WorldWideScience

Sample records for arabidopsis spermidine synthase

  1. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole;

    2002-01-01

    in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...... expression of the nahG salicylate hydroxylase reduces AtGsl5 mRNA levels in the mpk4 mutant. These results indicate that AtGsl5 is likely involved in callose synthesis in flowering tissues and in the mpk4 mutant....

  2. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Še; #269; kut; #279; , Jolita; McCloskey, Diane E.; Thomas, H. Jeanette; Secrist III, John A.; Pegg, Anthony E.; Ealick, Steven E. (Cornell); (Southern Research); (UPENN-MED)

    2011-11-17

    Aminopropyltransferases are essential enzymes that form polyamines in eukaryotic and most prokaryotic cells. Spermidine synthase (SpdS) is one of the most well-studied enzymes in this biosynthetic pathway. The enzyme uses decarboxylated S-adenosylmethionine and a short-chain polyamine (putrescine) to make a medium-chain polyamine (spermidine) and 5'-deoxy-5'-methylthioadenosine as a byproduct. Here, we report a new spermidine synthase inhibitor, decarboxylated S-adenosylhomocysteine (dcSAH). The inhibitor was synthesized, and dose-dependent inhibition of human, Thermatoga maritima, and Plasmodium falciparum spermidine synthases, as well as functionally homologous human spermine synthase, was determined. The human SpdS/dcSAH complex structure was determined by X-ray crystallography at 2.0 {angstrom} resolution and showed consistent active site positioning and coordination with previously known structures. Isothermal calorimetry binding assays confirmed inhibitor binding to human SpdS with K{sub d} of 1.1 {+-} 0.3 {mu}M in the absence of putrescine and 3.2 {+-} 0.1 {mu}M in the presence of putrescine. These results indicate a potential for further inhibitor development based on the dcSAH scaffold.

  3. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh, E-mail: jvpratap@cdri.res.in

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  4. Three-dimensional structures of Plasmodium falciparum spermidine synthase with bound inhibitors suggest new strategies for drug design

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, Janina [Lund University, SE-221 00 Lund (Sweden); Lund University, SE-221 84 Lund (Sweden); Svensson, Bo [Lund University, SE-221 00 Lund (Sweden); SARomics Biostructures AB, Box 724, SE-220 07 Lund (Sweden); Hålander, Jenny [Lund University, SE-221 00 Lund (Sweden); Carey, Jannette [Princeton University, Princeton, New Jersey (United States); Persson, Lo [Lund University, SE-221 84 Lund (Sweden); Al-Karadaghi, Salam, E-mail: salam.al-karadaghi@biochemistry.lu.se [Lund University, SE-221 00 Lund (Sweden)

    2015-03-01

    In this work, X-ray crystallography was used to examine ligand complexes of spermidine synthase from the malaria parasite Plasmodium falciparum (PfSpdS). The enzymes of the polyamine-biosynthesis pathway have been proposed to be promising drug targets in the treatment of malaria. Spermidine synthase (SpdS; putrescine aminopropyltransferase) catalyzes the transfer of the aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine, leading to the formation of spermidine and 5′-methylthioadenosine (MTA). In this work, X-ray crystallography was used to examine ligand complexes of SpdS from the malaria parasite Plasmodium falciparum (PfSpdS). Five crystal structures were determined of PfSpdS in complex with MTA and the substrate putrescine, with MTA and spermidine, which was obtained as a result of the enzymatic reaction taking place within the crystals, with dcAdoMet and the inhibitor 4-methylaniline, with MTA and 4-aminomethylaniline, and with a compound predicted in earlier in silico screening to bind to the active site of the enzyme, benzimidazol-(2-yl)pentan-1-amine (BIPA). In contrast to the other inhibitors tested, the complex with BIPA was obtained without any ligand bound to the dcAdoMet-binding site of the enzyme. The complexes with the aniline compounds and BIPA revealed a new mode of ligand binding to PfSpdS. The observed binding mode of the ligands, and the interplay between the two substrate-binding sites and the flexible gatekeeper loop, can be used in the design of new approaches in the search for new inhibitors of SpdS.

  5. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    Science.gov (United States)

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  6. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck Constitutively Overexpressing a Spermidine Synthase Gene

    Directory of Open Access Journals (Sweden)

    Xing-Zheng Fu

    2013-01-01

    Full Text Available Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT and the transgenic line (TG9 by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  7. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  8. Arabidopsis CDS blastp result: AK065153 [KOME

    Lifescience Database Archive (English)

    Full Text Available ferase) (SPDSY) {Coffea arabica}; contains Pfam profile PF01564: Spermine/spermidine synthase 1e-38 ... ...pyltransferase, putative similar to SP|O82147 Spermidine synthase (EC 2.5.1.16) (Putrescine aminopropyltrans

  9. Arabidopsis CDS blastp result: AK068518 [KOME

    Lifescience Database Archive (English)

    Full Text Available ferase) (SPDSY) {Coffea arabica}; contains Pfam profile PF01564: Spermine/spermidine synthase 1e-141 ... ...pyltransferase, putative similar to SP|O82147 Spermidine synthase (EC 2.5.1.16) (Putrescine aminopropyltrans

  10. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael (MSU); (NWU)

    2014-10-02

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  11. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  12. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  13. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    OpenAIRE

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M.; Feil, Regina; Eicke, Simona; Lunn, John E.; Zeeman, Samuel C.; Smith, Alison M.

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf de...

  14. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  15. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  16. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The co

  17. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.;

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...... be expected in the transgenic lines relative to the wild type. In practice the reductions achieved were highly variable both between lines and within a given line on different occasions when the plants were grown. Possible reasons for this variability are discussed with reference to current models of gene...... silencing. The metabolite profiles of the transgenic lines were examined for unintended effects of the modification. An apparently major effect on the glucosinolate composition was shown to result from an unusual genetic variation in the ecotype and not from the modification. The modification did produce...

  18. Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development

    Science.gov (United States)

    Belda-Palazón, Borja; Almendáriz, Carla; Martí, Esmeralda; Carbonell, Juan; Ferrando, Alejandro

    2016-01-01

    One key role of the essential polyamine spermidine in eukaryotes is to provide the 4-aminobutyl moiety group destined to the post-translational modification of a lysine in the highly conserved translation factor eIF5A. This modification is catalyzed by two sequential enzymatic steps leading to the activation of eIF5A by the conversion of one conserved lysine to the unusual amino acid hypusine. The active translation factor facilitates the sequence-specific translation of polyproline sequences that otherwise cause ribosome stalling. In spite of the well-characterized involvement of active eIF5A in the translation of proline repeat-rich proteins, its biological role has been recently elucidated only in mammals, and it is poorly described at the functional level in plants. Here we describe the alterations in plant growth and development caused by RNAi-mediated conditional genetic inactivation of the hypusination pathway in Arabidopsis thaliana by knocking-down the enzyme deoxyhypusine synthase. We have uncovered that spermidine-mediated activation of eIF5A by hypusination is involved in several aspects of plant biology such as the control of flowering time, the aerial and root architecture, and root hair growth. In addition this pathway is required for adaptation to challenging growth conditions such as high salt and high glucose medium and to elevated concentrations of the plant hormone ABA. We have also performed a bioinformatic analysis of polyproline-rich containing proteins as putative eIF5A targets to uncover their organization in clusters of protein networks to find molecular culprits for the disclosed phenotypes. This study represents a first attempt to provide a holistic view of the biological relevance of the spermidine-dependent hypusination pathway for plant growth and development. PMID:26973686

  19. Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development.

    Science.gov (United States)

    Belda-Palazón, Borja; Almendáriz, Carla; Martí, Esmeralda; Carbonell, Juan; Ferrando, Alejandro

    2016-01-01

    One key role of the essential polyamine spermidine in eukaryotes is to provide the 4-aminobutyl moiety group destined to the post-translational modification of a lysine in the highly conserved translation factor eIF5A. This modification is catalyzed by two sequential enzymatic steps leading to the activation of eIF5A by the conversion of one conserved lysine to the unusual amino acid hypusine. The active translation factor facilitates the sequence-specific translation of polyproline sequences that otherwise cause ribosome stalling. In spite of the well-characterized involvement of active eIF5A in the translation of proline repeat-rich proteins, its biological role has been recently elucidated only in mammals, and it is poorly described at the functional level in plants. Here we describe the alterations in plant growth and development caused by RNAi-mediated conditional genetic inactivation of the hypusination pathway in Arabidopsis thaliana by knocking-down the enzyme deoxyhypusine synthase. We have uncovered that spermidine-mediated activation of eIF5A by hypusination is involved in several aspects of plant biology such as the control of flowering time, the aerial and root architecture, and root hair growth. In addition this pathway is required for adaptation to challenging growth conditions such as high salt and high glucose medium and to elevated concentrations of the plant hormone ABA. We have also performed a bioinformatic analysis of polyproline-rich containing proteins as putative eIF5A targets to uncover their organization in clusters of protein networks to find molecular culprits for the disclosed phenotypes. This study represents a first attempt to provide a holistic view of the biological relevance of the spermidine-dependent hypusination pathway for plant growth and development.

  20. Direct targeting of Arabidopsis cysteine synthase complexes with synthetic polypeptides to selectively deregulate cysteine synthesis.

    Science.gov (United States)

    Wawrzyńska, Anna; Kurzyk, Agata; Mierzwińska, Monika; Płochocka, Danuta; Wieczorek, Grzegorz; Sirko, Agnieszka

    2013-06-01

    Biosynthesis of cysteine is one of the fundamental processes in plants providing the reduced sulfur for cell metabolism. It is accomplished by the sequential action of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they constitute the hetero-oligomeric cysteine synthase (CS) complex through specific protein-protein interactions influencing the rate of cysteine production. The aim of our studies was to deregulate the CS complex formation in order to investigate its function in the control of sulfur homeostasis and optimize cysteine synthesis. Computational modeling was used to build a model of the Arabidopsis thaliana mitochondrial CS complex. Several polypeptides based on OAS-TL C amino-acid sequence found at SAT-OASTL interaction sites were designed as probable competitors for SAT3 binding. After verification of the binding in a yeast two-hybrid assay, the most strongly interacting polypeptide was introduced to different cellular compartments of Arabidopsis cell via genetic transformation. Moderate increase in total SAT and OAS-TL activities, but not thiols content, was observed dependent on the transgenic line and sulfur availability in the hydroponic medium. Though our studies demonstrate the proof of principle, they also suggest more complex interaction of both enzymes underlying the mechanism of their reciprocal regulation. PMID:23602110

  1. Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.

    Science.gov (United States)

    Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik

    2015-01-12

    This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means.

  2. PHOSPHATIDYLSERINE SYNTHASE1 is Required for Inflorescence Meristem and Organ Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Chengwu Liu; Hengfu Yin; Peng Gao; Xiaohe Hu; Jun Yang; Zhongchi Liu; Xiangdong Fu

    2013-01-01

    Phosphatidylserine (PS),a quantitatively minor membrane phospholipid,is involved in many biological processes besides its role in membrane structure.One PS synthesis gene,PHOSPHATIDYLSERINE SYNTHASE1 (PSS1),has been discovered to be required for microspore development in Arabidopsis thaliana L.but how PSS1 affects postembryonic development is still largely unknown.Here,we show that PSS1 is also required for inflorescence meristem and organ development in Arabidopsis.Disruption of PSS1 causes severe dwarfism,smaller lateral organs and reduced size of inflorescence meristem.Morphological and molecular studies suggest that both cell division and cell elongation are affected in the pss1-1 mutant.RNA in situ hybridization and promoter GUS analysis show that expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) depend on PSS1.Moreover,the defect in meristem maintenance is recovered and the expression of WUS and CLV3 are restored in the pss1-1 clv1-1 double mutant.Both SHOOTSTEMLESS (STM) and BREVIPEDICELLUS (BP) are upregulated,and auxin distribution is disrupted in rosette leaves of pss1-1.However,expression of BP,which is also a regulator of internode development,is lost in the pss1-1 inflorescence stem.Our data suggest that PSS1 plays essential roles in inflorescence meristem maintenance through the WUS-CLV pathway,and in leaf and internode development by differentially regulating the class Ⅰ KNOX genes.

  3. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  4. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    Science.gov (United States)

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  5. Isolation and characterization of Arabidopsis halleri and Thlaspi caerulescens phytochelatin synthases.

    Science.gov (United States)

    Meyer, Claire-Lise; Peisker, Daniel; Courbot, Mikael; Craciun, Adrian Radu; Cazalé, Anne-Claire; Desgain, Denis; Schat, Henk; Clemens, Stephan; Verbruggen, Nathalie

    2011-07-01

    The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²⁺ ions.

  6. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Zhu, Jianhua

    2010-04-16

    Osmotic stress imposed by soil salinity and drought stress significantly affects plant growth and development, but osmotic stress sensing and tolerance mechanisms are not well understood. Forward genetic screens using a root-bending assay have previously identified salt overly sensitive (sos) mutants of Arabidopsis that fall into five loci, SOS1 to SOS5. These loci are required for the regulation of ion homeostasis or cell expansion under salt stress, but do not play a major role in plant tolerance to the osmotic stress component of soil salinity or drought. Here we report an additional sos mutant, sos6-1, which defines a locus essential for osmotic stress tolerance. sos6-1 plants are hypersensitive to salt stress and osmotic stress imposed by mannitol or polyethylene glycol in culture media or by water deficit in the soil. SOS6 encodes a cellulose synthase-like protein, AtCSLD5. Only modest differences in cell wall chemical composition could be detected, but we found that sos6-1 mutant plants accumulate high levels of reactive oxygen species (ROS) under osmotic stress and are hypersensitive to the oxidative stress reagent methyl viologen. The results suggest that SOS6/AtCSLD5 is not required for normal plant growth and development but has a critical role in osmotic stress tolerance and this function likely involves its regulation of ROS under stress. © 2010 Blackwell Publishing Ltd.

  7. Spermidine, but not spermine, is essential for pigment pattern formation in zebrafish

    Science.gov (United States)

    Frohnhöfer, Hans Georg; Geiger-Rudolph, Silke; Pattky, Martin; Meixner, Martin; Huhn, Carolin; Maischein, Hans-Martin; Geisler, Robert; Gehring, Ines; Maderspacher, Florian; Nüsslein-Volhard, Christiane

    2016-01-01

    ABSTRACT Polyamines are small poly-cations essential for all cellular life. The main polyamines present in metazoans are putrescine, spermidine and spermine. Their exact functions are still largely unclear; however, they are involved in a wide variety of processes affecting cell growth, proliferation, apoptosis and aging. Here we identify idefix, a mutation in the zebrafish gene encoding the enzyme spermidine synthase, leading to a severe reduction in spermidine levels as shown by capillary electrophoresis-mass spectrometry. We show that spermidine, but not spermine, is essential for early development, organogenesis and colour pattern formation. Whereas in other vertebrates spermidine deficiency leads to very early embryonic lethality, maternally provided spermidine synthase in zebrafish is sufficient to rescue the early developmental defects. This allows us to uncouple them from events occurring later during colour patterning. Factors involved in the cellular interactions essential for colour patterning, likely targets for spermidine, are the gap junction components Cx41.8, Cx39.4, and Kir7.1, an inwardly rectifying potassium channel, all known to be regulated by polyamines. Thus, zebrafish provide a vertebrate model to study the in vivo effects of polyamines. PMID:27215328

  8. Arabidopsis Indole Synthase,a Homolog of Tryptophan Synthase Alpha,is an Enzyme Involved in the Trp-independent Indole-containing Metabolite Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Rui Zhang; Bing Wang; Jian Ouyang; Jiayang Li; Yonghong Wang

    2008-01-01

    The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.

  9. Cloning and characterization of Arabidopsis thaliana AtNAP57--a homologue of yeast pseudouridine synthase Cbf5p.

    Science.gov (United States)

    Maceluch, J; Kmieciak, M; Szweykowska-Kulińska, Z; Jarmołowski, A

    2001-01-01

    Rat Nap57 and its yeast homologue Cbf5p are pseudouridine synthases involved in rRNA biogenesis, localized in the nucleolus. These proteins, together with H/ACA class of snoRNAs compose snoRNP particles, in which snoRNA guides the synthase to direct site-specific pseudouridylation of rRNA. In this paper we present an Arabidopsis thaliana protein that is highly homologous to Cbf5p (72% identity and 85% homology) and NAP57 (67% identity and 81% homology). Moreover, the plant protein has conserved structural motifs that are characteristic features of pseudouridine synthases of the TruB class. We have named the cloned and characterized protein AtNAP57 (Arabidopsis thaliana homologue of NAP57). AtNAP57 is a 565 amino-acid protein and its calculated molecular mass is 63 kDa. The protein is encoded by a single copy gene located on chromosome 3 of the A. thaliana genome. Interestingly, the AtNAP57 gene does not contain any introns. Mutations in the human DKC1 gene encoding dyskerin (human homologue of yeast Cbf5p and rat NAP57) cause dyskeratosis congenita a rare inherited bone marrow failure syndrome characterized by abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia.

  10. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants

    Directory of Open Access Journals (Sweden)

    Hiroshi eMaeda

    2014-02-01

    Full Text Available Tocopherols (vitamin E are lipid-soluble antioxidants produced by all plants and algae, and many cyanobacteria, yet their functions in these photosynthetic organisms are still not fully understood. We have previously reported that the vitamin E deficient 2 (vte2 mutant of Arabidopsis thaliana is sensitive to low temperature (LT due to impaired transfer cell wall (TCW development and photoassimilate export, associated with massive callose deposition in transfer cells of the phloem. To further understand the role of tocopherols in LT induced TCW development we compared global transcript profiles of vte2 and wild type leaves during LT treatment. Tocopherol deficiency had no impact on global gene expression in permissive conditions, but affected expression of 77 genes after 48 hours of LT treatment. In vte2 relative to wild type, genes related with solute transport were repressed, while those involved in various pathogen responses and cell wall modifications, such as GLUCAN SYNTHASE LIKE genes (GSL4 and GSL11, were induced. However, introduction of gsl4 or gsl11 mutations into the vte2 background did not suppress callose deposition or the overall LT-induced phenotypes of vte2. Intriguingly, introduction of a mutation of GSL5, the major GSL responsible for pathogen-induced callose deposition, into vte2 substantially reduced vascular callose deposition at LT, but again had no effect on the photoassimilate export phenotype of LT-treated vte2. These results suggest that GSL5 plays a major role in TCW callose deposition in LT-treated vte2 but that this GSL5-dependent callose deposition is not the primary cause of the impaired photoassimilate export phenotype.

  11. Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato P12 Promoter

    Institute of Scientific and Technical Information of China (English)

    YANG Li-mei; Per Mercke; Joop J A van Loon; FANG Zhi-yuan; Marcel Dicke; Maarten A Jongsma

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FANESl linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The construct pBin-PP12-LIS' was transformed to Arabidopsis thaliana ecotype Columbia O. Kanamycin resistant T0 seedlings were confirmed for the presence and transcription of the LIS' gene by PCR analysis on genomic DNA and by RT-PCR analysis on RNA. Genomic and RT-PCR products were sequenced to confirm correct splicing of the synthetic intron. The expression of active linalool synthase by the PP12-LIS' gene construct in the transgenic lines was assessed by measuring linalool emission using solid phase micro-extraction (SPME) GC-MS measurements after induction with methyl jasmonate. Among 30 tested independent T2 transgenic lines, 10 exhibited linalool production.Linalool expression could be induced by methyl jasmonate treatment, but not by diamondback moth larvae.

  12. The role of cysteine residues in redox regulation and protein stability of Arabidopsis thaliana starch synthase 1

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna; Cuesta-Seijo, Jose A.; Nielsen, Morten M;

    2015-01-01

    Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences...... its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated...... by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1...

  13. Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.).

    Science.gov (United States)

    Vermeulen, A; Vaucheret, H; Pautot, V; Chupeau, Y

    1992-06-01

    Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding. PMID:24203132

  14. Cloning,Characterization,and Gene Annotation of Cellulose Synthase Genes from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    BALASUBRAMANI G; AMUDHA J; KATEGERI I S; KHADI B M

    2008-01-01

    @@ The mechanistic basis of cellulose biosynthesis in plants has gained ground during last decade or so.The isolation of plant eDNA clones encoding cotton homologs of the bacterial cellulose synthase catalytic subunit was a significant achievement,which promises the elucidation of cellulose biosynthesis.

  15. The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development

    OpenAIRE

    Odunlami, Benjamin Oladipo

    2009-01-01

    Seed development in Arabidopsis thaliana, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between ...

  16. Molekulare Analyse der Biosynthese octadecanoid-abgeleiteter Signalmoleküle durch Allenoxid-Synthase und Allenoxid- Cyclase aus Arabidopsis thaliana (L.) HEYNH.

    OpenAIRE

    Zerbe, Philipp

    2007-01-01

    Im Fokus dieser Dissertation stand die Untersuchung der Biosynthese des Phytohormons 12-oxo-Phytodiensäure durch die Allenoxid-Synthase (AOS) und die vier Allenoxid-Cyclase-Isoformen (AOC) aus Arabidopsis thaliana. Enzymatische Analysen der rekombinanten Proteine zeigten eine redundante Substratspezifität der AOC-Isoformen. Zudem belegen biochemische Interaktionsstudien, dass eine Komplexierung von AOS und AOC in vitro nicht essentiell ist. Gleichwohl lässt die erhöhte Stereoselek...

