)

    Hu, Tieqiang; Park, Mee-Yeon; Earley, Keith W.; Wu, Gang; Yang, Li

    2016-01-01

    Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development—the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition—are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development. PMID:27541584

  3. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana.

    OpenAIRE

    Rivera-Madrid, R.; Mestres, D; Marinho, P.; Jacquot, J P; Decottignies, P; Miginiac-Maslow, M; Meyer, Y.

    1995-01-01

    Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presenc...

  4. A Dual Mechanism Controls Nuclear Localization in the Atypical Basic-Helix-Loop-Helix Protein PAR1 of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Anahit Galstyan; Jordi Bou-Torrent; Irma Roig-Villanova; Jaime F. Martínez-García

    2012-01-01

    PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor.Consistently with this function,PAR1 has to be in the nucleus to display biological activity.Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus.However,truncated forms of PAR1 lacking this region still display biological activity,implying that PAR1 has additional mechanisms to localize into the nucleus.In this work,we compared the primary structure of PAR1 and various related and unrelated plant bHLH proteins,which led us to suggest that PAR1 contains a non-canonical nuclear localization signal (NLS) in the N-terminal region.By overexpressing truncated and mutated derivatives of PAR1,we have also investigated the importance of other regions of PAR1,such as the acidic and the extended HLH dimerization domains,for its nuclear localization.We found that,in the absence of the N-terminal region,a functional HLH domain is required for nuclear localization.Our results suggest the existence of a dual mechanism for PAR1 nuclear localization:(1) one mediated by the N-terminal non-consensus NLS and (2) a second one that involves interaction with other proteins via the dimerization domain.

  5. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  6. A fasciclin-like arabinogalactan-protein (FLA mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration.

    Directory of Open Access Journals (Sweden)

    Kim L Johnson

    Full Text Available BACKGROUND: The fasciclin-like arabinogalactan-proteins (FLAs are an enigmatic class of 21 members within the larger family of arabinogalactan-proteins (AGPs in Arabidopsis thaliana. Located at the cell surface, in the cell wall/plasma membrane, they are implicated in many developmental roles yet their function remains largely undefined. Fasciclin (FAS domains are putative cell-adhesion domains found in extracellular matrix proteins of organisms from all kingdoms, but the juxtaposition of FAS domains with highly glycosylated AGP domains is unique to plants. Recent studies have started to elucidate the role of FLAs in Arabidopsis development. FLAs containing a single FAS domain are important for the integrity and elasticity of the plant cell wall matrix (FLA11 and FLA12 and FLA3 is involved in microspore development. FLA4/SOS5 with two FAS domains and two AGP domains has a role in maintaining proper cell expansion under salt stressed conditions. The role of other FLAs remains to be uncovered. METHOD/PRINCIPAL FINDINGS: Here we describe the characterisation of a T-DNA insertion mutant in the FLA1 gene (At5g55730. Under standard growth conditions fla1-1 mutants have no obvious phenotype. Based on gene expression studies, a putative role for FLA1 in callus induction was investigated and revealed that fla1-1 has a reduced ability to regenerate shoots in an in vitro shoot-induction assay. Analysis of FLA1p:GUS reporter lines show that FLA1 is expressed in several tissues including stomata, trichomes, the vasculature of leaves, the primary root tip and in lateral roots near the junction of the primary root. CONCLUSION: The results of the developmental expression of FLA1 and characterisation of the fla1 mutant support a role for FLA1 in the early events of lateral root development and shoot development in tissue culture, prior to cell-type specification.

  7. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  8. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana.

    Science.gov (United States)

    Zeng, C J Tracy; Lee, Y-R Julie; Liu, Bo

    2009-04-01

    Although cells of flowering plants lack a structurally defined microtubule-organizing center like the centrosome, organization of the spindles and phragmoplasts in mitosis is known to involve the evolutionarily conserved gamma-tubulin complex. We have investigated the function of Arabidopsis thaliana NEDD1, a WD40 repeat protein related to the animal NEDD1/GCP-WD protein, which interacts with the gamma-tubulin complex. The NEDD1 protein decorates spindle microtubules (MTs) preferentially toward spindle poles and phragmoplast MTs toward their minus ends. A T-DNA insertional allele of the single NEDD1 gene was isolated and maintained in heterozygous sporophytes, and NEDD1's function in cell division was analyzed in haploid microspores produced by the heterozygote. In approximately half of the dividing microspores exhibiting aberrant MT organization, spindles were no longer restricted to the cell periphery and became abnormally elongated. After mitosis, MTs aggregated between reforming nuclei but failed to appear in a bipolar configuration. Consequently, defective microspores did not form a continuous cell plate, and two identical nuclei were produced with no differentiation into generative and vegetative cells. Our results support the notion that the plant NEDD1 homolog plays a critical role in MT organization during mitosis, and its function is likely linked to that of the gamma-tubulin complex. PMID:19383896

  9. Nuclear Targeting of Methyl-Recycling Enzymes in Arabidopsis thaliana Is Mediated by Specific Protein Interactions

    Institute of Scientific and Technical Information of China (English)

    Sanghyun Lee; Andrew C. Doxey; Brendan J. McConkey; Barbara A. Moffatt

    2012-01-01

    Numerous transmethylation reactions are required for normal plant growth and development.S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reactions,S-adenosylhomocysteine (SAH) that would otherwise competitively inhibit methyltransferase (MT) activities.Here,we report on investigations to understand how the SAH produced in the nucleus is metabolized by SAHH and ADK.Localization analyses using green fluorescent fusion proteins demonstrated that both enzymes are capable of localizing to the cytoplasm and the nucleus,although no obvious nuclear localization signal was found in their sequences.Deletion analysis revealed that a 41-amino-acid segment of SAHH (Gly1 50-Lys190) is required for nuclear targeting of this enzyme.This segment is surface exposed,shows unique sequence conservation patterns in plant SAHHs,and possesses additional features of protein-protein interaction motifs.ADK and SAHH interact in Arabidopsis via this segment and also interact with an mRNA cap MT.We propose that the targeting of this complex is directed by the nuclear localization signal of the MT; other MTs may similarly target SAHH/ADK to other subcellular compartments to ensure uninterrupted transmethylation.

  10. Arabidopsis thaliana glucuronosyltransferase in family GT14

    DEFF Research Database (Denmark)

    Dilokpimol, Adiphol; Geshi, Naomi

    2014-01-01

    of glucuronic acid residues to β-1,3- and β-1,6-linked galactans of arabinogalactan (Knoch et al. 2013). The knockout mutant of this gene resulted in the enhanced growth rate of hypocotyls and roots of seedlings, suggesting an involvement of AtGlcAT 14A in cell elongation. AtGlcAt14A belongs to the family GT14...... in the Carbohydrate Active Enzyme database (CAZy; www.cazy.org), in which a total of 11 proteins, including AtGLCAT 14A, are classified from Arabidopsis thaliana. In this paper, we report the enzyme activities for the rest of the Arabidopsis GT14 isoforms, analyzed in the same way as for AtGlcAT 14A. Evidently, two...... other Arabidopsis GT14 isoforms, At5g15050 and At2g37585, also possess the glucuronosyltransferase activity adding glucuronic acid residues to β-1,3- and β-1,6-linked galactans. Therefore, we named At5g15050 and At2g37585 as AtGlcAT 14B and AtGlcAT 14C, respectively. © 2014 Landes Bioscience....

  11. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhibiao; Li, Na; Jiang, Shan; Gonzalez, Nathalie; Huang, Xiahe; Wang, Yingchun; Inzé, Dirk; Li, Yunhai

    2016-04-06

    Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size.

  12. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  13. Alterations in protein expression of Arabidopsis thaliana cell cultures during hyper- , simulated and sounding rocket micro-gravity

    Science.gov (United States)

    Hampp, Ruediger; Barjaktarović, Žarko; Babbick, Maren; Magel, Elisabeth; Nordheim, Alfred; Lamkemeyer, Tobias; Hampp, Ruediger

    Callus cell cultures of Arabidopsis thaliana exposed to hypergravity (8g), 2D clinorotation and random positioning exhibit changes in gene expression (Martzivanou et al., Protoplasma 229:155-162, 2003). In a recent investigation we could show that after 2 hrs of exposure also the protein complement shows treatment-related changes. These are indicative for reactive oxygen species being involved in the perception of / response to changes in the gravitational field. In the present study we have extended these investigations for a period of up to 16 hrs of exposure. We report on changes in abundance of 28 proteins which have been identified by nano HPLC-ESI-MS/MS, and which were altered in amount after 2 hrs of treatment. According to changes between 2 and 16 hrs we could distinguish four groups of proteins which either declined, increased from down-regulated to control levels, showed a transient decline or a transient increase. With regard to function, our data indicate stress relief or adaption to a new gravitational steady state under prolonged exposure. The latter assumption is supported by the appearance of a new set of 19 proteins which is changed in abundance after 8 hrs of hypergravity. A comparative analysis of the different treatments showed some similarities in response between 8g centrifugation and 2D clinorotation, while random positioning showed the least responses. In addition, we report on the impact of reduced gravitation on the phospho proteom. Cell cultures exposed to 12 min of microgravity as obtained on board of sounding rockets do not respond with alterations in total protein but in the degree of phosphorylation as demonstrated after 2D SDS PAGE separation and sequencing. On this basis we give evidence for signaling cascades involved in the transduction of gravitational signals.

  14. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  15. Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Piippo Mirva

    2010-03-01

    Full Text Available Abstract Background DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920, AtJ11 (At4 g36040 and AtJ20 (At4 g13830, was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed. Results Knockout of one of these proteins caused a series of events including a decrease in photosynthetic efficiency, destabilization of PSII complexes and loss of control for balancing the redox reactions in chloroplasts. Data obtained with DNA microarray analysis demonstrated that the lack of one of these DnaJ proteins triggers a global stress response and therefore confers the plants greater tolerance to oxidative stress induced by high light or methyl viologen treatments. Expression of a set of genes encoding enzymes that detoxify reactive oxygen species (ROS as well as a number of stress-related transcription factors behaved in the mutants at growth light similarly to that when wild-type (WT plants were transferred to high light. Also a set of genes related to redox regulation were upregulated in the mutants. On the other hand, although the three DnaJ proteins reside in chloroplasts, the expression of most genes encoding thylakoid membrane proteins was not changed in the mutants. Conclusion It is proposed that the tolerance of the DnaJ protein knockout plants to oxidative stress occurs at the expense of the flexibility of photosynthetic reactions. Despite the fact that the effects of the individual protein knockout on the response of plants to high light treatment are quite similar

  16. 3D structure prediction of histone acetyltransferase (HAC proteins of the p300/CBP family and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Amar Cemanovic

    2014-09-01

    Full Text Available Histone acetylation is an important posttranslational modification correlated with gene activation. In Arabidopsis thaliana the histone acetyltransferase (HAC proteins of the CBP family are homologous to animal p300/CREB (cAMP-responsive element-binding proteins, which are important histone acetyltransferases participating in many physiological processes, including proliferation, differentiation, and apoptosis. In this study the 3-D structure of all HAC protein subunits in Arabidopsis thaliana: HAC1, HAC2, HAC4, HAC5 and HAC12 is predicted by homology modeling and confirmed by Ramachandran plot analysis. The amino acid sequences HAC family members are highly similar to the sequences of the homologous human p300/CREB protein. Conservation of p300/CBP domains among the HAC proteins was examined further by sequence alignment and pattern search. The domains of p300/CBP required for the HAC function, such as PHD, TAZ and ZZ domains, are conserved in all HAC proteins. Interactome analysis revealed that HAC1, HAC5 and HAC12 proteins interact with S-adenosylmethionine-dependent methyltransferase domaincontaining protein that shows methyltransferase activity, suggesting an additional function of the HAC proteins. Additionally, HAC5 has a strong interaction value for the putative c-myb-like transcription factor MYB3R-4, which suggests that it also may have a function in regulation of DNA replication.

  17. Localization and secretory pathways of a 58K-like protein in multi-vesicular bodies in callus of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Multi-vesicular bodies in endocytosis and protoplasts are special cellular structures that are consid-ered to be originated from invagination of plasma membranes. However, the genesis and function of multi-vesicular bodies, the relationship with Golgi bodies and cell walls, and their secretory pathways remain controversial and ambiguous. Using a monoclonal antibody against an animal 58K protein, we have detected, by Western blotting and confocal microscopy, that a 58K-like protein is present in the calli of Arabidopsis thaliana and Hypericum perforatum. The results of immuno-electron microscopy showed that the 58K-like protein was located in the cisternae of Golgi bodies, secretory vesicles, multi-vesicular bodies, cell walls and vacuoles in callus of Arabidopsis thaliana, suggesting that the multi-vesicular bodies may be originated from Golgi bodies and function as a transporter carrying substances synthesized in Golgi bodies to cell walls and vacuoles. It seems that multi-vesicular bodies have a close relationship with the development of the cell wall and vacuole. The possible secretory pathways of multi-vesicular bodies might be in exocytosis, in which multi-vesicular bodies carry sub-stances to the cell wall for its construction, and in endocytosis, in which multi-vesicular bodies carry substances to the vacuole for its development, depending on what they carry and where the materials are transported. We hence propose that there is more than one pathway for the secretion of multi-vesicular bodies. In addition, our results provided a paradigm that a plant molecule, such as the 58k-like protein in callus of Arabidopsis thaliana, can be detected using a cross-reactive monoclonal antibody induced by an animal protein, and illustrate the existence of analog molecules in both animal and plant kingdoms.

  18. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana roots.

    Science.gov (United States)

    Mai, Hans-Jörg; Lindermayr, Christian; von Toerne, Christine; Fink-Straube, Claudia; Durner, Jörg; Bauer, Petra

    2015-09-01

    Iron is an essential micronutrient for plants, and iron deficiency requires a variety of physiological adaptations. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is essential for the regulation of iron uptake in Arabidopsis thaliana roots. FIT is transcriptionally as well as posttranscriptionally regulated in response to iron supply. To investigate to which extent posttranscriptional regulation upon iron deficiency applies to proteins and to determine the dependency on FIT, we performed a parallel proteomic and transcriptomic study with wild-type, a fit knock-out mutant, and a FIT overexpressing Arabidopsis line. Among 92 proteins differentially regulated by iron and/or FIT, we identified 30 proteins, which displayed differential regulation at the transcriptional level. Eleven protein spots were regulated in at least one of the data points even contrary to the respective genes dependent on FIT. We found ten proteins in at least two forms. The analysis of functional classification showed enriched GO terms among the posttranscriptionally regulated genes and of proteins, that were downregulated or absent in the fit knock-out mutant. Taken together, we provide evidence for iron and FIT-dependent posttranscriptional regulation in iron homeostasis in A. thaliana.

  19. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  20. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications. PMID:20602166

  1. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Yanping; Yang, Li; Chen, Xi; Ye, Tiantian; Zhong, Bao; Liu, Ruijie; Wu, Yan; Chan, Zhulong

    2016-01-01

    Drought stress is one of the disadvantageous environmental conditions for plant growth and reproduction. Given the importance of abscisic acid (ABA) to plant growth and abiotic stress responses, identification of novel components involved in ABA signalling transduction is critical. In this study, we screened numerous Arabidopsis thaliana mutants by seed germination assay and identified a mutant mlp43 (major latex protein-like 43) with decreased ABA sensitivity in seed germination. The mlp43 mutant was sensitive to drought stress while the MLP43-overexpressed transgenic plants were drought tolerant. The tissue-specific expression pattern analysis showed that MLP43 was predominantly expressed in cotyledons, primary roots and apical meristems, and a subcellular localization study indicated that MLP43 was localized in the nucleus and cytoplasm. Physiological and biochemical analyses indicated that MLP43 functioned as a positive regulator in ABA- and drought-stress responses in Arabidopsis through regulating water loss efficiency, electrolyte leakage, ROS levels, and as well as ABA-responsive gene expression. Moreover, metabolite profiling analysis indicated that MLP43 could modulate the production of primary metabolites under drought stress conditions. Reconstitution of ABA signalling components in Arabidopsis protoplasts indicated that MLP43 was involved in ABA signalling transduction and acted upstream of SnRK2s by directly interacting with SnRK2.6 and ABF1 in a yeast two-hybrid assay. Moreover, ABA and drought stress down-regulated MLP43 expression as a negative feedback loop regulation to the performance of MLP43 in ABA and drought stress responses. Therefore, this study provided new insights for interpretation of physiological and molecular mechanisms of Arabidopsis MLP43 mediating ABA signalling transduction and drought stress responses.

  2. Expression of a High Mobility Group Protein Isolated from Cucumis sativus Affects the Germination of Arabidopsis thaliana under Abiotic Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    Ji Young Jang; Kyung Jin Kwak; Hunseung Kang

    2008-01-01

    Although high mobility group B (HMGB) proteins have been identified from a variety of plant species, their importance and functional roles in plant responses to changing environmental conditions are largely unknown. Here, we investigated the functional roles of a CsHMGB isolated from cucumber (Cucurnis sativus L.) in plant responses to environmental stimuli. Under normal growth conditions or when subjected to cold stress, no differences in plant growth were found between the wild.type and transgenic Arabidopsis thaliana overexpressing CsHMGB. By contrast, the transgenic Arabidopsis plants displayed retarded germination compared with the wild-type plants when grown under high salt or dehydration stress conditions. Germination of the transgenic plants was delayed by the addition of abscisic acid (ABA), implying that CsHMGB affects germination through an ABA-dependent way. The expression of CsHMGB had affected only the germination stage, and CsHMGB did not affect the seedling growth of the transgenic plants under the stress conditions. The transcript levels of several germination-responsive genes were modulated by the expression of CsHMGB in Arabidopsis. Taken together, these results suggest that ectopic expression of a CsHMGB in Arabidopsis modulates the expression of several germination-responsive genes, and thereby affects the germination of Arabidopsis plants under different stress conditions.

  3. Loss of Arabidopsis thaliana Dynamin-Related Protein 2B reveals separation of innate immune signaling pathways.

    Directory of Open Access Journals (Sweden)

    John M Smith

    2014-12-01

    Full Text Available Vesicular trafficking has emerged as an important means by which eukaryotes modulate responses to microbial pathogens, likely by contributing to the correct localization and levels of host components necessary for effective immunity. However, considering the complexity of membrane trafficking in plants, relatively few vesicular trafficking components with functions in plant immunity are known. Here we demonstrate that Arabidopsis thaliana Dynamin-Related Protein 2B (DRP2B, which has been previously implicated in constitutive clathrin-mediated endocytosis (CME, functions in responses to flg22 (the active peptide derivative of bacterial flagellin and immunity against flagellated bacteria Pseudomonas syringae pv. tomato (Pto DC3000. Consistent with a role of DRP2B in Pattern-Triggered Immunity (PTI, drp2b null mutant plants also showed increased susceptibility to Pto DC3000 hrcC-, which lacks a functional Type 3 Secretion System, thus is unable to deliver effectors into host cells to suppress PTI. Importantly, analysis of drp2b mutant plants revealed three distinct branches of the flg22-signaling network that differed in their requirement for RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD, the NADPH oxidase responsible for flg22-induced apoplastic reactive oxygen species production. Furthermore, in drp2b, normal MAPK signaling and increased immune responses via the RbohD/Ca2+-branch were not sufficient for promoting robust PR1 mRNA expression nor immunity against Pto DC3000 and Pto DC3000 hrcC-. Based on live-cell imaging studies, flg22-elicited internalization of the plant flagellin-receptor, FLAGELLIN SENSING 2 (FLS2, was found to be partially dependent on DRP2B, but not the closely related protein DRP2A, thus providing genetic evidence for a component, implicated in CME, in ligand-induced endocytosis of FLS2. Reduced trafficking of FLS2 in response to flg22 may contribute in part to the non-canonical combination of immune signaling defects

  4. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review

    Directory of Open Access Journals (Sweden)

    Mina Ghahremani

    2016-09-01

    Full Text Available Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.

  5. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  6. Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence

    Directory of Open Access Journals (Sweden)

    Lee Travis A

    2013-01-01

    Full Text Available Abstract Background Degradation of highly abundant stromal proteins plays an important role in the nitrogen economy of the plant during senescence. Lines of evidence supporting proteolysis within the chloroplast and outside the chloroplast have been reported. Two extra-plastidic degradation pathways, chlorophagy and Rubisco Containing Bodies, rely on cytoplasmic autophagy. Results In this work, levels of three stromal proteins (Rubisco large subunit, chloroplast glutamine synthetase and Rubisco activase and one thylakoid protein (the major light harvesting complex protein of photosystem II were measured during natural senescence in WT and in two autophagy T-DNA insertion mutants (atg5 and atg7. Thylakoid-localized protein decreased similarly in all genotypes, but stromal protein degradation was incomplete in the two atg mutants. In addition, degradation of two stromal proteins was observed in chloroplasts isolated from mid-senescence leaves. Conclusions These data suggest that autophagy does contribute to the complete proteolysis of stromal proteins, but does not play a major degenerative role. In addition, support for in organello degradation is provided.

  7. Protein (Viridiplantae): 15227263 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 93 putative protein kinase Arabidopsis thaliana MKLVLEGVDSFETLRVVGTFNCIDPDYVGSKRVTKKADVYAFEVILMELITGRKANYETLSVDEQNLVMWLRPKIKISTFLNLVDGTIATDKETIKRIKKIAKLAEYCTSQEVESRPLRASRTKSGNEVTSED ...

  8. Flavonoid-specific staining of Arabidopsis thaliana.

    Science.gov (United States)

    Sheahan, J J; Rechnitz, G A

    1992-12-01

    Crop yields may be threatened by increases in UV-B radiation resulting from depletion of the ozone layer. In higher plants, the presence of flavonols provides a protective mechanism, and we report a novel staining procedure for the visualization of such protectants in plant tissue. It is shown that the proposed technique provides sensitive and specific fluorescence of flavonoids in chlorophyll-bleached tissue of Arabidopsis thaliana. PMID:1282347

  9. CAMTA 1 regulates drought responses in Arabidopsis thaliana

    OpenAIRE

    Pandey, Neha; Ranjan, Alok; Pant, Poonam; Tripathi, Rajiv K; Ateek, Farha; Pandey, Haushilla P; Patre, Uday V; Sawant, Samir V

    2013-01-01

    Background Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. Results In camta1, root development was abolish...

  10. RcLEA, a late embryogenesis abundant protein gene isolated from Rosa chinensis, confers tolerance to Escherichia coli and Arabidopsis thaliana and stabilizes enzyme activity under diverse stresses.

    Science.gov (United States)

    Zhang, Xuan; Lu, Songchong; Jiang, Changhua; Wang, Yaofeng; Lv, Bo; Shen, Jiabin; Ming, Feng

    2014-07-01

    The late embryogenesis abundant (LEA) protein family is a large protein family that is closely associated with resistance to abiotic stresses in many organisms, such as plants, bacteria and animals. In this study, we isolated a LEA gene, RcLEA, which was cytoplasm-localized, from Rosa chinensis. RcLEA was found to be induced by high temperature through RT-PCR. Overexpression of RcLEA in Escherichia coli improved its growth performance compared with the control under high temperature, low temperature, NaCl and oxidative stress conditions. RcLEA was also overexpressed in Arabidopsis thaliana. The transgenic Arabidopsis showed better growth after high and low temperature treatment and exhibited less peroxide according to 3, 3-diaminobenzidine staining. However, RcLEA did not improve the tolerance to NaCl or osmotic stress in Arabidopsis. In vitro analysis showed that RcLEA was able to prevent the freeze-thaw-induced inactivation or heat-induced aggregation of various substrates, such as lactate dehydrogenase and citrate synthase. It also protected the proteome of E. coli from denaturation when the proteins were heat-shocked or subjected to acidic conditions. Furthermore, bimolecular fluorescence complementation assays suggested that RcLEA proteins function in a complex manner by making the form of homodimers. PMID:24760474

  11. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana

    Science.gov (United States)

    Moseler, Anna; Aller, Isabel; Wagner, Stephan; Nietzel, Thomas; Przybyla-Toscano, Jonathan; Mühlenhoff, Ulrich; Lill, Roland; Berndt, Carsten; Rouhier, Nicolas; Schwarzländer, Markus; Meyer, Andreas J.

    2015-01-01

    The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins. PMID:26483494

  12. The Chloroplast Import Receptor Toc90 Partially Restores the Accumulation of Toc159 Client Proteins in the Arabidopsis thaliana ppi2 Mutant

    Institute of Scientific and Technical Information of China (English)

    Sibylle Infanger; Sylvain Bischof; Andreas Hiltbrunner; Birgit Agne; Sacha Baginsky; Felix Kessler

    2011-01-01

    Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana,precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied,but the function of Toc90 still remains unclear. Here,we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.

  13. The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A.; Nielsen, Morten M;

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences...... its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated...... by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1...

  14. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    Science.gov (United States)

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  15. Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission

    Institute of Scientific and Technical Information of China (English)

    Liming Yan; Yuanyuan Ma; Yuna Sun; Jian Gao; Xiaoyue Chen; Jiewei Liu; CongwanWang; Zihe Rao; Zhiyong Lou

    2011-01-01

    Dear Editor Dynamins and dynamin-related proteins (DRPs) constitute a large superfamily of GTPases throughout animal,plant,and bacteria and play essential roles in core cellular processes (Praefcke and McMahon,2004).Plant specific dynamin-related subfamilies share essential functions with those in mammalian cell,e.g.clarthrinmediated endocytosis and fission of mitochondria;yet they also play unique functional roles in plant cells (Hong et al.,2003;Chen et al.,2011;Xue et al.,2011)(Supplementary Figure S1).Key features of dynamin members,including large molecular size,high basal GTP hydrolysis,and self-assembly into filamentous helices,distinguish them from other classical signaling and regulatory GTPases (Praefcke and McMahon,2004).

  16. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    Science.gov (United States)

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  17. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves.

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C; Smith, Alison M

    2016-06-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  18. Involvement of DEG5 and DEG8 proteases in the turnover of the photosystem II reaction center D1 protein under heat stress in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    SUN XuWu; WANG LiYuan; ZHANG LiXin

    2007-01-01

    Deg5,deg8 and the double mutant,deg5deg8 of Arabidopsis thaliana were used to study the physiological role of the DEG proteases in the repair cycle of photosystem II (PSII) under heat stress. PSII activity in deg mutants showed increased sensitivity to heat stress,and the extent of this effect was greater in the double mutant,deg5deg8,than in the single mutants,deg5 and deg8. Degradation of the D1 protein was slower in the mutants than in the WT plants. Furthermore,the levels of other PSII reaction center proteins tested remained relatively stable in the mutant and WT plants following high-temperature treatment. Thus,our results indicate that DEG5 and DEG8 may have synergistic function in degradation of D1 protein under heat stress.

  19. Cyclin-like F-box protein plays a role in growth and development of the three model species Medicago truncatula, Lotus japonicus, and Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Boycheva I

    2015-08-01

    Full Text Available Irina Boycheva,1 Valya Vassileva,2 Miglena Revalska,1 Grigor Zehirov,2 Anelia Iantcheva1 1Department of Functional Genetics Legumes, 2AgroBioInstitute, Department of Plant Stress Molecular Biology, Institute of Plant Physiology and Genetics, Sofia, Bulgaria Abstract: In eukaryotes, F-box proteins are one of the main components of the SCF complex that belongs to the family of ubiquitin E3 ligases, which catalyze protein ubiquitination and maintain the balance between protein synthesis and degradation. In the present study, we clarified the role and function of the gene encoding cyclin-like F-box protein from Medicago truncatula using transgenic plants of the model species M. truncatula, Lotus japonicas, and Arabidopsis thaliana generated by Agrobacterium-mediated transformation. Morphological and transcriptional analyses combined with flow cytometry and histochemistry demonstrated the participation of this protein in many aspects of plant growth and development, including processes of indirect somatic embryogenesis and symbiotic nodulation. The cyclin-like F-box gene showed expression in all plant organs and tissues comprised of actively dividing cells. The observed variations in root and hypocotyl growth, leaf and silique development, ploidy levels, and leaf parameters in the obtained transgenic lines demonstrated the effects of this gene on organ development. Furthermore, knockdown of cyclin-like F-box led to accumulation of higher levels of the G2/M transition-specific gene cyclin B1:1 (CYCB1:1, suggesting its possible role in cell cycle control. Together, the collected data suggest a similar role of the cyclin-like F-box protein in the three model species, providing evidence for the functional conservation of the studied gene. Keywords: cyclin-like F-box, model legumes, Arabidopsis thaliana, plant growth, plant development, cell cycle

  20. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    OpenAIRE

    Jamet Elisabeth; Pont-Lezica Rafael; Borderies Gisèle; Canut Hervé; Irshad Muhammad

    2008-01-01

    Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after g...

  1. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress.

    Directory of Open Access Journals (Sweden)

    Anirudha R Dixit

    Full Text Available We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As, high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.

  2. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid.

    Science.gov (United States)

    Wang, Xingxing; Jia, Ning; Zhao, Chunlan; Fang, Yulu; Lv, Tingting; Zhou, Wei; Sun, Yongzhen; Li, Bing

    2014-10-01

    AtDjB1 is a member of the Arabidopsis thaliana J-protein family. AtDjB1 is targeted to the mitochondria and plays a crucial role in A. thaliana heat and oxidative stress resistance. Herein, the role of AtDjB1 in adapting to saline and drought stress was studied in A. thaliana. AtDjB1 expression was induced through salinity, dehydration and abscisic acid (ABA) in young seedlings. Reverse genetic analyses indicate that AtDjB1 is a negative regulator in plant osmotic stress tolerance. Further, AtDjB1 knockout mutant plants (atj1-1) exhibited greater ABA sensitivity compared with the wild-type (WT) plants and the mutant lines with a rescued AtDjB1 gene. AtDjB1 gene knockout also altered the expression of several ABA-responsive genes, which suggests that AtDjB1 is involved in osmotic stress tolerance through its effects on ABA signaling pathways. Moreover, atj1-1 plants exhibited higher glucose levels and greater glucose sensitivity in the post-germination development stage. Applying glucose promoted an ABA response in seedlings, and the promotion was more evident in atj1-1 than WT seedlings. Taken together, higher glucose levels in atj1-1 plants are likely responsible for the greater ABA sensitivity and increased osmotic stress tolerance. PMID:24521401

  3. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  4. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying.

    Science.gov (United States)

    Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K

    2015-10-01

    The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. PMID:25988244

  5. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Talavera, David; Saura, Andreu; Imperial, Santiago; Rodríguez-Concepción, Manuel; Campos, Narciso; Boronat, Albert

    2013-07-15

    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

  6. A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: Confirmed actors and newcomers

    Directory of Open Access Journals (Sweden)

    Jamet Elisabeth

    2008-09-01

    Full Text Available Abstract Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins.

  7. The pattern of polymorphism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.

  8. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xi; Li, Yong; Ji, Wei; Bai, Xi; Cai, Hua; Zhu, Dan; Sun, Xiao-Li; Chen, Lian-Jiang; Zhu, Yan-Ming

    2011-07-15

    Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.

  9. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    Science.gov (United States)

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  10. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants.

    Science.gov (United States)

    Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli

    2015-01-01

    Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

  11. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Xiang; Wang, Jin; Yuan, Jing; Wang, Xi-Li; Zhao, Qing-Ping; Kong, Pei-Tao; Zhang, Xiao

    2015-07-01

    Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.

  12. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henrik eZauber

    2014-03-01

    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  13. Identification of Polyadenylation Sites within Arabidopsis Thaliana

    KAUST Repository

    Kalkatawi, Manal

    2011-09-01

    Machine Learning (ML) is a field of artificial intelligence focused on the design and implementation of algorithms that enable creation of models for clustering, classification, prediction, ranking and similar inference tasks based on information contained in data. Many ML algorithms have been successfully utilized in a variety of applications. The problem addressed in this thesis is from the field of bioinformatics and deals with the recognition of polyadenylation (poly(A)) sites in the genomic sequence of the plant Arabidopsis thaliana. During the RNA processing, a tail consisting of a number of consecutive adenine (A) nucleotides is added to the terminal nucleotide of the 3’- untranslated region (3’UTR) of the primary RNA. The process in which these A nucleotides are added is called polyadenylation. The location in the genomic DNA sequence that corresponds to the start of terminal A nucleotides (i.e. to the end of 3’UTR) is known as a poly(A) site. Recognition of the poly(A) sites in DNA sequence is important for better gene annotation and understanding of gene regulation. In this study, we built an artificial neural network (ANN) for the recognition of poly(A) sites in the Arabidopsis thaliana genome. Our study demonstrates that this model achieves improved accuracy compared to the existing predictive models for this purpose. The key factor contributing to the enhanced predictive performance of our ANN model is a distinguishing set of features used in creation of the model. These features include a number of physico-chemical characteristics of relevance, such as dinucleotide thermodynamic characteristics, electron-ion interaction potential, etc., but also many of the statistical properties of the DNA sequences from the region surrounding poly(A) site, such as nucleotide and polynucleotide properties, common motifs, etc. Our ANN model was compared in performance with several other ML models, as well as with the PAC tool that is specifically developed for

  14. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  15. Control of differential petiole growth in Arabidopsis thaliana

    NARCIS (Netherlands)

    van Zanten, M.

    2009-01-01

    Plants react quickly and profoundly to changes in their environment. For example, complete submergence and low light intensities induce differential petiole growth, resulting in upward leaf movement (hyponastic growth) in Arabidopsis thaliana. This thesis deals with the physiological-, genetic- and

  16. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  17. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells.

    Science.gov (United States)

    Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana

    2011-10-01

    To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles. PMID:21611741

  18. A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells.

    Science.gov (United States)

    Scabone, Camila María; Frigerio, Lorenzo; Petruccelli, Silvana

    2011-10-01

    To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.

