WorldWideScience

Sample records for arabidopsis sterol carrier

  1. Sterol carrier protein-x gene and effects of sterol carrier protein-2 inhibitors on lipid uptake in Manduca sexta

    Directory of Open Access Journals (Sweden)

    Lan Que

    2010-06-01

    Full Text Available Abstract Background Cholesterol uptake and transportation during the feeding larval stages are critical processes in insects because they are auxotrophic for exogenous (dietary cholesterol. The midgut is the main site for cholesterol uptake in many insects. However, the molecular mechanism by which dietary cholesterol is digested and absorbed within the midgut and then released into the hemolymph for transportation to utilization or storage sites is poorly understood. Sterol carrier proteins (SCP, non-specific lipid transfer proteins, have been speculated to be involved in intracellular cholesterol transfer and metabolism in vertebrates. Based on the high degree of homology in the conserved sterol transfer domain to rat and human SCP-2, it is supposed that insect SCP-2 has a parallel function to vertebrate SCP-2. Results We identified the Manduca sexta sterol carrier protein-x and the sterol carrier protein-2 (MsSCP-x/SCP-2 gene from the larval fat body and the midgut cDNAs. The MsSCP-x/SCP-2 protein has a high degree of homology in the SCP-2 domain to other insects' SCP-2. Transcripts of MsSCP-2 were detected at high levels in the midgut and the fat body of M. sexta during the larval stages. Recombinant MsSCP-2 bound to NBD-cholesterol with high affinity, which was suppressed by sterol carrier protein-2 inhibitors. Conclusions The results suggest that MsSCP-2 may function as a lipid carrier protein in vivo, and targeting insect SCP-2 may be a viable approach for the development of new insecticides.

  2. The biological activity of a-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor

    Science.gov (United States)

    Alpha-mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening. Alpha-mangostin was tested for its larvicidal activity against 3rd instar larvae of six mosquito species and the LC50 values range from 0.84 to 2.90 ppm....

  3. Plant sterol metabolism. Δ7-Sterol-C5-Desaturase (STE1/DWARF7), Δ5,7-Sterol-Δ7-Reductase (DWARF5) and Δ24-Sterol-Δ24-Reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L

    DEFF Research Database (Denmark)

    Silvestro, Daniele; Andersen, Tonni Grube; Schaller, Hubert;

    2013-01-01

    to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map...... of steroidogenic enzymes in cells, the coding regions of ¿(7)-sterol-C(5)-desaturase (STE1/DWARF7), ¿(24)-sterol-¿(24)-reductase (DIMINUTO/DWARF1) and ¿(5,7)-sterol-¿(7)-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient...... in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both ¿(5,7)-sterol-¿(7)-reductase and ¿(24)-sterol-¿(24)-reductase are in addition localized to the plasma membrane, whereas ¿(7)-sterol-C(5)-desaturase...

  4. Plant sterol metabolism. Δ(7-Sterol-C5-desaturase (STE1/DWARF7, Δ(5,7-sterol-Δ(7-reductase (DWARF5 and Δ(24-sterol-Δ(24-reductase (DIMINUTO/DWARF1 show multiple subcellular localizations in Arabidopsis thaliana (Heynh L.

    Directory of Open Access Journals (Sweden)

    Daniele Silvestro

    Full Text Available Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of Δ(7-sterol-C(5-desaturase (STE1/DWARF7, Δ(24-sterol-Δ(24-reductase (DIMINUTO/DWARF1 and Δ(5,7-sterol-Δ(7-reductase (DWARF5 were fused to the yellow fluorescent protein (YFP and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both Δ(5,7-sterol-Δ(7-reductase and Δ(24-sterol-Δ(24-reductase are in addition localized to the plasma membrane, whereas Δ(7-sterol-C(5-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants.

  5. Binding of 7-dehydrocholesterol to sterol carrier protein and vitamin D3 effect

    International Nuclear Information System (INIS)

    It was confirmed that deltasup(5,7)-sterol delta7-reductase activity was suppressed by cholecalciferol (vitamin D3) in the enzyme system consisted of microsomes and sterol carrier protein (SCP). The enzyme activity was significantly decreased in the combination with microsomes obtained from either vitamin D-deficient or vitamin D3-treated rat liver and with SCP obtained from vitamin D3-treated rat. It was also demonstrated by the binding assay of the dextran-charcoal technique that 7-dehydrocholesterol binding to SCP could be specifically displaced by vitamin D3. The inhibition of cholecalciferol on 7-dehydro-cholesterol binding to liver SCP was confirmed to be non-competitive inhibition. (auth.)

  6. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Henrik eZauber

    2014-03-01

    Full Text Available The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.

  7. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    Science.gov (United States)

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  8. Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes

    OpenAIRE

    Storey, Stephen M.; Atshaves, Barbara P.; McIntosh, Avery L.; Kerstin K. Landrock; Martin, Gregory G.; Huang, Huan; Ross Payne, H.; Johnson, Jeffery D.; Macfarlane, Ronald D.; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), which is poorly esterified, and [3H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux w...

  9. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  10. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts.

    Science.gov (United States)

    Cerqueira, Débora M; Tran, Uyen; Romaker, Daniel; Abreu, José G; Wessely, Oliver

    2014-10-01

    The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.

  11. Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, David H.; Vyazunova, Irina; Lorch, Jeffery M.; Forest, Katrina T.; Lan, Que; (UW)

    2009-06-12

    The sterol carrier protein-2 like 3 gene (AeSCP-2L3), a new member of the SCP-2 protein family, is identified from the yellow fever mosquito, Aedes aegypti. The predicted molecular weight of AeSCP-2L3 is 13.4 kDa with a calculated pI of 4.98. AeSCP-2L3 transcription occurs in the larval feeding stages and the mRNA levels decrease in pupae and adults. The highest levels of AeSCP-2L3 gene expression are found in the body wall, and possibly originated in the fat body. This is the first report of a mosquito SCP-2-like protein with prominent expression in tissue other than the midgut. The X-ray protein crystal structure of AeSCP-2L3 reveals a bound C16 fatty acid whose acyl tail penetrates deeply into a hydrophobic cavity. Interestingly, the ligand-binding cavity is slightly larger than previously described for AeSCP-2 (Dyer et al. J Biol Chem 278:39085-39091, 2003) and AeSCP-2L2 (Dyer et al. J Lipid Res M700460-JLR200, 2007). There are also an additional 10 amino acids in SCP-2L3 that are not present in other characterized mosquito SCP-2s forming an extended loop between {beta}3 and {beta}4. Otherwise, the protein backbone is exceedingly similar to other SCP-2 and SCP-2-like proteins. In contrast to this observed high structural homology of members in the mosquito SCP2 family, the amino acid sequence identity between the members is less than 30%. The results from structural analysis imply that there have been evolutionary constraints that favor the SCP-2 C{alpha} backbone fold while the specificity of ligand binding can be altered.

  12. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas

    2015-04-01

    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  13. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    OpenAIRE

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane...

  14. Distribution of sterol carrier protein2 (SCP2) in rat tissues and evidence for slow turnover in liver and adrenal cortex

    International Nuclear Information System (INIS)

    Sterol carrier protein2 (SCP2) has been implicated in the regulation of the terminal stages of hepatic cholesterol biosynthesis, and in sterol utilization for adrenal steroid hormone and hepatic bile acid synthesis. In the present studies, a highly sensitive radioimmunoassay, using [125I] SCP2, has been developed. Highest levels of SCP2 were found in rat liver with progressively lower levels in intestinal mucosa, adrenal, kidney, lung and testis. SCP2 levels were low or absent in heart, brain, skeletal muscle and serum. Liver SCP2 was largely (44%) associated with the microsomal fraction, while in adrenal, 46% was associated with mitochondria, a distribution which is consistent with the proposed roles for SCP2 in these tissues. Levels of SCP2 in AS 30D hepatoma cells were only 5% of those in normal liver. In liver there was no indication of diurnal rhythm of SCP2 in the cytosol and only slight variation of the microsomal SCP2 levels. Fasting has only slight effects on SCP2 concentration of rat liver microsomes and cytosol. Neither ACTH nor cycloheximide treatment of rats had a significant effect on SCP2 distribution in the adrenal. In general, these findings indicate that SCP2 has a low turn-over rate

  15. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts.

    Science.gov (United States)

    Rutschow, Heidi L; Baskin, Tobias I; Kramer, Eric M

    2014-11-01

    The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 μm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.

  16. Structure and function of sterol carrier proteins in insects%昆虫固醇转运蛋白的结构与功能

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 郭兴荣; 冯启理; 郑思春

    2011-01-01

    In insects, cholesterol is not only one of the main components of cell membranes, but also a precursor of ecdysone biosynthesis. However, because insects lack two key enzymes for cholesterol biosynthesis, they can not autonomously synthesize cholesterol from simple compounds and therefore have to obtain sterols from their diet. Insects must convert food sterols into cholesterol to meet the requirements of growth, development and reproduction. Sterol carrier proteins (SCPs) are main transport proteins for sterol absorption and transport in insects. It is critical to study the relationship between structure and function of SCPs for understanding the roles of SCPs in sterol transport. In this review, recent progress in the study of the structure, expression and distribution of SCP genes and proteins, post-translation modification, crystal structure, ligand-binding specificity and possible absorption and transport pathways of insect SCPs was summarized and the potential of using SCPs as a molecular target for pest insect control was also discussed.Studies indicate that transcript expression of SCP genes and post-translation modifications of SCP proteins vary depending on different species. In dipteran insects such as Aedes aegypti and Drosophila melangoster SCP-x gene encodes SCP-x and SCP-2 proteins, while there are additional SCP-2 genes and SCP-2-1ike genes encoding SCP-2 and SCP-2-1ike proteins, respectively. In lepidopteran insects such as Spodoptera littoralis,Spodoptera litura and Bombyx mori, the transcript expression and translation processes of SCP-x gene are similar to those in vertebrates, in which SCP-2 protein is produced after post transcription and translation modifications of a unique SCP-x gene. SCP-x and SCP-2 proteins are localized in peroxisomes. SCP-2 protein consists of 5 αt-helixes and 5 β-sheets and the αS-helix appears to impact the binding of the protein to substrates. SCP-2 protein can bind with different affinity to cholesterol

  17. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    Science.gov (United States)

    Peng, Rong; Fu, Qiang; Hong, Huazhu; Schwaegler, Tyler; Lan, Que

    2012-01-01

    Expression of sterol carrier protein-2 (SCP-2) in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP) and activating transcription factor-2 (ATF-2), antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression. PMID:23056538

  18. THAP and ATF-2 regulated sterol carrier protein-2 promoter activities in the larval midgut of the yellow fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Rong Peng

    Full Text Available Expression of sterol carrier protein-2 (SCP-2 in Aedes aegypti shows a distinct temporal/spatial pattern throughout the life cycle. In order to identify the transcription factors responsible for the larval temporal/spatial regulation of AeSCP-2 transcription, AeSCP-2 promoter activities were studied in vivo via transient transfection of promoter/reporter gene assays. Regulatory sequences upstream -1.3 kb of the transcription start site of AeSCP-2 were found to be critical for the in vivo temporal/spatial promoter activity. Interestingly, the -1.6 kb promoter sequence efficiently drove the larval midgut-specific siRNA expression, indicating that the -1.6 kb upstream sequence is sufficient for temporal/spatial AeSCP-2 transcriptional activity. Four transcription factors were identified in the midgut nuclear extract from feeding larvae via labeled -1.6/-1.3 kb DNA probe pull-down and proteomic analysis. Co-transfection of the promoter/reporter gene with inducible siRNA expression of each transcription factor was performed to confirm the regulatory function of individual transcription factor on AeSCP-2 transcriptional activities in the larval midgut. The results indicate that two of the identified transcription factors, Thanatos-associated protein (THAP and activating transcription factor-2 (ATF-2, antagonistically control AeSCP-2 transcriptional activity in the midgut of feeding larvae via the regulatory sequences between -1.6 to -1.3 kb 5' upstream of the transcription start site. In vivo expression knockdown of THAP and ATF-2 resulted in significant changes in developmental progression, which may be partially due to their effects on AeSCP-2 expression.

  19. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  20. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves.

    Directory of Open Access Journals (Sweden)

    Séverine ePlanchais

    2014-07-01

    Full Text Available In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2 encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1 recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors, arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress.

  1. Male Sterile2 Encodes a Plastid-Localized Fatty Acyl Carrier Protein Reductase Required for Pollen Exine Development in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.; Shanklin, J.; Yu, X.-H.; Zhang, K.; Shi, J.; De Oliveira, S.; Schreiber, L.; Zhang, D.

    2011-10-01

    Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30 C), MS2 exhibits a K{sub m} for 16:0-Acyl Carrier Protein of 23.3 {+-} 4.0 {mu}m, a V{sub max} of 38.3 {+-} 4.5 nmol mg{sup -1} min{sup -1}, and a catalytic efficiency/K{sub m} of 1,873 m{sup -1} s{sup -1}. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.

  2. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  3. Insights into the mechanisms of sterol transport between organelles.

    Science.gov (United States)

    Mesmin, Bruno; Antonny, Bruno; Drin, Guillaume

    2013-09-01

    In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions. PMID:23283302

  4. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  5. Sterol requirements in Drosophila melanogaster

    OpenAIRE

    Almeida de Carvalho, Maria Joao

    2009-01-01

    Sterol is an abundant component of eukaryotic cell membranes and is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila is an excellent model system in which to study functional requirements for membrane sterol because, although it does not synthesize sterol, it nevertheless requires sterols to complete development. Moreover, Drosophila normally incorporates sterols into cell membranes. Thus, dietary sterol depletion can be used to ...

  6. Sterol metabolism of insects

    NARCIS (Netherlands)

    Ritter, F.J.; Wientjens, W.H.J.M.

    1967-01-01

    This article surveys the present knowledge of the sterol metabolism of insects. It is emphasized that a high degree of purity of the dietary sterols and the climination of the influence of symbionts are essential to present ambiguity in interpreting results. It is pointed out that a sharp distinctio

  7. Arabidopsis TT19 Functions as a Carrier to Transport Anthocyanin from the Cytosol to Tonoplasts

    Institute of Scientific and Technical Information of China (English)

    Yi Sun; Hong Li; Ji-Rong Huang

    2012-01-01

    Anthocyanins are synthesized in the cytosolic surface of the endoplasmic reticulum (ER) but dominantly accumulate in the vacuole.Little is known about how anthocyanins are transported from the ER to the vacuole.Here,we provide evidence supporting that Transparent Testa 19 (TT19),a glutathione S-transferase (GST),functions as a carrier to transport cyanidin and/or anthocyanins to the tonoplast.We identified a novel tt19 mutant (tt19-7),which barely accumulates anthocyanins but produces a 36% higher level of flavonol than the wild-type (WT),from ethyl methanesulfonate mutagenized seeds.Expressing TT19-fused green fluorescence protein (GFP) in tt19-7 rescues the mutant phenotype in defective anthocyanin biosynthesis,indicating that TT19-GFP is functional.We further showed that TT19-GFP is localized not only in the cytoplasm and nuclei,but also on the tonoplast.The membrane localization of TT19-GFP was further ascertained by immunoblot analysis.In vitro assay showed that the purified recombinant TT19 increases water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G).Compared with C3G,Cya can dramatically quench the intrinsic tryptophan fluorescence of TT19 to much lower levels,indicating a higher affinity of TT19 to Cya than to C3G.Isothermal titration calorimetry analysis also confirmed physical interaction between TT19 and C3G.Taken together,our data reveal molecular mechanism underlying TT19-mediated anthocyanin transportation.

  8. Solution Nuclear Magnetic Resonance Studies of Sterol Carrier Protein 2 Like 2 (SCP2L2) Reveal the Insecticide Specific Structural Characteristics of SCP2 Proteins in Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Singarapu, Kiran Kumar; Ahuja, Ashish; Potula, Purushotam Reddy; Ummanni, Ramesh

    2016-09-01

    Sterol carrier protein 2 like 2 from Aedes aegypti (AeSCP2L2) plays an important role in lipid transport in mosquitoes for its routine metabolic processes. Repeated unsuccessful attempts to crystallize ligand free SCP2L2 prompted us to undertake nuclear magnetic resonance (NMR) spectroscopy to determine its three-dimensional structure. We report here the three-dimensional structures and dynamics of apo-AeSCP2L2 and its complex with palmitate. The (15)N heteronuclear single-quantum coherence spectrum of apo-AeSCP2L2 displayed multiple peaks for some of the amide resonances, implying the presence of multiple conformations in solution, which are transformed to a single conformation upon formation of the complex with plamitate. The three-dimensional structures of apo-AeSCP2L2 and palmitated AeSCP2L2 reveal an α/β mixed fold, with five β-strands and four α-helices, very similar to the other SCP2 protein structures. Unlike the crystal structure of palmitated AeSCP2L2, both solution structures are monomeric. It is further confirmed by the rotational correlation times determined by NMR relaxation times (T1 and T2) of the amide protons. In addition, the palmitated AeSCP2L2 structure contains two palmitate ligands, bound in the binding pocket, unlike the three palmitates bound in the dimeric form of AeSCP2L2 in the crystals. The relaxation experiments revealed that complex formation significantly reduces the dynamics of the protein in solution.

  9. Solution Nuclear Magnetic Resonance Studies of Sterol Carrier Protein 2 Like 2 (SCP2L2) Reveal the Insecticide Specific Structural Characteristics of SCP2 Proteins in Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Singarapu, Kiran Kumar; Ahuja, Ashish; Potula, Purushotam Reddy; Ummanni, Ramesh

    2016-09-01

    Sterol carrier protein 2 like 2 from Aedes aegypti (AeSCP2L2) plays an important role in lipid transport in mosquitoes for its routine metabolic processes. Repeated unsuccessful attempts to crystallize ligand free SCP2L2 prompted us to undertake nuclear magnetic resonance (NMR) spectroscopy to determine its three-dimensional structure. We report here the three-dimensional structures and dynamics of apo-AeSCP2L2 and its complex with palmitate. The (15)N heteronuclear single-quantum coherence spectrum of apo-AeSCP2L2 displayed multiple peaks for some of the amide resonances, implying the presence of multiple conformations in solution, which are transformed to a single conformation upon formation of the complex with plamitate. The three-dimensional structures of apo-AeSCP2L2 and palmitated AeSCP2L2 reveal an α/β mixed fold, with five β-strands and four α-helices, very similar to the other SCP2 protein structures. Unlike the crystal structure of palmitated AeSCP2L2, both solution structures are monomeric. It is further confirmed by the rotational correlation times determined by NMR relaxation times (T1 and T2) of the amide protons. In addition, the palmitated AeSCP2L2 structure contains two palmitate ligands, bound in the binding pocket, unlike the three palmitates bound in the dimeric form of AeSCP2L2 in the crystals. The relaxation experiments revealed that complex formation significantly reduces the dynamics of the protein in solution. PMID:27508310

  10. Sterol synthesis in diverse bacteria

    Directory of Open Access Journals (Sweden)

    Jeremy H Wei

    2016-06-01

    Full Text Available Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc, which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from 5 phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria and Verrucomicrobia and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult

  11. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  12. Sterol Synthesis in Diverse Bacteria.

    Science.gov (United States)

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  13. The effects of sterol structure upon sterol esterification.

    Science.gov (United States)

    Lin, Don S; Steiner, Robert D; Merkens, Louise S; Pappu, Anuradha S; Connor, William E

    2010-01-01

    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.

  14. A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies

    OpenAIRE

    R Barani Kumar; Shanmugapriya, B.; Thiyagesan, K; S Raj Kumar; Suresh M Xavier

    2010-01-01

    Background: Sterol is a very vital compound for most of the insects and mosquitoes to complete their life cycle. Unfortunately mosquitoes cannot synthesize the sterol, it depends on mammals for the same. Mosquitoes take the sterol from the plant decays during their larval stage in the form of phytosterol, which is then converted to cholesterol for further growth and reproduction. This conversion occurs with the help of the sterol carrier protein 2(SCP2). Methods: Mosquito populations are cont...

  15. Arabidopsis acyl-acyl carrier protein synthetase AAE15 with medium chain fatty acid specificity is functional in cyanobacteria

    OpenAIRE

    Kaczmarzyk, Danuta; Hudson, Elton P.; Fulda, Martin

    2016-01-01

    Cyanobacteria are potential hosts for the biosynthesis of oleochemical compounds. The metabolic precursors for such compounds are fatty acids and their derivatives, which require chemical activation to become substrates in further conversion steps. We characterized the acyl activating enzyme AAE15 of Arabidopsis encoded by At4g14070, which is a homologue of a cyanobacterial acyl-ACP synthetase (AAS). We expressed AAE15 in insect cells and demonstrated its AAS activity with medium chain fatty ...

  16. SUPLEMENTASI STEROL LEMBAGA GANDUM (Triticum sp. PADA MARGARIN (Supplementation of Margarine with Wheat Germ Sterol

    Directory of Open Access Journals (Sweden)

    Sri Anna Marliyati1*

    2010-06-01

    Full Text Available Margarine is a water in oil (w/o emulsion product which is widely used for household cooking and baking industry. Consuming of margarine, which contains trans fatty acid may cause health problem due to the increase of LDL cholesterol. Since margarine is also a good carrier of phytosterol which prevent the absorption of cholesterol, there is a possibility to formulate a healthier margarine. In this research formulation and characteristics of products was investigated. The research work consisted of two steps: (1 supplementation of wheat germ sterol into margarine (two methods and (2 analysis of physical, chemical characteristics and hedonic score. Parameters of physical characteristics were melting point and emulsion stability, whereas chemical characteristics were water and oil contents. The hedonic test was carried out based on product’s color, odor, taste, texture, and spreadability. Results showed that method II of supplementation produced better margarine than method I, in which the concentration of sterol in the margarine was higher with a melting point similar to that of control, better emulsion stability, and higher hedonic score. Supplementation process was carried out by mixing sterol into fat phase melted at 50 0C, followed by mixing with aqueous phase at 4 0C. Sterol used for method II was extracted using mixed solvent of hexane and ethanol at the ratio of 1:2 (v/v, which was resulted from previous experimentation.

  17. "Dinoflagellate Sterols" in marine diatoms.

    Science.gov (United States)

    Giner, José-Luis; Wikfors, Gary H

    2011-10-01

    Sterol compositions for three diatom species, recently shown to contain sterols with side chains typically found in dinoflagellates, were determined by HPLC and ¹H NMR spectroscopic analyses. The centric diatom Triceratium dubium (=Biddulphia sp., CCMP 147) contained the highest percentage of 23-methylated sterols (37.2% (24R)-23-methylergosta-5,22-dienol), whereas the pennate diatom Delphineis sp. (CCMP 1095) contained the cyclopropyl sterol gorgosterol, as well as the 27-norsterol occelasterol. The sterol composition of Ditylum brightwellii (CCMP 358) was the most complex, containing Δ⁰- and Δ⁷-sterols, in addition to the predominant Δ⁵-sterols. A pair of previously unknown sterols, stigmasta-5,24,28-trienol and stigmasta-24,28-dienol, were detected in D. brightwellii and their structures were determined by NMR spectroscopic analysis and by synthesis of the former sterol from saringosterol. Also detected in D. brightwellii was the previously unknown 23-methylcholesta-7,22-dienol. PMID:21621802

  18. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    Science.gov (United States)

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.

  19. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  20. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.

    Science.gov (United States)

    Bryant, Fiona M; Munoz-Azcarate, Olaya; Kelly, Amélie A; Beaudoin, Frédéric; Kurup, Smita; Eastmond, Peter J

    2016-09-01

    Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids. PMID:27462083

  1. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 Are Responsible for Making Omega-7 Fatty Acids in the Arabidopsis Aleurone.

    Science.gov (United States)

    Bryant, Fiona M; Munoz-Azcarate, Olaya; Kelly, Amélie A; Beaudoin, Frédéric; Kurup, Smita; Eastmond, Peter J

    2016-09-01

    Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids.

  2. Study of Behavior of Sterols at Interfaces

    Science.gov (United States)

    Klein, P. D.; Knight, J. C.; Szczepanik, P. A.

    1968-01-01

    Behavior of sterols and sterol acetates on various types of interfaces indicates that the function of a sterol depends upon a surface orientation and surface energy of the interface. Column-chromatographic techniques determine the retention volume of various sterols under standard conditions.

  3. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    Science.gov (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  4. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

    Science.gov (United States)

    Porco, Silvana; Larrieu, Antoine; Du, Yujuan; Gaudinier, Allison; Goh, Tatsuaki; Swarup, Kamal; Swarup, Ranjan; Kuempers, Britta; Bishopp, Anthony; Lavenus, Julien; Casimiro, Ilda; Hill, Kristine; Benkova, Eva; Fukaki, Hidehiro; Brady, Siobhan M; Scheres, Ben; Péret, Benjamin; Bennett, Malcolm J

    2016-09-15

    Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence. PMID:27578783

  5. Sterols of the fungi - Distribution and biosynthesis

    Science.gov (United States)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  6. HPLC analysis of plant sterol oxidation products

    OpenAIRE

    Kemmo, Suvi

    2008-01-01

    Increased interest in the cholesterol-lowering effect of plant sterols has led to development of plant sterol-enriched foods. When products are enriched, the safety of the added components must be evaluated. In the case of plant sterols, oxidation is the reaction of main concern. In vitro studies have indicated that cholesterol oxides may have harmful effects. Due their structural similarity, plant sterol oxidation products may have similar health implications. This study concentrated on...

  7. A new sterol glycoside from Securidaca inappendiculata.

    Science.gov (United States)

    Zhang, Li-Jie; Yang, Xue-Dong; Xu, Li-Zhen; Zou, Zhong-Mei; Yang, Shi-Lin

    2005-08-01

    From the roots of Securidaca inappendiculata, one new sterol glycoside securisteroside (1) has been isolated, along with two known sterols, spinasterol (2) and 3-O-beta-D-glucopyranosyl-spinasterol (3). The new sterol was characterized by chemical and spectrometric methods, including EIMS, FABMS and one- and two-dimensional NMR experiments. PMID:16087640

  8. Plant Sterol Diversity in Pollen from Angiosperms.

    Science.gov (United States)

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  9. Characteristics of sterol uptake in Saccharomyces cerevisiae.

    OpenAIRE

    Lorenz, R T; Rodriguez, R J; Lewis, T A; Parks, L W

    1986-01-01

    A Saccharomyces cerevisiae sterol auxotroph, FY3 (alpha hem1 erg7 ura), was used to probe the characteristics of sterol uptake in S. cerevisiae. The steady-state cellular concentration of free sterol at the late exponential phase of growth could be adjusted within a 10-fold range by varying the concentration of exogenously supplied sterol. When cultured on 1 microgram of sterol ml-1, the cells contained a minimal cellular free-cholesterol concentration of 0.85 nmol/mg (dry weight) and were te...

  10. Free Sterols of the red alga Chondria armata (Kutz.) Okamura

    Digital Repository Service at National Institute of Oceanography (India)

    Govenkar, M.B.; Wahidullah, S.

    % methanolic sulfuric acid as the detecting agent. The sterol fraction for gas chromatography/mass spectrometry (GC/MS) and for spectral data [Nuclear Magnetic Resonance (NMR); Electron Im- pact Mass spectrum (EIMS)] refers to two different fractions obtained.... Govenkar and S. Wahidulla methyl silicone capillary Hewlett Packard column (25 m, 0.2 mm D). The column temperature was pro- grammed from 200 8C to 290 8Cat28C/min. Helium was used as the carrier gas. The ions were detected in the m/z range of 402600 Da...

  11. Multiple Functions of Sterols in Yeast Endocytosis

    OpenAIRE

    Heese-Peck, Antje; Pichler, Harald; Zanolari, Bettina; Watanabe, Reika; Daum, Günther; Riezman, Howard

    2002-01-01

    Sterols are essential factors for endocytosis in animals and yeast. To investigate the sterol structural requirements for yeast endocytosis, we created a variety of ergΔ mutants, each accumulating a distinct set of sterols different from ergosterol. Mutant erg2Δerg6Δ and erg3Δerg6Δ cells exhibit a strong internalization defect of the α-factor receptor (Ste2p). Specific sterol structures are necessary for pheromone-dependent receptor hyperphosphorylation, a prerequisite for internalization. Th...

  12. Depot sterols in comparisons with structural sterols in Cancer pagurus and Eriocheir sinensis

    NARCIS (Netherlands)

    Zandee, D.I.; Kruitwagen, E.C.J.

    1975-01-01

    The differences in sterol content and sterol composition between the midgut gland and remaining parts (structural lipids) of male and female specimens of Cancer pagurus and Eriocheir sinensis are investigated. There are no differences in sterol content in the structural lipids between male and femal

  13. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    Science.gov (United States)

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  14. Δ^<5,7>-Sterol Constituents of Some Bivalves

    OpenAIRE

    Teshima, Shin-ichi; Kanazawa, Akio; SHIMAMOTO, Ryuji; テシマ, シンイチ; カナザワ, アキオ; シマモト, リュウジ; 手島, 新一; 金沢, 昭夫; 嶋元, 隆司

    1985-01-01

    The composition of Δ^-sterols and other sterols of six bivalves collected in Okinawa, Japan, was investigated. Sterols were identified by gas-liquid chromatography (GLC) on 1.5% OV—17 and GLC-mass spectrometry. The bivalves examined contained seven Δ^-sterols and a few Δ^-sterols besides Δ^-sterols commonly occurring in marine molluscs. Saxostrea mordax and Tridacna crocea contained cholesta-5,7-dienol as the major sterols (about 50% of total Δ^-sterols), whereas Protostrea hyotis...

  15. Δ^<5,7>-Sterol Constituents of Some Bivalves

    OpenAIRE

    Teshima, Shin-ichi; Kanazawa, Akio; SHIMAMOTO, Ryuji; テシマ, シンイチ; カナザワ, アキオ; シマモト, リュウジ; 手島, 新一; 金沢, 昭夫; 嶋元, 隆司

    1985-01-01

    The composition of Δ^-sterols and other sterols of six bivalves collected in Okinawa, Japan,was investigated. Sterols were identified by gas-liquid chromatography (GLC) on 1.5% OV—17 and GLC-mass spectrometry. The bivalves examined contained seven Δ^-sterols and afew Δ^-sterols besides Δ^-sterols commonly occurring in marine molluscs. Saxostrea mordax andTridacna crocea contained cholesta-5,7-dienol as the major sterols (about 50% of totalΔ^-sterols), whereas Protostrea hyotis and Pinctada ma...

  16. Dietary plant sterols accumulate in the brain

    NARCIS (Netherlands)

    Jansen, PJ; Lutjohann, D; Abildayeva, K; Vanmierlo, T; Plosch, T; Plat, J; von Bergmann, K; Groen, AK; Ramaekers, FCS; Kuipers, F; Mulder, M

    2006-01-01

    Dietary plant sterols and cholesterol have a comparable chemical structure. It is generally assumed that cholesterol and plant sterols do not cross the blood-brain barrier, but quantitative data are lacking. Here, we report that mice deficient for ATP-binding cassette transporter G5 (Abcg5) or Abcg8

  17. Bioorthogonal probes for imaging sterols in cells.

    Science.gov (United States)

    Jao, Cindy Y; Nedelcu, Daniel; Lopez, Lyle V; Samarakoon, Thilani N; Welti, Ruth; Salic, Adrian

    2015-03-01

    Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.