  17. Cis-regulatory Evolution of Chalcone-Synthase Expression in the Genus Arabidopsis

    OpenAIRE

    de Meaux, J. (Juliette); Pop, A.(National Institute for Physics and Nuclear Engineering, Bucharest, Romania); Mitchell-Olds, T.

    2006-01-01

    The contribution of cis-regulation to adaptive evolutionary change is believed to be essential, yet little is known about the evolutionary rules that govern regulatory sequences. Here, we characterize the short-term evolutionary dynamics of a cis-regulatory region within and among two closely related species, A. lyrata and A. halleri, and compare our findings to A. thaliana. We focused on the cis-regulatory region of chalcone synthase (CHS), a key enzyme involved in the synthesis of plant sec...

  18. Effect of four classes of herbicides on growth and acetolactate-synthase activity in several variants of Arabidopsis thaliana.

    Science.gov (United States)

    Mourad, G; King, J

    1992-11-01

    We have isolated a triazolopyrimidine-resistant mutant csrl-2, of Arabidopsis thaliana (L.) Heynh. Here, we compare csrl-2 with the previously isolated mutants csrl and csr1-1, and with wild-type Arabidopsis for responses to members of four classes of herbicides, namely, sulfonylureas, triazolopyrimidines, imidazolinones, and pyrimidyl-oxy-benzoates. Two separable herbicide binding sites have been identified previously on the protein of acetolactate synthase (ALS). Here, the mutation giving rise to csrl, originating in a coding sequence towards the 5' end of the ALS gene, and that in csrl-2, affected the inhibitory action on growth and ALS activity of sulfonylurea and triazolopyrimidine herbicides but not that of the imidazolinones or pyrimidyl-oxybenzoates. The other mutation, in csrl-1, originating in a coding sequence towards the 3' end of the ALS gene, affected the inhibitory action of imidazolinones and pyrimidyl-oxy-benzoates but not that of the sulfonylureas or triazolopyrimidines. Additional, stimulatory effects of some of these herbicides on growth of seedlings was unrelated to their effect on their primary target, ALS. The conclusion from these observations is that one of the two previously identified herbicide-binding sites may bind sulfonylureas and triazolopyrimidines while the other may bind imidazolinones and pyrimidyl-oxy-benzoates within a herbicide-binding domain on the ALS enzyme. Such a comparative study using near-isogenic mutants from the same species allows not only the further definition of the domain of herbicide binding on ALS but also could aid investigation of the relationship between herbicide-, substrate-, and allosteric-binding sites on this enzyme.This research was supported by an Operating Grant from the Natural Sciences and Engineering Research Council of Canada to J.K. PMID:24178380

  19. A double mutant allele, csr1-4, of Arabidopsis thaliana encodes an acetolactate synthase with altered kinetics.

    Science.gov (United States)

    Mourad, G; Williams, D; King, J

    1995-01-01

    A comparison is made of the kinetic characteristics of acetolactate synthase (EC 4.1.3.18) in extracts from Columbia wild type and four near-isogenic, herbicide-resistant mutants of Arabidopsis thaliana (L.) Heynh. The mutants used were the chlorsulfuron-resistant GH50 (csr1-1), the imazapyr-resistant GH90 (csr1-2), the triazolopyrimidine-resistant Tzp5 (csr1-3) and the multiherbicide-resistant, double mutant GM4.8 (csr1-4), derived from csr1-1 and csr1-2 by intragenic recombination (G. Mourad et al. 1994, Mol. Gen. Genet. 243, 178-184). Kmapp and Vmax values for the substrate pyruvate were unaffected by any of the mutations giving rise to herbicide resistance. Feedback inhibition by L-valine (L-Val), L-leucine (L-Leu) and L-isoleucine (L-Ile) of acetolactate synthase extracted from wild type and mutants fitted a mixed competitive pattern most closely. Ki values for L-Val, L-Leu and L-Ile inhibition were not significantly different from wild type in extracts from csr1-1, csr1-2, and csr1-3. Ki values were significantly higher than wild type by two- and five-fold, respectively, for csr1-4 with L-Val and L-Leu but not L-Ile. GM4.8 (csr1-4) plants were also highly resistant in their growth to added L-Val and L-Leu.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7767237

  20. Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids.

    Science.gov (United States)

    Ruiz-Sola, M Águila; Coman, Diana; Beck, Gilles; Barja, M Victoria; Colinas, Maite; Graf, Alexander; Welsch, Ralf; Rütimann, Philipp; Bühlmann, Peter; Bigler, Laurent; Gruissem, Wilhelm; Rodríguez-Concepción, Manuel; Vranová, Eva

    2016-01-01

    Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11.

  1. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    Science.gov (United States)

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species. PMID:26969163

  2. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance.

    Science.gov (United States)

    Miki, B L; Labbé, H; Hattori, J; Ouellet, T; Gabard, J; Sunohara, G; Charest, P J; Iyer, V N

    1990-10-01

    A survey of selected crop species and weeds was conducted to evaluate the inhibition of the enzyme acetohydroxyacid synthase (AHAS) and seedling growth in vitro by the sulfonylurea herbicides chlorsulfuron, DPX A7881, DPX L5300, DPX M6316 and the imidazolinone herbicides AC243,997, AC263,499, AC252,214. Particular attention was given to the Brassica species including canola cultivars and cruciferous weeds such as B. kaber (wild mustard) and Thlaspi arvense (stinkweed). Transgenic lines of B. napus cultivars Westar and Profit, which express the Arabidopsis thaliana wild-type AHAS gene or the mutant gene csr1-1 at levels similar to the resident AHAS genes, were generated and compared. The mutant gene was essential for resistance to the sulfonylurea chlorsulfuron but not to DPX A7881, which appeared to be tolerated by certain Brassica species. Cross-resistance to the imidazolinones did not occur. The level of resistance to chlorsulfuron in transgenic canola greatly exceeded the levels that were toxic to the Brassica species or cruciferous weeds. Direct selection of transgenic lines with chlorsulfuron sprayed at field levels under greenhouse conditions was achieved. PMID:24221001

  3. A Sweetpotato Geranylgeranyl Pyrophosphate Synthase Gene, IbGGPS, Increases Carotenoid Content and Enhances Osmotic Stress Tolerance in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS, named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG. Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD in transgenic seedlings. In addition, the level of malondialdehyde (MDA was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.

  4. 刺五加亚精胺合成酶基因的克隆及内生真菌对其表达的影响%Cloning of spermidine synthase gene in Eleutherococcus senticosus and effect of endophytic fungus on its expression

    Institute of Scientific and Technical Information of China (English)

    邢朝斌; 龙月红; 李明; 梁能松; 何闪; 朱金丽; 李宝财

    2012-01-01

    Objective In order to clone spermidine synthase (SPDS) gene in Eleutherococcus senticosus and analyze the effects of endophytic fungi on its expression. Methods The SPDS full-length cDNA sequence of E, senticosus was cloned by rapid amplification of cDN A ends (RACE). The gene was analyzed by the bioinformatics method. The effects of endophytic fungi, P116-1 a, P116-1 b, P109-4, and P312-1, on SPDS expression were detected by RT-PCR. Results The full-length cDN A of E. senticosus SPDS gene was 1 541 bp containing an open reading frame length of 1 002 bp that encoded protein with 333 amino acids. The predicted protein included the basic structure and typical sequences of SPDS family. RT-PCR results showed that endophytic fungi could significantly improve SPDS gene expression amount (P < 0.05). The highest expression amount of SPDS showed up on day 90 after reinoculation with PI 16-lb, which was as much as 2.06 times of the control. Conclusion The full-length cDNA sequence of E. senticosus SPDS gene is successfully cloned and reported for the first time. The results demonstrate that endophytic fungi could obviously improve SPDS gene expression. This result could provide a foundation for clarifying the mechanism that endophytic fungi could improve the content of triterpenoid saponins in E. senticosus and for stressing the tolerance improvement.%目的 克隆刺五加亚精胺合成酶(spermidine synthase,SPDS)基因,并分析内生真菌对其表达的影响.方法 采用cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)技术克隆刺五加SPDS基因全长cDNA序列.运用生物信息学方法对该基因进行分析.RT-PCR法检测内生真菌菌株P116-1a、P116-1b、P109-4和P312-1对SPDS基因表达的影响.结果 刺五加SPDS基因的cDNA全长为1 541 bp,开放阅读框长1 002 bp,编码333个氨基酸的蛋白,包含SPDS家族的基本结构和标志性序列.RT-PCR结果显示,内生真菌可显著提高刺五加SPDS基因的表达量(P<0.05),

  5. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    Science.gov (United States)

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  6. Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation.

    Science.gov (United States)

    Picault, N; Cazalé, A C; Beyly, A; Cuiné, S; Carrier, P; Luu, D T; Forestier, C; Peltier, G

    2006-11-01

    The enzymatically synthesized thiol peptide phytochelatin (PC) plays a central role in heavy metal tolerance and detoxification in plants. In response to heavy metal exposure, the constitutively expressed phytochelatin synthase enzyme (PCS) is activated leading to synthesis of PCs in the cytosol. Recent attempts to increase plant metal accumulation and tolerance reported that PCS over-expression in transgenic plants paradoxically induced cadmium hypersensitivity. In the present paper, we investigate the possibility of synthesizing PCs in plastids by over-expressing a plastid targeted phytochelatin synthase (PCS). Plastids represent a relatively important cellular volume and offer the advantage of containing glutathione, the precursor of PC synthesis. Using a constitutive CaMV 35S promoter and a RbcS transit peptide, we successfully addressed AtPCS1 to chloroplasts, significant PCS activity being measured in this compartment in two independent transgenic lines. A substantial increase in the PC content and a decrease in the glutathione pool were observed in response to cadmium exposure, when compared to wild-type plants. While over-expressing AtPCS1 in the cytosol importantly decreased cadmium tolerance, both cadmium tolerance and accumulation of plants expressing plastidial AtPCS1 were not significantly affected compared to wild-type. Interestingly, targeting AtPCS1 to chloroplasts induced a marked sensitivity to arsenic while plants over-expressing AtPCS1 in the cytoplasm were more tolerant to this metalloid. These results are discussed in relation to heavy metal trafficking pathways in higher plants and to the interest of using plastid expression of PCS for biotechnological applications.

  7. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    D'Hulst Christophe

    2008-09-01

    Full Text Available Abstract Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS, whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between

  8. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis.

    Science.gov (United States)

    Lardizabal, K D; Metz, J G; Sakamoto, T; Hutton, W C; Pollard, M R; Lassner, M W

    2000-03-01

    Wax synthase (WS, fatty acyl-coenzyme A [coA]: fatty alcohol acyltransferase) catalyzes the final step in the synthesis of linear esters (waxes) that accumulate in seeds of jojoba (Simmondsia chinensis). We have characterized and partially purified this enzyme from developing jojoba embryos. A protein whose presence correlated with WS activity during chromatographic fractionation was identified and a cDNA encoding that protein was cloned. Seed-specific expression of the cDNA in transgenic Arabidopsis conferred high levels of WS activity on developing embryos from those plants. The WS sequence has significant homology with several Arabidopsis open reading frames of unknown function. Wax production in jojoba requires, in addition to WS, a fatty acyl-CoA reductase (FAR) and an efficient fatty acid elongase system that forms the substrates preferred by the FAR. We have expressed the jojoba WS cDNA in Arabidopsis in combination with cDNAs encoding the jojoba FAR and a beta-ketoacyl-CoA synthase (a component of fatty acid elongase) from Lunaria annua. (13)C-Nuclear magnetic resonance analysis of pooled whole seeds from transgenic plants indicated that as many as 49% of the oil molecules in the seeds were waxes. Gas chromatography analysis of transmethylated oil from individual seeds suggested that wax levels may represent up to 70% (by weight) of the oil present in those seeds.

  9. Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors.

    Science.gov (United States)

    Abdelhady, Mohamed I S; Beuerle, Till; Ober, Dietrich

    2009-09-01

    Homospermidine synthase is the first specific enzyme in the biosynthesis of pyrrolizidine alkaloids. Whereas the substrates putrescine and spermidine are part of the highly dynamic polyamine pool of plants, the product homospermidine is incorporated exclusively into the necine base moiety of pyrrolizidine alkaloids. Recently, the gene encoding homospermidine synthase has been shown to have been recruited several times independently during angiosperm evolution by the duplication of the gene encoding deoxyhypusine synthase. To test whether high levels of homospermidine suffice for conversion, at least in traces, to precursors of pyrrolizidine alkaloids, transgenic tobacco plants were generated expressing homospermidine synthase. Analyses of the polyamine content revealed that, in the transgenic plants, about 80% of spermidine was replaced by homospermidine without any conspicuous modifications of the phenotype. Tracer-feeding experiments and gas chromatographic analyses suggested that these high levels of homospermidine were not sufficient to explain the formation of alkaloid precursors. These results are discussed with respect to current models of pathway evolution. PMID:19543980

  10. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    Science.gov (United States)

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  11. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Darryl Hudson

    Full Text Available Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA. The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT, which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC. As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.

  12. GNC and CGA1 Modulate Chlorophyll Biosynthesis and Glutamate Synthase (GLU1/Fd-GOGAT) Expression in Arabidopsis

    Science.gov (United States)

    Hudson, Darryl; Guevara, David; Yaish, Mahmoud W.; Hannam, Carol; Long, Nykoll; Clarke, Joseph D.; Bi, Yong-Mei; Rothstein, Steven J.

    2011-01-01

    Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology. PMID:22102866

  13. Biosynthesis of isoprenoids in plants: Structure of the 2C-methyl-d-erithrytol 2,4-cyclodiphosphate synthase from Arabidopsis thaliana. Comparison with the bacterial enzymes

    OpenAIRE

    Calisto, Barbara M.; Perez-Gil, Jordi; Bergua, Maria; Querol-Audi, Jordi; Fita, Ignacio; Imperial, Santiago

    2007-01-01

    The X-ray crystal structure of the 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MCS) from Arabidopsis thaliana has been solved at 2.3 Å resolution in complex with a cytidine-5-monophosphate (CMP) molecule. This is the first structure determined of an MCS enzyme from a plant. Major differences between the A. thaliana and bacterial MCS structures are found in the large molecular cavity that forms between subunits and involve residues that are highly conserved among plants. In some bact...

  14. AtNOS/AtNOA1 Is a Functional Arabidopsis thaliana cGTPase and Not a Nitric-oxide Synthase*S⃞

    OpenAIRE

    Moreau, Magali; Lee, Gyu In; Wang, Yongzeng; Crane, Brian R.; Klessig, Daniel F

    2008-01-01

    AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or ...

  15. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  16. The thanatos mutation in Arabidopsis thaliana cellulose synthase 3 (AtCesA3) has a dominant-negative effect on cellulose synthesis and plant growth.

    Science.gov (United States)

    Daras, Gerasimos; Rigas, Stamatis; Penning, Bryan; Milioni, Dimitra; McCann, Maureen C; Carpita, Nicholas C; Fasseas, Constantinos; Hatzopoulos, Polydefkis

    2009-01-01

    Genetic functional analyses of mutants in plant genes encoding cellulose synthases (CesAs) have suggested that cellulose deposition requires the activity of multiple CesA proteins. Here, a genetic screen has led to the identification of thanatos (than), a semi-dominant mutant of Arabidopsis thaliana with impaired growth of seedlings. Homozygous seedlings of than germinate and grow but do not survive. In contrast to other CesA mutants, heterozygous plants are dwarfed and display a radially swollen root phenotype. Cellulose content is reduced by approximately one-fifth in heterozygous and by two-fifths in homozygous plants, showing gene-dosage dependence. Map-based cloning revealed an amino acid substitution (P578S) in the catalytic domain of the AtCesA3 gene, indicating a critical role for this residue in the structure and function of the cellulose synthase complex. Ab initio analysis of the AtCesA3 subdomain flanking the conserved proline residue predicted that the amino acid substitution to serine alters protein secondary structure in the catalytic domain. Gene dosage-dependent expression of the AtCesA3 mutant gene in wild-type A. thaliana plants resulted in a than dominant-negative phenotype. We propose that the incorporation of a mis-folded CesA3 subunit into the cellulose synthase complex may stall or prevent the formation of functional rosette complexes. PMID:19645738

  17. Arabidopsis CDS blastp result: AK102695 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102695 J033103F21 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  18. Arabidopsis CDS blastp result: AK102134 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102134 J033085F12 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  19. Arabidopsis CDS blastp result: AK066835 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066835 J013087I16 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-171 ...

  20. Arabidopsis CDS blastp result: AK065259 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065259 J013002J18 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  1. Arabidopsis CDS blastp result: AK100523 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100523 J023100P04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  2. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance.

    Science.gov (United States)

    Gasic, Ksenija; Korban, Schuyler S

    2007-07-01

    Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.

  3. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover.

    Science.gov (United States)

    Lin, Yao-Pin; Lee, Tsung-yuan; Tanaka, Ayumi; Charng, Yee-yung

    2014-10-01

    Chlorophylls, the most abundant pigments in the photosynthetic apparatus, are constantly turned over as a result of the degradation and replacement of the damage-prone reaction center D1 protein of photosystem II. Results from isotope labeling experiments suggest that chlorophylls are recycled by reutilization of chlorophyllide and phytol, but the underlying mechanism is unclear. In this study, by characterization of a heat-sensitive Arabidopsis mutant we provide evidence of a salvage pathway for chlorophyllide a. A missense mutation in CHLOROPHYLL SYNTHASE (CHLG) was identified and confirmed to be responsible for a light-dependent, heat-induced cotyledon bleaching phenotype. Following heat treatment, mutant (chlg-1) but not wild-type seedlings accumulated a substantial level of chlorophyllide a, which resulted in a surge of phototoxic singlet oxygen. Immunoblot analysis suggested that the mutation destabilized the chlorophyll synthase proteins and caused a conditional blockage of esterification of chlorophyllide a after heat stress. Accumulation of chlorophyllide a after heat treatment occurred during recovery in the dark in the light-grown but not the etiolated seedlings, suggesting that the accumulated chlorophyllides were not derived from de novo biosynthesis but from de-esterification of the existing chlorophylls. Further analysis of the triple mutant harboring the CHLG mutant allele and null mutations of CHLOROPHYLLASE1 (CLH1) and CLH2 indicated that the known chlorophyllases are not responsible for the accumulation of chlorophyllide a in chlg-1. Taken together, our results show that chlorophyll synthase acts in a salvage pathway for chlorophyll biosynthesis by re-esterifying the chlorophyllide a produced during chlorophyll turnover.

  4. Dependence of swarming in Escherichia coli K-12 on spermidine and the spermidine importer.

    Science.gov (United States)

    Kurihara, Shin; Suzuki, Hideyuki; Tsuboi, Yuichi; Benno, Yoshimi

    2009-05-01

    In a previous work, it was observed that the swarming of polyamine-deficient Proteus mirabilis (speB::sm) was severely inhibited on Luria-Bertani (LB) swarming plates (LBSw) (LB, 0.5% glucose, 0.5% agar), and it was clarified that extracellular putrescine was important as a signaling molecule for the induction of swarming in P. mirabilis. However, a polyamine-deficient strain (delta-speAB delta-speC) of Escherichia coli swarmed as well as the parental strain on LBSw plates. We report that the swarming phenotype of a polyamine-deficient E. coli strain is dependent on spermidine and PotABCD, a spermidine importer.

  5. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  6. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Jensen, Jacob Krüger; Harholt, Jesper;

    2007-01-01

    labelling indicated a reduction in the level of xylan in stems, and in vitro GT assays using microsomes from stems revealed that ATCSLD5 knock-out plants also had reduced xylan and homogalacturonan synthase activity. Expression in Nicotiana benthamiana of ATCSLD5 and ATCSLD3, fluorescently tagged at either...

  7. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek;

    2008-01-01

    for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect......A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...... that previously described for CSLD3 (KOJAK). CSLD2 is required during a later stage of hair development than CSLD3, and CSLD2 mutants produce root hairs with a range of abnormalities, with many root hairs rupturing late in development. Remarkably, though, it was often the case that in CSLD2 mutants, tip growth...

  8. Elevated CO2-induced production of nitric oxide (NO) by NO synthase differentially affects nitrate reductase activity in Arabidopsis plants under different nitrate supplies.

    Science.gov (United States)

    Du, Shaoting; Zhang, Ranran; Zhang, Peng; Liu, Huijun; Yan, Minggang; Chen, Ni; Xie, Huaqiang; Ke, Shouwei

    2016-02-01

    CO2 elevation often alters the plant's nitrate reductase (NR) activity, the first enzyme acting in the nitrate assimilation pathway. However, the mechanism underlying this process remains unknown. The association between elevated CO2-induced alterations of NR activity and nitric oxide (NO) was examined in Col-0 Arabidopsis fed with 0.2-10 mM nitrate, using NO donors, NO scavenger, and NO synthase (NOS) inhibitor. The noa1 mutant, in which most NOS activity was lost, and the NR activity-null mutant nia1 nia2 were also used to examine the above association. In response to CO2 elevation, NR activity increased in low-nitrate Col-0 plants but was inhibited in high-nitrate Col-0 plants. NO scavenger and NOS inhibitor could eliminate these two responses, whereas the application of NO donors mimicked these distinct responses in ambient CO2-grown Col-0 plants. Furthermore, in both low- and high-nitrate conditions, elevated CO2 increased NOS activity and NO levels in Col-0 and nia1 nia2 plants but had little effect on NO level and NR activity in noa1 plants. Considering all of these findings, this study concluded that, in response to CO2 elevation, either the NR activity induction in low-nitrate plants or the NR activity inhibition in high-nitrate plants is regulated by NOS-generated NO. PMID:26608644

  9. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Joseph L. [Pennsylvania State Univ., University Park, PA (United States); Hammudi, Mustafa B. [Pennsylvania State Univ., University Park, PA (United States); Tien, Ming [Pennsylvania State Univ., University Park, PA (United States)

    2014-12-01

    In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and 35S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  10. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation.