  19. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  20. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  1. Expression of the rgMT gene, encoding for a rice metallothionein-like protein in Saccharomyces cerevisiae and Arabidopsis thaliana

    Indian Academy of Sciences (India)

    Shumei Jin; Dan Sun; Ji Wang; Ying Li; Xinwang Wang; Shenkui Liu

    2014-12-01

    Metallothioneins (MTs) are cysteine-rich proteins of low molecular weight with many attributed functions, such as providing protection against metal toxicity, being involved in regulation of metal ions uptake that can impact plant physiology and providing protection against oxidative stress. However, the precise function of the metallothionein-like proteins such as the one coded for rgMT gene isolated from rice (Oryza sativa L.) is not completely understood. The whole genome analysis of rice (O. sativa) showed that the rgMT gene is homologue to the Os11g47809 on chromosome 11 of O. sativa sp. japonica genome. This study used the rgMT coding sequence to create transgenic lines to investigate the subcellular localization of the protein, as well as the impact of gene expression in yeast (Saccharomyces cerevisiae) and Arabidopsis thaliana under heavy metal ion, salt and oxidative stresses. The results indicate that the rgMT gene was expressed in the cytoplasm of transgenic cells. Yeast cells transgenic for rgMT showed vigorous growth compared to the nontransgenic controls when exposed to 7mM CuCl2, 10 mM FeCl2, 1 M NaCl, 24 mM NaHCO3 and 3.2 mM H2O2, but there was no significant difference for other stresses tested. Similarly, Arabidopsis transgenic for rgMT displayed significantly improved seed germination rates over that of the control when the seeds were stressed with 100 M CuCl2 or 1 mM H2O2. Increased biomass was observed in the presence of 100 M CuCl2, 220 M FeCl2, 3 mM Na2CO3, 5 mM NaHCO3 or 1 mM H2O2. These results indicate that the expression of the rice rgMT gene in transgenic yeast and Arabidopsis is implicated in improving their tolerance for certain salt and peroxide stressors.

  2. Study of natural variation for Zn deficiency tolerance in Arabidopsis thaliana

    NARCIS (Netherlands)

    Campos, A.C.A.L.

    2015-01-01

    English summary Zinc is an important structural component and co-factor of proteins in all living organisms. The model plant species for genetic and molecular studies, Arabidopsis thaliana, expresses more than 2,000 proteins with one or more Zn binding domains. Low Zn availability i

  3. A protein–protein interaction network linking the energy-sensor kinase SnRK1 to multiple signaling pathways in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Madlen Nietzsche

    2016-04-01

    Full Text Available In plants, the sucrose non-fermenting (SNF1-related protein kinase 1 (SnRK1 represents a central integrator of low energy signaling and acclimation towards many environmental stress responses. Although SnRK1 acts as a convergent point for many different environmental and metabolic signals to control growth and development, it is currently unknown how these many different signals could be translated into a cell-type or stimulus specific response since many components of SnRK1-regulated signaling pathways remain unidentified. Recently, we have demonstrated that proteins containing a domain of unknown function (DUF 581 interact with the catalytic α subunits of SnRK1 (AKIN10/11 from Arabidopsis thaliana and could potentially act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation. To further extend the SnRK1 signaling network in plants, we systematically screened for novel DUF581 interaction partners using the yeast two-hybrid system. A deep and exhaustive screening identified 17 interacting partners for 10 of the DUF581 proteins tested. Many of these novel interaction partners are implicated in cellular processes previously associated with SnRK1 signaling. Furthermore, we mined publicly available interaction data to identify additional DUF581 interacting proteins. A protein–protein interaction network resulting from our studies suggests connections between SnRK1 signaling and other central signaling pathways involved in growth regulation and environmental responses. These include TOR and MAP-kinase signaling as well as hormonal pathways. The resulting protein–protein interaction network promises to be effective in generating hypotheses to study the precise mechanisms SnRK1 signaling on a functional level.

  4. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration

    Directory of Open Access Journals (Sweden)

    Roberto eToscano-Morales

    2015-07-01

    Full Text Available The Translationally Controlled Tumor Protein (TCTP is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640, which is an important mitotic regulator, and AtTCTP2 (At3g05540, which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCP2 demonstrates that this suppresses the capacity for plant regeneration; also, this phenomenon requires the presence of TCTP (AtTCTP1 or 2 in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.

  5. Multiple reference genomes and transcriptomes for Arabidopsis thaliana

    KAUST Repository

    Gan, Xiangchao

    2011-08-28

    Genetic differences between Arabidopsis thaliana accessions underlie the plants extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions. ©2011 Macmillan Publishers Limited. All rights reserved.

  6. Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana

    Science.gov (United States)

    Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition. PMID:24260561

  7. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for

  8. Human intrinsic factor expressed in the plant Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Laursen, Niels B; Nexø, Ebba;

    2003-01-01

    and contamination by other B12 binders. We tested the use of recombinant plants for large-scale production of pathogen-free human recombinant IF. Human IF was successfully expressed in the recombinant plant Arabidopsis thaliana. Extract from fresh plants possessed high B12-binding capacity corresponding to 70 mg...... IF per 1 kg wet weight. The dried plants still retained 60% of the IF activity. The purified IF preparation consisted of a 50-kDa glycosylated protein with the N-terminal sequence of mature IF. Approximately one-third of the protein was cleaved at the internal site em leader PSNP downward arrow GPGP...... to recombinant IF and gastric IF were alike, as was the interaction of recombinant and native IF with the specific receptor cubilin. The data presented show that recombinant plants have a great potential as a large-scale source of human IF for analytical and therapeutic purposes....

  9. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    OpenAIRE

    Fridborg, I.; Johansson, A; Lagensjo, J.; Leelarasamee, N.; Floková, K. (Kristýna); Tarkowská, D. (Danuše); Meijer, J.; Bejai, S.

    2013-01-01

    ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants we...

  10. The control of starch degradation in Arabidopsis thaliana leaves at night

    OpenAIRE

    Feike, Doreen

    2013-01-01

    The aim of this work was to understand how Arabidopsis thaliana plants control starch degradation at night. Starch is the major energy reserve in Arabidopsis. It is broken down at night to maintain growth and metabolism of the plant, when photosynthesis is not possible. The rate of starch degradation follows a linear pattern and is matched to the length of the night period such that almost all starch is exhausted by dawn. The mechanisms and the proteins involved in controlling ...

  11. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Toorop, P.E.; Barroco, R.M.; Engler, G.; Groot, S.P.C.; Hilhorst, H.W.M.

    2005-01-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was undetectab

  12. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chongsheng eHe

    2013-11-01

    Full Text Available Polycomb group (PcG proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb repressive complexes 1 and 2 (PRC1 and PRC2, respectively. The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli.

  13. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria

    Science.gov (United States)

    Wall, Melisa K.; Mitchenall, Lesley A.; Maxwell, Anthony

    2004-01-01

    DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A2B2 tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants. PMID:15136745

  14. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  15. A proteomics study of auxin effects in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Meiqing Xing; Hongwei Xue

    2012-01-01

    Many phytohormones regulate plant growth and development through modulating protein degradation.In this study,a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-induced protein degradation via ubiquitinproteasome pathway of Arabidopsis thaliana,with the emphasis to study the overall protein changes after auxin treatment (1 nM or 1 μM indole-3-acetic acid for 6,12,or 24 h).More than a thousand proteins were detected by using label-free shotgun method,and 386 increased proteins and 370 decreased ones were identified after indole-3-acetic acid treatment.By using the auxin receptor-deficient mutant,tir1-1,as control,comparative analysis revealed that 69 and 79 proteins were significantly decreased and increased,respectively.Detailed analysis showed that among the altered proteins,some were previously reported to be associated with auxin regulation and others are potentially involved in mediating the auxin effects on specific cellular and physiological processes by regulating photosynthesis,chloroplast development,cytoskeleton,and intracellular signaling.Our results demonstrated that label-free shotgun proteomics is a powerful tool for large-scale protein identification and the analysis of the proteomic profiling of auxin-regulated biological processes will provide informative clues of underlying mechanisms of auxin effects.These results will help to expand the understanding of how auxin regulates plant growth and development via protein degradation.

  16. The DYW Subgroup PPR Protein MEF35 Targets RNA Editing Sites in the Mitochondrial rpl16, nad4 and cob mRNAs in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Nadja Brehme

    Full Text Available RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C to uridine (U mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35 to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209, for cytochrome b (cob-286 and for subunit 4 of complex I (nad4-1373, respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.

  17. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data.

    Science.gov (United States)

    Hausmann, N; Fengler, S; Hennig, A; Franz-Wachtel, M; Hampp, R; Neef, M

    2014-01-01

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular, short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide (H2 O2 ) and cytosolic Ca(2+) were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion for RNA; acid/base for NADPH, NADP) at typical stages of a parabola [1 g before pull up; end of pull up (1.8 g), end of microgravity (20 s) and end of pull out (1.8 g)]. Cells exhibited an increase in both Ca(2+) and H2 O2 with the onset of microgravity, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating Ca(2+) -dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca(2+) - and ROS-related gene products. The same material was also used for analysis of phosphopeptides with 2-D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of ROS. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  18. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  19. Cytosolic Calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: Parabolic flight data

    Science.gov (United States)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  20. Omics analysis of high-energy Arabidopsis thaliana

    OpenAIRE

    Liang, Chao; 梁超

    2014-01-01

    Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is a phosphatase dually targeted to both chloroplasts and mitochondria. Overexpression (OE) of AtPAP2 in Arabidopsis thaliana was reported to speed up plant growth and promote flowering, seed yield and biomass at maturity in a previous study. Under long-day (16 hours light at 22°C / 8 hours dark at 18°C) growth conditions, the leaves of 20-day-old OE lines contained significant higher sucrose and glucose than the wild-type (WT) plants, r...

  1. Characterization Of Laccase T-DNA Mutants In Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Andersen, Jeppe R; Asp, Torben; Mansfield, Shawn;

    Laccases (P-diphenol:O2 oxidoreductase; EC 1.10.3.2), also termed laccase-like multicopper oxidases, are blue copper-containing oxidases which comprise multigene families in plants. In the Arabidopsis thaliana genome, 17 laccase genes (LAC1 to LAC17) have been annotated. To identify laccases invo...... quite different and distinct biochemical pathways and that laccases might be involved in polymerization of both polysaccharides and monolignols in the Arabidopsis cell wall....

  2. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    OpenAIRE

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane...

  3. Internet Resources for Gene Expression Analysis in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2008-09-01

    The number of online databases and web-tools for gene expression analysis in Arabidopsis thaliana has increased tremendously during the last years. These resources permit the database-assisted identification of putative cis-regulatory DNA sequences, their binding proteins, and the determination of common cis-regulatory motifs in coregulated genes. DNA binding proteins may be predicted by the type of cis-regulatory motif. Further questions of combinatorial control based on the interaction of DNA binding proteins and the colocalization of cis-regulatory motifs can be addressed. The database-assisted spatial and temporal expression analysis of DNA binding proteins and their target genes may help to further refine experimental approaches. Signal transduction pathways upstream of regulated genes are not yet fully accessible in databases mainly because they need to be manually annotated. This review focuses on the use of the AthaMap and PathoPlant((R)) databases for gene expression regulation analysis and discusses similar and complementary online databases and web-tools. Online databases are helpful for the development of working hypothesis and for designing subsequent experiments. PMID:19506727

  4. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    Science.gov (United States)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  5. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development.

    Science.gov (United States)

    Van Son, Le; Tiedemann, Jens; Rutten, Twan; Hillmer, Stefan; Hinz, Giselbert; Zank, Thorsten; Manteuffel, Renate; Bäumlein, Helmut

    2009-11-01

    BURP domain proteins comprise a broadly distributed, plant-specific family of functionally poorly understood proteins. VfUSP (Vicia faba Unknown Seed Protein) is the founding member of this family. The BURP proteins are characterized by a highly conserved C-terminal protein domain with a characteristic cysteine-histidine pattern. The Arabidopsis genome contains five BURP-domain encoding genes. Three of them are similar to the non-catalytic beta-subunit of the polygalacturonase of tomato and form a distinct subgroup. The remaining two genes are AtRD22 and AtUSPL1. The deduced product of AtUSPL1 is similar in size and sequence to VfUSP and that of the Brassica napus BNM2 gene which is expressed during microspore-derived embryogenesis. The protein products of BURP genes have not been found, especially that of VfUSP despite a great deal of interest arising from copious transcription of the gene in seeds. Here, we demonstrate that VfUSP and AtUSPL1 occur in cellular compartments essential for seed protein synthesis and storage, like the Golgi cisternae, dense vesicles, prevaculoar vesicles and the protein storage vacuoles in the parenchyma cells of cotyledons. Ectopic expression of AtUSPL1 leads to a shrunken seed phenotype; these seeds show structural alterations in their protein storage vacuoles and lipid vesicles. Furthermore, there is a reduction in the storage protein content and a perturbation in the seed fatty acid composition. However, loss of AtUSP1 gene function due to T-DNA insertions does not lead to a phenotypic change under laboratory conditions even though the seeds have less storage proteins. Thus, USP is pertinent to seed development but its role is likely shared by other proteins that function well enough under the laboratory growth conditions. PMID:19639386

  6. Global and targeted proteomics in Arabidopsis thaliana: A study of secondary metabolism and phytohormone signaling

    OpenAIRE

    Slade Jr, William O

    2013-01-01

    Proteomics is defined as a tool to explore how proteins control and regulate important molecular and physiological processes. Further, peptide-centric approaches, or bottom-up methods, provide more comprehensive coverage of a proteome compared to whole-protein approaches. This body of work assesses the technical feasibility of several bottom-up proteomics technologies applied to Arabidopsis thaliana, including gel-based methods, those that require peptide derivitization, and those that do n...

  7. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses

    OpenAIRE

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation...

  8. Cleaning the GenBank Arabidopsis thaliana data set

    DEFF Research Database (Denmark)

    Korning, Peter G.; Hebsgaard, Stefan M.; Rouze, Pierre;

    1996-01-01

    extracted a data set from the A. thaliana entries in GenBank. A number of simple `sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly......Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we...

  9. Nucleotide sequence of psbQ gene for 16-kDa protein of oxygen-evolving complex from Arabidopsis thaliana and regulation of its expression.

    Science.gov (United States)

    Grover, M; Gaur, T; Kochhar, A; Maheshwari, S C; Tyagi, A K

    1999-06-30

    The psbQ gene encoding a 16-kDa polypeptide of the oxygen-evolving complex of photosystem II has been isolated from Arabidopsis thaliana and characterized. The gene consists of a 28 nucleotide long leader sequence, two introns and three exons encoding a 223-amino-acid precursor polypeptide. The first 75 amino acids act as a transit peptide for the translocation of the polypeptide into the thylakoid lumen. Expression studies show that the gene is light-inducible and expresses only in green tissues with high steady-state mRNA levels in leaves. Using this gene as a probe, restriction fragment length polymorphism between two ecotypes, Columbia and Estland, has also been detected. PMID:10470848

  10. The structure at 2.4 Å resolution of the protein from gene locus At3g21360, a putative Fe{sup II}/2-oxoglutarate-dependent enzyme from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bitto, Eduard; Bingman, Craig A.; Allard, Simon T. M.; Wesenberg, Gary E.; Aceti, David J.; Wrobel, Russell L.; Frederick, Ronnie O.; Sreenath, Hassan; Vojtik, Frank C.; Jeon, Won Bae; Newman, Craig S.; Primm, John; Sussman, Michael R.; Fox, Brian G.; Markley, John L.; Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison (United States)

    2005-05-01

    The crystal structure of the 37.2 kDa At3g21360 gene product from A. thaliana was determined at 2.4 Å resolution. The structure establishes that this protein binds a metal ion and is a member of a clavaminate synthase-like superfamily in A. thaliana. The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (R{sub free} = 24.1%) at 2.4 Å resolution. The crystal structure includes two monomers in the asymmetric unit that differ in the conformation of a flexible domain that spans residues 178–230. The crystal structure confirmed that At3g21360 encodes a protein belonging to the clavaminate synthase-like superfamily of iron(II) and 2-oxoglutarate-dependent enzymes. The metal-binding site was defined and is similar to the iron(II) binding sites found in other members of the superfamily.

  11. Inheritance beyond plain heritability : variance controlling genes in Arabidopsis thaliana

    OpenAIRE

    Xia Shen; Mats Pettersson; Lars Rönnegård; Örjan Carlborg

    2012-01-01

    Author Summary The most well-studied effects of genes are those leading to different phenotypic means for alternative genotypes. A less well-explored type of genetic control is that resulting in a heterogeneity in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana GWAS dataset to detect genetic effects on the variance heterogeneity, and our results indicate that the environmental variance is under extensive genetic control by a large number of variance-co...

  12. Quantitative trait loci for floral morphology in Arabidopsis thaliana.

    OpenAIRE

    Juenger, T; Purugganan, M.; Mackay, T F

    2000-01-01

    A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these...

  13. Demographic history of european populations of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Olivier François

    2008-05-01

    Full Text Available The model plant species Arabidopsis thaliana is successful at colonizing land that has recently undergone human-mediated disturbance. To investigate the prehistoric spread of A. thaliana, we applied approximate Bayesian computation and explicit spatial modeling to 76 European accessions sequenced at 876 nuclear loci. We find evidence that a major migration wave occurred from east to west, affecting most of the sampled individuals. The longitudinal gradient appears to result from the plant having spread in Europe from the east approximately 10,000 years ago, with a rate of westward spread of approximately 0.9 km/year. This wave-of-advance model is consistent with a natural colonization from an eastern glacial refugium that overwhelmed ancient western lineages. However, the speed and time frame of the model also suggest that the migration of A. thaliana into Europe may have accompanied the spread of agriculture during the Neolithic transition.

  14. Design, Implementation and Maintenance of a Model Organism Database for Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Seung Y. Rhee

    2006-04-01

    Full Text Available The Arabidopsis Information Resource (TAIR is a web-based community database for the model plant Arabidopsis thaliana. It provides an integrated view of genes, sequences, proteins, germplasms, clones, metabolic pathways, gene expression, ecotypes, polymorphisms, publications, maps and community information. TAIR is developed and maintained by collaboration between software developers and biologists. Biologists provide specification and use cases for the system, acquire, analyse and curate data, interact with users and test the software. Software developers design, implement and test the database and software. In this review, we briefly describe how TAIR was built and is being maintained.

  15. Identification of novel regulators of COP1-controlled morphogenesis in Arabidopsis thaliana

    OpenAIRE

    Schrader, Andrea

    2011-01-01

    In Arabidopsis thaliana, COP1 is an essential element of light signal transduction acting downstream of photoreceptors and upstream of light-regulated gene expression. The COP1 protein acts as part of an E3 ligase complex to suppress photomorphogenic gene expression by ubiquitin-dependent degradation of light-regulated transcription factors. In dark-grown seedlings, the repression of photomorphogenesis involves the inhibition of hypocotyl growth, anthocyanin accumulation, expre...

  16. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    OpenAIRE

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-prote...

  17. Re-Evaluation of Reportedly Metal Tolerant Arabidopsis thaliana Accessions

    Science.gov (United States)

    Silva-Guzman, Macarena; Addo-Quaye, Charles; Dilkes, Brian P.

    2016-01-01

    Santa Clara, Limeport, and Berkeley are Arabidopsis thaliana accessions previously identified as diversely metal resistant. Yet these same accessions were determined to be genetically indistinguishable from the metal sensitive Col-0. We robustly tested tolerance for Zn, Ni and Cu, and genetic relatedness by growing these accessions under a range of Ni, Zn and Cu concentrations for three durations in multiple replicates. Neither metal resistance nor variance in growth were detected between them and Col-0. We re-sequenced the genomes of these accessions and all stocks available for each accession. In all cases they were nearly indistinguishable from the standard laboratory accession Col-0. As Santa Clara was allegedly collected from the Jasper Ridge serpentine outcrop in California, USA we investigated the possibility of extant A. thaliana populations adapted to serpentine soils. Botanically vouchered Arabidopsis accessions in the Jepson database were overlaid with soil maps of California. This provided no evidence of A. thaliana collections from serpentine sites in California. Thus, our work demonstrates that the Santa Clara, Berkeley and Limeport accessions are not metal tolerant, not genetically distinct from Col-0, and that there are no known serpentine adapted populations or accessions of A. thaliana. PMID:27467746

  18. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.

    Science.gov (United States)

    Salanoubat, M; Lemcke, K; Rieger, M; Ansorge, W; Unseld, M; Fartmann, B; Valle, G; Blöcker, H; Perez-Alonso, M; Obermaier, B; Delseny, M; Boutry, M; Grivell, L A; Mache, R; Puigdomènech, P; De Simone, V; Choisne, N; Artiguenave, F; Robert, C; Brottier, P; Wincker, P; Cattolico, L; Weissenbach, J; Saurin, W; Quétier, F; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Benes, V; Wurmbach, E; Drzonek, H; Erfle, H; Jordan, N; Bangert, S; Wiedelmann, R; Kranz, H; Voss, H; Holland, R; Brandt, P; Nyakatura, G; Vezzi, A; D'Angelo, M; Pallavicini, A; Toppo, S; Simionati, B; Conrad, A; Hornischer, K; Kauer, G; Löhnert, T H; Nordsiek, G; Reichelt, J; Scharfe, M; Schön, O; Bargues, M; Terol, J; Climent, J; Navarro, P; Collado, C; Perez-Perez, A; Ottenwälder, B; Duchemin, D; Cooke, R; Laudie, M; Berger-Llauro, C; Purnelle, B; Masuy, D; de Haan, M; Maarse, A C; Alcaraz, J P; Cottet, A; Casacuberta, E; Monfort, A; Argiriou, A; flores, M; Liguori, R; Vitale, D; Mannhaupt, G; Haase, D; Schoof, H; Rudd, S; Zaccaria, P; Mewes, H W; Mayer, K F; Kaul, S; Town, C D; Koo, H L; Tallon, L J; Jenkins, J; Rooney, T; Rizzo, M; Walts, A; Utterback, T; Fujii, C Y; Shea, T P; Creasy, T H; Haas, B; Maiti, R; Wu, D; Peterson, J; Van Aken, S; Pai, G; Militscher, J; Sellers, P; Gill, J E; Feldblyum, T V; Preuss, D; Lin, X; Nierman, W C; Salzberg, S L; White, O; Venter, J C; Fraser, C M; Kaneko, T; Nakamura, Y; Sato, S; Kato, T; Asamizu, E; Sasamoto, S; Kimura, T; Idesawa, K; Kawashima, K; Kishida, Y; Kiyokawa, C; Kohara, M; Matsumoto, M; Matsuno, A; Muraki, A; Nakayama, S; Nakazaki, N; Shinpo, S; Takeuchi, C; Wada, T; Watanabe, A; Yamada, M; Yasuda, M; Tabata, S

    2000-12-14

    Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes. PMID:11130713

  19. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana.

    Science.gov (United States)

    Yamashino, Takafumi; Nomoto, Yuji; Lorrain, Séverine; Miyachi, Miki; Ito, Shogo; Nakamichi, Norihito; Fankhauser, Christian; Mizuno, Takeshi

    2013-03-01

    Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.

  20. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  1. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  2. Diuretics Prime Plant Immunity in Arabidopsis thaliana

    Science.gov (United States)

    Noutoshi, Yoshiteru; Ikeda, Mika; Shirasu, Ken

    2012-01-01

    Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application. PMID:23144763

  3. Diuretics prime plant immunity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yoshiteru Noutoshi

    Full Text Available Plant activators are agrochemicals that activate the plant immune system, thereby enhancing disease resistance. Due to their prophylactic and durable effects on a wide spectrum of diseases, plant activators can provide synergistic crop protection when used in combination with traditional pest controls. Although plant activators have achieved great success in wet-rice farming practices in Asia, their use is still limited. To isolate novel plant activators applicable to other crops, we screened a chemical library using a method that can selectively identify immune-priming compounds. Here, we report the isolation and characterization of three diuretics, bumetanide, bendroflumethiazide and clopamide, as immune-priming compounds. These drugs upregulate the immunity-related cell death of Arabidopsis suspension-cultured cells induced with an avirulent strain of Pseudomonas syringae pv. tomato in a concentration-dependent manner. The application of these compounds to Arabidopsis plants confers disease resistance to not only the avirulent but also a virulent strain of the pathogen. Unlike salicylic acid, an endogenous phytohormone that governs disease resistance in response to biotrophic pathogens, the three diuretic compounds analyzed here do not induce PR1 or inhibit plant growth, showing potential as lead compounds in a practical application.

  4. Identification and characterization of GIP1, an Arabidopsis thaliana protein that enhances the DNA binding affinity and reduces the oligomeric state of G-box binding factors

    Institute of Scientific and Technical Information of China (English)

    Paul C. SEHNKE; Beth J. LAUGHNER; Carla R. LYERLY LINEBARGER; William B. GURLEY; Robert J.FERL

    2005-01-01

    Environmental control of the alcohol dehydrogenase (Adh) and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors (GBFs).The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood.In an effort to identify potential GBF binding and control partners, maize GBF1 was used as bait in a yeast two-hybrid screen of an A. thaliana cDNA library. GBF Interacting Protein 1 (GIP1) arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs. Northern analysis of A.thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript, predominantly in roots. Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus. In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A. thaliana GBF3 or maize GBF1, showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration, suggesting a transient association between GIP1 and GBF. Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP. These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar, and potentially regulates the multimeric state of GBFs, thereby contributing to bZIP-mediated gene regulation.

  5. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering.

  6. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering. PMID:27058920

  7. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    Directory of Open Access Journals (Sweden)

    Eisa Kohan-Baghkheirati

    2015-03-01

    Full Text Available Silver nanoparticles (AgNPs have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575 in the Arabidopsis genome, followed by Ag+ (1010, heat (1374, drought (1435, salt (4133 and cold (6536. More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively while cold down-regulated the most genes (4022. Responses to AgNPs were more similar to those of Ag+ (464 shared genes, cold (202, and salt (163 than to drought (50 or heat (30; the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis.

  8. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    OpenAIRE

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana. The large genomic changes are important for gene balance control, gene expression and regulation, and may affect the plant’s phenotype. Moreover, chromosome changes, in particular polyploidy, inversions and translocations play a signif...

  9. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds.

    Science.gov (United States)

    Yao, N; Ai, L; Dong, Y Y; Liu, X M; Wang, D Z; Wang, N; Li, X W; Wang, F W; Li, Xk; Li, H Y; Jiang, C

    2016-01-01

    Recombinant human anti-tumor necrosis factor (TNF)-α scFv-Fc was expressed in TKO mutant Arabidopsis thaliana seeds using plant-specific codons. Immunoblotting using a human IgG1 antibody detected the expression of anti-TNF-α proteins in plants. Results from qRT-PCR analysis demonstrated that the time of harvest significantly affected the protein yield and quality. Our results indicate that the Phaseolus vulgaris β-phaseolin promoter directed anti-TNF-α scFv-Fc expression in A. thaliana seeds, with a maximum yield obtained at 20-days of development. Although the yield of anti-TNF-α scFv-Fc protein was not very high, accumulation of recombinant proteins in seeds is an attractive and simple method that can be used to purify biologically active anti-TNF-α scFv-Fc. PMID:27420937

  10. The structure at 2.4 Å resolution of the protein from gene locus At3g21360, a putative FeII/2-oxo­glutarate-dependent enzyme from Arabidopsis thaliana

    Science.gov (United States)

    Bitto, Eduard; Bingman, Craig A.; Allard, Simon T. M.; Wesenberg, Gary E.; Aceti, David J.; Wrobel, Russell L.; Frederick, Ronnie O.; Sreenath, Hassan; Vojtik, Frank C.; Jeon, Won Bae; Newman, Craig S.; Primm, John; Sussman, Michael R.; Fox, Brian G.; Markley, John L.; Phillips, George N.

    2005-01-01

    The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (R free = 24.1%) at 2.4 Å resolution. The crystal structure includes two monomers in the asymmetric unit that differ in the conformation of a flexible domain that spans residues 178–230. The crystal structure confirmed that At3g21360 encodes a protein belonging to the clavaminate synthase-like superfamily of iron(II) and 2-oxoglutarate-dependent enzymes. The metal-binding site was defined and is similar to the iron(II) binding sites found in other members of the superfamily. PMID:16511070

  11. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi.

    Science.gov (United States)

    Knecht, Katrin; Seyffarth, Monique; Desel, Christine; Thurau, Tim; Sherameti, Irena; Lou, Binggan; Oelmüller, Ralf; Cai, Daguang

    2010-04-01

    Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1(pro-1). BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1(pro-1) mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant-fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H(2)O(2) content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus.

  12. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi.

    Science.gov (United States)

    Knecht, Katrin; Seyffarth, Monique; Desel, Christine; Thurau, Tim; Sherameti, Irena; Lou, Binggan; Oelmüller, Ralf; Cai, Daguang

    2010-04-01

    Nematode (Heterodera schachtii) resistance in sugar beet (Beta vulgaris) is controlled by a single dominant resistance gene, Hs1(pro-1). BvGLP-1 was cloned from resistant sugar beet. The BvGLP-1 messenger (m)RNA is highly upregulated in the resistant plants after nematode infection, suggesting its role in the Hs1(pro-1) mediated resistance. BvGLP-1 exhibits sequence homology to a set of plant germin-like proteins (GLP), from which several have proved to be functional in plant basal or defense resistance against fungal pathogens. To test whether BvGLP-1 is also involved in the plant-fungus interaction, we transferred BvGLP-1 into Arabidopsis and challenged the transgenic plants with the pathogenic fungi Verticillium longisporum and Rhizoctonia solani as well as with the beneficial endophytic fungus Piriformospora indica. The expression of BvGLP-1 in Arabidopsis elevated the H(2)O(2) content and conferred significant resistance to V. longisporum and R. solani but did not affect the beneficial interaction with P. indica in seedlings. Microscopic observations revealed a dramatic reduction in the amount of hyphae of the pathogenic fungi on the root surface as well as of fungal mycelium developed inside the roots of transgenic Arabidopsis compared with wild-type plants. Molecular analysis demonstrated that the BvGLP-1 expression in Arabidopsis constitutively activates the expression of a subset of plant defense-related proteins such as PR-1 to PR-4 and PDF1.2 but not PDF2.1 and PDF2.3. In contrast, the PDF2.1 mRNA level was downregulated. These data suggest an important role of BvGLP-1 in establishment of plant defense responses, which follow specific signaling routes that diverge from those induced by the beneficial fungus. PMID:20192832

  13. Herkogamy and its effects on mating patterns in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yonghai Luo

    Full Text Available The evolution of mating systems, which exhibit an extraordinary diversity in flowering plants, is of central interest in plant biology. Herkogamy, the spatial separation of sexual organs within flowers, is a widespread floral mechanism that is thought to be an adaptive trait reducing self-pollination in hermaphroditic plants. In contrast with previous studies of herkogamy that focused on plants with relatively large floral displays, we here characterized herkogamy in Arabidopsis thaliana, a model plant with a strong selfing syndrome. Developmental features, reproductive consequences, and genetic architecture of herkogamy were exploited using naturally variable A. thaliana accessions, under both greenhouse and natural conditions. Our results demonstrate that the degree of herkogamy can strongly influence the mating patterns of A. thaliana: approach herkogamy can effectively promote outcrossing, no herkogamy is also capable of enhancing the opportunity for outcrossing, and reverse herkogamy facilitates efficient self-pollination. In addition, we found that the expression of herkogamy in A. thaliana was environment-dependent and regulated by multiple quantitative trait loci. This study reveals how minor modifications in floral morphology may cause dramatic changes in plant mating patterns, provides new insights into the function of herkogamy, and suggests the way for dissecting the genetic basis of this important character in a model plant.

  14. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  15. Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans

    Science.gov (United States)

    Liebminger, Eva; Grass, Josephine; Jez, Jakub; Neumann, Laura; Altmann, Friedrich; Strasser, Richard

    2012-01-01

    In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been paid to the characterization of the glycosylation status of individual proteins. We report here the structural analysis of all N-glycans present on the endogenous thioglucoside glucohydrolases (myrosinases) TGG1 and TGG2 from A. thaliana. All nine glycosylation sites of TGG1 and all four glycosylation sites of TGG2 are occupied by oligomannosidic structures with Man5GlcNAc2 as the major glycoform. Analysis of the oligomannosidic isomers from wild-type plants and mannose trimming deficient mutants by liquid chromatography with porous graphitic carbon and mass spectrometry revealed that the N-glycans from both myrosinases are processed by Golgi-located α-mannosidases. PMID:23009876

  16. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana.

    Science.gov (United States)

    Weiss, H; Maluszynska, J

    2000-01-01

    Recent development of cytogenetic techniques has facilitated significant progress in Arabidopsis thaliana karyotype studies. Double-target FISH with rRNA genes provides makers that allow individual chromosome in the genome to be distinguished. Those studies have revealed that the number and position of rDNA loci is ecotype-specific. Arabidopsis is believed to be a true diploid (x = 5) with numerous ecotypes (accessions) and only a very few natural polyploid populations reported. Few studies were undertaken to induce polyploidy in Arabidopsis, however none of those gave the cytogenetic characteristics of polyploid plants. Our analysis of chromosome pairing of colchicine-induced autotetraploid Arabidopsis (Wilna ecotype) revealed preferential bivalent pairing in PMCs (pollen mother cells). In order to attempt to explain this phenomenon, first of all more detailed cytogenetic studies of autopolyploid plants have been undertaken. The localization of 45S and 5S rDNA loci in the diploid and autotetraploid plants revealed that Wilna ecotypes belongs to the group of Arabidopsis accessions with only two 5S rDNA loci present in a genome. Furthermore, the rearrangement of 45S rDNA locus in autopolyploid, when compared to the diploid plants of the same ecotype, was revealed. These results are interesting also in the context of the recently emphasised role of polyploidy in plant evolution and speciation. Arabidopsis, despite having small chromosomes, is a good system to study chromosome behaviour in relation to diploidization of autopolyploids and to evaluate the degree of chromosomal rearrangements during this process. PMID:11433970

  17. Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa

    Directory of Open Access Journals (Sweden)

    Levy Maggie

    2005-12-01

    Full Text Available Abstract Background Calcium signaling plays a prominent role in plants for coordinating a wide range of developmental processes and responses to environmental cues. Stimulus-specific generation of intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into cellular responses are integral modules of the transduction process. Several hundred proteins with functions in calcium signaling circuits have been identified, and the number of downstream targets of calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here, we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in Arabidopsis and rice. Results We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa, respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high isoelectric point (~10.3 and frequency of serine residues (~11%. We compared the Arabidopsis and rice IQD gene families in terms of gene structure, chromosome location, predicted protein properties and motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose during the early evolution of land plants. Conclusion Comparative phylogenetic analyses indicate that the major IQD gene lineages

  18. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  19. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  20. Transcriptome response analysis of Arabidopsis thaliana to leafminer (Liriomyza huidobrensis

    Directory of Open Access Journals (Sweden)

    Zhang Sufang

    2012-12-01

    Full Text Available Abstract Background Plants have evolved a complicated resistance system and exhibit a variety of defense patterns in response to different attackers. Previous studies have shown that responses of plants to chewing insects and phloem-feeding insects are significantly different. Less is known, however, regarding molecular responses to leafminer insects. To investigate plant transcriptome response to leafminers, we selected the leafminer Liriomyza huidobrensis, which has a special feeding pattern more similar to pathogen damage than that of chewing insects, as a model insect, and Arabidopsis thaliana as a response plant. Results We first investigated local and systemic responses of A. thaliana to leafminer feeding using an Affymetrix ATH1 genome array. Genes related to metabolic processes and stimulus responses were highly regulated. Most systemically-induced genes formed a subset of the local response genes. We then downloaded gene expression data from online databases and used hierarchical clustering to explore relationships among gene expression patterns in A. thaliana damaged by different attackers. Conclusions Our results demonstrate that plant response patterns are strongly coupled to damage patterns of attackers.