  18. Comparative molecular modelling of biologically active sterols

    Science.gov (United States)

    Baran, Mariusz; Mazerski, Jan

    2015-04-01

    Membrane sterols are targets for a clinically important antifungal agent - amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction of amphotericin B with ergosterol as compared with cholesterol. The compounds studied were chosen on the basis of structural features characteristic for cholesterol and ergosterol and on available experimental data on the ability to form complexes with the antibiotic. Statistical analysis of the data obtained has been performed. The results show similarity of the conformational spaces occupied by all the sterols tested. This suggests that the conformational differences of sterol molecules are not the major feature responsible for the differential sterol - drug affinity.

  19. Sterol phylogenesis and algal evolution

    Energy Technology Data Exchange (ETDEWEB)

    Nes, W.D.; Norton, R.A.; Crumley, F.G. (Richard B. Russell Research Center, Athens, GA (USA)); Madigan, S.J.; Katz, E.R. (State Univ. of New York at Stony Brook (USA))

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  20. Sterols and sterol oxides in the potato products, and sterols in the vegetable oils used for industrial frying operations

    Directory of Open Access Journals (Sweden)

    Dutta, Paresh Chandra

    1996-04-01

    Full Text Available The objective of this study was to determine the composition of sterols in vegetable oils used in industrial frying operations, and sterols and sterol oxides in the fried potato products. The sterols and sterol oxides were enriched by saponification of oils and by solid phase extraction. Preparative thin layer chromatography, capillary gas chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, were used to give qualitative and quantitative data. The results revealed that the content of desmethylsterols in palm oil, sunflower oil, high oleic sunflower oil, and rapeseed oil/palm oil blend were, 790, 4501, 3550, and 4497 ppm, respectively. Sitosterol was the major desmethylsterol in all samples. Palm oil also contained the lowest levels of total unsaponifiables. The sterols and unsaponifiable contents in sunflower oil were, to some extent, higher than in higholeic sunflower oil. The compositions of sterols after two days of frying were neither markedly different in the oils nor in the potato products fried in these oils compared with the original oils. Isomerised sterols were tentatively quantified to account for 10 ppm, 50 ppm and 20 ppm, in rapeseed oil/palm oil blend, sunflower oil, and high-oleic sunflower oils, respectively. Lipids extracted from French fries prepared in rapeseed oil/palm oil blend contained the highest levels of total sterol oxides, 191 ppm, and epoxides of both sitosterol and campesterol were the major contributors, together at a level of 172 ppm. On the other hand, lipids extracted from French fries prepared in sunflower oil and high-oleic sunflower oil contained 7α-hydroxy-, 7β-hydroxy-, 7-keto- and both epimers of epoxysitosterol, generally in equal amounts. All samples also contained small amounts of different oxidation products of campesterol and stigmasterol.

  1. Thresholds for sterol-limited growth of Daphnia magna: a comparative approach using 10 different sterols.

    Science.gov (United States)

    Martin-Creuzburg, Dominik; Oexle, Sarah; Wacker, Alexander

    2014-09-01

    Arthropods are incapable of synthesizing sterols de novo and thus require a dietary source to cover their physiological demands. The most prominent sterol in animal tissues is cholesterol, which is an indispensable structural component of cell membranes and serves as precursor for steroid hormones. Instead of cholesterol, plants and algae contain a variety of different phytosterols. Consequently, herbivorous arthropods have to metabolize dietary phytosterols to cholesterol to meet their requirements for growth and reproduction. Here, we investigated sterol-limited growth responses of the freshwater herbivore Daphnia magna by supplementing a sterol-free diet with increasing amounts of 10 different phytosterols and comparing thresholds for sterol-limited growth. In addition, we analyzed the sterol composition of D. magna to explore sterol metabolic constraints and bioconversion capacities. We show that dietary phytosterols strongly differ in their potential to support somatic growth of D. magna. The dietary threshold concentrations obtained by supplementing the different sterols cover a wide range (3.5-34.4 μg mg C(-1)) and encompass the one for cholesterol (8.9 μg mg C(-1)), indicating that certain phytosterols are more efficient in supporting somatic growth than cholesterol (e.g., fucosterol, brassicasterol) while others are less efficient (e.g., dihydrocholesterol, lathosterol). The dietary sterol concentration gradients revealed that the poor quality of particular sterols can be alleviated partially by increasing dietary concentrations, and that qualitative differences among sterols are most pronounced at low to moderate dietary concentrations. We infer that the dietary sterol composition has to be considered in zooplankton nutritional ecology to accurately assess potential sterol limitations under field conditions.

  2. A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies

    Directory of Open Access Journals (Sweden)

    R Barani Kumar

    2010-01-01

    Full Text Available Background: Sterol is a very vital compound for most of the insects and mosquitoes to complete their life cycle. Unfortunately mosquitoes cannot synthesize the sterol, it depends on mammals for the same. Mosquitoes take the sterol from the plant decays during their larval stage in the form of phytosterol, which is then converted to cholesterol for further growth and reproduction. This conversion occurs with the help of the sterol carrier protein 2(SCP2. Methods: Mosquito populations are controlled by plant-based inhibitors, which inhibit sterol carrier protein (SCPI-Sterol carrier protein inhibitor activity. In this article, we explain the methods of inhibiting Aedes aegypti SCP2 by insilico methods including natural inhibitor selection and filtrations by virtual screening and interaction studies. Results: In this study protein-ligand interactions were carried out with various phytochemicals, as a result of virtual screening Alpha-mangostin and Panthenol were found to be good analogs, and were allowed to dock with the mosquito cholesterol carrier protein AeSCP-2. Conclusion: Computational selections of SCPIs are highly reliable and novel methods for discovering new and more effective compounds to control mosquitoes.

  3. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  4. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam;

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  5. Biosynthesis and composition of sterols and sterol esters in the land snail Cepaea nemoralis (L.) (gastropoda, pulmonata, stylommatophora)

    NARCIS (Netherlands)

    Horst, D.J. van der; Voogt, P.A.

    1972-01-01

    1. 1. The biosynthesis and composition of sterols and sterol esters were studied in the land snail Cepaea nemoralis after injection of Na-1-14C-acetate. 2. 2. Free and esterified sterols appeared to be synthesized by the animals, whilst the specific radioactivity of the sterols from the esters was

  6. Sterols from the Madagascar Sponge Fascaplysinopsis sp.

    Directory of Open Access Journals (Sweden)

    Yoel Kashman

    2010-12-01

    Full Text Available The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae from the west coast of Madagascar (Indian Ocean is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. In order to evaluate the influence of microsymbionts on lipid content, 10 samples of Fascaplysinopsis sp. were investigated for their sterol composition. Contrary to the secondary metabolites, the sterol patterns established were qualitatively and quantitatively stable: 14 sterols with different unsaturated nuclei, D5, D7 and D5,7, were identified; the last ones being the main sterols of the investigated sponges. The chemotaxonomic significance of these results for the order Dictyoceratida is also discussed in the context of the literature. The conjugated diene system in D5,7 sterols is known to be unstable and easily photo-oxidized during storage and/or experiments to produce 5a,8a-epidioxy sterols. However, in this study, no 5a,8a-epidioxysterols (or only trace amounts were observed. Thus, it was supposed that photo-oxidation was avoided thanks to the natural antioxidants detected in Fascaplysinopsis sp. by both the DPPH and b-caroten bleaching assays.

  7. Plant sterols in food: No consensus in guidelines

    International Nuclear Information System (INIS)

    Highlights: • Plant sterols are used as food supplement to reduce serum cholesterol levels. • Reductions in serum cholesterol levels are achieved at the expense of increased plant sterol levels. • The potential atherogenicity of increased serum plant sterol levels is controversially debated. • This dispute is reflected by different guideline recommendations in regard to plant sterols. - Abstract: Plant sterols are supplemented in foods to reduce cardiovascular risk. Randomized controlled trials show 2 g of plant sterols a day reduce serum cholesterol by about 10%. This reduction in serum cholesterol levels is achieved at the expense of increased serum plant sterol levels. Findings in patients with phytosterolemia, in experimental studies and in clinical trials have lead to speculations that plant sterols might be atherogenic. In view of emerging safety issues the role of plant sterols in cardiovascular prevention has become controversial. This review reflects the ongoing controversial scientific debate and points out recent developments in guidelines of national and international societies

  8. Plant sterols in food: No consensus in guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Weingärtner, Oliver, E-mail: oweingartner@aol.com [Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität, Oldenburg (Germany); Baber, Ronny [Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universität Leipzig, Leipzig (Germany); LIFE – Leipziger Forschungszentrum für Zivilisationserkrankungen, Universität Leipzig, Leipzig (Germany); Teupser, Daniel [Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, München (Germany)

    2014-04-11

    Highlights: • Plant sterols are used as food supplement to reduce serum cholesterol levels. • Reductions in serum cholesterol levels are achieved at the expense of increased plant sterol levels. • The potential atherogenicity of increased serum plant sterol levels is controversially debated. • This dispute is reflected by different guideline recommendations in regard to plant sterols. - Abstract: Plant sterols are supplemented in foods to reduce cardiovascular risk. Randomized controlled trials show 2 g of plant sterols a day reduce serum cholesterol by about 10%. This reduction in serum cholesterol levels is achieved at the expense of increased serum plant sterol levels. Findings in patients with phytosterolemia, in experimental studies and in clinical trials have lead to speculations that plant sterols might be atherogenic. In view of emerging safety issues the role of plant sterols in cardiovascular prevention has become controversial. This review reflects the ongoing controversial scientific debate and points out recent developments in guidelines of national and international societies.

  9. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity.

    Science.gov (United States)

    Zawada, Katarzyna E; Wrona, Dominik; Rawle, Robert J; Kasson, Peter M

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol's ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  10. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

    Science.gov (United States)

    Zawada, Katarzyna E.; Wrona, Dominik; Rawle, Robert J.; Kasson, Peter M.

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  11. STARD4 Membrane Interactions and Sterol Binding.

    Science.gov (United States)

    Iaea, David B; Dikiy, Igor; Kiburu, Irene; Eliezer, David; Maxfield, Frederick R

    2015-08-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.

  12. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry

    OpenAIRE

    Wewer, Vera; Dombrink, Isabel; vom Dorp, Katharina; Dörmann, Peter

    2011-01-01

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF...

  13. Enzyme mechanisms for sterol C-methylations.

    Science.gov (United States)

    Nes, W David

    2003-09-01

    The mechanisms by which sterol methyl transferases (SMT) transform olefins into structurally different C-methylated products are complex, prompting over 50 years of intense research. Recent enzymological studies, together with the latest discoveries in the fossil record, functional analyses and gene cloning, establish new insights into the enzymatic mechanisms of sterol C-methylation and form a basis for understanding regulation and evolution of the sterol pathway. These studies suggest that SMTs, originated shortly after life appeared on planet earth. SMTs, including those which ultimately give rise to 24 alpha- and 24 beta-alkyl sterols, align the si(beta)-face pi-electrons of the Delta(24)-double bond with the S-methyl group of AdoMet relative to a set of deprotonation bases in the active site. From the orientation of the conformationally flexible side chain in the SMT Michaelis complex, it has been found that either a single product is formed or cationic intermediates are partitioned into multiple olefins. The product structure and stereochemistry of SMT action is phylogenetically distinct and physiologically significant. SMTs control phytosterol homeostasis and their activity is subject to feedback regulation by specific sterol inserts in the membrane. A unified conceptual framework has been formulated in the steric-electric plug model that posits SMT substrate acceptability on the generation of single or double 24-alkylated side chains, which is the basis for binding order, stereospecificity and product diversity in this class of AdoMet-dependent methyl transferase enzymes. The focus of this review is the mechanism of the C-methylation process which, as discussed, can be altered by point mutations in the enzyme to direct the shape of sterol structure to optimize function.

  14. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    OpenAIRE

    Wanderley de Souza; Juliany Cola Fernandes Rodrigues

    2009-01-01

    Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl st...

  15. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum.

    Science.gov (United States)

    Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C Y; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji

    2015-09-25

    Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.

  16. Nuclear hormone receptors put immunity on sterols.

    Science.gov (United States)

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  17. Two New Sterols from Bolbostemma paniculatum

    Institute of Scientific and Technical Information of China (English)

    Wen Yong LIU; Wei Dong ZHANG; Hai Sheng CHEN; Zheng Bing GU; Ting Zhao LI; Wan Sheng CHEN

    2003-01-01

    Two new sterols were isolated from bulbs of Bolbostemma paniculatum (Maxim.)Franquet. Their structures were elucidated as stigmasta-7, 22, 25-triene-3-O-nonadecanoic acidester (1) and stigmasta-7, 22, 25-triene-3-O-β-D- (6'-palmitoyl) glucopyranoside (2) by chemicaland spectroscopic methods.

  18. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    Science.gov (United States)

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  19. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    far been of limited value, since corals identified as belonging to a particular species in terms of taxonomy produce different sets of sterols in the hands of different groups of workers and in the hands of the same group when the collections... on structure elucidation and synthesis of bioactive marine natural products in reputed journals. His current research interest includes structure determination of novel bioactive marine metabolites using modern spectroscopic techniques and their chemical...

  20. Multicolor bleach-rate imaging enlightens in vivo sterol transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sage, Daniel

    2011-01-01

    , dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel...... with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans....

  1. Sterol contents from some fabaceous medicinal plants of Rajasthan desert

    Directory of Open Access Journals (Sweden)

    B.B.S.Kapoor

    2013-12-01

    Full Text Available Evaluation of sterol contents from three selected medicinal plant species of Fabaceae family growing in Rajasthan Desert was carried out. The roots, shoots and fruits of Clitoria ternatea, Sesbania bispinosa and Tephrosia purpurea were analysed for sterol contents. - Sitosterol and Stigmasterol were isolated and identified. Maximum sterol contents were observed in shoots of Sesbania bispinosa (0.29 mg/g.d.w., whereas minimum in roots of Tephrosia purpurea(0.15mg/g.d.w.

  2. Distribution of sterols in the fungi. I - Fungal spores

    Science.gov (United States)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  3. Cholesterol homeostasis: How do cells sense sterol excess?

    Science.gov (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis. PMID:26993747

  4. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    Science.gov (United States)

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  5. Increased plant sterol and stanol levels in brain of Watanabe rabbits fed rapeseed oil derived plant sterol or stanol esters

    DEFF Research Database (Denmark)

    Fricke, Christiane B.; Schrøder, Malene; Poulsen, Morten;

    2007-01-01

    Foods containing plant sterol or stanol esters can be beneficial in lowering LDL-cholesterol concentration, a major risk factor for CVD. The present study examined whether high dietary intake of rapeseed oil (RSO) derived plant sterol and stanol esters is associated with increased levels...... form for 120 d (n 9 for each group). Concentrations of cholesterol, its precursor lathosterol, plant sterols and stanols in brain and additionally in liver and plasma were determined by highly sensitive GC-MS. High-dose intake of RSO derived plant sterols and stanols resulted in increased levels....... Cholesterol synthesis in brain, indicated by lathosterol, a local surrogate cholesterol synthesis marker, does not seem to be affected by plant sterol or stanol ester feeding. We conclude that high dose intake of plant sterol and stanol esters in Watanabe rabbits results in elevated concentrations...

  6. Cellular uptake of steroid carrier proteins – mechanisms and implications

    OpenAIRE

    Willnow, T E; Nykjaer, A

    2009-01-01

    Abstract Steroid hormones are believed to enter cells solely by free diffusion through the plasma membrane. However, recent studies suggest the existence of cellular uptake pathways for carrier-bound steroids. Similar to the clearance of cholesterol via lipoproteins, these pathways involve the recognition of carrier proteins by endocytic receptors on the surface of target cells, followed by internalization and cellular delivery of the bound sterols. Here, we discuss the emerging co...

  7. Involvement of heme biosynthesis in control of sterol uptake by Saccharomyces cerevisiae.

    OpenAIRE

    Lewis, T A; Taylor, F R; Parks, L W

    1985-01-01

    Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth o...

  8. Two New Sterols from Amoora yunnanensis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two new sterols, 3β,7α,16β-trihydroxy-stigmast-5,22-diene 1, 3β,7α,16β-trihydroxy-stigmast-5-ene 2, were isolated together with two known ergosterols, ergosta-5,24(28)-diene-3β,7α-diol, ergosta-5,24(28)-diene-3β,7α,16β-triol from the bark of Amoora yunnanensis (H. L. Li) C. Y. Wu. Their structures were deduced on the basis of spectral data.

  9. Sterols from the Fungus Catathelasma imperiale

    Institute of Scientific and Technical Information of China (English)

    YANG, Sheng-Ping; XU, Jun; YUE, Jian-Min

    2003-01-01

    Eight ergostane-type sterols and three their derivatives (one mono-linoleate and two mono-glucosides) were isolated from the ethyl acetate soluble fraction of the fungus Catathelasma imperiale. Two of them are novel compounds, namely 22E, 24R-ergosta-7,22-diene-3β, 5α-diol-6β-linoleate (1) and 22E, 24R-ergosta-7,22-diene-3β,5β,6α-triol (5) with an uncommon cisfused A/B ring. Structures of these compounds were demonstrated on the basis of their chemical evidences and spectroscopic methods, especially 2D NMR techniques.

  10. Sterol Ring System Oxidation Pattern in Marine Sponges

    Directory of Open Access Journals (Sweden)

    S. Ramakrishna Rao

    2005-06-01

    Full Text Available Abstract: The marine sponges (Porifera are a unique group of sedentary organisms from which several novel natural products are reported, many of which have useful biological activities. In producing unusual sterols, they occupy a preeminent position among the various groups of organisms. The polar sterols of sponges reported as at the end of the year 2002 number about 250; their ring structure changing a hundred times. The oxidation pattern in the sterol ring system, from the point of view of biogenesis seems to be mainly of four types. Each sponge species is able to produce sterols fitting into one of the four main biogenetic pathways viz., (i 3β-hydroxy-Δ5-sterol pathway, (ii 3β-hydroxy-Δ7-sterol pathway, (iii 3β-hydroxy-Δ5,7-sterol pathway, and (iv 3α-hydroxy sterol pathway.

  11. Composition of plant sterols and stanols in supplemented food products

    Science.gov (United States)

    All fruits, vegetables, grains and other plant materials contain small amounts of plant sterols, which are essential for the function of the biological membranes in living cells. The average human consumption of plant sterols has been estimated to be about 150-350 mg/day and trace amounts of stanol...

  12. Reduced fecal sterol excretion in subjects with familial hypoalphalipoproteinemia

    NARCIS (Netherlands)

    El Harchaoui, Karim; Franssen, Remco; Hovingh, G. Kees; Bisoendial, Radjesh J.; Stellaard, Frans; Kuipers, Folkert; Kastelein, John J. P.; Kuivenhoven, Jan Albert; Stroes, Erik S. G.; Groen, Albert K.

    2009-01-01

    BACKGROUND: Fecal bile acid and neutral sterol excretion are the obligate endpoints of the reverse cholesterol transport pathway (RCT). In studies in mice, no evidence was found for a relation between HDL-cholesterol (HDL-c) levels and fecal sterol excretion. In this study, we have evaluated this re

  13. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    Science.gov (United States)

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  14. Genetic variation in plant CYP51s confers resistance against voriconazole, a novel inhibitor of brassinosteroid-dependent sterol biosynthesis.

    Directory of Open Access Journals (Sweden)

    Wilfried Rozhon

    Full Text Available Brassinosteroids (BRs are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.

  15. Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.

    Science.gov (United States)

    Mezni, Faten; Labidi, Arbia; Khouja, Mohamed Larbi; Martine, Lucy; Berdeaux, Olivier; Khaldi, Abdelhamid

    2016-05-01

    Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography-flame-ionization detection (GC-FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β-sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24-methylene-cycloartenol (5%). Statistical results revealed that growing location significantly (P < 0.001) affected phytosterol levels in these oils. PMID:27060921

  16. Origin assessment of EV olive oils by esterified sterols analysis.

    Science.gov (United States)

    Giacalone, Rosa; Giuliano, Salvatore; Gulotta, Eleonora; Monfreda, Maria; Presti, Giovanni

    2015-12-01

    In this study extra virgin olive oils of Italian and non-Italian origin (from Spain, Tunisia and blends of EU origin) were differentiated by GC-FID analysis of sterols and esterified sterols followed by chemometric tools. PCA allowed to highlight the high significance of esterified sterols to characterise extra virgin olive oils in relation to their origin. SIMCA provided a sensitivity and specificity of 94.39% and 91.59% respectively; furthermore, an external set of 54 extra virgin olive oils bearing a designation of Italian origin on the labelling was tested by SIMCA. Prediction results were also compared with organoleptic assessment. Finally, the poor correlation found between ethylesters and esterified sterols allowed to hazard the guess, worthy of further investigations, that esterified sterols may prove to be promising in studies of geographical discrimination: indeed they appear to be independent of those factors causing the formation of ethyl esters and related to olive oil production.

  17. Profiling and Metabolism of Sterols in the Weaver Ant Genus Oecophylla.

    Science.gov (United States)

    Vidkjær, Nanna H; Jensen, Karl-Martin V; Gislum, René; Fomsgaard, Inge S

    2016-01-01

    Sterols are essential to insects because they are vital for many biochemical processes, nevertheless insects cannot synthesize sterols but have to acquire them through their diet. Studies of sterols in ants are sparse and here the sterols of the weaver ant genus Oecophylla are identified for the first time. The sterol profile and the dietary sterols provided to a laboratory Oecophylla longinoda colony were analyzed. Most sterols originated from the diet, except one, which was probably formed via dealkylation in the ants and two sterols of fungal origin, which likely originate from hitherto unidentified endosymbionts responsible for supplying these two compounds. The sterol profile of a wild Oecophylla smaragdina colony was also investigated. Remarkable qualitative similarities were established between the two species despite the differences in diet, species, and origin. This may reflect a common sterol need/aversion in the weaver ants. Additionally, each individual caste of both species displayed unique sterol profiles. PMID:26996016

  18. Profiling and Metabolism of Sterols in the Weaver Ant Genus Oecophylla.

    Science.gov (United States)

    Vidkjær, Nanna H; Jensen, Karl-Martin V; Gislum, René; Fomsgaard, Inge S

    2016-01-01

    Sterols are essential to insects because they are vital for many biochemical processes, nevertheless insects cannot synthesize sterols but have to acquire them through their diet. Studies of sterols in ants are sparse and here the sterols of the weaver ant genus Oecophylla are identified for the first time. The sterol profile and the dietary sterols provided to a laboratory Oecophylla longinoda colony were analyzed. Most sterols originated from the diet, except one, which was probably formed via dealkylation in the ants and two sterols of fungal origin, which likely originate from hitherto unidentified endosymbionts responsible for supplying these two compounds. The sterol profile of a wild Oecophylla smaragdina colony was also investigated. Remarkable qualitative similarities were established between the two species despite the differences in diet, species, and origin. This may reflect a common sterol need/aversion in the weaver ants. Additionally, each individual caste of both species displayed unique sterol profiles.

  19. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    Science.gov (United States)

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  20. The Evolution of Sterol Biosynthesis in Bacteria: In Situ Fluorescence Localization of Sterols in the Nucleoid Bacterium Gemmata obscuriglobus

    Science.gov (United States)

    Budin, M.; Jorgenson, T. L.; Pearson, A.

    2004-12-01

    The biosynthesis of sterols is generally regarded as a eukaryotic process. The first enzymatic step in the production of sterols requires molecular oxygen. Therefore, both the origin of eukaryotes and the evolution of sterol biosynthesis were thought to postdate the rise of oxygen in earth's atmosphere, until Brocks et al. discovered steranes in rocks aged 2.7 Ga (1). Many prokaryotes produce hopanoids, sterol-like compounds that are synthesized from the common precursor squalene without the use of molecular oxygen. However, a few bacterial taxa are also known to produce sterols, suggesting this pathway could precede the rise of oxygen (2, 3). Recently, we discovered the shortest sterol-producing biosynthetic pathway known to date in the bacterium Gemmata obscuriglobus (4). Using genomic searches, we found that Gemmata has the enzymes necessary for synthesis of sterols, and lipid analyses showed that the sterols produced are lanosterol and its isomer parkeol. Gemmata is a member of the Planctomycetes, an unusual group of bacteria, all of the known species of which contain intracellular compartmentalization. Among the Planctomycetes, Gemmata uniquely is the only prokaryote known to contain a double-membrane-bounded nuclear body (5). Since sterols usually are found in eukaryotes, and Gemmata has a eukaryote-like nuclear organelle, we investigated the location of the sterols within Gemmata to postulate whether they play a role in stabilization of the nuclear membrane and control of genomic organization. We used the sterol-specific fluorescent dye Filipin III in conjunction with fluorescent dyes for internal and external cellular membranes in order to determine whether the sterols are located in the nuclear body membrane, external membrane, or both. We found that sterols in Gemmata are concentrated in the internal membrane, implying that they function in maintaining this unusual cellular component. It is notable that Gemmata also produce hopanoids, suggesting that they

  1. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    Science.gov (United States)

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  2. Sterols of Saccharomyces cerevisiae erg6 Knockout Mutant Expressing the Pneumocystis carinii S-Adenosylmethionine:Sterol C-24 Methyltransferase.

    Science.gov (United States)

    Kaneshiro, Edna S; Johnston, Laura Q; Nkinin, Stephenson W; Romero, Becky I; Giner, José-Luis

    2015-01-01

    The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild-type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy ((1)H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ(24(28)) -sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.

  3. Sterol Composition in Infant Formulas and Estimated Intake.

    Science.gov (United States)

    Claumarchirant, Lorena; Matencio, Esther; Sanchez-Siles, Luis Manuel; Alegría, Amparo; Lagarda, María Jesús

    2015-08-19

    Sterol contents in infant formulas (IFs) from the European market were determined, and their intakes by infants between 0 and 6 months were evaluated. Total animal sterols (mg/100 mL) ranged from 1.71 to 5.46, cholesterol being the main animal sterol (1.46-5.1). In general, cholesterol and desmosterol were lower than the human milk (HM) values indicated by other authors. Total plant sterol (mg/100 mL) ranged from 3.1 to 5.0. β-Sitosterol, the most abundant phytosterol, ranged from 1.82 to 3.01, followed by campesterol (0.72-1.15), stigmasterol (0.27-0.53), and brassicasterol (0.14-0.28). Cholesterol intake (mg/day) ranged from 9 to 51 and plant sterol intake (mg/day) from 19 to 50. The sterol profile of IFs is highly dependent on the type and quantity of fats used in their formula. The use of bovine milk fat and milk fat globule membrane in the IFs can approximate the profile of animal sterols to those found in HM, though cholesterol intakes in breastfed infants are still higher than in formula-fed infants.

  4. Sterol composition from inflorescences of Hieracium pilosella L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Krzaczek

    2011-04-01

    Full Text Available The fraction of sterol acetates from the inflorescences of Hieracium pilosella has been isolated in the typical way from petroleum ether extract. By means of the weight method the total amount of sterols was determined (0.2659%. The mixtures of sterol acetates and free sterols were investigated using GC-MS techniques. The occurrence of about 18 sterols has been observed. Cholesterol, cholest-8(14-en-3b-ol, cholesta-5.7-dien-3b-ol, cholest-7-en-3b-ol, ergosta-5.24-dien-3b-ol, campesterol, stigmasterol, b-sitosterol, fucosterol, 5a-stigmast-7-en-3a-ol were identified. The probable structures of lophenol, isofucosterol, 5a-stigmasta-7.24-dien-3b-ol, lanosta-9(11.24-dien-3b-ol and 24-ethylidene lophenol were stated on the basis of literature data. The last 4 sterols occur in a vestigial quantity, which made its identification impossible. Sitos erol and cholesterol are remarkably dominating sterols in the fraction.

  5. Sterols of a contemporary lacustrine sediment. [in English postglacial lake

    Science.gov (United States)

    Gaskell, S. J.; Eglinton, G.

    1976-01-01

    Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.

  6. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    Science.gov (United States)

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  7. Sterol composition of the Adriatic Sea algae Ulva lactuca, Codium dichotomum, Cystoseira adriatica and Fucus virsoides

    Directory of Open Access Journals (Sweden)

    RADOMIR KAPETANOVIC

    2005-12-01

    Full Text Available The sterol composition of two green algae and two brown algae from the South Adriatic was determined. In the green alga Ulva lactuca, the principal sterols were cholesterol and isofucosterol. In the brown alga Cystoseira adriatica, the main sterols were cholesterol and stigmast-5-en-3ß-ol, while the characteristic sterol of the brown algae, fucosterol, was found only in low concentration. The sterol fractions of the green alga Codium dichotomum and the brown alga Fucus virsoides contained practically only one sterol each, comprising more than 90 % of the total sterols (clerosterol in the former and fucosterol in the latter.

  8. Radionuclide carriers

    International Nuclear Information System (INIS)

    A new carrier for radionuclide technetium 99m has been prepared for scintiscanning purposes. The new preparate consists of physiologically acceptable water-insoluble Tcsup(99m)-carrier containing from 0.2 to 0.8 weight percent of stannic ion as reductor, bound to an anionic starch derivative with about 1-20% of phosphate substituents. (EG)

  9. Sterol Profile for Natural Juices Authentification by GC-MS

    International Nuclear Information System (INIS)

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25μm film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices

  10. Two New C29 Sterols from Clerodendrum colebrookianum

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    From the aerial parts of Clerodendrum colebrookianum Walp., two new C29 sterols, colebrin A and colebrin B, were isolated, along with a known compound, clerosterol .The structures of the new compounds were elucidated on the basis of spectral evidence.

  11. Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity

    DEFF Research Database (Denmark)

    Casanovas, Albert; Hannibal-Bach, Hans Kristian; Jensen, Ole Nørregaard;

    2014-01-01

    Fourier transform mass spectrometry (FTMS) for identification and quantification of lipid species [6]. Shotgun lipidomics affords extensive lipidome coverage by combining the analysis of lipid extracts in positive and negative ion mode [1, 3]. Notably, sterols such as cholesterol and ergosterol exhibit...... low ionization efficiency in ESI [7]. For this reason, chemical derivatization procedures including acetylation [8] or sulfation [9] are commonly implemented to facilitate ionization, detection and quantification of sterols for global lipidome analysis [1-3, 10]....