    Science.gov (United States)

    Tsai, Shen-Long; Singh, Shailendra; Dasilva, Nancy A; Chen, Wilfred

    2012-02-01

    Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic.

  11. Biochemical characterisation of isoprene synthase from poplar (Populus x canescens (Ait.) Sm.) and its expression in Arabidopsis thaliana L.; Biochemische Charakterisierung der Isoprensynthase aus der Graupappel (Populus x canescens (Ait.) Sm.) und ihre Expression in Arabidopsis thaliana L.

    Energy Technology Data Exchange (ETDEWEB)

    Bachl, A.

    2005-04-01

    It is known that a lot of plant species emit high amounts of isoprene, especially during high temperature periods. The physiological impact of isoprene biosynthesis and emission is currently still unknown. An enhanced heat tolerance as well as an antioxidant action of isoprene is mainly discussed. One of the main goals of this work was therefore to produce transgenic plants differing from the corresponding wildtype in their ability to synthesize and emit isoprene. Therefore, the isoprene synthase (ispS) gene from poplar (Populus x canescens), which was isolated by Miller et al. (2001) was used to transform Arabidopsis thaliana L., which is not a significant isoprene emitter. Prior to transformation the original DNA-sequence was extended by two different epitops, a nonapeptide HA epitope and six triplets for histidine resulting in a C-terminal His-tag, in order to get a labelled enzyme, which can be detected and cleaned up more easily afterwards. For proving the efficiency of the resulting proteins, the core enzymes without the transit peptide needed for the import of the protein, which is encoded in the nucleus, into the chloroplasts were expressed heterologous in E. coli. The HA epitope resulted in a complete loss of enzyme activity, while the His-tag led to a decreased enzyme activity of about 20%. For the Agrobacterium mediated transformation of A. thaliana the ispS with the C-terminal His-tag was used and cloned into the binary vector pBinAR under the control of a 35S promoter. 40 transgenic lines, which were selected by kanamycine resistance, have been achieved. The stable integration of ispS was confirmed on DNA- as well as on RNA level. The expression of ispS was proved in 38 of the 40 lines by PCR from cDNA. Furthermore the emission of the transgenic lines was studied by measuring whole plants for several hours. Five of the 40 lines showed significant higher isoprene emission rates being more than 2,5 fold higher than in the measured non emitting A

  12. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Talavera, David; Saura, Andreu; Imperial, Santiago; Rodríguez-Concepción, Manuel; Campos, Narciso; Boronat, Albert

    2013-07-15

    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

  13. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    Science.gov (United States)

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  14. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-130 ...

  15. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 2e-65 ...

  16. Arabidopsis CDS blastp result: AK110534 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110534 002-168-A07 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-114 ...

  17. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-24 ...

  18. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-45 ...

  20. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 3e-66 ...

  1. Arabidopsis CDS blastp result: AK069071 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069071 J023010H01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  2. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-124 ...

  3. Arabidopsis CDS blastp result: AK060286 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060286 001-006-C08 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 6e-78 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 0.0 ...

  5. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-29 ...

  6. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-25 ...

  7. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At5g16910.1 68418.m01982 cellulose synthase family protein similar to gi:2827143 cellulo...se synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 1e-28 ...

  8. Arabidopsis CDS blastp result: AK105393 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105393 001-123-B04 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 0.0 ...

  9. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-25 ...

  10. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 1e-126 ...

  11. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 8e-63 ...

  12. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 1e-125 ...

  13. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g32180.1 68414.m03958 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-9 (gi:9622890) from Zea mays 0.0 ...

  14. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 2e-26 ...

  15. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-47 ...

  16. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-98 ...

  17. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 8e-98 ...

  18. Arabidopsis CDS blastp result: AK109812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109812 002-147-H02 At5g16910.1 cellulose synthase family protein similar to gi:2827143 cellulose... synthase catalytic subunit, Arabidopsis thaliana, gi:9622886 cellulose synthase-7 from Zea mays 5e-90 ...

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32540.1 68415.m03975 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-31 ...

  20. Arabidopsis CDS blastp result: AK121003 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121003 J023045B21 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-167 ...

  1. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 5e-48 ...

  2. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g23990.1 68417.m03448 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 1e-45 ...

  3. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g38190.1 68417.m05391 cellulose synthase family protein similar to cellulose... synthase catalytic subunit gi:2827143 from [Arabidopsis thaliana], cellulose synthase-5 (gi:9622882) from Zea mays 4e-27 ...

  4. Arabidopsis CDS blastp result: AK061162 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061162 006-209-A01 At2g32540.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 3e-35 ...

  5. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At2g32530.1 68415.m03974 cellulose synthase family protein similar to cellulose... synthase catalytic subunit from Arabidopsis thaliana [gi:5230423], cellulose synthase-5 from Zea mays [gi:9622882] 4e-50 ...

  6. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-64 ...

  7. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 1e-21 ...

  8. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At3g29410.1 68416.m03695 terpene synthase/cyclase family protein similar to terpene... synthase GB:CAA72074 from [Arabidopsis thaliana], contains Pfam profile: PF01397 terpene synthase family 5e-65 ...

  9. Potent trophic activity of spermidine supramolecular complexes in in vitro models

    Institute of Scientific and Technical Information of China (English)

    Carlo; A; Ghisalberti; Alberto; Morisetti; Alessandro; Bestetti; Gaetano; Cairo

    2013-01-01

    AIM:To test the growth-promoting activity of the polyamine spermidine bound to various polymeric compounds in supramolecular complexes.METHODS:A thiazolyl blue cell viability assay was used to determine the growth-promoting potency of spermidine-supramolecular complexes in a human skin fibroblast cell line exposed to spermidine and different spermidine-supramolecular complexes that were obtained by combining spermidine and polyanionic polymers or cyclodextrin.Reconstituted human vaginal epithelium was exposed to a specific spermidinesupramolecular complex,i.e.,spermidine-hyaluronan(HA)50,and cell proliferation was determined by Ki-67immunohistochemical detection.Transepithelial electrical resistance and histological analysis were also performed on reconstituted human vaginal epithelium to assess tissue integrity.RESULTS:The effect of spermidine and spermidinesupramolecular complexes was first tested in skin fi-broblasts.Spermidine displayed a reverse dose-related mode of activity with mmol/L growth inhibition,whereas 30%stimulation over basal levels was detected at mol/L and nmol/L levels.Novel spermidine-supramolecular complexes that formed between spermidine and polyanionic polymers,such as HA,alginate,and polymaleate,were then tested at variable spermidine concentrations and a fixed polymer level(0.1%w/v).Spermidine-supramolecular complexes stimulated the cell growth rate throughout the entire concentration range with maximal potency(up to 80%)at sub-mol/L levels.Similar results were obtained with spermidine-(-cyclodextrin),another type of spermidine-supramolecular complex.Moreover,the increased expression of Ki-67 in the reconstituted human vaginal epithelium exposed to spermidine-HA 50 showed that the mode of action behind the spermidine-supramolecular complexes was increased cell proliferation.Functional and morphological assessments of reconstituted human vaginal epithelium integrity did not show significant alterations after exposure to spermidine

  10. Formation of the Unusual Semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory[W

    Science.gov (United States)

    Vaughan, Martha M.; Wang, Qiang; Webster, Francis X.; Kiemle, Dave; Hong, Young J.; Tantillo, Dean J.; Coates, Robert M.; Wray, Austin T.; Askew, Whitnee; O’Donnell, Christopher; Tokuhisa, James G.; Tholl, Dorothea

    2013-01-01

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type–specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects. PMID:23512856

  11. Expression of Caenorhabditis elegans PCS in the AtPCS1-deficient Arabidopsis thaliana cad1-3 mutant separates the metal tolerance and non-host resistance functions of phytochelatin synthases.

    Science.gov (United States)

    Kühnlenz, Tanja; Westphal, Lore; Schmidt, Holger; Scheel, Dierk; Clemens, Stephan

    2015-11-01

    Phytochelatin synthases (PCS) play key roles in plant metal tolerance. They synthesize small metal-binding peptides, phytochelatins, under conditions of metal excess. Respective mutants are strongly cadmium and arsenic hypersensitive. However, their ubiquitous presence and constitutive expression had long suggested a more general function of PCS besides metal detoxification. Indeed, phytochelatin synthase1 from Arabidopsis thaliana (AtPCS1) was later implicated in non-host resistance. The two different physiological functions may be attributable to the two distinct catalytic activities demonstrated for AtPCS1, that is the dipeptidyl transfer onto an acceptor molecule in phytochelatin synthesis, and the proteolytic deglycylation of glutathione conjugates. In order to test this hypothesis and to possibly separate the two biological roles, we expressed a phylogenetically distant PCS from Caenorhabditis elegans in an AtPCS1 mutant. We confirmed the involvement of AtPCS1 in non-host resistance by showing that plants lacking the functional gene develop a strong cell death phenotype when inoculated with the potato pathogen Phytophthora infestans. Furthermore, we found that the C. elegans gene rescues phytochelatin synthesis and cadmium tolerance, but not the defect in non-host resistance. This strongly suggests that the second enzymatic function of AtPCS1, which remains to be defined in detail, is underlying the plant immunity function.

  12. A new spermidine macrocyclic alkaloid isolated from Gymnosporia arenicola leaf.

    Science.gov (United States)

    da Silva, Gustavo; Martinho, Ana; Soengas, Raquel González; Duarte, Ana Paula; Serrano, Rita; Gomes, Elsa Teixeira; Silva, Olga

    2015-10-01

    The isolation and structural elucidation of a macrocyclic alkaloid, characterized by the presence of a 13-membered macrolactam ring containing a spermidine unit N-linked to a benzoyl group is hereby reported. The structure of this previously unknown spermidine alkaloid isolated from Gymnosporia arenicola (Celastraceae) leaves has been elucidated by (1)H and (13)C NMR spectroscopy (including bidimensional analysis) and further characterized by high-resolution mass spectrometry and polarimetry. A route for the biosynthesis of this new bioactive macrocycle is proposed and the cytotoxicity of the compound was evaluated against two ATCC cell lines - one normal-derived (MCF10A) and one cancer-derived cell line (MCF7) - using the MTT assay. The alkaloid revealed to be non-cytotoxic against both cell lines. The IC50 values from the cells were also determined. PMID:26241493

  13. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    OpenAIRE

    Sedwick, Caitlin

    2015-01-01

    The mechanism by which plants make starch—a vital foodstuff for billions of humans—is poorly understood, with a clear role for just one enzyme, granular binding starch synthase. A new study identifies a protein needed to recruit this enzyme to the starch granule. Read the Research Article.

  14. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition.

    Directory of Open Access Journals (Sweden)

    Nadège Minois

    Full Text Available Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water increases life span and stress resistance in several model organisms. In this work, we expand spermidine's range of age-related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine's mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces autophagy. Here, we suggest that the molecular targets of spermidine also include lipid metabolism: Spermidine-fed flies contain more triglycerides and show altered fatty acid and phospholipid profiles. We further determine that most of these metabolic changes are regulated through autophagy. Collectively, our data suggests an additional and novel lipid-mediated mechanism of action for spermidine-induced autophagy.

  15. Spermidine Feeding Decreases Age-Related Locomotor Activity Loss and Induces Changes in Lipid Composition

    OpenAIRE

    Nadège Minois; Patrick Rockenfeller; Smith, Terry K; Didac Carmona-Gutierrez

    2014-01-01

    Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water increases life span and stress resistance in several model organisms. In this work, we expand spermidine's range of age-related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine's mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces autophagy. Her...

  16. Effects of spermine and spermidine on the germination of rice seeds under different temperatures

    Institute of Scientific and Technical Information of China (English)

    ZHUCheng; ZENGGuangwen

    1997-01-01

    Polyamine , including putrescine (Put) , spermidine(Spd), and spermine(Spm) , are a kind of regulating substances known extensively inhigher plants at present. Different results have been reported on the relationship between polyamines and seed germination (wheat, tobacco and potato). This study investigated the effects of spormine and spermidine on germination of rice seeds.

  17. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis.

    Science.gov (United States)

    Bahaji, Abdellatif; Baroja-Fernández, Edurne; Ricarte-Bermejo, Adriana; Sánchez-López, Ángela María; Muñoz, Francisco José; Romero, Jose M; Ruiz, María Teresa; Baslam, Marouane; Almagro, Goizeder; Sesma, María Teresa; Pozueta-Romero, Javier

    2015-09-01

    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.

  18. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  19. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. PMID:25545296

  20. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    Science.gov (United States)

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  1. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Science.gov (United States)

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  2. AtCCR4a and AtCCR4b are Involved in Determining the Poly(A) Length of Granule-bound starch synthase 1 Transcript and Modulating Sucrose and Starch Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Suzuki, Yuya; Arae, Toshihiro; Green, Pamela J; Yamaguchi, Junji; Chiba, Yukako

    2015-05-01

    Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.

  3. Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil.

    Science.gov (United States)

    Kühnlenz, Tanja; Schmidt, Holger; Uraguchi, Shimpei; Clemens, Stephan

    2014-08-01

    Phytochelatins play a key role in the detoxification of metals in plants and many other eukaryotes. Their formation is catalysed by phytochelatin synthases (PCS) in the presence of metal excess. It appears to be common among higher plants to possess two PCS genes, even though in Arabidopsis thaliana only AtPCS1 has been demonstrated to confer metal tolerance. Employing a highly sensitive quantification method based on ultraperformance electrospray ionization quadrupole time-of-flight mass spectrometry, we detected AtPCS2-dependent phytochelatin formation. Overexpression of AtPCS2 resulted in constitutive phytochelatin accumulation, i.e. in the absence of metal excess, both in planta and in a heterologous system. This indicates distinct enzymatic differences between AtPCS1 and AtPCS2. Furthermore, AtPCS2 was able to partially rescue the Cd hypersensitivity of the AtPCS1-deficient cad1-3 mutant in a liquid seedling assay, and, more importantly, when plants were grown on soil spiked with Cd to a level that is close to what can be found in agricultural soils. No rescue was found in vertical-plate assays, the most commonly used method to assess metal tolerance. Constitutive AtPCS2-dependent phytochelatin synthesis suggests a physiological role of AtPCS2 other than metal detoxification. The differences observed between wild-type plants and cad1-3 on Cd soil demonstrated: (i) the essentiality of phytochelatin synthesis for tolerating levels of Cd contamination that can naturally be encountered by plants outside of metal-rich habitats, and (ii) a contribution to Cd accumulation under these conditions.

  4. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guojing Li

    2012-06-01

    Full Text Available Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs. The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  5. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    Science.gov (United States)

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  6. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  7. Soft TCPTP Agonism-Novel Target to Rescue Airway Epithelial Integrity by Exogenous Spermidine.

    Science.gov (United States)

    Ghisalberti, Carlo A; Borzì, Rosa M; Cetrullo, Silvia; Flamigni, Flavio; Cairo, Gaetano

    2016-01-01

    A reparative approach of disrupted epithelium in obstructive airway diseases, namely asthma and chronic obstructive pulmonary disease (COPD), may afford protection and long-lasting results compared to conventional therapies, e.g., corticosteroids or immunosuppressant drugs. Here, we propose the polyamine spermidine as a novel therapeutic agent in airways diseases, based on a recently identified mode of action: T-cell protein tyrosine phosphatase (TCPTP) agonism. It may include and surpass single-inhibitors of stress and secondary growth factor pathway signaling, i.e., the new medicinal chemistry in lung diseases. Enhanced polyamine biosynthesis has been charged with aggravating prognosis by competing for L-arginine at detriment of nitric oxide (NO) synthesis with bronchoconstrictive effects. Although excess spermine, a higher polyamine, is harmful to airways physiology, spermidine can pivot the cell homeostasis during stress conditions by the activation of TCPTP. In fact, the dephosphorylating activity of TCPTP inhibits the signaling cascade that leads to the expression of genes involved in detachment and epithelial-to-mesenchymal transition (EMT), and increases the expression of adhesion and tight junction proteins, thereby enhancing the barrier functionality in inflammation-prone tissues. Moreover, a further beneficial effect of spermidine may derive from its ability to promote autophagy, possibly in a TCPTP-dependent way. Since doses of spermidine in the micromolar range are sufficient to activate TCPTP, low amounts of spermidine administered in sustained release modality may provide an optimal pharmacologic profile for the treatment of obstructive airway diseases. PMID:27375482

  8. Spermidine Derivatives in Lulo (Solanum quitoense Lam.) Fruit: Sensory (Taste) versus Biofunctional (ACE-Inhibition) Properties.

    Science.gov (United States)

    Forero, Diana Paola; Masatani, Chieko; Fujimoto, Yoshinori; Coy-Barrera, Ericsson; Peterson, Devin G; Osorio, Coralia

    2016-07-01

    The bitterness in lulo (Solanum quitoense Lam.) fruit is increased during processing (juicing or drying). To identify the bitter-active compounds, the ethanolic fruit pulp extract was subjected to RP-18 solid-phase extraction, and then sensory-guided fractionated by HPLC. Two spermidine derivatives, N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine and N(1),N(8)-bis(dihydrocaffeoyl)spermidine, were isolated and their structures confirmed by analysis of their HPLC-ESI/MS and (1)H and (13)C NMR data. The N(1),N(4),N(8)-tris(dihydrocaffeoyl)spermidine was synthesized and used as an authentic sample to unequivocally confirm the structure of this compound and to quantitate it in both fresh and dried fruit. In silico analyses demonstrated that spermidine derivatives identified in lulo pulp exhibited a strong ACE-I (angiotensin I-converting enzyme) inhibitory activity. Subsequently, these results were confirmed by in vitro analyses and showed the potential use of lulo fruit pulp as an ingredient of functional foods related to the prevention of blood hypertension. PMID:27292771

  9. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome

    DEFF Research Database (Denmark)

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V;

    2011-01-01

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy...... independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation...... and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate...

  10. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice.

    Science.gov (United States)

    Chrisam, Martina; Pirozzi, Marinella; Castagnaro, Silvia; Blaauw, Bert; Polishchuck, Roman; Cecconi, Francesco; Grumati, Paolo; Bonaldo, Paolo

    2015-01-01

    Autophagy is a self-degradative process responsible for the clearance of damaged or unnecessary cellular components. We have previously found that persistence of dysfunctional organelles due to autophagy failure is a key event in the pathogenesis of COL6/collagen VI-related myopathies, and have demonstrated that reactivation of a proper autophagic flux rescues the muscle defects of Col6a1-null (col6a1(-/-)) mice. Here we show that treatment with spermidine, a naturally occurring nontoxic autophagy inducer, is beneficial for col6a1(-/-) mice. Systemic administration of spermidine in col6a1(-/-) mice reactivated autophagy in a dose-dependent manner, leading to a concurrent amelioration of the histological and ultrastructural muscle defects. The beneficial effects of spermidine, together with its being easy to administer and the lack of overt side effects, open the field for the design of novel nutraceutical strategies for the treatment of muscle diseases characterized by autophagy impairment.

  11. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    NARCIS (Netherlands)

    V. Falara; J.M. Alba; M.R. Kant; R.C. Schuurink; E. Pichersky

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the

  12. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  13. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Cartas Espinel, Irene; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature and present in most living cells. In recent years they have been linked to virulence of several human pathogens including Shigella spp and Salmonella enterica serovar Typhimurium (S. Typhimurium). Central to S...

  14. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    Science.gov (United States)

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  15. Main: 1XJ5 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available e=Spdsyn1; Orderedlocusnames=At1g23820; Orfnames=F5o8.38; Arabidopsis Thaliana Molecule: Spermidine Synthase 1; Chai...QEMITHLPLCSIPNPKKVLVIGGGDGGVLREVARHASIEQIDMCEIDKMVVDVSKQFFPDVAIGYEDPRVNLVIGDGVAFL

  16. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway

    DEFF Research Database (Denmark)

    von Malek, Bernadette; van der Graaff, Eric; Schneitz, Kay;

    2002-01-01

    exhibits a male-sterile phenotype. The dde2-2 phenotype can be rescued by application of methyl jasmonate, indicating that the mutant is affected in jasmonic acid biosynthesis. The combination of genetic mapping and a candidate-gene approach identified a frameshift mutation in the ALLENE OXIDE SYNTHASE...

  17. Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses.