  1. Cerium toxicity, uptake and translocation in Arabidopsis thaliana seedlings

    Institute of Scientific and Technical Information of China (English)

    WANG Xue; LIN Yousheng; LIU Dongwu; XU Hengjian; LIU Tao; ZHAO Fengyun

    2012-01-01

    Arabidopsis thaliana seedlings were cultivated in 0-500 μmol/L of extraneous cerium (Ce) for 7 d to investigate the toxicity,uptake and translocation of rare earth elements (REEs).The results showed that Ce could be largely absorbed by the roots of A.thaliana and translocated to the shoots.But the uptake rates of Ce by the roots were much higher than the translocation rates from roots to shoots.Ultrastructural analysis revealed that Ce was mainly distributed on the cell wall.At higher concentration,Ce could also enter cell,destroy the ultrastructure of cells and disturb the intrinsic balance of nutrient elements of A.thaliana.Addition of Ce (50-500 μmol/L) to the culture medium significantly inhibited the elongation of primary roots,decreased chlorophyll content,rosette diameter and fresh mass of plants.The damage increased with the increase of Ce concentration in culture medium,although primary root elongation,chlorophyll content,and rosette diameter were stimulated by relatively low concentration (0.5 μmol/L) of Ce.Thus,it is speculated that REEs may become a new type contamination if we don't well control the release of REEs into the environment.

  2. Transgenerational response to stress in Arabidopsis thaliana

    OpenAIRE

    Boyko, Alex; Kovalchuk, Igor

    2010-01-01

    Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the fe...

  3. Transport of antimony salts by Arabidopsis thaliana protoplasts over-expressing the human multidrug resistance-associated protein 1 (MRP1/ABCC1).

    Science.gov (United States)

    Gayet, Landry; Picault, Nathalie; Cazalé, Anne-Claire; Beyly, Audrey; Lucas, Philippe; Jacquet, Hélène; Suso, Henri-Pierre; Vavasseur, Alain; Peltier, Gilles; Forestier, Cyrille

    2006-12-22

    ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of "safe-food" strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.

  4. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  5. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  6. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Tomoya Asano

    Full Text Available Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4 antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.

  7. JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana.

    Science.gov (United States)

    Liang, Jing; Zhou, Mingqi; Zhou, Xin; Jin, Yuanjie; Xu, Ming; Lin, Juan

    2013-01-01

    Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA) protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA), dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification. PMID:24391737

  8. JcLEA, a novel LEA-like protein from Jatropha curcas, confers a high level of tolerance to dehydration and salinity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jing Liang

    Full Text Available Jatropha curcas L. is a highly drought and salt tolerant plant species that is typically used as a traditional folk medicine and biofuel crop in many countries. Understanding the molecular mechanisms that underlie the response to various abiotic environmental stimuli, especially to drought and salt stresses, in J. curcas could be important to crop improvement efforts. In this study, we cloned and characterized the gene for a late embryogenesis abundant (LEA protein from J. curcas that we designated JcLEA. Sequence analyses showed that the JcLEA protein belongs to group 5, a subgroup of the LEA protein family. In young seedlings, expression of JcLEA is significantly induced by abscisic acid (ABA, dehydration, and salt stress. Subcellular localization analysis shows that that JcLEA protein is distributed in both the nucleus and cytoplasm. Moreover, based on growth status and physiological indices, the overexpression of JcLEA in transgenic Arabidopsis plants conferred increased resistance to both drought and salt stresses compared to the WT. Our data suggests that the group 5 JcLEA protein contributes to drought and salt stress tolerance in plants. Thus, JcLEA is a potential candidate gene for plant genetic modification.

  9. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    Science.gov (United States)

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.

  10. Regulation of Arabidopsis thaliana Em genes : role of AB15

    NARCIS (Netherlands)

    Carles, C.; Bies-Etheve, N.; Aspart, L.; Léon-Kloosterziel, K.M.; Koornneef, M.; Echeverria, M.; Delseny, M.

    2002-01-01

    In order to identify new factors involved in Em (a class I Late Embryogenesis Abundant protein) gene expression, Arabidopsis mutants with an altered expression of an Em promoter GUS fusion construct and a modified accumulation of Em transcripts and proteins were isolated. Germination tests on ABA sh

  11. Study of genes induced by ionizing radiations at Arabidopsis thaliana: identification and molecular characterization of the ATGR1 gene, a new gene encoding a protein involved in plant cell division

    International Nuclear Information System (INIS)

    DNA damage, that can be experimentally introduced by ionizing radiation (IR), induces complex signal transduction pathways leading to cell recovery or, alternatively to programmed cell death if damages are too severe. To identify the inducible components of the response to genotoxic stress in plants, we have screened by Differential Display for mRNAs that rapidly and strongly accumulate after IR treatment in A. thaliana cells. We have characterized ATGR1, a new single copy Arabidopsis gene encoding a PEST-box protein of unknown function. In unstressed plant organs the ATGR1 mRNA is hardly detectable, whereas the protein is present in extracts prepared from roots, shoot meristems and inflorescences, that all contain large amounts of actively dividing cells. This pattern is confirmed by immuno localisation on tissue sections that shows constitutive ATGR1 protein expression covering the root elongation zone, the shoot meristem, leaf primordial and the ovules of developing flowers. Histochemical analysis of transgenic plants expressing the GUS reporter gene under the control of the ATGR1 promoter, demonstrate that the developmental and tissue-specific profile of ATGR1 protein expression is conferred by the gene promoter. The massive, transient and dose-dependent accumulation of ATGR1 transcripts after IR treatment observed in all plant organs does not lead to significant changes in ATGR1 protein pattern. Stable ATGR1 protein overexpression, as exemplified by transgenic A. thaliana plants that contain a 35S promoter-ATGR1 gene fusion, does not induce notable changes of the overall ATGR1 protein level, but leads to male and female sterility. The cause of sterility is a lack of correct chromosome assembly and distribution at the stage metaphase II of meiosis. Taken together our results show that i) ATGR1 gene expression is associated to cell division during plant development ii) the ATGR1 protein level is regulated at the transcriptional and post-transcriptional level iii

  12. Protein (Viridiplantae): 15230093 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available VCRRDLFVGKFEVCGENNSSSNLSFIRENNSSANLKIYSSAKKRFVREIYSSAKKRFVEEIYSSANLRFVGENNSSANLSFIGQNNLSANLSFIRE...NNSSANLSSFLAIVSQTCEGNIRRKVCDGIASWSCSFGEIYSSKKRFVREIYSSAKKRFVGEIYSSANLRFVGENNLSANLSFIRENNLSANL...02:4271 uncharacterized protein Arabidopsis thaliana MTYTQFPRNCLANVRGKYSSQNLRRNSELVMFPRRDLFVGEEEVCRRDLFVGEEE

  13. Protein (Viridiplantae): 15235180 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available protein Arabidopsis thaliana MMVLYCGRKLLVVLMVTAFVFSGSAEAWSWSWGSGQSGSNGGWGWRSGNSGGSSGSGSGGSDSNSGGSSWGWGWSSDGTDTNWGWGSSSGSNHS...SGTGSTHNGHSSGSNHSSATGSTHNGHTSTGSNHSSGNGSRHNGYSSGSNHSSSTGSNHSSSTGSTHNNHSSGSNHSSILGSTHKNHS...SGSNHSSIVGSTHNNHSSGSNHSSITGSTHNHTAPIPAGRKIAVTVWKNGYGYTEWTAKHAPFYVSDVLVFKYNNDDQTQSKTKHR

  14. Protein (Viridiplantae): 334184184 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available :2303 3702:1329 uncharacterized protein Arabidopsis thaliana MIPSRQLHSVKPLGVVKNYRKLWLSSSYIRIIGCCTSVTDSVEEAKTNGLKPNKERVCLKPVEKPVQGLTRA...VELHMGDLEGQDRPDPISTMVGPSGTGNLRLTSFQQVRSKYSFTRKTQPSPLSYLY ...

  15. Die Untersuchung der pflanzlichen Organellentranskription am Beispiel der kernkodierten RNA-Polymerasen in Arabidopsis thaliana

    OpenAIRE

    Hensel, Sarah-Sophia Nicola

    2010-01-01

    In Arabidopsis thaliana three nucleus-encoded phagetype RNA polymerases (RpoT;1, RpoT;2 and RpoT;3) were cloned. They show a conserved gene structure and have up to 55% aminoacid homology. By means of in organelle-import approaches and by using GFP-fusion-proteins, the localization of these three enzymes in different organelles was possible. Therefore RpoT;1 is only needed in mitochondria, RpoT;3 is targeted to plastids. In contrast to this, RNA polymerase 2 (RpoT;2) is imported in both plast...

  16. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    KAUST Repository

    Turek, Ilona

    2015-06-30

    Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP), AtPNP-A (At2g18660) were assessed using quantitative proteomics employing tandem mass tag (TMT) labeling and tandem mass spectrometry (LC–MS/MS). In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014) 661) and have been deposited to the ProteomeXchange with identifier PXD001386.

  17. Quantitative proteome changes in Arabidopsis thaliana suspension-cultured cells in response to plant natriuretic peptides

    Directory of Open Access Journals (Sweden)

    Ilona Turek

    2015-09-01

    Full Text Available Proteome changes in the Arabidopsis thaliana suspension cells in response to the A. thaliana plant natriuretic peptide (PNP, AtPNP-A (At2g18660 were assessed using quantitative proteomics employing tandem mass tag (TMT labeling and tandem mass spectrometry (LC–MS/MS. In this study, we characterized temporal responses of suspension-cultured cells to 1 nM and 10 pM AtPNP-A at 0, 10 and 30 min post-treatment. Both concentrations we found to yield a distinct differential proteome signature. The data shown in this article are associated with the article “Plant natriuretic peptides induce a specific set of proteins diagnostic for an adaptive response to abiotic stress” by Turek et al. (Front. Plant Sci. 5 (2014 661 and have been deposited to the ProteomeXchange with identifier PXD001386.

  18. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.

    Science.gov (United States)

    Tatematsu, Kiyoshi; Kumagai, Satoshi; Muto, Hideki; Sato, Atsuko; Watahiki, Masaaki K; Harper, Reneé M; Liscum, Emmanuel; Yamamoto, Kotaro T

    2004-02-01

    We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.

  19. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Mano, Eriko; Horiguchi, Gorou; Tsukaya, Hirokazu

    2006-02-01

    In higher plants, stems and roots show negative and positive gravitropism, respectively. However, current knowledge on the graviresponse of leaves is lacking. In this study, we analyzed the positioning and movement of rosette leaves of Arabidopsis thaliana under light and dark conditions. We found that the radial positioning of rosette leaves was not affected by the direction of gravity under continuous white light. In contrast, when plants were shifted to darkness, the leaves moved upwards, suggesting negative gravitropism. Analysis of the phosphoglucomutase and shoot gravitropism 2-1 mutants revealed that the sedimenting amyloplasts in the leaf petiole are important for gravity perception, as is the case in stems and roots. In addition, our detailed physiological analyses revealed a unique feature of leaf movement after the shift to darkness, i.e. movement could be divided into negative gravitropism and nastic movement. The orientation of rosette leaves is ascribed to a combination of these movements.

  20. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus.

    Science.gov (United States)

    Balasubramaniam, Muthukumar; Ibrahim, Amr; Kim, Bong-Suk; Loesch-Fries, L Sue

    2006-11-01

    The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs. PMID:16875753

  1. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.

  2. Differentiation between MAMP Triggered Defenses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Madlen Vetter

    2016-06-01

    Full Text Available A first line of defense against pathogen attack for both plants and animals involves the detection of microbe-associated molecular patterns (MAMPs, followed by the induction of a complex immune response. Plants, like animals, encode several receptors that recognize different MAMPs. While these receptors are thought to function largely redundantly, the physiological responses to different MAMPs can differ in detail. Responses to MAMP exposure evolve quantitatively in natural populations of Arabidopsis thaliana, perhaps in response to environment specific differences in microbial threat. Here, we sought to determine the extent to which the detection of two canonical MAMPs were evolving redundantly or distinctly within natural populations. Our results reveal negligible correlation in plant growth responses between the bacterial MAMPs EF-Tu and flagellin. Further investigation of the genetic bases of differences in seedling growth inhibition and validation of 11 candidate genes reveal substantial differences in the genetic loci that underlie variation in response to these two MAMPs. Our results indicate that natural variation in MAMP recognition is largely MAMP-specific, indicating an ability to differentially tailor responses to EF-Tu and flagellin in A. thaliana populations.

  3. The recombination landscape in Arabidopsis thaliana F2 populations.

    Science.gov (United States)

    Salomé, P A; Bomblies, K; Fitz, J; Laitinen, R A E; Warthmann, N; Yant, L; Weigel, D

    2012-04-01

    Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild. PMID:22072068

  4. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  5. Homeopathic Treatment of Arabidopsis thaliana Plants Infected with Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Devika Shah-Rossi

    2009-01-01

    Full Text Available Homeopathic basic research is still in the screening phase to identify promising model systems that are adapted to the needs and peculiarities of homeopathic medicine and pharmacy. We investigated the potential of a common plant-pathogen system, Arabidopsis thaliana infected with the virulent bacteria Pseudomonas syringae, regarding its response towards a homeopathic treatment. A. thaliana plants were treated with homeopathic preparations before and after infection. Outcome measure was the number of P. syringae bacteria in the leaves of A. thaliana, assessed in randomized and blinded experiments. After a screening of 30 homeopathic preparations, we investigated the effect of Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol (a homeopathic complex remedy, and Biplantol 30x on the infection rate in five or six independent experiments in total. The screening yielded significant effects for four out of 30 tested preparations. In the repeated experimental series, only the homeopathic complex remedy Biplantol induced a significant reduction of the infection rate (p = 0.01; effect size, d = 0.38. None of the other four repeatedly tested preparations (Carbo vegetabilis 30x, Magnesium phosphoricum 30x, Nosode 30x, Biplantol 30x yielded significant effects in the overall evaluation. This phytopathological model yielded a small to medium effect size and thus might be of interest for homeopathic basic research after further improvement. Compared to Bion (a common SAR inducer used as positive control, the magnitude of the treatment effect of Biplantol was about 50%. Thus, homeopathic formulations might have a potential for the treatment of plant diseases after further optimization. However, the ecological impact should be investigated more closely before widespread application.

  6. [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].

    Science.gov (United States)

    Chu, Tingting; Xie, Hua; Xu, Yong; Ma, Rongcai

    2010-11-01

    FRUITFULL (FUL) is an MADS box gene that functions early in controlling flowering time, meristem identity and cauline leaf morphology and later in carpel and fruit development in Arabidopsis thaliana. In order to clarify the regulation of FUL expression the upstream regulatory region, -2148 bp - +96 bp and the first intron of the FUL gene were cloned, and vectors with a series of deletion of FUL promoter, and the ones fused with the first intron were constructed. Vectors harboring the fusion of cis-acting elements with the constitutive promoters of TUBULIN and ACTIN were also constructed. Beta-Glucuronidase activity assays of the transgenic Arabidopsis plants showed that two cis-elements were involved in the repression of FUL expression, with one of the two being probably the binding site of the transcriptional factor AP1. And the two CArG boxes played a important role in FUL initiation particularly. Furthermore, the first intron of FUL was shown to participate in the development of carpel and stamen as an enhancer.

  7. HAL1 mediate salt adaptation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The yeast HAL1 gene was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation with vacuum infiltration under the control of CaMV 35S promoter.Thirty-three individual kanamycin resistant plants were obtained from 75,000 seeds.Southern blotting analysis indicated that HAL1 gene had been integrated into all of the transgenic plants' genomes.The copy number of HAL1 gene in transgenic plants was mostly 1 to 3 by Southern analysis.Phenotypes of transgenic plants have no differences with wild type plants.Several samples of transformants were self-pollinated,and progenies from transformed and non-transformed plants(controls)were evaluated for salt tolerance and gene expression.Measurement of concentrations of intracellular K+ and Na+ showed that transgenic lines were able to retain less Na+ than that of the control under salt stress.Results from different tests indicated the expression of HAL1 gene promotes a higher level of salt tolerance in vivo in the transgenic Arabidopsis plants.

  8. Determination of Arabidopsis thaliana telomere length by PCR.

    Science.gov (United States)

    Vaquero-Sedas, María I; Vega-Palas, Miguel A

    2014-07-02

    In humans, telomere length studies have acquired great relevance because the length of telomeres has been related to natural processes like disease, aging and cancer. However, very little is known about the influence of telomere length on the biology of wild type plants. The length of plant telomeres has been usually studied by Terminal Restriction Fragment (TRF) analyses. This technique requires high amounts of tissue, including multiple cell types, which might be the reason why very little is known about the influence of telomere length on plant natural processes. In contrast, many of the human telomere length studies have focused on homogenous cell populations. Most of these studies have been performed by PCR, using telomeric degenerated primers, which allow the determination of telomere length from small amounts of human cells. Here, we have adapted the human PCR procedure to analyze the length of Arabidopsis thaliana telomeres. This PCR approach will facilitate the analysis of telomere length from low amounts of tissue. We have used it to determine that CG and non CG DNA methylation positively regulates Arabidopsis telomere length.

  9. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  10. Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana

    NARCIS (Netherlands)

    Zandleven, J.S.; Sorensen, S.; Harbolt, J.; Beldman, G.; Schols, H.A.; Scheller, H.V.; Voragen, A.G.J.

    2007-01-01

    Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH)

  11. Arabidopsis thaliana and Thlaspi caerulescens respond comparably to low zinc supply

    NARCIS (Netherlands)

    Talukdar, S.; Aarts, M.G.M.

    2008-01-01

    The main objective of this research was to study the response of Arabidopsis thaliana L. and Thlaspi caerulescens J. & C. Presl to different Zn supplies. The A. thaliana plants were exposed to Zn-deficiency (0 and 0.05 ¿M Zn) and compared to the plants grown on media containing standard Zn (2 ¿M

  12. Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins

    International Nuclear Information System (INIS)

    Supplementary UV-B was shown to lead to a decrease in transcripts encoding the photosynthetic genes Lhcb and psbA and a concomitant increase in transcripts encoding three acid-type pathogenesis-related proteins, PR-1, PR-2 and PR-5, in Arabidopsis thaliana. UV-B radiation has been reported to lead to the generation of reactive oxygen species (ROS). Here we report that ROS are required for UV-B-induced down-regulation of the photosynthetic genes and up-regulation of PR genes, as the addition of antioxidants before UV-B treatment resulted in a marked reduction in the effect of UV-B on both sets of genes. Rises in ROS are frequently accompanied by increases in salicylic acid (SA) accumulation. UV-B treatment of transgenic NahG Arabidopsis plants, which are unable to accumulate SA, showed that the increase in PR transcripts, but not the decrease in photosynthetic transcripts, was dependent on the increase in SA. In addition, a 3 d exposure to UV-B radiation resulted in a 7-fold increase in SA levels. Oxidant treatment of NahG plants indicated that ROS could not up-regulate PR genes in the absence of SA accumulation; however, the down-regulation of photosynthetic transcripts was unchanged from that in wild-type plants. The results indicate that the effects of UV-B on the two sets of genes are mediated through two distinct signal tranduction pathways. One pathway is ROS-dependent but SA-independent and mediates the down-regulation of photosynthetic genes. The other is SA- and ROS-dependent and mediates the up-regulation of the acidic-type PR genes

  13. Physiological and Molecular Features of the Pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert

    Institute of Scientific and Technical Information of China (English)

    Fu-Ming Dai; Tong Xu; Gerhard A. Wolf; Zu-Hua He

    2006-01-01

    The fungal pathogen Sclerotinia sclerotiorum Libert causes rot diseases on many crops worldwide and large economic losses occur frequently because of a lack of resistant varieties. The pathogenesis of S. sclerotiorum and the molecular basis of plant responses to the pathogen are poorly understood. In the present investigation,the process of S. sclerotiorum infection in Arabidopsis thaliana L., a plant that is highly susceptible to this fungus, was analysed. In addition, the defense activation in the host was investigated. A convenient inoculation method using millet grain was developed for S. sclerotiorum in Arabidopsis. The fungus rapidly infected the plants, probably through ball- or cushion-like infection structures. Visible symptoms developed within 24h and plants were killed 72 h after inoculation. Cellulase, the main enzyme that caused host tissues to rot,was secreted by S. sclerotiorum in a pH-dependent manner. Oxalic acid, another pathogenic factor secreted by the fungus, induced necrotic lesions on the leaves. Infection with S. sclerotiorum strongly induced the production of the pathogenesis-related (PR) proteins β-1,3-glucanase and chitinase in Arabidopsis.Furthermore, the PR gene PDF. 1 was induced, but not PR1, indicating that the pathogen activated basal defense of jasmonic acid/ethylene dependence, which is consistent with its necrotrophic characteristics.This pathosystem for Arabidopsis-S. sclerotiorum could provide an approach for the analysis of the interactions between S. sclerotiorum and other crops, thereby facilitating genetic manipulation techniques for controlling this pathogen.

  14. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  15. Composition and function of P bodies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Luis David Maldonado-Bonilla

    2014-05-01

    Full Text Available mRNA accumulation is tightly regulated by diverse molecular pathways. The identification and characterization of enzymes and regulatory proteins involved in controlling the fate of mRNA offers the possibility to broaden our understanding of posttranscriptional gene regulation. Processing bodies (P bodies, PB are cytoplasmic protein complexes involved in degradation and translational arrest of mRNA. Composition and dynamics of these subcellular structures have been studied in animal systems, yeasts and in the model plant Arabidopsis. Their assembly implies the aggregation of specific factors related to decapping, deadenylation and exoribonucleases that operate synchronously to regulate certain mRNA targets during development and adaptation to stress. Although the general function of PB along with the flow of genetic information is understood, several questions still remain open. This review summarizes data on the composition, potential molecular roles, and biological significance of PB and potentially related proteins in Arabidopsis.

  16. Genetic analysis of a host determination mechanism of bromoviruses in Arabidopsis thaliana.

    Science.gov (United States)

    Fujisaki, Koki; Iwahashi, Fukumatsu; Kaido, Masanori; Okuno, Tetsuro; Mise, Kazuyuki

    2009-03-01

    Brome mosaic virus (BMV) and Spring beauty latent virus (SBLV) are closely related, tripartite RNA plant viruses. In Arabidopsis thaliana, BMV shows limited multiplication whereas SBLV efficiently multiplies. Such distinct multiplication abilities have been observed commonly in all Arabidopsis accessions tested. We used this model system to analyze the molecular mechanism of viral resistance in plants at the species level. Unlike SBLV, BMV multiplication was limited even in protoplasts and a reassortment assay indicated that at least viral RNA1 and/or RNA2 determine such distinct infectivities. By screening Arabidopsis mutants with altered defense responses, we found that BMV multiplies efficiently in cpr5-2 mutant plants. This mutation specifically enhanced BMV multiplication in protoplasts, which depended on the functions of RNA1 and RNA2. In the experiment using DNA vectors to express BMV replication proteins encoded by RNA1 and RNA2, BMV RNA3 accumulation in cpr5-2 protoplasts was similar to that in wild-type Col-0 protoplasts, despite significant reduction of accumulation levels of replication proteins, suggesting that cpr5-2 mutation could enhance BMV multiplication independently of increased accumulation, therefore enhanced translation and stabilization, of the replication proteins.

  17. Regulation of the S-locus receptor kinase and self-incompatibility in Arabidopsis thaliana.

    Science.gov (United States)

    Strickler, Susan R; Tantikanjana, Titima; Nasrallah, June B

    2013-02-01

    Intraspecific mate selectivity often is enforced by self-incompatibility (SI), a barrier to self-pollination that inhibits productive pollen-pistil interactions. In the Brassicaceae, SI specificity is determined by two highly-polymorphic proteins: the stigmatic S-locus receptor kinase (SRK) and its pollen coat-localized ligand, the S-locus cysteine-rich protein (SCR). Arabidopsis thaliana is self fertile, but several of its accessions can be made to express SI, albeit to various degrees, by transformation with functional SRK-SCR gene pairs isolated from its close self-incompatible relative, Arabidopsis lyrata. Here, we use a newly identified induced mutation that suppresses the SI phenotype in stigmas of SRK-SCR transformants of the Col-0 accession to investigate the regulation of SI and the SRK transgene. This mutation disrupts NRPD1a, a gene that encodes a plant-specific nuclear RNA polymerase required for genomic methylation and production of some types of silencing RNAs. We show that NRPD1a, along with the RNA-dependent RNA polymerase RDR2, is required for SI in some A. thaliana accessions. We also show that Col-0 nrpd1a mutants exhibit decreased accumulation of SRK transcripts in stigmas, which is not, however, responsible for loss of SI in these plants. Together, our analysis of the nrpd1a mutation and of SRK promoter activity in various accessions reveals that the SRK transgene is subject to several levels of regulation, which vary substantially by tissue type and by accession. This study thus helps explain the well-documented differences in expression of SI exhibited by SRK-SCR transformants of different A. thaliana accessions.

  18. Identification of a single‐copy gene encoding a Type I chlorophyll a/b‐binding polypeptide of photosystem I in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Poul E; Kristensen, Michael; Hoff, Tine;

    1992-01-01

    We have isolated and sequenced cDNA and genomic clones from Arabidopsis thaliana which specify a 241 residue protein with 84% sequence identity to a photosystem I Type I chlorophyll a/b-binding (CAB) protein from tomato. The open reading frame is interrupted by three introns which are found...

  19. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure.

    Science.gov (United States)

    Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi

    2016-05-01

    The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role. PMID:26979064

  20. Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jixian Zhai

    2008-04-01

    Full Text Available Progress in epigenetics has revealed mechanisms that can heritably regulate gene function independent of genetic alterations. Nevertheless, little is known about the role of epigenetics in evolution. This is due in part to scant data on epigenetic variation among natural populations. In plants, small interfering RNA (siRNA is involved in both the initiation and maintenance of gene silencing by directing DNA methylation and/or histone methylation. Here, we report that, in the model plant Arabidopsis thaliana, a cluster of approximately 24 nt siRNAs found at high levels in the ecotype Landsberg erecta (Ler could direct DNA methylation and heterochromatinization at a hAT element adjacent to the promoter of FLOWERING LOCUS C (FLC, a major repressor of flowering, whereas the same hAT element in ecotype Columbia (Col with almost identical DNA sequence, generates a set of low abundance siRNAs that do not direct these activities. We have called this hAT element MPF for Methylated region near Promoter of FLC, although de novo methylation triggered by an inverted repeat transgene at this region in Col does not alter its FLC expression. DNA methylation of the Ler allele MPF is dependent on genes in known silencing pathways, and such methylation is transmissible to Col by genetic crosses, although with varying degrees of penetrance. A genome-wide comparison of Ler and Col small RNAs identified at least 68 loci matched by a significant level of approximately 24 nt siRNAs present specifically in Ler but not Col, where nearly half of the loci are related to repeat or TE sequences. Methylation analysis revealed that 88% of the examined loci (37 out of 42 were specifically methylated in Ler but not Col, suggesting that small RNA can direct epigenetic differences between two closely related Arabidopsis ecotypes.

  1. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Engelsberger Wolfgang R

    2010-07-01

    Full Text Available Abstract Background Protein phosphorylation is an important post-translational modification influencing many aspects of dynamic cellular behavior. Site-specific phosphorylation of amino acid residues serine, threonine, and tyrosine can have profound effects on protein structure, activity, stability, and interaction with other biomolecules. Phosphorylation sites can be affected in diverse ways in members of any species, one such way is through single nucleotide polymorphisms (SNPs. The availability of large numbers of experimentally identified phosphorylation sites, and of natural variation datasets in Arabidopsis thaliana prompted us to analyze the effect of non-synonymous SNPs (nsSNPs onto phosphorylation sites. Results From the analyses of 7,178 experimentally identified phosphorylation sites we found that: (i Proteins with multiple phosphorylation sites occur more often than expected by chance. (ii Phosphorylation hotspots show a preference to be located outside conserved domains. (iii nsSNPs affected experimental phosphorylation sites as much as the corresponding non-phosphorylated amino acid residues. (iv Losses of experimental phosphorylation sites by nsSNPs were identified in 86 A. thaliana proteins, among them receptor proteins were overrepresented. These results were confirmed by similar analyses of predicted phosphorylation sites in A. thaliana. In addition, predicted threonine phosphorylation sites showed a significant enrichment of nsSNPs towards asparagines and a significant depletion of the synonymous substitution. Proteins in which predicted phosphorylation sites were affected by nsSNPs (loss and gain, were determined to be mainly receptor proteins, stress response proteins and proteins involved in nucleotide and protein binding. Proteins involved in metabolism, catalytic activity and biosynthesis were less affected. Conclusions We analyzed more than 7,100 experimentally identified phosphorylation sites in almost 4,300 protein

  2. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis.

    Science.gov (United States)

    Nakatsubo, Tomoyuki; Mizutani, Masaharu; Suzuki, Shiro; Hattori, Takefumi; Umezawa, Toshiaki

    2008-06-01

    A lignan, lariciresinol, was isolated from Arabidopsis thaliana, the most widely used model plant in plant bioscience sectors, for the first time. In the A. thaliana genome database, there are two genes (At1g32100 and At4g13660) that are annotated as pinoresinol/lariciresinol reductase (PLR). The recombinant AtPLRs showed strict substrate preference toward pinoresinol but only weak or no activity toward lariciresinol, which is in sharp contrast to conventional PLRs of other plants that can reduce both pinoresinol and lariciresinol efficiently to lariciresinol and secoisolariciresinol, respectively. Therefore, we renamed AtPLRs as A. thaliana pinoresinol reductases (AtPrRs). The recombinant AtPrR2 encoded by At4g13660 reduced only (-)-pinoresinol to (-)-lariciresinol and not (+)-pinoresinol in the presence of NADPH. This enantiomeric selectivity accords with that of other PLRs of other plants so far reported, which can reduce one of the enantiomers selectively, whatever the preferential enantiomer. In sharp contrast, AtPrR1 encoded by At1g32100 reduced both (+)- and (-)-pinoresinols to (+)- and (-)-lariciresinols efficiently with comparative k(cat)/K(m) values. Analysis of lignans and spatiotemporal expression of AtPrR1 and AtPrR2 in their functionally deficient A. thaliana mutants and wild type indicated that both genes are involved in lariciresinol biosynthesis. In addition, the analysis of the enantiomeric compositions of lariciresinol isolated from the mutants and wild type showed that PrRs together with a dirigent protein(s) are involved in the enantiomeric control in lignan biosynthesis. Furthermore, it was demonstrated conclusively for the first time that differential expression of PrR isoforms that have distinct selectivities of substrate enantiomers can determine enantiomeric compositions of the product, lariciresinol.

  3. Properties of serine: glyoxylate aminotransferase purified from Arabidopsis thaliana leaves

    Institute of Scientific and Technical Information of China (English)

    Maria Kendziorek; Andrzej Paszkowski

    2008-01-01

    The photorespiratory enzyme L-serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The final enzyme was approximately 80% pure as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis.The molecular mass estimated by gel filtration chromatography on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa,42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum Ph value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55% of that observed with L-serine and glyoxylate, The lower Km value (1.25 Mm) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approximately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 Mm for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1: 7 for the recombinant SGAT

  4. Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana.

    Science.gov (United States)

    Ågrena, Jon; Oakley, Christopher G; McKay, John K; Lovell, John T; Schemske, Douglas W

    2013-12-24

    Organisms inhabiting different environments are often locally adapted, and yet despite a considerable body of theory, the genetic basis of local adaptation is poorly understood. Unanswered questions include the number and effect sizes of adaptive loci, whether locally favored loci reduce fitness elsewhere (i.e., fitness tradeoffs), and whether a lack of genetic variation limits adaptation. To address these questions, we mapped quantitative trait loci (QTL) for total fitness in 398 recombinant inbred lines derived from a cross between locally adapted populations of the highly selfing plant Arabidopsis thaliana from Sweden and Italy and grown for 3 consecutive years at the parental sites (>40,000 plants monitored). We show that local adaptation is controlled by relatively few genomic regions of small to modest effect. A third of the 15 fitness QTL we detected showed evidence of tradeoffs, which contrasts with the minimal evidence for fitness tradeoffs found in previous studies. This difference may reflect the power of our multiyear study to distinguish conditionally neutral QTL from those that reflect fitness tradeoffs. In Sweden, but not in Italy, the local genotype underlying fitness QTL was often maladaptive, suggesting that adaptation there is constrained by a lack of adaptive genetic variation, attributable perhaps to genetic bottlenecks during postglacial colonization of Scandinavia or to recent changes in selection regime caused by climate change. Our results suggest that adaptation to markedly different environments can be achieved through changes in relatively few genomic regions, that fitness tradeoffs are common, and that lack of genetic variation can limit adaptation.

  5. Molecule mechanism of stem cells in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wenjin Zhang

    2014-01-01

    Full Text Available Plants possess the ability to continually produce new tissues and organs throughout their life. Unlike animals, plants are exposed to extreme variations in environmental conditions over the course of their lives. The vitality of plants is so powerful that they can survive several hundreds of years or even more making it an amazing miracle that comes from plant stem cells. The stem cells continue to divide to renew themselves and provide cells for the formation of leaves, stems, and flowers. Stem cells are not only quiescent but also immortal, pluripotent and homeostatic. Stem cells are the magic cells that repair tissues and regenerate organs. During the past decade, scholars around the world have paid more and more attention toward plant stem cells. At present, the major challenge is in relating molecule action mechanism to root apical meristem, shoot apical meristem and vascular system. The coordination between stem cells maintenance and differentiation is critical for normal plant growth and development. Elements such as phytohormones, transcription factors and some other known or unknown genes cooperate to balance this process. In this review, Arabidopsis thaliana as a pioneer system, we highlight recent developments in molecule modulating, illustrating how plant stem cells generate new mechanistic insights into the regulation of plants growth and development.