  12. Fiber, intestinal sterols, and colon cancer.

    Science.gov (United States)

    Huang, C T; Gopalakrishna, G S; Nichols, B L

    1978-03-01

    It has been postulated that dietary fiber's protective effect against the development of colon cancer, diverticular disease, and atherosclerosis may be due to the adsorption and/or dilution of intestinal sterols such as bile acids and neural sterols and their bacterial metabolites by component(s) of fiber. Dietary fiber is made up of four major components-cellulose, hemicellulose, lignin, and pectin. There is evidence that hemicellulose and pectin may induce an increase in fecal bile acid excretion in man which may be accompanied by a decrease in serum cholesterol. Natural fibers, such as rolled oats, alfalfa, guar gum, and Bengal gram have been shown to have hypocholesterolemic properties of alfalfa, wheat straw, and some other fibers found considerable amounts of bile acids in vitro. On the other hand, wheat bran, oat hulls, and all the synthetic fibers tested bound only negligible amounts of bile acids under the same conditions. Vegetarians in the United States have lower plasma lipids and different plasma lipoprotein patterns than those of comparable control populations on regular mixed diet. They also have smaller daily fractional turnover rates of cholic acid and deoxycholic acid pool size. In addition, populations on a mixed Western diet, where the rate of large bowel cancer is high (North American, English, Scottish, etc.) degraded and excreted cholesterol and bile acid metabolites to a greater degree than populations where the rate of colon cancer is comparatively low (Ugandan, Japanese, etc). It cannot be denied that the fiber theory linking fiber deficiency with the development of colon cancer and other diseases, is simple, attractive and appears to be firmly based in common sense. When subjected to research studies, however, the situation appears much more complex than expected. Although some progress is being made, the data are often contradictory and confusing, probably due to lack of adequate documentation of fiber intake (e.g., use of dietary fiber

  13. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    Science.gov (United States)

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  14. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    in Asia and will balance the carrier acquisitions of the United States, the United Kingdom, Russia and India. China’s current military strategy is predominantly defensive, its offensive elements being mainly focused on Taiwan. If China decides to acquire a large carrier with offensive capabilities......, then the country will also acquire the capability to project military power into the region beyond Taiwan, which it does not possess today. In this way, China will have the military capability to permit a change of strategy from the mainly defensive, mainland, Taiwan-based strategy to a more assertive strategy...... to acquire a carrier, they can either buy one or build it themselves. The easiest way would be to buy a carrier, and if that is the chosen option, then Russia would be the most likely country to build it. Technologically, it will be a major challenge for them to build one themselves and it is likely...

  15. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    Science.gov (United States)

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species.

  16. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    Science.gov (United States)

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. PMID:25416794

  17. Free and Esterified Sterol Distribution in Four Romanian Vegetable Oil

    Directory of Open Access Journals (Sweden)

    Francisc Vasile DULF

    2010-09-01

    Full Text Available The unsaponifiable lipid fraction of plant-based foods is a potential source of bioactive components such as phytosterols, triterpenoids, carotenoids, tocopherols and various hydrocarbons. The free and esterified sterol concentrations in four Romanian edible oils (corn germ, wheat germ, sweet almond and grape seed oil were determined, including individual values for β-sitosterol, campesterol, stigmasterol, Δ5-avenasterol, sitostanol, campestanol, and cholesterol. Free and esterified sterols were separated by solid-phase extraction (SPE, saponified, and analyzed as trimethylsilyl ether derivatives using gas-chromatography (GC with flame ionization detector (FID. Differences in total sterol content and the proportion of esterified (ES and free sterols (FS were evident for studied oil samples. In general, β-sitosterol was the most prevalent phytosterol, ranging in concentration from 158.3 mg/100 g in grape seed oil to 478.5 mg/100 g in corn germ oil. Only in these two vegetable oil, we identified trace amount of cholesterol (<3 mg/100g. The total sterol concentrations ranged from 199.9 mg/100g (sweet almond oil to 745.2 mg/100 g (corn germ oil. In corn germ and wheat germ oil, the dominant form of sterols was the esterified one (60.7% ES and 55.6% ES, respectively, of total sterols. This study consolidates the view that vegetable oils are good natural sources of phytosterols. The analyses of these components provide rich information about the identity and quality of vegetable oils. The corn germ and wheat germ oils proved to be the richest sources in phytosterols, being recommended as functional oils.

  18. Identifying avian sources of faecal contamination using sterol analysis.

    Science.gov (United States)

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  19. Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects

    Directory of Open Access Journals (Sweden)

    Spencer eBehmer

    2013-09-01

    Full Text Available All eukaryotes contain sterols, which serve as structural components in cell membranes, and as precursors for important hormones. Plant vegetative tissues are known to contain mixtures of sterols, but very little is known about the sterol composition of phloem. Plants are food for many animals, but plant-feeding arthropods (including phloem-feeding insets are unique among animals in that they have lost the ability to synthesize sterols, and must therefore acquire these essential nutrients from their food, or via endosymbionts. Our paper starts by providing a very brief overview of variation in plant sterol content, and how different sterols can affect insect herbivores, including those specializing on phloem. We then describe an experiment, where we bulk collected phloem sap exudate from bean and tobacco, and analyzed its sterol content. This approach revealed two significant observations concerning phloem sterols. First, the phloem exudate from each plant was found to contain sterols in three different fractions – free sterols, sterols conjugated to lipids (acylated, and sterols conjugated to carbohydrates (glycosylated. Second, for both plants, cholesterol was identified as the dominant sterol in each phloem exudate fraction; the remaining sterol in the fraction was a mixture of common phytosterols. We discuss our phloem exudate sterol profiles in a plant physiology/biochemistry context, and how it relates to the nutritional physiology/ecology of phloem-feeding insects. We close by proposing important next steps that will advance our knowledge concerning plant phloem sterol biology, and how phloem-sterol content might affect phloem-feeding insects.

  20. Characterization of fatty alcohol and sterol fractions in olive tree.

    Science.gov (United States)

    Orozco-Solano, Mara; Ruiz-Jimenez, José; Luque De Castro, María D

    2010-07-14

    The determination of sterols and fatty alcohols is a part of the study of the metabolomic profile of the unsaponifiable fraction in olive tree. Leaves and drupes from three varieties of olive tree (Arbequina, Picual, and Manzanilla) were used. The content of the target compounds was studied in five ripeness stages and three harvesting periods for olive drupes and leaves, respectively. A method based on ultrasound-assisted extraction and derivatization for the individual identification and quantitation of sterols and fatty alcohols, involving chromatographic separation and mass spectrometry detection by selected ion monitoring, was used. The concentrations of alcohols and sterols in the drupes ranged between 0.1 and 1086.9 mug/g and between 0.1 and 5855.3 mug/g, respectively, which are higher than in leaves. Statistical studies were developed to show the relationship between the concentration of the target analytes and variety, ripeness stage, and harvesting period. PMID:20550122

  1. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Science.gov (United States)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  2. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, J.; Rowat, Amy Catherine; Ipsen, John Hjorth

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse...

  3. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse...

  4. Sterols as biomarkers in the surface microlayer of the estuarine areas.

    Science.gov (United States)

    Alsalahi, Murad Ali; Latif, Mohd Talib; Ali, Masni Mohd; Dominick, Doreena; Khan, Md Firoz; Mustaffa, Nur Ili Hamizah; Nadzir, Mohd Shahrul Mohd; Nasher, Essam; Zakaria, Mohamad Pauzi

    2015-04-15

    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  5. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    Science.gov (United States)

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.

  6. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    Science.gov (United States)

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  7. Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects

    OpenAIRE

    Behmer, Spencer T.; Olszewski, Nathan; Sebastiani, John; Palka, Sydney; Sparacino, Gina; Sciarrno, Elizabeth; Robert J Grebenok

    2013-01-01

    All eukaryotes contain sterols, which serve as structural components in cell membranes, and as precursors for important hormones. Plant vegetative tissues are known to contain mixtures of sterols, but very little is known about the sterol composition of phloem. Plants are food for many animals, but plant-feeding arthropods (including phloem-feeding insets) are unique among animals in that they have lost the ability to synthesize sterols, and must therefore acquire these essential nutrients fr...

  8. Simultaneous Effects of Light Intensity and Phosphorus Supply on the Sterol Content of Phytoplankton

    OpenAIRE

    Maike Piepho; Dominik Martin-Creuzburg; Alexander Wacker

    2010-01-01

    Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas ...

  9. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2009-01-01

    Full Text Available Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS, which catalyzes the first committed step in sterol biosynthesis, (d allylamines, inhibitors of squalene epoxidase, (e azoles, which inhibit C14α-demethylase, and (f azasterols, which inhibit Δ24(25-sterol methyltransferase (SMT. Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures, and their effects on protozoan structural organization (as evaluted by light and electron microscopy and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take

  10. Study on sterols from brown algae (Sargassum muticum)

    Institute of Scientific and Technical Information of China (English)

    WANG Peirong; XU Guanjun; BIAN Lizeng; ZHANG Shuichang; SONG Fuqing

    2006-01-01

    Various △5-3β-sterenols, whose carbon numbers range from C19-C23 to C26-C30and some compounds have many stereomers maximal up to six,have been detected out from the extract of brown algae (Sargassum muticum), which means that steranes with lower carbon numbers are likely different in the origin, and some corresponding sterol stereoisomers may have already existed in their precursor organisms. This provides some experimental evidence for supplementing and amending the traditional interpretation of the sterol stereoisomer transformation during the deposition and diagenesis of organic matter.

  11. Efficacy and safety of plant stanols and sterols in the control of blood cholesterol levels

    NARCIS (Netherlands)

    Katan, M.B.; Grundy, S.M.; Jones, P.J.H.; Law, M.R.; Miettinen, T.; Paoletti, R.

    2003-01-01

    Foods with plant stanol or sterol esters lower serum cholesterol levels. We summarize the deliberations of 32 experts on the efficacy and safety of sterols and stanols. A meta-analysis of 41 trials showed that intake of 2 g/d of stanols or sterols reduced low-density lipoprotein (LDL) by 10%; higher

  12. Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.

    Science.gov (United States)

    Robalo, João R; Ramalho, J P Prates; Huster, Daniel; Loura, Luís M S

    2015-09-21

    Following a recent experimental investigation of the effect of the length of the alkyl side chain in a series of cholesterol analogues (Angew. Chem., Int. Ed., 2013, 52, 12848-12851), we report here an atomistic molecular dynamics characterization of the behaviour of methyl-branched side chain sterols (iso series) in POPC bilayers. The studied sterols included androstenol (i-C0-sterol) and cholesterol (i-C8-sterol), as well as four other derivatives (i-C5, i-C10, i-C12 and i-C14-sterol). For each sterol, both subtle local effects and more substantial differential alterations of membrane properties along the iso series were investigated. The location and orientation of the tetracyclic ring system is almost identical in all compounds. Among all the studied sterols, cholesterol is the sterol that presents the best matching with the hydrophobic length of POPC acyl chains, whereas longer-chained sterols interdigitate into the opposing membrane leaflet. In accordance with the experimental observations, a maximal ordering effect is observed for intermediate sterol chain length (i-C5, cholesterol, i-C10). Only for these sterols a preferential interaction with the saturated sn-1 chain of POPC (compared to the unsaturated sn-2 chain) was observed, but not for either shorter or longer-chained derivatives. This work highlights the importance of the sterol alkyl chain in the modulation of membrane properties and lateral organization in biological membranes.

  13. Minor sterols from the sponge Ircinia ramosa (Killer)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S; Naik, C.G.; Das, B.; Kamat, S.Y.

    -one (7-oxo sitosterol, 3) respectively. Besides two minor sterols viz., 24E-ethyl cholest-5-en-3 beta, 7-diol (7-hydroxy sitosterol, 4) and 24-ethylcholest-5, 24 (28)-dien-3 beta, 7-diol (7-hydroxy fucosterol, 5) were also tentatively identified...

  14. An Abietane Diterpene and a Sterol from Fungus Phellinus igniarius

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new abietane diterpene 12-hydroxy-7-oxo-5, 8, 11, 13-tetraene-18, 6-abietanolide,together with a new natural sterol stigmasta-7, 22-diene-3β, 5α, 6α-triol have been isolated from the fruiting body of the fungus Phellinus igniarius. Their structures were elucidated by spectroscopic methods including 2D NMR techniques.

  15. The counterflow transport of sterols and PI4P.

    Science.gov (United States)

    Mesmin, Bruno; Antonny, Bruno

    2016-08-01

    Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26928592

  16. Preconception Carrier Screening

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preconception Carrier Screening Home For Patients Search FAQs Preconception Carrier Screening ... Screening FAQ179, August 2012 PDF Format Preconception Carrier Screening Pregnancy What is preconception carrier screening? What is ...

  17. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.)

    Institute of Scientific and Technical Information of China (English)

    Ming Luo; Kunling Tan; Zhongyi Xiao; Mingyu Hu; Peng Liao; Kuijun Chen

    2008-01-01

    Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. Two kinds of intermediates, sitosterol and campesterol, play a crucial role in cell elongation, cellulose biosynthesis, and accumulation. To illuminate the effects of sitosterol and campesterol on the development of cotton (Gossypium hirsuturm L.) fibers through screening cotton fiber EST database and contigging the candidate ESTs, two key genes GhSMT2-1 and GhSMT2-2 controlling the sitosterol biosynthesis were cloned from developing fibers of upland cotton cv. Xuzhou 142. The full length of GhSMT2-1 was 1, 151bp, including an 8bp 5'-untranslated region (UTR), a 1, 086bp open reading frame (ORF), and a 57bp 3'-UTR. GhSMT2-1 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The full length of GhSMT2-2 was 1, 166bp, including an 18bp 5'-UTR, a 1, 086bp ORF, and a 62bp 3'-UTR. GhSMT2-2 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The two deduced amino acid sequences had high homology with the SMT2 from Arabidopsis thaliana and Nicotiana tabacum. Furthermore, the typical conserved structures characterized by the sterol C-24 methyltransferase, such as region I (LDVGCGVGGPIVIRAI), region Ⅱ (IEATCHAP), and region Ⅲ (YEWGWGQSFHF), were present in both deduced proteins. Southern blotting analysis indicated that GhSMT2-1 or GhSMT2-2 was a single copy in upland cotton genome. Quantitative real-time RT-PCR analysis revealed that the highest expression levels of both genes were detected in 10 DPA (day post anthesis) fibers, while the lowest levels were observed in cotyledon and leaves. The expression level of GhSMT2-1 was 10 times higher than that of GhSMT2-2 in all the organs and tissues detected. These results indicate that the homologue of sterol C-24 methyltransferase gene was cloned from upland cotton and both GhSMT2 genes play a crucial

  18. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-10-01

    Full Text Available Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(- were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(- mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(- causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  19. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    Science.gov (United States)

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  20. The sterols of Cucurbita moschata ("calabacita") seed oil.

    Science.gov (United States)

    Rodriguez, J B; Gros, E G; Bertoni, M H; Cattaneo, P

    1996-11-01

    From the sterol fraction of seed oil from commercial Cucurbita moschata Dutch ("calabacita") delta 5 and delta 7 sterols having saturated and unsaturated side chain were isolated by chromatographic procedures and characterized by spectroscopic (1H and 13C-nuclear magnetic resonance, mass spectrometry) methods. The main components were identified as 24S-ethyl 5 alpha-cholesta-7,22E-dien-3 beta-ol (alpha-spinasterol); 24S-ethyl 5 alpha-cholesta-7,22E,25-trien-3 beta-ol (25-dehydrochondrillasterol); 24S-ethyl 5 alpha-cholesta-7,25-dien-3 beta-ol; 24R-ethyl-cholesta-7-en-3 beta-ol (delta 7-stigmastenol) and 24-ethyl-cholesta-7, 24(28)-dien-3 beta-ol (delta 7,24(28)-stigmastadienol).

  1. The Identification of Two New Sterols from Marine Organism

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two new sterol have been isolated from the South China Sea marine organism. Compound 1 was isolated from the sponge Polymastia sobustia and compound 2 was obtained from the soft coral Sinularia inexplicata. Their structures were established as 3β -hydroxy- stigmast-5en-7-one and 24 - methylene cholestan -3β, 6β, 9α, 19 -tetrol by variety of spectral analysis such as IR, EIMS, 1DNMR, 1H-1H COSY, HMQC, HMBC, NOESY.

  2. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  3. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  4. 甾体衍生物的合成%SYNTHESIS OF STEROL DERIVATIVES BASED ON STEROL METHYLTRANSFERASE ENZYME

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study on sterol methytranferase enzyme. METHODS:Target compounds were synthesized from cycloartenoland 24(28)-methylenecycloartenol extracted from γ-oryzanol. RESULTS: 11 sterol derivatives were successfully synthesized. CONCLUSIONS:The target compounds were purified by HPLC and their structures were confirmed by NMR and GC/MS. The methods are simple and operable.%目的:研究甾体甲基化转移酶。方法:从γ-oryzanol提取的cycloartenol和 24(28)-methylenecycloartenol为初始原料合成目标化合物。结果:成功地合成了11个甾体衍生物。结论:目标化合物均经HPLC 纯化;结构均经NMR和GC/MS确证,方法简便易行。

  5. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.;

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been...... implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found...... that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S...

  6. Sterol O-Acyltransferase 2-Driven Cholesterol Esterification Opposes Liver X Receptor-Stimulated Fecal Neutral Sterol Loss.

    Science.gov (United States)

    Warrier, Manya; Zhang, Jun; Bura, Kanwardeep; Kelley, Kathryn; Wilson, Martha D; Rudel, Lawrence L; Brown, J Mark

    2016-02-01

    Statin drugs have proven a successful and relatively safe therapy for the treatment of atherosclerotic cardiovascular disease (CVD). However, even with the substantial low-density lipoprotein (LDL) cholesterol lowering achieved with statin treatment, CVD remains the top cause of death in developed countries. Selective inhibitors of the cholesterol esterifying enzyme sterol-O acyltransferase 2 (SOAT2) hold great promise as effective CVD therapeutics. In mouse models, previous work has demonstrated that either antisense oligonucleotide (ASO) or small molecule inhibitors of SOAT2 can effectively reduce CVD progression, and even promote regression of established CVD. Although it is well known that SOAT2-driven cholesterol esterification can alter both the packaging and retention of atherogenic apoB-containing lipoproteins, here we set out to determine whether SOAT2-driven cholesterol esterification can also impact basal and liver X receptor (LXR)-stimulated fecal neutral sterol loss. These studies demonstrate that SOAT2 is a negative regulator of LXR-stimulated fecal neutral sterol loss in mice. PMID:26729489

  7. Plant Sterols as Dietary Adjuvants in the Reduction of Cardiovascular Risk: Theory and Evidence

    OpenAIRE

    Patch, Craig S; Tapsell, Linda C; Williams, Peter G.; Gordon, Michelle

    2006-01-01

    Plant sterol-enriched foods are an effective dietary adjuvant in reducing cardiovascular risk by lowering total cholesterol and low density lipoprotein-cholesterol (LDL-C) in serum by up to ∼15%. The mechanism of action of plant sterols is different from those of 3-hydroxy-3-methylglutaryl coenzyme A inhibitors (statins) and thus their effect is additive. Combining plant sterols with other dietary components known to reduce cholesterol in a portfolio approach has proven to be most effective f...

  8. Supplementation with Sterols Improves Food Quality of a Ciliate for Daphnia magna

    OpenAIRE

    Martin-Creuzburg, Dominik; Bec, Alexandre; Elert, Eric von

    2006-01-01

    Experimental results provide evidence that trophic interactions between ciliates and Daphnia are constrained by the comparatively low food quality of ciliates. The dietary sterol content is a crucial factor in determining food quality for Daphnia. Ciliates, however, presumably do not synthesize sterols de novo. We hypothesized that ciliates are nutritionally inadequate because of their lack of sterols and tested this hypothesis in growth experiments with Daphnia magna and the ciliate Colpidiu...

  9. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum.

    Science.gov (United States)

    Bouvaine, Sophie; T Behmer, Spencer; Lin, George G; Faure, Marie-Line; Grebenok, Robert J; Douglas, Angela E

    2012-11-01

    The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10μgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration. PMID:22878342

  10. What Is Carrier Screening?

    Science.gov (United States)

    ... you want to learn. Search form Search Carrier screening You are here Home Testing & Services Testing for ... help you make the decision. What Is Carrier Screening? Carrier screening checks if a person is a " ...

  11. [Sources, Migration and Conversion of Dissolved Sterols in Qingmuguan Underground River].

    Science.gov (United States)

    Liang, Zuo-bing; Shen, Li-cheng; Sun, Yu-chuan; Wang, Zun-bo; Jiang, Ze-li; Zhang Mei; LIAO, Yu; Xie, Zheng-lan; Zhang, Yuan-zhu

    2015-11-01

    Water samples were collected from the Qinmuguan underground river from July to November in 2013. By gas chromatography-mass spectrometer (GC-MS), dissolved sterols were quantitatively analyzed. The results show that the average variation content of dissolved sterols ranges from 415 to 629 ng x L(-1), with the increasing migration distance of dissolved sterols in underground river, its contents are decreased. Between the inlet and outlet of Qingmuguan underground river, the average variation contents of dissolved sterol are between 724 and 374 ng x L(-1), and the average variation ratios of the content of stigmasterol with cholesterol range from 0.29 to 0.12. In short, their values are decreased accompanied by the increasing migration distance of underground river. The composing component in dissolved sterols varied differently between July to December, and the main component of dissolved sterols is cholesterin, the ratios of the content of dissolved sterols with cholesterin to the total dissolved sterols range from 37.30% to 94.85%. In addition, the ratios of the content of dissolved sterols with coprostanol to cholesterin, coprostanol to cholesterin are below 0.2 respectively, indicating the water quality of underground river is not contaminated by domestic sewage, but with the passage of time water quality tends to deterioration.

  12. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    Intrinsically fluorescent sterols, like dehydroergosterol (DHE), mimic cholesterol closely and are therefore suitable to determine cholesterol transport by fluorescence microscopy. Disadvantages of DHE are its low quantum yield, rapid bleaching, and the fact that its excitation and emission...... adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize...... and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport....

  13. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  14. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

    Science.gov (United States)

    Zallot, Rémi; Agrimi, Gennaro; Lerma-Ortiz, Claudia; Teresinski, Howard J; Frelin, Océane; Ellens, Kenneth W; Castegna, Alessandra; Russo, Annamaria; de Crécy-Lagard, Valérie; Mullen, Robert T; Palmieri, Ferdinando; Hanson, Andrew D

    2013-06-01

    Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes. PMID:23590975

  15. Sterols of Pneumocystis carinii hominis organisms isolated from human lungs

    DEFF Research Database (Denmark)

    Kaneshiro, E S; Amit, Z; Chandra, Jan Suresh;

    1999-01-01

    , pneumocysterol (C(32)), which is essentially lanosterol with a C-24 ethylidene group, was detected in lipids extracted from a formalin-fixed human P. carinii-infected lung, and its structures were elucidated by gas-liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectrometry...... performed. Several of the same distinct sterols (e.g., fungisterol and methylcholest-7-ene-3beta-ol) previously identified in P. carinii carinii were also present in organisms isolated from human specimens. Pneumocysterol was detected in only some of the samples....

  16. A Novel C30 Sterol from Porana racemosa

    Institute of Scientific and Technical Information of China (English)

    LIBo-Gang; CHENBin; WANGDing-Yong; YEQi; ZHANGGuo-Lin

    2004-01-01

    A novel C30 sterol, (22E, 24ξ)-24-n-propylcholest-7, 22-dien-3β-ol (racemosol, 1), along withscopoletin (2), scopolin (3), umbelliferone (4), methylβ-D-frucopyranoside (5), syringaresinol-4-O-β-D-glucopyranoside (6), quercetin-3-O-β-D-glucopyranoside (7), quercetin-3-O-α-L-rhamnopyranoside (8),eupatilin (9), kaempferol-3-O-β-D-glucopyranoside (10) and (E)-N-2-(2,3-dihydroxyphenyl) ethyl cinnamamide(11), was isolated from the whole plants of Porana racemosa Roxb. Their structures were elucidatedpredominantly by spectral evidence.

  17. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    Science.gov (United States)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  18. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Fernández-Arche, Angeles; Angel-Martín, María; García-Giménez, María Dolores

    2012-09-15

    Evening Primrose oil is a natural product extracted by cold-pressed from Oenothera biennis L. seeds. The unsaponifiable matter of this oil is an important source of interesting minor compounds, like long-chain fatty alcohols, sterols and tocopherols. In the present study, sterols were isolated from the unsaponifiable matter of Evening Primrose oil, and the composition was identified and quantified by GC and GC-MS. The major components of sterols fraction were β-Sitosterol and campesterol. We investigated the ability of sterols from Evening Primrose oil to inhibit the release of different proinflammatory mediators in vitro by murine peritoneal macrophages stimulated with lipopolysaccharide. Sterols significantly and dose-dependently decreased nitric oxide production. Western blot analysis showed that nitric oxide reduction was a consequence of the inhibition of inducible nitric oxide synthetase expression. Sterols also reduced tumor necrosis factor-α, interleukine 1β and tromboxane B₂. However, sterols did not reduce prostaglandin E₂. The reduction of eicosanoid release was related to the inhibition of cyclooxygenase-2 expression. These results showed that sterols may have a protective effect on some mediators involved in inflammatory damage development, suggesting its potential value as a putative functional component of Evening Primrose oil.

  19. The biosynthesis, absorption, and origin of cholesterol and plant sterols in the Florida land crab.

    Science.gov (United States)

    Douglass, T S; Connor, W E; Lin, D S

    1981-08-01

    In order to study the biosynthesis, composition, and origin of sterols in the Florida land crabs, Cardisoma guanhumi (Latreille), we fed 17 male crabs either a cholesterol-free or a high cholesterol diet for 2 to 7 weeks. The origin of sterols in these crabs, whether from biosynthesis or from the diet, was determined by tahree procedures: the incorporation of isotopic mevalonate into the cholesterol when the diet was cholesterol-free; the absorption of isotopic cholesterol and sitosterol from the diet; the cholesterol and plant sterol concentrations of hepatopancreas, plasma, and muscle under conditions of cholesterol-free and high cholesterol diets. In addition, the interconversion of cholesterol and sitosterol was investigated. Dietary sterols of plant and animal sources were readily absorbed and provided the major source of sterols for this species of crab. The biosynthesis of cholesterol from mevalonate in this crab was minimal. However, cholesterol was synthesized from dietary sitosterol by dealkylation. Cholesterol and the three plant sterols (24 epsilon-methyl cholesterol, stigmasterol, and sitosterol) were found in the hepatopancreas, plasma, and muscle of the crab. Plant sterols contributed from 9 to 37% of the total sterols in the hepatopancreas, plasma, and muscle of the crabs fed a cholesterol-free diet.

  20. Biochemical mechanisms involved in selective fungitoxicity of fungicides which inhibit sterol 14_-demethylation.

    NARCIS (Netherlands)

    Kapteyn, J.C.

    1993-01-01

    Sterol demethylation inhibitors (DMIs) are antifungal agents which inhibit the biosynthesis of ergosterol by binding to cytochrome-P450-dependent sterol 14ce-demethylase (P450 14DM ). These compounds significantly differ in both toxicity and selectivity. This thesis

  1. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation

    Science.gov (United States)

    The acquisition of plant sterols, mediated via elicitins, is required for growth and sporulation of Phytophthora spp. In this paper, we looked at the interaction between elicitins, sterols, and tannins. When ground leaf tissue was added to growth media, P. ramorum growth and sporulation was greates...

  2. Plasma plant sterols serve as poor markers of cholesterol absorption in man

    NARCIS (Netherlands)

    Jakulj, Lily; Mohammed, Hussein; van Dijk, Theo H.; Boer, Theo; Turner, Scott; Groen, Albert K.; Vissers, Maud N.; Stroes, Erik S. G.

    2013-01-01

    The validation of the use of plasma plant sterols as a marker of cholesterol absorption is frail. Nevertheless, plant sterol concentrations are routinely used to describe treatment-induced changes in cholesterol absorption. Their use has also been advocated as a clinical tool to tailor cholesterol-l

  3. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    Energy Technology Data Exchange (ETDEWEB)

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-08-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with (4-/sup 14/C)cholesterol or beta-(4-/sup 14/C)sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study.

  4. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    Science.gov (United States)

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  5. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.

    Science.gov (United States)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G

    2014-12-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans.

  6. Investigations of the capacity of synthesizing 3β-sterols in mollusca—VI. The biosynthesis and composition of 3β-sterols in the neogastropods Purpura lapillus and Murex brandaris

    NARCIS (Netherlands)

    Voogt, P.A.

    1972-01-01

    1. 1. It is shown that Purpura lapillus and Murex brandaris are capable of synthesizing sterols from mevalonate and acetate. The biosynthesis of sterols from acetate proceeds only at a slow rate. This phenomenon is compared with that observed in Natica cataena. 2. 2. The composition of the sterol m

  7. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis.

    Directory of Open Access Journals (Sweden)

    Mathieu Blanc

    2011-03-01

    Full Text Available Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo

  8. Fatty acids and sterols of Griffonia seeds oil

    Directory of Open Access Journals (Sweden)

    Ramazanov, Zakir

    2003-03-01

    Full Text Available Lipids, fatty acids and sterols of Griffonia simplicifolia seeds oil were studied. Fatty acid composition is 18:2 - 60 %, 16:0, 18:0, 18:1 - 9-18 %, and 20:0 - 3-4 %. The main sterol is β-sitosterol - 60 %, stigmasterol is 29 %, and campesterol is 11 %. Linoleic acid can be relatively simply enriched to 95 % separating the other fatty acids as urea adducts.Se han estudiado los lípidos, ácidos grasos y esteroles del aceite de semillas de Griffonia simplicifolia. La composición en ácidos grasos es 18:2 – 60 %, 16:0, 18:0, 18:1 – 9-18 %, y 20:0 – 3-4 %. El principal esterol es el β-sitosterol – 60 %, el estigmasterol constituye el 29 %, y el campesterol el 11 %. El ácido linoleico puede enriquecerse hasta el 95 % separando los otros ácidos grasos como aductos de urea.

  9. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; van Vark-van der Zee, Leonie C.; Friedrichs, Silvia; Bloks, Vincent W.; Blokland, Arjan; Ramaekers, Frans C.; Sijbrands, Eric; Steinbusch, Harry; Prickaerts, Jos; Kuipers, Folkert; Luetjohann, Dieter; Mulder, Monique

    2011-01-01

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations i

  10. Serum lipid and antioxidant responses in hypercholesterolemic men and women receiving plant sterol esters vary by apolipoprotein E genotype

    Science.gov (United States)

    Plant sterol esters reduce serum total cholesterol (TC) and LDL cholesterol (LDL-C), but with striking inter-individual variability. In this randomized, double-blind, controlled study, serum lipid, plant sterol, fat-soluble vitamin, and carotenoid responses to plant sterols were studied according to...

  11. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    Science.gov (United States)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreña-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g- 1) and fecal sterols (0.3-1690.18 μg g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate

  12. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico.

    Science.gov (United States)

    Arcega-Cabrera, F; Velázquez-Tavera, N; Fargher, L; Derrien, M; Noreña-Barroso, E

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g(-1)) and fecal sterols (0.3-1690.18 μg g(-1)). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings

  13. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico.