    Science.gov (United States)

    Mounce, Bryan C; Poirier, Enzo Z; Passoni, Gabriella; Simon-Loriere, Etienne; Cesaro, Teresa; Prot, Matthieu; Stapleford, Kenneth A; Moratorio, Gonzalo; Sakuntabhai, Anavaj; Levraud, Jean-Pierre; Vignuzzi, Marco

    2016-08-10

    Polyamines are small, positively charged molecules derived from ornithine and synthesized through an intricately regulated enzymatic pathway. Within cells, they are abundant and play several roles in diverse processes. We find that polyamines are required for the life cycle of the RNA viruses chikungunya virus (CHIKV) and Zika virus (ZIKV). Depletion of spermidine and spermine via type I interferon signaling-mediated induction of spermidine/spermine N1-acetyltransferase (SAT1), a key catabolic enzyme in the polyamine pathway, restricts CHIKV and ZIKV replication. Polyamine depletion restricts these viruses in vitro and in vivo, due to impairment of viral translation and RNA replication. The restriction is released by exogenous replenishment of polyamines, further supporting a role for these molecules in virus replication. Thus, SAT1 and, more broadly, polyamine depletion restrict viral replication and suggest promising avenues for antiviral therapies. PMID:27427208

  18. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Espinel, Irene cartas; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric....... Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic...... retained ability to produce and import putrescine. Interestingly, in this mutant we observe a strong attenuation of virulence during infection of mice proficient and deficient for nitric oxide production suggesting that spermidine, specifically, is essential for virulence of S. Typhimurium....

  19. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    Science.gov (United States)

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  20. Polyamine metabolism in ripening tomato fruit. I. Identification of metabolites of putrescine and spermidine. [Lycopersicon esculentum Mill

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, R.; Davies, P.J. (Cornell Univ., Ithaca, NY (USA))

    1990-11-01

    The metabolism of (1,4-{sup 14}C)putrescine and (terminal methylene-{sup 3}H)spermidine was studied in the fruit pericarp (breaker stage) discs of tomato (Lycopersicon esculentum Mill.) cv Rutgers, and the metabolites identified by high performance liquid chromatography and gas chromatography-mass spectrometry. The metabolism of both putrescine and spermidine was relatively slow; in 24 hours about 15% of each amine was metabolized. The {sup 14}C label from putrescine was incorporated into spermidine, {gamma}-aminobutyric acid (GABA), glutamic acid, and a polar fraction eluting with sugars and organic acids. In the presence of gabaculine, a specific inhibitor of GABA:pyruvate transminase, the label going into glutamic acid, sugars and organic acids decreased by 80% while that in GABA increased about twofold, indicating that the transamination reaction is probably a major fate of GABA produced from putrescine in vivo. ({sup 3}H)Spermidine was catabolized into putrescine and {beta}-alanine. The conversion of putrescine into GABA, and that of spermidine into putrescine, suggests the presence of polyamine oxidizing enzymes in tomato pericarp tissues. The possible pathways of putrescine and spermidine metabolism are discussed.

  1. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.

    Directory of Open Access Journals (Sweden)

    Fazelian Nasrin

    2012-08-01

    Full Text Available Salt stress is an important environmental stress that produces reactive oxygen species in plants and causes oxidative injuries. In this investigation, salt stress reduced the shoot and root length, while increased the content of malondealdehyde, Hydrogen peroxide, and the activity of Ascorbate peroxidase andguaiacol peroxidase. Pretreatment of chamomile plants under salt stress with sodium nitroprussideand Spermidin caused enhancement of growth parameters and reduction of malondealdehyde and Hydrogen peroxide content. Pretreatment of plants with sodium nitroprusside remarkably increased Ascorbate peroxidase activity, while Spermidin pre-treatment significantly increased guaiacol peroxidase activity. Application of sodium nitroprusside or Spermidin with Methylene blue which is known to block cyclic guanosine monophosphate signaling pathway, reduced the protective effects of sodium nitroprussideand Spermidin in plants under salinity condition. The result of this study indicated that Methylene blue could partially and entirely abolish the protective effect of Nitric oxide on some physiological parameter. Methylene blue also has could reduce the alleviation effect of Spermidin on some of parameters in chamomile plant under salt stress, so with comparing the results of this study it seems that Spermidin probably acts through Nitric oxide pathway, but the use of 2-4- carboxyphenyl- 4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide is better to prove.

  2. Atomic Force Microscopy of spermidine-induced DNA condensates on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, I.S.S.; Bastos, F.M.; Munford, M.L.; Ramos, E.B.; Rocha, M.S., E-mail: marcios.rocha@ufv.br

    2012-01-01

    In the present work, we show that oxidized silicon may be successfully used to image multivalent cation-induced DNA condensates under the Atomic Force Microscope (AFM). The images thus obtained are good enough, allowing us to distinguish between different condensate forms and to perform nanometer-sized measurements. Qualitative results previously obtained using mica as a substrate are recovered here. We additionally show that the interactions between the cation spermidine (the condensing agent) and the DNA molecules are not significantly disturbed by the silicon surface, since the phase behavior of an ensemble of DNA molecules deposited on the silicon substrate as a function of the cation concentration is very similar to that found in solution. - Highlights: Black-Right-Pointing-Pointer We developed a protocol do deposit condensed DNA on oxidized silicon substrates. Black-Right-Pointing-Pointer We measured the sizes of the spermidine-induced DNA condensates under the AFM. Black-Right-Pointing-Pointer We sketch the phase diagram of an ensemble of DNA molecules in a spermidine solution.

  3. Asparagine Metabolic Pathways in Arabidopsis.

    Science.gov (United States)

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages. PMID:26628609

  4. Spermidine oxidase-derived H₂O₂ regulates pollen plasma membrane hyperpolarization-activated Ca(2+) -permeable channels and pollen tube growth.

    Science.gov (United States)

    Wu, Juyou; Shang, Zhonglin; Wu, Jun; Jiang, Xueting; Moschou, Panagiotis N; Sun, Wending; Roubelakis-Angelakis, Kalliopi A; Zhang, Shaoling

    2010-09-01

    Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca(2+) concentration that accompanies pollen tube growth. Using the whole-cell patch clamp and outside-out single-channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization-activated Ca(2+) current: the addition of Spd cannot induce the channel open probability increase in excised outside-out patches, indicating that the effect of Spd in the induction of Ca(2+) currents is exerted via a second messenger. This messenger is hydrogen peroxide (H₂O₂), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization-activated Ca(2+) -permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca(2+) -permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal-encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca(2+) -permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca(2+) influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd-derived H₂O₂ signals Ca(2+) influx, thereby regulating pollen tube growth.

  5. Physiological and iTRAQ-Based Proteomic Analyses Reveal the Function of Spermidine on Improving Drought Tolerance in White Clover.

    Science.gov (United States)

    Li, Zhou; Zhang, Yan; Xu, Yi; Zhang, Xinquan; Peng, Yan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2016-05-01

    Endogenous spermidine interacting with phytohormones may be involved in the regulation of differentially expressed proteins (DEPs) associated with drought tolerance in white clover. Plants treated with or without spermidine (50 μM) were subjected to 20% PEG 6000 nutrient solution to induce drought stress (50% leaf-relative water content). The results showed that increased endogenous spermidine induced by exogenous spermidine altered endogenous phytohormones in association with improved drought tolerance, as demonstrated by the delay in water-deficit development, improved photosynthesis and water use efficiency, and lower oxidative damage. As compared to untreated plants, Spd-treated plants maintained a higher abundance of DEPs under drought stress involved in (1) protein biosynthesis (ribosomal and chaperone proteins); (2) amino acids synthesis; (3) the carbon and energy metabolism; (4) antioxidant and stress defense (ascorbate peroxidase, glutathione peroxidase, and dehydrins); and (5) GA and ABA signaling pathways (gibberellin receptor GID1, ABA-responsive protein 17, and ABA stress ripening protein). Thus, the findings of proteome could explain the Spd-induced physiological effects associated with drought tolerance. The analysis of functional protein-protein networks further proved that the alteration of endogenous spermidine and phytohormones induced the interaction among ribosome, photosynthesis, carbon metabolism, and amino acid biosynthesis. These differences could contribute to improved drought tolerance. PMID:27030016

  6. Effects of spermidine and calcium sulfate on quantitative and qualitative traits and vase life of rose (Rosa hybrida cv. Dolcvita grown in hydroponic system

    Directory of Open Access Journals (Sweden)

    M. Hosseini Farahi

    2013-07-01

    Full Text Available In order to improve quantitative and qualitative properties and vase life of rose cv. Dolcvita, an experiment was conducted in a randomized complete blocks design with ten treatments and three replications in a hydroponic greenhouse adjacent to Yasouj city, Iran. Treatments included control, spermidine (0.5, 1 and 1.5 mM, calcium sulfate (2.5 and 5 mM, spermidine 0.5 mM+ calcium sulfate 2.5 mM, spermidine 0.5 mM + calcium sulfate 5 mM, spermidine 1 mM + calcium sulfate 2.5 mM and spermidine 1 mM + calcium sulfate 5 mM. Traits such as length of flower stalk, stem diameter, flower bud diameter, fresh weight of stem, chlorophyll content and vase life were measured. Results showed that effect of spermidine and calcium sulfate on all traits, except chlorophyll content, was significant (P<0.05. The highest and lowest length of flower stalk, stem diameter and fresh weight of stem was obtained in the 1.5 mM spermidine and control treatments, respectively. The highest diameter of flower bud was observed in the 0.5 mM spermidine and 2.5 mM calcium sulfate treatments. Flower vase life in the 0.5 mM spermidine + 5 mM calcium sulfate treatment was higher than that in the other treatments. Therefore, application of 1.5 mM spermidine is recommended for improving quantitative properties and combination of 0.5 mM spermidine with 5 mM calcium sulfate for increasing vase life of rose, cultivar Dolcvita, in hydroponic system.

  7. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds

    OpenAIRE

    Falara, V.; Alba, J.M.; Kant, M.R.; Schuurink, R. C.; Pichersky, E

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a to...

  8. Biochemistry: Acetohydroxyacid Synthase

    Directory of Open Access Journals (Sweden)

    Pham Ngoc Chien

    2010-02-01

    Full Text Available Acetohydroxyacid synthase (AHAS, EC 2.2.1.6; formerly known as acetolactate synthase, ALS is a thiamin-and FAD-dependent enzyme which catalyses the first common step in the biosynthesis of the branched-chain amino acids (BCAA isoleucine, leucine and valine. The enzyme is inhibited by several commercial herbicides and has been studied over the last 20 to 30 years. A short introductory note about acetohydroxyacid synthase has been provided.

  9. Polyamines and cellular metabolism in plants: Transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine

    Science.gov (United States)

    Distribution of biogenic amines – the diamine putrescine (Put), triamine spermidine (Spd), and tetraamine spermine (Spm) - differs between species with Put and Spd being particularly abundant and Spm the least abundant in plant cells. These amines are important for cell viability and their intracel...

  10. 过表达拟南芥点突变乙酰羟酸合成酶基因改变植物对缬氨酸的抗性及增强缬氨酸合成%Overexpression of the PointMutated Acetohydroxyacid Synthase Alters Resis-tance to Valine and Enhances Production of Valine inArabidopsis

    Institute of Scientific and Technical Information of China (English)

    赵菲佚; 焦成瑾; 王太术; 田春芳; 谢尚强; 刘亚萍

    2015-01-01

    拟南芥乙酰羟酸合成酶(acetohydroxyacid synthase, AHAS)在支链氨基酸合成中具有重要的作用。为考察AHAS不同亚基关键位点突变对植物缬氨酸抗性与缬氨酸合成的影响,对AHAS大小亚基上特定位点进行体外突变,构建AHAS点突变过表达转基因植物,研究AHAS不同亚基点突变转基因植物对缬氨酸抗性及其合成的影响。研究结果表明: AHAS小亚基G88D突变解除了终端产物对该酶的反馈抑制作用,使转基因植物缬氨酸含量提高。大亚基E305D突变增强小亚基G88D突变效应,而大亚基E482D突变对G88D突变具有相反的作用。AHAS全酶E305DG88D双突变转基因植物较E482DG88D具有更强的缬氨酸抗性表型和更高的缬氨酸含量。这些结果提示AHAS大小亚基间存在着相互作用,大小亚基不同位点突变对AHAS全酶活性具有不同的影响。%Acetohydroxyacid synthase (AHAS) plays a pivotal role in the synthesis of brahched-chain amino acids (BCAAs) inArabidopsis. To investigate effects of various speciifc mutated sites harboring in the large and small subunits of AHAS on resistance to valine and production of valine inArabidopsis, transgenic plants overexpressing the point mutated AHAS were generated by site-directed mutagenesis, and the phenotype of re-sistance to valine and production of valine of the transgenic plants were evaluatedin planta. The results showed that the G88D mutation in the small unit of AHAS abolished the feedback-resistant of valine to AHAS and this mutation resulted in increase of valine in the transgenic plants. The E305D mutation in the large unit of AHAS strengthens the effect of the G88D mutation. Interestingly, the E482D mutation in the large unit of AHAS acts antagonistically on the G88D mutation in resistance to valine and production of valine in transgenic plants. Compared with the combined double E482DG88D AHAS mutant transgenic plants, the E305DG88D AHAS transgenic plants exhibited the

  11. Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase

    NARCIS (Netherlands)

    Stracke, R.; Vos, de R.C.H.; Bartelniewoehner, L.; Ishihara, H.; Sagasser, M.; Martens, S.; Weisshaar, B.

    2009-01-01

    Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1) lo

  12. Effects of Exogenous Spermidine on Photosystem Ⅱ of Wheat Seedlings Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Hui-Guo Duan; Shu Yuan; Wen-Juan Liu; De-Hui Xi; Dong-Hong Qing; Hou-Guo Liang; Hong-Hui Lin

    2006-01-01

    The effects of exogenous spermidine (Spd) on lipid peroxidation, relative plasma membrane permeability,photosystem Ⅱ (PSⅡ) gene expression and PSⅡ photochemical activity in water-stressed wheat seedlings were investigated. The decrease in relative water content (RWC), Chi content, and 2,6-dichlorophenol indophenol (DCIP) photoreduction of PSⅡ, and increases in electrolyte leakage of plasma membranes and malonyldialdehyde (MDA) in water-stressed leaves was alleviated by Spd pretreatment. Furthermore, Western and Northern blot analysis showed that decreases in the PSⅡ major proteins D1, D2 and LHCⅡ and the transcripts of corresponding genes psbA, psbD and cab were also alleviated by Spd pretreatment under water stress. These results suggest that the application of exogenous Spd protects PSⅡ against water stress at both the transcriptional level and the translational level, and allows PSⅡ to retain a higher activity level during water stress. The protective role of Spd in the photosynthetic apparatus also is discussed.

  13. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Montanez, Cecilia [Department of Genetics and Molecular Biology, Centre for Research and Advanced Studies (CINVESTAV), IPN, Mexico City 07360 (Mexico); Wong, Carlos [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico); Baeza, Isabel, E-mail: ibaeza@encb.ipn.mx [Biochemistry Department, National Polytechnic Institute (IPN), Mexico City 11340 (Mexico)

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  14. N1,N5,N10-Tris(4-hydroxycinnamoyl)spermidines from Microdesmis keayana roots.

    Science.gov (United States)

    Zamble, Alexis; Sahpaz, Sevser; Hennebelle, Thierry; Carato, Pascal; Bailleul, François

    2006-09-01

    Three new N1,N5,N10-tris(4-hydroxycinnamoyl)spermidines were isolated from a methanolic root extract of Microdesmis keayana. They were identified as N5,N10-di(p-coumaroyl)-N1-feruloylspermidine,N5-(p-coumaroyl)-N1,N10-diferuloylspermidine, and N1,N5,N10-triferuloylspermidine, and were named keayanidines A, B, and C (1-3), respectively. Their structures were established by spectral techniques(electrospray mass spectrometry, one- and two-dimensional NMR). A 4',4'',4'''-trimethylated derivative was prepared by methylation of keayanidine C, and the same compound was synthesized fromspermidine and 3,4-dimethoxycinnamic acid to confirm the spectral attributions of the NMR data of the natural compounds. Radical-scavenging properties of all compounds were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical spectrophotometric assay. PMID:17193330

  15. Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions

    Directory of Open Access Journals (Sweden)

    Lee Yang

    2012-08-01

    Full Text Available Abstract Background Thellungiella has been proposed as an extremophile alternative to Arabidopsis to investigate environmental stress tolerance. However, Arabidopsis accessions show large natural variation in their freezing tolerance and here the tolerance ranges of collections of accessions in the two species were compared. Results Leaf freezing tolerance of 16 Thellungiella accessions was assessed with an electrolyte leakage assay before and after 14 days of cold acclimation at 4°C. Soluble sugars (glucose, fructose, sucrose, raffinose and free polyamines (putrescine, spermidine, spermine were quantified by HPLC, proline photometrically. The ranges in nonacclimated freezing tolerance completely overlapped between Arabidopsis and Thellungiella. After cold acclimation, some Thellungiella accessions were more freezing tolerant than any Arabidopsis accessions. Acclimated freezing tolerance was correlated with sucrose levels in both species, but raffinose accumulation was lower in Thellungiella and only correlated with freezing tolerance in Arabidopsis. The reverse was true for leaf proline contents. Polyamine levels were generally similar between the species. Only spermine content was higher in nonacclimated Thellungiella plants, but decreased during acclimation and was negatively correlated with freezing tolerance. Conclusion Thellungiella is not an extremophile with regard to freezing tolerance, but some accessions significantly expand the range present in Arabidopsis. The metabolite data indicate different metabolic adaptation strategies between the species.

  16. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA).

    Science.gov (United States)

    Tian, Zhiyong; Zang, Fenglei; Luo, Wen; Zhao, Zhonghua; Wang, Yueqiao; Xu, Xuejun; Wang, Chaojie

    2015-01-01

    The interaction mononaphthalimide spermidine (MINS, 1) and bovine serum albumin (BSA) was studied by UV/vis absorption, fluorescence and circular dichroism spectra (CD) under physiological conditions (pH=7.4). The observed spectral quenching of BSA by compound 1 indicated compound 1 could bind to BSA. Further fluorescent tests revealed that the quenching mechanism of BSA by compound 1 was overall static. Meanwhile, the obtained binding constant and thermodynamic parameters on compound-BSA interaction showed that the type of interaction force of compound 1 and BSA was mainly hydrophobic. The analysis of synchronous, three-dimensional fluorescence and CD showed that compound 1 had weak influence on the conformational changes in BSA. Molecular docking simulation was performed and docking model in silico suggested that the configuration of compound 1 was localized in enzymatic drug site II in BSA. Furthermore, naphthalimide moiety of compound 1 greatly contributed to the hydrophobic interaction between compound 1 and BSA protein, as confirmed by experimental data.

  17. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit

    Institute of Scientific and Technical Information of China (English)

    Lin CHENG; Rong-rong SUN; Fei-yan WANG; Zhen PENG; Fu-ling KONG; Jian WU; Jia-shu CAO; Gang LU

    2012-01-01

    Objective:High temperature adversely affects quality and yield of tomato fruit.Polyamine can alleviate heat injury in plants.This study is aimed to investigate the effects of polyamine and high temperature on transcriptional profiles in ripening tomato fruit.Methods:An Affymetrix tomato microarray was used to evaluate changes in gene expression in response to exogenous spermidine (Spd,1 mmol/L) and high temperature (33/27 ℃) treatments in tomato fruits at mature green stage.Results:Of the 10101 tomato probe sets represented on the array,127 loci were differentially expressed in high temperature-treated fruits,compared with those under normal conditions,functionally characterized by their involvement in signal transduction,defense responses,oxidation reduction,and hormone responses.However,only 34 genes were up-regulated in Spd-treated fruits as compared with non-treated fruits,which were involved in primary metabolism,signal transduction,hormone responses,transcription factors,and stress responses.Meanwhile,55 genes involved in energy metabolism,cell wall metabolism,and photosynthesis were down-regulated in Spd-treated fruits.Conclusions:Our results demonstrated that Spd might play an important role in regulation of tomato fruit response to high temperature during ripening stage.

  18. Effects of exogenous spermidine on the photosynthesis of Cucumis sativus L. seedlings under rhizosphere hypoxia stress

    Institute of Scientific and Technical Information of China (English)

    Tian WANG; Suping WANG; Shirong GUO; Yanjun SUN

    2008-01-01

    With water culture, this paper studied the effects of exogenous spermidine (Spd) on the net photosynthetic rate (Pn),intercellular CO2 concentra-tions (Ci),stomatal conductance(Gs),transpiration rate efficiency (CE) of cucumber seedlings under hypoxia stress. The results showed that Pn decreased gradually under the hypoxia stress, and reached the minimum 10 days later, which was 63.33% of the control. Compared with that of the hypoxia-stressed plants, the Pn 10 days after the application of exogenous Spd increased by 1.25 times. A negative correlation (R2=0.473-0.7118) was found between Pn and Ci, and Gs and Tr changed in wider ranges, which decreased under the hypoxia-stress, but increased under the hypoxia-stress plus exogenous Spd application. There was a significant positive correlation between Gs and Tr (R2=0.7821-0.9458), but these two parameters had no significant correlation with Pn. The 63.01% and 72.33%, respectively, while the hypoxia stress by 23% and 14%, respectively. The photo-inhibition of cucumber seedlings under hypoxia stress was mainly caused by non-stomatal inhibition, while the exogenous Spd alleviating the hypoxia stress by repairing photosyn-thesis systems.

  19. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    OpenAIRE

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to...

  20. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis

    OpenAIRE

    Sergeeva, L.I.; Keurentjes, J. J. B.; Bentsink, L.; Vonk, J.; Plas, van der, M..; Koornneef, M; Vreugdenhil, D.

    2006-01-01

    The possible role of the sucrose-splitting enzymes sucrose synthase and invertase in elongating roots and hypocotyls of Arabidopsis was tested by using a combination of histochemical methods and quantitative trait locus (QTL) analysis. Lengths of roots and hypocotyls correlated better with invertase activities than with sucrose synthase activities. The highest correlations were observed with activities in the elongating zones of roots. The genetic basis of these correlations was studied by us...