  6. Riboflavin-induced Priming for Pathogen Defense in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shujian Zhang; Xue Yang; Maowu Sun; Feng Sun; Sheng Deng; Hansong Dong

    2009-01-01

    Riboflavin (vitamin B2) participates in a variety of redox processes that affect plant defense responses. Previously we have shown that riboflavin induces pathogen resistance in the absence of hypersensitive cell death (HCD) in plants. Herein, we report that riboflavin induces priming of defense responses in Arabidopsis thaliana toward infection by virulent Pseudomonas syringae pv. Tomato DC3000 (Pst). Induced resistance was mechanistically connected with the expression of defense response genes and cellular defense events, including H2O2 burst, HCD, and callose deposition in the plant. Riboflavin treatment and inoculation of plants with Pst were neither active but both synergized to induce defense responses. The priming process needed NPR1 (essential regulator of systemic acquired resistance) and maintenance of H2O2 burst but was independent of salicylic acid, jasmonic acid, ethylene, and abscisic acid. Our results suggest that the role of riboflavin in priming defenses is subject to a signaling process distinct from the known pathways of hormone signal transduction.

  7. Lagging adaptation to warming climate in Arabidopsis thaliana

    Science.gov (United States)

    Wilczek, Amity M.; Cooper, Martha D.; Korves, Tonia M.; Schmitt, Johanna

    2014-01-01

    If climate change outpaces the rate of adaptive evolution within a site, populations previously well adapted to local conditions may decline or disappear, and banked seeds from those populations will be unsuitable for restoring them. However, if such adaptational lag has occurred, immigrants from historically warmer climates will outperform natives and may provide genetic potential for evolutionary rescue. We tested for lagging adaptation to warming climate using banked seeds of the annual weed Arabidopsis thaliana in common garden experiments in four sites across the species’ native European range: Valencia, Spain; Norwich, United Kingdom; Halle, Germany; and Oulu, Finland. Genotypes originating from geographic regions near the planting site had high relative fitness in each site, direct evidence for broad-scale geographic adaptation in this model species. However, genotypes originating in sites historically warmer than the planting site had higher average relative fitness than local genotypes in every site, especially at the northern range limit in Finland. This result suggests that local adaptive optima have shifted rapidly with recent warming across the species’ native range. Climatic optima also differed among seasonal germination cohorts within the Norwich site, suggesting that populations occurring where summer germination is common may have greater evolutionary potential to persist under future warming. If adaptational lag has occurred over just a few decades in banked seeds of an annual species, it may be an important consideration for managing longer-lived species, as well as for attempts to conserve threatened populations through ex situ preservation. PMID:24843140

  8. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.

    Science.gov (United States)

    Geisler-Lee, Jane; Wang, Qiang; Yao, Ying; Zhang, Wen; Geisler, Matt; Li, Kungang; Huang, Ying; Chen, Yongsheng; Kolmakov, Andrei; Ma, Xingmao

    2013-05-01

    The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.

  9. Transcriptional responses of Arabidopsis thaliana plants to As (V stress

    Directory of Open Access Journals (Sweden)

    Yuan Joshua S

    2008-08-01

    Full Text Available Abstract Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V] and phosphate (Pi. Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD (at2g28190, Cu/Zn SOD (at1g08830, as well as an SOD copper chaperone (at1g12520. On the other hand, Fe SODs were strongly repressed in response to As (V stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

  10. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions.

    Science.gov (United States)

    Kawakatsu, Taiji; Huang, Shao-Shan Carol; Jupe, Florian; Sasaki, Eriko; Schmitz, Robert J; Urich, Mark A; Castanon, Rosa; Nery, Joseph R; Barragan, Cesar; He, Yupeng; Chen, Huaming; Dubin, Manu; Lee, Cheng-Ruei; Wang, Congmao; Bemm, Felix; Becker, Claude; O'Neil, Ryan; O'Malley, Ronan C; Quarless, Danjuma X; Schork, Nicholas J; Weigel, Detlef; Nordborg, Magnus; Ecker, Joseph R

    2016-07-14

    The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant. PMID:27419873

  11. Burkholderia phytofirmans PsJN reduces damages to freezing temperature in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fan eSU

    2015-10-01

    Full Text Available Several plant growth-promoting rhizobacteria (PGPR are known to improve plant tolerance to multiple stresses, including low temperatures. However, mechanisms underlying this protection are still poorly understood. The aim of this study was to evaluate the role of the endophytic PGPR, Burkholderia phytofirmans strain PsJN (Bp PsJN, on Arabidopsis thaliana cold tolerance using photosynthesis parameters as physiological markers.Under standard conditions, our results indicated that Bp PsJN inoculation led to growth promotion of Arabidopsis plants without significant modification on photosynthesis parameters and chloroplast organization. However, bacterial colonization induced a cell wall strengthening in the mesophyllImpact of inoculation modes (either on seeds or by soil irrigation and their effects overnight at 0, -1 or -3°C, were investigated by following photosystem II (PSII activity and gas exchanges. Following low temperatures stress, a decrease of photosynthesis parameters was observed. In addition, during three consecutive nights or days at -1°C, PSII activity was monitored. Pigment contents, RuBisCO protein abundance, expression of several genes including RbcS, RbcL, CBF1, CBF2, CBF3, ICE1, COR15a, and COR78 were evaluated at the end of exposure. To assess the impact of the bacteria on cell ultrastructure under low temperatures, microscopic observations were achieved. Results indicated that freezing treatment induced significant changes in PSII activity as early as the first cold day, whereas the same impact on PSII activity was observed only during the third cold night. The significant effects conferred by PsJN were differential accumulation of pigments, and reduced expression of RbcL and COR78. Microscopical observations showed an alteration/disorganization in A. thaliana leaf mesophyll cells independently of the freezing treatments. The presence of bacteria during the three successive nights or days did not significantly improved A

  12. Cloning and characterization of Arabidopsis thaliana AtNAP57--a homologue of yeast pseudouridine synthase Cbf5p.

    Science.gov (United States)

    Maceluch, J; Kmieciak, M; Szweykowska-Kulińska, Z; Jarmołowski, A

    2001-01-01

    Rat Nap57 and its yeast homologue Cbf5p are pseudouridine synthases involved in rRNA biogenesis, localized in the nucleolus. These proteins, together with H/ACA class of snoRNAs compose snoRNP particles, in which snoRNA guides the synthase to direct site-specific pseudouridylation of rRNA. In this paper we present an Arabidopsis thaliana protein that is highly homologous to Cbf5p (72% identity and 85% homology) and NAP57 (67% identity and 81% homology). Moreover, the plant protein has conserved structural motifs that are characteristic features of pseudouridine synthases of the TruB class. We have named the cloned and characterized protein AtNAP57 (Arabidopsis thaliana homologue of NAP57). AtNAP57 is a 565 amino-acid protein and its calculated molecular mass is 63 kDa. The protein is encoded by a single copy gene located on chromosome 3 of the A. thaliana genome. Interestingly, the AtNAP57 gene does not contain any introns. Mutations in the human DKC1 gene encoding dyskerin (human homologue of yeast Cbf5p and rat NAP57) cause dyskeratosis congenita a rare inherited bone marrow failure syndrome characterized by abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia.

  13. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase.

    Science.gov (United States)

    Muralidharan, Mrinalini; Buss, Kristina; Larrimore, Katherine E; Segerson, Nicholas A; Kannan, Latha; Mor, Tsafrir S

    2013-04-01

    Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. PMID:23430565

  14. Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait.

    Science.gov (United States)

    Iakovidis, Michail; Teixeira, Paulo J P L; Exposito-Alonso, Moises; Cowper, Matthew G; Law, Theresa F; Liu, Qingli; Vu, Minh Chau; Dang, Troy Minh; Corwin, Jason A; Weigel, Detlef; Dangl, Jeffery L; Grant, Sarah R

    2016-09-01

    We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.

  15. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter. PMID:27263008

  16. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter.

  17. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  18. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  19. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  20. Drought Stress Predominantly Endures Arabidopsis thaliana to Pseudomonas syringae Infection

    Directory of Open Access Journals (Sweden)

    Aarti eGupta

    2016-06-01

    Full Text Available Plant responses to a combination of drought and bacterial pathogen infection, an agronomically important and altogether a new stress, are not well studied. While occurring concurrently, these two stresses can lead to synergistic or antagonistic effects on plants due to stress-interaction. It is reported that plant responses to the stress combinations consist of both strategies unique to combined stress and those shared between combined and individual stresses. However, the combined stress response mechanisms governing stress interaction and net impact are largely unknown. In order to study these adaptive strategies, an accurate and convenient methodology is lacking even in model plants like Arabidopsis thaliana. The gradual nature of drought stress imposition protocol poses a hindrance in simultaneously applying pathogen infection under laboratory conditions to achieve combined stress. In present study we aimed to establish systematic combined stress protocol and to study physiological responses of the plants to various degrees of combined stress. Here, we have comprehensively studied the impact of combined drought and Pseudomonas syringae pv. tomato DC3000 infection on A. thaliana. Further, by employing different permutations of drought and pathogen stress intensities, an attempt was made to dissect the contribution of each individual stress effects during their concurrence. We hereby present two main aspects of combined stress viz., stress interaction and net impact of the stress on plants. Mainly, this study establishes a systematic protocol to assess the impact of combined drought and bacterial pathogen stress. It was observed that as a result of net impact, some physiological responses under combined stress are tailored when compared to the plants exposed to individual stresses. We also infer that plant responses under combined stress in this study are predominantly influenced by the drought stress. Our results show that pathogen induced

  1. Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa.

    Science.gov (United States)

    Tuteja, Renu; Tuteja, Narendra

    2013-10-01

    Mismatch repair (MMR) proteins play important roles in maintaining genome stability in all the organisms. Studies of MMR genes in plants have identified several homologs of the Escherichia coli genes. Crop yield is directly related to genome stability, which is crucially required for optimal plant growth and development. Numerous genotoxic stresses such as UV light, radiations, pollutants and heavy metals cause DNA damage leading to genome instability, which can interfere with the plant growth and crop productivity. But the efficient repair mechanisms can help to overcome the deleterious effects of the damage. Therefore it is important to study the genes involved in various repair pathways in the plants in greater detail. UvrD helicase is a component of MMR complex and plays an essential role in the DNA repair by providing the unwinding function. In the present manuscript we present an in silico analysis of UvrD helicase from two plant species (Arabidopsis and rice). The Arabidopsis thaliana and Oryza sativa UvrD are 1149 (~129 kDa) and 1165 amino-acids (~130 kDa) proteins, respectively. These proteins contain all the conserved domains and are larger than the E. coli UvrD because they contain a longer N-terminal extension. In order to decipher the role of plant UvrD in various stresses it will be important to study the biochemical and functional properties of this enzyme. PMID:23974358

  2. The Hidden Geometries of the Arabidopsis thaliana Epidermis

    KAUST Repository

    Staff, Lee

    2012-09-11

    The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col.) adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 ?m2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length:width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area:perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT) were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5°) for the largest angles and 110° (± 5°) for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (?500 ?m2) tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of \\'geometrical rules\\'. © 2012 Staff et al.

  3. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT, E.C. 2.6.1.2, is a pyridoxal-5'-phosphate-dependent (PLP enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1 knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s previously observed.

  4. The hidden geometries of the Arabidopsis thaliana epidermis.

    Directory of Open Access Journals (Sweden)

    Lee Staff

    Full Text Available The quest for the discovery of mathematical principles that underlie biological phenomena is ancient and ongoing. We present a geometric analysis of the complex interdigitated pavement cells in the Arabidopsis thaliana (Col. adaxial epidermis with a view to discovering some geometric characteristics that may govern the formation of this tissue. More than 2,400 pavement cells from 10, 17 and 24 day old leaves were analyzed. These interdigitated cells revealed a number of geometric properties that remained constant across the three age groups. In particular, the number of digits per cell rarely exceeded 15, irrespective of cell area. Digit numbers per 100 µm(2 cell area reduce with age and as cell area increases, suggesting early developmental programming of digits. Cell shape proportions as defined by length:width ratios were highly conserved over time independent of the size and, interestingly, both the mean and the medians were close to the golden ratio 1.618034. With maturity, the cell area:perimeter ratios increased from a mean of 2.0 to 2.4. Shape properties as defined by the medial axis transform (MAT were calculated and revealed that branch points along the MAT typically comprise one large and two small angles. These showed consistency across the developmental stages considered here at 140° (± 5° for the largest angles and 110° (± 5° for the smaller angles. Voronoi diagram analyses of stomatal center coordinates revealed that giant pavement cells (≥ 500 µm(2 tend to be arranged along Voronoi boundaries suggesting that they could function as a scaffold of the epidermis. In addition, we propose that pavement cells have a role in spacing and positioning of the stomata in the growing leaf and that they do so by growing within the limits of a set of 'geometrical rules'.

  5. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana.

    Science.gov (United States)

    Bouché, Frédéric; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2016-01-01

    Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots. PMID:26476447

  6. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico;

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT......[A,C,G]CGT as ATAF1 consensus binding sequences. Co-expression analysis across publicly available microarray experiments identified 25 genes co-expressed with ATAF1. The promoter regions of ATAF1 co-expressors were significantly enriched for ATAF1 binding sites, and TTGCGTA was identified in the promoter of the key...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  7. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana *

    OpenAIRE

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S; Maxwell, Anthony

    2015-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase ...

  8. Reproductive Toxicity and Life History Study of Silver Nanoparticle Effect, Uptake and Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Jane Geisler-Lee

    2014-04-01

    Full Text Available Concerns about nanotechnology have prompted studies on how the release of these engineered nanoparticles impact our environment. Herein, the impact of 20 nm silver nanoparticles (AgNPs on the life history traits of Arabidopsis thaliana was studied in both above- and below-ground parts, at macroscopic and microscopic scales. Both gross phenotypes (in contrast to microscopic phenotypes and routes of transport and accumulation were investigated from roots to shoots. Wild type Arabidopsis growing in soil, regularly irrigated with 75 μg/L of AgNPs, did not show any obvious morphological change. However, their vegetative development was prolonged by two to three days and their reproductive growth shortened by three to four days. In addition, the germination rates of offspring decreased drastically over three generations. These findings confirmed that AgNPs induce abiotic stress and cause reproductive toxicity in Arabidopsis. To trace transport of AgNPs, this study also included an Arabidopsis reporter line genetically transformed with a green fluorescent protein and grown in an optical transparent medium with 75 μg/L AgNPs. AgNPs followed three routes: (1 At seven days after planting (DAP at S1.0 (stages defined by Boyes et al. 2001 [41], AgNPs attached to the surface of primary roots and then entered their root tips; (2 At 14 DAP at S1.04, as primary roots grew longer, AgNPs gradually moved into roots and entered new lateral root primordia and root hairs; (3 At 17 DAP at S1.06 when the Arabidopsis root system had developed multiple lateral roots, AgNPs were present in vascular tissue and throughout the whole plant from root to shoot. In some cases, if cotyledons of the Arabidopsis seedlings were immersed in melted transparent medium, then AgNPs were taken up by and accumulated in stomatal guard cells. These findings in Arabidopsis are the first to document specific routes and rates of AgNP uptake in vivo and in situ.

  9. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    Science.gov (United States)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  10. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  11. Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana.

    Science.gov (United States)

    Ueda, Masamichi; Tsutsumi, Nobuhiro; Fujimoto, Masaru

    2016-06-10

    Salt stress is a major environmental stress for plants, causing hyperosmotic, ionic and drought-like stresses. Plasma membrane intrinsic protein 2;1 (PIP2;1), which forms a water channel that regulates water flux thorough the plasma membrane (PM), is constitutively trafficked between the PM and the trans-Golgi network (TGN) in Arabidopsis thaliana. Salt stress is known to relocalize PIP2;1 to intracellular compartments, probably to decrease the water permeability of the root. However, the destination of internalized PIP2;1 and the mechanism by which PIP2;1 is internalized remain unclear. Here, we examined the effects of salt stress and inhibitors of endocytosis on the intracellular localization of green fluorescent protein-fused PIP2;1 (GFP-PIP2;1) in Arabidopsis thaliana root epidermal cells. Salt stress decreased the fluorescence of GFP-PIP2;1 at the PM and increased it in the vacuolar lumen as shown by staining of the vacuolar membrane. The internalization of PIP2;1 was suppressed by an inhibitor of clathrin-mediated endocytosis and by inhibitors of two kinases that appear to have roles in salt stress, phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4-kinase (PI4K). Inhibiting PI4K suppressed the salt-induced endocytosis of GFP-PIP2;1 at the PM, whereas inhibiting PI3K suppressed the trafficking of GFP-PIP2;1 after its internalization. These results suggest that salt stress induces the internalization of PIP2;1 from the PM to the vacuolar lumen, and that these processes are dependent on clathrin, PI3K and PI4K. PMID:27163638

  12. Proteomic identification of S-nitrosylated proteins in Arabidopsis

    DEFF Research Database (Denmark)

    Lindermayr, C.; Saalbach, G.; Durner, J.

    2005-01-01

    Although nitric oxide (NO) has grown into a key signaling molecule in plants during the last few years, less is known about how NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation of cysteine (Cys) residues to be ...... to be one of the dominant regulation mechanisms for many animal proteins. For plants, the principle of S-nitrosylation remained to be elucidated. We generated S-nitrosothiols by treating extracts from Arabidopsis (Arabidopsis thaliana) cell suspension cultures with the NO-donor S...

  13. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chao eLiang

    2015-10-01

    Full Text Available Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2 is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE of AtPAP2 in Arabidopsis thaliana accelerates plant growth and promotes flowering, seed yield and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome and metabolome profiles of the high ATP transgenic line were examined and compared with those of wild-type plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. Overexpression of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data

  14. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus

    Directory of Open Access Journals (Sweden)

    Jaramillo Alfonso

    2008-08-01

    Full Text Available Abstract Background Tobacco etch potyvirus (TEV has been extensively used as model system for the study of positive-sense RNA virus infecting plants. TEV ability to infect Arabidopsis thaliana varies among ecotypes. In this study, changes in gene expression of A. thaliana ecotype Ler infected with TEV have been explored using long-oligonucleotide arrays. A. thaliana Ler is a susceptible host that allows systemic movement, although the viral load is low and syndrome induced ranges from asymptomatic to mild. Gene expression profiles were monitored in whole plants 21 days post-inoculation (dpi. Microarrays contained 26,173 protein-coding genes and 87 miRNAs. Results Expression analysis identified 1727 genes that displayed significant and consistent changes in expression levels either up or down, in infected plants. Identified TEV-responsive genes encode a diverse array of functional categories that include responses to biotic (such as the systemic acquired resistance pathway and hypersensitive responses and abiotic stresses (droughtness, salinity, temperature, and wounding. The expression of many different transcription factors was also significantly affected, including members of the R2R3-MYB family and ABA-inducible TFs. In concordance with several other plant and animal viruses, the expression of heat-shock proteins (HSP was also increased. Finally, we have associated functional GO categories with KEGG biochemical pathways, and found that many of the altered biological functions are controlled by changes in basal metabolism. Conclusion TEV infection significantly impacts a wide array of cellular processes, in particular, stress-response pathways, including the systemic acquired resistance and hypersensitive responses. However, many of the observed alterations may represent a global response to viral infection rather than being specific of TEV.

  15. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  16. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level

    KAUST Repository

    Fanucchi, Francesca

    2012-06-01

    This study used 2DE to investigate how Arabidopsis thaliana modulates protein levels in response to freezing stress after sub-lethal exposure at - 10 °C, both in cold-acclimated and in non-acclimated plants. A map was implemented in which 62 spots, corresponding to 44 proteins, were identified. Twenty-two spots were modulated upon treatments, and the corresponding proteins proved to be related to photosynthesis, energy metabolism, and stress response. Proteins demonstrated differences between control and acclimation conditions. Most of the acclimation-responsive proteins were either not further modulated or they were down-modulated by freezing treatment, indicating that the levels reached during acclimation were sufficient to deal with freezing. Anabolic metabolism appeared to be down-regulated in favor of catabolic metabolism. Acclimated plants and plants submitted to freezing after acclimation showed greater reciprocal similarity in protein profiles than either showed when compared both to control plants and to plants frozen without acclimation. The response of non-acclimated plants was aimed at re-modulating photosynthetic apparatus activity, and at increasing the levels of proteins with antioxidant-, molecular chaperone-, or post-transcriptional regulative functions. These changes, even less effective than the acclimation strategy, might allow the injured plastids to minimize the production of non-useful metabolites and might counteract photosynthetic apparatus injuries. © 2012 Elsevier B.V. All rights reserved.

  17. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid

    Indian Academy of Sciences (India)

    Riddhi Datta; Ragini Sinha; Sharmila Chattopadhyay

    2013-06-01

    Salicylic acid (SA) has been implicated in determining the outcome of interactions between many plants and their pathogens. Global changes in response to this phytohormone have been observed at the transcript level, but little is known of how it induces changes in protein abundance. To this end we have investigated the effect of 1 mM SA on soluble proteins of Arabidopsis thaliana leaves by proteomic analysis. An initial study at transcript level has been performed on temporal landscape, which revealed that induction of most of the SA-responsive genes occurs within 3 to 6 h post treatment (HPT) and the expression peaked within 24 HPT. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF MS/MS analysis has been used to identify differentially expressed proteins and 63 spots have been identified successfully. This comparative proteomic profiling of SA treated leaves versus control leaves demonstrated the changes of many defence related proteins like pathogenesis related protein 10a (PR10a), disease-resistance-like protein, putative late blight-resistance protein, WRKY4, MYB4, etc. along with gross increase in the rate of energy production, while other general metabolism rate is slightly toned down, presumably signifying a transition from ‘normal mode’ to ‘defence mode’.

  18. Structural Determinants of Arabidopsis thaliana Hyponastic Leaves 1 Function In Vivo

    Science.gov (United States)

    Burdisso, Paula; Milia, Fernando; Schapire, Arnaldo L.; Bologna, Nicolás G.; Palatnik, Javier F.; Rasia, Rodolfo M.

    2014-01-01

    MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity. PMID:25409478

  19. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sho Nishida

    2015-04-01

    Full Text Available Excessive accumulation of nickel (Ni can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe-regulated transporter1 (IRT1, mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i Zn deficiency induces short-term Ni2+ absorption and (ii Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  20. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    Science.gov (United States)

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide.

  1. Mutation of a Gene in the Fungus Leptosphaeria maculans Allows Increased Frequency of Penetration of Stomatal Apertures of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Candace E. Elliott; Harjono; Barbara J. Howlett

    2008-01-01

    Leptosphaeria maculans, a pathogen of Brassica napus, is unable to invade most wild-type accessions of Arabidopsis thaliana, although several mutants are susceptible. The infection pathway of L. maculans via a non-invasive inoculation method on A, thaliana Ires1 (undefined), pmr4-1 (defective in callose deposition), and pen1-1 and pen2-1 (defective in non-host responses to several pathogens) mutants is described. On wild types Col-0 and Ler-0, hyphae are generally arrested at stomatal apertures. A T-DNA insertional mutant of L. maculans (A22) that penetrates stomatal apertures of Col-0 and Ler-0 five to seven times more often than the wild-type isolate is described. The higher penetration frequency of isolate A22 is associated with an increased hypersensitive response, which includes callose deposition. Complementation analysis showed that the phenotype of this isolate is due to T-DNA insertion in an intronless gene denoted as ipa (increased penetration on Arabidopsis). This gene is predicted to encode a protein of 702 amino acids with best matches to hypothetical proteins in other filamentous ascomycetes. The ipa gene is expressed in the wild-type isolate at low levels in culture and during infection of A. thaliana and B. napus.

  2. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness.

    Science.gov (United States)

    Maruyama, Daisuke; Sugiyama, Tomoyuki; Endo, Toshiya; Nishikawa, Shuh-Ichi

    2014-04-01

    Immunoglobulin-binding protein (BiP) is a molecular chaperone of the heat shock protein 70 (Hsp70) family. BiP is localized in the endoplasmic reticulum (ER) and plays key roles in protein translocation, protein folding and quality control in the ER. The genomes of flowering plants contain multiple BiP genes. Arabidopsis thaliana has three BiP genes. BIP1 and BIP2 are ubiquitously expressed. BIP3 encodes a less well conserved BiP paralog, and it is expressed only under ER stress conditions in the majority of organs. Here, we report that all BiP genes are expressed and functional in pollen and pollen tubes. Although the bip1 bip2 double mutation does not affect pollen viability, the bip1 bip2 bip3 triple mutation is lethal in pollen. This result indicates that lethality of the bip1 bip2 double mutation is rescued by BiP3 expression. A decrease in the copy number of the ubiquitously expressed BiP genes correlates well with a decrease in pollen tube growth, which leads to reduced fitness of mutant pollen during fertilization. Because an increased protein secretion activity is expected to increase the protein folding demand in the ER, the multiple BiP genes probably cooperate with each other to ensure ER homeostasis in cells with active secretion such as rapidly growing pollen tubes.

  3. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes.

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-08-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  4. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  5. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels.

    Directory of Open Access Journals (Sweden)

    Todd A Sangster

    Full Text Available The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine

  6. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.

    Science.gov (United States)

    Xie, Wenchuan; Huang, Junfeng; Liu, Yang; Rao, Jianan; Luo, Da; He, Miao

    2015-01-01

    Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs). We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3, and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3 and RPS15 in

  7. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach

    Directory of Open Access Journals (Sweden)

    Wenchuan eXie

    2015-10-01

    Full Text Available Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs. We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA and Support Vector Machine (SVM method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3 and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3

  8. Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.

    Science.gov (United States)

    Li, Lihong; Xue, Meizhao; Yi, Huilan

    2016-10-01

    Sulfur dioxide (SO2) is a major air pollutant and has significant impacts on plants. MicroRNAs (miRNAs) are a class of gene expression regulators that play important roles in response to environmental stresses. In this study, deep sequencing was used for genome-wide identification of miRNAs and their expression profiles in response to SO2 stress in Arabidopsis thaliana shoots. A total of 27 conserved miRNAs and 5 novel miRNAs were found to be differentially expressed under SO2 stress. qRT-PCR analysis showed mostly negative correlation between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during SO2 exposure. The target genes of SO2-responsive miRNAs encode transcription factors and proteins that regulate auxin signaling and stress response, and the miRNAs-mediated suppression of these genes could improve plant resistance to SO2 stress. Promoter sequence analysis of genes encoding SO2-responsive miRNAs showed that stress-responsive and phytohormone-related cis-regulatory elements occurred frequently, providing additional evidence of the involvement of miRNAs in adaption to SO2 stress. This study represents a comprehensive expression profiling of SO2-responsive miRNAs in Arabidopsis and broads our perspective on the ubiquitous regulatory roles of miRNAs under stress conditions. PMID:27232729

  9. Hydroxyproline O-arabinosyltransferase mutants oppositely alter tip growth in Arabidopsis thaliana and Physcomitrella patens.

    Science.gov (United States)

    MacAlister, Cora A; Ortiz-Ramírez, Carlos; Becker, Jörg D; Feijó, José A; Lippman, Zachary B

    2016-01-01

    Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.

  10. Impact of elevated CO2 on growth and development of Arabidopsis thaliana L

    NARCIS (Netherlands)

    van der Kooij, T.A W; De Kok, L.J.

    1996-01-01

    After germination, Arabidopsis thaliana L (cv. Landsberg) was grown at 350 mu l l(-1) (control) or 700 mu l l(-1) (elevated) CO2. Total shoot biomass at the end of the vegetative growth period was increased by 56% due to a short transient stimulation of the relative growth rate by elevated CO2 at th

  11. Sucrose regulated translational control of bZip genes in Arabidopsis thaliana

    NARCIS (Netherlands)

    Rahmani, F.

    2007-01-01

    Sucrose can translationally regulate the expression of bZIP11 and four other S-class bZip transcription factors in Arabidopsis thaliana. Sequence encoding 28 amino acids (SC-peptide) in the leader of the bZIP11 is sufficient to mediate sucrose induced translational control. A model proposes that suc

  12. The genetics of some planthormones and photoreceptors in Arabidopsis thaliana (L.) Heynh

    NARCIS (Netherlands)

    Koornneef, M.

    1982-01-01

    This thesis describes the isolation and characterization in Arabidopsis thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), abscisic acid (ABA) and photoreceptors.These compounds are known to regulate various facets of plant growth and differentiation, so mutants lacking one

  13. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo;

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (J...

  14. Effects of Preconditioning and Temperature During Germination of 73 Natural Accessions of Arabidopsis thaliana

    OpenAIRE

    Schmuths, Heike; Bachmann, Konrad; WEBER, W. EBERHARD; Horres, Ralf; Matthias H Hoffmann

    2006-01-01

    • Background and Aims Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined.

  15. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and brassica napus

    Science.gov (United States)

    In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide co...

  16. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana

    Science.gov (United States)

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen was still elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 8...

  17. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  18. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana

    NARCIS (Netherlands)

    Yakushevska, AE; Jensen, PE; Keegstra, W; van Roon, H; Scheller, HV; Boekema, EJ; Dekker, JP; Yakushevska, Alevtyna E.; Jensen, Poul E.; Scheller, Henrik V.; Dekker, Jan P.

    2001-01-01

    The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSI

  19. Coronatine-Insensitive 1 (COI1) Mediates Transcriptional Responses of Arabidopsis thaliana to External Potassium Supply

    NARCIS (Netherlands)

    Armengaud, Patrick; Breitling, Rainer; Amtmann, Anna

    2010-01-01

    The ability to adjust growth and development to the availability of mineral nutrients in the soil is an essential life skill of plants but the underlying signaling pathways are poorly understood. In Arabidopsis thaliana, shortage of potassium (K) induces a number of genes related to the phytohormone

  20. An En/Spm based transposable element system for gene isolation in Arabidopsis thaliana.

    NARCIS (Netherlands)

    Aarts, M.G.M.

    1996-01-01

    At the start of the research described in this thesis, the main aim was to develop, study and apply an efficient En/Spm-I/dSpm based transposon tagging system in Arabidopsis thaliana to generate tagged mutants and to provide insights in the possibilities for future applications of such a transposon

  1. Unraveling the WRKY transcription factors network in Arabidopsis Thaliana by integrative approach

    Directory of Open Access Journals (Sweden)

    Mouna Choura

    2015-06-01

    Full Text Available The WRKY transcription factors superfamily are involved in diverse biological processes in plants including response to biotic and abiotic stresses and plant immunity. Protein-protein interaction network is a useful approach for understanding these complex processes. The availability of Arabidopsis Thaliana interactome offers a good opportunity to do get a global view of protein network. In this work, we have constructed the WRKY transcription factor network by combining different sources of evidence and we characterized its topological features using computational tools. We found that WRKY network is a hub-based network involving multifunctional proteins denoted as hubs such as WRKY 70, WRKY40, WRKY 53, WRKY 60, WRKY 33 and WRKY 51. Functional annotation showed seven functional modules particularly involved in biotic stress and defense responses. Furthermore, the gene ontology and pathway enrichment analysis revealed that WRKY proteins are mainly involved in plant-pathogen interaction pathways and their functions are directly related to the stress response and immune system process.

  2. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  3. Hybrid inflorescences derived from gamma-fusion of Arabidopsis thaliana with Bupleurum scorzonerifolium.

    Science.gov (United States)

    Wang, Minqin; Peng, Zhenying; Hong, Sheng; Zhi, Daying; Xia, Guangmin

    2012-01-01

    In our early experiments, a variety of Bupleurum scorzonerifolium-like somatic hybrid plants were obtained from protoplast fusion between Arabidopsis thaliana and UV-treated/untreated B. scorzonerifolium. To compare the effects of UV and γ-ray irradiation on the B. scorzonerifolium partner and obtain Arabidopsis-like hybrids, we designed a novel combination of somatic hybridization between A. thaliana and B. scorzonerifolium. Before protoplast isolation and fusion, the suspension cells of B. scorzonerifolium were irradiated by gamma ray ((60)Co, 50 Gy with 1.3 Gy min(-1)). Both parental protoplasts lost regeneration capacity, but over 100 somatic hybrids restored the capacity and developed to Arabidopsis-like inflorescences and flowers with some characteristics of B. scorzonerifolium. Some hybrid flowers showed yellow sepal, petal, or carpel, whose color was similar to the petal of B. scorzonerifolium; the others had silique of Arabidopsis with angularity of B. scorzonerifolium, and their parts possessed five stamens, the same as B. scorzonerifolium. Cytological analysis showed that three hybrids had Arabidopsis-like karyotypes. Random Amplified Polymorphic DNA (RAPD) and Simple Sequence Repeats (SSR) profiles revealed that both parental fragments were amplified from these hybrids. These results indicated chromatin introgression from B. scorzonerifolium to A. thaliana, which may be related to the complementation of hybrid inflorescence and flower generation. PMID:21484475

  4. A Mutation in Plant-Specific SWI2/SNF2-Like Chromatin-Remodeling Proteins, DRD1 and DDM1, Delays Leaf Senescence in Arabidopsis thaliana.

    Science.gov (United States)

    Cho, Eun Ju; Choi, Seung Hee; Kim, Ji Hong; Kim, Ji Eun; Lee, Min Hee; Chung, Byung Yeoup; Woo, Hye Ryun; Kim, Jin-Hong

    2016-01-01

    Leaf senescence is a finely regulated complex process; however, evidence for the involvement of epigenetic processes in the regulation of leaf senescence is still fragmentary. Therefore, we chose to examine the functions of DRD1, a SWI2/SNF2 chromatin remodeling protein, in epigenetic regulation of leaf senescence, particularly because drd1-6 mutants exhibited a delayed leaf senescence phenotype. Photosynthetic parameters such as Fv/Fm and ETRmax were decreased in WT leaves compared to leaves of drd1-6 mutants after dark treatment. The WT leaves remarkably lost more chlorophyll and protein content during dark-induced senescence (DIS) than the drd1-6 leaves did. The induction of senescence-associated genes was noticeably inhibited in the drd1-6 mutant after 5-d of DIS. We compared changes in epigenetic regulation during DIS via quantitative expression analysis of 180-bp centromeric (CEN) and transcriptionally silent information (TSI) repeats. Their expression levels significantly increased in both the WT and the drd1-6 mutant, but did much less in the latter. Moreover, the delayed leaf senescence was observed in ddm1-2 mutants as well as the drd1-6, but not in drd1-p mutants. These data suggest that SWI2/SNF2 chromatin remodeling proteins such as DRD1 and DDM1 may influence leaf senescence possibly via epigenetic regulation.