    Science.gov (United States)

    Arcega-Cabrera, F; Velázquez-Tavera, N; Fargher, L; Derrien, M; Noreña-Barroso, E

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g(-1)) and fecal sterols (0.3-1690.18 μg g(-1)). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings

  14. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    Science.gov (United States)

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:26626241

  15. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  16. Computational Analysis of Sterol Ligand Specificity of the Niemann Pick C2 Protein.

    Science.gov (United States)

    Poongavanam, Vasanthanathan; Kongsted, Jacob; Wüstner, Daniel

    2016-09-13

    Transport of cholesterol derived from hydrolysis of lipoprotein associated cholesteryl esters out of late endosomes depends critically on the function of the Niemann Pick C1 (NPC1) and C2 (NPC2) proteins. Both proteins bind cholesterol but also various other sterols and both with strongly varying affinity. The molecular mechanisms underlying this multiligand specificity are not known. On the basis of the crystal structure of NPC2, we have here investigated structural details of NPC2-sterol interactions using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. We found that an aliphatic side chain in the sterol ligand results in strong binding to NPC2, while side-chain oxidized sterols gave weaker binding. Estradiol and the hydrophobic amine U18666A had the lowest affinity of all tested ligands and at the same time showed the highest flexibility within the NPC2 binding pocket. The binding affinity of all ligands correlated highly with their calculated partitioning coefficient (logP) between octanol/water phases and with the potential of sterols to stabilize the protein backbone. From molecular dynamics simulations, we suggest a general mechanism for NPC2 mediated sterol transfer, in which Phe66, Val96, and Tyr100 act as reversible gate keepers. These residues stabilize the sterol in the binding pose via π-π stacking but move transiently apart during sterol release. A computational mutation analysis revealed that the binding of various ligands depends critically on the same specific amino acid residues within the binding pocket providing shape complementary to sterols, but also on residues in distal regions of the protein. PMID:27533706

  17. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...... (CTL) combined with advanced image analysis were used to study spatiotemporal sterol distribution in living macrophages, adipocytes and fibroblasts. Sterol endocytosis was directly visualized by time-lapse imaging and noise-robust tracking revealing confined motion of DHE containing vesicles in close...

  18. Gas chromatography-mass spectrometry study of sterols from Pinus elliotti tissues.

    Science.gov (United States)

    Laseter, J. L.; Evans, R.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    A comparative study of the sterol components of slash pine (Pinus elliotti) callus tissue cultures, seeds, and seedlings was carried out using GC-MS techniques. Cholesterol, desmosterol, campesterol, stigmasterol, sitosterol and cycloeucalenol were identified in all tissues while lophenol and 24-methylenelophenol were identified in only the seed and seedlings. 24-Ethylidenelophenol was detected in trace concentrations in only the seedlings. Sitosterol was the predominant sterol component, i.e., 80.8, 38.1 and 47.8% of the tissue culture, seed and seedling sterols, respectively.

  19. Following Intracellular Cholesterol Transport by Linear and Non-Linear Optical Microscopy of Intrinsically Fluorescent Sterols

    DEFF Research Database (Denmark)

    Wustner, D.

    2012-01-01

    analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented....... the cellular movement of this essential lipid molecule. In this article, a survey of the various methods being used for analysis of sterol trafficking is given. Various classical biochemical methods are presented and their suitability for analysis of sterol trafficking is assessed. Special emphasis...

  20. Distribution and factors affecting adsorption of sterols in the surface sediments of Bosten Lake and Manas Lake, Xinjiang.

    Science.gov (United States)

    Liu, Jiang; Yao, Xiaorui; Lu, Jianjiang; Qiao, Xiuwen; Liu, Zilong; Li, Shanman

    2016-03-01

    This study investigated the concentrations and distribution of eight sterol compounds in the surface sediments of Bosten Lake and Manas Lake, Xinjiang, China. The ratios of sterols as diagnostic indices were used to identify pollution sources. The sediment of the two lakes was selected as an adsorbent to investigate the adsorption behaviour of sterols. Results showed that the sterols were widely distributed in the sediments of the lakes in the study areas. The total concentrations of the detected sterols in Bosten Lake and in Manas Lake were 1.584-27.897 and 2.048-18.373 μg g(-1)∙dw, respectively. In all of the sampling sites, the amount of faecal sterols was less than that of plant sterols. β-sitosterol was the dominant plant sterol with a mean concentration of 2.378 ± 2.234 μg g(-1)∙dw; cholesterol was the most abundant faecal sterol with a mean concentration of 1.060 ± 1.402 μg g(-1)∙dw. The pollution level was higher in Bosten Lake than in Manas Lake. Majority of the ratios clearly demonstrated that the contamination by human faecal sources was occurring at stations which are adjacent to residential areas and water inlets. The adsorption behaviour of sterols to sediment suggested that the sterol adsorption coefficients were reduced as temperature increased. As salinity increased, the adsorption quantity also increased. As pH increased, the sediment adsorption of sterol slightly increased because the strong alkaline solution is not conducive to the adsorption of sterols. The ratios between sterols did not change largely with the change in external factors.

  1. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  2. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    Science.gov (United States)

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  3. Non-cholesterol Sterols in the Diagnosis and Treatment of Dyslipidemias: A Review.

    Science.gov (United States)

    Baila-Rueda, Lucía; Cenarro, Ana; Civeira, Fernando

    2016-01-01

    Non-cholesterol sterols have been used as markers of cholesterol intestinal absorption and hepatic synthesis, leading to a better understanding of cholesterol homeostasis in humans. This review discusses the main noncholesterol sterols that are clinically useful, different methods to quantify the factors associated with blood concentration, and the potential role of non-cholesterol sterols in the diagnosis and treatment of different types of dyslipidemia. The main indication is the use of non-cholesterol sterols for the diagnosis of rare diseases associated with defects in cholesterol synthesis or anomalies in the absorption and/or elimination of phytosterols. However, other potential uses, including the diagnosis of certain hypercholesterolemias and the individualization of lipid-lowering therapies, are promising as they could help treat a wider population.

  4. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment.

    Science.gov (United States)

    Barriuso, Blanca; Astiasarán, Iciar; Ansorena, Diana

    2016-04-01

    The interest in plant sterols enriched foods has recently enhanced due to their healthy properties. The influence of the unsaturation degree of different fatty acids methyl esters (FAME: stearate, oleate, linoletate and linolenate) on a mixture of three plant sterols (PS: campesterol, stigmasterol and β-sitosterol) was evaluated at 180 °C for up to 180 min. Sterols degraded slower in the presence of unsaturated FAME. Both PS and FAME degradation fit a first order kinetic model (R(2)>0.9). Maximum oxysterols concentrations were achieved at 20 min in neat PS and 120 min in lipid mixtures and this maximum amount decreased with increasing their unsaturation degree. In conclusion, the presence of FAME delayed PS degradation and postponed oxysterols formation. This protective effect was further promoted by increasing the unsaturation degree of FAME. This evidence could help industries to optimize the formulation of sterol-enriched products, so that they could maintain their healthy properties during cooking or processing.

  5. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.;

    2010-01-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method...... to detect DHE selectively, based on its rapid bleaching kinetics compared to cellular autofluorescence. Worms were repeatedly imaged on an ultraviolet-sensitive wide field (UV-WF) microscope, and bleaching kinetics of DHE were fitted on a pixel-basis to mathematical models describing the intensity decay...... autofluorescence and compare our method with three-photon excitation microscopy of sterol in selected tissues. Bleach-rate-based UV-WF imaging is a useful tool for genetic screening experiments on sterol transport, as exemplified by RNA interference against the rme-2 gene coding for the yolk receptor and for worm...

  6. Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage.

    Science.gov (United States)

    Haubrich, Brad A; Collins, Emily K; Howard, Alicia L; Wang, Qian; Snell, William J; Miller, Matthew B; Thomas, Crista D; Pleasant, Stephanie K; Nes, W David

    2015-05-01

    Sterol C24-methyltransferases (SMTs) constitute a group of sequence-related proteins that catalyze the pattern of sterol diversity across eukaryotic kingdoms. The only gene for sterol alkylation in green algae was identified and the corresponding catalyst from Chlamydomonas reinhardtii (Cr) was characterized kinetically and for product distributions. The properties of CrSMT were similar to those predicted for an ancient SMT expected to possess broad C3-anchoring requirements for substrate binding and formation of 24β-methyl/ethyl Δ(25(27))-olefin products typical of primitive organisms. Unnatural Δ(24(25))-sterol substrates, missing a C4β-angular methyl group involved with binding orientation, convert to product ratios in favor of Δ(24(28))-products. Remodeling the active site to alter the electronics of Try110 (to Leu) results in delayed timing of the hydride migration from methyl attack of the Δ(24)-bond, that thereby produces metabolic switching of product ratios in favor of Δ(25(27))-olefins or impairs the second C1-transfer activity. Incubation of [27-(13)C]lanosterol or [methyl-(2)H3]SAM as co-substrates established the CrSMT catalyzes a sterol methylation pathway by the "algal" Δ(25(27))-olefin route, where methylation proceeds by a conserved SN2 reaction and de-protonation proceeds from the pro-Z methyl group on lanosterol corresponding to C27. This previously unrecognized catalytic competence for an enzyme of sterol biosynthesis, together with phylogenomic analyses, suggest that mutational divergence of a promiscuous SMT produced substrate- and phyla-specific SMT1 (catalyzes first biomethylation) and SMT2 (catalyzes second biomethylation) isoforms in red and green algae, respectively, and in the case of SMT2 selection afforded modification in reaction channeling necessary for the switch in ergosterol (24β-methyl) biosynthesis to stigmasterol (24α-ethyl) biosynthesis during the course of land plant evolution.

  7. Targeting Ergosterol Biosynthesis in Leishmania donovani: Essentiality of Sterol 14alpha-demethylase

    OpenAIRE

    Laura-Isobel McCall; Amale El Aroussi; Jun Yong Choi; Vieira, Debora F.; Geraldine De Muylder; Johnston, Jonathan B.; Steven Chen; Danielle Kellar; Jair L Siqueira-Neto; Roush, William R.; Larissa M. Podust; McKerrow, James H.

    2015-01-01

    Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be de...

  8. Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity

    OpenAIRE

    Yujuan Sun; Yanfei Lin; Xueli Cao; Lan Xiang; Jianhua Qi

    2014-01-01

    For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF). SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL), brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experim...

  9. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals

    Science.gov (United States)

    Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D.

    2016-01-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  10. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  11. In Vitro and In Vivo Anticancer Effects of Sterol Fraction from Red Algae Porphyra dentata

    Directory of Open Access Journals (Sweden)

    Katarzyna Kazłowska

    2013-01-01

    Full Text Available Porphyra dentata, an edible red macroalgae, is used as a folk medicine in Asia. This study evaluated in vitro and in vivo the protective effect of a sterol fraction from P. dentata against breast cancer linked to tumor-induced myeloid derived-suppressor cells (MDSCs. A sterol fraction containing cholesterol, β-sitosterol, and campesterol was prepared by solvent fractionation of methanol extract of P. dentata  in silica gel column chromatography. This sterol fraction in vitro significantly inhibited cell growth and induced apoptosis in 4T1 cancer cells. Intraperitoneal injection of this sterol fraction at 10 and 25 mg/kg body weight into 4T1 cell-implanted tumor BALB/c mice significantly inhibited the growth of tumor nodules and increased the survival rate of mice. This sterol fraction significantly decreased the reactive oxygen species (ROS and arginase activity of MDSCs in tumor-bearing mice. Therefore, the sterol fraction from P. dentata showed potential for protecting an organism from 4T1 cell-based tumor genesis.

  12. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals.

    Science.gov (United States)

    Najle, Sebastián R; Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D

    2016-07-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion-via a novel pathway-of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  13. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport.

    Science.gov (United States)

    Solanko, Katarzyna A; Modzel, Maciej; Solanko, Lukasz M; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann-Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  14. Sterol Distribution in Sediments from Chaiwobu Lake and Caohai Basin and Its Geochemical Significance

    Institute of Scientific and Technical Information of China (English)

    史继扬; 林树基; 等

    1994-01-01

    In order to understand the distribution characteristics of biomarkers in source rocks,which may be related to organic input,Quaternary sediments from the Caohai Basin and the Chaiwobu Lake were analyzed for sterols,As a result,various sterols,have been found in the sediments.The composition of sterols in the sediments revealed that cholesterols and cholestadienols are more abundant than their C29 counterparts in the Chaiwobu Lake sediments and that C29 sterols are more abundant in the peats from the Caohai Basin,It is also found that stanol/sterol ratios in clays are higher than in peats.Studies show that organic input to the Chaiwobu Lake is mainly plankton and zooplankton and to the Caohai Basin is mainly terrestrial high plant.The authors have proposed that the relative abundance of C27 or C29 sterane in source rocks may reflect input characteristics to some extent and the stanol/sterol ratios may reflect the redox conditions of the depositional environments.

  15. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  16. Phase behaviour of sterols and vitamins in supercritical CO2

    Directory of Open Access Journals (Sweden)

    Gerszt R.

    2000-01-01

    Full Text Available Extraction with supercritical solvents has been used in different areas, such as petroleum desasphaltation, descaffeination of coffee and tea and in the separation of other types of natural products. The supercritical solvent most frequently utilized in the extraction of natural products is carbon dioxide (CO2 due to its several advantages over other solvents such as low cost, atoxicity and volatility. The design, evaluation and optimization of a supercritical extraction that is based on phase equilibrium require phase equilibrium data. This type of data is very scarce for natural compounds like sterols and vitamins. These natural compounds are produced synthetically, but nowadays interest in their extraction from natural sources is increasing. Therefore, the objective of this work is to study the thermodynamic modelling equilibrium of systems containing vitamins A, D, E and K, using the predictive LCVM model. The sensitivity of critical properties in the calculation of the phase behavior was also studied. This study proved that the choice of a group contribution method to calculate thermodynamic properties is very important for obtaining good results in the phase equilibrium calculations.

  17. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  18. Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects.

    Science.gov (United States)

    Baumgartner, Sabine; Mensink, Ronald P; Konings, Maurice; Schött, Hans-F; Friedrichs, Silvia; Husche, Constanze; Lütjohann, Dieter; Plat, Jogchum

    2015-07-01

    Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to

  19. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters

    NARCIS (Netherlands)

    Y. Lin; D. Knol; M. Menéndez-Carreño; W.A.M. Blom; J. Matthee; H.G. Janssen; E.A. Trautwein

    2016-01-01

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median

  20. Asymmetric Carrier Random PWM

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...

  1. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  2. Distribution of fecal sterols in surface sediment of Sungai Tebrau, Johor

    Science.gov (United States)

    Nordin, N.; Ali, M. M.

    2013-11-01

    Decreasing quality of aquatic environments may harm human health in general. Sewage pollution from human and animal excretions is a major cause of environmental quality depletion. This study investigates the distribution of sewage contamination level in twenty surface sediment samples taken from Sungai Tebrau, Johor. Four principal fecal sterols have been identified and were found in all sediment samples, which are coprostanol, cholesterol, epicoprostanol and also cholestanol. Cholesterol as the major sterol and most abundant compound derived from a variety of sources ranged from 32.92 to 1,100.55 ngg-1 dry weights. Meanwhile, major fecal sterol, coprostanol has the lowest quantity of total sterol in all samples, constituting only 13% of total sterol. It ranged from 12.63 to 565.42 ngg-1 dry weights, but only two stations (ST12 and ST14) are sewage contaminated. Squatters and residential areas are a major contributor of poorly treated sewage into the aquatic environment. Coprostanol concentration alone is not reliable to indicate sewage contamination; diagnostic indices enhance reliability of sterols as a marker for sewage contamination. Indices applied in this study are coprostanol/cholesterol, coprostanol/(coprostanol+cholestanol) and also epicoprostanol/coprostanol. Resultsof coprostanol/cholesterol, coprostanol/(coprostanol+cholestanol) indices supported the findings that both ST12 and ST14 samples are contaminated with sewage. All samples consist of relativelyhigh concentration of epicoprostanol and high ratio value of epicoprostanol/coprostanol. Generally, it can be concluded that these sampling sites are not contaminated with sewage even though fecal sterols were detected in all samples as they were found to be at low concentration.

  3. The Arabidopsis NPF3 protein is a GA transporter

    DEFF Research Database (Denmark)

    Tal, Iris; Zhang, Yi; Jørgensen, Morten Egevang;

    2016-01-01

    Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants...... deficient in GA transport. We show that the NPF3 transporter efficiently transports GA across cell membranes in vitro and GA-Fl in vivo. NPF3 is expressed in root endodermis and repressed by GA. NPF3 is targeted to the plasma membrane and subject to rapid BFA-dependent recycling. We show that abscisic acid...... (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA-ABA interaction may...

  4. Effect of plant sterols on the lipid profile of patients with hypercholesterolaemia. Randomised, experimental study

    Directory of Open Access Journals (Sweden)

    Lloret Ángeles

    2011-09-01

    Full Text Available Abstract Background Studies have been conducted on supplementing the daily diet with plant sterol ester-enriched milk derivatives in order to reduce LDL-cholesterol levels and, consequently, cardiovascular risk. However, clinical practice guidelines on hypercholesterolaemia state that there is not sufficient evidence to recommend their use in subjects with hypercholesterolaemia. The main objective of this study is to determine the efficacy of the intake of 2 g of plant sterol esters a day in lowering LDL-cholesterol levels in patients diagnosed with hypercholesterolaemia. The specific objectives are: 1 to quantify the efficacy of the daily intake of plant sterol esters in lowering LDL-cholesterol, total cholesterol and cardiovascular risk in patients with hypercholesterolaemia; 2 to evaluate the occurrence of adverse effects of the daily intake of plant sterol esters; 3 to identify the factors that determine a greater reduction in lipid levels in subjects receiving plant sterol ester supplements. Methods/Design Randomised, double-blind, placebo controlled experimental trial carried out at family doctors' surgeries at three health centres in the Health Area of Albacete (Spain. The study subjects will be adults diagnosed with "limit" or "defined" hypercholesterolaemia and who have LDL cholesterol levels of 130 mg/dl or over. A dairy product in the form of liquid yoghurt containing 2 g of plant sterol ester per container will be administered daily after the main meal, for a period of 24 months. The control group will receive a daily unit of yogurt not supplemented with plant sterol esters that has a similar appearance to the enriched yoghurt. The primary variable is the change in lipid profile at 1, 3, 6, 12, 18 and 24 months. The secondary variables are: change in cardiovascular risk, adherence to the dairy product, adverse effects, adherence to dietary recommendations, frequency of food consumption, basic physical examination data, health

  5. Comparison and analysis of fatty acids, sterols, and tocopherols in eight vegetable oils.

    Science.gov (United States)

    Li, Changmo; Yao, Yunping; Zhao, Guozhong; Cheng, Wen; Liu, Huilin; Liu, Chunyang; Shi, Zhen; Chen, Yao; Wang, Shuo

    2011-12-14

    The similarities and differences of eight vegetable oils produced in China were investigated in terms of their fatty acid, sterol, and tocopherol compositions and subsequent data processing by hierarchical clustering analysis and principal component analysis. The lipid profiles, acquired by analytical techniques tailored to each lipid class, revealed great similarities among the fatty acid profiles of corn and sesame oil as well as few differences in their sterol profiles. It turns out that not only was there great similarity between the fatty acid profiles of corn oil and sesame oil but also there were not too many differences for the sterol profiles. Sunflower and tea-seed oil showed similar sterol compositions, while the tea-seed oil tocopherol was very similar to palm oil. The results demonstrated that the use of only one of these profiles was unreliable for indentifying oil origin and authenticity. In contrast, the use of the sterol or tocopherol profile together with the fatty acid profile more accurately discriminates these oils.

  6. Following intracellular cholesterol transport by linear and non-linear optical microscopy of intrinsically fluorescent sterols.

    Science.gov (United States)

    Wüstner, Daniel

    2012-02-01

    Elucidation of intracellular cholesterol transport is important for understanding the molecular basis of several metabolic and neuronal diseases, like atheroclerosis or lysosomal storage disorders. Progress in this field depends crucially on the development of new technical approaches to follow the cellular movement of this essential lipid molecule. In this article, a survey of the various methods being used for analysis of sterol trafficking is given. Various classical biochemical methods are presented and their suitability for analysis of sterol trafficking is assessed. Special emphasis is on recent developments in imaging technology to follow the intracellular fate of intrinsically fluorescent sterols as faithful cholesterol markers. In particular, UV-sensitive wide field and multiphoton microscopy of the sterol dehydroergosterol, DHE, is explained and new methods of quantitative image analysis like pixel-wise bleach rate fitting and multiphoton image correlation spectroscopy are introduced. Several applications of the new technology including observation of vectorial sterol trafficking in polarized human hepatoma cells for investigation of reverse cholesterol transport are presented. PMID:21470123

  7. Method Development for the Determination of Free and Esterified Sterols in Button Mushrooms (Agaricus bisporus).

    Science.gov (United States)

    Hammann, Simon; Vetter, Walter

    2016-05-01

    Ergosterol is the major sterol in button mushrooms (Agaricus bisporus) and can occur as free alcohol or esterified with fatty acids (ergosteryl esters). In this study, gas chromatography with mass spectrometry in the selected ion monitoring mode (GC/MS-SIM) was used to determine ergosterol and ergosteryl esters as well as other sterols and steryl esters in button mushrooms. Different quality control measures were established and sample preparation procedures were compared to prevent the formation of artifacts and the degradation of ergosteryl esters. The final method was then used for the determination of ergosterol (443 ± 44 mg/100 g dry matter (d.m.)) and esterified ergosterol (12 ± 6 mg/100 g d.m.) in button mushroom samples (n = 4). While the free sterol fraction was vastly dominated by ergosterol (∼90% of five sterols in total), the steryl ester fraction was more diversified (nine sterols in total, ergosterol ∼55%) and consisted primarily of linoleic acid esters. PMID:27064103

  8. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study.

    Science.gov (United States)

    Boukari, Khaoula; Balme, Sébastien; Janot, Jean-Marc; Picaud, Fabien

    2016-06-01

    Amphotericin B (AmB) is a well-known polyene which self-organizes into membrane cell in order to cause the cell death. Its specific action towards fungal cell is not fully understood but was proved to become from sterol composition. The mechanism was shown experimentally to require the formation of stable sterol/polyene couples which could then organize in a nanochannel. This would allow the leakage of ions responsible for the death of fungal cells, only. In this present study, we investigate the arrangement of AmB/sterols in biological membrane using molecular dynamic simulations in order to understand the role of the sterol structure on the antifungal action of the polyene. We show in particular that the nanochannels tend to close up when cell was composed with cholesterol (animal cell) due to strong interaction between amphotericin and sterol. On the other side, with ergosterol (fungal cell) the largest interactions between amphotericin and lipid membrane lead to the appearance of large hole that could favor the important leakage of ions and thus, the fungal cell death. This work appears as a good complement in the extensive studies linked to the understanding of the antifungal molecules in membrane cells.

  9. Crystal structure of the human sterol transporter ABCG5/ABCG8.

    Science.gov (United States)

    Lee, Jyh-Yeuan; Kinch, Lisa N; Borek, Dominika M; Wang, Jin; Wang, Junmei; Urbatsch, Ina L; Xie, Xiao-Song; Grishin, Nikolai V; Cohen, Jonathan C; Otwinowski, Zbyszek; Hobbs, Helen H; Rosenbaum, Daniel M

    2016-05-26

    ATP binding cassette (ABC) transporters play critical roles in maintaining sterol balance in higher eukaryotes. The ABCG5/ABCG8 heterodimer (G5G8) mediates excretion of neutral sterols in liver and intestines. Mutations disrupting G5G8 cause sitosterolaemia, a disorder characterized by sterol accumulation and premature atherosclerosis. Here we use crystallization in lipid bilayers to determine the X-ray structure of human G5G8 in a nucleotide-free state at 3.9 Å resolution, generating the first atomic model of an ABC sterol transporter. The structure reveals a new transmembrane fold that is present in a large and functionally diverse superfamily of ABC transporters. The transmembrane domains are coupled to the nucleotide-binding sites by networks of interactions that differ between the active and inactive ATPases, reflecting the catalytic asymmetry of the transporter. The G5G8 structure provides a mechanistic framework for understanding sterol transport and the disruptive effects of mutations causing sitosterolaemia.

  10. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio.

    Science.gov (United States)

    Thompson, Brian M; Grebenok, Robert J; Behmer, Spencer T; Gruner, Daniel S

    2013-01-01

    The symbiotic fungus Amylostereum areolatum is essential for growth and development of larvae of the invasive woodwasp, Sirex noctilio. In the nutrient poor xylem of pine trees, upon which Sirex feeds, it is unknown whether Amylostereum facilitates survival directly through consumption (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external rumen hypothesis). We tested these alternative hypotheses for Amylostereum involvement in Sirex foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols indicative of fungi and plants. We tested alternative hypotheses by using GC-MS to quantify concentrations of free and bound sterol pools from multiple life-stages of Sirex, food sources, and waste products in red pine (Pinus resinosa). Cholesterol was the primary sterol found in all life-stages of Sirex. However, cholesterol was not found in significant quantities in either plant or fungal resources. Ergosterol was the most prevalent sterol in Amylostereum but was not detectable in either wood or insect tissue (importance for fungal enzymes, including the external digestion of recalcitrant plant polymers (e.g., lignin and cellulose), shaping this insect-fungal symbiosis.

  11. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  12. The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection

    Science.gov (United States)

    Riblett, Amber M.; Didigu, Chukwuka A.; Wilen, Craig B.; Malani, Nirav; Male, Frances; Lee, Fang-Hua; Bushman, Frederic D.; Cherry, Sara; Doms, Robert W.; Bates, Paul; Briley, Kenneth

    2014-01-01

    The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. PMID:24516383

  13. The major cellular sterol regulatory pathway is required for Andes virus infection.

    Directory of Open Access Journals (Sweden)

    Josiah Petersen

    2014-02-01

    Full Text Available The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV. Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.

  14. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  15. Biological investigations of Indian phaeophyceae: 17. Seasonal variation of antibacterial activity of total sterols obtained from frozen samples of Sargassum johnstonii Setchell et Gardner

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.P.S.

    From lipid fraction of frozen samples of Sargassum johnstonii unsaponifiable part was extracted with diethyl ether to isolate total sterols. The extracted sterols were obtained for a period of nine months and tested against test bacteria...

  16. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shinozaki, Kazuo [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 (Japan); Yamaguchi-Shinozaki, Kazuko, E-mail: akys@mail.ecc.u-tokyo.ac.jp [Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.

  17. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Directory of Open Access Journals (Sweden)

    Manoj K Mishra

    Full Text Available BACKGROUND: Sterol glycosyltrnasferases (SGT are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant's adaptation to abiotic stress. METHODOLOGY: The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses--salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA and the 3D structures were predicted by using Discovery Studio Ver. 2.5. RESULTS: The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. CONCLUSIONS: Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found

  18. Recent advances in plant sterol%植物甾醇的研究进展

    Institute of Scientific and Technical Information of China (English)

    张斌; 郁听; 栗磊; 孟祥河

    2015-01-01

    研究发现,植物甾醇能同时降低血清中总胆固醇含量和低密度脂蛋白胆固醇水平,并在2010年被我国批准为新资源食品.文中简要介绍了植物甾醇的性质、来源及生理功能,总结了典型的植物甾醇分离提取工艺,并综述了植物甾醇的改性研究和甾醇氧化产物研究进展,重点阐述了天然植物甾醇及其氧化物的安全性问题,为甾醇的工业应用提供一定的借鉴作用.%Researches have found out that plant sterol could reduce total cholesterol and lower the density lipoprotein cholesterol in serum.And it had been approved as a new resource food by our country in 2010.This paper briefly introduced the properties,sources and physiological functions of plant sterol.At the same time,we summarized the processes of separation and extraction of typical plant sterol,as well as the modification research and progress of research of plant sterol oxidation products.We put emphasis on the safety of natural plant sterol and its oxidation products,which could provide a certain reference for industrial application of plant sterol.

  19. Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk

    NARCIS (Netherlands)

    Huisman, M; vanBeusekom, CM; Nijeboer, HJ; Muskiet, FAJ; Boersma, ER

    1996-01-01

    Objective: To investigate differences in the fatty acid composition, sterols, minor carbohydrates and sugar alcohols between human and formula milk. Design: We analyzed the concentrations of triglycerides, sterols, di- and monosaccharides and sugar alcohols, as well as the fatty acid composition of

  20. Potential of the desert locust schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols

    Science.gov (United States)

    Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locu...

  1. Concentrations of surfactants and sterols in the surface microlayer of the estuarine areas of Selangor River, Malaysia

    Science.gov (United States)

    Alsalahi, Murad Ali; Talib Latif, Mohd; Mohd Ali, Masni; Dominick, Doreena; Firoz Khan, Md; Bahiyah Abd Wahid, Nurul; Ili Hamizah Mustaffa, Nur

    2016-04-01

    This study determined the concentration of surfactant and sterols as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. SML samples were collected during different seasons using a rotation drum method. The compositions of surfactants in SML were determined as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS) as anionic and cationic surfactants respectively. The concentration of sterols was determined using a gas chromatography equipped with a flame ionisation detector (GC-FID). The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS) with average concentrations of 0.39 μmol L‑1. The concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L‑1. The surfactants and total sterol concentrations were found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML of the Selangor River. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  2. Effects of lovastatin and dietary cholesterol on sterol homeostasis in healthy human subjects.

    OpenAIRE

    Duane, W C

    1993-01-01

    We measured biliary and fecal sterol outputs in 12 human subjects on a metabolic ward in four randomly allocated, 6-7 wk periods: (a) lovastatin (40 mg b.i.d.) + low cholesterol diet (mean 246 mg/d), (b) lovastatin + high cholesterol diet (mean 1,071 mg/d), (c) low cholesterol diet alone, (d) high cholesterol diet alone. In addition to lowering serum LDL cholesterol, lovastatin significantly lowered biliary secretion of cholesterol, fecal output of endogenous neutral sterols, cholesterol bala...

  3. A Sterol and Spiroditerpenoids from a Penicillium sp. Isolated from a Deep Sea Sediment Sample

    OpenAIRE

    Chengbin Cui; Yongsheng Che; Dezan Ye; Zongze Shao; Yan Li

    2012-01-01

    A new polyoxygenated sterol, sterolic acid (1), three new breviane spiroditerpenoids, breviones I–K (2–4), and the known breviones (5–8), were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1–4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those ...

  4. Fecal free and conjugated bile acids and neutral sterols in vegetarians, omnivores, and patients with colorectal cancer.