  1. Characterisation of the tryptophan synthase alpha subunit in maize

    Directory of Open Access Journals (Sweden)

    Gierl Alfons

    2008-04-01

    Full Text Available Abstract Background In bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA and β (TSB homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS complex in Arabidopsis. On the other hand maize (Zea mays expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB. Results In order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP, and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves. Conclusion It was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.

  2. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis

    OpenAIRE

    Liu, Chang-Jun; Blount, Jack W.; Steele, Christopher L.; Dixon, Richard A.

    2002-01-01

    In view of their perceived chemopreventive activities against hormone-dependent cancers, cardiovascular disease, and postmenopausal ailments, there is considerable interest in engineering plants to contain isoflavone phytoestrogens. However, attempts to date have only resulted in low levels of isoflavone accumulation in non-legumes. Introducing soybean isoflavone synthase (IFS) into Arabidopsis thaliana leads to accumulation of low levels of genistein glycosides. Leaves of wild-type A. thalia...

  3. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    Science.gov (United States)

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'. PMID:27396122

  4. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  5. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  6. Effect of spermidine and its metabolites on the activity of pea seedlings diamine oxidase and the problems of biosensing of biogenic amines with this enzyme.

    Science.gov (United States)

    Kivirand, K; Sõmerik, H; Oldekop, M-L; Rebane, R; Rinken, T

    2016-01-01

    Spermidine is one of the several biogenic amines, produced during the microbial decarboxylation of proteins. Individual biogenic amines in the formed mixtures are frequently analyzed with oxygen sensor based biosensors, as their content serves as a good biomarker for the determination of food quality. In these biosensors, diamine oxidase from pea seedlings (PSAO), catalyzing the oxidation of various biogenic amines by dissolved oxygen is commonly used for the bio-recognition of amines. However, in the presence of spermidine and/or its metabolite 1,3-diaminopropane, the activity of PSAO and the sensitivity of PSAO-based biosensors decrease due to inhibition. The inhibition constant of soluble spermidine, acting as an inhibiting substrate toward PSAO, was found to be (40±15) mM in freshly prepared solution and (0.28±0.05) mM in solution, incubated 30 days at room temperature. The inhibition constant of 1,3-diaminopropane, acting as a competitive inhibitor, was (0.43±0.12) mM as determined through the oxidation reaction of cadaverine. The metabolic half-life of soluble spermidine was 7 days at room temperature and 186 days at 4 °C. The kinetic measurements were carried out with an oxygen sensor; the composition of the solution of degraded spermidine was analyzed with MS.

  7. 拟南芥基因组中注释为(S)-去甲乌药碱合成酶的分子克隆异源表达%Molecular Cloning and Heterologous Expression of Putative (S)-norcoclaurine Synthases from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    张翔; 马磊; 田永强; 张国林; 罗应刚

    2013-01-01

    No complex alkaloid was detected in Arabidopsis thaliana till today.However,> 35 genes were annotated as NCSs [(S)-norcoclaurine synthases]-encoding genes involved in the biosynthesis of benzylisoquinoline alkaloids.Based on bioinformatics alignment and phylogenetic analysis between putative A.thaliana NCSs (AtNCSs) and biochemically characterized plant NCSs,five putative AtNCSs were chosen to be biochemically characterized in this work.The cDNAs encoding the five putative AtNCSs were obtained by RT-PCR and cloned into pET28a or pET30a vector.The nucleotide sequences of the five AtNCS genes were confirmed by DNA sequencing.Induced by IPTG,AtNCS-1-5 were heterologously overexpressed in Escherichia coli BL21 (DE3).The fusion proteins were soluble and purified by nickel-chelate affinity chromatography.The putative catalytic activity of the recombinant AtNCSs was assayed at four levels,including whole cell,cell lysate,supernatant,and purified enzyme,by adding the native substrates dopamine and 4-HPAA to the reaction mixture.No desired or new products were detected in the reaction mixture by HPLC-DAD detection,which suggested that these putative AtNCSs did not display the Pictet-Spengler condensation activity.Fig 7,Tab 2,Ref 20%至今在拟南芥中尚未发现复杂生物碱,但是其基因组测序则表明有35个以上基因可编码(S)-去甲乌药碱合成酶(NCS).本研究首先以经过生化表征、机理清楚的来自罂粟、日本黄连、黄唐松草和花菱草的NCS为参考,与拟南芥中注释的NCS进行了广泛的生物信息学分析与比对,从中选择5个AtNCS为目的基因,设计特异性引物;从拟南芥中提取总RNA,一步法RT-PCR克隆得到上述基因;通过TA克隆将上述基因转入pGM-T载体,筛选、酶切及PCR鉴定,DNA 测序验证它们的核酸序列;将测序验证的AtNCS基因经过PCR扩增、质粒构建、转入Escherichia coli BL21 (DE3)中进行异源表达和蛋白纯化;在整体细胞、细胞裂

  8. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  9. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis.

    NARCIS (Netherlands)

    Sergeeva, L.I.; Keurentjes, J.J.B.; Bentsink, L.; Vonk, J.; Plas, van der L.H.W.; Koornneef, M.; Vreugdenhil, D.

    2006-01-01

    The possible role of the sucrose-splitting enzymes sucrose synthase and invertase in elongating roots and hypocotyls of Arabidopsis was tested by using a combination of histochemical methods and quantitative trait locus (QTL) analysis. Lengths of roots and hypocotyls correlated better with invertase

  10. CESA5 Is Required for the Synthesis of Cellulose with a Role in Structuring the Adherent Mucilage of Arabidopsis Seeds

    OpenAIRE

    Sullivan, Stuart; Ralet, Marie-Christine; Berger, Adeline; Diatloff, Eugene; Bischoff, Volker; Gonneau, Martine; Marion-Poll, Annie

    2011-01-01

    Imbibed Arabidopsis (Arabidopsis thaliana) seeds are encapsulated by mucilage that is formed of hydrated polysaccharides released from seed coat epidermal cells. The mucilage is structured with water-soluble and adherent layers, with cellulose present uniquely in an inner domain of the latter. Using a reverse-genetic approach to identify the cellulose synthases (CESAs) that produce mucilage cellulose, cesa5 mutants were shown to be required for the correct formation of these layers. Expressio...

  11. Hybrid polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  12. Improved amplification efficiency on stool samples by addition of spermidine and its use for non-invasive detection of colorectal cancer

    KAUST Repository

    Roperch, Jean-Pierre

    2015-05-29

    Background Using quantitative methylation-specific PCR (QM-MSP) is a promising method for colorectal cancer (CRC) diagnosis from stool samples. Difficulty in eliminating PCR inhibitors of this body fluid has been extensively reported. Here, spermidine is presented as PCR facilitator for the detection of stool DNA methylation biomarkers using QM-MSP. We examined its effectiveness with NPY, PENK and WIF1, three biomarkers which we have previously shown to be of relevance to CRC. Results We determined an optimal window for the amplification of the albumin (Alb) gene (100 ng of bisulfite-treated stool DNA added of 1 mM spermidine) at which we report that spermidine acts as a PCR facilitator (AE = 1680%) for SG RT-PCR. We show that the amplification of methylated PENK, NPY and WIF1 is considerably facilitated by QM-MSP as measured by an increase of CMI (Cumulative Methylation Index, i.e. the sum of the three methylation values) by a factor of 1.5 to 23 fold in individual samples, and of 10 fold in a pool of five samples. Conclusions We contend that spermidine greatly reduces the problems of PCR inhibition in stool samples. This observed feature, after validation on a larger sampling, could be used in the development of stool-based CRC diagnosis tests.

  13. Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms

    OpenAIRE

    Barchiesi, Julieta; Hedin, Nicolás; Gomez-Casati, Diego F.; Miguel A Ballicora; Busi, María V.

    2015-01-01

    Background Starch-binding domains are key modules present in several enzymes involved in polysaccharide metabolism. These non-catalytic modules have already been described as essential for starch-binding and the catalytic activity of starch synthase III from the higher plant Arabidopsis thaliana. In Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, there are three SSIII isoforms, known as Ostta SSIII-A, SSIII-B and SSIII-C. Results In this work, using in silico and in...

  14. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  15. Phytochelatin synthase: of a protease a peptide polymerase made.

    Science.gov (United States)

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes.

  16. Synthesis, in vitro binding and biodistribution in B16 melanoma-bearing mice of new iodine-125 spermidine benzamide derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Marie-France [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Papon, Janine [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Labarre, Pierre [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Moins, Nicole [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France)]. E-mail: moins@inserm484.u-clermont1.fr; Borel, Michele [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Bayle, Martine [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Bouchon, Bernadette [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France); Madelmont, Jean-Claude [INSERM UMR 484, BP 184, 63000 Clermont-Ferrand cedex (France); Univ d' Auvergne, F-63000 Clermont-Ferrand (France); Centre Jean Perrin, F-63000 Clermont-Ferrand (France)

    2005-05-01

    In the course of our investigations aimed at improving the biological characteristics of iodobenzamides for melanoma therapeutic applications, four new derivatives containing a spermidine chain have been prepared and radiolabeled with {sup 125}I. In vitro studies showed that all compounds displayed high affinity for melanin superior to the reference compound BZA, thus validating our experimental approach. In vivo biodistribution was investigated in B16 melanoma-bearing mice. All four compounds, particularly benzamide 3, showed accumulation in the tumor, but lower, however, than that of BZA. Moreover, high concentrations of radioactivity in other organs, namely, the liver and lung, demonstrated nonspecific tumoral uptake. In view of these results, compounds 1 2 3 4 do not appear to be suitable radiopharmaceuticals for melanoma radionuclide therapy.

  17. Prenyldiphosphate synthases and gibberellin biosynthesis

    NARCIS (Netherlands)

    C.C.N. van Schie; M.A. Haring; R.C. Schuurink

    2013-01-01

    Gibberellins are derived from the diterpene precursor geranylgeranyl diphophosphate (GGPP). GGPP is converted to ent-kaurene, which contains the basic structure of gibberellins, in the plastids by the combined actions of copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). Generally, ge

  18. Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis.

    Science.gov (United States)

    Tati, Swetha; Li, Rui; Puri, Sumant; Kumar, Rohitashw; Davidow, Peter; Edgerton, Mira

    2014-01-01

    Oropharyngeal candidiasis (OPC) is caused by the opportunistic fungi Candida albicans and is prevalent in immunocompromised patients, individuals with dry mouth, or patients with prolonged antibiotic therapies that reduce oral commensal bacteria. Human salivary histatins, including histatin 5 (Hst 5), are small cationic proteins that are the major source of fungicidal activity of saliva. However, Hsts are rapidly degraded in vivo, limiting their usefulness as therapeutic agents despite their lack of toxicity. We constructed a conjugate peptide using spermidine (Spd) linked to the active fragment of Hst 5 (Hst 54-15), based upon our findings that C. albicans spermidine transporters are required for Hst 5 uptake and fungicidal activity. We found that Hst 54-15-Spd was significantly more effective in killing C. albicans and Candida glabrata than Hst 5 alone in both planktonic and biofilm growth and that Hst 54-15-Spd retained high activity in both serum and saliva. Hst 54-15-Spd was not bactericidal against streptococcal oral commensal bacteria and had no hemolytic activity. We tested the effectiveness of Hst 54-15-Spd in vivo by topical application to tongue surfaces of immunocompromised mice with OPC. Mice treated with Hst 54-15-Spd had significant clearance of candidal tongue lesions macroscopically, which was confirmed by a 3- to 5-log fold reduction of C. albicans colonies recovered from tongue tissues. Hst 54-15-Spd conjugates are a new class of peptide-based drugs with high selectivity for fungi and potential as topical therapeutic agents for oral candidiasis.

  19. Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis.

    Directory of Open Access Journals (Sweden)

    Belén Morón

    Full Text Available BACKGROUND: Spermidine is a dietary polyamine that is able to activate protein tyrosine phosphatase non-receptor type 2 (PTPN2. As PTPN2 is known to be a negative regulator of interferon-gamma (IFN-γ-induced responses, and IFN-γ stimulation of immune cells is a critical process in the immunopathology of inflammatory bowel disease (IBD, we wished to explore the potential of spermidine for reducing pro-inflammatory effects in vitro and in vivo. METHODS: Human THP-1 monocytes were treated with IFN-γ and/or spermidine. Protein expression and phosphorylation were analyzed by Western blot, cytokine expression by quantitative-PCR, and cytokine secretion by ELISA. Colitis was induced in mice by dextran sodium sulfate (DSS administration. Disease severity was assessed by recording body weight, colonoscopy and histology. RESULTS: Spermidine increased expression and activity of PTPN2 in THP-1 monocytes and reduced IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 1 and 3, as well as p38 mitogen-activated protein kinase (MAPK in a PTPN2 dependent manner. Subsequently, IFN-γ-induced expression/secretion of intracellular cell adhesion molecule (ICAM-1 mRNA, monocyte chemoattractant protein (MCP-1, and interleukin (IL-6 was reduced in spermidine-treated cells. The latter effects were absent in PTPN2-knockdown cells. In mice with DSS-induced colitis, spermidine treatment resulted in ameliorated weight loss and decreased mucosal damage indicating reduced disease severity. CONCLUSIONS: Activation of PTPN2 by spermidine ameliorates IFN-γ-induced inflammatory responses in THP-1 cells. Furthermore, spermidine treatment significantly reduces disease severity in mice with DSS-induced colitis; hence, spermidine supplementation and subsequent PTPN2 activation may be helpful in the treatment of chronic intestinal inflammation such as IBD.

  20. Product Variability of the ‘Cineole Cassette'Monoterpene Synthases of Related Nicotiana Species

    Institute of Scientific and Technical Information of China (English)

    Anke F(a)hnrich; Katrin Krause; Birgit Piechulla

    2011-01-01

    Nicotiana species of the section Alatae characteristically emit the floral scent compounds of the ‘cineole cassere' comprising 1,8-cineole,limonene,myrcene,α-pinene,β-pinene,sabinene,and α-terpineol.We successfully isolated genes of Nicotiana alata and Nicotiana langsdorfii that encoded enzymes,which produced the characteristic monoterpenes of this ‘cineole cassette' with α-terpineol being most abundant in the volatile spectra.The amino acid sequences of both terpineol synthases were 99% identical.The enzymes cluster in a monophyletic branch together with the closely related cineole synthase of Nicotiana suaveolens and monoterpene synthase 1 of Solanum lycopersicum.The cyclization reactions (α-terpineol to 1,8-cineole) of the terpineol synthases of N.alata and N.langsdorfii were less efficient compared to the ‘cineole cassette′ monoterpene synthases of Arabidopsis thaliana,N.suaveolens,Salvia fruticosa,Salvia officinalis,and Citrus unshiu.The terpineol synthases of N.alata and N.langsdorfii were localized in pistils and in the adaxial and abaxial epidermis of the petals.The enzyme activities reached their maxima at the second day after anthesis when flowers were fully opened and the enzyme activity in N.alata was highest at the transition from day to night (diurnal rhythm).

  1. [Progress and application prospects of glutamine synthase in plants].

    Science.gov (United States)

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation. PMID:26955708

  2. Oxylipin Pathway in Rice and Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    E. Wassim Chehab; John V. Perea; Banu Gopalan; Steve Theg; Katayoon Dehesh

    2007-01-01

    Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental information. The oxylipin pathway is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxylipin pathway induces the de novo synthesis of biologically active metabolltes called "oxylipins". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxylipln pathway, allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are responsible for production of the signaling compounds,jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways in rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations in monocots and dicots.

  3. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  4. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes.

  5. Momilactone sensitive proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kitajima, Shinya

    2015-05-01

    The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice (Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses. PMID:26058145

  6. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers.

    OpenAIRE

    Ginglinger, J.-F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T. G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullmann, P.; Beran, F.; Claudel, P.; Verstappen, F.; Fischer, M. J. C.; Karst, F

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simu...

  7. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    Science.gov (United States)

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. PMID:26880289

  8. Synthesis of novel naphthoquinone-spermidine conjugates and their effects on DNA-topoisomerases I and II-α

    International Nuclear Information System (INIS)

    Novel derivatives of lapachol 2, nor-lapachol 3 and lawsone 4 have been synthesized by nucleophilic displacement of the methoxynaphthoquinones 2a, 3a and 4a with the polyamine (PA) N1-Boc-N5-Bn-spermidine 1a. The respective products 2b-4b were obtained in good yields and characterized by spectroscopic and analytical methods. The inhibitory action of these naphthoquinone-PA conjugates on DNA-topoisomerases (topo) I and II-α was evaluated by relaxation assay of supercoiled DNA plasmid. All compounds (1a 2b, 3b and 4b) presented significant inhibition of topo II-α catalytic activity at the 2 μM dose. Considering that only PA 1a did not inhibit the enzyme catalytic activity at the 0.2 μM dose, the appended naphthoquinone moiety acts as a 'value added' fragment. Compounds 1a 2b, 3b and 4b did not inhibit the enzyme DNA-topo I at the 200 μM dose. (author)

  9. Alleviation of Salt Stress in Seedlings of Black Glutinous Rice by Seed Priming with Spermidine and Gibberellic Acid

    Directory of Open Access Journals (Sweden)

    Sumitahnun CHUNTHABUREE

    2014-12-01

    Full Text Available This study was carried out to elucidate the spermidine (Spd and gibberellic acid (GA3 priming-induced physiological and biochemical changes responsible for induction of salinity tolerance in two rice (Oryza sativa L. cultivars, namely ‘Niewdam Gs. no. 00621’ (salt tolerant and ‘KKU-LLR-039’ (salt sensitive. The seeds of the two cultivars were primed separately with distilled water, 1 mM Spd or 0.43 mM GA3. Primed seeds were germinated and the resultant seedlings were hydroponically grown for 14 days before being exposed to salinity stress (150 mM NaCl for 10 days. Seed priming with Spd or GA3 slightly improved salt-induced reductions in growth, anthocyanin and chlorophyll contents of the seedlings. Salt stress induced pronounced increases in Na+/K+ ratio, proline and H2O2 contents, particularly in the sensitive cultivar. The levels of these salt-sensitivity physiological indicators tended to be mitigated by priming with Spd and GA3. Salt-stressed seedlings grown from seeds primed with these growth regulators also possessed higher phenolic contents and greater antioxidant capacity than the control seedlings. Based on all growth and physiological data, Spd tended to be more effective than A3 in improving salt tolerance in both rice cultivars.

  10. Synthesis of novel naphthoquinone-spermidine conjugates and their effects on DNA-topoisomerases I and II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Andrea S.; Lima, Edson L.S.; Pinto, Angelo C.; Esteves-Souza, Andressa; Torrese, Jose C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Quimica; Camara, Celso A. [Paraiba Univ., Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Vargas, Maria D. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica]. E-mail: mdvargas@vm.uff.br

    2006-05-15

    Novel derivatives of lapachol 2, nor-lapachol 3 and lawsone 4 have been synthesized by nucleophilic displacement of the methoxynaphthoquinones 2a, 3a and 4a with the polyamine (PA) N{sup 1}-Boc-N{sup 5}-Bn-spermidine 1a. The respective products 2b-4b were obtained in good yields and characterized by spectroscopic and analytical methods. The inhibitory action of these naphthoquinone-PA conjugates on DNA-topoisomerases (topo) I and II-{alpha} was evaluated by relaxation assay of supercoiled DNA plasmid. All compounds (1a 2b, 3b and 4b) presented significant inhibition of topo II-{alpha} catalytic activity at the 2 {mu}M dose. Considering that only PA 1a did not inhibit the enzyme catalytic activity at the 0.2 {mu}M dose, the appended naphthoquinone moiety acts as a 'value added' fragment. Compounds 1a 2b, 3b and 4b did not inhibit the enzyme DNA-topo I at the 200 {mu}M dose. (author)

  11. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang

    2015-01-01

    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  12. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    OpenAIRE

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling sys...

  13. [Relationship of Sa, No and H2O2 signals in the reponses of Arabidopsis to toxin of Verticillium dahliae].

    Science.gov (United States)

    Li, Shuang Shi; Li, Ying Zhang

    2004-08-01

    The accumulation of hydrogen peroxide (H2O2) in Arabidopsis was induced by toxin of Verticillium dahliae (VD-toxin), exogenous salicylic acid (SA) and nitric oxide donor (SNP). The effect of SNP was the most intense. H2O2 level was not increased in Arabidopsis treated with nitric oxide synthase inhibitor (NNA). It was identified with the results of DAB staining of H2O2 accumulates in the leaves of Arabidopsis. H2O2 was cytochemically detected in the cells of epidermal hair and the cell wall of vascular parenchyma cell. The results suggest that H2O2 acts as a second messenger to involve the defenses in Arabidopsis induced by SA and NO signal transduction. The relationship of NO and H2O2 signals was likely closer.