  5. The 1.7 Å resolution structure of At2g44920, a pentapeptide-repeat protein in the thylakoid lumen of Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Shuisong; McGookey, Michael E.; Tinch, Stuart L.; Jones, Alisha N.; Jayaraman, Seetharaman; Tong, Liang; Kennedy, Michael A. (Miami U); (Columbia)

    2012-01-09

    At2g44920 belongs to a diverse family (Pfam PF00805) of pentapeptide-repeat proteins (PRPs) that are present in all known organisms except yeast. PRPs contain at least eight tandem-repeating sequences of five amino acids with an approximate consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Recent crystal structures show that PRPs adopt a highly regular four-sided right-handed {beta}-helical structure consisting mainly of type II and type IV {beta}-turns, sometimes referred to as a repeated five-residue (or Rfr) fold. Among sequenced genomes, PRP genes are most abundant in cyanobacteria, leading to speculation that PRPs play an important role in the unique lifestyle of photosynthetic cyanobacteria. Despite the recent structural characterization of several cyanobacterial PRPs, most of their functions remain unknown. Plants, whose chloroplasts are of cyanobacterial origin, have only four PRP genes in their genomes. At2g44920 is one of three PRPs located in the thylakoid lumen. Here, the crystal structure of a double methionine mutant of residues 81-224 of At2g44920, the naturally processed fragment of one of its full-length isoforms, is reported at 1.7 {angstrom} resolution. The structure of At2g44920 consists of the characteristic Rfr fold with five uninterrupted coils made up of 25 pentapeptide repeats and {alpha}-helical elements capping both termini. A disulfide bridge links the two {alpha}-helices with a conserved loop between the helical elements at its C-terminus. This structure represents the first structure of a PRP protein whose subcellular location has been experimentally confirmed to be the thylakoid lumen in a plant species.

  6. Production of asymmetric hybrids between Arabidopsis thaliana and Brassica napus utilizing an efficient protoplast culture system.

    Science.gov (United States)

    Yamagishi, H.; Landgren, M.; Forsberg, J.; Glimelius, K.

    2002-05-01

    Application of the protoplast culture method developed for Brassica protoplasts to protoplasts of Arabidopsis thaliana has increased the opportunities for interspecific hybridizations involving Arabidopsis. A more-efficient and much-simpler method was established compared to the earlier-reported protocol developed for A. thaliana protoplasts in which alginate beads were utilized. Mesophyll protoplasts of A. thaliana (ecotypes 'Landsberg erecta' and 'Wassilewskija') were cultured in the modified 8p liquid medium, which had been developed for Brassica protoplasts. For comparison, protoplasts were cultured in sodium alginate beads supplied with B5 medium according to the protocol for A. thaliana. The protoplasts divided with high frequencies in the 8p medium, and calli proliferated more rapidly than in the sodium alginate beads. High frequencies of shoot differentiation and regeneration were observed in calli of both ecotypes, from about 30% in the ecotype 'Wassilewskija' to about 60% for 'Landsberg erecta'. The more-rapidly the calli developed, the higher the regeneration frequencies were. Asymmetric hybrids between A. thaliana and Brassica napus were obtained by treating the protoplasts of A. thaliana with iodoacetamide (IOA) and B. napus protoplasts with UV-irradiation before fusion with polyethylene glycol (PEG). By using the culture procedure developed for Brassica protoplasts, calli developed and plants were regenerated. Although most of the plants regenerated after cell fusion were A. thaliana-like and were judged to be escapes from IOA treatment, more than ten plants showed hybrid features of both morphological and molecular characters. Among the hybrids that have flowered so far, both male-fertile and male-sterile plants have been obtained. Back-crossings to A. thaliana are now in progress as is morphological and molecular characterization of the plants. PMID:12582600

  7. Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana.

    Science.gov (United States)

    Millaleo, R; Reyes-Díaz, M; Alberdi, M; Ivanov, A G; Krol, M; Hüner, N P A

    2013-01-01

    The effects of exposure to increasing manganese concentrations (50-1500 µM) from the start of the experiment on the functional performance of photosystem II (PSII) and photosystem I (PSI) and photosynthetic apparatus composition of Arabidopsis thaliana were compared. In agreement with earlier studies, excess Mn caused minimal changes in the PSII photochemical efficiency measured as F(v)/F(m), although the characteristic peak temperature of the S(2/3)Q(B) (-) charge recombinations was shifted to lower temperatures at the highest Mn concentration. SDS-PAGE and immunoblot analyses also did not exhibit any significant change in the relative abundance of PSII-associated polypeptides: PSII reaction centre protein D1, Lhcb1 (major light-harvesting protein of LHCII complex), and PsbO (OEC33, a 33 kDa protein of the oxygen-evolving complex). In addition, the abundance of Rubisco also did not change with Mn treatments. However, plants grown under excess Mn exhibited increased susceptibility to PSII photoinhibition. In contrast, in vivo measurements of the redox transients of PSI reaction centre (P700) showed a considerable gradual decrease in the extent of P700 photooxidation (P700(+)) under increased Mn concentrations compared to control. This was accompanied by a slower rate of P700(+) re-reduction indicating a downregulation of the PSI-dependent cyclic electron flow. The abundance of PSI reaction centre polypeptides (PsaA and PsaB) in plants under the highest Mn concentration was also significantly lower compared to the control. The results demonstrate for the first time that PSI is the major target of Mn toxicity within the photosynthetic apparatus of Arabidopsis plants. The possible involvement mechanisms of Mn toxicity targeting specifically PSI are discussed.

  8. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  9. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana

    Science.gov (United States)

    Mattei, Benedetta; Spinelli, Francesco; Pontiggia, Daniela; De Lorenzo, Giulia

    2016-01-01

    Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity. PMID:27532006

  10. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Deshu Lin; Huibo Ren; Ying Fu

    2015-01-01

    In multicel ular plant organs, cel shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cel‐to‐cel communi-cation. Plants have a specific subfamily of the Rho GTPase family, usual y cal ed Rho of Plants (ROP), which serve as a critical signal transducer involved in many cel ular processes. In the last decade, important advances in the ROP‐mediated regulation of plant cel morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cel s. Especial y, the auxin‐ROP signaling networks have been demonstrated to control interdigitated growth of pavement cel s to form jigsaw‐puzzle shapes. Here, we review findings related to the discovery of this novel auxin‐signaling mecha-nism at the cel surface. This signaling pathway is to a large extent independent of the wel‐known Transport Inhibitor Response (TIR)–Auxin Signaling F‐Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane‐localized, transmembrane kinase (TMK) receptor‐like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self‐organizing feature al owing ROP proteins to serve as a bustling signal decoder and integrator for plant cel morphogenesis.

  11. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hideki Shigematsu

    Full Text Available Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca²⁺-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca²⁺ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.

  12. Photosynthetic Properties of Photosystem Ⅱ in Arabidopsis thaliana Ipa1 Mutant

    Institute of Scientific and Technical Information of China (English)

    Lian-Wei Peng; Jin-Kui Guo; Jin-Fang Ma; Wei Chi; Li-Xin Zhang

    2006-01-01

    In a previous study, we characterized a high chlorophyll fluorescence Ipa1 mutant of Arabidopsis thaliana,in which approximately 20% photosystem (PS) Ⅱ protein is accumulated. In the present study, analysis of fluorescence decay kinetics and thermoluminescence profiles demonstrated that the electron transfer reaction on either the donor or acceptor side of PSll remained largely unaffected in the Ipa1 mutant. In the mutant, maximal photochemical efficiency (Fv/Fm, where Fm is the maximum fluorescence yield and Fv is variable fluorescence) decreased with increasing light intensity and remained almost unchanged in wildtype plants under different light conditions. The Fv/Fm values also increased when mutant plants were transferred from standard growth light to low light conditions. Analysis of PSⅡ protein accumulation further confirmed that the amount of PSll reaction center protein is correlated with changes in Fv/Fm in Ipa1 plants.Thus, the assembled PSll in the mutant was functional and also showed increased photosensitivity compared with wild-type plants.

  13. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    Science.gov (United States)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  14. The Arabidopsis thaliana Cyclic-Nucleotide-Dependent Response – a Quantitative Proteomic and Phosphoproteomic Analysis

    KAUST Repository

    Alqurashi, May M.

    2013-11-01

    Protein phosphorylation governs many regulatory pathways and an increasing number of kinases, proteins that transfer phosphate groups, are in turn activated by cyclic nucleotides. One of the cyclic nucleotides, cyclic adenosine monophosphate (cAMP), has been shown to be a second messenger in abiotic and biotic stress responses. However, little is known about the precise role of cAMP in plants and in the down-stream activation of kinases, and hence cAMP-dependent phosphorylation. To increase our understanding of the role of cAMP, proteomic and phosphoproteomic profiles of Arabidopsis thaliana suspension culture cells were analyzed before and after treatment of cells with two different concentrations of 8-Bromo-cAMP (1 µM and 100 nM) and over a time-course of one hour. A comparative quantitative analysis was undertaken using two- dimensional gel electrophoresis and the Delta 2D software (DECODON) followed by protein spot identification by tandem mass spectrometry combined with Mascot and Scaffold. Differentially expressed proteins and regulated phosphoproteins were categorized according to their biological function using bioinformatics tools. The results revealed that the treatment with 1 µM and 100 nM 8-Bromo-cAMP was sufficient to induce specific concentration- and time-dependent changes at the proteome and phosphoproteome levels. In particular, different phosphorylation patterns were observed overtime preferentially affecting proteins in a number of functional categories, notably phosphatases, proteins that remove phosphate groups. This suggests that cAMP both transiently activates and deactivates proteins through specific phosphorylation events and provides new insight into biological mechanisms and functions at the systems level.

  15. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kim Myung K

    2011-09-01

    Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.

  16. Ligand recognition by the TPR domain of the import factor Toc64 from Arabidopsis thaliana.

    Science.gov (United States)

    Panigrahi, Rashmi; Adina-Zada, Abdussalam; Whelan, James; Vrielink, Alice

    2013-01-01

    The specific targeting of protein to organelles is achieved by targeting signals being recognised by their cognate receptors. Cytosolic chaperones, bound to precursor proteins, are recognized by specific receptors of the import machinery enabling transport into the specific organelle. The aim of this study was to gain greater insight into the mode of recognition of the C-termini of Hsp70 and Hsp90 chaperones by the Tetratricopeptide Repeat (TPR) domain of the chloroplast import receptor Toc64 from Arabidopsis thaliana (At). The monomeric TPR domain binds with 1∶1 stoichiometry in similar micromolar affinity to both Hsp70 and Hsp90 as determined by isothermal titration calorimetry (ITC). Mutations of the terminal EEVD motif caused a profound decrease in affinity. Additionally, this study considered the contributions of residues upstream as alanine scanning experiments of these residues showed reduced binding affinity. Molecular dynamics simulations of the TPR domain helices upon peptide binding predicted that two helices within the TPR domain move backwards, exposing the cradle surface for interaction with the peptide. Our findings from ITC and molecular dynamics studies suggest that AtToc64_TPR does not discriminate between C-termini peptides of Hsp70 and Hsp90.

  17. VirE1-Mediated Resistance to Crown Gall in Transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Humann, Jodi; Andrews, Sarah; Ream, Walt

    2006-01-01

    ABSTRACT Crown gall disease, caused by Agrobacterium tumefaciens, remains a serious agricultural problem despite current biocontrol methods. Agrobacterium tumefaciens transfers single-stranded DNA (T-strands) into plant cells along with several virulence proteins, including a single-stranded DNA-binding protein (VirE2). In plant cells, T-strands are protected from nucleases and targeted to the nucleus by VirE2, which is essential for efficient transmission (transfer and integration) of T-strands. VirE1 is the secretory chaperone for VirE2; it prevents VirE2 from forming aggregates and from binding the T-strands in bacterial cells. Therefore, we hypothesized that sufficient quantities of VirE1 expressed in plant cells might block T-DNA transmission by preventing VirE2 from binding T-strands. Here we show that root explants from Arabidopsis thaliana plants that expressed virE1 formed 3.5-fold fewer tumors than roots from plants without virE1. Also, this resistance was specific for VirE2-mediated Agrobacterium transformation. Plants that have been genetically altered to resist crown gall may prove more effective than biological control. PMID:18944210

  18. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    Science.gov (United States)

    Evans-Roberts, Katherine M.; Breuer, Christian; Wall, Melisa K.; Sugimoto-Shirasu, Keiko; Maxwell, Anthony

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Findings We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. Conclusions/Significance These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen. PMID:20360860

  19. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    Directory of Open Access Journals (Sweden)

    Katherine M Evans-Roberts

    Full Text Available DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3.We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer.These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  20. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  1. Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frédéric Pontvianne

    2010-11-01

    Full Text Available In eukaryotes, 45S rRNA genes are arranged in tandem arrays in copy numbers ranging from several hundred to several thousand in plants. Although it is clear that not all copies are transcribed under normal growth conditions, the molecular basis controlling the expression of specific sets of rRNA genes remains unclear. Here, we report four major rRNA gene variants in Arabidopsis thaliana. Interestingly, while transcription of one of these rRNA variants is induced, the others are either repressed or remain unaltered in A. thaliana plants with a disrupted nucleolin-like protein gene (Atnuc-L1. Remarkably, the most highly represented rRNA gene variant, which is inactive in WT plants, is reactivated in Atnuc-L1 mutants. We show that accumulated pre-rRNAs originate from RNA Pol I transcription and are processed accurately. Moreover, we show that disruption of the AtNUC-L1 gene induces loss of symmetrical DNA methylation without affecting histone epigenetic marks at rRNA genes. Collectively, these data reveal a novel mechanism for rRNA gene transcriptional regulation in which the nucleolin protein plays a major role in controlling active and repressed rRNA gene variants in Arabidopsis.

  2. Transcriptional Consequence and Impaired Gametogenesis with High-Grade Aneuploidy in Arabidopsis thaliana

    OpenAIRE

    Kuan-Lin Lo; Long-Chi Wang; I-Ju Chen; Yu-Chen Liu; Mei-Chu Chung; Wan-Sheng Lo

    2014-01-01

    Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collective...

  3. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Jensen, Erik Østergaard

    2008-01-01

    -symbiotic hemoglobin gene, GLB2, in Arabidopsis thaliana. Lines with GLB1 silencing had a significant delay of bolting and after bolting, shoots reverted to the rosette vegetative phase by formation of aerial rosettes at lateral meristems. Lines with overexpression of GLB1 or GLB2 bolted earlier than wild type plants...... molecule, NO. So far, NO scavenging has only been demonstrated for class 1 non-symbiotic hemoglobins. A direct assay in Arabidopsis leaf cells shows that GLB1 as well as the class 2 non-symbiotic hemoglobin, GLB2, scavenge NO in vivo. NO has also been demonstrated to be a growth stimulating signal...

  4. Establishment of an Indirect Genetic Transformation Method for Arabidopsis thaliana ecotype Bangladesh

    Directory of Open Access Journals (Sweden)

    Bulbul AHMED

    2011-11-01

    Full Text Available Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family, which is adopted as a model plant for genetic research. Agrobacterium tumifaciensmediated transformation method for A. thaliana ecotype Bangladesh was established. Leaf discs of A. thaliana were incubated with A. tumefaciens strain LBA4404 containing chimeric nos. nptII. nos and intron-GUS genes. Following inoculation and co-cultivation, leaf discs were cultured on selection medium containing 50 mg/l kanamycin + 50 mg/l cefotaxime + 1.5 mg/l NAA and kanamycin resistant shoots were induced from the leaf discs after two weeks. Shoot regeneration was achieved after transferring the tissues onto fresh medium of the same combination. Finally, the shoots were rooted on MS medium containing 50 mg/l kanamycin. Incorporation and expression of the transgenes were confirmed by PCR analysis. Using this protocol, transgenic A. thaliana plants can be obtained and indicates that genomic transformation in higher plants is possible through insertion of desired gene. Although Agrobacterium mediated genetic transformation is established for A. thaliana, this study was the conducted to transform A. thaliana ecotype Bangladesh.

  5. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana*

    Science.gov (United States)

    Evans-Roberts, Katherine M.; Mitchenall, Lesley A.; Wall, Melisa K.; Leroux, Julie; Mylne, Joshua S.; Maxwell, Anthony

    2016-01-01

    The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides. PMID:26663076

  6. Purification, crystallization and preliminary crystallographic analysis of deoxyuridine triphosphate nucleotidohydrolase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Mamta [School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States); Moriyama, Hideaki, E-mail: hmoriyama2@unl.edu [Department of Chemistry, e-Toxicology and Biotechnology, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, Nebraska 68588-0304 (United States); School of Biological Sciences, University of Nebraska-Lincoln, Manter Hall, Lincoln, Nebraska 68588-0304 (United States)

    2007-05-01

    The first crystallization of deoxyuridine triphosphate nucleotidohydrolase from plant, Arabidopsis thaliana, has been performed. An additive, taurine, was effective in producing the single crystal. The deoxyuridine triphosphate nucleotidohydrolase gene from Arabidopsis thaliana was expressed and the gene product was purified. Crystallization was performed by the hanging-drop vapour-diffusion method at 298 K using 2 M ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.2 Å resolution using Cu Kα radiation. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 69.90, b = 70.86 Å, c = 75.55 Å. Assuming the presence of a trimer in the asymmetric unit, the solvent content was 30%, with a V{sub M} of 1.8 Å{sup 3} Da{sup −1}.

  7. Strictly NO3- Nutrition Alleviates Iron Deficiency Chlorosis in Arabidopsis thaliana Plants

    Directory of Open Access Journals (Sweden)

    Najoua Msilini

    2014-03-01

    Full Text Available The effects of NO3- nutrition on iron deficiency responses were investigated in Arabidopsis thaliana. Plants were grown with or without 5 µM Fe, and with NO3- alone or a mixture of NO3- and NH4+. The results indicated that, NO3- nutrition induced higher dry matter production, regardless the Fe concentration. Fe deficiency reduced growth activity, photosynthetic pigment concentration and Fe content of plants, whatever the N forms. This decrease was more pronounced in plants grown with mixed N source; those plants presented the highest EL and MDA and anthocyanin contents compared to plants grown under Fe sufficient conditions. In iron free-solutions, with NO3- as the sole nitrogen source, enhanced FC-R activity in the roots was observed. However, in the presence of NH4+, plants displayed some decrease in in FC-R and PEPC activities. The presence of NH4+ modified typical Fe stress responses in Arabidopsis thaliana plants.

  8. 拟南芥蛋白激酶 SnRK2.6的原核表达、纯化及活性分析%Prokaryotic Expression,Purification and Activity Analysis of Protein Kinase SnRK2·6 in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    杨凤博; 王鲜萍; 李坤

    2014-01-01

    从哥伦比亚生态型拟南芥(Arabidopsis thaliana Columbia 0)中克隆 SnRK2·6[SNF1(su-crose non-fermenting-1)-related protein kinase 2·6]的完整编码序列(coding sequence,CDS),构建该基因的原核表达载体,将其转化 BL21(DE3),经表达纯化得到 SnRK2·6蛋白。激酶活性分析发现,原核表达纯化的 SnRK2·6有自磷酸化和磷酸化 MBP(myelin basin protein)的活性,为后续试验分析 SnRK2·6的功能奠定基础。%The whole coding sequence of SnRK2·6 [SNF1 (sucrose non-fermenting-1 )-related protein kinase 2·6]was cloned from Arabidopsis thaliana ecotype Columbia 0.The prokaryotic expression vector of the gene was constructed and transformed into Escherichia coli strain BL21 (DE3)to obtain SnRK2·6 protein by induction and purification.By activity analysis,the purified SnRK2·6 had both autophosphorylation activity and phosphorylation activity of the myelin basic protein(MBP)substrate.This study lays the foundation for further study of the function of SnRK2·6.

  9. Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust.

    Science.gov (United States)

    Cheng, Yulin; Zhang, Hongchang; Yao, Juanni; Han, Qingmei; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng

    2013-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. We report the use of the non-host plant Arabidopsis thaliana to identify the basis of resistance to Pst at the cytological and molecular levels. No visible symptoms were observed on Arabidopsis leaves inoculated with Pst. Microscopic observations showed that significantly reduced numbers of Pst urediospores had successfully achieved penetration in Arabidopsis compared with those in wheat. There were significant differences in the frequency of stomatal penetration but not in fungal growth among different Pst races in Arabidopsis. The fungus failed to successfully form haustoria in Arabidopsis and attempted infection induced an active response including accumulation of phenolic compounds and callose deposition in plant cells. A set of defence-related genes were also up regulated during the Pst infection. Compared with wild type plants, increased fungal growth was observed in an npr1-1 mutant and in NahG transformed plants, which both are insensitive to salicylic acid. However, treatment of Arabidopsis plants with cytochalasin B, an inhibitor of actin microfilament polymerization, did not increase susceptibility to Pst. Our results demonstrate that Arabidopsis can be used to study mechanisms of non-host resistance to wheat stripe rust, and highlight the significance of participation of salicylic acid in non-host resistance to rust fungi.

  10. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  11. Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana.

    Science.gov (United States)

    Welinder, Karen G; Justesen, Annemarie F; Kjaersgård, Inger V H; Jensen, Rikke B; Rasmussen, Søren K; Jespersen, Hans M; Duroux, Laurent

    2002-12-01

    Understanding peroxidase function in plants is complicated by the lack of substrate specificity, the high number of genes, their diversity in structure and our limited knowledge of peroxidase gene transcription and translation. In the present study we sequenced expressed sequence tags (ESTs) encoding novel heme-containing class III peroxidases from Arabidopsis thaliana and annotated 73 full-length genes identified in the genome. In total, transcripts of 58 of these genes have now been observed. The expression of individual peroxidase genes was assessed in organ-specific EST libraries and compared to the expression of 33 peroxidase genes which we analyzed in whole plants 3, 6, 15, 35 and 59 days after sowing. Expression was assessed in root, rosette leaf, stem, cauline leaf, flower bud and cell culture tissues using the gene-specific and highly sensitive reverse transcriptase-polymerase chain reaction (RT-PCR). We predicted that 71 genes could yield stable proteins folded similarly to horseradish peroxidase (HRP). The putative mature peroxidases derived from these genes showed 28-94% amino acid sequence identity and were all targeted to the endoplasmic reticulum by N-terminal signal peptides. In 20 peroxidases these signal peptides were followed by various N-terminal extensions of unknown function which are not present in HRP. Ten peroxidases showed a C-terminal extension indicating vacuolar targeting. We found that the majority of peroxidase genes were expressed in root. In total, class III peroxidases accounted for an impressive 2.2% of root ESTs. Rather few peroxidases showed organ specificity. Most importantly, genes expressed constitutively in all organs and genes with a preference for root represented structurally diverse peroxidases (< 70% sequence identity). Furthermore, genes appearing in tandem showed distinct expression profiles. The alignment of 73 Arabidopsis peroxidase sequences provides an easy access to the identification of orthologous peroxidases

  12. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana

    KAUST Repository

    Kim, Jeong Im

    2011-04-21

    The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D activation mutant and 35S:YUC6 transgenic plants, displayed dramatic longevity. In addition, plants over-expressing YUCCA6 exhibited classical, delayed dark-induced and hormone-induced senescence in assays using detached rosette leaves. However, plants over-expressing an allele of YUCCA6, that carries mutations in the NADPH cofactor binding site, exhibited neither delayed leaf senescence phenotypes nor phenotypes typical of auxin overproduction. When the level of free IAA was reduced in yuc6-1D by conjugation to lysine, yuc6-1D leaves senesced at a rate similar to the wild-type leaves. Dark-induced senescence in detached leaves was accompanied by a decrease in their free IAA content, by the reduced expression of auxin biosynthesis enzymes such as YUCCA1 and YUCCA6 that increase cellular free IAA levels, and by the increased expression of auxin-conjugating enzymes encoded by the GH3 genes that reduce the cellular free auxin levels. Reduced transcript abundances of SAG12, NAC1, and NAC6 during senescence in yuc6-1D compared with the wild type suggested that auxin delays senescence by directly or indirectly regulating the expression of senescence-associated genes. 2011 The Author(s).

  13. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    OpenAIRE

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2007-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...

  14. Electron transfer reactivity of the Arabidopsis thaliana sulfhydryl oxidase AtErv1

    DEFF Research Database (Denmark)

    Farver, Ole; Vitu, Elvira; Wherland, Scot;

    2009-01-01

    The redox reactivity of the three disulfide bridges and the flavin present in each protomer of the wild-type Arabidopsis thaliana mitochondrial sulfhydryl oxidase (AtErv1) homodimer has been investigated. Pulse radiolytically produced CO2- radical ions were found to reduce the disulfide bridges to...... the active site disulfide bridge increased the stability of the flavin semiquinone making it a long-lived product. Relevance of these observations to the design and function of the sulfhydryl oxidases is discussed....

  15. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon;

    2013-01-01

    ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might...... using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p expression pattern. By using sequence data...

  16. An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data

    OpenAIRE

    Mishra, Hrishikesh; Singh, Nitya; Misra, Krishna; Lahiri, Tapobrata

    2011-01-01

    Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by genetic algorithm was ...

  17. The Genomic and Morphological Effects of Bisphenol A on Arabidopsis thaliana.

    Science.gov (United States)

    Frejd, Derek; Dunaway, Kiera; Hill, Jennifer; Van Maanen, Jesse; Carlson, Clayton

    2016-01-01

    The environmental toxin bisphenol A (BPA) is a known mammalian hormone disrupter but its effects on plants have not been well established. The effect of BPA on gene expression in Arabidopsis thaliana was determined using microarray analysis and quantitative gene PCR. Many hormone responsive genes showed changes in expression after BPA treatment. BPA disrupted flowering by a mechanism that may involve disruption of auxin signaling. The results presented here indicate that BPA is a plant hormone disrupter. PMID:27631104

  18. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana

    OpenAIRE

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-01

    Background Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fat...

  19. Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana.

    OpenAIRE

    Weinig, Cynthia; Dorn, Lisa A; Kane, Nolan C.; German, Zachary M; Halldorsdottir, Solveig S; Ungerer, Mark C.; Toyonaga, Yuko; Mackay, Trudy F. C.; Purugganan, Michael D.; Schmitt, Johanna

    2003-01-01

    Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanc...

  20. Funktionsanalyse ausgewählter DOF-Transkriptionsfaktoren bei der Modellpflanze Arabidopsis thaliana

    OpenAIRE

    Skirycz, Aleksandra

    2008-01-01

    Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To ...

  1. Induction of oxidative stress related responses in Arabidopsis thaliana following uranium exposure

    OpenAIRE

    Vanhoudt, Nathalie; Vandenhove, H.; Opdenakker, Kelly; Remans, Tony; Smeets, Karen; MARTINEZ BELLO, Daniel; van Hees, M.; Wannijn, J.; Vangronsveld, Jaco; Cuypers, Ann

    2009-01-01

    The reactive oxygen species (ROS)-signaling pathway is very important in heavy metal toxicity. Induction of the antioxidative defense mechanism, comprising ROS-scavenging enzymes and metabolites, in plants after environmental uranium contamination has been insufficiently studied in the past. This study aimed to analyze oxidative stress related responses in Arabidopsis thaliana after uranium exposure. Seventeen-day-old seedlings were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 3 days. Afte...

  2. Kontrolle der Expression des UNUSUAL FLORAL ORGANS (UFO) Gens in Arabidopsis thaliana

    OpenAIRE

    Hobe, Martin

    2004-01-01

    Die vorliegende Arbeit befaßt sich mit der Kontrolle des Expressionsmusters des UNUSUAL FLORAL ORGANS (UFO) Gens von Arabidopsis thaliana. UFO wird im Sproß- und Blütenmeristemen aller Entwicklungsstadien der Pflanze exprimiert. In Blütenmeristemen agiert UFO als Kofaktor von LEAFY (LFY) bei der Aktivierung der Organidentitätsgene des zweiten und dritten Wirtels. UFO stellt also einen generellen Faktor der Musterbildung in Meristemen dar. Um regulatorische Gene, die die Expression von UFO bee...

  3. A kinetic model for the metabolism of the herbicide safener fenclorim in Arabidopsis thaliana

    OpenAIRE

    Liu, Junli; Brazier-Hicks, Melissa; Edwards, Robert

    2009-01-01

    Abstract Glutathione transferases (GSTs) catalyse the detoxification of a range of xenobiotics, including crop protection agents in plants. Recent studies in cultures of the model plant Arabidopsis thaliana have shown that the herbicide safener fenclorim (4,6-dichloro-2-phenylpyrimidine) is conjugated by GSTs acting in the cytosol which are induced in response to this chemical treatment. The primary glutathione conjugates are then hydrolyzed to S-(4-chloro-2-phenylpyrimidin-6-yl)-c...

  4. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    OpenAIRE

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to...

  5. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    Warnasooriya, Sankalpi N.; Porter, Katie J.; Montgomery, Beronda L

    2011-01-01

    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  6. The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development

    OpenAIRE

    Odunlami, Benjamin Oladipo

    2009-01-01

    Seed development in Arabidopsis thaliana, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between ...

  7. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana

    OpenAIRE

    Smeets, Karen; RUYTINX, Joske; Van Belleghem, Frank; Semane, Brahim; Lin, Dan; Vangronsveld, Jaco; Cuypers, Ann

    2008-01-01

    Arabidopsis thaliana is one of the most widely used model organisms in plant sciences. Because of the increasing knowledge in the understanding of its molecular pathways, a reproducible and stable growth set-up for obtaining uniform plants becomes more important. In order to be able to easily harvest and study both roots and shoots, and to allow simple exposure to water-soluble toxic substances, a hydroponic system is the desired cultivation method for controlled plant growth. Based o...

  8. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants

    OpenAIRE

    Mathieu, Laura; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2015-01-01

    Background Well-developed and functional roots are critical to support plant life and reach high crop yields. Their study however, is hampered by their underground growth and characterizing complex root system architecture (RSA) therefore remains a challenge. In the last few years, several phenotyping methods, including rhizotrons and x-ray computed tomography, have been developed for relatively thick roots. But in the model plant Arabidopsis thaliana, in vitro culture remains the easiest and...

  9. Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana

    OpenAIRE

    Andrew C Diener

    2013-01-01

    Abstract Background Susceptibility to Fusarium wilt disease varies among wild accessions of Arabidopsis thaliana. Six RESISTANCE TO FUSARIUM OXYSPORUM (RFO) quantitative trait loci (QTLs) controlling the resistance of accession Columbia-0 (Col-0) and susceptibility of Taynuilt-0 to Fusarium oxysporum forma specialis matthioli (FOM) are detected in a recombinant population derived from a single backcross of the F1 hybrid (BC1). In particular, ...

  10. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    Science.gov (United States)

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  11. The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Margaret M McDonnell

    Full Text Available Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.

  12. Intersection of small RNA pathways in Arabidopsis thaliana sub-nuclear domains.

    Directory of Open Access Journals (Sweden)

    Olga Pontes

    Full Text Available In Arabidopsis thaliana, functionally diverse small RNA (smRNA pathways bring about decreased RNA accumulation of target genes via several different mechanisms. Cytological experiments have suggested that the processing of microRNAs (miRNAs and heterochromatic small interfering RNAs (hc-siRNAs occurs within a specific nuclear domain that can present Cajal Body (CB characteristics. It is unclear whether single or multiple smRNA-related domains are found within the same CB and how specialization of the smRNA pathways is determined within this specific sub-compartment. To ascertain whether nuclear smRNA centers are spatially related, we localized key proteins required for siRNA or miRNA biogenesis by immunofluorescence analysis. The intranuclear distribution of the proteins revealed that hc-siRNA, miRNA and trans-acting siRNA (ta-siRNA pathway proteins accumulate and colocalize within a sub-nuclear structure in the nucleolar periphery. Furthermore, colocalization of miRNA- and siRNA-pathway members with CB markers, and reduced wild-type localization patterns in CB mutants indicates that proper nuclear localization of these proteins requires CB integrity. We hypothesize that these nuclear domains could be important for RNA silencing and may partially explain the functional redundancies and interactions among components of the same protein family. The CB may be the place in the nucleus where Dicer-generated smRNA precursors are processed and assigned to a specific pathway, and where storage, recycling or assembly of RNA interference components takes place.

  13. Molekulare Analyse der Biosynthese octadecanoid-abgeleiteter Signalmoleküle durch Allenoxid-Synthase und Allenoxid- Cyclase aus Arabidopsis thaliana (L.) HEYNH.

    OpenAIRE

    Zerbe, Philipp

    2007-01-01

    Im Fokus dieser Dissertation stand die Untersuchung der Biosynthese des Phytohormons 12-oxo-Phytodiensäure durch die Allenoxid-Synthase (AOS) und die vier Allenoxid-Cyclase-Isoformen (AOC) aus Arabidopsis thaliana. Enzymatische Analysen der rekombinanten Proteine zeigten eine redundante Substratspezifität der AOC-Isoformen. Zudem belegen biochemische Interaktionsstudien, dass eine Komplexierung von AOS und AOC in vitro nicht essentiell ist. Gleichwohl lässt die erhöhte Stereoselek...

  14. Protein (Viridiplantae): 15224369 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ne/histidine-rich C1 domain-containing protein Arabidopsis thaliana MAAKPTALGRPTVAPGHQLRLVFKGPEQTHQNRRMCDICDESAEGLYYQCKPCGFDVHPLC...GYINQENNKKTTKMSSSRPEQLVVQHFTHIHPLTKVDGYGEFTCDGCKTYGFGKTYRCTRCDYNLHDHCATCPSTLATFMHPQHELRLVFRGPEHTHQNKRMCDICDESAEGLYYQCEPCGFDVHPLC

  15. Protein (Viridiplantae): 42565109 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available l wall-plasma membrane linker protein Arabidopsis thaliana MGSRSQNLSFLVLLLLGFVAVSYACDCTPPKPSPAPHKPPKHPVKPPKP...PTKPPPSTPKPPTTKPPPSTPKPPHHKPPPTPCPPPTPTPTPPVVTPPTPTPPVITPPTPTPPVVTPPTPTPPVITPPTPTPPVITPPTPTPPVVTPPTPTPPVVTPPTPTPP...TPIPETCPIDTLKLGACVDVLGGLIHIGLGKSHAKAECCPVLGGLLDLDAAVCLCTTIKLKLLNIDLVLPIALELLLDCGKTPPSDFKCPA ...