    Science.gov (United States)

    Korpela, J T; Adlercreutz, H; Turunen, M J

    1988-04-01

    Increased excretion and intestinal bacterial metabolism of bile acids and neutral sterols have been suggested to be associated with an increased risk of colorectal cancer. We determined fecal neutral sterol and bile acid profiles by new capillary column gas-liquid chromatographic methods in 18 patients with colorectal cancer, 10 omnivores, and 10 vegetarians. The methods also determine concentrations of esterified neutral sterols and saponifiable bile acids formed by intestinal bacterial action. Patients with colorectal cancer had the highest concentrations of neutral animal sterols, the lowest degree of esterification of neutral sterols, the lowest relative amount of saponifiable bile acids, and the highest concentrations of unconjugated primary bile acids. These differences were statistically significant (p less than 0.05) and more profound when the patients were compared with vegetarians than with omnivores. Since epidemiologic studies suggest that vegetarians have a lower risk of colorectal cancer than omnivores, these differences are discussed as possible risk factors for colorectal cancer. PMID:3387891

  5. Sterol-Dependent Nuclear Import of ORP1S Promotes LXR Regulated Trans-Activation of APOE

    Science.gov (United States)

    Lee, Sungsoo; Wang, Ping-Yuan; Jeong, Yangsik; Mangelsdorf, David J.; Anderson, Richard G. W.; Michaely, Peter

    2013-01-01

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements. PMID:22728266

  6. Photoinduced Transformation between Charge Carrier and Spin Carrier in Polymers

    Institute of Scientific and Technical Information of China (English)

    MEI Yuan; ZHAO Chang; SUN Xin

    2006-01-01

    By dynamical simulations, we show a transforming process between neutral soliton (spin carrier) and charged soliton (charge carrier) in polymers via photo-excitation, taking a polaron as the transitional bridge. It is photoinduced transformation between spin carrier and charge carrier. In this way, we demonstrate an access for polymers to be applied to spintronics.

  7. The value of energy carriers

    NARCIS (Netherlands)

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often r

  8. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  9. Duchenne muscular dystrophy carriers

    International Nuclear Information System (INIS)

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.)

  10. The value of energy carriers

    OpenAIRE

    Gool, W. van

    1987-01-01

    The value of energy carriers can be described thermodynamically by the amount of heat (enthalpy method) or work (exergy or availability method) that can be obtained from the carriers. Prices for energy carriers are used in economics to express their values. The prices for energy carriers are often related to their enthalpies when other properties and conditions are equivalent. However, it has been suggested that the exergy of the energy carriers is the proper quantity to establish their value...

  11. Effects of plant sterols and olive oil phenols on serum lipoproteins in humans

    NARCIS (Netherlands)

    Vissers, M.N.

    2001-01-01

    The studies described in this thesis investigated whether minor components from vegetable oils can improve health by decreasing cholesterol concentrations or oxidative modification of low-density-lipoprotein (LDL) particles.The plant sterolsβ-sitosterol and sitostanol are known to decrease cholester

  12. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    DEFF Research Database (Denmark)

    Klemm, Robin W; Ejsing, Christer S.; Surma, Michal A;

    2009-01-01

    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane...

  13. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K;

    2013-01-01

    ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  14. A New 4α-Methylated Sterol from a Nephthea sp. (Nephtheidae) Bornean Soft Coral

    OpenAIRE

    Takahiro Ishii; Hiroshi Matsuura; Zhan Zhaoqi; Charles Santhanaraju Vairappan

    2009-01-01

    A new 4α-methyl sterol, 4α-methyl-ergosta-6,8(14),22E-triene-3β-ol (1), was isolated along with cholesterol from a Nephthea sp. Bornean soft coral The structure of compound 1 was elucidated on the basis of spectroscopic analysis and comparison of the data with those of the related compounds.

  15. Safety of long-term consumption of plant sterol esters-enriched spread

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Brink, E.J.; Meijer, G.W.; Princen, H.M.G.; Ntanios, F.Y.

    2003-01-01

    Objective: To evaluate both efficacy and safety in humans of long-term consumption of spreads containing plant sterol esters. Design: Randomized double-blind placebo-controlled parallel trial. Subjects: Hundred and eighty-five healthy volunteers (35-64y). Intervention: Volunteers daily consumed 20g

  16. Plant sterols for adults with hypercholesterolemia treated with or without medication (statins

    Directory of Open Access Journals (Sweden)

    Raquel Bernácer

    2015-07-01

    Full Text Available Hypercholesterolemia is the most common coronary risk factor among the Spanish population; 37.4% of the Spanish adult population have cholesterol levels between 190 and 240 mg/dl. Foods enriched with plant sterols (PS can effectively reduce plasma cholesterol in patients with high levels. However, its effectiveness and safety in adults with moderate hypercholesterolemia who are on medication (statins or not has been less studied. The aim of this review is to establish the possible role of plant sterols in the control of hypercholesterolemia, as well as how safe they are for people with moderate hypercholesterolemia treated with statins. The main studies were looked at, regardless of design, language or publication date which studied the connection between “plant sterols” and “hypercholesterolemia”, using Pubmed/Medline, SCOPUS and Google Scholar databases. The studies brought together in this review show that an intake of between 2 and 3g/day of plant sterols effectively reduces plasma cholesterol levels in patients with hypercholesterolemia. Both clinical studies and available meta-analyses do not indicate any problems related to the drug-nutrient interaction associated with the use of plant sterol-enriched foods. In patients with moderate hypercholesterolemia where the use of statins is not justified a healthy diet, exercise and foods high in PS can provide the best therapeutic approach.

  17. Parameters for Martini sterols and hopanoids based on a virtual-site description

    NARCIS (Netherlands)

    Melo, M. N.; Ingolfsson, H. I.; Marrink, S. J.

    2015-01-01

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the u

  18. Effects of Temperature and Nutrients on Sterol Concentration in Marine Diatoms and Implications for Productivity Reconstructions

    Science.gov (United States)

    Ding, Y.; Bi, R.; Zhao, M.; Zhang, L. H.; Li, L.

    2015-12-01

    Sterols as phytoplankton productivity and community structure proxies have been widely applied for paleo-reconstructions, while quantitative reconstructions using sterols remain understudied. In this study, we aimed to determine the quantitative relationship between sterols and biomass in three species of marine diatoms under different temperature (15℃, 20℃ and25℃) and different nutrient supply (N:P=10:1, 24:1 and 63:1). Brassicasterol is the major sterol in Phaeodactylum tricornutum Bohli, an important species in marginal seas. The effects of temperature on the cellular concentration of brassicasterol is minimum, with values of 1.01×10 -4 ng cell-1 at 15℃, 1.07×10 -4 ng cell-1 at 20℃ and 1.17×10 -4 ng cell-1 at 25℃. Work is underway to evaluate the effects of nutrients on the cellular concentration of brassicasterol. Our preliminary results suggest that brassicasterol could be used to quantitatively reconstruct diatom productivity, and we will report the results of its application in several sediment cores.

  19. Hydroxylated sterols : matabolism and effects on steroid production and steroid uptake

    NARCIS (Netherlands)

    J.G.M. Huijmans (Jan)

    1989-01-01

    textabstractThe isolated rat adrenal cell was used as a model system. The isolation technique for rat adrenal cells has been extensively studied : in our laboratory (Falke et al., 1975a,b, 1976a,b) . Starting with these cells we looked at the properties of hydroxylated sterols as a precursor for ste

  20. Synthesis of steryl ferulates with various sterol structures and comparison of their antioxidant activity

    Science.gov (United States)

    Steryl ferulates extracted from corn and rice differ in the structures of the phytosterol head groups, which had a significant impact on their activity as antioxidants in soybean oil used for frying. An improved method was used to synthesize steryl ferulates from commercial sterols to better underst...

  1. Sardisterol, A New Polyhydroxylated Sterol from the Soft Coral Sarcophyton digitatum Moser

    Institute of Scientific and Technical Information of China (English)

    SU, Jing-Yu; YANG, Ruo-Lin

    2001-01-01

    A new polyhydroxylated sterol, named sardisterol, was isolated from the soft coral Sarcophyton digitatum Moser. Its structure was determined as (22R, 24ξ)-methyicholest-5-en-3β,22, 25, 28-tetraol-3-acetate on the basis of spectroscopic methods.

  2. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    Science.gov (United States)

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.

  3. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds...... of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin......, camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...

  4. X-ray Structure of 4,4′-Dihydroxybenzophenone Mimicking Sterol Substrate in the Active Site of Sterol 14α-Demethylase (CYP51)*S⃞♦

    OpenAIRE

    Eddine, Ali Nasser; von Kries, Jens P.; Podust, Mikhail V.; Warrier, Thulasi; Stefan H. E. Kaufmann; Larissa M. Podust

    2008-01-01

    A universal step in the biosynthesis of membrane sterols and steroid hormones is the oxidative removal of the 14α-methyl group from sterol precursors by sterol 14α-demethylase (CYP51). This enzyme is a primary target in treatment of fungal infections in organisms ranging from humans to plants, and development of more potent and selective CYP51 inhibitors is an important biological objective. Our continuing interest in structural aspects of substrate and inhibitor recognition in CYP51 led us t...

  5. Effect of unialgal diets on the composition of fatty acids and sterols in juvenile ark shell Tegillarca granosa Linnaeus.

    Science.gov (United States)

    Xu, Jilin; Zhou, Haibo; Yan, Xiaojun; Zhou, Chengxu; Zhu, Peng; Ma, Bin

    2012-04-18

    This study has investigated the effects of six different unialgal diets ( Chaetoceros calcitrans , Platymonas helgolandica , Chlorella sp., Isochrysis galbana , Nannochloropsis oculata , and Pavlova viridis ) on the composition of fatty acids and sterols in juvenile ark shell Tegillarca granosa Linnaeus. The best feeding effects on the growth of shellfish were found in C. calcitrans, followed by I. galbana and P. viridis, whereas Chlorella sp. and N. oculata exhibited relatively poor effects. The fatty acid and sterol compositions in the six microalgae and the juvenile ark shell after feeding were analyzed, and 39 fatty acids and 18 sterols were identified. Although the results demonstrate a close correlation between the sterol compositions in algal species and juvenile ark shell, a similar correlation was not observed between fatty acids. In the juvenile ark shell fed microalgae, the ratio of total saturated fatty acids (SFA) rapidly decreases, whereas the proportion of total polyunsaturated fatty acids (PUFAs) increases considerably. The abundances of AA, EPA, and DHA increase most significantly in shellfish with better growth (fed C. calcitrans, I. galbana, and P. viridis). The number of sterol species is reduced, but the total sterol content in groups fed corresponding microalgae increases, and abundant plant sterols, instead of cholesterol, are accumulated in juvenile ark shell fed appropriate microalgae I. galbana and P. viridis. Therefore, to be more conducive to human health, I. galbana and P. viridis, of the six experimental microalgae, are recommended for artificial ark shell culture.

  6. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A (13)C MAS NMR Study.

    Science.gov (United States)

    Ciesielski, Filip; Griffin, David C; Loraine, Jessica; Rittig, Michael; Delves-Broughton, Joss; Bonev, Boyan B

    2016-01-01

    The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state (13)C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol (13)C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B. PMID:27379235

  7. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsoo, E-mail: sungsoo.lee@utsouthwestern.edu [Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 (United States); Wang, Ping-Yuan [Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 (United States); Jeong, Yangsik; Mangelsdorf, David J. [Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041 (United States); Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041 (United States); Anderson, Richard G.W. [Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 (United States); Michaely, Peter, E-mail: peter.michaely@utsouthwestern.edu [Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 (United States)

    2012-10-01

    Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements. -- Highlights: Black-Right-Pointing-Pointer ORP1S translocates to the nucleus in response to sterol binding. Black-Right-Pointing-Pointer The sterols that best promote nuclear import of ORP1S are LXR agonists. Black-Right-Pointing-Pointer ORP1S binds to LXRs, enhances binding of LXRs to LXREs and promotes LXR-dependent transcription of apoE.

  8. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    Science.gov (United States)

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. PMID:27025962

  9. Information and Its Carriers.

    Science.gov (United States)

    Herrmann, F.; And Others

    1985-01-01

    Describes: (1) the structure of a data transmission source, carrier, and receiver; (2) a quantitative measure for the amount of data, followed by some quantitative examples of data transmission processes; (3) the concept of data current; (4) data containers; and (5) how this information can be used to structure physics courses. (JN)

  10. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma[S

    OpenAIRE

    McDonald, Jeffrey G.; Smith, Daniel D.; Stiles, Ashlee R.; Russell, David W

    2012-01-01

    We describe the development of a method for the extraction and analysis of 62 sterols, oxysterols, and secosteroids from human plasma using a combination of HPLC-MS and GC-MS. Deuterated standards are added to 200 μl of human plasma. Bulk lipids are extracted with methanol:dichloromethane, the sample is hydrolyzed using a novel procedure, and sterols and secosteroids are isolated using solid-phase extraction (SPE). Compounds are resolved on C18 core-shell HPLC columns and by GC. Sterols and o...

  11. Changes in the sterol compositions of milk thistle oil (Silybium marianum L.) during seed maturation

    OpenAIRE

    Harrabi, S.; De Curtis, S.; Hayet, F.; Mayer, P. M.

    2016-01-01

    In this study, the total lipid content and sterol compositions were determined during the development of milk thistle seeds. The oil content increased to a maximum value of 36±1.7% and then declined to reach a value of 30.5±0.9% at full maturity. The sterol content of milk thistle seeds was affected by the ripening degree of the seeds. At the early stages of seed maturation, Δ7-stigmastenol was the most abundant sterol followed by β-sitosterol. However, at full maturity, β-sitosterol was the ...

  12. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments....... DHE's surface distribution matched exactly large ruffles and membrane protrusions which were pronounced in FC-loaded cells. Plasma membrane blebs, however, formed in FC-loaded J774 cells had a homogenous staining along the membrane bilayer at 20 degrees C. The results show that even in FC-loaded cells...... with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane....

  13. Membrane association of the Arabidopsis ARF exchange factor GNOM involves interaction of conserved domains

    DEFF Research Database (Denmark)

    Anders, Nadine; Nielsen, Michael M.; Keicher, Jutta;

    2008-01-01

    The GNOM protein plays a fundamental role in Arabidopsis thaliana development by regulating endosome-to-plasma membrane trafficking required for polar localization of the auxin efflux carrier PIN1. GNOM is a family member of large ARF guanine nucleotide exchange factors (ARF-GEFs), which regulate...... association. Our results suggest a general model of large ARF-GEF function in which regulated changes in protein conformation control membrane association of the exchange factor and, thus, activation of ARFs....

  14. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    Science.gov (United States)

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  15. Intestinal solute carriers

    DEFF Research Database (Denmark)

    Steffansen, Bente; Nielsen, Carsten Uhd; Brodin, Birger;

    2004-01-01

    membrane transporters in the small intestine in order to increase oral bioavailabilities of drug or prodrug, the major influence on in vivo pharmacokinetics is suggested to be dose-dependent increase in bioavailability as well as prolonged blood circulation due to large capacity facilitated absorption......A large amount of absorptive intestinal membrane transporters play an important part in absorption and distribution of several nutrients, drugs and prodrugs. The present paper gives a general overview on intestinal solute carriers as well as on trends and strategies for targeting drugs and....../or prodrugs to these carriers in order to increasing oral bioavailability and distribution. A number of absorptive intestinal transporters are described in terms of gene and protein classification, driving forces, substrate specificities and cellular localization. When targeting absorptive large capacity...

  16. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  17. Hungarian students’ carrier aspirations

    Directory of Open Access Journals (Sweden)

    A.S. Gubik

    2014-06-01

    Full Text Available The article analyzes the students’ carrier aspiration, right after their graduation and five years after their studies. It examines the differences arising from the students’ family business background and their most important social variables (gender, age. Then the study highlights the effects of study field on the students’ intention. The direct effect of education on starting an enterprise is undiscovered in the literature, the paper deals with the influence of availability and services use, offered by higher institutions.

  18. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing;

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  19. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri.

    Science.gov (United States)

    Zhao, Donghai; Zheng, Lianwen; Qi, Ling; Wang, Shuran; Guan, Liping; Xia, Yanan; Cai, Jianhui

    2016-01-01

    The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST) and tail suspension test (TST) in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters. PMID:27367705

  20. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri

    Directory of Open Access Journals (Sweden)

    Donghai Zhao

    2016-06-01

    Full Text Available The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST and tail suspension test (TST in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters.

  1. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri

    Science.gov (United States)

    Zhao, Donghai; Zheng, Lianwen; Qi, Ling; Wang, Shuran; Guan, Liping; Xia, Yanan; Cai, Jianhui

    2016-01-01

    The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST) and tail suspension test (TST) in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters. PMID:27367705

  2. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, Linda L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the Delta9, Delta10, and Delta11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 C cells and the lowest in 50 C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  3. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, L. L.

    1992-01-01

    Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.

  4. Carrier transport uphill. I. General

    DEFF Research Database (Denmark)

    Rosenberg, T; Wilbrandt, W

    1963-01-01

    A quantitative treatment of a carrier pump operating with two carrier forms C and Z is presented. Asymmetric metabolic reactions are assumed to transform Z into C on one and C into Z on the other side of the membrane, establishing a carrier cycle. The kinetical consequences of this mechanism...

  5. Cholesterol lowering effect of a soy drink enriched with plant sterols in a French population with moderate hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Bard Jean-Marie

    2008-10-01

    Full Text Available Abstract Background Plant sterols are an established non-pharmacological means to reduce total and LDL blood cholesterol concentrations and are therefore recommended for cholesterol management by worldwide-renown health care institutions. Their efficacy has been proven in many types of foods with the majority of trials conducted in spreads or dairy products. As an alternative to dairy products, soy based foods are common throughout the world. Yet, there is little evidence supporting the efficacy of plant sterols in soy-based foods. The objective of this study was to investigate the effect of a soy drink enriched with plant sterols on blood lipid profiles in moderately hypercholesterolemic subjects. Methods In a randomized, placebo-controlled double-blind mono-centric study, 50 subjects were assigned to 200 ml of soy drink either enriched with 2.6 g plant sterol esters (1.6 g/d free plant sterol equivalents or without plant sterols (control for 8 weeks. Subjects were instructed to maintain stable diet pattern and physical activity. Plasma concentrations of lipids were measured at initial visit, after 4 weeks and after 8 weeks. The primary measurement was the change in LDL cholesterol (LDL-C. Secondary measurements were changes in total cholesterol (TC, non-HDL cholesterol (non-HDL-C, HDL cholesterol (HDL-C and triglycerides. Results Regular consumption of the soy drink enriched with plant sterols for 8 weeks significantly reduced LDL- C by 0.29 mmol/l or 7% compared to baseline (p 96%, and products were well tolerated. Conclusion Daily consumption of a plant sterol-enriched soy drink significantly decreased total, non-HDL and LDL cholesterol and is therefore an interesting and convenient aid in managing mild to moderate hypercholesterolemia.

  6. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14α-Demethylase (CYP51) from Leishmania infantum*

    OpenAIRE

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I.

    2011-01-01

    Leishmaniasis is a major health problem that affects populations of ∼90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infa...

  7. Molecular Docking Based Virtual Design of Polysubstituted Triazoles as Cytochrome P-450 14-Alpha-Sterol Demethylase (Cyp51) Inhibitor

    OpenAIRE

    Bibek Pati*,1; Subhasis Banerjee2

    2012-01-01

    Computational ligand docking methodology, AutoDock 4.0, based on Lamarckian genetic algorithm was employed for virtual screening of a compound library with 13 entries including reference compound as fluconazole with the enzyme Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51), a potential antifungal drug target. Considering free energy of binding as a criteria of evaluation, a total of 12 compounds were predicted to be potential inhibitors of Cytochrome P-450-14-Alpha-Sterol Demethylase (C...

  8. The use of lipid emulsions for sterol supplementation of spat of the Pacific oyster, Crassostrea gigas

    OpenAIRE

    Soudant, P.; Val Sanles, M.; Quere, C.; Le Coz, J.R.; Marty, Y; Moal, J.; Samain, J. F.; Sorgeloos, P.

    2005-01-01

    To determine the ingestion and absorption of lipid emulsions, spat were fed algae deficient in stigmasterol and cholesterol and an emulsion containing these two sterols. The ingestion-absorption of the emulsion was estimated by measuring incorporation of these two sterols in oyster lipids during the 33-day feeding period. They were supplemented with 0%, 3%, 10% and 20% emulsion wet weight of the algae dry weight. The results showed that after only 7 days of emulsion supplementation, significa...

  9. Isolation and functional analysis of a Brassica juncea gene encoding a component of auxin efflux carrier

    Institute of Scientific and Technical Information of China (English)

    WEI; MIN; NI; XIAO; YA; CHEN; ZHI; HONG; XU; HONG; WEI; XUE

    2002-01-01

    Polar auxin transport plays a divergent role in plant growth and developmental processes including rootand embryo development, vascular pattern formation and cell elongation. Recently isolated Arabidopsispin gene family was believed to encode a component of auxin efflux carrier (Galweiler et al, 1998). Basedon the Arabidopsis pin1 sequence we have isolated a Brassica juncea cDNA (designated Bjpinl), whichencoded a 70-kDa putative auxin efflux carrier. Deduced BjPIN1 shared 65% identities at protein level withAtPIN1 and was highly homologous to other putative PIN proteins of Arabidopsis (with highest homologyto AtPIN3). Hydrophobic analysis showed similar structures between BjPIN1 and AtPIN proteins. Presenceof 6 exons (varying in size between 65 bp and 1229 bp) and 5 introns (sizes between 89 bp and 463 bp)in the genomic fragment was revealed by comparing the genomic and cDNA sequences. Northern blotanalysis indicated that Bjpinl was expressed in most of the tissues tested, with a relatively higher levelof transcript in flowers and a lower level in root tissues. Promoter-reporter gene fusion studies furtherrevealed the expression of Bjpinl in the mature pollen grains, young seeds, root tip, leaf vascular tissue andtrace bundle, stem epidermis, cortex and vascular cells. BjPIN1 was localized on the plasma membraneas demonstrated through fusion expression of green fluorescent protein (GFP). Auxin efflux carrier activitywas elevated in transgenic Arabidopsis expressing BjPIN1.

  10. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  11. Parameters for Martini sterols and hopanoids based on a virtual-site description

    Science.gov (United States)

    Melo, M. N.; Ingólfsson, H. I.; Marrink, S. J.

    2015-12-01

    Sterols play an essential role in modulating bilayer structure and dynamics. Coarse-grained molecular dynamics parameters for cholesterol and related molecules are available for the Martini force field and have been successfully used in multiple lipid bilayer studies. In this work, we focus on the use of virtual sites as a means of increasing the stability of cholesterol and cholesterol-like structures. We improve and extend the Martini parameterization of sterols in four different ways: 1—the cholesterol parameters were adapted to make use of virtual interaction sites, which markedly improves numerical stability; 2—cholesterol parameters were also modified to address reported shortcomings in reproducing correct lipid phase behavior in mixed membranes; 3—parameters for ergosterol were created and adapted from cholesterols; and 4—parameters for the hopanoid class of bacterial polycyclic molecules were created, namely, for hopane, diploptene, bacteriohopanetetrol, and for their polycyclic base structure.

  12. Arenicolsterol A, a Novel Cytotoxic Enolic Sulfated Sterol from a Marine Annelid Arenicola cristata

    Institute of Scientific and Technical Information of China (English)

    CHEN Bin; SHEN Xian-Rong; KONG Ji-Lie

    2005-01-01

    Marine organisms are the important source of the bioactive metabolites. A novel enolic sulfated sterol, arenicolsterol A, has been isolated from a marine annelid Arenicola cristata collected in the coast of Mainland of China.The structure was elucidated using all sorts of spectroscopic data including ESIMS, 1D and 2D NMR etc. The cytotoxic bioactivity of this sterol was evaluated by MTT assay. It could inhibit the growth of human cervix cancer cell line (Hela) and human non-small cell lung cancer cell line (NCI-h6) with IC50 of (3.1 ±0.6) μg/mL and (7.6±0.8) μg/mL.

  13. [Terpenoids and sterols from Ricinus communis and their activities against diabetes].

    Science.gov (United States)

    Li, Shen-Hua; Deng, Qing; Zhu, Li; Lai, Chun-Hua; Wang, Heng-Shan; Tan, Qin-Gang

    2014-02-01

    Seven terpenoids and three sterols were isolated from the methanol extracts of the aerial parts of Ricinus communis by chromatography methods and their structures were identified by spectra analysis as ficusic acid( 1), phytol(2), callyspinol(3) , lupeol(4), 30-norlupan-3beta-ol-20-one(5) , lup-20(29)-en-3beta,15alpha-diol(6) , acetylaleuritolic acid( 7), stigmast4-en-3-one(8) , stig-mast-4-en-6beta-ol-3-one(9) , and stigmast4-en-3,6-dione(10). Compounds 1-3 and 5-10 were obtained from this species for the first time and 5 and 6 showed significant inhibitive activity and good selectivity against 11beta-HSD of mouse and human in vitro. [Key words] Ricinus communis; terpenoids; sterols; 11beta-HSD

  14. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    Science.gov (United States)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  15. Microbial water quality and sedimentary faecal sterols as markers of sewage contamination in Kuwait.

    Science.gov (United States)

    Lyons, B P; Devlin, M J; Abdul Hamid, S A; Al-Otiabi, A F; Al-Enezi, M; Massoud, M S; Al-Zaidan, A S; Smith, A J; Morris, S; Bersuder, P; Barber, J L; Papachlimitzou, A; Al-Sarawi, H A

    2015-11-30

    Microbial water quality and concentrations of faecal sterols in sediment have been used to assess the degree of sewage contamination in Kuwait's marine environment. A review of microbial (faecal coliform, faecal streptococci and Escherichia coli) water quality data identified temporal and spatial sources of pollution around the coastline. Results indicated that bacterial counts regularly breach regional water quality guidelines. Sediments collected from a total of 29 sites contained detectable levels of coprostanol with values ranging from 29 to 2420 ng g(-1) (dry weight). Hot spots based on faecal sterol sediment contamination were identified in Doha Bay and Sulaibikhat Bay, which are both smaller embayments of Kuwait Bay. The ratio of epicoprostanol/coprostanol indicates that a proportion of the contamination was from raw or partially treated sewage. Sewage pollution in these areas are thought to result from illegal connections and discharges from storm drains, such as that sited at Al-Ghazali.

  16. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    Energy Technology Data Exchange (ETDEWEB)

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  17. A Sterol and Spiroditerpenoids from a Penicillium sp. Isolated from a Deep Sea Sediment Sample

    Directory of Open Access Journals (Sweden)

    Chengbin Cui

    2012-02-01

    Full Text Available A new polyoxygenated sterol, sterolic acid (1, three new breviane spiroditerpenoids, breviones I–K (2–4, and the known breviones (5–8, were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1–4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those of the model compounds. Compounds 2 and 5 showed significant cytotoxicity against MCF-7 cells, which is comparable to the positive control cisplatin.

  18. Molecular Docking Based Virtual Design of Polysubstituted Triazoles as Cytochrome P-450 14-Alpha-Sterol Demethylase (Cyp51 Inhibitor

    Directory of Open Access Journals (Sweden)

    Bibek Pati*,1

    2012-01-01

    Full Text Available Computational ligand docking methodology, AutoDock 4.0, based on Lamarckian genetic algorithm was employed for virtual screening of a compound library with 13 entries including reference compound as fluconazole with the enzyme Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51, a potential antifungal drug target. Considering free energy of binding as a criteria of evaluation, a total of 12 compounds were predicted to be potential inhibitors of Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51 and 10 compounds displayed greater binding affinities than fluconazole as Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51 Inhibitor. Compound 1a & 1b were the most potent in inhibiting the Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51, in silico. Putative interactions between Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51 and inhibitors were identified by inspection of docking-predicted poses. This understanding of protein–ligand interaction and value of binding energy imparts impetus to the rapid development of novel Cytochrome P-450-14-Alpha-Sterol Demethylase (Cyp51.

  19. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  20. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism

    OpenAIRE

    Li-Qin Xu; Yong-Jun Liu; Kang Yao; Hao-Hao Liu; Xin-Yi Tao; Feng-Qing Wang; Dong-Zhi Wei

    2016-01-01

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehyd...

  1. Epigenetic modifier-induced biosynthesis of novel acetylenic sterols from Cladosporium colocasiae.

    Science.gov (United States)

    Liu, Dong-Ze; Liang, Bo-Wen; Li, Xiao-Fei; Yu, Zhi-Yuan

    2014-09-01

    The addition of an HDAC inhibitor, suberoylanilide hydroxamic acid (SBHA), to the culture medium of Cladosporium colocasiae, dramatically altered its metabolic profiles. Analysis of the culture broth extract led to the isolation of two new acetylenic sterols (1-2). The isolated compounds were further evaluated for their cytotoxic and antibacterial activities. Compound 1 showed activity against Bacillus subtilis, affording a zone of inhibition of 12mm at 100μg/disk. However, none of them showed noticeable growth inhibitory effects.

  2. Boophiline, an Antimicrobial Sterol Amide from the Cattle Tick Boophilus microplus

    OpenAIRE

    Potterat, Olivier; Hostettmann, Kurt; Höltzel, Alexandra; Jung, Günther; Diehl, Peter A.; Petrini, Orlando

    2008-01-01

    Boophiline (1), a new sterol amide was isolated from the cattle tick Boophilus microplus (Ixodidae). The structure was assigned as N-[3-(sulfooxy)-25ξ-cholest-5-en-26-oyl]-L-isoleucine by detailed 2D NMR investigations in conjunction with FAB mass spectrometry and acidic hydrolyses. Complete assignment of the diastereotopic methylene protons of the ring system could be deduced from the NMR data. In agar dilution assays, 1 exhibited antifungal properties against Cladosporium cucumerinum and an...

  3. Role of Aspergillus lentulus 14-α Sterol Demethylase (Cyp51A) in Azole Drug Susceptibility▿

    OpenAIRE

    Mellado, Emilia; Alcazar-Fuoli, Laura; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan L.

    2011-01-01

    Recent studies have demonstrated that some morphologically atypical Aspergillus fumigatus strains are different species belonging to the section Fumigati. Aspergillus lentulus, one of these sibling species, is increasingly reported in patients under corticosteroid treatment. MICs of most antifungals in clinical use are elevated against A. lentulus, and it shows primary resistance to azole drugs. Two A. lentulus cytochrome P450 14-α sterol demethylases, encoded by A. lentulus cyp51A (Alcyp51A)...

  4. Formation of Azole-Resistant Candida albicans by Mutation of Sterol 14-Demethylase P450

    OpenAIRE

    Asai, Kentaro; Tsuchimori, Noboru; Okonogi, Kenji; Perfect, John R.; Gotoh, Osamu; Yoshida, Yuzo

    1999-01-01

    The sterol 14-demethylase P450 (CYP51) of a fluconazole-resistant isolate of Candida albicans, DUMC136, showed reduced susceptibility to this azole but with little change in its catalytic activity. Twelve nucleotide substitutions, resulting in four amino acid changes, were identified in the DUMC136 CYP51 gene in comparison with a reported CYP51 sequence from a wild-type, fluconazole-susceptible C. albicans strain. Seven of these substitutions, including all of those causing amino acid changes...