  14. Differential regulation of two types of monogalactosyldiacylglylcerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants

    Directory of Open Access Journals (Sweden)

    Mie eShimojima

    2013-11-01

    Full Text Available Phosphate (Pi limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2 and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and

  15. Suppressor Screens in Arabidopsis.

    Science.gov (United States)

    Li, Xin; Zhang, Yuelin

    2016-01-01

    Genetic screens have proven to be a useful tool in the dissection of biological processes in plants. Specifically, suppressor screens have been widely used to study signal transduction pathways. Here we provide a detailed protocol for ethyl methanesulfonate (EMS) mutagenesis used in our suppressor screens in Arabidopsis and discuss the basic principles behind suppressor screen design and downstream analyses. PMID:26577776

  16. Arabidopsis CAPRICE (MYB and GLABRA3 (bHLH control tomato (Solanum lycopersicum anthocyanin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takuji Wada

    Full Text Available In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC and the bHLH transcription factor GLABRA3 (GL3 are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC and SlGL3 (GL3 into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL, the flavonoid pathway genes chalcone synthase (CHS, dihydroflavonol reductase (DFR, and anthocyanidin synthase (ANS were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  17. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    Science.gov (United States)

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  18. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2006-02-01

    Full Text Available Abstract Background The glycogen synthase kinase 3 (GSK3/SHAGGY-like kinases (GSKs are non-receptor serine/threonine protein kinases that are involved in a variety of biological processes. In contrast to the two members of the GSK3 family in mammals, plants appear to have a much larger set of divergent GSK genes. Plant GSKs are encoded by a multigene family; analysis of the Arabidopsis genome revealed the existence of 10 GSK genes that fall into four major groups. Here we characterized the structure of Arabidopsis and rice GSK genes and conducted the first broad phylogenetic analysis of the plant GSK gene family, covering a taxonomically diverse array of algal and land plant sequences. Results We found that the structure of GSK genes is generally conserved in Arabidopsis and rice, although we documented examples of exon expansion and intron loss. Our phylogenetic analyses of 139 sequences revealed four major clades of GSK genes that correspond to the four subgroups initially recognized in Arabidopsis. ESTs from basal angiosperms were represented in all four major clades; GSK homologs from the basal angiosperm Persea americana (avocado appeared in all four clades. Gymnosperm sequences occurred in clades I, III, and IV, and a sequence of the red alga Porphyra was sister to all green plant sequences. Conclusion Our results indicate that (1 the plant-specific GSK gene lineage was established early in the history of green plants, (2 plant GSKs began to diversify prior to the origin of extant seed plants, (3 three of the four major clades of GSKs present in Arabidopsis and rice were established early in the evolutionary history of extant seed plants, and (4 diversification into four major clades (as initially reported in Arabidopsis occurred either just prior to the origin of the angiosperms or very early in angiosperm history.

  19. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination.

    Science.gov (United States)

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions. PMID:27446159

  20. The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination

    Science.gov (United States)

    Baudouin, Emmanuel; Poilevey, Aurélie; Hewage, Nishodi Indiketi; Cochet, Françoise; Puyaubert, Juliette; Bailly, Christophe

    2016-01-01

    Hydrogen sulfide (H2S) recently emerged as an important gaseous signaling molecule in plants. In this study, we investigated the possible functions of H2S in regulating Arabidopsis seed germination. NaHS treatments delayed seed germination in a dose-dependent manner and were ineffective in releasing seed dormancy. Interestingly, endogenous H2S content was enhanced in germinating seeds. This increase was correlated with higher activity of three enzymes (L-cysteine desulfhydrase, D-cysteine desulfhydrase, and β-cyanoalanine synthase) known as sources of H2S in plants. The H2S scavenger hypotaurine and the D/L cysteine desulfhydrase inhibitor propargylglycine significantly delayed seed germination. We analyzed the germinative capacity of des1 seeds mutated in Arabidopsis cytosolic L-cysteine desulfhydrase. Although the mutant seeds do not exhibit germination-evoked H2S formation, they retained similar germination capacity as the wild-type seeds. In addition, des1 seeds responded similarly to temperature and were as sensitive to ABA as wild type seeds. Taken together, these data suggest that, although its metabolism is stimulated upon seed imbibition, H2S plays, if any, a marginal role in regulating Arabidopsis seed germination under standard conditions.

  1. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis.

    Science.gov (United States)

    Chen, Alice; Komives, Elizabeth A; Schroeder, Julian I

    2006-05-01

    Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.

  2. Study on Enhancement of Anti-water Logging Stress of Maize Seedlings by Exogenous Spermidine%外源亚精胺提高玉米抗芽涝的研究

    Institute of Scientific and Technical Information of China (English)

    张健; 王考艳; 刘美艳; 申杰; 王景景

    2011-01-01

    Nongda108 was soaked with exogenous spermidine. Effects of exogenous spermidine on the growth and physiological characteristics of maize seedlings under water logging stress were studied. The resuhs indicated that exogenous spermidine could reduce the yellow leaves per plant and the death rate of maize seedlings under water logging stress; retard the descent of chlorophyll content; maintain the stability of plasmalemma permeability; decrease the production rate of O2- and the accumulation of MDA of maize seedlings under water logging stress. The ability of anti-water logging stress of maize seedlings was increased by soaking with exogenous spermidine. The optimal concentration of spermidine was 0.4 mmol/L.%以农大108为材料,研究外源亚精胺浸种对玉米幼苗生长和生理特性的影响.结果表明,外源亚精胺能减少芽涝逆境下玉米幼苗黄叶数和死苗率,延缓叶绿素含量的下降,维持根细胞膜透性的稳定,减少芽涝逆境下超氧阴离子(O2-)产生速率和丙二醛(MDA)的积累.外源亚精胺浸种能提高玉米的抗芽涝能力,适宜浓度为0.4mmol/L.

  3. Arabidopsis in Wageningen

    OpenAIRE

    Koornneef, M

    2013-01-01

    Arabidopsis thaliana is the plant species that in the past 25 years has developed into the major model species in plant biology research. This was due to its properties such as short generation time, its small genome and its easiness to be transformed. Wageningen University has played an important role in the development of this model, based on interdisciplinary collaborations using genetics as a major tool to investigate aspects of physiology, development, plant-microbe interactions and evol...

  4. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    Science.gov (United States)

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  5. A cell-free yellow lupin extract containing activities of pseudouridine 35 and 55 synthases.

    Science.gov (United States)

    Pieńkowska, J; Wrzesiński, J; Szweykowska-Kulińska, Z

    1998-01-01

    Plant cytoplasmic tyrosine tRNA was pseudouridylated at three different positions: 35, 39 and 55. These pseudouridines were introduced by three different enzymes--pseudouridine synthases. Variants of the Arabidopsis thaliana pre-tRNA(Tyr) were constructed that allow to monitor specifically pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis we have prepared an extract from Lupinus luteus cv. Ventus seeds containing activities of at least psi35 and psi55 synthases. This is the first report describing the preparation of the lupin seed extract that specifically modifies plant pre-tRNA(Tyr) transcribed by T7 RNA polymerase. U35 is converted to psi35 only in an intron-dependent manner, while pseudouridylation of U55 is insensitive to the presence or absence of an intron.

  6. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  7. Isolation of Two Unknown Genes Potentially Involved in Differentiation of the Hematopoietic Pathway, and Studies of Spermidine/Spermine Acetyltransferase Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubera, C.; Gavin, I.; Huberman, E.

    2002-01-01

    Differential display identified a number of candidate genes involved with growth and differentiation in the human leukemia cell lines HL-60 and HL-525. Two of these genes were previously unknown, and one is the gene for the enzyme spermidine/spermine acetyltransferase (SSAT). One of our objectives is to isolate and sequence the unknown genes, 631A1 and 510C1, in order to characterize them and determine their functions. The other is to determine how SSAT is regulated, and look at how the polyamines that SSAT regulates effect macrophage differentiation. By screening the CEM T-cell DNA library and the fetal brain library, we were able to identify clones that had inserts with homology to the 631A1 cDNA probe sequence. The insert was amplified using the polymerase chain reaction (PCR) and is currently being sent to the University of Chicago for automated sequencing. The library screens for 510C1 are currently underway, but hybridization of the 510C1 cDNA probe with nylon membranes containing CEM library phage DNA produced strong signal, indicating the gene is there. SSAT experiments identified that the rate-limiting enzyme that marks the polyamines spermidine and spermine for degradation is regulated by PKC and a transcription factor called Nrf2. The knowledge of regulation and function of these genes involved in macrophage differentiation will provide new insight into this cellular process, potentially making it possible to discover the roots of the problems that cause cancerous diseases.

  8. Geranyllinalool Synthases in Solanaceae and Other Angiosperms Constitute an Ancient Branch of Diterpene Synthases Involved in the Synthesis of Defensive Compounds1[C][W][OPEN

    Science.gov (United States)

    Falara, Vasiliki; Alba, Juan M.; Kant, Merijn R.; Schuurink, Robert C.; Pichersky, Eran

    2014-01-01

    Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s–1. In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants. PMID:25052853

  9. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

    OpenAIRE

    Blanch Roure, Josep-Salvador; Peñuelas, Josep; Llusià Benet, Joan; Sardans i Galobart, Jordi; Owen, Susan M.

    2015-01-01

    We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wildtype (WT) and transgenic line (CoxIVFaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found coeluti...

  10. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.

    Science.gov (United States)

    Chebli, Youssef; Kaneda, Minako; Zerzour, Rabah; Geitmann, Anja

    2012-12-01

    The pollen tube is a cellular protuberance formed by the pollen grain, or male gametophyte, in flowering plants. Its principal metabolic activity is the synthesis and assembly of cell wall material, which must be precisely coordinated to sustain the characteristic rapid growth rate and to ensure geometrically correct and efficient cellular morphogenesis. Unlike other model species, the cell wall of the Arabidopsis (Arabidopsis thaliana) pollen tube has not been described in detail. We used immunohistochemistry and quantitative image analysis to provide a detailed profile of the spatial distribution of the major cell wall polymers composing the Arabidopsis pollen tube cell wall. Comparison with predictions made by a mechanical model for pollen tube growth revealed the importance of pectin deesterification in determining the cell diameter. Scanning electron microscopy demonstrated that cellulose microfibrils are oriented in near longitudinal orientation in the Arabidopsis pollen tube cell wall, consistent with a linear arrangement of cellulose synthase CESA6 in the plasma membrane. The cellulose label was also found inside cytoplasmic vesicles and might originate from an early activation of cellulose synthases prior to their insertion into the plasma membrane or from recycling of short cellulose polymers by endocytosis. A series of strategic enzymatic treatments also suggests that pectins, cellulose, and callose are highly cross linked to each other. PMID:23037507

  11. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  12. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is t

  13. Intragenic recombination in the CSR1 locus of Arabidopsis.

    Science.gov (United States)

    Mourad, G; Haughn, G; King, J

    1994-04-01

    Four classes of herbicides are known to inhibit plant acetolactate synthase (ALS). In Arabidopsis, ALS is encoded by a single gene, CSR1. The dominant csr1-1 allele encodes an ALS resistant to chlorsulfuron and triazolopyrimidine sulfonamide while the dominant csr1-2 allele encodes an ALS resistant to imazapyr and pyrimidyl-oxy-benzoate. The molecular distance between the point mutations in csr1-1 and csr1-2 is 1369 bp. Here we used multiherbicide resistance as a stringent selection to measure the intragenic recombination frequency between these two point mutations. We found this frequency to be 0.008 +/- 0.0028. The recombinant multiherbicide-resistant allele, csr1-4, provides an ideal marker for plant genetic transformation. PMID:8177214

  14. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  15. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds...... of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin......, camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...

  16. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules

    NARCIS (Netherlands)

    Cai, G.; Faleri, C.; Casino, C.; Emons, A.M.C.; Cresti, M.

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tub

  17. Decrease in Leaf Sucrose Synthesis Leads to Increased Leaf Starch Turnover and Decreased RuBP-limited Photosynthesis But Not Rubisco-limited Photosynthesis in Arabidopsis Null Mutants of SPSA1

    Science.gov (United States)

    SPS (Sucrose phosphate synthase) isoforms from dicots cluster into families A, B and C. In this study, we investigated the individual effect of null mutations of each of the four SPS genes in Arabidopsis (spsa1, spsa2, spsb and spsc) on photosynthesis and carbon partitioning. Null mutants spsa1 and ...

  18. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    Science.gov (United States)

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  19. Functional characterization of aroA from Rhizobium leguminosarum with significant glyphosate tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Han, Jing; Tian, Yong-Sheng; Xu, Jing; Wang, Li-Juan; Wang, Bo; Peng, Ri-He; Yao, Quan-Hong

    2014-09-01

    Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene (aroAR. leguminosarum) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that aroAR. leguminosarum is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the aroAR. leguminosarum gene was obtained to prove its potential use in developing glyphosate-resistant crops.

  20. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie

    2003-03-01

    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  1. A Mutation Causing Imidazolinone Resistance Maps to the Csr1 Locus of Arabidopsis thaliana.

    Science.gov (United States)

    Haughn, G W; Somerville, C R

    1990-04-01

    A mutant of Arabidopsis thaliana, two hundred times more resistant to the imidazolinone herbicide imazapyr than wild-type plants, was isolated by direct selection of seedlings from a mutagenized population. Genetic analysis showed that resistance is due to a single dominant nuclear mutation that could not be separated by recombination from a mutation in the CSR1 gene encoding acetohydroxy acid synthase. Acetohydroxy acid synthase activity in extracts isolated from the mutant was 1000-fold more resistant to inhibition by imazapyr than that of the wild type. The resistant enzyme activity cosegregated with whole plant resistance. These data strongly suggest that the mutation is an allele of CSR1 encoding an imazapyr-resistant AHAS. PMID:16667374

  2. Crystal structure of riboflavin synthase

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  3. Arabidopsis thaliana peroxidase N

    DEFF Research Database (Denmark)

    Mirza, Osman Asghar; Henriksen, A; Ostergaard, L;

    2000-01-01

    The structure of the neutral peroxidase from Arabidopsis thaliana (ATP N) has been determined to a resolution of 1.9 A and a free R value of 20.5%. ATP N has the expected characteristic fold of the class III peroxidases, with a C(alpha) r.m.s.d. of 0.82 A when compared with horseradish peroxidase C...... (HRP C). HRP C is 54% identical to ATP N in sequence. When the structures of four class III plant peroxidases are superimposed, the regions with structural differences are non-randomly distributed; all are located in one half of the molecule. The architecture of the haem pocket of ATP N is very similar...... to that of HRP C, in agreement with the low small-molecule substrate specificity of all class III peroxidases. The structure of ATP N suggests that the pH dependence of the substrate turnover will differ from that of HRP C owing to differences in polarity of the residues in the substrate-access channel. Since...

  4. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) dumort.

    Science.gov (United States)

    Degola, Francesca; De Benedictis, Maria; Petraglia, Alessandro; Massimi, Alberto; Fattorini, Laura; Sorbo, Sergio; Basile, Adriana; Sanità di Toppi, Luigi

    2014-11-01

    Lunularia cruciata occupies a very basal position in the phylogenetic tree of liverworts, which in turn have been recognized as a very early clade of land plants. It would therefore seem appropriate to take L. cruciata as the startingpoint for investigating character evolution in plants' metal(loid) response. One of the strongest evolutionary pressures for land colonization by plants has come from potential access to much greater amounts of nutritive ions from surface rocks, compared to water. This might have resulted in the need to precisely regulate trace element homeostasis and to minimize the risk of exposure to toxic concentrations of certain metals, prompting the evolution of a number of response mechanisms, such as synthesis of phytochelatins, metal(loid)-binding thiol-peptides. Accordingly, if the ability to synthesize phytochelatins and the occurrence of an active phytochelatin synthase are traits present in a basal liverwort species, and have been even reinforced in 'modern' tracheophytes, e.g. Arabidopsis thaliana, then such traits would presumably have played an essential role in plant fitness over time. Hence, we demonstrated here that: (i) L. cruciata compartmentalizes cadmium in the vacuoles of the phototosynthetic parenchyma by means of a phytochelatin-mediated detoxification strategy, and possesses a phytochelatin synthase that is activated by cadmium and homeostatic concentrations of iron(II) and zinc; and (ii) A. thaliana phytochelatin synthase displays a higher and broader response to several metal(loid)s [namely: cadmium, iron(II), zinc, copper, mercury, lead, arsenic(III)] than L. cruciata phytochelatin synthase.

  5. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence

    OpenAIRE

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-01-01

    Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene...

  6. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system.

    Science.gov (United States)

    Ladenstein, Rudolf; Fischer, Markus; Bacher, Adelbert

    2013-06-01

    The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.

  7. Inducible nitric oxide synthase and inflammation.

    Science.gov (United States)

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  8. Nitric Oxide Synthases and Atrial Fibrillation

    OpenAIRE

    CynthiaAnnCarnes; ArunSridhar; SandorGyorke

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases, which normally produce nitric oxide in the heart. Two nitric oxide synthase isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of nitric oxide syn...

  9. Arabidopsis CDS blastp result: AK064156 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064156 002-103-F04 At5g55350.1 membrane bound O-acyl transferase (MBOAT) family protein / wax... synthase-related contains similarity to wax synthase wax synthase - Simmondsia chinensis, PID:g5020219 similar to wax

  10. Arabidopsis CDS blastp result: AK109152 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109152 002-155-F11 At5g55350.1 membrane bound O-acyl transferase (MBOAT) family protein / wax... synthase-related contains similarity to wax synthase wax synthase - Simmondsia chinensis, PID:g5020219 similar to wax

  11. Arabidopsis CDS blastp result: AK108867 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108867 002-152-C03 At5g55350.1 membrane bound O-acyl transferase (MBOAT) family protein / wax... synthase-related contains similarity to wax synthase wax synthase - Simmondsia chinensis, PID:g5020219 similar to wax

  12. Arabidopsis CDS blastp result: AK120054 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120054 J013000L05 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-148 ...

  13. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g02730.1 68414.m00226 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 7e-27 ...

  14. Arabidopsis CDS blastp result: AK111344 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111344 002-181-F12 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 2e-15 ...

  15. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g02730.1 68414.m00226 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 0.0 ...

  16. Arabidopsis CDS blastp result: AK102766 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102766 J033107E04 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 0.0 ...

  17. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g55850.1 68414.m06405 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 2e-22 ...

  18. Arabidopsis CDS blastp result: AK103810 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103810 J033147A19 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-179 ...

  19. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 5e-27 ...

  20. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-48 ...

  1. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 1e-123 ...

  2. Arabidopsis CDS blastp result: AK061639 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061639 001-036-B01 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 4e-49 ...

  3. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At1g55850.1 68414.m06405 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-61 ...

  4. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 2e-27 ...

  5. Arabidopsis CDS blastp result: AK107881 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107881 002-134-D06 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 5e-51 ...

  6. Arabidopsis CDS blastp result: AK242601 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242601 J090014G03 At4g24000.1 68417.m03449 cellulose synthase family protein similar to cellulose... synthase from Gossypium hirsutum [gi:1706956], cellulose synthase-5 from Zea mays [gi:9622882] 4e-25 ...

  7. Arabidopsis CDS blastp result: AK101487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101487 J033042D19 At1g55850.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 0.0 ...

  8. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g02730.1 68414.m00226 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 1e-131 ...

  9. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g55850.1 68414.m06405 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 0.0 ...

  10. Arabidopsis CDS blastp result: AK242585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242585 J090010M20 At1g02730.1 68414.m00226 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 1e-69 ...

  11. Arabidopsis CDS blastp result: AK067424 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067424 J013107C16 At1g02730.1 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-4 [gi:9622880] from Zea mays 0.0 ...

  12. Arabidopsis CDS blastp result: AK242890 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242890 J090079L19 At1g55850.1 68414.m06405 cellulose synthase family protein similar to cellulose... synthase catalytic subunit [gi:13925881] from Nicotiana alata, cellulose synthase-5 [gi:9622882] from Zea mays 1e-52 ...

  13. Arabidopsis CDS blastp result: AK110925 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110925 002-173-D07 At1g61680.1 terpene synthase/cyclase family protein similar to... 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 5e-91 ...

  14. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 2e-69 ...

  15. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At1g61680.1 68414.m06957 terpene synthase/cyclase family protei...n similar to 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 1e-16 ...

  16. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 2e-69 ...

  17. Arabidopsis CDS blastp result: AK241330 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241330 J065144B19 At1g61680.1 68414.m06957 terpene synthase/cyclase family protei...n similar to 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 7e-42 ...

  18. Arabidopsis CDS blastp result: AK242212 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242212 J075171E13 At4g16730.1 68417.m02527 terpene synthase/cyclase family protei...n similar to myrcene/ocimene synthase [GI:9957293]; contains Pfam profile: PF01397 terpene synthase family 5e-25 ...

  19. Arabidopsis CDS blastp result: AK241679 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241679 J065193F24 At1g61680.1 68414.m06957 terpene synthase/cyclase family protei...n similar to 1,8-cineole synthase [GI:3309117][Salvia officinalis]; contains Pfam profile: PF01397 terpene synthase family 3e-51 ...

  20. Arabidopsis CDS blastp result: AK110236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110236 002-162-F11 At1g74260.1 AIR synthase-related family protein contains Pfam profiles: PF00586 AIR... synthase related protein, N-terminal domain, PF02769 AIR synthase related protein, C-terminal domain 0.0 ...

  1. Arabidopsis CDS blastp result: AK106608 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106608 002-112-E12 At1g74260.1 AIR synthase-related family protein contains Pfam profiles: PF00586 AIR... synthase related protein, N-terminal domain, PF02769 AIR synthase related protein, C-terminal domain 0.0 ...