  16. Light-dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells.

    Science.gov (United States)

    Islam, Md Sayeedul; Niwa, Yasuo; Takagi, Shingo

    2009-06-01

    Mitochondria, the power house of the cell, are one of the most dynamic cell organelles. Although there are several reports on actin- or microtubule-dependent movement of mitochondria in plant cells, intracellular positioning and motility of mitochondria under different light conditions remain open questions. Mitochondria were visualized in living Arabidopsis thaliana leaf cells using green fluorescent protein fused to a mitochondrion-targeting signal. In darkness, mitochondria were distributed randomly in palisade cells. In contrast, mitochondria accumulated along the periclinal walls, similar to the accumulation response of chloroplasts, when treated with weak blue light (470 nm, 4 micromol m(-2) s(-1)). Under strong blue light (100 micromol m(-2) s(-1)), mitochondria occupied the anticlinal positions similar to the avoidance response of chloroplasts and nuclei. While strong red light (660 nm, 100 micromol m(-2) s(-1)) induced the accumulation of mitochondria along the inner periclinal walls, green light exhibited little effect on the distribution of mitochondria. In addition, the mode of movement of individual mitochondria along the outer periclinal walls under different light conditions was precisely analyzed by time-lapse fluorescence microscopy. A gradual increase in the number of static mitochondria located in the vicinity of chloroplasts with a time period of blue light illumination clearly demonstrated the accumulation response of mitochondria. Light-induced co-localization of mitochondria with chloroplasts strongly suggested their mutual metabolic interactions. This is the first characterization of the light-dependent redistribution of mitochondria in plant cells.

  17. Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members

    Institute of Scientific and Technical Information of China (English)

    Christopher Grefen; Katrin St(a)dele; Kamil R(u)(z)i(c)ka; Petr Obrdlik; Klaus Harter; Jakub Horák

    2008-01-01

    The gaseous phytohormone ethylene regulates many developmental processes and responses to environmental conditions in higher plants.In Arabidopsis thaliana,ethylene perception and initiation of signaling are mediated by a family of five receptors which are related to prokaryotic two-component sensor histidine kinases.The transient expression of fluorescence-tagged receptors in tobacco (Nicotiana benthamiana) epidermal leaf cells demonstrated that all ethylene receptors are targeted to the ER endomembrane network and do not localize to the plasmalemma.In support of in planta overlay studies,the ethylene receptors form homomeric and heteromeric protein complexes at the ER in living plant cells,as shown by membrane recruitment assays.A comparable in vivo interaction pattern was found in the yeast mating-based split-ubiquitin system.The overlapping but distinct expression pattern of the ethylene receptor genes suggests a differential composition of the ethylene receptor complexes in different plant tissues.Our findings may have crucial functional implications on the ethylene receptor-mediated efficiency of hormone perception,induction of signaling,signal attenuation and output.

  18. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana

    Science.gov (United States)

    Zhang, WeiNa; Chen, WenLi

    2010-02-01

    Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including oxidative stress. Cd, as a toxicity heavy metal, resulted in the production of reactive oxygen species (ROS). In this paper, we demonstrated that ROS contributed to the induction of autophagy in Cd-stressed Arabidopsis thaliana. However, pre-incubation with ascorbic acid (AsA, antioxidant molecule) and catalase (CAT, a H2O2-specific scavenger) decreased the ROS production and the number of autolysosomal-like structures. Together our results indicated that the oxidative condition was essential for autophagy, as treatment with AsA and CAT abolished the formation of autophagosomes, and ROS may function as signal molecules to induce autophagy in abiotic stress.

  19. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-01-01

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process. PMID:27401176

  20. On the Origin of De Novo Genes in Arabidopsis thaliana Populations.

    Science.gov (United States)

    Li, Zi-Wen; Chen, Xi; Wu, Qiong; Hagmann, Jörg; Han, Ting-Shen; Zou, Yu-Pan; Ge, Song; Guo, Ya-Long

    2016-08-03

    De novo genes, which originate from ancestral nongenic sequences, are one of the most important sources of protein-coding genes. This origination process is crucial for the adaptation of organisms. However, how de novo genes arise and become fixed in a population or species remains largely unknown. Here, we identified 782 de novo genes from the model plant Arabidopsis thaliana and divided them into three types based on the availability of translational evidence, transcriptional evidence, and neither transcriptional nor translational evidence for their origin. Importantly, by integrating multiple types of omics data, including data from genomes, epigenomes, transcriptomes, and translatomes, we found that epigenetic modifications (DNA methylation and histone modification) play an important role in the origination process of de novo genes. Intriguingly, using the transcriptomes and methylomes from the same population of 84 accessions, we found that de novo genes that are transcribed in approximately half of the total accessions within the population are highly methylated, with lower levels of transcription than those transcribed at other frequencies within the population. We hypothesized that, during the origin of de novo gene alleles, those neutralized to low expression states via DNA methylation have relatively high probabilities of spreading and becoming fixed in a population. Our results highlight the process underlying the origin of de novo genes at the population level, as well as the importance of DNA methylation in this process.

  1. Newly Described Components and Regulatory Mechanisms of Circadian Clock Function in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Manuel Adrián Troncoso-Ponce; Paloma Mas

    2012-01-01

    The circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes.Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities.At the core of the clock,transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome.In this article,we briefly describe some of the very recent advances that have improved our understanding of clock organization and function in Arabidopsis thaliana.The new studies illustrate the role of clock protein complex formation on circadian gating of plant growth and identify alternative splicing as a new regulatory mechanism for clock function.Examination of key clock properties such as temperature compensation has also opened new avenues for functional research within the plant clockwork.The emerging connections between the circadian clock and metabolism,hormone signaling and response to biotic and abiotic stress also add new layers of complexity to the clock network and underscore the significance of the circadian clock regulating the daily life of plants.

  2. [Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling].

    Science.gov (United States)

    Yastreb, T O; Kolupaev, Yu E; Lugovaya, A A; Dmitriev, A P

    2016-01-01

    The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 µM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Leaf treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress. PMID:27266252

  3. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Maruthachalam Ravi

    2011-06-01

    Full Text Available Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.

  4. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  5. MULTIPLEX POLYMERASE CHAIN REACTION FOR GENOTYPING OF Arabidopsis thaliana ECOTYPES USING SSLP MARKERS

    Directory of Open Access Journals (Sweden)

    Zimina O. V.

    2014-08-01

    Full Text Available The goal of the work was, using the database «The Arabidopsis Information Resource» TAIR, to select 12 SSLP-markers distributed along the Arabidopsis chromosomes and chromosome arms, to optimize the conditions of amplification of each fragment and for simultaneous amplification of several fragments. For identification of A. thaliana ecotypes and their hybrid, the SSLP sequences were used. These DNA markers are highly polymorphic in Arabidopsis and easy to use. Using this database, the primers were selected for 12 SSLP-markers distributed along all chromosomes and their arms. A. thaliana ecotypes Columbia and Landsberg erecta were used. The experiments revealed that two-stage PCR using two annealing temperatures of primers in each cycle allows efficient amplification of all the fragments considered. The conditions for carrying out two multiplex PCR, each of which allows the two fragments were amplified and a single multiplex PCR allowing three markers for amplification were defined. The developed system of DNA markers can be used to study the behavior and inheritance of each chromosome of maternal and paternal genomes of Arabidopsis hybrids and enables quick and efficient genetic analysis.

  6. Epigenetic Control of CACTA Transposon Mobility in Arabidopsis thaliana

    OpenAIRE

    Kato, Masaomi; Takashima, Kazuya; Kakutani, Tetsuji

    2004-01-01

    Epigenetic mutation, heritable developmental variation not based on a change in nucleotide sequence, is widely reported in plants. However, the developmental and evolutionary significance of such mutations remains enigmatic. On the basis of our studies of the endogenous Arabidopsis transposon CACTA, we propose that the inheritance of epigenetic gene silencing over generations can function as a transgenerational genome defense mechanism against deleterious movement of transposons. We previousl...

  7. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    Science.gov (United States)

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  8. Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eBohrer

    2015-01-01

    Full Text Available Plants assimilate inorganic sulfate into sulfur-containing vital metabolites. ATP sulfurylase (ATPS is the enzyme catalyzing the key entry step of the sulfate assimilation pathway in both plastids and cytosol in plants. Arabidopsis thaliana has four ATPS genes (ATPS1, -2, -3 and -4 encoding ATPS pre-proteins containing N-terminal transit peptide sequences for plastid targeting, however, the genetic identity of the cytosolic ATPS has remained unverified. Here we show that Arabidopsis ATPS2 dually encodes plastidic and cytosolic ATPS isoforms, differentiating their subcellular localizations by initiating translation at AUGMet1 to produce plastid-targeted ATPS2 pre-proteins or at AUGMet52 or AUGMet58 within the transit peptide to have ATPS2 stay in cytosol. Translational initiation of ATPS2 at AUGMet52 or AUGMet58 was verified by expressing a tandem-fused synthetic gene, ATPS2(5’UTR-His12:Renilla luciferase:ATPS2(Ile13-Val77:firefly luciferase, under a single constitutively active CaMV 35S promoter in Arabidopsis protoplasts and examining the activities of two different luciferases translated in-frame with split N-terminal portions of ATPS2. Introducing missense mutations at AUGMet52 and AUGMet58 significantly reduced the firefly luciferase activity, while AUGMet52 was a relatively preferred site for the alternative translational initiation. The activity of luciferase fusion protein starting at AUGMet52 or AUGMet58 was not modulated by changes in sulfate conditions. The dual localizations of ATPS2 in plastids and cytosol were further evidenced by expression of ATPS2-GFP fusion proteins in Arabidopsis protoplasts and transgenic lines, while they were also under control of tissue-specific ATPS2 promoter activity found predominantly in leaf epidermal cells, guard cells, vascular tissues and roots.

  9. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  10. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  11. Genome-wide Analysis of Ovate Family Proteins in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Huang Jian-ping; Li Hong-ling; Chang Ying

    2012-01-01

    Arabidopsis thaliana ovate family proteins (AtOFPs) is a newly found plant-specific protein family interacting with TALE (3-aa loop extension homeodomain proteins) homeodomain proteins in Arabidopsis. Here, based on bioinformatic analysis, we found that Arabidopsis genome actually encoded 17 OVATE domain-containing proteins. One of them, AtOFP19, has not been previously identified. Based on their amino acid sequence similarity, AtOFPs proteins can be divided into two groups. Most of the AtOFPs were located in nuclear, four of them were presented in chloroplast and the remaining two members appeared in cytoplasmic. A genome- wide microarray based gene expression analysis involving 47 stages of vegetative and reproductive development revealed that AtOFPs have diverse expression pattems. Investigation of proteins interaction showed that nine AtOFPs only interacted with TALE homeodomain proteins, which are fundamental regulators of plant meristem function and leaf development. Our work could provide important leads toward functional genomics studies of ovate family proteins, which may be involved in a previously unrecognized control mechanism in plant development

  12. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    International Nuclear Information System (INIS)

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  13. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-08-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post‐mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  14. Regeneration from leaf protoplasts of Arabidopsis thaliana ecotype estland.

    Science.gov (United States)

    Gandhi, R; Khurana, P

    2001-07-01

    Protoplasts (2 x 10(7)/g fresh wt) were isolated from leaves of A. thaliana ecotype estland, with a viability of more than 90%. Protoplasts cultured in calcium alginate beads or layers showed division while culture in liquid or agarose beads failed to elicit any division. Effect of culture density showed highest frequency of division occurring at 5 x 10(5) while no division was seen when cultured at a density of 5 x 10(4). Culture in MS medium resulted in higher division frequency and better sustenance of microcolonies as compared to B5 medium. Under optimized conditions, macrocolonies were formed at a frequency of 1.8%. Shoot regeneration was seen in 50% of microcalli transferred to shoot induction medium for regeneration. Shoots were rooted and plantlets transferred to pots. The plants produced flowers and were fertile. PMID:12019766

  15. A Sulfonylurea Herbicide Resistance Gene from Arabidopsis thaliana as a New Selectable Marker for Production of Fertile Transgenic Rice Plants.

    Science.gov (United States)

    Li, Z; Hayashimoto, A; Murai, N

    1992-10-01

    A mutant acetolactate synthase (ALS) gene, csr1-1, isolated from sulfonylurea herbicide-resistant Arabidopsis thaliana, was placed under control of a cauliflower mosaic virus 35S promoter (35S). Rice protoplasts were transformed with the 35S/ALS chimeric gene and regenerated into fertile transgenic rice (Oryza sativa) plants. The 35S/ALS gene was expressed effectively as demonstrated by northern blot hybridization analysis, and conferred to transformed calli at least 200-fold greater chlorsulfuron resistance than nontransformed control calli. Effective selection of 35S/ALS-transformed protoplasts was achieved at extremely low chlorsulfuron concentrations of 10 nm. The results demonstrated that the 35S/ALS gene is an alternative selectable marker for rice protoplast transformation and fertile transgenic rice production. The results also suggest that the mutant form of Arabidopsis ALS enzyme operates normally in rice cells. Thus, the mechanism of protein transport to chloroplast and ALS inhibition by chlorsulfuron is apparently conserved among plant species as diverse as Arabidopsis (dicotyledon) and rice (monocotyledon). PMID:16653044

  16. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    Science.gov (United States)

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  17. FUM2, a Cytosolic Fumarase, Is Essential for Acclimation to Low Temperature in Arabidopsis thaliana1[OPEN

    Science.gov (United States)

    Dyson, Beth C.; Miller, Matthew A.E.; Feil, Regina; Rattray, Nicholas; Bowsher, Caroline G.

    2016-01-01

    Although cold acclimation is a key process in plants from temperate climates, the mechanisms sensing low temperature remain obscure. Here, we show that the accumulation of the organic acid fumaric acid, mediated by the cytosolic fumarase FUM2, is essential for cold acclimation of metabolism in the cold-tolerant model species Arabidopsis (Arabidopsis thaliana). A nontargeted metabolomic approach, using gas chromatography-mass spectrometry, identifies fumarate as a key component of the cold response in this species. Plants of T-DNA insertion mutants, lacking FUM2, show marked differences in their response to cold, with contrasting responses both in terms of metabolite concentrations and gene expression. The fum2 plants accumulated higher concentrations of phosphorylated sugar intermediates and of starch and malate. Transcripts for proteins involved in photosynthesis were markedly down-regulated in fum2.2 but not in wild-type Columbia-0. Plants of fum2 show a complete loss of the ability to acclimate photosynthesis to low temperature. We conclude that fumarate accumulation plays an essential role in low temperature sensing in Arabidopsis, either indirectly modulating metabolic or redox signals or possibly being itself directly involved in cold sensing. PMID:27440755

  18. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  19. Identification of imprinted genes subject to parent-of-origin specific expression in Arabidopsis thaliana seeds

    LENUS (Irish Health Repository)

    McKeown, Peter C

    2011-08-12

    Abstract Background Epigenetic regulation of gene dosage by genomic imprinting of some autosomal genes facilitates normal reproductive development in both mammals and flowering plants. While many imprinted genes have been identified and intensively studied in mammals, smaller numbers have been characterized in flowering plants, mostly in Arabidopsis thaliana. Identification of additional imprinted loci in flowering plants by genome-wide screening for parent-of-origin specific uniparental expression in seed tissues will facilitate our understanding of the origins and functions of imprinted genes in flowering plants. Results cDNA-AFLP can detect allele-specific expression that is parent-of-origin dependent for expressed genes in which restriction site polymorphisms exist in the transcripts derived from each allele. Using a genome-wide cDNA-AFLP screen surveying allele-specific expression of 4500 transcript-derived fragments, we report the identification of 52 maternally expressed genes (MEGs) displaying parent-of-origin dependent expression patterns in Arabidopsis siliques containing F1 hybrid seeds (3, 4 and 5 days after pollination). We identified these MEGs by developing a bioinformatics tool (GenFrag) which can directly determine the identities of transcript-derived fragments from (i) their size and (ii) which selective nucleotides were added to the primers used to generate them. Hence, GenFrag facilitates increased throughput for genome-wide cDNA-AFLP fragment analyses. The 52 MEGs we identified were further filtered for high expression levels in the endosperm relative to the seed coat to identify the candidate genes most likely representing novel imprinted genes expressed in the endosperm of Arabidopsis thaliana. Expression in seed tissues of the three top-ranked candidate genes, ATCDC48, PDE120 and MS5-like, was confirmed by Laser-Capture Microdissection and qRT-PCR analysis. Maternal-specific expression of these genes in Arabidopsis thaliana F1 seeds was

  20. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds

    Science.gov (United States)

    Kozeko, Liudmyla; Talalaiev, Oleksandr; Neimash, Volodymyr; Povarchuk, Vasyl

    2015-07-01

    The heat shock protein 90 (HSP90) is required for the maturation and conformational regulation of many regulatory proteins affecting morphogenetic pathways and stress tolerance. The purpose of this work is to disclose a role of HSP90 in radioresistance of seeds. Arabidopsis thaliana (Ler) seeds were exposed to γ-ray irradiation with doses of 0.1-1 kGy using 60Co source to obtain a viable but polymorphic material. A comet assay of the seeds showed a dose-dependent increase in DNA damage. Phenotypic consequences of irradiation included growth stimulation at doses of 0.1-0.25 kGy and negative growth effects at doses from 0.5 kGy and beyond, along with increasing heterogeneity of seedling growth rate and phenotype. The frequencies of abnormal phenotypes were highly correlated with the degree of DNA damage in seeds. Treatment of seeds with geldanamycin (GDA), an inhibitor of HSP90, stimulated the seedling growth at all radiation doses and, at the same time, enhanced the growth rate and morphological diversity. It was also found that HSP70 induction by γ-rays was increased following GDA treatment (shown at 1 kGy). We suppose that the GDA-induced HSP70 can be involved in elimination of detrimental radiation effects that ultimately results in growth stimulation. On the other hand, the increase in phenotypic variation, when HSP90 function was impaired, confirms the supposition that the chaperone may control the concealment of cryptic genetic alterations and the developmental stability. In general, these results demonstrate that HSP90 may interface the stress response and phenotypic expression of genetic alterations induced by irradiation.

  1. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Maxim V C Greenberg

    2013-11-01

    Full Text Available DNA methylation is an epigenetic mark that is associated with transcriptional repression of transposable elements and protein-coding genes. Conversely, transcriptionally active regulatory regions are strongly correlated with histone 3 lysine 4 di- and trimethylation (H3K4m2/m3. We previously showed that Arabidopsis thaliana plants with mutations in the H3K4m2/m3 demethylase JUMONJI 14 (JMJ14 exhibit a mild reduction in RNA-directed DNA methylation (RdDM that is associated with an increase in H3K4m2/m3 levels. To determine whether this incomplete RdDM reduction was the result of redundancy with other demethylases, we examined the genetic interaction of JMJ14 with another class of H3K4 demethylases: lysine-specific demethylase 1-like 1 and lysine-specific demethylase 1-like 2 (LDL1 and LDL2. Genome-wide DNA methylation analyses reveal that both families cooperate to maintain RdDM patterns. ChIP-seq experiments show that regions that exhibit an observable DNA methylation decrease are co-incidental with increases in H3K4m2/m3. Interestingly, the impact on DNA methylation was stronger at DNA-methylated regions adjacent to H3K4m2/m3-marked protein-coding genes, suggesting that the activity of H3K4 demethylases may be particularly crucial to prevent spreading of active epigenetic marks. Finally, RNA sequencing analyses indicate that at RdDM targets, the increase of H3K4m2/m3 is not generally associated with transcriptional de-repression. This suggests that the histone mark itself--not transcription--impacts the extent of RdDM.

  2. SUMO E3 Ligase AtMMS21 Regulates Drought Tolerance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Shengchun Zhang; Yanli Qi; Ming Liu; ChengweiYang

    2013-01-01

    Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development,and in stress responses.The MMS21 is a newly-identified Arabidopsis thaliana L.SUMO E3 ligase gene aside from the SIZ1,and its function requires further elucidation.Here,we show that MMS21 deficient plants display improved drought tolerance,and constitutive expression of MMS21 reduces drought tolerance.The expression of MMS21 was reduced by abscisic acid (ABA),polyethylene glycol (PEG) or drought stress.Under drought conditions,mms21 mutants showed the highest survival rate and the slowest water loss,and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants.Stomatal aperture,seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA.Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes,including COR15A,RD22,and P5CS1 The ABA and drought-induced stress-responsive genes,including RAB18,RD29A and RD29B,were inhibited by constitutive expression of MMS21.Moreover,ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant.We thus conclude that MMS21 plays a role in the drought stress response,likely through regulation of gene expression in an ABA-dependent pathway.

  3. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought.

  4. Genome wide association mapping for the tolerance to the polyamine oxidase inhibitor guazatine in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kostadin Evgeniev eAtanasov

    2016-04-01

    Full Text Available Guazatine is a potent inhibitor of polyamine oxidase (PAO activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines. Here we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1 within this locus was studied as candidate gene, together with its paralog (CLH2. The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2 and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  5. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    Science.gov (United States)

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  6. Does Arabidopsis thaliana DREAM of cell cycle control?

    Science.gov (United States)

    Fischer, Martin; DeCaprio, James A

    2015-01-01

    Strict temporal control of cell cycle gene expression is essential for all eukaryotes including animals and plants. DREAM complexes have been identified in worm, fly, and mammals, linking several distinct transcription factors to coordinate gene expression throughout the cell cycle. In this issue of The EMBO Journal, Kobayashi et al (2015) identify distinct activator and repressor complexes for genes expressed during the G2 and M phases in Arabidopsis that can be temporarily separated during proliferating and post-mitotic stages of development. The complexes incorporate specific activator and repressor MYB and E2F transcription factors and indicate the possibility of the existence of multiple DREAM complexes in plants. PMID:26089020

  7. Chromatin Remodeling in Stem Cell Maintenance in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Wen-Hui Shen

    2009-01-01

    Pluripotent stem cells are able to both self-renew and generate undifferentiated cells for the formation of new tissues and organs.In higher plants,stem cells found in the shoot apical meristem (SAM) and the root apical meristem (RAM) are origins of organogenesis occurring post-embryonically.It is important to understand how the regulation of stem cell fate is coordinated to enable the meristem to constantly generate different types of lateral organs.Much knowledge has accumulated on specific transcription factors controlling SAM and RAM activity.Here,we review recent evidences for a role of chromatin remodeling in the maintenance of stable expression states of transcription factor genes and the control of stem cell activity in Arabidopsis.

  8. Hormonal relations of radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    When gamma-irradiated Arabidopsis seed was germinated, tumors appeared on hypocotyls and apical meristems of the resulting plants. Several tumors have been cultured on hormone free medium for over two years since excision from the plants. The tumor lines display a range of phenotypes suggestive of abnormal hormone balance. To determine whether hormone overproduction or hypersensitivity is involved in tumorigenesis, we are measuring hormone levels in the tumor lines and characterizing their response to exogenously supplied growth regulators. Growth of two tumor lines is stimulated by either NAA or BAP, one is stimulated by NAA only, two by BAP only, and one is stimulated by neither. Growth of all lines tested thus far is inhibited by gibberellic acid, ethephon and ACC. The tumor lines appear more sensitive to ACC than normal callus tissue. Most tumors studied to date appear unlikely to have arisen due to increased hormone sensitivity. Experiments are in progress to determine auxin and cytokinin levels in the tumor lines

  9. Enhancement of Thiamin Content in Arabidopsis thaliana by Metabolic Engineering.

    Science.gov (United States)

    Dong, Wei; Stockwell, Virginia O; Goyer, Aymeric

    2015-12-01

    Thiamin is an essential nutrient in the human diet. Severe thiamin deficiency leads to beriberi, a lethal disease which is common in developing countries. Thiamin biofortification of staple food crops is a possible strategy to alleviate thiamin deficiency-related diseases. In plants, thiamin plays a role in the response to abiotic and biotic stresses, and data from the literature suggest that boosting thiamin content could increase resistance to stresses. Here, we tested an engineering strategy to increase thiamin content in Arabidopsis. Thiamin is composed of a thiazole ring linked to a pyrimidine ring by a methylene bridge. THI1 and THIC are the first committed steps in the synthesis of the thiazole and pyrimidine moieties, respectively. Arabidopsis plants were transformed with a vector containing the THI1-coding sequence under the control of a constitutive promoter. Total thiamin leaf content in THI1 plants was up approximately 2-fold compared with the wild type. THI1-overexpressing lines were then crossed with pre-existing THIC-overexpressing lines. Resulting THI1 × THIC plants accumulated up to 3.4- and 2.6-fold more total thiamin than wild-type plants in leaf and seeds, respectively. After inoculation with Pseudomonas syringae, THI1 × THIC plants had lower populations than the wild-type control. However, THI1 × THIC plants subjected to various abiotic stresses did not show any visible or biochemical changes compared with the wild type. We discuss the impact of engineering thiamin biosynthesis on the nutritional value of plants and their resistance to biotic and abiotic stresses.

  10. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law.

    Science.gov (United States)

    Dümmer, Michaela; Forreiter, Christoph; Galland, Paul

    2015-09-15

    Gravitropic bending of seedlings of Arabidopsis thaliana in response to centrifugal accelerations was determined in a range between 0.0025 and 4×g to revisit and validate the so-called resultant law, which claims that centrifugation causes gravitropic organs to orient parallel to the resultant stimulus vector. We show here for seedlings of A. thaliana that this empirical law holds for hypocotyls but surprisingly fails for roots. While the behavior of hypocotyls could be modeled by an arc tangent function predicted by the resultant law, roots displayed a sharp maximum at 1.8×g that substantially overshoots the predicted value and that represents a novel phenomenon, diagravitropism elicited by centrifugal acceleration. The gravitropic bending critically depended on the orientation of the seedling relative to the centrifugal acceleration. If the centrifugal vector pointed toward the cotyledons, gravitropic bending of hypocotyls and roots was substantially enhanced. The complex behavior of Arabidopsis seedlings provides strong evidence that gravitropic bending entails a cosine component (longitudinal stimulus) to which the seedlings were more sensitive than to the classical sine component. The absolute gravitropic thresholds of hypocotyls and roots were determined in a clinostat-centrifuge and found to be below 0.015×g. A tropism mutant lacking the EHB1 protein, which interacts with ARF-GAP (ARF GTPase-activating protein) and thus indirectly with a small ARF-type G protein, displayed a lower gravitropic threshold for roots and also enhanced bending, while the responses of the hypocotyls remained nearly unaffected. PMID:26496692

  11. Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes : Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes

    NARCIS (Netherlands)

    Hummel, Maureen; Dobrenel, Thomas; Cordewener, Jan J H G; Davanture, Marlène; Meyer, Christian; Smeekens, Sjef J C M; Bailey-Serres, Julia; America, Twan A H P; Hanson, Johannes

    2015-01-01

    UNLABELLED: Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven dif

  12. Evaluation of Seed Transmission of Turnip yellow mosaic virus and Tobacco mosaic virus in Arabidopsis thaliana.

    Science.gov (United States)

    de Assis Filho, F M; Sherwood, J L

    2000-11-01

    ABSTRACT The mechanism of virus transmission through seed was studied in Arabidopsis thaliana infected with Turnip yellow mosaic virus (TYMV) and Tobacco mosaic virus (TMV). Serological and biological tests were conducted to identify the route by which the viruses reach the seed and subsequently are located in the seed. Both TYMV and TMV were detected in seed from infected plants, however only TYMV was seed-transmitted. This is the first report of transmission of TYMV in seed of A. thaliana. Estimating virus seed transmission by grow-out tests was more accurate than enzyme-linked immunosorbent assay due to the higher frequency of antigen in the seed coat than in the embryo. Virus in the seed coat did not lead to seedling infection. Thus, embryo invasion is necessary for seed transmission of TYMV in A. thaliana. Crosses between healthy and virus-infected plants indicated that TYMV from either the female or the male parent could invade the seed. Conversely, invasion from maternal tissue was the only route for TMV to invade the seed. Pollination of flowers on healthy A. thaliana with pollen from TYMV-infected plants did not result in systemic infection of healthy plants, despite TYMV being carried by pollen to the seed.

  13. Clustering of Pathogen-Response Genesin the Genome of Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Olga A. Postnikova; Natalia Y. Minakova; Alexander M. Boutanaev; Lev G. Nemchinov

    2011-01-01

    Previously,we used heterologous expressed sequence tag (EST) mapping to generate a profile of 4 935pathogen-response genes of Arabidopsis thaliana.In this work,we performed a computer analysis of this profile,revealing 1 594 non-homologous clustered genes distributed among all A.thaliana chromosomes,whose co-regulation may be related to host responses to pathogens.To supplement computer data,we arbitrarily selected two clusters and analyzed their expression levels in A.thaliana ecotypes Col-0and C24 during infection with the yellow strain of Cucumber mosaic virus CMV(Y).Ecotype Col-0 is susceptible to CMV(Y),whereas C24 contains the dominant resistance gene RCY1.Upon infection with CMV(Y),all clustered genes were significantly activated in the resistant ecotype C24.In addition,we demonstrated that posttranslational histone modifications associated with trimethylation of histone H3 lysine 27 are most likely involved in regulation of several cluster genes described in this study.Overall,our experiments indicated that pathogen-response genes in the genome of A.thaliana may be clustered and co-regulated.

  14. Allelopathic Effects of Plant-Derived Aerosol Smoke on Seed Germination of Arabidopsis thaliana (L.) Heynh

    International Nuclear Information System (INIS)

    The role that plant-derived smoke plays in promoting seed germination is well documented, but little is known about its ability to inhibit seed germination. To better understand this phenomenon, we tested the effects of eight aerosol smoke treatments on the Columbia-3 ecotype of non dormant Arabidopsis thaliana (L.) Heynh. seeds. Our results revealed that aerosol smoke significantly inhibits germination when seeds were exposed to prolonged periods of aerosol smoke. Short durations of smoke treatments significantly promoted the rate of germination of A. thaliana seed. We briefly discuss this dual regulation of smoke and its possible impact on conservation and restoration practices. We also propose that plant-derived smoke may be another vehicle by which allelo chemicals can be introduced into the environment.

  15. Molecular cloning,expression and biochemical property analysis of AtKP1,a kinesin gene from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LI XuYan; WANG HaiQing; XU Tao; CAO QinHong; REN DongTao; LIU GuoQin

    2007-01-01

    Kinesins are common in a variety of eukaryotic cells with diverse functions.A cDNA encoding a member of the Kinesin-14B subfamily is obtained using 3'-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1).This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa.Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions,respectively.The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins.Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants.2808 bp of the AtKP1 promoter region is cloned and fused to GUS.GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes,indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes.A truncated AtKP1 protein containing the putative motor domain is expressed in E.coll and affinity-purified.In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.

  16. Efeito das xiloglucanas de sementes e derivados no crescimento de Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Adriana Tourinho Salamoni

    2008-01-01

    Full Text Available Studies on xyloglucan (XG extracted from Hymenaea courbaril L. (jatoba seeds showed that this biopolymer has biological activity that enhanced wheat coleoptiles growth. In apple tree micropropagation, the culture medium containing XG combined with agar induced a higher multiplication rate, rooting rate and root length than medium solidified with agar only. The purpose of this study was to determine the effect of XG from jatobá seeds extracted from jatoba seeds collected in Sinope/MT (XGS and Cuiabá/MT (XGC, and from XGC hydrolysed with a cellulase (XGCH, as well from Tamarindus indica seeds (XGT collected in Bahia/BA, on the growth of in vitro cultured Arabidopsis thaliana plantlets. In the first experiment, XGCH (0.25, 25 and 250 nM or XGC (0.5, 50 and 500 nM were added to a liquid half-strength MS medium. In the second experiment, XGs from several origins were compared: XGC (500 nM, XGS (1200 nM and XGT (800 nM, using culture medium solidified with 6 g.L-1agar. Arabidopsis thaliana L. seeds germinated in Petri plates for 4 to 5 days were transferred to culture media containing the different concentrations of XGs and cultured in a growing room. When the plantlets were cultured in a liquid medium, their growth was very slow in the presence of XGC and XGCH at the highest concentration tested, and it was faster at the lowest concentration. In the semi-solid culture medium, XGs also reduced growth. It was concluded that XGs can play a biological role in Arabidopsis thaliana (L. Heynh. plantlets, stimulating or inhibiting the root system growth and the lateral root formation. These opposite effects varied according to the plant specie that furnished the seeds containing XG, as well as the place where the seeds were collected, to the XG form used (hydrolyzed or not and to its concentration in the culture media.

  17. Recombinant formate dehydrogenase from Arabidopsis thaliana: Preparation, crystal growth in microgravity, and preliminary X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Shabalin, I. G., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Serov, A. E.; Skirgello, O. E. [Moscow State University, Faculty of Chemistry (Russian Federation); Timofeev, V. I.; Samygina, V. R. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Popov, V. O. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Tishkov, V. I. [Moscow State University, Faculty of Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-09-15

    Crystals of high-purity recombinant NAD{sup +}-dependent formate dehydrogenase from the higher plant Arabidopsis thaliana (AraFDH) were grown in microgravity in the Modul'-1 protein crystallization apparatus on the International Space Station. The space-grown crystals have larger sizes than those grown on Earth. X-ray diffraction data suitable for determining the three-dimensional structure were collected from the space-grown crystals to a resolution of 1.22 A using an X-ray synchrotron source. The crystals belong to sp. gr. P4{sub 3}2{sub 1}2; the unit-cell parameters are a = b = 107.865 A, c = 71.180 A, {alpha} = {beta} = {gamma} = 90 deg.