  5. Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase

    OpenAIRE

    Parker, Josie E.; Warrilow, Andrew G. S.; Cools, Hans J; Fraaije, Bart A.; Lucas, John A.; Rigdova, Katarina; Griffiths, William J.; Kelly, Diane E.; Kelly, Steven L.

    2013-01-01

    Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We the...

  6. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum

    OpenAIRE

    Fabris, M; Matthijs, M.; Carbonelle, S.; Moses, T.; Pollier, J.; Dasseville, R.; Baart, G.J.E.; Vyverman, W.; Goossens, A

    2014-01-01

    Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the path...

  7. Maintainable substrate carrier for electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-An; Abas, Emmanuel Chua; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor; Ma, Diana Xiaobing

    2016-08-02

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  8. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses

    Institute of Scientific and Technical Information of China (English)

    Annette; Graham; Anne-Marie; Allen

    2015-01-01

    The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activators of liver X receptors(LXRs),via sterol 27-hydroxylase,is regulated by the rate of flux of cholesterolto the inner mitochondrial membrane,via a complex of cholesterol trafficking proteins.Oxysterols are key signalling molecules,regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production,key features influencing the impact of these cells within atherosclerotic lesions.The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate,but may include steroidogenic acute regulatory protein and translocator protein.There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters(ABCA1,ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages.Thus,molecules which can sustain or improve mitochondrial structure,the function of the electron transport chain,or increase the activity of components of the protein complex involved in cholesterol transfer,may therefore have utility in limiting or regressing atheroma development,reducing the incidence of coronary heart disease and myocardial infarction.

  9. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    Science.gov (United States)

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  10. Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa.

    Science.gov (United States)

    Flores-Sánchez, Isvett J; Ortega-López, Jaime; del Carmen Montes-Horcasitas, María; Ramos-Valdivia, Ana C

    2002-12-01

    Pectin administered to Uncaria tomentosa cell suspension cultures, was found to increase the production of triterpene acids (ursolic and oleanolic acid), however, neither growth nor sterol accumulation were affected. Cell cultures showed that pectin treatment caused a rapid threefold increase in the activities of enzymes involved in the biosynthesis of C(5) and C(30 )isoprenoid, such as isopentenyl diphosphate isomerase and squalene synthase. The activity of a farnesyl diphosphatase, which could divert the flux of farnesyl diphosphate to farnesol, was two times lower in elicited than in control cells. Elicited cells also transformed more rapidly a higher percentage of [5-(3)H]mevalonic acid into triterpene acids. Interestingly, addition of terbinafine, an inhibitor of squalene epoxidase, to elicited cell cultures inhibited sterol accumulation while triterpene production was not inhibited. These results suggest that in U. tomentosa cells, both the previously mentioned enzymes and those involved in squalene 2,3-oxide formation play an important regulatory role in the biosynthesis of sterols and triterpenes.

  11. Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei.

    Science.gov (United States)

    Leaver, David J; Patkar, Presheet; Singha, Ujjal K; Miller, Matthew B; Haubrich, Brad A; Chaudhuri, Minu; Nes, W David

    2015-10-22

    Trypanosoma brucei, the causal agent for sleeping sickness, depends on ergosterol for growth. Here, we describe the effects of a mechanism-based inhibitor, 26-fluorolanosterol (26FL), which converts in vivo to a fluorinated substrate of the sterol C24-methyltransferase essential for sterol methylation and function of ergosterol, and missing from the human host. 26FL showed potent inhibition of ergosterol biosynthesis and growth of procyclic and bloodstream forms while having no effect on cholesterol biosynthesis or growth of human epithelial kidney cells. During exposure of cloned TbSMT to 26-fluorocholesta-5,7,24-trienol, the enzyme is gradually killed as a consequence of the covalent binding of the intermediate C25 cation to the active site (kcat/kinact = 0.26 min(-1)/0.24 min(-1); partition ratio of 1.08), whereas 26FL is non-productively bound. These results demonstrate that poisoning of ergosterol biosynthesis by a 26-fluorinated Δ(24)-sterol is a promising strategy for developing a new treatment for trypanosomiasis.

  12. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  13. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  14. The role of ABC proteins Aus1p and Pdr11p in the uptake of external sterols in yeast: dehydroergosterol fluorescence study

    DEFF Research Database (Denmark)

    Kohut, Peter; Wüstner, Daniel; Hronska, L;

    2011-01-01

    Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes. We...... applied the fluorescent ergosterol analog dehydroergosterol (DHE) to monitor the initial steps of sterol uptake by three independent approaches: fluorescence spectroscopy, fluorescence microscopy and sterol quantification by HPLC. Using specific fluorescence characteristics of DHE we showed that the entry...... of sterol molecules into plasma membrane is not spontaneous but requires assistance of two ABC (ATP-binding cassette) pumps--Aus1p or Pdr11p. DHE taken up by uptake-competent hem1ΔAUS1PDR11 cells could be directly visualized by UV-sensitive wide field fluorescence microscopy. HPLC analysis of sterols...

  15. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    Directory of Open Access Journals (Sweden)

    Lund Frederik W

    2012-10-01

    Full Text Available Abstract Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE, an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s, a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle

  16. Quantification of Sterol and Triterpenol Biomarkers in Sediments of the Cananéia-Iguape Estuarine-Lagoonal System (Brazil) by UHPLC-MS/MS

    OpenAIRE

    Giovana Anceski Bataglion; Hector Henrique Ferreira Koolen; Rolf Roland Weber; Marcos Nogueira Eberlin

    2016-01-01

    Sterols and triterpenols present in sedimentary cores from 12 stations along the Cananéia-Iguape estuarine-lagoonal system were investigated by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Ten sterols and three triterpenols were identified and quantified, indicating both natural and anthropogenic sources. The relative distributions of sterol and triterpenol showed that the study area is submitted to organic matter (OM) from the Ribeira de Iguape River, ...

  17. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors

    OpenAIRE

    Larissa M. Podust; Poulos, Thomas L.; Waterman, Michael R.

    2001-01-01

    Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phen...

  18. Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Δ7-24, 25-dihydrolanosterol[S

    OpenAIRE

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I.

    2012-01-01

    Sterol 14α-demethylase (CYP51) that catalyzes the removal of the 14α-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14α-methylenecyclopropyl-Δ7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and ...

  19. Autonomous component carrier selection

    DEFF Research Database (Denmark)

    Garcia, Luis Guilherme Uzeda; Pedersen, Klaus; Mogensen, Preben

    2009-01-01

    in local areas, basing our study case on LTE-Advanced. We present extensive network simulation results to demonstrate that a simple and robust interference management scheme, called autonomous component carrier selection allows each cell to select the most attractive frequency configuration; improving......Low-power base stations such as e.g. Femto-cells are one of the candidates for high data rate provisioning in local areas, such as residences, apartment complexes, business offices and outdoor hotspot scenarios. Unfortunately, the benefits are not without new challenges in terms of interference...... management and efficient system operation. Due to the expected large number of user-deployed cells, centralized network planning becomes unpractical and new scalable alternatives must be sought. In this article, we propose a fully distributed and scalable solution to the interference management problem...

  20. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    Science.gov (United States)

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  1. Kinetic studies on recombinant UDP-glucose: sterol 3-O-β-glycosyltransferase from Micromonospora rhodorangea and its bioconversion potential.

    Science.gov (United States)

    Hoang, Nguyen Huu; Huong, Nguyen Lan; Kim, Byul; Park, Je Won

    2016-12-01

    Kinetics of a recombinant uridine diphosphate-glucose: sterol glycosyltransferase from Micromonospora rhodorangea ATCC 27932 (MrSGT) were studied using a number of sterols (including phytosterols) as glycosyl acceptors. The lowest K m value and the highest catalytical efficiency (k cat/K m) were found when β-sitosterol was the glycosyl acceptor in the enzymatic reaction. In contrast to the enzyme's flexibility toward the glycosyl acceptor substrate, this recombinant enzyme was highly specific to uridine diphosphate (UDP)-glucose as the donor substrate. Besides, the UDP-glucose-dependent MrSGT was able to attach one glucose moiety specifically onto the C-3 hydroxyl group of other phytosterols such as fucosterol and gramisterol, yielding stereo-specific fucosterol-3-O-β-D-glucoside and gramisterol-3-O-β-D-glucoside, respectively. Based on kinetic data obtained from the enzyme's reactions using five different sterol substrates, the significance of the alkene (or ethylidene) side chains on the C-24 position in the sterol scaffolds was described and the possible relationship between the substrate structure and enzyme activity was discussed. This is the first report on the enzymatic bioconversion of the above two phytosteryl 3-O-β-glucosides, as well as on the discovery of a stereospecific bacterial SGT which can attach a glucose moiety in β-conformation at the C-3 hydroxyl group of diverse sterols, thus highlighting the catalytic potential of this promiscuous glycosyltransferase to expand the structural diversity of steryl glucosides. PMID:27485517

  2. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids.

    Science.gov (United States)

    John, Clara; Werner, Philipp; Worthmann, Anna; Wegner, Katrin; Tödter, Klaus; Scheja, Ludger; Rohn, Sascha; Heeren, Joerg; Fischer, Markus

    2014-12-01

    Recently, hydroxy sterols and bile acids have gained growing interest as they are important regulators of energy homoeostasis and inflammation. The high number of different hydroxy sterols and bile acid species requires powerful analytical tools to quantify these structurally and chemically similar analytes. Here, we introduce a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for rapid quantification of 34 sterols (hydroxy sterols, primary, secondary bile acids as well as their taurine and glycine conjugates). Chromatographic baseline separation of isomeric hydroxy sterols and bile acids is obtained using a rugged amide embedded C18 (polar embedded) stationary phase. The current method features a simple extraction protocol validated for blood plasma, urine, gall bladder, liver, feces, and adipose tissue avoiding solid phase extraction as well as derivatization procedures. The total extraction recovery for representative analytes ranged between 58-86% in plasma, 85% in urine, 79-92% in liver, 76-98% in adipose tissue, 93-104% in feces and 62-79% in gall bladder. The validation procedure demonstrated that the calibration curves were linear over the selected concentration ranges for 97% of the analytes, with calculated coefficients of determination (R2) of greater than 0.99. A feeding study in wild type mice with a standard chow and a cholesterol-enriched Western type diet illustrated that the protocol described here provides a powerful tool to simultaneously quantify cholesterol derivatives and bile acids in metabolically active tissues and to follow the enterohepatic circulation.

  3. The Arabidopsis NPF3 protein is a GA transporter.

    Science.gov (United States)

    Tal, Iris; Zhang, Yi; Jørgensen, Morten Egevang; Pisanty, Odelia; Barbosa, Inês C R; Zourelidou, Melina; Regnault, Thomas; Crocoll, Christoph; Olsen, Carl Erik; Weinstain, Roy; Schwechheimer, Claus; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan; Estelle, Mark; Shani, Eilon

    2016-01-01

    Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants deficient in GA transport. We show that the NPF3 transporter efficiently transports GA across cell membranes in vitro and GA-Fl in vivo. NPF3 is expressed in root endodermis and repressed by GA. NPF3 is targeted to the plasma membrane and subject to rapid BFA-dependent recycling. We show that abscisic acid (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA-ABA interaction may occur at the level of transport. PMID:27139299

  4. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  5. Asparagine Metabolic Pathways in Arabidopsis.

    Science.gov (United States)

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  6. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects.

    Science.gov (United States)

    Jing, Xiangfeng; Grebenok, Robert J; Behmer, Spencer T

    2014-08-01

    Insects lack the ability to synthesize sterols de novo so they acquire this essential nutrient from their food. Cholesterol is the dominant sterol found in most insects, but in plant vegetative tissue it makes up only a small fraction of the total sterol profile. Instead, plants mostly contain phytosterols; plant-feeding insects generate the majority of their cholesterol by metabolizing phytosterols. However, not all phytosterols are readily converted to cholesterol, and some are even deleterious when ingested above a threshold level. In a recent study we showed that caterpillars reared on tobacco accumulating novel sterols/steroids exhibited reduced performance, even when suitable sterols were present. In the current study we examined how the dominant sterols (cholesterol and stigmasterol) and steroids (cholestanol and cholestanone) typical of the modified tobacco plants affected two insect herbivores (Heliothis virescens and Helicoverpa zea). The sterols/steroids were incorporated into synthetic diets singly, as well as in various combinations, ratios and amounts. For each insect species, a range of performance values was recorded for two generations, with the eggs from the 1st-generation adults as the source of neonates for the 2nd-generation. Performance on the novel steroids (cholestanol and cholestanone) was extremely poor compared to suitable sterols (cholesterol and stigmasterol). Additionally, performance tended to decrease as the ratio of the novel dietary steroids increased. We discuss how the balance of different dietary sterols/steroids affected our two caterpillar species, relate this back to recent studies on sterol/steroid metabolism in these two species, and consider the potential application of sterol/steroid modification in crops.

  7. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  8. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  9. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  10. The lipid lowering effect of plant sterol ester capsules in hypercholesterolemic subjects

    Directory of Open Access Journals (Sweden)

    Dong Zhi-Ping

    2007-04-01

    Full Text Available Abstract Background Foods enriched with phytosterols have been proven to be an effective therapy to improve blood lipid profiles. However, none of the studies have investigated the efficacy in lipid lowering of plant sterol esters (PSE in capsule form. The objective of this study is to determine if the plant sterol esters (PSE in capsule form (1.3 grams of PSE/day lowered plasma cholesterol levels and lipid ratios in free-living hypercholesterolemic subjects during a 4-week intervention period. Methods Sixteen subjects participated in a double-blind, placebo-controlled, sequential study with a 4-week placebo phase followed by a 2-week wash-out period and a 4-week treatment phase. Subjects were instructed to maintain stable diet pattern and physical activities. Blood samples were collected at 7, 21 and 28 days of each phase. The primary measurements were change in plasma total cholesterol (TC, HDL-cholesterol (HDL and LDL-cholesterol (LDL between phases and within each phase. The secondary measurements were change in triglycerides, lipoprotein ratios (TC/HDL, LDL/HDL and C-reactive protein (CRP. Results In comparison to placebo, LDL-cholesterol was significantly reduced by 7% and 4% (P Conclusion In conclusion, plant sterol ester capsule is effective in improving lipid profiles among hypercholesterolemic subjects in a free-living setting at the minimum dosage recommended by FDA. The significant improved lipid profiles were reached after three weeks of administration. To achieve better lipid lowering results, higher dosages and combination with diets low in saturated fat and cholesterol are recommended.

  11. Azole Binding Properties of Candida albicans Sterol 14-α Demethylase (CaCYP51)▿

    OpenAIRE

    Warrilow, Andrew G. S.; Martel, Claire M.; Parker, Josie E.; Melo, Nadja; Lamb, David C.; Nes, W. David; Kelly, Diane E.; Kelly, Steven L.

    2010-01-01

    Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with Ks values of 11 and 25 μM, respectively, and a Km value of 6 μM for lanosterol. Azole binding to CaCYP51 was “tight” with both the type II spectral intensity (ΔAmax) and the azole concentration required to obtain a half-ΔAmax being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhib...

  12. Identification of hopanoid, sterol, and tetrahymanol production in the aerobic methanotroph Methylomicrobium alcaliphilum 20Z

    Science.gov (United States)

    Welander, P. V.; Summons, R. E.

    2013-12-01

    Correlating the occurrence of molecular biosignatures preserved in the rock record with specific microbial taxa is a compelling strategy for studying microbial life in the context of the Earth's distant past. Polycyclic triterpenoids, including the hopanes and steranes, comprise classes of biomarkers that are readily detected in a variety of ancient sediments and are clearly recognized as the diagenetic products of modern day bacterial hopanoids and eukaryotic sterols. Thus, based on the distribution of these lipids in extant microbes, the occurrence of their diagenetic products in the rock record is often utilized as evidence for the existence of specific bacterial and eukaryotic taxa in ancient ecosystems. However, questions have arisen about our understanding of the taxonomic distribution of many of these molecular biomarkers in extant microbes. This is prompting reassessments of the use of polycyclic triterpenoids as geological proxies for microbial taxa, especially in the light of the poorly defined issue of microbial diversity. Recently, significant effort has been put forth to better understand the biosynthesis, function, and regulation of these lipid molecules in a variety of modern organisms so that a more informed interpretation of their occurrence in the rock record can be reached. Here we report the unprecedented production of three different classes of polycyclic triterpenoid biomarker lipids in one bacterium. Methylomicrobium alcaliphilum 20Z, a member of the Gammaproteobacteria, is a halotolerant alkaliphilic aerobic methanotroph previously isolated from a moderately saline soda lake in Tuva (Central Asia). In this study, M. alcaliphilum is shown to produce C-3 methylated and unmethylated aminohopanoids commonly associated with other mesophilic aerobic methanotrophs. In addition, this organism is also able to produce 4,4-dimethyl sterols and surprisingly, the gammacerane triterpenoid tetrahymanol. Previously, tetrahymanol production has only been

  13. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol

    DEFF Research Database (Denmark)

    Wustner, D.; Solanko, L.; Sokol, Olena;

    2011-01-01

    and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference...... simultaneous imaging of both sterols in model membranes and living cells. BCh2 had a lower affinity than DHE for the biologically relevant liquid-ordered phase in model membranes. Still, DHE and BCh2 trafficked from the plasma membrane to the endocytic recycling compartment (ERC) of BHK cells with identical...... kinetics. This transport pathway was strongly reduced after energy depletion of cells or expression of the dominant-negative clathrin heavy chain. The partitioning into lipid droplets of BHK and HeLa cells was higher for BCh2 than for DHE. Within droplets, the photodegradation of BCh2 was enhanced...

  14. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.;

    2012-01-01

    Background: Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute...... to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter...... are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D similar to 1.3 mu m(2)/s. Number and brightness (N&B) analysis...

  15. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    Science.gov (United States)

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.

  16. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14[alpha]-Demethylase (CYP51) from Leishmania infantum

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-05-14

    Leishmaniasis is a major health problem that affects populations of {approx}90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14{alpha}-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14{alpha}-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V{sub max} of {approx}10 and 8 min{sup -1}, respectively), it is also found to 14{alpha}-demethylate C4-dimethylated lanosterol (V{sub max} = 0.9 min{sup -1}) and C4-desmethylated 14{alpha}-methylzymosterol (V{sub max} = 1.9 min{sup -1}). Binding parameters with six sterols were tested, with K{sub d} values ranging from 0.25 to 1.4 {mu}m. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14{alpha}-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  17. GC-MS method for determining faecal sterols as biomarkers of human and pastoral animal presence in freshwater sediments.

    Science.gov (United States)

    Battistel, Dario; Piazza, Rossano; Argiriadis, Elena; Marchiori, Enrico; Radaelli, Marta; Barbante, Carlo

    2015-11-01

    In order to determine sterols and stanols in freshwater sediments to reconstruct the past presence of humans and pastoral animals, we developed an analytical method based on pressurised liquid extraction (PLE), clean-up performed using solid phase extraction (SPE) and sterol determination using gas chromatography-mass spectrometry (GC-MS) analysis. PLE extraction conditions were optimised using dichloromethane (DCM) and DCM/methanol mixtures. Clean-up was performed with 2 g silica SPE cartridges, and the concentrated extracts were eluted with 70 mL DCM. Extraction yield was evaluated using an in-house reference material spiked with (13)C-labelled cholesterol and aged for 10 days. In comparison with pre-extraction, where the sediment is extracted and then spiked with a known analyte concentration, this approach preserves the original composition of the sediment. DCM and DCM/methanol mixtures resulted in high extraction yields ranging from 86 to 92 % with good reproducibility (relative standard deviation (RSD) 5-8 %). PLE extraction yields obtained with DCM as the extracting solvent were about 1.5 times higher than extractions using an ultrasonic bath. The solvent extraction mixture and matrix composition strongly affected the solvent extraction composition where higher overall recoveries (70-80 %) for each compound were obtained with DCM. The extraction mixture and matrix composition also affected the analyte concentrations, resulting in a method precision ranging from 1 to 18 %. Diatomaceous earth spiked with 10 to 100 ng of sterols, and environmental samples fortified with suitable amounts of sterols provided apparent recovery values ranging from 90 to 110 %. We applied the method to environmental samples both close to and upstream from sewage discharge zones, resulting in substantially higher faecal sterol (FeSt) concentrations near the sewage. In addition, we also applied the method to a 37-cm freshwater sediment core in order to evaluate its applicability for

  18. Effect of rapeseed oil derived plant sterol and stanol esters on atherosclerosis parameters in cholesterol challenged heterozygous Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Schrøder, Malene; Fricke, Christiane; Pilegaard, Kirsten;

    2009-01-01

    cholesterol (P LDL-cholesterol was reduced 50 % in the high-dose RSO sterol ester (P high-dose RSO stanol ester (P ... of the RSO stanol ester groups and in one in the RSO sterol ester group. Aortic cholesterol was decreased in the treated groups (P high concentration...

  19. Fully automated determination of the sterol composition and total content in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection.

    Science.gov (United States)

    Nestola, Marco; Schmidt, Torsten C

    2016-09-01

    Sterol analysis of edible oils and fats is important in authenticity control. The gas chromatographic determination of the sterol distribution and total content is described by ISO norm 12228. Extraction, purification, and detection of the sterols are time-consuming and error-prone. Collaborative trials prove this regularly. Purification by thin-layer chromatography (TLC) and robust GC determination of all mentioned sterols is not straightforward. Therefore, a fully automated LC-GC-FID method was developed to facilitate the determination of sterols. The only manual step left was to weigh the sample into an autosampler vial. Saponification and extraction were performed by an autosampler while purification, separation, and detection were accomplished by online coupled normal-phase LC-GC-FID. Interlacing of sample preparation and analysis allowed an average sample throughput of one sample per hour. The obtained quantitative results were fully comparable with the ISO method with one apparent exception. In the case of sunflower oils, an additional unknown sterol was detected generally missed by ISO 12228. The reason was found in the omission of sterol silylation before subjection to GC-FID. The derivatization reaction changed the retention time and hid this compound behind a major sterol. The compound could be identified as 14-methyl fecosterol. Its structure was elucidated by GC-MS and ensured by HPLC and GC retention times. Finally, validation of the designed method confirmed its suitability for routine environments. PMID:27522150

  20. Molecular characterization of Itp3 and Itp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269

    NARCIS (Netherlands)

    Wilbrink, Maarten Hotse; van der Geize, Robert; Dijkhuizen, Lubbert; Spanning, R.J.M. van

    2012-01-01

    A previously identified sterol catabolic gene cluster is widely dispersed among actinobacteria, enabling them to degrade and grow on naturally occurring sterols. We investigated the physiological roles of various genes by targeted inactivation in mutant RG32 of Rhodococcus rhodochrous, which selecti

  1. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  2. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  3. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  4. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  5. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  6. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  7. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  8. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  9. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  10. Δ24-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis

    Science.gov (United States)

    Borba-Santos, Luana P.; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M.; de Camargo, Zoilo P.; Lopes-Bezerra, Leila M.; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ24-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  11. Δ(24)-Sterol Methyltransferase Plays an Important Role in the Growth and Development of Sporothrix schenckii and Sporothrix brasiliensis.

    Science.gov (United States)

    Borba-Santos, Luana P; Visbal, Gonzalo; Gagini, Thalita; Rodrigues, Anderson M; de Camargo, Zoilo P; Lopes-Bezerra, Leila M; Ishida, Kelly; de Souza, Wanderley; Rozental, Sonia

    2016-01-01

    Inhibition of Δ(24)-sterol methyltransferase (24-SMT) in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3β-ol (H3) were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors) were completely replaced by 14α-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14α-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker(®) Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more) the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective toward these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of ergosterol homeostasis

  12. ∆24-sterol methyltransferase plays an important role in the growth and development of Sporothrix schenckii and Sporothrix brasiliensis

    Directory of Open Access Journals (Sweden)

    Luana Pereira Borba-Santos

    2016-03-01

    Full Text Available Inhibition of ∆24-sterol methyltransferase (24-SMT in Sporothrix schenckii sensu stricto and Sporothrix brasiliensis was investigated in vitro. The effects on fungal growth and sterol composition of the 24-SMT inhibitor 22-hydrazone-imidazolin-2-yl-chol-5-ene-3-ol (H3 were compared to those of itraconazole. MIC and MFC analysis showed that H3 was more effective than itraconazole against both species in both their filamentous and yeast forms. H3 showed fungistatic activity in a time-kill assay, with inhibitory activity stronger than that of itraconazole. GC analysis of cell sterol composition showed that sterols present in control cells (ergosterol and precursors were completely replaced by 14-methylated sterols after H3 exposure. Itraconazole only partially inhibited ergosterol synthesis but completely arrested synthesis of other sterols found in control cells, promoting accumulation of nine 14-methyl sterols. Based on these results, we propose a schematic model of sterol biosynthesis pathways in S. schenckii and S. brasiliensis. Effects on cell morphology due to 24-SMT inhibition by H3 as analyzed by SEM and TEM included irregular cell shape, reduced cytoplasmic electron-density, and reduced thickness of the microfibrillar cell wall layer. Moreover, 24-SMT inhibition by H3 promoted mitochondrial disturbance, as demonstrated by alterations in MitoTracker® Red CMXRos fluorescence intensity evaluated by flow cytometry. When used in conjunction with itraconazole, H3 enhanced the effectiveness of itraconazole against all tested strains, reducing at least half (or more the MIC values of itraconazole. In addition, cytotoxicity assays revealed that H3 was more selective towards these fungi than was itraconazole. Thus, 24-SMT inhibition by H3 was an effective antifungal strategy against S. schenckii and S. brasiliensis. Inhibition of the methylation reaction catalyzed by 24-SMT has a strong antiproliferative effect via disruption of

  13. Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa

    OpenAIRE

    Warrilow, Andrew G. S.; Price, Claire L.; Parker, Josie E.; Rolley, Nicola J.; Smyrniotis, Christopher J.; David D. Hughes; Vera Thoss; W. David Nes; Kelly, Diane E.; Holman, Theodore R.; Kelly, Steven L.

    2016-01-01

    Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with K d values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min−1, 5.6 min−1 and 3.4 min−1. CYP5218 bound a range of fatty acids with linoleic acid binding strongest ...

  14. Effects of a Plant Sterol or Stanol Enriched Mixed Meal on Postprandial Lipid Metabolism in Healthy Subjects

    Science.gov (United States)

    Baumgartner, Sabine; Mensink, Ronald P.; Plat, Jogchum

    2016-01-01

    Background Evidence is increasing that plant sterols and stanols not only lower fasting serum low-density lipoprotein concentrations, but also those of triglycerides (TG). Insight into effects of these components on postprandial TG metabolism, an emerging risk factor for cardiovascular disease, is missing. Objective Our objective was to examine the 8-hour postprandial response after consuming plant sterol or stanol enriched margarine as part of a mixed meal. Methods This postprandial study was part of a randomized crossover study in which 42 subjects consumed plant sterol enriched (3 g/d plant sterols), plant stanol enriched (3 g/d plant stanols), and control margarines for 4 weeks. After each period, subjects consumed a shake enriched with 3g plant sterols (sterol period), 3g plant stanols (stanol period) or no addition (control period). Subjects received a second shake with no addition after 4 hours. Results TG and apoB48 incremental areas under the curves (iAUC) of the total (0-8h) and 1st meal response (0-4h) were comparable between the meals and in all age categories (I:18-35y, II:36-52y, III:53-69y). In subjects aged 53-69y, TG iAUC after the 2nd meal (4-8h) was higher in the stanol period as compared with the sterol (63.1±53.0 mmol/L/min; P sterol period (67.1±77.0 mg/L/min; P < 0.05) and tended to be higher than after the control period (43.1±64.5 mg/L/min; P = 0.08) in subjects aged 53-69y. These increased postprandial responses may be due to reduced lipoprotein lipase activity, since postprandial apoCIII/II ratios were increased after stanol consumption compared with the control meal. Conclusion Postprandial TG and apoB48 responses are age-dependently increased after plant stanol consumption, which might be related to a changed clearance of triglyceride-rich lipoproteins. Trial Registration ClinicalTrials.gov NCT01559428 PMID:27611192

  15. Synthesis of Hydroxylated Sterols(Ⅱ)--Synthesis of 24-Methylenecholest-4-en-3β,6α-diol

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In our study on the soft coral,Alcyonium patagonicum,a new hydroxylated sterol,24-methylenecholest-4-en-3β,6α-diol(1) exhibiting a potent activity to murine leukemia cells(IC50=1 μg/mL) has been isolated[1] and synthesized[2,3].As a part of our studies on the relationship between the chemical structure and the biological activity of the hydroxylated sterols,the synthesis of 24-methylenecholest-4-en-3β,6α-diol(2) is reported here.

  16. Common sources and estimated intake of plant sterols in the Spanish diet.

    Science.gov (United States)

    Jiménez-Escrig, Antonio; Santos-Hidalgo, Ana B; Saura-Calixto, Fulgencio

    2006-05-01

    Plant sterols (PS) are minor lipid components of plants, which may have potential health benefits, mainly based in their cholesterol-lowering effect. The aim of this study was to determine the composition and content of PS in plant-based foods commonly consumed in Spain and to estimate the PS intake in the Spanish diet. For this purpose, the determination of PS content, using a modern methodology to measure free, esterified, and glycosidic sterol forms, was done. Second, an estimation of the intake of PS, using the Spanish National Food Consumption data, was made. The daily intake per person of PS--campesterol, beta-sitosterol, stigmasterol, and stigmastanol--in the Spanish diet was estimated at 276 mg, the largest component being beta-sitosterol (79.7%). Other unknown compounds, tentatively identified as PS, may constitute a considerable potential intake (99 mg). When the daily PS intake among European diets was compared in terms of campesterol, beta-sitosterol, stigmasterol, and stigmastanol, the PS intake in the Spanish diet was in the same range of other countries such as Finland (15.7% higher) or The Netherlands (equal). However, some qualitative differences in the PS sources were detected, that is, the predominant brown bread and vegetable fat consumption in the northern diets versus the white bread and vegetable oil consumption in the Spanish diet. These differences may help to provide a link between the consumption of PS and healthy effects of the diet.