  2. Unique animal prenyltransferase with monoterpene synthase activity

    Science.gov (United States)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  3. Exploiting Natural Variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana . This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  4. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    J.A. Molenaar; J.J.B. Keurentjes

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of g

  5. Affinity Purification of O-Acetylserine(thiollyase from Chlorella sorokiniana by Recombinant Proteins from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Giovanna Salbitani

    2014-08-01

    Full Text Available In the unicellular green alga Chlorella sorokiniana (211/8 k, the protein O-acetylserine(thiollyase (OASTL, representing the key-enzyme in the biosynthetic cysteine pathway, was isolated and purified to apparent homogeneity. The purification was carried out in cells grown in the presence of all nutrients or in sulphate (S deprived cells. After 24 h of S-starvation, a 17-fold increase in the specific activity of OASTL was measured. In order to enable the identification of OASTL proteins from non-model organisms such as C. sorokiniana, the recombinant his-tagged SAT5 protein from Arabidopsis thaliana was immobilized by metal chelate chromatography. OASTL proteins from C. sorokiniana were affinity purified in one step and activities were enhanced 29- and 41-fold, from S-sufficient and S-starved (24 h cells, respectively. The successful application of SAT/OASTL interaction for purification confirms for the first time the existence of the cysteine synthase complexes in microalgae. The purified proteins have apparent molecular masses between 32–34 kDa and are thus slightly larger compared to those found in Arabidopsis thaliana and other vascular plants. The enhanced OASTL activity in S-starved cells can be attributed to increased amounts of plastidic and the emergence of cytosolic OASTL isoforms. The results provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in diverse microalgal species.

  6. Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers.

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J C; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-11-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.

  7. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  8. Molecular Cloning and Characterization of Citrate Synthase Gene in Rice( Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shan-shan; MING Feng; LU Qun; GUO Bin; SHEN Da-leng

    2005-01-01

    The full-length OsCS encoding citrate synthase was isolated from rice (Oryza sativa L. subsp. japonica). OsCS is 1477-bp long and encodes a 474 amino acid polypeptide. Its putative protein sequence is highly identical to Daucus carota, Nicotiana tabacum,Beta vulgaris subsp., Arabidopsis thaliana, and Citrus junos (>70%). The deduced amino-terminal sequence of OsCS showes characteristics of mitochondrial targeting signal. Southern blot analysis using ORF of the OsCS as the probe indicated that this gene exists in multiple copies in rice genome. The band with predicated size of 82 kD was detected by Western blot after being induced by 0.4 mmol/L IPTG.

  9. Bioinformatics Analysis and Molecular Cloning of Spermidine Synthase Gene from Sporothrix schenckii%申克孢子丝菌SPDS基因的生物信息学分析及分子克隆

    Institute of Scientific and Technical Information of China (English)

    袁立燕; 黄怀球; 张静; 冯佩英; 高文超; 李玉哲; 张晓辉; 黄丽林

    2013-01-01

    [目的]分析预测申克孢子丝菌cDNA中编号为Locus_ 168_Contig_1序列编码的基因及蛋白质结构、功能特征,并进行分子克隆.[方法]利用NCBI及Expasy网站提供的BLASTx、SignalIP、InterPro Scan等生物信息学软件分析其序列,判断其是否为全长编码序列、同源序列名称,并分析其结构、定位及功能等;将其中的全长编码区利用PCR方法进行扩增后克隆到pET-30a(+)载体,测序验证.[结果]该序列是亚精胺合成酶(SPDS)的同源基因,全长序列为1062 bp,包含完整的编码区190 ~1 062 bp,编码291个氨基酸,在GenBank中,其与粗糙脉孢菌的SPDS基因同源性最高,达88%.理化性质预测其编码蛋白疏水性高;无质体、线粒体等定位序列,不存在跨膜螺旋结构,为非分泌型蛋白.进化树分析结果显示与粗糙脉孢菌同源性最高;PCR扩增及测序结果证实目的基因成功克隆进入pET-30a(+)质粒.[结论]获得申克孢子丝菌SPDS的基因及蛋白结构、功能特点,构建了其重组表达质粒,将为进一步明确其在孢子丝菌病中的致病作用奠定理论基础.

  10. Molecular evolution of dihydrouridine synthases

    Directory of Open Access Journals (Sweden)

    Kasprzak Joanna M

    2012-06-01

    Full Text Available Abstract Background Dihydrouridine (D is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS. DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as “predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family”. Results To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model. Conclusions We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS

  11. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. PMID:26315778

  12. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-Temperature Season

    Directory of Open Access Journals (Sweden)

    Jin eSun

    2016-03-01

    Full Text Available Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C and exogenous spermidine (Spd root-pretreatment (SRP, 0.1 mM on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII, rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  13. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    Science.gov (United States)

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  14. Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression.

    Science.gov (United States)

    Li, Zhou; Peng, Yan; Zhang, Xin-Quan; Ma, Xiao; Huang, Lin-Kai; Yan, Yan-Hong

    2014-01-01

    This study was designed to determine the effect of exogenous spermidine (Spd) (30 μM) on white clover seed germination under water stress induced by polyethylene glycol 6000. Use of seed priming with Spd improved seed germination percentage, germination vigor, germination index, root viability and length, and shortened mean germination time under different water stress conditions. Seedling fresh weight and dry weight also increased significantly in Spd-treated seeds compared with control (seeds primed with distilled water). Improved starch metabolism was considered a possible reason for this seed invigoration, since seeds primed with Spd had significantly increased α-amylase/β-amylase activities, reducing sugar, fructose and glucose content and transcript level of β-amylase gene but not transcript level of α-amylase gene. In addition, the physiological effects of exogenous Spd on improving seeds' tolerance to water deficit during germination were reflected by lower lipid peroxidation levels, better cell membrane stability and significant higher seed vigour index in seedlings. Enhanced antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase), ascorbate-glutathione cycle (ASC-GSH cycle) and transcript level of genes encoding antioxidant enzymes induced by exogenous Spd may be one of the critical reasons behind acquired drought tolerance through scavenging of reactive oxygen species (ROS) in water-stressed white clover seeds. The results indicate that Spd plays an important function as a stress-protective compound or physiological activator.

  15. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...... gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise...... combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained...

  16. An investigation into eukaryotic pseudouridine synthases.

    Science.gov (United States)

    King, Ross D; Lu, Chuan

    2014-08-01

    A common post-transcriptional modification of RNA is the conversion of uridine to its isomer pseudouridine. We investigated the biological significance of eukaryotic pseudouridine synthases using the yeast Saccharomyces cerevisiae. We conducted a comprehensive statistical analysis on growth data from automated perturbation (gene deletion) experiments, and used bi-logistic curve analysis to characterise the yeast phenotypes. The deletant strains displayed different alteration in growth properties, including in some cases enhanced growth and/or biphasic growth curves not seen in wild-type strains under matched conditions. These results demonstrate that disrupting pseudouridine synthases can have a significant qualitative effect on growth. We further investigated the significance of post-transcriptional pseudouridine modification through investigation of the scientific literature. We found that (1) In Toxoplasma gondii, a pseudouridine synthase gene is critical in cellular differentiation between the two asexual forms: Tachyzoites and bradyzoites; (2) Mutation of pseudouridine synthase genes has also been implicated in human diseases (mitochondrial myopathy and sideroblastic anemia (MLASA); dyskeratosis congenita). Taken together, these results are consistent with pseudouridine synthases having a Gene Ontology function of "biological regulation".

  17. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    Science.gov (United States)

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  18. Novel sulI binary vectors enable an inexpensive foliar selection method in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Smith Jamison

    2011-03-01

    Full Text Available Abstract Background Sulfonamide resistance is conferred by the sulI gene found on many Enterobacteriaceae R plasmids and Tn21 type transposons. The sulI gene encodes a sulfonamide insensitive dihydropteroate synthase enzyme required for folate biosynthesis. Transformation of tobacco, potato or Arabidopsis using sulI as a selectable marker generates sulfadiazine-resistant plants. Typically sulI-based selection of transgenic plants is performed on tissue culture media under sterile conditions. Findings A set of novel binary vectors containing a sulI selectable marker expression cassette were constructed and used to generate transgenic Arabidopsis. We demonstrate that the sulI selectable marker can be utilized for direct selection of plants grown in soil with a simple foliar spray application procedure. A highly effective and inexpensive high throughput screening strategy to identify transgenic Arabidopsis without use of tissue culture was developed. Conclusion Novel sulI-containing Agrobacterium binary vectors designed to over-express a gene of interest or to characterize a test promoter in transgenic plants have been constructed. These new vector tools combined with the various beneficial attributes of sulfonamide selection and the simple foliar screening strategy provide an advantageous alternative for plant biotechnology researchers. The set of binary vectors is freely available upon request.

  19. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  20. Arabidopsis thaliana—Aphid Interaction

    OpenAIRE

    Louis, Joe; Singh, Vijay,; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide impor...

  1. Stem cell organization in Arabidopsis

    OpenAIRE

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or meristems stay active throughout plant-life. Specification of stem cells occurs very early during development of the emrbyo and they are maintained during later stages. The Arabidopsis embryo is a hig...

  2. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    Science.gov (United States)

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  4. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  5. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling.

    Science.gov (United States)

    Torrigiani, Patrizia; Bressanin, Daniela; Ruiz, Karina Beatriz; Tadiello, Alice; Trainotti, Livio; Bonghi, Claudio; Ziosi, Vanina; Costa, Guglielmo

    2012-09-01

    Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways. PMID:22409726

  6. Mitigative effects of spermidine on photosynthesis and carbon-nitrogen balance of cucumber seedlings under Ca(NO3)2 stress.

    Science.gov (United States)

    Du, Jing; Shu, Sheng; Shao, Qiaosai; An, Yahong; Zhou, Heng; Guo, Shirong; Sun, Jin

    2016-01-01

    Ca(NO3)2 stress is one of the most serious constraints to plants production and limits the plants growth and development. Application of polyamines is a convenient and effective approach for enhancing plant salinity tolerance. The present investigation aimed to discover the photosynthetic carbon-nitrogen (C-N) mechanism underlying Ca(NO3)2 stress tolerance by spermidine (Spd) of cucumber (Cucumis sativus L. cv. Jinyou No. 4). Seedling growth and photosynthetic capacity [including net photosynthetic rate (P N), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr)] were significantly inhibited by Ca(NO3)2 stress (80 mM). However, a leaf-applied Spd (1 mM) treatment alleviated the reduction in growth and photosynthesis in cucumber caused by Ca(NO3)2 stress. Furthermore, the application of exogenous Spd significantly decreased the accumulation of NO3 (-) and NH4 (+) caused by Ca(NO3)2 stress and remarkably increased the activities of N metabolism enzymes simultaneously. In addition, photosynthesis N-use efficiency (PNUE) and free amino acids were significantly enhanced by exogenous Spd in response to Ca(NO3)2 stress, thus promoting the biosynthesis of N containing compounds and soluble protein. Also, the amounts of several carbohydrates (including sucrose, fructose and glucose), total C content and the C/N radio increased significantly in the presence of Spd. Based on our results, we suggest that exogenous Spd could effectively accelerate nitrate transformation into amino acids and improve cucumber plant photosynthesis and C assimilation, thereby enhancing the ability of the plants to maintain their C/N balance, and eventually promote the growth of cucumber plants under Ca(NO3)2 stress.

  7. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress.

    Science.gov (United States)

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752

  8. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.

    Science.gov (United States)

    Estévez, J M; Cantero, A; Reindl, A; Reichler, S; León, P

    2001-06-22

    The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.

  9. Arabidopsis CDS blastp result: AK240730 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240730 J043030K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-11 ...

  10. Arabidopsis CDS blastp result: AK288052 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288052 J075151I09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 6e-14 ...

  11. Arabidopsis CDS blastp result: AK240911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240911 J065037E05 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-22 ...

  12. Arabidopsis CDS blastp result: AK241119 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241119 J065094C22 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 2e-13 ...

  13. Arabidopsis CDS blastp result: AK243149 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243149 J100032I21 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 7e-12 ...

  14. Arabidopsis CDS blastp result: AK241581 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241581 J065181K09 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 4e-15 ...

  15. Arabidopsis CDS blastp result: AK287479 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287479 J043023O14 At2g32440.1 68415.m03963 ent-kaurenoic acid hydroxylase, putati...ve / cytochrome P450, putative identical to ent-kaurenoic acid hydroxylase / cytochrome P450 CYP88A (GI:1302...1856) [Arabidopsis thaliana]; similar to ent-kaurenoic acid hydroxylase [Arabidopsis thaliana] GI:13021853 1e-17 ...

  16. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR RLK) genetic…

  17. An International Bioinformatics Infrastructure to Underpin the Arabidopsis Community

    Science.gov (United States)

    The future bioinformatics needs of the Arabidopsis community as well as those of other scientific communities that depend on Arabidopsis resources were discussed at a pair of recent meetings held by the Multinational Arabidopsis Steering Committee (MASC) and the North American Arabidopsis Steering C...

  18. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    V. Falara; T.A. Akhtar; T.T.H. Nguyen; E.A. Spyropoulou; P.M. Bleeker; I. Schauvinhold; Y. Matsuba; M.E. Bonini; A.L. Schilmiller; R.L. Last; R.C. Schuurink; E. Pichersky

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  19. Hyaluronan synthase in trabecular meshwork cells

    OpenAIRE

    Usui, T; Nakajima, F.; Ideta, R; Kaji, Y; Suzuki, Y; Araie, M.; Miyauchi, S; P. Heldin; Yamashita, H.

    2003-01-01

    Background/aims: Hyaluronan is present in the trabecular meshwork where it is involved in the pathophysiology of aqueous outflow environment. In this study, the expression and regulation of hyaluronan synthase (HAS), which is the enzyme synthesising hyaluronan, in trabecular meshwork cells were investigated.

  20. Activities and regulation of peptidoglycan synthases

    NARCIS (Netherlands)

    Egan, Alexander J F; Biboy, Jacob; van 't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-01-01

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have b

  1. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  2. MUCILAGE-RELATED10 Produces Galactoglucomannan That Maintains Pectin and Cellulose Architecture in Arabidopsis Seed Mucilage.

    Science.gov (United States)

    Voiniciuc, Cătălin; Schmidt, Maximilian Heinrich-Wilhelm; Berger, Adeline; Yang, Bo; Ebert, Berit; Scheller, Henrik V; North, Helen M; Usadel, Björn; Günl, Markus

    2015-09-01

    Plants invest a lot of their resources into the production of an extracellular matrix built of polysaccharides. While the composition of the cell wall is relatively well characterized, the functions of the individual polymers and the enzymes that catalyze their biosynthesis remain poorly understood. We exploited the Arabidopsis (Arabidopsis thaliana) seed coat epidermis (SCE) to study cell wall synthesis. SCE cells produce mucilage, a specialized secondary wall that is rich in pectin, at a precise stage of development. A coexpression search for MUCILAGE-RELATED (MUCI) genes identified MUCI10 as a key determinant of mucilage properties. MUCI10 is closely related to a fenugreek (Trigonella foenumgraecum) enzyme that has in vitro galactomannan α-1,6-galactosyltransferase activity. Our detailed analysis of the muci10 mutants demonstrates that mucilage contains highly branched galactoglucomannan (GGM) rather than unbranched glucomannan. MUCI10 likely decorates glucomannan, synthesized by CELLULOSE SYNTHASE-LIKE A2, with galactose residues in vivo. The degree of galactosylation is essential for the synthesis of the GGM backbone, the structure of cellulose, mucilage density, as well as the adherence of pectin. We propose that GGM scaffolds control mucilage architecture along with cellulosic rays and show that Arabidopsis SCE cells represent an excellent model in which to study the synthesis and function of GGM. Arabidopsis natural varieties with defects similar to muci10 mutants may reveal additional genes involved in GGM synthesis. Since GGM is the most abundant hemicellulose in the secondary walls of gymnosperms, understanding its biosynthesis may facilitate improvements in the production of valuable commodities from softwoods. PMID:26220953

  3. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method

    Directory of Open Access Journals (Sweden)

    Lee Shu-Hong

    2009-11-01

    Full Text Available Abstract Background Protoplasts isolated from leaves are useful materials in plant research. One application, the transient expression of recombinant genes using Arabidopsis mesophyll protoplasts (TEAMP, is currently commonly used for studies of subcellular protein localization, promoter activity, and in vivo protein-protein interactions. This method requires cutting leaves into very thin slivers to collect mesophyll cell protoplasts, a procedure that often causes cell damage, may yield only a few good protoplasts, and is time consuming. In addition, this protoplast isolation method normally requires a large number of leaves derived from plants grown specifically under low-light conditions, which may be a concern when material availability is limited such as with mutant plants, or in large scale experiments. Results In this report, we present a new procedure that we call the Tape-Arabidopsis Sandwich. This is a simple and fast mesophyll protoplast isolation method. Two kinds of tape (Time tape adhered to the upper epidermis and 3 M Magic tape to the lower epidermis are used to make a "Tape-Arabidopsis Sandwich". The Time tape supports the top side of the leaf during manipulation, while tearing off the 3 M Magic tape allows easy removal of the lower epidermal layer and exposes mesophyll cells to cell wall digesting enzymes when the leaf is later incubated in an enzyme solution. The protoplasts released into solution are collected and washed for further use. For TEAMP, plasmids carrying a gene expression cassette for a fluorescent protein can be successfully delivered into protoplasts isolated from mature leaves grown under optimal conditions. Alternatively, these protoplasts may be used for bimolecular fluorescence complementation (BiFC to investigate protein-protein interactions in vivo, or for Western blot analysis. A significant advantage of this protocol over the current method is that it allows the generation of protoplasts in less than 1 hr

  4. Sevoflurane and nitric oxide synthase expression in rat cochlea

    Institute of Scientific and Technical Information of China (English)

    Yuantao Li; Qingzhong Hou; Mingguang Wu; Xiaolei Huang; Jun Cao; Yin Gu; Xiaofei Qi; Yawen Li

    2010-01-01

    Sevoflurane exhibits anesthetic action by inhibiting the auditory cortex,brain stem nitric oxide synthase activity,and reducing nitric oxide(NO),thereby interfering with the hearing process.However,the influence of sevoflurane on peripheric receptor(cochlea)NO remains poorly understood.Results from the present study showed that sevoflurane downregulated cochlear inducible NO synthase,endothelial NO synthase and neuronal NO synthase expression in a dose dependent manner.This suggests that sevoflurane can decrease cochlear NO synthase expression in a dose dependent manner.

  5. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana.

    Science.gov (United States)

    Romero, Luis C; Aroca, M Ángeles; Laureano-Marín, Ana M; Moreno, Inmaculada; García, Irene; Gotor, Cecilia

    2014-02-01

    Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.

  6. Jasmonate Signal Pathway in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yi Shan; Zhi-Long Wang; Daoxin Xie

    2007-01-01

    Jasmonates (JAs), which include jasmonic acid and its cyclopentane derivatives are synthesized from the octadecanoid pathway and widely distributed throughout the plant kingdom. JAs modulate the expression of numerous genes and mediate responses to stress, wounding, insect attack, pathogen infection, and UV damage. They also affect a variety of processes in many plant developmental processes. The JA signal pathway involves two important events: the biosynthesis of JA and the transduction of JA signal. Several important Arabidopsis mutants in jasmonate signal pathway were described in this review.

  7. Polyploidy in the Arabidopsis genus.

    Science.gov (United States)

    Bomblies, Kirsten; Madlung, Andreas

    2014-06-01

    Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic "raw material," and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids. PMID:24788061

  8. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  9. The tomato terpene synthase gene family

    OpenAIRE

    Falara, V.; Akhtar, T.A.; NGUYEN, T. T. H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R. C.; Pichersky, E

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28 which are functional or potentially functional. Of these 28 TPS genes, 25 were expressed in at least some parts of the plant. The enzymatic functions of eight of the TPS proteins were previously r...

  10. Nitric oxide synthase in the pineal gland

    OpenAIRE

    Lopez-Figueroa, M.O.; Moller, M.

    1996-01-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased ...

  11. Building-block selectivity of polyketide synthases.

    Science.gov (United States)

    Liou, Grace F; Khosla, Chaitan

    2003-04-01

    For the past decade, polyketide synthases have presented an exciting paradigm for the controlled manipulation of complex natural product structure. These multifunctional enzymes catalyze the biosynthesis of polyketide natural products by stepwise condensation and modification of metabolically derived building blocks. In particular, regioselective modification of polyketide structure is possible by alterations in either intracellular acyl-CoA pools or, more commonly, by manipulation of acyl transferases that act as the primary gatekeepers for building blocks.

  12. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  13. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  14. Arabidopsis CDS blastp result: AK288065 [KOME

    Lifescience Database Archive (English)

    Full Text Available al to sulfate tansporter Sultr1;3 [Arabidopsis thaliana] GI:10716805; contains Pfam profile PF00916: Sulfate... transporter family; contains Pfam profile PF01740: STAS domain; contains TIGRfam profile TIGR00815: sulfate permease 1e-145 ...

  15. Arabidopsis CDS blastp result: AK061395 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061395 006-305-E02 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  16. Arabidopsis CDS blastp result: AK104882 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK104882 001-044-H04 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multip...lication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  17. Arabidopsis CDS blastp result: AK066854 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066854 J013075C10 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-119 ...

  18. Arabidopsis CDS blastp result: AK101318 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101318 J033034D12 At2g02180.1 tobamovirus multiplication protein 3 (TOM3) identical to tobamovirus multipl...ication protein (TOM3) GI:15425641 from [Arabidopsis thaliana] 1e-125 ...