  18. Identification of Differentially Expressed Genes in RNA-seq Data of Arabidopsis thaliana: A Compound Distribution Approach

    Science.gov (United States)

    Anjum, Arfa; Jaggi, Seema; Lall, Shwetank; Bhowmik, Arpan; Rai, Anil

    2016-01-01

    Abstract Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product, which may be proteins. A gene is declared differentially expressed if an observed difference or change in read counts or expression levels between two experimental conditions is statistically significant. To identify differentially expressed genes between two conditions, it is important to find statistical distributional property of the data to approximate the nature of differential genes. In the present study, the focus is mainly to investigate the differential gene expression analysis for sequence data based on compound distribution model. This approach was applied in RNA-seq count data of Arabidopsis thaliana and it has been found that compound Poisson distribution is more appropriate to capture the variability as compared with Poisson distribution. Thus, fitting of appropriate distribution to gene expression data provides statistically sound cutoff values for identifying differentially expressed genes. PMID:26949988

  19. Recombinant formate dehydrogenase from Arabidopsis thaliana: Preparation, crystal growth in microgravity, and preliminary X-ray diffraction study

    International Nuclear Information System (INIS)

    Crystals of high-purity recombinant NAD+-dependent formate dehydrogenase from the higher plant Arabidopsis thaliana (AraFDH) were grown in microgravity in the Modul'-1 protein crystallization apparatus on the International Space Station. The space-grown crystals have larger sizes than those grown on Earth. X-ray diffraction data suitable for determining the three-dimensional structure were collected from the space-grown crystals to a resolution of 1.22 A using an X-ray synchrotron source. The crystals belong to sp. gr. P43212; the unit-cell parameters are a = b = 107.865 A, c = 71.180 A, α = β = γ = 90 deg.

  20. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

    OpenAIRE

    Blanch Roure, Josep-Salvador; Peñuelas, Josep; Llusià Benet, Joan; Sardans i Galobart, Jordi; Owen, Susan M.

    2015-01-01

    We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wildtype (WT) and transgenic line (CoxIVFaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found coeluti...

  1. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A Z2 snoRNA gene cluster,consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the Z2 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the intergenic spacers of the gene cluster encode the 'hairpin' structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  2. Germination of arabidopsis thaliana seeds irradiated by MeV ions

    International Nuclear Information System (INIS)

    Dry seeds of Arabidopsis thaliana were irradiated with F ions and H ions with the energy range from keV to MeV, respectively. The inhibition of germination was investigated to display the influences of ion mass, energy and fluence. The results show that H ion irradiation is more effective in decreasing the germination rate than heavier F ion irradiation. After irradiation of F ions, a decrease-increase-decease type of germination rate-fluence response curve was found and the ion fluence at the peak position decreases with ion energy increase. The possible mechanism of above experimental results is discussed in this paper. (authors)

  3. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.;

    2011-01-01

    A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O2...... partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...

  4. Effect of plant growth regulators on leaf anatomy of the has mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Janosević, D; Uzelac, B; Budimir, S

    2008-12-01

    In this study, the effect of plant growth regulators on leaf morphogenesis of the recessive T-DNA insertion mutant of Arabidopsis thaliana was analyzed. The morpho-anatomical analysis revealed that leaves of the has mutant are small and narrow, with lobed blades and disrupted tissue organization. When has plants were grown on the medium supplied with plant growth regulators: benzylaminopurine (BAP) or ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), the leaf anatomy was partially restored to the wild type, although plants still exhibited morphological abnormalities.

  5. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability

    OpenAIRE

    Takano, Junpei; Miwa, Kyoko; Yuan, Lixing; von Wirén, Nicolaus; Fujiwara, Toru

    2005-01-01

    Boron (B) is essential for plants but toxic when present in excess. Arabidopsis thaliana BOR1 is a B exporter for xylem loading and is essential for efficient B translocation from roots to shoots under B limitation. B translocation to shoots was enhanced under B limitation in WT but not in bor1-1 mutant plants. The enhanced translocation was suppressed upon resupply of high levels of B within several hours. Unlike a number of transporters for essential mineral nutrients, BOR1 mRNA accumulatio...

  6. Individual Leaf Development in Arabidopsis thaliana: a Stable Thermal‐time‐based Programme

    OpenAIRE

    GRANIER, CHRISTINE; Massonnet, Catherine; TURC, OLIVIER; Muller, Bertrand; Chenu, Karine; Tardieu, François

    2002-01-01

    In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non‐crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant‐to‐plant variability in the studied isogenic line of the Columbia ecotype: 100‐fold differences in leaf area among plants sown on the same date ...

  7. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    OpenAIRE

    Evans-Roberts, Katherine M.; Christian Breuer; Wall, Melisa K.; Keiko Sugimoto-Shirasu; Anthony Maxwell

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Fi...

  8. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  9. Expression of the Arabidopsis thaliana Histone Gene AtHTA1 Enhances Rice Transformation Efficiency

    Institute of Scientific and Technical Information of China (English)

    Ye Zheng; Xiao-Wei He; Ying-Hui Ying; Jiang-Feng Lu; Stanton B.Gelvin; Hui-Xia Shou

    2009-01-01

    We expressed the Arabidopsis thaliana histone AtHTA1 in rice under the control of the maize ubiquitin promoter.Transformation efficiencies of rice plants that constitutively expressed AtHTA1 were 28-44% higher than calli conraining an empty vector control.Furthermore,co-infection of rice calli with a vector containing AtHTA 1 and another vector with the target gene increased transformation by 27-50%.Thus,expression of AtHTA1 either transiently or in stably transformed cells improved rice transformation efficiency.

  10. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  11. Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html , as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  12. Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family.

    Directory of Open Access Journals (Sweden)

    Carsten Rautengarten

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html, as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  13. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots.

    Science.gov (United States)

    Richards, Siân L; Laohavisit, Anuphon; Mortimer, Jennifer C; Shabala, Lana; Swarbreck, Stéphanie M; Shabala, Sergey; Davies, Julia M

    2014-01-01

    Hydrogen peroxide is the most stable of the reactive oxygen species (ROS) and is a regulator of development, immunity and adaptation to stress. It frequently acts by elevating cytosolic free Ca(2+) ([Ca(2+) ]cyt ) as a second messenger, with activation of plasma membrane Ca(2+) -permeable influx channels as a fundamental part of this process. At the genetic level, to date only the Ca(2) (+) -permeable Stelar K(+) Outward Rectifier (SKOR) channel has been identified as being responsive to hydrogen peroxide. We show here that the ROS-regulated Ca(2+) transport protein Annexin 1 in Arabidopsis thaliana (AtANN1) is involved in regulating the root epidermal [Ca(2+) ]cyt response to stress levels of extracellular hydrogen peroxide. Peroxide-stimulated [Ca(2+) ]cyt elevation (determined using aequorin luminometry) was aberrant in roots and root epidermal protoplasts of the Atann1 knockout mutant. Similarly, peroxide-stimulated net Ca(2+) influx and K(+) efflux were aberrant in Atann1 root mature epidermis, determined using extracellular vibrating ion-selective microelectrodes. Peroxide induction of GSTU1 (Glutathione-S-Transferase1 Tau 1), which is known to be [Ca(2+) ]cyt -dependent was impaired in mutant roots, consistent with a lesion in signalling. Expression of AtANN1 in roots was suppressed by peroxide, consistent with the need to restrict further Ca(2+) influx. Differential regulation of annexin expression was evident, with AtANN2 down-regulation but up-regulation of AtANN3 and AtANN4. Overall the results point to involvement of AtANN1 in shaping the root peroxide-induced [Ca(2+) ]cyt signature and downstream signalling.

  14. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana.

    Science.gov (United States)

    Manabe, Yuzuki; Tinker, Nicholas; Colville, Adam; Miki, Brian

    2007-09-01

    The imidazolinone-tolerant mutant of Arabidopsis thaliana, csr1-2(D), carries a mutation equivalent to that found in commercially available Clearfield crops. Despite their widespread usage, the mechanism by which Clearfield crops gain imidazolinone herbicide tolerance has not yet been fully characterized. Transcription profiling of imazapyr (an imidazolinone herbicide)-treated wild-type and csr1-2(D) mutant plants using Affymetrix ATH1 GeneChip microarrays was performed to elucidate further the biochemical and genetic mechanisms of imidazolinone resistance. In wild-type shoots, the genes which responded earliest to imazapyr treatment were detoxification-related genes which have also been shown to be induced by other abiotic stresses. Early-response genes included steroid sulfotransferase (ST) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), as well as members of the glycosyltransferase, glutathione transferase (GST), cytochrome P450, ATP-binding cassette (ABC) transporter, multidrug and toxin extrusion (MATE) and alternative oxidase (AOX) protein families. Later stages of the imazapyr response involved regulation of genes participating in biosynthesis of amino acids, secondary metabolites and tRNA. In contrast to the dynamic changes in the transcriptome profile observed in imazapyr-treated wild-type plants, the transcriptome of csr1-2(D) did not exhibit significant changes following imazapyr treatment, compared with mock-treated csr1-2(D). Further, no substantial difference was observed between wild-type and csr1-2(D) transcriptomes in the absence of imazapyr treatment. These results indicate that CSR1 is the sole target of imidazolinone and that the csr1-2(D) mutation has little or no detrimental effect on whole-plant fitness. PMID:17693453

  15. Genetic and histological studies on the delayed systemic movement of Tobacco Mosaic Virus in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Matus José

    2008-09-01

    Full Text Available Abstract Background Viral infections and their spread throughout a plant require numerous interactions between the host and the virus. While new functions of viral proteins involved in these processes have been revealed, current knowledge of host factors involved in the spread of a viral infection is still insufficient. In Arabidopsis thaliana, different ecotypes present varying susceptibilities to Tobacco mosaic virus strain U1 (TMV-U1. The rate of TMV-U1 systemic movement is delayed in ecotype Col-0 when compared with other 13 ecotypes. We followed viral movement through vascular tissue in Col-0 plants by electronic microscopy studies. In addition, the delay in systemic movement of TMV-U1 was genetically studied. Results TMV-U1 reaches apical leaves only after 18 days post rosette inoculation (dpi in Col-0, whereas it is detected at 9 dpi in the Uk-4 ecotype. Genetic crosses between Col-0 and Uk-4 ecotypes, followed by analysis of viral movement in F1 and F2 populations, revealed that this delayed movement correlates with a recessive, monogenic and nuclear locus. The use of selected polymorphic markers showed that this locus, denoted DSTM1 (Delayed Systemic Tobamovirus Movement 1, is positioned on the large arm of chromosome II. Electron microscopy studies following the virion's route in stems of Col-0 infected plants showed the presence of curved structures, instead of the typical rigid rods of TMV-U1. This was not observed in the case of TMV-U1 infection in Uk-4, where the observed virions have the typical rigid rod morphology. Conclusion The presence of defectively assembled virions observed by electron microscopy in vascular tissue of Col-0 infected plants correlates with a recessive delayed systemic movement trait of TMV-U1 in this ecotype.

  16. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts.

    Science.gov (United States)

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T; Lorenzo, Oscar; Revuelta, José L; McCabe, Paul F; Arellano, Juan B

    2014-07-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.

  17. Treatment of Arabidopsis thaliana seeds with an HSP90 inhibitor increases plant resistance

    Science.gov (United States)

    Kozeko, Liudmyla

    2016-07-01

    Resistance of plants to unfavourable conditions is an important feature to use them as an autotrophic link of Life Support Systems in space exploration missions. It significantly depends on basic and stress-induced levels of heat shock proteins (HSP) in cells. It is known that HSP90 can bind and maintain heat shock transcription factors (HSF) as a monomer that lacks DNA binding activity and thereby regulate HSP expression. Modulation of activity of the HSP synthesis and resistance by HSP90 in plants is not well investigated. The objective of this study was to determine how treatment of seeds with an HSP90 inhibitor affects environmental responsiveness in Arabidopsis thaliana. Seed treatment with geldanamycin (GDA) was used to reduce HSP90 function. The affect of space flight stressors was simulated by gamma-irradiation and thermal upshift. Two series of experiments were carried out: 1) exposure of dry seeds to gamma-irradiation (1 kGy, ^{60}Co); 2) heat shock of seedlings. It was shown that GDA treatment of seeds stimulated the seedling growth after seed irradiation. It also increased both the basic thermotolerance (45°C for 45 min) and induced thermotolerance (45°C for 1,5-2,5 h after pretreatment at 37°C for 2 h) in seedlings. In addition, seed treatment with GDA had a prolonged effect on the HSP70 production in seedlings under normal and stressful conditions. It shows that the stimulatory effects of GDA may be caused by induction of HSP70 synthesis. The obtained data demonstrate that pre-treatment of seeds with GDA before planting allows inducing the stress resistance at least at early growth stages of plants.

  18. X-RAY STRUCTURE OF ILL2, AN AUXIN-CONJUGATE AMIDOHYDROLASE FROM ARABIDOPSIS THALIANA

    Science.gov (United States)

    Bitto, Eduard; Bingman, Craig A.; Bittova, Lenka; Houston, Norma L.; Boston, Rebecca S.; Fox, Brian G.; Phillips, George N.

    2008-01-01

    The plant hormone indole-3-acetic acid (IAA) is the most abundant natural auxin involved in many aspects of plant development and growth. The IAA levels in plants are modulated by a specific group of amidohydrolases from the peptidase M20D family that release the active hormone from its conjugated storage forms. Here we describe the X-ray crystal structure of IAA-amino acid hydrolase IAA-leucine resistant-like gene 2 (ILL2) from Arabidopsis thaliana at 2.0 Å resolution. ILL2 preferentially hydrolyses the auxin-amino acid conjugate N-(indol-3-acetyl)-alanine. The overall structure of ILL2 is reminiscent of dinuclear metallopeptidases from the M20 peptidase family. The structure consists of two domains, a larger catalytic domain with 3-layer αβα sandwich architecture and aminopeptidase topology and a smaller satellite domain with 2-layer αβ sandwich architecture and alpha-beta plaits topology. The metal coordinating residues in the active site of ILL2 include a conserved cysteine that clearly distinguishes this protein from previously structurally characterized members of the M20 peptidase family. Modeling of N-(indol-3-acetyl)-alanine into the active site of ILL2 suggests that Leu175 serves as a key determinant for the amino acid side chain specificity of this enzyme. Furthermore, a hydrophobic pocket nearby the catalytic dimetal center likely recognizes the indolyl moiety of the substrate. Finally, the active site of ILL2 harbors an absolutely conserved glutamate (Glu172), which is well positioned to act as a general acid-base residue. Overall, the structure of ILL2 suggests that this enzyme likely uses a catalytic mechanism that follows the paradigm established for the other enzymes of the M20 peptidase family. PMID:18543330

  19. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  20. Noise-plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana.

    Science.gov (United States)

    Hirao, Koudai; Nagano, Atsushi J; Awazu, Akinori

    2015-12-21

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions (called gene expression "noise" or phenotype "fluctuation"). In yeast and Escherichia coli, positive correlations have been found between such gene expression noise and "plasticity" with environmental variations. To determine the universality of such correlations in both unicellular and multicellular organisms, we focused on the relationships between gene expression "noise" and "plasticity" in Arabidopsis thaliana, a multicellular model organism. In recent studies on yeast and E. coli, only some gene groups with specific properties of promoter architecture, average expression levels, and functions exhibited strong noise-plasticity correlations. However, we found strong noise-plasticity correlations for most gene groups in Arabidopsis; additionally, promoter architecture, functional essentiality of genes, and circadian rhythm appeared to have only a weak influence on the correlation strength. The differences in the characteristics of noise-plasticity correlations may result from three-dimensional chromosomal structures and/or circadian rhythm.

  1. Arabidopsis thaliana - Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    Directory of Open Access Journals (Sweden)

    Joe eLouis

    2013-07-01

    Full Text Available The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA, is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.

  2. The phenotype of Arabidopsis thaliana det1 mutants suggest a role for cytokinins in greening

    Energy Technology Data Exchange (ETDEWEB)

    Chory, J.; Aguilar, N.; Peto, C.A.

    1990-01-01

    When grown in the absence of light, the det1 mutants of Arabidopsis thaliana develop characteristics of light-grown plants by morphological, cellular, and molecular criteria. Further, in light-grown plants, mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and the chloroplast developmental program. Here we show that the addition of exogenously added cytokinins (either 2-isopentenyl adenine, kinetin, or benzyladenine) to the growth medium of dark-germinated wild-type seedlings results in seedlings that resemble det1 mutants, instead of having the normal etiolated morphology. Like det1 mutants, these dark-grown seedlings now contain chloroplasts and have high levels of expression of genes that are normally light''-regulated. These results suggest an important role for cytokinins during greening of Arabidopsis, and may implicate cytokinin levels or an increased sensitivity to cytokinins as explanations for some of the observed phenotypes of det1 mutants.

  3. Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lauriane eSimon

    2015-11-01

    Full Text Available The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.

  4. Hydrogen Sulfide Regulates Ethylene-induced Stomatal Closure in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhihui Hou; Lanxiang Wang; Jing Liu; Lixia Hou; Xin Liu

    2013-01-01

    Hydrogen sulfide (H2S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years,but its function in stomatal movement is unclear.In plants,H2S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes).AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh.plants were generated and used to investigate gene expression patterns,and results showed that AtD-/L-CDes can be expressed in guard cells.We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP,and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm,respectively.The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure.Among these factors,ACC,a precursor of ethylene,has the most significant effect,which indicates that the H2S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure.Meanwhile,H2S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis.Ethylene treatment caused an increase of H2S production and of AtD-/L-CDes activity in Arabidopsis leaves.AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however,the effect was not observed in the Atd-cdes and Atl-cdes mutants.In conclusion,our results suggest that the D-/L-CDes-generated H2S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.

  5. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  6. Defining the Functional Network of Epigenetic Regulators in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Chongyuan Luo; Brittany G.Durgin; Naohide Watanabe; Eric Lam

    2009-01-01

    Development of ChiP-chip and ChlP-seq technologies has allowed genome-wide high-resolution profiling of chromatin-associated marks and binding sites for epigenetic regulators.However,signals for directing epigenetic modi fiers to their target sites are not understood.In this paper,we tested the hypothesis that genome location can affect the involvement of epigenetic regulators using Chromatin Charting (CC) Lines,which have an identical transgene construct inserted at different locations in the Arabidopsis genome.Four CC lines that showed evidence for epigenetic silencing of the luciferase reporter gene were transformed with RNAi vectors individually targeting epigenetic regulators LHP1,MOM1,CMT3,DRD1,DRM2,SUVH2,CLF,and HD1.Involvement of a particular epigenetic regulator in silencing the transgene locus in a CC line was determined by significant alterations in luciferase expression after suppression of the regulator's expression.Our results suggest that the targeting of epigenetic regulators can be influenced by genome location as well as sequence context.In addition,the relative importance of an epigenetic regulator can be influenced by tissue identity.We also report a novel approach to predict interactions between epigenetic regulators through clustering analysis of the regulators using alterations in gene expression of putative downstream targets,including endogenous loci and transgenes,in epigenetic mutants or RNAi lines.Our data support the existence of a complex and dynamic network of epigenetic regulators that serves to coordinate and control global gene expression in higher plants.

  7. Genetic basis for dosage sensitivity in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Isabelle M Henry

    2007-04-01

    Full Text Available Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI, exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and

  8. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  9. Characterization of the Arabidopsis thaliana E3 ubiquitin-ligase AtSINAL7 and identification of the ubiquitination sites.

    Directory of Open Access Journals (Sweden)

    Diego A Peralta

    Full Text Available Protein ubiquitination leading to degradation by the proteasome is an important mechanism in regulating key cellular functions. Protein ubiquitination is carried out by a three step process involving ubiquitin (Ub activation by a E1 enzyme, the transfer of Ub to a protein E2, finally an ubiquitin ligase E3 catalyzes the transfer of the Ub peptide to an acceptor protein. The E3 component is responsible for the specific recognition of the target, making the unveiling of E3 components essential to understand the mechanisms regulating fundamental cell processes through the protein degradation pathways. The Arabidopsis thaliana seven in absentia-like 7 (AtSINAL7 gene encodes for a protein with characteristics from a C3HC4-type E3 ubiquitin ligase. We demonstrate here that AtSINAL7 protein is indeed an E3 protein ligase based on the self-ubiquitination in vitro assay. This activity is dependent of the presence of a Lys residue in position 124. We also found that higher AtSINAL7 transcript levels are present in tissues undergoing active cell division during floral development. An interesting observation is the circadian expression pattern of AtSINAL7 mRNA in floral buds. Furthermore, UV-B irradiation induces the expression of this transcript indicating that AtSINAL7 may be involved in a wide range of different cell processes.

  10. Exploring ligand recognition, selectivity and dynamics of TPR domains of chloroplast Toc64 and mitochondria Om64 from Arabidopsis thaliana.

    Science.gov (United States)

    Panigrahi, Rashmi; Whelan, James; Vrielink, Alice

    2014-06-01

    The study aims to gain insight into the mode of ligand recognition by tetratricopeptide repeat (TPR) domains of chloroplast translocon at the outer envelope of chloroplast (Toc64) and mitochondrial Om64, two paralogous proteins that mediate import of proteins into chloroplast and mitochondria, respectively. Chaperone proteins associate with precursor proteins in the cytosol to maintain them in a translocation competent conformation and are recognized by Toc64 and Om64 that are located on the outer membrane of the target organelle. Heat shock proteins (Hsp70) and Hsp90 are two chaperones, which are known to play import roles in protein import. The C-termini of these chaperones are known to interact with the TPR domain of chloroplast Toc64 and mitochondrial Om64 in Arabidopsis thaliana (At). Using a molecular dynamics approach and binding energy calculations, we identify important residues involved in the interactions. Our findings suggest that the TPR domain from AtToc64 has higher affinity towards C-terminal residues of Hsp70. The interaction occurs as the terminal helices move towards each other enclosing the cradle on interaction of AtHsp70 with the TPR domain. In contrast, the TPR domain from AtOm64 does not discriminate between the C-termini of Hsp70 and Hsp90. These binding affinities are discussed with respect to our knowledge of protein targeting and specificity of protein import into endosymbiotic organelles in plant cells.

  11. Identification of novel PAMP-triggered phosphorylation and dephosphorylation events in arabidopsis thaliana by quantitative phosphoproteomic analysis

    KAUST Repository

    Rayapuram, Naganand

    2014-04-04

    Signaling cascades rely strongly on protein kinase-mediated substrate phosphorylation. Currently a major challenge in signal transduction research is to obtain high confidence substrate phosphorylation sites and assign them to specific kinases. In response to bacterial flagellin, a pathogen-associated molecular pattern (PAMP), we searched for rapidly phosphorylated proteins in Arabidopsis thaliana by combining multistage activation (MSA) and electron transfer dissociation (ETD) fragmentation modes, which generate complementary spectra and identify phosphopeptide sites with increased reliability. Of a total of 825 phosphopeptides, we identified 58 to be differentially phosphorylated. These peptides harbor kinase motifs of mitogen-activated protein kinases (MAPKs) and calcium-dependent protein kinases (CDPKs), as well as yet unknown protein kinases. Importantly, 12 of the phosphopeptides show reduced phosphorylation upon flagellin treatment. Since protein abundance levels did not change, these results indicate that flagellin induces not only various protein kinases but also protein phosphatases, even though a scenario of inhibited kinase activity may also be possible. © 2014 American Chemical Society.

  12. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Science.gov (United States)

    Qian, Dan; Jiang, Lin; Lu, Lu; Wei, Chunhong; Li, Yi

    2011-01-01

    Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN). Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  13. Analysis and visualization of Arabidopsis thaliana GWAS using web 2.0 technologies.

    Science.gov (United States)

    Huang, Yu S; Horton, Matthew; Vilhjálmsson, Bjarni J; Seren, Umit; Meng, Dazhe; Meyer, Christopher; Ali Amer, Muhammad; Borevitz, Justin O; Bergelson, Joy; Nordborg, Magnus

    2011-01-01

    With large-scale genomic data becoming the norm in biological studies, the storing, integrating, viewing and searching of such data have become a major challenge. In this article, we describe the development of an Arabidopsis thaliana database that hosts the geographic information and genetic polymorphism data for over 6000 accessions and genome-wide association study (GWAS) results for 107 phenotypes representing the largest collection of Arabidopsis polymorphism data and GWAS results to date. Taking advantage of a series of the latest web 2.0 technologies, such as Ajax (Asynchronous JavaScript and XML), GWT (Google-Web-Toolkit), MVC (Model-View-Controller) web framework and Object Relationship Mapper, we have created a web-based application (web app) for the database, that offers an integrated and dynamic view of geographic information, genetic polymorphism and GWAS results. Essential search functionalities are incorporated into the web app to aid reverse genetics research. The database and its web app have proven to be a valuable resource to the Arabidopsis community. The whole framework serves as an example of how biological data, especially GWAS, can be presented and accessed through the web. In the end, we illustrate the potential to gain new insights through the web app by two examples, showcasing how it can be used to facilitate forward and reverse genetics research. Database URL: http://arabidopsis.usc.edu/

  14. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Dan Qian

    Full Text Available Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN. Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.

  15. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  16. Cysteine biosynthesis, in concert with a novel mechanism, contributes to sulfide detoxification in mitochondria of Arabidopsis thaliana.

    Science.gov (United States)

    Birke, Hannah; Haas, Florian H; De Kok, Luit J; Balk, Janneke; Wirtz, Markus; Hell, Rüdiger

    2012-07-15

    In higher plants, biosynthesis of cysteine is catalysed by OAS-TL [O-acetylserine(thiol)lyase], which replaces the activated acetyl group of O-acetylserine with sulfide. The enzyme is present in cytosol, plastids and mitochondria of plant cells. The sole knockout of mitochondrial OAS-TL activity (oastlC) leads to significant reduction of growth in Arabidopsis thaliana. The reason for this phenotype is still enigmatic, since mitochondrial OAS-TL accounts only for approximately 5% of total OAS-TL activity. In the present study we demonstrate that sulfide specifically intoxicates Complex IV activity, but not electron transport through Complexes II and III in isolated mitochondria of oastlC plants. Loss of mitochondrial OAS-TL activity resulted in significant inhibition of dark respiration under certain developmental conditions. The abundance of mitochondrially encoded proteins and Fe-S cluster-containing proteins was not affected in oastlC. Furthermore, oastlC seedlings were insensitive to cyanide, which is detoxified by β-cyano-alanine synthase in mitochondria at the expense of cysteine. These results indicate that in situ biosynthesis of cysteine in mitochondria is not mandatory for translation, Fe-S cluster assembly and cyanide detoxification. Finally, we uncover an OAS-TL-independent detoxification system for sulfide in mitochondria of Arabidopsis that allows oastlC plants to cope with high sulfide levels caused by abiotic stresses.

  17. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo

  18. An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data

    Science.gov (United States)

    Mishra, Hrishikesh; Singh, Nitya; Misra, Krishna; Lahiri, Tapobrata

    2011-01-01

    Identification of promoter region is an important part of gene annotation. Identification of promoters in eukaryotes is important as promoters modulate various metabolic functions and cellular stress responses. In this work, a novel approach utilizing intensity values of tilling microarray data for a model eukaryotic plant Arabidopsis thaliana, was used to specify promoter region from non-promoter region. A feed-forward back propagation neural network model supported by genetic algorithm was employed to predict the class of data with a window size of 41. A dataset comprising of 2992 data vectors representing both promoter and non-promoter regions, chosen randomly from probe intensity vectors for whole genome of Arabidopsis thaliana generated through tilling microarray technique was used. The classifier model shows prediction accuracy of 69.73% and 65.36% on training and validation sets, respectively. Further, a concept of distance based class membership was used to validate reliability of classifier, which showed promising results. The study shows the usability of micro-array probe intensities to predict the promoter regions in eukaryotic genomes. PMID:21887014

  19. Spatial relationship between chromosomal domains in diploid and autotetraploid Arabidopsis thaliana nuclei.

    Science.gov (United States)

    Sas-Nowosielska, H; Bernas, T

    2016-04-25

    Polyploids constitute more than 80% of angiosperm plant species. Their DNA content is often further increased by endoreplication, which occurs as a part of cell differentiation. Here, we explore the relationship between 3D chromatin architecture, number of genome copies and their origin in the model plant, Arabidopsis thaliana. Spatial proximity between pericentromeric, interstitial and subtelomeric domains of chromosomes 1 and 4 was quantified over a range of distances. The results indicate that average nuclear volume as well as chromatin density increase with the genome copy number. Similar dependence is observed when association of homologous chromosomes (in 2C/ endopolyploid nuclei) and sister chromatid separation (in endopolyploid nuclei) is studied. Moreover, clusters of chromosomal domains are detectable at the spatial scale above microscopy resolution. Subtelomeric, interstitial and pericentromeric chromosomal domains are affected to different extent by these processes, which are modulated by endopolyploidy. This factor influences fusion of heterochromatin as well. Nonetheless, local chromatin architecture of Arabidopsis thaliana depends mainly on endopolyploidy level, and to lesser extend on polyploidy. PMID:27310308

  20. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana.

    Science.gov (United States)

    Onouchi, H; Nishihama, R; Kudo, M; Machida, Y; Machida, C

    1995-06-25

    Excision of a DNA segment can occur in Arabidopsis thaliana by reciprocal recombination between two specific recombination sites (RSs) when the recombinase gene (R) from Zygosaccharomyces rouxii is expressed in the plant. To monitor recombination events, we generated several lines of transgenic Arabidopsis plants that carried a cryptic beta-glucuronidase (GUS) reporter gene which was designed in such a way that expression of the reporter gene could be induced by R gene-mediated recombination. We also made several transgenic lines with an R gene linked to the 35S promoter of cauliflower mosaic virus. Each transgenic line carrying the cryptic reporter gene was crossed with each line carrying the R gene. Activity of GUS in F1 and F2 progeny was examined histochemically and recombination between two RSs was analyzed by Southern blotting and the polymerase chain reaction. In seedlings and plantlets of F1 progeny and most of the F2 progeny, a variety of patterns of activity of GUS, including sectorial chimerism in leaves, was observed. A small percentage of F2 individuals exhibited GUS activity in the entire plant. This pattern of expression was ascribed to germinal recombination in the F1 generation on the basis of an analysis of DNA structure by Southern blotting. These results indicate that R gene-mediated recombination can be induced in both somatic and germ cells of A. thaliana by cross-pollination of parental transgenic lines.

  1. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities. PMID:27363486

  2. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  3. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development.

    Science.gov (United States)

    Xu, Jing; Zhang, Lin; Yang, Dong-Lei; Li, Qun; He, Zuhua

    2015-12-01

    Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development.

  4. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natacha Bodenhausen

    Full Text Available Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root and habitat (epiphytes vs endophytes structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024, while the reverse is true for the leaves (P = 0.032. Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001. The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.

  5. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides.

  6. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    OpenAIRE

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell wa...

  7. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK cascades and enhanced expression of pathogenesis related (PR genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.

  8. The carnitine biosynthetic pathway in Arabidopsis thaliana shares similar features with the pathway of mammals and fungi.

    Science.gov (United States)

    Rippa, Sonia; Zhao, Yingjuan; Merlier, Franck; Charrier, Aurélie; Perrin, Yolande

    2012-11-01

    Carnitine is an essential quaternary ammonium amino acid that occurs in the microbial, plant and animal kingdoms. The role and synthesis of this compound are very well documented in bacteria, fungi and mammals. On the contrary, although the presence of carnitine in plant tissue has been reported four decades ago and information about its biological implication are available, nothing is known about its synthesis in plants. We designed experiments to determine if the carnitine biosynthetic pathway in Arabidopsis thaliana is similar to the pathway in mammals and in the fungi Neurospora crassa and Candida albicans. We first checked for the presence of trimetyllysine (TML) and γ-butyrobetaine (γ-BB), two precursors of carnitine in fungi and in mammals, using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Both compounds were shown to be present in plant extracts at concentrations in the picomole range per mg of dry weight. We next synthesized deuterium-labeled TML and transferred A. thaliana seedlings on growth medium supplemented with 1 mM of the deuterated precursor. LC-ESI-MS/MS analysis of plant extracts clearly highlighted the synthesis of deuterium labeled γ-BB and labeled carnitine in deuterated-TML fed plants. The similarities between plant, fungal and mammalian pathways provide very useful information to search homologies between genomes. As a matter of fact the analysis of A. thaliana protein database provides homology for several enzymes responsible for carnitine synthesis in fungi and mammals. The study of mutants affected in the corresponding genes would be very useful to elucidate the plant carnitine biosynthetic pathway and to investigate further the role of carnitine in plant physiology.

  9. Gravity regulated genes in Arabidopsis thaliana (GENARA experiment)

    Science.gov (United States)

    Boucheron-Dubuisson, Elodie; Carnero-D&íaz, Eugénie; Medina, Francisco Javier; Gasset, Gilbert; Pereda-Loth, Veronica; Graziana, Annick; Mazars, Christian; Le Disquet, Isabelle; Eche, Brigitte; Grat, Sabine; Gauquelin-Koch, Guillemette

    2012-07-01

    In higher plants, post-embryonic development is possible through the expression of a set of genes constituting the morphogenetic program that contribute to the production of tissues and organs during the whole plant life cycle. Plant development is mainly controlled by internal factors such as phytohormones, as well as by environmental factors, among which gravity plays a key role (gravi-morphogenetic program). The GENARA space experiment has been designed with the goal of contributing to a better understanding of this gravi-morphogenetic program through the identification and characterization of some gravity regulated proteins (GR proteins) by using quantitative proteomic methods, and through the study of the impact of plant hormones on the expression of this program. Among plant hormones, auxin is the major regulator of organogenesis. In fact, it affects numerous plant developmental processes, e.g. cell division and elongation, autumnal loss of leaves, and the formation of buds, roots, flowers and fruits. Furthermore, it also plays a key role in the mechanisms of different tropisms (including gravitropism) that modulate fundamental features of plant growth. The expression of significant genes involved in auxin transport and in auxin signal perception in root cells is being studied in space-grown seedlings and compared with the corresponding ground controls. This experiment was scheduled to be performed in The European Modular Cultivation System (EMCS), a new facility for plant cultivation and Plant Molecular Biology studies, at ISS. However only one aspect of this experiment was flown and concerns the qualitative and quantitative changes in membrane proteins supposed to be mainly associated with cell signaling and has been called GENARA A. The second part dealing with the function of auxin in the gravi-morphogenetic program and the alterations induced by microgravity will be studied through mutants affected on biosynthesis, transport or perception of auxin in a

  10. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Wei; Zhang, Lu; Guo, Ning; Zhang, Xiumei; Zhang, Chen; Sun, Guangming; Xie, Jianghui

    2014-01-01

    In plant cells, many cysteine proteinases (CPs) are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L.) belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps), and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3). Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  11. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  12. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  13. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nair Prasanth

    2012-11-01

    Full Text Available Abstract Background We have previously shown that lipophilic components (LPC of the brown seaweed Ascophyllum nodosum (ANE improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. Results Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5% in comparison with untreated plants. A total of 463 genes (2% were up regulated while 650 genes (3% were down regulated. Conclusion Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.