  17. Determination of triacyl glycerol and sterol components of fat to authenticate ghee based sweets.

    Science.gov (United States)

    Kala, A L Amrutha; Sabeena, K; Havanur, Priya Pramod

    2016-04-01

    Method comparison of triacyl glycerol (TAG) and sterol components of fats of ghee based sweets was carried out on dairy ghee, laboratory prepared control sample and market samples. The fat was extracted from control and market samples. Determination of TAG and sterol composition of the fats was carried out using low resolution Gas Chromatography. The quantification of cholesterol and β-sitosterol and TAG classes of dairy ghee, control and market samples fat was also determined using single short column. Adulteration at 5 % level in milk fats showed varied TAG compositions of C50, C52 and C54 as compared to control and pure ghee sample. The cholesterol content of ghee and control sample was 2.30 ± 0.8, 2.00 ± 0.24 g/kg respectively and β-sitosterol content of control was 0.20 ± 0.11 g/kg. The adulterated samples showed varied cholesterol and β-sitosterol contents as compared to control sample fat. PMID:27413245

  18. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens

    Directory of Open Access Journals (Sweden)

    Nasrin Payghami

    2015-01-01

    Full Text Available Background: Sargassum species (phaeophyceae are economically important brown algae in southern parts of Iran. Sargassum is mainly harvested as a row material in alginate production industries and is a source of plant foods or plant bio-stimulants even a component of animal foods. Objective: In this study, Sargassum glaucescens, collected from the seashore of Chabahar, was employed for phytochemical and biological evaluations. Materials and Methods: For that purpose, the dried algae was extracted by methanol and subjected to different chromatographic separation methods. Results: Six sterols, fucosterol (1, 24(S-hydroxy-24-vinylcholesterol (2, 24(R-hydroxy-24-vinylcholesterol (3, stigmasterol (4, β-sitosterol (5 and cholesterol (6 were identified by spectroscopic methods including 1 H-NMR, 13 C-NMR and mass spectroscopy. In vitro alpha-amylase inhibitory test was performed on the methanolic extract and the results revealed a potent inhibition (IC 50 = 8.9 ± 2.4 mg/mL of the enzyme compared to acarbose as a positive control. Conclusion: Various biological activities and distribution of sterols in Sargassum genus have been critically reviewed here. The results concluded that these algae are a good candidate for further anti-diabetic investigations in animals and human.

  19. Structural Insights into Inhibition of Sterol 14[alpha]-Demethylase in the Human Pathogen Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Lepesheva, Galina I.; Hargrove, Tatiana Y.; Anderson, Spencer; Kleshchenko, Yuliya; Furtak, Vyacheslav; Wawrzak, Zdzislaw; Villalta, Fernando; Waterman, Michael R. (Vanderbilt); (NWU); (Meharry)

    2010-09-02

    Trypanosoma cruzi causes Chagas disease (American trypanosomiasis), which threatens the lives of millions of people and remains incurable in its chronic stage. The antifungal drug posaconazole that blocks sterol biosynthesis in the parasite is the only compound entering clinical trials for the chronic form of this infection. Crystal structures of the drug target enzyme, Trypanosoma cruzi sterol 14{alpha}-demethylase (CYP51), complexed with posaconazole, another antifungal agent fluconazole and an experimental inhibitor, (R)-4{prime}-chloro-N-(1-(2,4-dichlorophenyl)-2-(1H-imid-azol-1-yl)ethyl)biphenyl-4-carboxamide (VNF), allow prediction of important chemical features that enhance the drug potencies. Combined with comparative analysis of inhibitor binding parameters, influence on the catalytic activity of the trypanosomal enzyme and its human counterpart, and their cellular effects at different stages of the Trypanosoma cruzi life cycle, the structural data provide a molecular background to CYP51 inhibition and azole resistance and enlighten the path for directed design of new, more potent and selective drugs to develop an efficient treatment for Chagas disease.

  20. Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase.

    Science.gov (United States)

    McCall, Laura-Isobel; El Aroussi, Amale; Choi, Jun Yong; Vieira, Debora F; De Muylder, Geraldine; Johnston, Jonathan B; Chen, Steven; Kellar, Danielle; Siqueira-Neto, Jair L; Roush, William R; Podust, Larissa M; McKerrow, James H

    2015-03-01

    Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis. PMID:25768284

  1. Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase.

    Directory of Open Access Journals (Sweden)

    Laura-Isobel McCall

    2015-03-01

    Full Text Available Leishmania protozoan parasites (Trypanosomatidae family are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51 in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis.

  2. Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity

    Directory of Open Access Journals (Sweden)

    Yujuan Sun

    2014-11-01

    Full Text Available For screening anti-aging samples from marine natural products, K6001 yeast strain was employed as a bioassay system. The active mussel extract was separated to give an active sterol fraction (SF. SF was further purified, and four sterol compounds were obtained. Their structures were determined to be cholesterol (CHOL, brassicasterol, crinosterol, and 24-methylenecholesterol. All compounds showed similar anti-aging activity. To understand the action mechanism involved, anti-oxidative experiments, reactive oxygen species (ROS assays, and malondialdehyde (MDA tests were performed on the most abundant compound, CHOL. Results indicated that treatment with CHOL increases the survival rate of yeast under oxidative stress and decreases ROS and MDA levels. In addition, mutations of uth1, skn7, sod1, and sod2, which feature a K6001 background, were employed and the lifespans of the mutations were not affected by CHOL. These results demonstrate that CHOL exerts anti-aging effects via anti-oxidative stress. Based on the connection between neuroprotection and anti-aging, neuroprotective experiments were performed in PC12 cells. Paraquat was used to induce oxidative stress and the results showed that the CHOL and SF protect the PC12 cells from the injury induced by paraquat. In addition, these substance exhibited nerve growth factor (NGF mimic activities again confirmed their neuroprotective function.

  3. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    Science.gov (United States)

    Foglia, Fabrizia; Lawrence, M. Jayne; Demeė, Bruno; Fragneto, Giovanna; Barlow, David

    2012-10-01

    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  4. Sterols and Stanols Preserved in Pond Sediments Track Seabird Biovectors in a High Arctic Environment.

    Science.gov (United States)

    Cheng, Wenhan; Sun, Liguang; Kimpe, Linda E; Mallory, Mark L; Smol, John P; Gallant, Lauren R; Li, Jinping; Blais, Jules M

    2016-09-01

    Seabirds are major vertebrates in the coastal ecosystems of the Canadian High Arctic, where they transport substantial amounts of marine-derived nutrients and pollutants from oceans to land by depositing guano and stomach oils to their nesting area, which often includes nearby freshwater ponds. Here we present novel indicators for evaluating the impact of seabirds on freshwater ecosystems. The ratio of cholesterol/(cholesterol + sitosterol) in pond sediments showed significant enrichment near a nesting colony of northern fulmars (Fulmarus glacialis) and was significantly correlated with ornithogenic enrichment of sediment as determined by sedimentary δ(15)N. The sterol ratio was also correlated with several bioaccumulative persistent organic pollutants (POPs), suggesting its usefulness in tracking biovector enrichment of contaminants. Human-derived epicoprostanol was also analyzed in the sediments, and its relationship with an abandoned, prehistoric camp was recorded, suggesting its potential as a tracer of prehistoric human activities in the Arctic. Sterols and stanols preserved in sediments appear to be useful geochemical tools that will inform our understanding of migratory species and the presence of prehistoric human populations in the Arctic, and possibly other animal populations. PMID:27409713

  5. Crystallographic and NMR studies on sterols from green alga Chaetomorpha basiretorsa Setchell

    Institute of Scientific and Technical Information of China (English)

    SHI Dayong; XU Feng; HE Juan; SHI Jiangong; FAN Xiao; HAN Lijun

    2008-01-01

    Chemical investigation of the ethanol extract of the marine green alga Chaetomorpha basiretorsa Setchell led to the isolation of a new sterol stigrnast-4,28-dien-3α,6β-diol 1 in addition to the five known sterols of β-1awsaritol 2,saringosterol 3,24-hydroper- oxy-24-vinyl-cholesterol 4,β-stigmasterol 5,29-hydroxystigmasta-5,24(28)-dien-3β-ol 6.Compounds were isolated by normal phase silica gel and Scphadex LH-20 gel colum chromatography,reverse phase HPLC and recrystalization.Their structures were elucidated by spectroscopic methods including MS,IR 1D/2D NMR and X-ray analysis.Cytotoxicity of compounds was screened by using the standard MTT method.All these compounds were isolated from the green alga Chaetomorpha basiretorsa Setchell for the first time and they were inactive (50% inhibitory concentration was greater than 10 μg/cm3) against KB,Bel-7402,PC- 3M,Ketr 3 and MCF-7 cell lines.

  6. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Directory of Open Access Journals (Sweden)

    Blachutzik Jörg O

    2012-08-01

    Full Text Available Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.

  7. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method

    Directory of Open Access Journals (Sweden)

    Lee Shu-Hong

    2009-11-01

    Full Text Available Abstract Background Protoplasts isolated from leaves are useful materials in plant research. One application, the transient expression of recombinant genes using Arabidopsis mesophyll protoplasts (TEAMP, is currently commonly used for studies of subcellular protein localization, promoter activity, and in vivo protein-protein interactions. This method requires cutting leaves into very thin slivers to collect mesophyll cell protoplasts, a procedure that often causes cell damage, may yield only a few good protoplasts, and is time consuming. In addition, this protoplast isolation method normally requires a large number of leaves derived from plants grown specifically under low-light conditions, which may be a concern when material availability is limited such as with mutant plants, or in large scale experiments. Results In this report, we present a new procedure that we call the Tape-Arabidopsis Sandwich. This is a simple and fast mesophyll protoplast isolation method. Two kinds of tape (Time tape adhered to the upper epidermis and 3 M Magic tape to the lower epidermis are used to make a "Tape-Arabidopsis Sandwich". The Time tape supports the top side of the leaf during manipulation, while tearing off the 3 M Magic tape allows easy removal of the lower epidermal layer and exposes mesophyll cells to cell wall digesting enzymes when the leaf is later incubated in an enzyme solution. The protoplasts released into solution are collected and washed for further use. For TEAMP, plasmids carrying a gene expression cassette for a fluorescent protein can be successfully delivered into protoplasts isolated from mature leaves grown under optimal conditions. Alternatively, these protoplasts may be used for bimolecular fluorescence complementation (BiFC to investigate protein-protein interactions in vivo, or for Western blot analysis. A significant advantage of this protocol over the current method is that it allows the generation of protoplasts in less than 1 hr

  8. Nanostructured Lipid Carriers: A potential drug carrier for cancer chemotherapy

    Directory of Open Access Journals (Sweden)

    Selvamuthukumar Subramanian

    2012-11-01

    Full Text Available Abstract Nanotechnology having developed exponentially, the aim has been on therapeutic undertaking, particularly for cancerous disease chemotherapy. Nanostructured lipid carriers have attracted expanding scientific and commercial vigilance in the last couple of years as alternate carriers for the pharmaceutical consignment, particularly anticancer pharmaceuticals. Shortcomings often came across with anticancer mixtures, such as poor solubility, normal tissue toxicity, poor specificity and steadiness, as well as the high incidence rate of pharmaceutical resistance and the rapid degradation, need of large-scale output procedures, a fast release of the pharmaceutical from its carrier scheme, steadiness troubles, the residues of the organic solvents utilized in the output method and the toxicity from the polymer with esteem to the carrier scheme are anticipated to be overcome through use of the Nanostructured Lipid Carrier. In this review the benefits, types, drug release modulations, steadiness and output techniques of NLCs are discussed. In supplement, the function of NLC in cancer chemotherapy is presented and hotspots in research are emphasized. It is foreseen that, in the beside future, nanostructured lipid carriers will be further advanced to consign cytotoxic anticancer compounds in a more efficient, exact and protected manner.

  9. Basic Stand Alone Carrier Line Items PUF

    Data.gov (United States)

    U.S. Department of Health & Human Services — This release contains the Basic Stand Alone (BSA) Carrier Line Items Public Use Files (PUF) with information from Medicare Carrier claims. The CMS BSA Carrier Line...

  10. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  11. Use of Enterococcus, BST and sterols as indicators for poultry pollution source tracking in surface and groundwater

    Science.gov (United States)

    This study has applied Enterococcus, Bacterial Source Tracking (BST) and sterol analysis for pollution source identification from poultry sources. Fecal contamination was detected in 100% of surface water and 15% of groundwater sites tested. E. faecium was the dominant species in aged litter sampl...

  12. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    Science.gov (United States)

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160). The harmful marine dinoflagella...

  13. Faecal sterols as sewage markers in the Langat River, Malaysia: Integration of biomarker and multivariate statistical approaches

    Institute of Scientific and Technical Information of China (English)

    Nur Hazirah Adnan; Mohamad Pauzi Zakaria; Hafizan Juahir; Masni Mohd Ali

    2012-01-01

    The Langat River in Malaysia has been experiencing anthropogenic input from urban,rural and industrial activities for many years.Sewage contamination,possibly originating from the greater than three million inhabitants of the Langat River Basin,were examined.Sediment samples from 22 stations (SL01-SL22) along the Langat River were collected,extracted and analysed by GC-MS.Six different sterols were identified and quantified.The highest sterol concentration was found at station SL02 (618.29 ng/g dry weight),which situated in the Balak River whereas the other sediment samples ranged between 11.60 and 446.52 ng/g dry weight.Sterol ratios were used to identify sources,occurrence and partitioning of faecal matter in sediments and majority of the ratios clearly demonstrated that sewage contamination was occurring at most stations in the Langat River.A multivariate statistical analysis was used in conjunction with a combination of biomarkers to better understand the data that clearly separated the compounds.Most sediments of the Langat River were found to contain low to mid-range sewage contamination with some containing ‘significant' levels of contamination.This is the first report on sewage pollution in the Langat River based on a combination of biomarker and multivariate statistical approaches that will establish a new standard for sewage detection using faecal sterols.

  14. The substance composition of sterols in the sediments from the Chukchi Sea, the Bering Sea and global climatic significance

    Institute of Scientific and Technical Information of China (English)

    Lu Bing; Hu Chuanyu; Pan Jianming; Xue Bin; YaoMei

    2006-01-01

    The compounds of sterols such as C27 、C28 、C29 and C3o are recorded from C-8 core of the Chukchi Sea. The double bond position is located at 5-, 5 ,22 as well as 22-,24-. The compound of sterols such as C27、C28、C29 are recorded from B2-9core of the Bering Sea. The double bond position is located at 5-, 5, 22 as well as 22. The composition characteristics of sterols indicate that the substance is mainly contributed by the terrigenous origin and marine silicate organisms. The results are also suggest that the record of abnormal sterols from the surface sediments (2 -0 cm)in the Chukchi Sea and the Bering Sea represent the period from 1980s to the late 1990s. The strong signal of the Arctic warming is preserved in the sediments, which indicates the eco- environmental change responding to climatic effect of circumjacent.

  15. The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

    NARCIS (Netherlands)

    Jacobs, D.M.; Mihaleva, V.V.; Schalkwijk, D.B. van; Graaf, A.A. de; Vervoort, J.; Dorsten, F.A. van; Ras, R.T.; Demonty, I.; Trautwein, E.A.; Duynhoven, J. van

    2015-01-01

    Scope: Consumption of a low-fat spread enriched with plant sterols (PS) and different low doses (<2 g/day) of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil reduces serum triglycerides (TGs) and low-density lipoprotein-cholesterol (LDL-Chol) and thus beneficially affects tw

  16. The origin of fetal sterols in second-trimester amniotic fluid : endogenous synthesis or maternal-fetal transport?

    NARCIS (Netherlands)

    Baardman, Maria E.; Erwich, Jan Jaap H. M.; Berger, Rolf M. F.; Hofstra, Robert M. W.; Kerstjens-Frederikse, Wilhelmina S.; Luetjohann, Dieter; Plosch, Torsten; Lutjohann, D.

    2012-01-01

    OBJECTIVE: Cholesterol is crucial for fetal development. To gain more insight into the origin of the fetal cholesterol pool in early human pregnancy, we determined cholesterol and its precursors in the amniotic fluid of uncomplicated, singleton human pregnancies. STUDY DESIGN: Total sterols were cha

  17. Vitamin D and sterol composition of ten types of mushrooms from retail suppliers in the United States

    Science.gov (United States)

    Vitamin D, ergosterol, ergosterol metabolites, and phytosterols were analyzed in ten mushroom types sampled nationwide in the U.S. to update the USDA Nutrient Database for Standard Reference. Sterols were analyzed by GC-FID with mass spectrometric confirmation of components. Vitamin D was assayed ...

  18. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7β-hydroxycholesterol production in cognitive impairment.

    Science.gov (United States)

    Son, Hyun-Hwa; Lee, Do-Yup; Seo, Hong Seog; Jeong, Jihyeon; Moon, Ju-Yeon; Lee, Jung-Eun; Chung, Bong Chul; Kim, Eosu; Choi, Man Ho

    2016-01-01

    Altered cholesterol metabolism could be associated with cognitive impairment. The quantitative profiling of 19 hair sterols was developed using gas chromatography-mass spectrometry coupled to multivariate data analysis. The limit of quantification of all sterols ranged from 5 to 20 ng/g, while the calibration linearity was higher than 0.98. The precision (% CV) and accuracy (% bias) ranged from 3.2% to 9.8% and from 83.2% to 119.4%, respectively. Among the sterols examined, 8 were quantitatively detected from two strands of 3-cm-long scalp hair samples of female participants, including mild cognitive impairment (MCI, n=15), Alzheimer's disease (AD, n=31), and healthy controls (HC, n=36). The cognitive impairment (MCI or AD) was correlated with a higher metabolic rate than that of HCs based on 7β-hydroxycholesterol (Phair sample metabolic ratios of 7β-hydroxycholesterol to cholesterol, which is an accepted, sensitive, and specific tool for discriminating HCs from individuals with MCI or AD. In conclusion, improved diagnostic values can be obtained using hair sterol signatures coupled with MMSE scores. This method may prove useful for predictive diagnosis in population screening of cognitive impairment.

  19. Polyploidy in the Arabidopsis genus.

    Science.gov (United States)

    Bomblies, Kirsten; Madlung, Andreas

    2014-06-01

    Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids. PMID:24788061

  20. Structural Basis of Sterol Binding by NPC2, a Lysosomal Protein Deficient in Niemann-Pick Type C2 Disease

    Energy Technology Data Exchange (ETDEWEB)

    Xu,S.; Benoff, B.; Liou, H.; Lobel, P.; Stock, A.

    2007-01-01

    NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two {beta}-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the {beta}-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.

  1. Sterol Biosynthesis and Azole Tolerance Is Governed by the Opposing Actions of SrbA and the CCAAT Binding Complex.

    Science.gov (United States)

    Gsaller, Fabio; Hortschansky, Peter; Furukawa, Takanori; Carr, Paul D; Rash, Bharat; Capilla, Javier; Müller, Christoph; Bracher, Franz; Bowyer, Paul; Haas, Hubertus; Brakhage, Axel A; Bromley, Michael J

    2016-07-01

    Azole drugs selectively target fungal sterol biosynthesis and are critical to our antifungal therapeutic arsenal. However, resistance to this class of drugs, particularly in the major human mould pathogen Aspergillus fumigatus, is emerging and reaching levels that have prompted some to suggest that there is a realistic probability that they will be lost for clinical use. The dominating class of pan-azole resistant isolates is characterized by the presence of a tandem repeat of at least 34 bases (TR34) within the promoter of cyp51A, the gene encoding the azole drug target sterol C14-demethylase. Here we demonstrate that the repeat sequence in TR34 is bound by both the sterol regulatory element binding protein (SREBP) SrbA, and the CCAAT binding complex (CBC). We show that the CBC acts complementary to SrbA as a negative regulator of ergosterol biosynthesis and show that lack of CBC activity results in increased sterol levels via transcriptional derepression of multiple ergosterol biosynthetic genes including those coding for HMG-CoA-synthase, HMG-CoA-reductase and sterol C14-demethylase. In agreement with these findings, inactivation of the CBC increased tolerance to different classes of drugs targeting ergosterol biosynthesis including the azoles, allylamines (terbinafine) and statins (simvastatin). We reveal that a clinically relevant mutation in HapE (P88L) significantly impairs the binding affinity of the CBC to its target site. We identify that the mechanism underpinning TR34 driven overexpression of cyp51A results from duplication of SrbA but not CBC binding sites and show that deletion of the 34 mer results in lack of cyp51A expression and increased azole susceptibility similar to a cyp51A null mutant. Finally we show that strains lacking a functional CBC are severely attenuated for pathogenicity in a pulmonary and systemic model of aspergillosis. PMID:27438727

  2. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    Science.gov (United States)

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  3. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    Science.gov (United States)

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  4. Topsensterols A–C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp.

    Science.gov (United States)

    Chen, Min; Wu, Xu-Dong; Zhao, Qing; Wang, Chang-Yun

    2016-01-01

    Three new polyhydroxylated sterol derivatives topsensterols A–C (1–3) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A–C (l–3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ9(11) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM. PMID:27490555

  5. Conversion of exogenous cholesterol into glycoalkaloids in potato shoots, using two methods for sterol solubilisation.

    Directory of Open Access Journals (Sweden)

    Erik V Petersson

    Full Text Available Steroidal glycoalkaloids (SGA are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D in the sterol ring structure (D5- or D6-labelled, or side chain (D7-labelled, and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato.

  6. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    Science.gov (United States)

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  7. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulate Myelination in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuhei Nishimura

    2016-07-01

    Full Text Available Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS, and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs. Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation

  8. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion.

    Directory of Open Access Journals (Sweden)

    Ilaria Zanotti

    Full Text Available Despite the efficacy in reducing acute rejection events in organ transplanted subjects, long term therapy with cyclosporine A is associated with increased atherosclerotic cardiovascular morbidity. We studied whether this drug affects the antiatherogenic process of the reverse cholesterol transport from macrophages in vivo. Cyclosporine A 50 mg/kg/d was administered to C57BL/6 mice by subcutaneous injection for 14 days. Macrophage reverse cholesterol transport was assessed by following [(3H]-cholesterol mobilization from pre-labeled intraperitoneally injected macrophages, expressing or not apolipoprotein E, to plasma, liver and feces. The pharmacological treatment significantly reduced the amount of radioactive sterols in the feces, independently on the expression of apolipoprotein E in the macrophages injected into recipient mice and in absence of changes of plasma levels of high density lipoprotein-cholesterol. Gene expression analysis revealed that cyclosporine A inhibited the hepatic levels of cholesterol 7-alpha-hydroxylase, concomitantly with the increase in hepatic and intestinal expression of ATP Binding Cassette G5. However, the in vivo relevance of the last observation was challenged by the demonstration that mice treated or not with cyclosporine A showed the same levels of circulating beta-sitosterol. These results indicate that treatment of mice with cyclosporine A impaired the macrophage reverse cholesterol transport by reducing fecal sterol excretion, possibly through the inhibition of cholesterol 7-alpha-hydroxylase expression. The current observation may provide a potential mechanism for the high incidence of atherosclerotic coronary artery disease following the immunosuppressant therapy in organ transplanted recipients.

  9. Straddle carrier radiation portal monitoring

    Science.gov (United States)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  10. Impact of carriers in oral absorption

    DEFF Research Database (Denmark)

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans;

    2009-01-01

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial......(APP) was not described by carrier kinetics. However, glipizide is affecting exsorption for ES, due to interactions on basolateral carrier. The study confirms that estrone-3-sulfate can be used to characterize anionic carrier kinetics. Furthermore it is suggested that estrone-3-sulfate may be used to identify compounds...... which may interact on anionic carriers....

  11. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  12. Arabidopsis CDS blastp result: AK061395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061395 006-305-E02 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  13. Arabidopsis CDS blastp result: AK104882 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104882 001-044-H04 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  14. Arabidopsis CDS blastp result: AK066854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066854 J013075C10 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  15. Arabidopsis CDS blastp result: AK101318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101318 J033034D12 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  16. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  17. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  18. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  19. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  20. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  1. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  2. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  3. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  4. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  5. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  6. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  7. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  8. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  9. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  10. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  11. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  12. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  13. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  14. Arabidopsis CDS blastp result: AK111576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111576 J013075J23 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  15. Arabidopsis CDS blastp result: AK120838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120838 J023022B11 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  16. Arabidopsis CDS blastp result: AK111921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111921 001-013-A10 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly i...dentical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profil

  17. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters.

    Science.gov (United States)

    Lin, Yuguang; Knol, Diny; Menéndez-Carreño, María; Blom, Wendy A M; Matthee, Joep; Janssen, Hans-Gerd; Trautwein, Elke A

    2016-01-27

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median POP contents per portion size of cooked foods were 0.57 mg (range 0.05-1.11 mg) with control margarine versus 1.42 mg (range 0.08-20.5 mg) with PS-margarine. The oxidation rate of PS (ORP) was 0.50% (median) with the PS-margarine and 3.66% with the control margarine. Using the PS-margarine, microwave-cooked codfish had the lowest POP content, with 0.08 mg per portion, while shallow-fried potatoes had the highest POP content, 20.5 mg per portion. Median POP contents in cookies, muffins, banana bread, and sponge cake baked with the control or PS-margarine were 0.12 mg (range 0.11-0.21 mg) and 0.24 mg (range 0.19-0.60 mg) per portion, with a corresponding ORP of 1.38% and 0.06%, respectively. POP contents in all the cooked and baked foods did not exceed 20.5 mg per typical portion size. A wide variation in the distribution of individual POP among different foods existed, with 7-keto-PS and 5,6-epoxy-PS being the major oxidation products. PMID:26697919

  18. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  19. Arabidopsis CDS blastp result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 0.0 ...

  20. Arabidopsis CDS blastp result: AK287662 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287662 J065112L10 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-65 ...

  1. Arabidopsis CDS blastp result: AK242094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242094 J075142E09 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 2e-33 ...

  2. Arabidopsis CDS blastp result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-122 ...

  3. Arabidopsis CDS blastp result: AK287488 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287488 J043029O04 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 4e-27 ...

  4. Carrier sense data highway system

    Science.gov (United States)

    Frankel, Robert

    1984-02-14

    A data transmission system includes a transmission medium which has a certain propagation delay time over its length. A number of data stations are successively coupled to the transmission medium for communicating with one another. Each of the data stations includes a transmitter for originating signals, each signal beginning with a carrier of a duration which is at least the propagation delay time of the transmission medium. Each data station also includes a receiver which receives other signals from other data stations and inhibits operation of the transmitter at the same data station when a carrier of another signal is received.

  5. Isolation and characterization of an Arabidopsis biotin carboxylase gene and its promoter.

    Science.gov (United States)

    Bao, X; Shorrosh, B S; Ohlrogge, J B

    1997-11-01

    In the plastids of most plants, acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a multisubunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protien (BCCP), and carboxytransferase (alpha-CT, beta-CT) subunits. To better understand the regulation of this enzyme, we have isolated and sequenced a BC genomic clone from Arabidopsis and partially characterized its promoter. Fifteen introns were identified. The deduced amino acid sequence of the mature BC protein is highly conserved between Arabidopsis and tobacco (92.6% identity). BC expression was evaluated using northern blots and BC/GUS fusion constructs in transgenic Arabidopsis. GUS activity in the BC/GUS transgenics as well as transcript level of the native gene were both found to be higher in silique and flower than in root and leaf. Analysis of tobacco suspension cells transformed with truncated BC promoter/GUS gene fusions indicated the region from -140 to +147 contained necessary promoter elements which supported basal gene expression. A positive regulatory region was found to be located between -2100 and -140, whereas a negative element was possibly located in the first intron. In addition, several conserved regulatory elements were identified in the BC promoter. Surprisingly, although BC is a low-abundance protein, the expression of BC/GUS fusion constructs was similar to 35S/GUS constructs.

  6. Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the Abcg5/8 transporter

    NARCIS (Netherlands)

    Plosch, Torsten; Kruit, Janine K.; Bloks, Vincent W.; Huijkman, Nicolette C. A.; Havinga, Rick; Duchateau, Guns S. M. J. E.; Lin, Yuguang; Kuipers, Folkert

    2006-01-01

    Dietary supplementation with plant sterols, stanols, and their esters reduces intestinal cholesterol absorption, thus lowering plasma LDL cholesterol concentration in humans. It was suggested that these beneficial effects are attributable in part to induction of genes involved in intestinal choleste

  7. Hot carrier degradation in semiconductor devices

    CERN Document Server

    2015-01-01

    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  8. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters.

    Science.gov (United States)

    Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J

    2000-09-01

    The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol

  9. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction.

    Science.gov (United States)

    Rahier, A; Taton, M

    1996-06-01

    A series of mono- and diazasteroids have been synthesized as analogs of a predicted carbocationic intermediate of delta 5,7-sterol delta 7-reductase (delta 7-SR). 6-Aza-B-homo-5 alpha-cholest-7-en-3 beta-ol (4), a novel compound whose synthesis is described for the first time, and 6,7-diaza-5 alpha-cholest-8(14)-en-3 beta-ol (6) were shown to be very powerful inhibitors of delta 7-SR in a preparation isolated from maize (Zea mays) (K(i),app = 50-70 nM, Ki,app/Km,app = 1.0 x 10(-4) to 1.3 x 10(-4). The data are consistent with a carbonium ion mechanism for the reduction; compounds 4 and 6 probably act as reaction intermediate analogs. Compound 4, in contrast to compound 6, displayed in the same microsomal preparation more than 50-fold selectivity for inhibition of the delta 7-SR versus delta 8-delta 7-sterol isomerase, cycloeucalenol isomerase, and delta 8,14-sterol delta 14-reductase, the mechanism of these four enzymes involving presumptive cationic intermediates centered respectively at C7, C8, C9, and C14. These observations highlight the paramount importance of the location of the positively charged nitrogen atom(s) in the B-ring structure for selectivity among these enzymes involving structurally close cationic reaction intermediates. Efficient in vivo inhibition of sterol biosynthesis in bramble cell suspension cultures by a low concentration of compound 4 was demonstrated and confirmed the in vitro properties of this derivative.) PMID:8679532

  10. Structural Basis for Rational Design of Inhibitors Targeting Trypanosoma cruzi Sterol 14α-Demethylase: Two Regions of the Enzyme Molecule Potentiate Its Inhibition

    OpenAIRE

    Friggeri, Laura; Hargrove, Tatiana Y.; Rachakonda, Girish; Williams, Amanda D; Wawrzak, Zdzislaw; Di Santo, Roberto; De Vita, Daniela; Waterman, Michael R.; Tortorella, Silvano; Villalta, Fernando; Lepesheva, Galina I.

    2014-01-01

    Chagas disease, which was once thought to be confined to endemic regions of Latin America, has now gone global, becoming a new worldwide challenge with no cure available. The disease is caused by the protozoan parasite Trypanosoma cruzi, which depends on the production of endogenous sterols, and therefore can be blocked by sterol 14α-demethylase (CYP51) inhibitors. Here we explore the spectral binding parameters, inhibitory effects on T. cruzi CYP51 activity, and antiparasitic potencies of a ...

  11. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  12. Towards squalamine mimics: synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates.