  14. The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ting; LIN Jie; SHAO Xue-feng; OU Xiao-ming; WANG Zong-hua; LU Guo-dong

    2009-01-01

    Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection.

  15. X-Ray- and fast neutron induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    NARCIS (Netherlands)

    Dellaert, L.M.W.

    1980-01-01

    The genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT), are the main subjects of this thesis.Chapters I and II deal with the effects of radiation - with or with

  16. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.

    Science.gov (United States)

    Adamchuk, N I

    2004-07-01

    Properties of mesophyll cells and photosynthetic membranes of Arabidopsis thaliana (L.) Heynh. and Pisum sativum (L.) plants grown in a horizontal clinostat and in control conditions were compared. Obtained data have show that under clinorotation conditions seedlings have experienced the following cell morphology changes structural chloroplast rearrangement in palisade cells, pigment content alteration, and cell aging acceleration.

  17. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data

    Science.gov (United States)

    Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta. The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  18. Chloroplast Genome Sequence of Arabidopsis thaliana Accession Landsberg erecta, Assembled from Single-Molecule, Real-Time Sequencing Data.

    Science.gov (United States)

    Stadermann, Kai Bernd; Holtgräwe, Daniela; Weisshaar, Bernd

    2016-01-01

    A publicly available data set from Pacific Biosciences was used to create an assembly of the chloroplast genome sequence of the Arabidopsis thaliana genotype Landsberg erecta The assembly is solely based on single-molecule, real-time sequencing data and hence provides high resolution of the two inverted repeat regions typically contained in chloroplast genomes. PMID:27660776

  19. Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase

    NARCIS (Netherlands)

    Stracke, R.; Vos, de R.C.H.; Bartelniewoehner, L.; Ishihara, H.; Sagasser, M.; Martens, S.; Weisshaar, B.

    2009-01-01

    Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1) lo

  20. Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1 (E.C.: 4.4.1.5 and 2 (E.C.3.1.2.6, has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.

  1. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    KAUST Repository

    Yunta, Cristina

    2011-11-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  2. Identification of Synchronized Role of Transcription Factors, Genes, and Enzymes in Arabidopsis thaliana under Four Abiotic Stress Responsive Pathways

    Directory of Open Access Journals (Sweden)

    Samsad Razzaque

    2014-01-01

    Full Text Available Microarray datasets are widely used resources to predict and characterize functional entities of the whole genomics. The study initiated here aims to identify overexpressed stress responsive genes using microarray datasets applying in silico approaches. The target also extended to build a protein-protein interaction model of regulatory genes with their upstream and downstream connection in Arabidopsis thaliana. Four microarray datasets generated treating abiotic stresses like salinity, cold, drought, and abscisic acid (ABA were chosen. Retrieved datasets were firstly filtered based on their expression comparing to control. Filtered datasets were then used to create an expression hub. Extensive literature mining helped to identify the regulatory molecules from the expression hub. The study brought out 42 genes/TF/enzymes as the role player during abiotic stress response. Further bioinformatics study and also literature mining revealed that thirty genes from those forty-two were highly correlated in all four datasets and only eight from those thirty genes were determined as highly responsive to the above abiotic stresses. Later their protein-protein interaction (PPI, conserved sequences, protein domains, and GO biasness were studied. Some web based tools and software like String database, Gene Ontology, InterProScan, NCBI BLASTn suite, etc. helped to extend the study arena.

  3. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    2009-09-01

    Full Text Available Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB and HISTONE DEACETYLASE-6 (HDA6 as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs. The accession Cape Verde Islands-0 (Cvi-0, which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process.

  4. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  5. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  6. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  7. Requirement of KNAT1/BP for the Development of Abscission Zones in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qun Wang; Wei-Hui Xu; Li-Geng Ma; Zhi-Ming Fu; Xing-Wang Deng; Jia-Yang Li; Yong-Hong Wang

    2006-01-01

    The KNAT1 gene is a member of the Class Ⅰ KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana.Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques,and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Microarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.

  8. Defence responses of Arabidopsis thaliana to infection by Pseudomonas syringae are regulated by the circadian clock.

    Directory of Open Access Journals (Sweden)

    Vaibhav Bhardwaj

    Full Text Available The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000, with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime.

  9. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  10. Profiling Protein Kinases and Other ATP Binding Proteins in Arabidopsis Using Acyl-ATP Probes*

    OpenAIRE

    Villamor, J. G.; Kaschani, F.; Colby, T; Oeljeklaus, J.; Zhao, D; Kaiser, M.; Patricelli, M. P.; R. A. L. van der Hoorn

    2013-01-01

    Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding prot...

  11. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  12. A chemical screen for suppressors of the avrRpm1-RPM1-dependent hypersensitive cell death response in Arabidopsis thaliana

    OpenAIRE

    Serrano, M; Hubert, D.; Dangl, J.; Schulze-Lefert, P; Kombrink, E.

    2010-01-01

    Arabidopsis thaliana RPM1 encodes an intracellular immune sensor that conditions disease resistance to Pseudomonas syringae expressing the type III effector protein AvrRpm1. Conditional expression of this type III effector in a transgenic line carrying avrRpm1 under the control of a steroid-inducible promoter results in RPM1-dependent cell death that resembles the cell death response of the incompatible RPM1-avrRpm1 plant–bacterium interaction. This line was previously used in a genetic scree...

  13. EFFECT OF SEED XYLOGLUCANS AND DERIVATES ON THE GROWTH OF Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Adriana Tourinho Salamoni

    2009-10-01

    Full Text Available Studies on xyloglucan (XG extracted from Hymenaea courbaril L. (jatoba seeds showed that this biopolymer has biological activity that enhanced wheat coleoptiles growth. In apple tree micropropagation, the culture medium containing XG combined with agar induced a higher multiplication rate, rooting rate and root length than medium solidified with agar only. The purpose of this study was to determine the effect of XG from jatobá seeds extracted from jatoba seeds collected in Sinope/MT (XGS and Cuiabá/MT (XGC, and from XGC hydrolysed with a cellulase (XGCH, as well from Tamarindus indica seeds (XGT collected in Bahia/BA, on the growth of in vitro cultured Arabidopsis thaliana plantlets. In the first experiment, XGCH (0.25, 25 and 250 nM or XGC (0.5, 50 and 500 nM were added to a liquid half-strength MS medium. In the second experiment, XGs from several origins were compared: XGC (500 nM, XGS (1200 nM and XGT (800 nM, using culture medium solidified with 6 g.L-1agar. Arabidopsis thaliana L. seeds germinated in Petri plates for 4 to 5 days were transferred to culture media containing the different concentrations of XGs and cultured in a growing room. When the plantlets were cultured in a liquid medium, their growth was very slow in the presence of XGC and XGCH at the highest concentration tested, and it was faster at the lowest concentration. In the semi-solid culture medium, XGs also reduced growth. It was concluded that XGs can play a biological role in Arabidopsis thaliana (L. Heynh. plantlets, stimulating or inhibiting the root system growth and the lateral root formation. These opposite effects varied according to the plant specie that furnished the seeds containing XG, as well as the place where the seeds were collected, to the XG form used (hydrolyzed or not and to its concentration in the culture media. 

  14. Purification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile lyase using a family 2 carbohydrate-binding module.

    Science.gov (United States)

    Kopka, Benita; Diener, Martin; Wirtz, Astrid; Pohl, Martina; Jaeger, Karl-Erich; Krauss, Ulrich

    2015-05-01

    Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems. PMID:25755120

  15. Opposite stereoselectivities of dirigent proteins in Arabidopsis and schizandra species.

    Science.gov (United States)

    Kim, Kye-Won; Moinuddin, Syed G A; Atwell, Kathleen M; Costa, Michael A; Davin, Laurence B; Lewis, Norman G

    2012-10-01

    How stereoselective monolignol-derived phenoxy radical-radical coupling reactions are differentially biochemically orchestrated in planta, whereby for example they afford (+)- and (-)-pinoresinols, respectively, is both a fascinating mechanistic and evolutionary question. In earlier work, biochemical control of (+)-pinoresinol formation had been established to be engendered by a (+)-pinoresinol-forming dirigent protein in Forsythia intermedia, whereas the presence of a (-)-pinoresinol-forming dirigent protein was indirectly deduced based on the enantiospecificity of downstream pinoresinol reductases (AtPrRs) in Arabidopsis thaliana root tissue. In this study of 16 putative dirigent protein homologs in Arabidopsis, AtDIR6, AtDIR10, and AtDIR13 were established to be root-specific using a β-glucuronidase reporter gene strategy. Of these three, in vitro analyses established that only recombinant AtDIR6 was a (-)-pinoresinol-forming dirigent protein, whose physiological role was further confirmed using overexpression and RNAi strategies in vivo. Interestingly, its closest homolog, AtDIR5, was also established to be a (-)-pinoresinol-forming dirigent protein based on in vitro biochemical analyses. Both of these were compared in terms of properties with a (+)-pinoresinol-forming dirigent protein from Schizandra chinensis. In this context, sequence analyses, site-directed mutagenesis, and region swapping resulted in identification of putative substrate binding sites/regions and candidate residues controlling distinct stereoselectivities of coupling modes.

  16. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  17. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    International Nuclear Information System (INIS)

    Recombinant SOS3 and SOS2 regulatory domain from A. thaliana have been coexpressed in E. coli, purified and crystallized by the hanging-drop vapour-diffusion method. An X-ray data set has been collected at 2.0 Å resolution. The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P212121, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å

  18. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Directory of Open Access Journals (Sweden)

    Blachutzik Jörg O

    2012-08-01

    Full Text Available Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.

  19. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  20. AMIODARONE INDUCES THE SYNTHESIS OF HSPS IN SACCHAROMYCES CEREVISIAE AND ARABIDOPSIS THALIANA CELLS

    Directory of Open Access Journals (Sweden)

    Pyatrikas D.V.

    2012-08-01

    Full Text Available Many biotic and abiotic stresses cause an increase of cytosolic Ca2+ level in cells. Calcium is one of the most important second messengers, regulating many various activities in the cell and was known to affect expression of stress activated genes. Mild heat shock induces the expression of heat shock proteins (Hsps which protect cell from drastic heat shock exposure. There are some literature data permitting to suggest that transient elevation of cytosolic Ca2+ level in plant cells is important for activation of Hsps expression. On the other hand mitochondria are known to regulate the intracellular calcium and reactive oxygen species signaling. It has been shown recently that mild heat shock induces hyperpolarization of inner mitochondrial membrane in plant and yeast cells and this event is critically important for activation of Hsps expression. To reveal the relationship between mitochondrial activity, intracellular calcium homeostasis and Hsps expression an antiarrhythmic drug amiodarone (AMD have been used. AMD is known to cause transient increase of cytosolic Ca2+ level in Saccharomyces cerevisiae. Obtained results have showed that AMD treatment induced the synthesis of Hsp104p in S. cerevisiae cells and Hsp101p in A. thaliana cell culture. Induction of Hsp104p synthesis leads to enhanced yeast capability to survive lethal heat shock exposure. Development of S. cerevisiae thermotolerance depended significantly on the presence of Hsp104p. Elevation of Hsp104p level in the result of AMD treatment was shown to be governed by activity of Msn2p and Msn4p transcription factors. Deletion of the MSN2 and MSN4 genes abrogated the AMD ability to induce Hsp104p synthesis. Mild heat shock and AMD treatment induced the hyperpolarization of the inner mitochondrial membrane in yeast and Arabidopsis cells which accompanied by HSP synthesis and development of thermotolerance. It was suggested that increase of cytosolic Ca2+ level after AMD treatment

  1. The Mechanism of the Silencing of a Transgene, NCED3‐LUC, in Arabidopsis Thaliana

    KAUST Repository

    Zhao, Junsong

    2011-06-20

    The Arabidopsis thaliana NCED3‐LUC transgenic line was constructed by several groups to study the regulatory network of the NCED3 gene, the protein of which catalyzes the rate‐limiting step of ABA biosynthesis under drought. The transgenic luciferase gene is expressed when the plants encounter drought stress. Intriguingly, this transgenic luciferase gene is silenced after propagation for several generations. To determine the mechanism of this gene silencing, we used a forward genetics approach. The seeds of NCED3‐LUC (referred as the ‘wild type’) were mutagenized by ethane methyl sulfonate (EMS). One mutant line, denoted as #73, with recovered luciferase activity was selected for further study. Analysis of the methylation status by bisulfite sequencing revealed that the transgenic NCED3 promoter in the #73 mutant had less methylation than the wild type. Demethylation was also evident for the endogenous NCED3 promoter and retrotransposon AtSN1 in the #73 mutant. The phenotype of #73 mutant includes small size, rapid dehydration rate, altered morphology, and a thin epicuticular wax layer. By use of map‐based cloning, the region containing the mutated gene was delimited to a contig of two BAC clones, F11F19 and F9C22, on chromosome 2. Our results indicate that NCED3‐LUC gene silencing results from hypermethylation of its promoter region, but additional study is required to determine the exact position of the mutated gene and to fully understand the mechanism of NCED3‐LUC silencing. 4 ACKNOWLEDGEMENTS I would like to take this opportunity to thank my committee chair, Professor Jian‐Kang Zhu, who is also the supervisor of my master’s thesis, for his guidance throughout the course of this research. I also would like to thank my committee members, Professor Liming Xiong and Professor Samir Hamdan, for their patience and support in reviewing my thesis. My appreciation also goes to Dr. Zhenyu Wang for taking time to teach me basic experimental skills and

  2. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression.

    Science.gov (United States)

    Wang, Zhenyu; Xu, Lina; Zhao, Jian; Wang, Xiangke; White, Jason C; Xing, Baoshan

    2016-06-01

    CuO nanoparticles (NPs) (20, 50 mg L(-1)) inhibited seedling growth of different Arabidopsis thaliana ecotypes (Col-0, Bay-0, and Ws-2), as well as the germination of their pollens and harvested seeds. For most of growth parameters (e.g., biomass, relative growth rate, root morphology change), Col-0 was the more sensitive ecotype to CuO NPs compared to Bay-0 and Ws-2. Equivalent Cu(2+) ions and CuO bulk particles had no effect on Arabidopsis growth. After CuO NPs (50 mg L(-1)) exposure, Cu was detected in the roots, leaves, flowers and harvested seeds of Arabidopsis, and its contents were significantly higher than that in CuO bulk particles (50 mg L(-1)) and Cu(2+) ions (0.15 mg L(-1)) treatments. Based on X-ray absorption near-edge spectroscopy analysis (XANES), Cu in the harvested seeds was confirmed as being mainly in the form of CuO (88.8%), which is the first observation on the presence of CuO NPs in the plant progeny. Moreover, after CuO NPs exposure, two differentially expressed genes (C-1 and C-3) that regulated root growth and reactive oxygen species generation were identified, which correlated well with the physiological root inhibition and oxidative stress data. This current study provides direct evidence for the negative effects of CuO NPs on Arabidopsis, including accumulation and parent-progeny transfer of the particles, which may have significant implications with regard to the risk of NPs to food safety and security. PMID:27226046

  3. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Science.gov (United States)

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  4. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bernier Georges

    2003-01-01

    Full Text Available Abstract Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes.

  5. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.

    Science.gov (United States)

    Ye, Juanying; Zhang, Zaibao; You, Chenjiang; Zhang, Xumin; Lu, Jianan; Ma, Hong

    2016-09-01

    As the male reproductive organ of flowering plants, the stamen consists of the anther and filament. Previous studies on stamen development mainly focused on single gene functions by genetic methods or gene expression changes using comparative transcriptomic approaches, especially in model plants such as Arabidopsis thaliana However, studies on Arabidopsis anther protein expression and post-translational modifications are still lacking. Here we report proteomic and phosphoproteomic studies on developing Arabidopsis anthers at stages 4-7 and 8-12. We identified 3908 high-confidence phosphorylation sites corresponding to 1637 phosphoproteins. Among the 1637 phosphoproteins, 493 were newly identified, with 952 phosphorylation sites. Phosphopeptide enrichment prior to LC-MS analysis facilitated the identification of low-abundance proteins and regulatory proteins, thereby increasing the coverage of proteomic analysis, and facilitated the analysis of more regulatory proteins. Thirty-nine serine and six threonine phosphorylation motifs were uncovered from the anther phosphoproteome and further analysis supports that phosphorylation of casein kinase II, mitogen-activated protein kinases, and 14-3-3 proteins is a key regulatory mechanism in anther development. Phosphorylated residues were preferentially located in variable protein regions among family members, but they were they were conserved across angiosperms in general. Moreover, phosphorylation might reduce activity of reactive oxygen species scavenging enzymes and hamper brassinosteroid signaling in early anther development. Most of the novel phosphoproteins showed tissue-specific expression in the anther according to previous microarray data. This study provides a community resource with information on the abundance and phosphorylation status of thousands of proteins in developing anthers, contributing to understanding post-translational regulatory mechanisms during anther development. PMID:27531888

  6. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  7. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    Science.gov (United States)

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  8. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  9. Identification of quantitative trait loci controlling high Calcium response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wenlong Li

    Full Text Available Natural variation for primary root growth response to high Ca stress in Arabidopsis thaliana was studied by screening a series of accessions (ecotypes under high Calcium (40 mM CaCl2 conditions. The genetic basis of this variation was further investigated by QTL analysis using recombinant inbred lines from Landsberg erecta (Ler × Cape Verde Islands (Cvi cross. Four QTLs were identified in chromosome 1, 2 and 5,and named response to high Calcium (RHCA 1-4. The three QTLs (RHCA1, RHCA2 and RHCA4 were further confirmed by analysis of near isogenic lines harboring Cvi introgression fragments in Ler background. Real-time PCR analysis showed that several genes associated with high Ca response including SMT1 and XHT25 have changed expression pattern between Ler and near isogenic lines. These results were useful for detecting molecular mechanisms of plants for high Ca adaption.

  10. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  11. The initiation and connection of vessel elements in Arabidopsis thaliana (Brassicaceae) seedlings

    Institute of Scientific and Technical Information of China (English)

    BI Dongling; WANG Mao; KONG Ling'an; ZHOU Shumin

    2005-01-01

    This research used confocal laser scanning microscopy to examine the initiation and connection of vessel elements in Arabidopsis thaliana (L.) Heynh seedlings. The results indicated that vessel elements differentiated first in the lower portion of cotyledon-node zone (CNZ) 2 h after germination, and then extended downwards to the hypocotyl and root and upwardly to the middle portion of CNZ. 10 h after germination, vessel elements developed in the lower portion of cotyledon blade, the second initiating site, connecting gradually with that initiated in cotyledon node and forming pinnate-marginal venation. The connection of vessel elements occurred between the upper portions of CNZ and epicotyl-shoot zone 7 d after germination. By then, the complete connection of vessel elements in the axial and lateral organs had formed.

  12. A Direct Screening Procedure for Gravitropism Mutants in Arabidopsis thaliana (L.) Heynh. 1

    Science.gov (United States)

    Bullen, Bertha L.; Best, Thérèse R.; Gregg, Mary M.; Barsel, Sara-Ellen; Poff, Kenneth L.

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  13. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh.

    Science.gov (United States)

    Bullen, B L; Best, T R; Gregg, M M; Barsel S-E; Poff, K L

    1990-01-01

    In order to isolate gravitropism mutants of Arabidopsis thaliana (L.) Heynh. var Estland for the genetic dissection of the gravitropism pathway, a direct screening procedure has been developed in which mutants are selected on the basis of their gravitropic response. Variability in hypocotyl curvature was dependent on the germination time of each seed stock, resulting in the incorrect identification of several lines as gravitropism mutants when a standard protocol for the potentiation of germination was used. When the protocol was adjusted to allow for differences in germination time, these lines were eliminated from the collection. Out of the 60,000 M2 seedlings screened, 0.3 to 0.4% exhibited altered gravitropism. In approximately 40% of these mutant lines, only gravitropism by the root or the hypocotyl was altered, while the response of the other organ was unaffected. These data support the hypothesis that root and hypocotyl gravitropism are genetically separable. PMID:11537704

  14. A Mutation Causing Imidazolinone Resistance Maps to the Csr1 Locus of Arabidopsis thaliana.

    Science.gov (United States)

    Haughn, G W; Somerville, C R

    1990-04-01

    A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS. PMID:16667374

  15. Peculiarities of genital organ formation in Arabidopsis thaliana (L) Heynh. under spaceflight conditions

    Science.gov (United States)

    Kordyum, E. L.; Sytnik, K. M.; Chernyaeva, I. I.

    An experiment was carried out aboard the Salyut 6 research orbital station on Arabidopsis thaliana cultivations. The seeds were sprouted in the Svetoblok 1 device which provides for plant growth in the agar medium under sterile conditions and at 4000 lux illumination. The experimental plants, as well as the controls, reached approximately the same developmental stages: both flowered and began to bear fruit. A microscopic examination of the generative organs in the control and experimental plants shows that in normally formed (by appearance) flower buds and flowers of the experimental plants, as distinct from the controls, there were no fertile elements of the adroecium and gynoecium. Degeneration of the latter occurred at different stages of generative organ development. Possible reasons for this phenomenon in plants grown under weightless conditions are considered.

  16. Changes in cell ultrastructure and morphology of Arabidopsis thaliana roots after coumarins treatment

    Directory of Open Access Journals (Sweden)

    Ewa Kupidłowska

    2014-02-01

    Full Text Available The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in Arabidopsis thaliana. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.

  17. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael (MSU); (NWU)

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  18. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  19. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; van Zanten, Martijn; Mandon, Julien;

    2012-01-01

    Nitric oxide (NO) and ethylene are signalling molecules that are synthesized in response to oxygen depletion. Non-symbiotic plant haemoglobins (Hbs) have been demonstrated to act in roots under oxygen depletion to scavenge NO. Using Arabidopsis thaliana plants, the online emission of NO or ethylene...... represented a major loss of nitrogen equivalent to 0.2mM nitrate per 24h under hypoxic conditions. Hb gene expression was greatly enhanced in flooded roots, suggesting induction by reduced oxygen diffusion. The function could be to limit loss of nitrogen under NO emission. NO reacts with thiols to form S......-nitrosylated compounds, and it is demonstrated that hypoxia substantially increased the content of S-nitrosylated compounds. A parallel up-regulation of Hb gene expression in the normoxic shoots of the flooded plants may reflect signal transmission from root to shoot via ethylene and a role for Hb in the shoots. Hb gene...

  20. Ultrastructural study of maturing pollen in Arabidopsis thaliana (L. Heynh. (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Krystyna Zając

    2014-02-01

    Full Text Available Ultrastructural changes in Arabidopsis thaliana pollen, between late microspore stage and mature pollen stage were described. When the generative cell was peeled off from the intine, it was of spherical shape and had all usual organelles with the exception of plastids. The cytoplasm transformation of the vegetative cell included an increase in the number of mitochondria and changes in the accumulation of starch and lipid bodies. The starch plastids were observed at the bicellular and early tricellular pollen stages and next starch was utilized during the maturation procces. The lipid bodies of the vegetative cell form a very regular sheath around the generative cell and then, around the sperm cells. Before anthesis the lipid bodies were dispersed within the whole vegetative cell cytoplasm.

  1. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...... be expected in the transgenic lines relative to the wild type. In practice the reductions achieved were highly variable both between lines and within a given line on different occasions when the plants were grown. Possible reasons for this variability are discussed with reference to current models of gene...... silencing. The metabolite profiles of the transgenic lines were examined for unintended effects of the modification. An apparently major effect on the glucosinolate composition was shown to result from an unusual genetic variation in the ecotype and not from the modification. The modification did produce...

  2. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rassadina Valentina

    2009-04-01

    Full Text Available Abstract Background Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions. Results An aequorin expressing Arabidopsis thaliana mutant (Col0-1 Aeq Cy+ was subjected to a magnetic field around 65 microtesla (0.65 Gauss and an electromagnetic field with the corresponding Ca2+ cyclotron frequency of 50 Hz. The resulting changes in free Ca2+ were monitored by aequorin bioluminescence, using a high sensitive photomultiplier unit. The experiments were referenced by the additional use of wild type plants. Transient increases of cytosolic Ca2+ were observed both after switching the electromagnetic field on and off, with the latter effect decreasing with increasing duration of the electromagnetic impact. Compared with this the uninfluenced long-term loss of bioluminescence activity without any exogenic impact was negligible. The magnetic field effect rapidly decreased if ion cyclotron resonance conditions were mismatched by varying the magnetic fieldstrength, also a dependence on the amplitude of the electromagnetic component was seen. Conclusion Considering the various functions of Ca2+ as a second messenger in plants, this mechanism may be relevant for perception of these combined fields. The applicability of recently hypothesized mechanisms for the ion cyclotron resonance effect in biological systems is discussed

  3. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  4. X-ray and fast neutron-induced mutations in Arabidopsis thaliana, and the effect of dithiothreitol upon the mutant spectrum

    International Nuclear Information System (INIS)

    The author discusses the genetic effects of X-ray and fast neutron seed-irradiation of Arabidopsis thaliana (L.) Heynh., and the influence of a pre-irradiation treatment with the radio-protector dithiothreitol (DTT). (Auth.)

  5. Crystal structure of glutamate-1-semialdehyde-2,1-aminomutase from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yingxian; Pu, Hua; Jiang, Tian; Zhang, Lixin; Ouyang, Min, E-mail: ouyangmin@ibcas.ac.cn [Chinese Academy of Sciences, Beijing 100093, People’s Republic of (China)

    2016-05-23

    A structural study of A. thaliana glutamate-1-semialdehyde-2,1-aminomutase (GSAM) has revealed asymmetry in cofactor binding as well as in the gating-loop orientation, which supports the previously proposed negative cooperativity between monomers of GSAM. Glutamate-1-semialdehyde-2,1-aminomutase (GSAM) catalyzes the isomerization of glutamate-1-semialdehyde (GSA) to 5-aminolevulinate (ALA) and is distributed in archaea, most bacteria and plants. Although structures of GSAM from archaea and bacteria have been resolved, a GSAM structure from a higher plant is not available, preventing further structure–function analysis. Here, the structure of GSAM from Arabidopsis thaliana (AtGSA1) obtained by X-ray crystallography is reported at 1.25 Å resolution. AtGSA1 forms an asymmetric dimer and displays asymmetry in cofactor binding as well as in the gating-loop orientation, which is consistent with previously reported Synechococcus GSAM structures. While one monomer binds PMP with the gating loop fixed in the open state, the other monomer binds either PMP or PLP and the gating loop is ready to close. The data also reveal the mobility of residues Gly163, Ser164 and Gly165, which are important for reorientation of the gating loop. Furthermore, the asymmetry of the AtGSA1 structure supports the previously proposed negative cooperativity between monomers of GSAM.

  6. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity.

    Science.gov (United States)

    Tang, Zhong; Lv, Yanling; Chen, Fei; Zhang, Wenwen; Rosen, Barry P; Zhao, Fang-Jie

    2016-04-01

    Arsenic (As) contamination in soil can lead to elevated transfer of As to the food chain. One potential mitigation strategy is to genetically engineer plants to enable them to transform inorganic As to methylated and volatile As species. In this study, we genetically engineered two ecotypes of Arabidopsis thaliana with the arsenite (As(III)) S-adenosylmethyltransferase (arsM) gene from the eukaryotic alga Chlamydomonas reinhardtii. The transgenic A. thaliana plants gained a strong ability to methylate As, converting most of the inorganic As into dimethylarsenate [DMA(V)] in the shoots. Small amounts of volatile As were detected from the transgenic plants. However, the transgenic plants became more sensitive to As(III) in the medium, suggesting that DMA(V) is more phytotoxic than inorganic As. The study demonstrates a negative consequence of engineered As methylation in plants and points to a need for arsM genes with a strong ability to methylate As to volatile species. PMID:26998776

  7. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    Science.gov (United States)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-23

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  8. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    Science.gov (United States)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  9. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation. PMID:25488978

  10. Genomic Conflicts that Cause Pollen Mortality and Raise Reproductive Barriers in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Matthieu; Durand, Stéphanie; Pluta, Natacha; Gobron, Nicolas; Botran, Lucy; Ricou, Anthony; Camilleri, Christine; Budar, Françoise

    2016-07-01

    Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in the offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using both classical and quantitative genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility (CMS) controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in hybrids with either cytoplasm. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e., CMS nuclear determinants and pollen killers. Furthermore, natural variation at these loci in A. thaliana is associated with different male-sterility phenotypes in intraspecific hybrids. Our results suggest that the genomic conflicts that underlie segregation distorters and CMS can concurrently lead to reproductive barriers between distant strains within a species. This study provides a new framework for identifying molecular mechanisms and the evolutionary history of loci that contribute to reproductive isolation, and possibly to speciation. It also suggests that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations.

  11. Genetic architecture of natural variation of telomere length in Arabidopsis thaliana.

    Science.gov (United States)

    Fulcher, Nick; Teubenbacher, Astrid; Kerdaffrec, Envel; Farlow, Ashley; Nordborg, Magnus; Riha, Karel

    2015-02-01

    Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

  12. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  13. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  14. Prokaryotic Expression and Purification of AtSPX1 Protein in Arabidopsis thaliana%拟南芥SPX1蛋白原核表达及纯化分析

    Institute of Scientific and Technical Information of China (English)

    胡涛; 安艳; 吕群丹; 徐英武

    2015-01-01

    包含SPX结构域的蛋白在高等真核生物中广泛存在,这类蛋白的功能多数还不太清晰,但发现有些与磷信号相关,有些与铁信号相关。拟南芥中含有SPX结构域的蛋白可分为4个家族,本研究中的拟南芥SPX1(AtSPX1)属于一个只含有SPX结构域的蛋白组成的家族,其它家族成员还包含额外的基因序列。进化树分析表明,AtSPX1编码的氨基酸序列与双子叶植物具有较高的一致性,与单子叶植物进化距离较远。为了揭示AtSPX1蛋白的结构形态与其生物学功能之间的联系,开展了AtSPX1蛋白质体外可溶性表达实验,构建了原核体外表达载体,在大肠杆菌(E.coli)细胞中获得了该蛋白可溶性高表达。表达的蛋白包含有His标签方便了蛋白纯化,插入的SUMO融合蛋白标签可以通过蛋白酶切除,而目标蛋白通过硫酸铵沉淀实现了纯化。进一步分子筛层析分析表明AtSPX1以单体形式存在。实验结果提供了一套表达纯化AtSPX1蛋白的有效方案。%The proteins containing SPX domain exist widely in eukaryotes, and the functions of this kind of proteins are not clear yet, however some of them are involved in phosphorus signaling and some in iron signaling. SPX proteins inArabidopsis thalianacan be divided into 4 families. AtSPX1 used in this paper belongs to the family containing only SPX domain, while other 3 families containing extra gene sequences. Phylogenetic analysis showed that amino acid encoded by AtSPX1 was close with dicots in sequence, but distant from monocots. In order to reveal the relationship between structural property and biological function, we carried out solubility expression experiments of the proteinsin vitro, constructed prokaryotic expression vectorin vitro, and had the high soluble expression of the protein inEscherichia coli’scells. The expressed His-tag proteins allowed the purification more convenient, i.e, the inserted SUMO

  15. Biochemical characterisation of isoprene synthase from poplar (Populus x canescens (Ait.) Sm.) and its expression in Arabidopsis thaliana L.; Biochemische Charakterisierung der Isoprensynthase aus der Graupappel (Populus x canescens (Ait.) Sm.) und ihre Expression in Arabidopsis thaliana L.

    Energy Technology Data Exchange (ETDEWEB)

    Bachl, A.

    2005-04-01

    It is known that a lot of plant species emit high amounts of isoprene, especially during high temperature periods. The physiological impact of isoprene biosynthesis and emission is currently still unknown. An enhanced heat tolerance as well as an antioxidant action of isoprene is mainly discussed. One of the main goals of this work was therefore to produce transgenic plants differing from the corresponding wildtype in their ability to synthesize and emit isoprene. Therefore, the isoprene synthase (ispS) gene from poplar (Populus x canescens), which was isolated by Miller et al. (2001) was used to transform Arabidopsis thaliana L., which is not a significant isoprene emitter. Prior to transformation the original DNA-sequence was extended by two different epitops, a nonapeptide HA epitope and six triplets for histidine resulting in a C-terminal His-tag, in order to get a labelled enzyme, which can be detected and cleaned up more easily afterwards. For proving the efficiency of the resulting proteins, the core enzymes without the transit peptide needed for the import of the protein, which is encoded in the nucleus, into the chloroplasts were expressed heterologous in E. coli. The HA epitope resulted in a complete loss of enzyme activity, while the His-tag led to a decreased enzyme activity of about 20%. For the Agrobacterium mediated transformation of A. thaliana the ispS with the C-terminal His-tag was used and cloned into the binary vector pBinAR under the control of a 35S promoter. 40 transgenic lines, which were selected by kanamycine resistance, have been achieved. The stable integration of ispS was confirmed on DNA- as well as on RNA level. The expression of ispS was proved in 38 of the 40 lines by PCR from cDNA. Furthermore the emission of the transgenic lines was studied by measuring whole plants for several hours. Five of the 40 lines showed significant higher isoprene emission rates being more than 2,5 fold higher than in the measured non emitting A

  16. Genetic identification of a second site modifier of ctr1-1 that controls ethylene-responsive and gravitropic root growth in Arabidopsis thaliana.

    Science.gov (United States)

    Shin, Kihye; Lee, Rin-A; Lee, Inhye; Lee, Sumin; Park, Soon Ki; Soh, Moon-Soo

    2013-07-01

    Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.

  17. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pranav R. Prabhu

    2010-01-01

    Full Text Available The aminotransferase gene family in the model plant Arabidopsis thaliana consists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized using in vitro and in vivo experiments. In vitro analysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate. In vivo analysis by functional complementation showed that the gene was able to complement an E. coli with a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.

  18. Production and characterization of asymmetric somatic hybrids between Arabido