    Science.gov (United States)

    Chen, Wen-Hua; Wennersten, Christine; Moellering, Robert C; Regen, Steven L

    2013-03-01

    Four dimeric sterol-polyamine conjugates have been synthesized from the homo- and hetero-connection of monomeric sterol-polyamine analogs in a head-to-tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria, whereas their corresponding activities against Gram-negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid-containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid-derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid-spermine conjugate was more active than the corresponding cholic acid-derived analog. PMID:23495155

  13. Esterificación quimioselectiva de fitosteroles de madera mediante lipasas Chemoselective transesterification of wood steroles by lipases

    Directory of Open Access Journals (Sweden)

    Álvaro Gregorio

    2008-07-01

    estanol; enzima inmovilizadaThe chemoselective transesterification of wood sterols is a novel type application of lipases that is considered within a technological platform for the upgrading of black liquor from the Kraft pulping process. Wood sterols are a mixture of sterols and stanols (saturated sterols in which more than 90% is represented by β-sitosterol and β-sitostanol. Both products are oriented to different markets, representing the fractionation of the wood sterols a significant added value. Both substances are structurally similar which precludes its separation by physical operations, being its fractionation by chemoselective esterification with lipases a very appealing strategy. Several commercial lipases were evaluated in their capacity for the selective transesterification of stanols and two of them were selected: one immobilized and one non-supported. The process was optimized with the immobilized lipase obtaining more than 90% esterification of sterols with around 20% esterification of sterols, which satisfied the criterion of selectivity. The immobilized enzyme was however poorly stable because of protein desorption during the reaction; therefore, several strategies of immobilization of the non-supported lipase were developed, best results being obtained with butyl Sepabeads® as support. The selected biocatalyst was tested in the sequential batch reaction of transesterification, proving that the biocatalyst can be used for five sequential batches with very little loss of activity and insignificant reduction in conversion and productivity, which satisfies the profitability criterion of the process. Key words: Lipase; enzymatic transesterification; wood sterols; stanol esters; immobilized enzyme.

  14. The influence of amphotericin B on the molecular organization and structural properties of DPPC lipid membranes modified by sterols

    Science.gov (United States)

    Kamiński, Daniel M.; Pociecha, Damian; Górecka, Ewa; Gagoś, Mariusz

    2015-02-01

    In this work, we studied the influence of the polyene antibiotic amphotericin B (AmB) on dipalmitoylphosphatidylcholine (DPPC) multibilayers modified by cholesterol and ergosterol investigated by means of X-ray diffraction. The periodic structures related to AmB-DPPC-sterol complexes in multibilayers are completely created in temperatures above the main lipid phase transition. The differences between all observed multilayer structures are related to the thickness. Multibilayers composed of lipid and sterols have similar thickness of 51 Å. Addition of amphotericin B leads to creation of new periodic structures. Multibilayers composed of lipid-ergosterol-AmB have thickness of 44 Å which does not change with temperature. Multibilayers composed of lipid-cholesterol-AmB at 20 °C are 43 Å and gets thicker at 50 °C. Most probably this is caused by weaker van der Vaals cholesterol-amphotericin B interactions.

  15. A New Cytotoxic Sterol Produced By an Endophytic Fungus from Castaniopsis Fissa at the Couth China Sea Coast

    Institute of Scientific and Technical Information of China (English)

    Hou Jin LI; Yong Cheng LIN; L. L. P. VRIJMOED; E. B. G. JONES

    2004-01-01

    A new sterol,ergosta-8(9),22-diene-3,5,6,7-tetraol(3β,5α,6β,7α,22E)(A)together with three known sterols:3β,5α,6β-trihydroxyergosta-7,22-diene(B),3β-hydroxy-5α,8α-epidioxyer-gosta-6,22-diene(C)and ergosterol(D)were isolated from the mycelia of an unidentified endophytic fungus separated from Castaniopsis fissa(chestnut tree).Compound A exhibited potent selective cytotoxicity against Bel-7402,NCI4460 and L-02 cell lines with IC50values 8.445,5.03,13.621μg/mL,respectively.

  16. Sterol Composition and Biosynthetic Genes of Vitrella brassicaformis, a Recently Discovered Chromerid: Comparison to Chromera velia and Phylogenetic Relationship with Apicomplexan Parasites.

    Science.gov (United States)

    Khadka, Manoj; Salem, Mohamed; Leblond, Jeffrey D

    2015-01-01

    Vitrella brassicaformis is the second discovered species in the Chromerida, and first in the family Vitrellaceae. Chromera velia, the first discovered species, forms an independent photosynthetic lineage with V. brassicaformis, and both are closely related to peridinin-containing dinoflagellates and nonphotosynthetic apicomplexans; both also show phylogenetic closeness with red algal plastids. We have utilized gas chromatography/mass spectrometry to identify two free sterols, 24-ethylcholest-5-en-3β-ol, and a minor unknown sterol which appeared to be a C(28:4) compound. We have also used RNA Seq analysis to identify seven genes found in the nonmevalonate/methylerythritol pathway (MEP) for sterol biosynthesis. Subsequent genome analysis of V. brassicaformis showed the presence of two mevalonate (MVA) pathway genes, though the genes were not observed in the transcriptome analysis. Transcripts from four genes (dxr, ispf, ispd, and idi) were selected and translated into proteins to study the phylogenetic relationship of sterol biosynthesis in V. brassicaformis and C. velia to other groups of algae and apicomplexans. On the basis of our genomic and transcriptomic analyses, we hypothesize that the MEP pathway was the primary pathway that apicomplexans used for sterol biosynthesis before they lost their sterol biosynthesis ability, although contribution of the MVA pathway cannot be discounted.

  17. Randomised controlled trial of use by hypercholesterolaemic patients of a vegetable oil sterol-enriched fat spread.

    Science.gov (United States)

    Neil, H A; Meijer, G W; Roe, L S

    2001-06-01

    Plant sterols may be a useful additive therapy in the treatment of hypercholesterolaemic patients. The purpose of this study was to determine the effect of a fat spread enriched with vegetable oil sterols on plasma lipid, lipoprotein and apolipoprotein concentrations. A randomised double blind placebo-controlled crossover trial with two consecutive periods of 8 weeks was conducted. 30 patients with heterozygous familial hypercholesterolaemia treated concurrently with an HMG-CoA reductase inhibitor (statin) and 32 patients with type IIa primary hypercholesterolaemia with a total cholesterol concentration >6.5 mmol/l not taking lipid-lowering drug therapy were recruited from a hospital lipid clinic. The active treatment was a fortified fat spread (25 g/day) providing 2.5 g of plant sterols. The control spread was indistinguishable in taste and appearance. Comparison at the end of the two 8-week trial periods showed a statistically significant reduction in total and LDL-cholesterol with use of the fortified spread but the results were confounded by a carry-over effect, which was partly explained by changes in the background diet. Because a carry-over effect was present, further analyses were restricted to the parallel arms of the first treatment period and were conducted on an intention to treat basis. After 4 weeks, LDL-cholesterol had decreased by 0.04 mmol/l ([0.8%] 95% confidence interval -0.44-0.37 NS) in the placebo group and decreased by -0.76 mmol/l ([15.0%] 95% CI -1.03--0.48, Pvegetable oil sterols reduces LDL-cholesterol by 10-15% with no difference in response between hypercholesterolaemic patients prescribed statins and those not taking lipid-lowering drug therapy.

  18. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    Science.gov (United States)

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  19. Karakteristik Pertumbuhan Vegetatif, Kandungan Sterol dan Klorofil dari Beberapa Aksesi Tanaman Bangun-Bangun (Plectranthus amboinicus (Lour.) Spreng)

    OpenAIRE

    Nasution, Nuraminah

    2016-01-01

    Research was purposed to find the vegetative growth characteristic, sterols and chlorophyll content of some accessions indian borage. This research was held at home screen Agriculture Faculty, University of Sumatera Utara, Medan was began from December 2015 until February 2016 with accession Medan (Krakatau), Medan (Tuntungan), Sibolangit, Simalungun and Brastagi. The results showed that morphology character of accession plants Medan (Tuntungan), Sibolangit, Simalungun and Brastagi not signif...

  20. Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth

    OpenAIRE

    Lepesheva, Galina I.; Ott, Robert D.; Hargrove, Tatiana Y.; Kleshchenko, Yuliya Y.; Schuster, Inge; Nes, W. David; Hill, George C.; Villalta, Fernando; Waterman, Michael R.

    2007-01-01

    Sterol 14α-demethylases (CYP51) serve as primary targets for antifungal drugs and specific inhibition of CYP51s in protozoan parasites Trypanosoma brucei (TB) and Trypanosoma cruzi (TC) might provide an effective treatment strategy for human trypanosomiases. Primary inhibitor selection is based initially on the cytochrome P450 spectral response to ligand binding. Ligands which demonstrate strongest binding parameters were examined as inhibitors of reconstituted TB and TC CYP51 activity in vit...

  1. Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity▿

    OpenAIRE

    Cools, Hans J; Mullins, Jonathan G. L.; Fraaije, Bart A.; Parker, Josie E.; Kelly, Diane E.; Lucas, John A.; Kelly, Steven L.

    2011-01-01

    The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contribu...

  2. Effect of wounding and light exposure on sterol, glycoalkaloid, and calystegine levels in potato plants (Solanum tuberosum L. group Tuberosum)

    OpenAIRE

    Arif, Usman

    2013-01-01

    Steroidal glycoalkaloids (SGA) are neurotoxic substances that are present in some members of the Solanaceae family, including crop species like potato (Solanum tuberosum L.) and tomato. The SGA level in the potato tuber is a genetic trait, but certain environmental factors such as wounding and light exposure can increase SGA levels several-fold, which may render tubers unsuitable for human consumption. There is little information about SGA biosynthesis. The sterol cholesterol is commonly rega...

  3. 甾醇酯微胶囊制备工艺研究%Research on preparation of sterol ester microcapsules

    Institute of Scientific and Technical Information of China (English)

    夏辉; 刘欣荣

    2012-01-01

    研究了喷雾干燥法制备微胶囊化甾醇酯的工艺。研究结果表明:微胶囊化甾醇酯的最优乳化条件为:复合乳化剂配比(单甘酯∶蔗糖酯)为1∶9;乳化剂用量0.75%;壁材用量20%;壁材比(变性淀粉∶麦芽糊精)为1∶5;芯材/壁材为0.5。喷雾干燥法制备甾醇酯微胶囊的最佳工艺参数为:进料温度50~60℃、均质压力50 MPa、进风温度180℃、出风温度80℃、喷雾压力180 KPa。在此工艺条件下微胶囊化效率可达77.8%。%The preparation of sterol esters microcapsules by spray drying was studied.The result showed that the optimum emulsification conditions of sterol esters microcapsule were the ratio of glycerol monoester to sucrose fatty acid ester 1∶ 9,emulsifier 0.75%,emulsion concentration 20%,the ratio of starch to maltodextrane1∶ 5,and the ratio of sterol esters to wall material was 0.5.The optimal parameters for preparing sterol esters microcapsules by spray drying were feed temperature 50~60 ℃,homogenizing pressure 50 MPa,temperatures of inlet wind and outlet wind 180 ℃ and 80 ℃,spray pressure 180 Kpa.The microencapsulating efficiency was 77.8% at these conditions.

  4. [Determination of β-sitosterol and total sterols content and antioxidant activity of oil in acai (Euterpe oleracea)].

    Science.gov (United States)

    He, Cheng; Li, Wei; Zhang, Jian-Jun; Qu, Sheng-Sheng; Li, Jia-Jing; Wang, Lin-Yuan

    2014-12-01

    In order to establish a method for the determination of the sterols of the oil in the freeze-dried acai (Euterpe oleracea Mart.) and to evaluate its antioxidant activities, a saponification/extraction procedure and high performance liquid chromatography (HPLC) analysis method were developed and validated for the analysis of phytosterols in PEE (Petroleum ether extract). Separation was achieved on a Purosper STAR LP C18 column with a binary, gradient solvent system of acetonitrile and isopropanol. Evaporative light scattering detection (ELSD) was used to quantify β-sitosterol and the total sterols. Peak identification was verified by retention times and spikes with external standards. Standard curves were constructed (r = 0.999 2) to allow for sample quantification. Recovery of the saponification and extraction was demonstrated via analysis of spiked samples. The highest content of total sterols is β-sitosterol. The antioxidant activities of the extracts were evaluated using the total oxyradical scavenging capacity assay (TOSC assay). The result showed that the PEE exhibited significant antioxidant properties, sample concentration and the antioxidant capacity had a certain relevance.

  5. Determination of fatty acid, tocopherol and phyto sterol contents of the oils of various poppy (Papaver somniferum L.) seeds.

    Energy Technology Data Exchange (ETDEWEB)

    Enric, H.; Tekin, A.; Musa Ozcan, M.

    2009-07-01

    The fatty acid, tocopherol and sterol contents of the oils of several poppy seeds were investigated. The main fatty acids in poppy seed oils were linoleic (687.6-739.2 g kg{sup -}1), oleic (141.3-192.8 g kg{sup -}1) and palmitic (76.8-92.8 g kg{sup -}1). The oils contained an appreciable amount of {gamma}-tocopherol (195.37-280.85 mg kg{sup -}1), with a mean value of 261.31 mg kg-1 and {alpha}-tocopherol (21.99-45.83 mg kg{sup -}1), with a mean value of 33.03 mg kg{sup -}1. The concentrations of total sterol ranged from 1099.84 mg kg{sup -}1 (K.pembe) to 4816.10 mg kg-1 (2. sinif beyaz), with a mean value of 2916.20 mg kg{sup -}1. The major sterols were {beta}-sitosterol, ranging from 663.91 to 3244.39 mg kg{sup -}1; campesterol, ranging from 228.59 to 736.50 mg kg{sup -}1; and {delta}{sup 5}-avenasterol, ranging from 103.90 to 425.02 mg kg{sup -}1. The studied varieties of poppy seeds from Turkey were found to be a potential source of valuable oil. (Author) 31 refs.

  6. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase

    Institute of Scientific and Technical Information of China (English)

    Russell A DeBose-Boyd

    2008-01-01

    3Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate,an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids.The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism.Here,Ⅰwill discuss recent advances that shed light on one mechanism for control of reductase,which involves rapid degradation of the enzyme.Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2.Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78,which initiates ubiquitination of reductase.This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes.Thus,sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).

  7. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  8. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  9. Fatigue reliability for LNG carrier

    Institute of Scientific and Technical Information of China (English)

    Xiao Taoyun; Zhang Qin; Jin Wulei; Xu Shuai

    2011-01-01

    The procedure of reliability-based fatigue analysis of liquefied natural gas (LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method (FEM). Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis, Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory, fatigue damage is characterized by an S-N relationship, and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.

  10. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  11. Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from Persian Gulf

    Directory of Open Access Journals (Sweden)

    Masoumeh Nasiri

    2011-01-01

    Full Text Available Context: Two of the important algae from Persian Gulf are Gracilaria salicornia and Hypnea flageliformis (Rhodophyta. Antibacterial, antifungal, and cytotoxic effects of the mentioned algae have been presented in the previous studies. Aim: In this study, the isolation and structural elucidation of the sterols from these algae are reported. Materials and Methods: The separation and purification of the compounds were carried out with silica gel, sephadex LH 20 column chromatography (CC and HPLC to obtain six pure compounds 1-6 . The structural elucidation of the constituents was based on the data obtained from H-NMR, 13 C-NMR, HMBC, HSQC, DEPT, and EI-MS. Results: The isolated compounds from G. salicornia were identified as 22-dehydrocholesterol (1, cholesterol (2, oleic acid (3, and stigmasterol (4, and the isolated constituents from H. flagelliformis were identified as 22-dehydrocholesterol (1, cholesterol (2, oleic acid (3, cholesterol oleate (5, and (22E-cholesta-5,22-dien-3β-ol-7-one (6 based on the spectral data compared to those reported in the literature. Conclusion: Red algae are enriched with cholesterol polysaccharides. We first reported the presence of cholesteryl oleate and (22E-cholesta-5,22-dien-3b-ol-7-one in H. flagelliformis.

  12. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    Energy Technology Data Exchange (ETDEWEB)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike (Vanderbilt)

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  13. In Vitro Antileishmanial Activity of Sterols from Trametes versicolor (Bres. Rivarden).

    Science.gov (United States)

    Leliebre-Lara, Vivian; Monzote Fidalgo, Lianet; Pferschy-Wenzig, Eva-Maria; Kunert, Olaf; Nogueiras Lima, Clara; Bauer, Rudolf

    2016-01-01

    Two ergostanes, 5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol (1) and 5α-ergost-7,22-dien-3β-ol (2), and a lanostane, 3β-hydroxylanostan-8,24-diene-21-oic acid (trametenolic acid) (3), were isolated from an n-hexane extract prepared from the fruiting body of Trametes versicolor (Bres. Rivarden). The activity of the isolated sterols was evaluated against promastigotes and amastigotes of Leishmania amazonensis Lainson and Shaw, 1972. The lanostane, compound (3), showed the best inhibitory response (IC50 promastigotes 2.9 ± 0.1 μM and IC50 amastigotes 1.6 ± 0.1 μM). This effect was 25-fold higher compared with its cytotoxic effect on peritoneal macrophages from BALB/c mice. Therefore, trametenolic acid could be regarded as a promising lead for the synthesis of compounds with antileishmanial activity. PMID:27517895

  14. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, Linda L.; Stan-Lotter, Helga; Kato, Katharine; Hochstein, Lawrence I.

    1992-01-01

    Cytoplasmic/intracytoplasmic and outer membrane preparations of Methylococcus capsulatus (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.18 g ml (exp -1), respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23-1.24 g ml (exp -1)) contained 60% of the lipopolysaccharide-associated, beta-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a c-type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in borh the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.

  15. Preventative maintenance of straddle carriers

    Directory of Open Access Journals (Sweden)

    Si Li

    2015-02-01

    Full Text Available Background: Robotic vehicles such as straddle carriers represent a popular form of cargo handling amongst container terminal operators.Objectives: The purpose of this industry-driven study is to model preventative maintenance (PM influences on the operational effectiveness of straddle carriers.Method: The study employs historical data consisting of 21 273 work orders covering a 27-month period. Two models are developed, both of which forecast influences of PM regimes for different types of carrier.Results: The findings of the study suggest that the reliability of the straddle fleet decreases with increased intervals of PM services. The study also finds that three factors – namely resources, number of new straddles, and the number of new lifting work centres – influence the performances of straddles.Conclusion: The authors argue that this collaborative research exercise makes a significant contribution to existing supply chain management literature, particularly in the area of operations efficiency. The study also serves as an avenue to enhance relevant management practice.

  16. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  17. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  18. Responsible implementation of expanded carrier screening

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  19. Spacelab carrier complement thermal design and performance

    Science.gov (United States)

    Bancroft, S.; Key, R.; Kittredge, S.

    1992-01-01

    The present discussion of the Spacelab carrier complement, which encompasses a Module Carrier, a Module-Pallet Carrier, and a Multiplexer/Demultiplexer Pallet, gives attention to both active and passive thermal performance capabilities, and presents ground testing and analytical results obtained to date. An account is given of the prospective use of a Spacelab Multipurpose Experiment Support Structure.

  20. 7 CFR 33.4 - Carrier.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Carrier. 33.4 Section 33.4 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... ISSUED UNDER AUTHORITY OF THE EXPORT APPLE ACT Definitions § 33.4 Carrier. Carrier means any common...

  1. 49 CFR 376.22 - Exemption for private carrier leasing and leasing between authorized carriers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Exemption for private carrier leasing and leasing... MOTOR CARRIER SAFETY REGULATIONS LEASE AND INTERCHANGE OF VEHICLES Exemptions for the Leasing Regulations § 376.22 Exemption for private carrier leasing and leasing between authorized carriers....

  2. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  3. New method to determine free sterols/oxysterols in food matrices using gas chromatography and ion trap mass spectrometry (GC-IT-MS).

    Science.gov (United States)

    Szterk, Arkadiusz; Pakuła, Lucyna

    2016-05-15

    Sterols/oxysterols in food may be free or bound i.e. esterified with fatty acids. Methods commonly applied to determine those compounds in such matrices (based on various analytical techniques) usually start with hydrolysis of the food lipid fraction, which means that the results are no good indication of concentration of free sterols/oxysterols only. But only free oxysterols are proatherogenic factors, bound ones are not. There are some published methods selectively sensitive to free oxysterols only, but they are capable to determine only a few compounds and feature very low recovery rates. The aim of this work was to develop a method to determine various free (non-esterified) sterols/oxysterols in various food matrices. The developed method is based on the GC-IT-MS technique used in the chemical ionization mode. It was applied to determine 16 different free sterols/oxysterols in egg powder, cheese, butter, milk and salami. Fat extracted from the given matrix is purified on a specially prepared silica-gel bed to separate the sterol fraction from the oxysterol one. Sterols are silylated using N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane BSTFA:TMCS, then GC-IT-MS analysed. The method features high recovery rates (75-95%), high reproducibility (RSD<20%), and sensitivity within the 0.01-0.3 mg 100 g(-1) range, depending on the analysed compound. The method is ideally suited for determination of free sterols/oxysterols. Besides, should total concentration of both free and bound forms be of interest, food lipids may be transesterificated before the silica-gel bed purification step. PMID:26992495

  4. New method to determine free sterols/oxysterols in food matrices using gas chromatography and ion trap mass spectrometry (GC-IT-MS).

    Science.gov (United States)

    Szterk, Arkadiusz; Pakuła, Lucyna

    2016-05-15

    Sterols/oxysterols in food may be free or bound i.e. esterified with fatty acids. Methods commonly applied to determine those compounds in such matrices (based on various analytical techniques) usually start with hydrolysis of the food lipid fraction, which means that the results are no good indication of concentration of free sterols/oxysterols only. But only free oxysterols are proatherogenic factors, bound ones are not. There are some published methods selectively sensitive to free oxysterols only, but they are capable to determine only a few compounds and feature very low recovery rates. The aim of this work was to develop a method to determine various free (non-esterified) sterols/oxysterols in various food matrices. The developed method is based on the GC-IT-MS technique used in the chemical ionization mode. It was applied to determine 16 different free sterols/oxysterols in egg powder, cheese, butter, milk and salami. Fat extracted from the given matrix is purified on a specially prepared silica-gel bed to separate the sterol fraction from the oxysterol one. Sterols are silylated using N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane BSTFA:TMCS, then GC-IT-MS analysed. The method features high recovery rates (75-95%), high reproducibility (RSD<20%), and sensitivity within the 0.01-0.3 mg 100 g(-1) range, depending on the analysed compound. The method is ideally suited for determination of free sterols/oxysterols. Besides, should total concentration of both free and bound forms be of interest, food lipids may be transesterificated before the silica-gel bed purification step.

  5. Distribution characteristics of sterols in surface sediment of Dalian Bay%大连湾表层沉积物中甾醇的分布特征

    Institute of Scientific and Technical Information of China (English)

    冀平; 赵元凤; 徐恒振; 王洪艳; 姚子伟; 马新东

    2013-01-01

    11 sterols in the surface sediment samples in Dalian Bay were determined by GC/MS,and the distribution characteristics at 17 stations in this area were discussed.The results show that the total concentration range was (0 ~ 6.833) × 10-6,the sterols range was (1.627 ~34.617) × 10-6.The distribution appeared that the concentration of total sterols around the sewage ouffall was higher than that far away from the outfall.The main kinds of sterols were C27 sterols and C29 sterols and the source of sterols was a large number of domestic sewage.%采用气相色谱/质谱对大连湾表层沉积物中11种甾醇进行了监测,探讨了大连湾17个站位的表层沉积物中甾醇的分布特征.结果表明,大连湾17个站位的表层沉积物中11种甾醇的含量范围为1.627×10-6~34.617×10-6;甾醇分布呈现出近岸区高于离岸海区,近排污口区高于远排污口区的态势;甾醇种类主要为C27甾醇和C29甾醇;其来源主要是大量生活污水的输入.

  6. Carrier synchronization for STBC OFDM systems

    Institute of Scientific and Technical Information of China (English)

    Cai Jueping; Song Wentao; Li Zan; Ge Jianhua

    2005-01-01

    All-digital carrier synchronization strategies and algorithms for space-time block coding (STBC) orthogonal frequency division multiplexing (OFDM) are proposed in this paper. In our scheme, the continuous pilots (CP) are saved, and the complexity of carrier synchronization is reduced significantly by dividing the process into three steps. The coarse carrier synchronization and the fine carrier synchronization algorithms are investigated and analyzed in detail. Simulations show that the carrier can be locked into tracking mode quickly, and the residual frequency error satisfies the system requirement in both stationary and mobile environments.

  7. Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root developmentHormonal crosstalk in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2013-04-01

    Full Text Available Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene and cytokinin in Arabidopsis root development. In ethylene hypersignalling mutants such as polaris (pls, we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analysed in the context of the crosstalk between auxin, ethylene and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signalling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene and cytokinin signalling pathways.

  8. Carrier frequencies, holomorphy and unwinding

    CERN Document Server

    Coifman, Ronald R; Wu, Hau-tieng

    2016-01-01

    We prove that functions of intrinsic-mode type (a classical models for signals) behave essentially like holomorphic functions: adding a pure carrier frequency $e^{int}$ ensures that the anti-holomorphic part is much smaller than the holomorphic part $ \\| P_{-}(f)\\|_{L^2} \\ll \\|P_{+}(f)\\|_{L^2}.$ This enables us to use techniques from complex analysis, in particular the \\textit{unwinding series}. We study its stability and convergence properties and show that the unwinding series can stabilize and show that the unwinding series can provide a high resolution time-frequency representation, which is robust to noise.

  9. Biocheese: A Food Probiotic Carrier

    Directory of Open Access Journals (Sweden)

    J. M. Castro

    2015-01-01

    Full Text Available This review describes some aspects related to the technological barriers encountered in the development and stability of probiotic cheeses. Aspects concerning the viability of probiotic cultures in this matrix are discussed and the potential of cheese as a biofunctional food carrier is analyzed, outlying some points related to health and safety. In general, the manufacture of probiotic cheese should have little change when compared with the elaboration of cheese in the traditional way. The physicochemical and technological parameters influencing the quality of these products have also to be measured so as to obtain a process optimization.

  10. Wuestite - a solar energy carrier

    Energy Technology Data Exchange (ETDEWEB)

    Weidenkaff, A.; Nueesch, P.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Reller, A. [Hamburg Univ., Hamburg (Germany)

    1997-06-01

    Hydrogen is produced when Wuestite (Fe{sub 1-y}O) is oxidised by water. This reaction is part of a two-step thermochemical metal oxide cycle for the storage of solar energy in the form of chemical energy carriers, characterised by a high chemical potential. The reaction was studied in a tubular furnace with on-line gas analysis and further characterised in detail by DTA und high-temperature X-ray powder diffraction. The influence of non-stoichiometry, morphology and temperature on the mechanism and kinetics of the water-splitting reaction was determined. (author) 3 figs., tabs., 3 refs.

  11. Effects of plant sterols derived from Aloe vera gel on human dermal fibroblasts in vitro and on skin condition in Japanese women

    Directory of Open Access Journals (Sweden)

    Tanaka M

    2015-02-01

    Full Text Available Miyuki Tanaka,1 Eriko Misawa,1 Koji Yamauchi,1 Fumiaki Abe,1 Chiaki Ishizaki2 1Functional Food Research Department, Food Science and Technology Institute, Morinaga Milk Industry Co, Ltd, Zama, Kanagawa, 2Ebisu Skin Research Center, Inforward, Inc., Tokyo, Japan Background: Aloe is known for its topical use for treating wounds and burns. Many previous studies reported the healing effects of Aloe vera. However, there are few clinical studies on the effect of orally administered A. vera gel on the skin. Aloe sterols are a type of plant sterols that have the capability to regulate the metabolism of glucose and lipids. In a recent study, we confirmed that ingested Aloe sterols reached the peripheral tissues through the bloodstream. However, their influence on dermal fibroblasts has not been investigated. Methods: First, we investigated the capability of Aloe sterols (cycloartenol and lophenol to stimulate human dermal fibroblasts in vitro. Then, we investigated the effect of intake of Aloe vera gel powder (AVGP containing 40 µg Aloe sterols on the skin conditions in Japanese women with dry skin in a randomized, double-blind, placebo-controlled trial. Results: After cocultivation with Aloe sterols, the production of collagen and hyaluronic acid increased by approximately two-fold and 1.5-fold, and gene expression levels of these enzymes responsible for their synthesis were also observed in human dermal fibroblasts. An increase in arm skin hydration was observed at 8 weeks in the AVGP group, whereas a slight decrease in arm skin hydration was noted in the placebo group. However, there was no statistical difference between AVGP and placebo groups in skin moisture. In subgroup analysis, the change in the mean wrinkle depth was significantly lower in the AVGP group than in the control group. In addition, percent body fat after 8 weeks was significantly lower in the AVGP group. No AVGP intake-dependent harmful phenomenon was observed during the intake

  12. Role of leptin in the regulation of sterol/steroid biosynthesis in goose granulosa cells.

    Science.gov (United States)

    Hu, Shenqiang; Gan, Chao; Wen, Rui; Xiao, Qihai; Gou, Hua; Liu, Hehe; Zhang, Yingying; Li, Liang; Wang, Jiwen

    2014-09-15

    Leptin is critical for reproductive endocrinology. The aim of this study is to assess the expression patterns of leptin receptor (Lepr) during ovarian follicle development and to reveal the mechanism by which leptin affects steroid hormone secretion in goose granulosa cells. Transcripts of Lepr were ubiquitous in all tested tissues, with pituitary and adrenal glands being the predominant sites. Goose ovarian follicles were divided into several groups by diameter including prehierarchical (4 to 6, 6 to 8, and 8 to 10 mm) and hierarchical (F5-F1) follicles. Lepr gene expression was significantly higher in granulosa cells than in theca cells from follicles of 4 to 8 mm in diameter. Expression of Lepr in granulosa cells decreased gradually as follicles developed, with fluctuating expression in F5 and F3 follicles. Lepr mRNA in theca cells underwent a slight decrease from the 6- to 8-mm cohorts to F5 follicle and then exhibited a transient increase and declined later. In vitro experiments in cultured goose granulosa cells showed that estradiol release was significantly stimulated, whereas progesterone increased slightly and testosterone decreased dramatically after leptin treatment. In accordance with the data for steroids, expression of Lepr, Srebp1, Cyp51, StAR, and Cyp19a1 were induced by the addition of leptin, and the concomitant changes in Hmgcs1, Dhcr24, Cyp11a1, 17β-hsd, Cyp17, and 3β-hsd gene expression were seen. These results suggested that leptin is involved in the development of goose ovarian follicles, and leptin's effect on steroid hormone secretion could be due to altered sterol/steroidogenic gene expression via interaction with its receptor. PMID:25016410

  13. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  14. Arabidopsis CDS blastp result: AK073532 [KOME

    Lifescience Database Archive (English)

    Full Text Available ical to ARL2 G-protein (Halimasch; HAL; TITAN5) GI:20514265 from [Arabidopsis thaliana]; identical to cDNA A...AK073532 J033046D12 At2g18390.1 ADP-ribosylation factor-like protein 2 (ARL2) ident

  15. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  16. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  17. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  18. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  19. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  20. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  1. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  2. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  4. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  5. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  6. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  7. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  8. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  9. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  10. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  11. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  12. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  13. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  14. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  15. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  16. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  17. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  18. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  19. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  20. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  1. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  2. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  3. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  4. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  5. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  6. Arabidopsis CDS blastp result: AK241312 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241312 J065141L09 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 3e-40 ...

  7. Arabidopsis CDS blastp result: AK243352 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243352 J100060L07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 1e-28 ...

  8. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  9. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  10. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  11. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  12. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  13. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  14. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  15. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  16. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  17. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  18. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  19. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  20. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...