  19. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  20. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  1. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  2. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  3. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  4. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  5. Arabidopsis CDS blastp result: AK242550 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242550 J080319D10 At2g35630.1 68415.m04369 microtubule organization 1 protein (MO...R1) identical to microtubule organization 1 protein GI:14317953 from [Arabidopsis thaliana] 5e-44 ...

  6. Arabidopsis CDS blastp result: AK241043 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 2e-41 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  7. Arabidopsis CDS blastp result: AK243135 [KOME

    Lifescience Database Archive (English)

    Full Text Available upted by a stop codon, creating non-consensus donor and acceptor splice sites. 7e-43 ... ...tical to SP|P92997 Germin-like protein subfamily 1 member 13 precursor {Arabidopsis thaliana}; exon 2 interr

  8. The fifth international conference on Arabidopsis research

    Energy Technology Data Exchange (ETDEWEB)

    Hangarter, R.; Scholl, R.; Davis, K.; Feldmann, K.

    1993-12-31

    This volume contains abstracts of oral and poster presentations made in conjunction with the Fifth International Conference on Arabidopsis Research held August 19--22, 1993 at the Ohio State University, Columbus, Ohio.

  9. Arabidopsis CDS blastp result: AK101526 [KOME

    Lifescience Database Archive (English)

    Full Text Available ucosaminyltransferase, putative similar to N-acetylglucosaminyltransferase I from Arabidopsis thaliana [gi:5139335]; contains AT-AC non-consensus splice sites at intron 13 1e-179 ...

  10. Arabidopsis CDS blastp result: AK119708 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119708 002-157-E08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  11. Arabidopsis CDS blastp result: AK060981 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060981 006-202-H08 At1g28330.1 dormancy-associated protein, putative (DRM1) identical to dormancy...-associated protein [Arabidopsis thaliana] GI:2995990; similar to dormancy-associated protei

  12. Arabidopsis CDS blastp result: AK111576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111576 J013075J23 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  13. Arabidopsis CDS blastp result: AK120838 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120838 J023022B11 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly id...entical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profile

  14. Arabidopsis CDS blastp result: AK111921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111921 001-013-A10 At1g01510.1 C-terminal binding protein (ANGUSTIFOLIA) nearly i...dentical to C-terminal binding protein ANGUSTIFOLIA [Arabidopsis thaliana] GI:15408535; contains Pfam profil

  15. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    Science.gov (United States)

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  16. Terpene Specialized Metabolism in Arabidopsis thaliana

    OpenAIRE

    Tholl, Dorothea; Lee, Sungbeom

    2011-01-01

    Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core biosynthetic pathways producing the 5-carbon building blocks of terpenes have been characterized and closer insight has been gained into the transcriptional and posttranscriptional/translational mech...

  17. Arabidopsis CDS blastp result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 0.0 ...

  18. Arabidopsis CDS blastp result: AK287662 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287662 J065112L10 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-65 ...

  19. Arabidopsis CDS blastp result: AK242094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242094 J075142E09 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 2e-33 ...

  20. Arabidopsis CDS blastp result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 At5g58270.1 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 1e-122 ...

  1. Arabidopsis CDS blastp result: AK287488 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287488 J043029O04 At5g58270.1 68418.m07295 mitochondrial half-ABC transporter (STA1) identical to half...-molecule ABC transporter ATM3 GI:9964121 from [Arabidopsis thaliana]; almost identical to mitochondrial half...-ABC transporter STA1 GI:9187883 from [Arabidopsis thaliana]; identical to cDNA mitochondrial half-ABC transporter (STA1 gene)GI:9187882 4e-27 ...

  2. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  3. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance.

    Science.gov (United States)

    Hattori, J; Rutledge, R; Labbé, H; Brown, D; Sunohara, G; Miki, B

    1992-03-01

    The acetohydroxyacid synthase (AHAS) gene from the Arabidopsis thaliana mutant line GH90 carrying the imidazolinone resistance allele imr1 was cloned. Expression of the AHAS gene under the control of the CaMV 35S promoter in transgenic tobacco resulted in selective imidazolinone resistance, confirming that the single base-pair change found near the 3' end of the coding region of this gene is responsible for imidazolinone resistance. A chimeric AHAS gene containing both the imr1 mutation and the csr1 mutation, responsible for selective resistance to sulfonylurea herbicides, was constructed. It conferred on transgenic tobacco plants resistance to both sulfonylurea and imidazolinone herbicides. The data illustrate that a multiple-resistance phenotype can be achieved in an AHAS gene through combinations of separate mutations, each of which individually confers resistance to only one class of herbicides. PMID:1557022

  4. Clinical significance of Phosphatidyl Inositol Synthase overexpression in oral cancer

    International Nuclear Information System (INIS)

    We reported increased levels of Phosphatidyl Inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco

  5. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    cellular compartments and suggest that NO may have specific actions in relation to its site of production. The localization of type I NO synthase in the vicinity of mitochondria supports a specific action of NO on mitochondrial respiration, whereas the localization of type III NO synthase in vascular......The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  6. Heavy metals need assistance: The contribution of nicotianamine to metal circulation throughout the plant and the Arabidopsis NAS gene family

    Directory of Open Access Journals (Sweden)

    Petra eBauer

    2011-11-01

    Full Text Available Understanding the regulated inter- and intracellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS. NA is involved in mobilization, uptake, transport, storage and detoxification of metals. Much of the progress in understanding NA function has been achieved by studying mutants with altered nicotianamine levels. Mild and strong Arabidopsis mutants impaired in nicotianamine synthesis have been identified and characterized, namely nas4x-1 and nas4x-2. Arabidopsis thaliana has four NAS genes. In this review, we summarize the structure and evolution of the NAS genes in the Arabidopsis genome. We summarize previous results and present novel evidence that the four NAS genes have partially overlapping functions when plants are exposed to Fe deficiency and nickel supply. We compare the phenotypes of nas4x-1 and nas4x-2 and summarize the functions of NAS genes and NA as deduced from the studies of mutant phenotypes.

  7. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  8. A Sulfonylurea Herbicide Resistance Gene from Arabidopsis thaliana as a New Selectable Marker for Production of Fertile Transgenic Rice Plants.

    Science.gov (United States)

    Li, Z; Hayashimoto, A; Murai, N

    1992-10-01

    A mutant acetolactate synthase (ALS) gene, csr1-1, isolated from sulfonylurea herbicide-resistant Arabidopsis thaliana, was placed under control of a cauliflower mosaic virus 35S promoter (35S). Rice protoplasts were transformed with the 35S/ALS chimeric gene and regenerated into fertile transgenic rice (Oryza sativa) plants. The 35S/ALS gene was expressed effectively as demonstrated by northern blot hybridization analysis, and conferred to transformed calli at least 200-fold greater chlorsulfuron resistance than nontransformed control calli. Effective selection of 35S/ALS-transformed protoplasts was achieved at extremely low chlorsulfuron concentrations of 10 nm. The results demonstrated that the 35S/ALS gene is an alternative selectable marker for rice protoplast transformation and fertile transgenic rice production. The results also suggest that the mutant form of Arabidopsis ALS enzyme operates normally in rice cells. Thus, the mechanism of protein transport to chloroplast and ALS inhibition by chlorsulfuron is apparently conserved among plant species as diverse as Arabidopsis (dicotyledon) and rice (monocotyledon). PMID:16653044

  9. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Zhu, Jian-Kang; Chan, Zhulong

    2014-08-01

    Nitric oxide (NO) is involved in plant responses to many environmental stresses. Transgenic Arabidopsis lines that constitutively express rat neuronal NO synthase (nNOS) were described recently. In this study, it is reported that the nNOS transgenic Arabidopsis plants displayed high levels of osmolytes and increased antioxidant enzyme activities. Transcriptomic analysis identified 601 or 510 genes that were differentially expressed as a consequence of drought stress or nNOS transformation, respectively. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in photosynthesis, redox, stress, and phytohormone and secondary metabolism were greatly affected by the nNOS transgene. Several CBF genes and members of zinc finger gene families, which are known to regulate transcription in the stress response, were changed by the nNOS transgene. Genes regulated by both the nNOS transgene and abscisic acid (ABA) treatments were compared and identified, including those for two ABA receptors (AtPYL4 and AtPYL5). Moreover, overexpression of AtPYL4 and AtPYL5 enhanced drought resistance, antioxidant enzyme activity, and osmolyte levels. These observations increase our understanding of the role of NO in drought stress response in Arabidopsis. PMID:24868034

  10. Sphingomyelin Synthases Regulate Protein Trafficking and Secretion

    OpenAIRE

    Subathra, Marimuthu; Qureshi, Asfia; Luberto, Chiara

    2011-01-01

    Sphingomyelin synthases (SMS1 and 2) represent a class of enzymes that transfer a phosphocholine moiety from phosphatidylcholine onto ceramide thus producing sphingomyelin and diacylglycerol (DAG). SMS1 localizes at the Golgi while SMS2 localizes both at the Golgi and the plasma membrane. Previous studies from our laboratory showed that modulation of SMS1 and, to a lesser extent, of SMS2 affected the formation of DAG at the Golgi apparatus. As a consequence, down-regulation of SMS1 and SMS2 r...

  11. Arabidopsis CDS blastp result: AK073290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073290 J033025L21 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 1e-142 ...

  12. Arabidopsis CDS blastp result: AK059535 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059535 001-029-E01 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 3e-56 ...

  13. Arabidopsis CDS blastp result: AK067762 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067762 J013116E15 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 2e-86 ...

  14. Arabidopsis CDS blastp result: AK108154 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108154 002-139-G05 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 1e-134 ...

  15. Arabidopsis CDS blastp result: AK063967 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063967 001-124-A11 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 1e-128 ...

  16. Arabidopsis CDS blastp result: AK070716 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070716 J023057D05 At5g17230.1 phytoene synthase (PSY) / geranylgeranyl-diphosphate geranylgeranyl... transferase identical to GB:L25812; synonymous with geranylgeranyl-diphosphate geranylgeranyl transferase 1e-156 ...

  17. Arabidopsis CDS blastp result: AK241988 [KOME

    Lifescience Database Archive (English)

    Full Text Available ltransferase family protein similar to defense-related protein cjs1 [Brassica carinata][GI:14009292], theobr...omine synthase [Coffea arabica][GI:13365751], SAM:jasmonic acid carboxyl methyltransferase [GI:13676829] 2e-35 ...

  18. Arabidopsis CDS blastp result: AK243534 [KOME

    Lifescience Database Archive (English)

    Full Text Available ltransferase family protein similar to defense-related protein cjs1 [Brassica carinata][GI:14009292], theobr...omine synthase [Coffea arabica][GI:13365751], SAM:jasmonic acid carboxyl methyltransferase [GI:13676829] 2e-37 ...

  19. Arabidopsis CDS blastp result: AK240953 [KOME

    Lifescience Database Archive (English)

    Full Text Available ltransferase family protein similar to defense-related protein cjs1 [Brassica carinata][GI:14009292], theobr...omine synthase [Coffea arabica][GI:13365751], SAM:jasmonic acid carboxyl methyltransferase [GI:13676829] 1e-18 ...

  20. Arabidopsis CDS blastp result: AK241207 [KOME

    Lifescience Database Archive (English)

    Full Text Available ltransferase family protein similar to defense-related protein cjs1 [Brassica carinata][GI:14009292], theobr...omine synthase [Coffea arabica][GI:13365751], SAM:jasmonic acid carboxyl methyltransferase [GI:13676829] 3e-37 ...

  1. AKINβ1 is Involved in the Regulation of Nitrogen Metabolism and Sugar Signaling in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    XiaoFang Li; YuJu Li; YingHui An; LiJun Xiong; XingHua Shao; Yang Wang; Yue Sun

    2009-01-01

    Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis, there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKINβ1. It showed that AKINβ1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKINβ1 transgenic Arabidopsis and T-DNA insertion lines showed that AKINβ1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKINβ1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phos-phate synthase. The results indicate that AKINβ1 is involved in the regulation of nitrogen metabolism and sugar signaling.

  2. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    Science.gov (United States)

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism. PMID:22303278

  3. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-11-01

    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  4. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis.

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T

    2016-03-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3(je5) mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  5. Triazolopyrimidines as a New Herbicidal Lead for Combating Weed Resistance Associated with Acetohydroxyacid Synthase Mutation.

    Science.gov (United States)

    Liu, Yu-Chao; Qu, Ren-Yu; Chen, Qiong; Yang, Jing-Fang; Cong-Wei, Niu; Zhen, Xi; Yang, Guang-Fu

    2016-06-22

    Acetohydroxyacid synthase (AHAS; also known as acetolactate synthase; EC 2.2.1.6, formerly EC 4.1.3.18) is the first common enzyme in the biosynthetic pathway leading to the branched-chain amino acids in plants and a wide range of microorganisms. Weed resistance to AHAS-inhibiting herbicides, increasing at an exponential rate, is becoming a global problem and leading to an urgent demand of developing novel compounds against both resistant and wild AHAS. In the present work, a series of novel 2-aroxyl-1,2,4-triazolopyrimidine derivatives (a total of 55) were designed and synthesized with the aim to discover an antiresistant lead compound. Fortunately, the screening results indicated that many of the newly synthesized compounds showed a better, even excellent, inhibition effect against both the wild-type Arabidopsis thaliana AHAS and P197L mutants. Among them, compounds 5-3 to 5-17, compounds 5-19 to 5-26, compounds 5-28 to 5-45, and compound 5-48 have the lower values of resistance factor (RF) and display a potential power to overcome resistance associated with the P197L mutation in the enzyme levels. Further greenhouse in vivo assay showed that compounds 5-15 and 5-20 displayed "moderate" to "good" herbicidal activity against both the wild type-and the resistant (P197L mutation) Descurainia sophia, even at a rate as low as 0.9375 (g of ai/ha). The above results indicated that these two compounds could be used as new leads for the future development of antiresistance herbicides. PMID:27265721

  6. Peroxisomes Are Required for in Vivo Nitric Oxide Accumulation in the Cytosol following Salinity Stress of Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    Corpas, Francisco J.; Hayashi, Makoto; Mano, Shoji; Nishimura, Mikio; Barroso, Juan B.

    2009-01-01

    Peroxisomes are unique organelles involved in multiple cellular metabolic pathways. Nitric oxide (NO) is a free radical active in many physiological functions under normal and stress conditions. Using Arabidopsis (Arabidopsis thaliana) wild type and mutants expressing green fluorescent protein through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo, this study analyzes the temporal and cell distribution of NO during the development of 3-, 5-, 8-, and 11-d-old Arabidopsis seedlings and shows that Arabidopsis peroxisomes accumulate NO in vivo. Pharmacological analyses using nitric oxide synthase (NOS) inhibitors detected the presence of putative calcium-dependent NOS activity. Furthermore, peroxins Pex12 and Pex13 appear to be involved in transporting the putative NOS protein to peroxisomes, since pex12 and pex13 mutants, which are defective in PTS1- and PTS2-dependent protein transport to peroxisomes, registered lower NO content. Additionally, we show that under salinity stress (100 mm NaCl), peroxisomes are required for NO accumulation in the cytosol, thereby participating in the generation of peroxynitrite (ONOO−) and in increasing protein tyrosine nitration, which is a marker of nitrosative stress. PMID:19783645

  7. Advances in Arabidopsis research in China from 2006 to 2007

    Institute of Scientific and Technical Information of China (English)

    LIANG Yan; ZUO JianRu; YANG WeiCai

    2007-01-01

    @@ Arabidopsis thaliana, a model plant species, has a number of advantages over other plant species as an experimental organism due to many of its genetic and genomic features. The Chinese Arabidopsis community has made significant contributions to plant biology research in recent years[1,2]. In 2006, studies of plant biology in China received more attention than ever before, especially those pertaining to Arabidopsis research. Here we briefly summarize recent advances in Arabidopsis research in China.

  8. Effects of Exogenous Spermidine on Growth of Tea Plant under Lead Stress%外源亚精胺对铅胁迫下茶树生长的影响

    Institute of Scientific and Technical Information of China (English)

    申璐; 肖斌; 周旋; 赵九洲; 金媛

    2014-01-01

    选取龙井43为材料,采用盆栽试验,研究了外施1.0 mmol·L-1的亚精胺(Spd)对不同浓度重金属铅(Pb2+)胁迫下茶树株高、地径和叶片相关抗氧化酶活性、渗透调节物质含量、丙二醛(MDA)含量、细胞膜透性以及叶绿素含量等生理指标的影响。结果表明,低浓度铅胁迫能够促进茶树生长,而高浓度铅胁迫影响了茶树正常生长;喷施外源亚精胺有效缓解了随着胁迫Pb2+浓度升高对茶树造成的伤害,提高了叶片抗氧化酶活性、可溶性蛋白含量和叶绿素含量,降低了叶片脯氨酸(Pro)含量、MDA含量和相对电导率(RC),从而促进茶树生长。表明外源亚精胺对铅胁迫下茶树生长具有积极的促进作用。%By adopting the pot experiment and using Longjing 43 cultivar as test material, the effects of 1.0 mmol·L-1 exogenous spermidine on the growth of tea plant, and the physiological indexes in leaves such as the activity of leaf antioxidant enzymes, osmotic adjustment substances content, MDA content, cell membrane permeability and chlorophyll content were investigated under different concentration lead stress. The results showed that: low concentration of lead stress could promote the growth of tea plant, while high concentration of lead stress influence the growth of tea plant. Applying exogenous spermidine could effectively mitigate the damage of tea plant caused by increase of lead stress, promote the growth of tea plant, improve the activity of antioxidative enzyme, soluble protein content, chlorophyll content, and reduced the proline content, MDA content and the relative conductivity, so to promote the growth of tea plant. It suggested that 1.0 mmol·L-1 exogenous spermidine has a positive role in promoting the growth of tea plant under lead stress.

  9. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.

    Science.gov (United States)

    Iven, Tim; Hornung, Ellen; Heilmann, Mareike; Feussner, Ivo

    2016-01-01

    Seed oil composed of wax esters with long-chain monoenoic acyl moieties represents a high-value commodity for industry. Such plant-derived sperm oil-like liquid wax esters are biodegradable and can have excellent properties for lubrication. In addition, wax ester oil may represent a superior substrate for biodiesel production. In this study, we demonstrate that the low-input oil seed crop Camelina sativa can serve as a biotechnological platform for environmentally benign wax ester production. Two biosynthetic steps catalysed by a fatty alcohol-forming acyl-CoA reductase (FAR) and a wax ester synthase (WS) are sufficient to achieve wax ester accumulation from acyl-CoA substrates. To produce plant-derived sperm oil-like liquid wax esters, the WS from Mus musculus (MmWS) or Simmondsia chinensis (ScWS) were expressed in combination with the FAR from Mus musculus (MmFAR1) or Marinobacter aquaeolei (MaFAR) in seeds of Arabidopsis thaliana and Camelina sativa. The three analysed enzyme combinations Oleo3:mCherry:MmFAR1∆c/Oleo3:EYFP:MmWS, Oleo3:mCherry:MmFAR1∆c/ScWS and MaFAR/ScWS showed differences in the wax ester molecular species profiles and overall biosynthetic performance. By expressing MaFAR/ScWS in Arabidopsis or Camelina up to 59% or 21% of the seed oil TAGs were replaced by wax esters, respectively. This combination also yielded wax ester molecular species with highest content of monounsaturated acyl moieties. Expression of the enzyme combinations in the Arabidopsis fae1 fad2 mutant background high in oleic acid resulted in wax ester accumulation enriched in oleyl oleate (18:1/18:1 > 60%), suggesting that similar values may be obtained with a Camelina high oleic acid line.

  10. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.

    Science.gov (United States)

    Huang, Jing; Zhang, Yu; Peng, Jia-Shi; Zhong, Chen; Yi, Hong-Ying; Ow, David W; Gong, Ji-Ming

    2012-04-01

    Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was localized to tonoplast, and enhanced tolerance to and accumulation of Cd2+, copper, arsenic, and zinc. The action of SpHMT1 requires PC substrates, and failed to confer Cd2+ tolerance and accumulation when glutathione and PC synthesis was blocked by L-buthionine sulfoximine, or only PC synthesis is blocked in the cad1-3 mutant, which is deficient in PC synthase. SpHMT1 expression enhanced vacuolar Cd2+ accumulation in wild-type Columbia-0, but not in cad1-3, where only approximately 35% of the Cd2+ in protoplasts was localized in vacuoles, in contrast to the near 100% found in wild-type vacuoles and approximately 25% in those of cad2-1 that synthesizes very low amounts of glutathione and PCs. Interestingly, constitutive SpHMT1 expression delayed root-to-shoot metal transport, and root-targeted expression confirmed that roots can serve as a sink to reduce metal contents in shoots and seeds. These findings suggest that SpHMT1 function requires PCs in Arabidopsis, and it is feasible to promote food safety by engineering plants using SpHMT1 to decrease metal accumulation in edible tissues.

  11. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines.

    Science.gov (United States)

    Roux, Fabrice; Gasquez, Jacques; Reboud, Xavier

    2004-01-01

    Resistance evolution depends upon the balance between advantage and disadvantage (cost) conferred in treated and untreated areas. By analyzing morphological characters and simple fitness components, the cost associated with each of eight herbicide resistance alleles (acetolactate synthase, cellulose synthase, and auxin-induced target genes) was studied in the model plant Arabidopsis thaliana. The use of allele-specific PCR to discriminate between heterozygous and homozygous plants was used to provide insights into the dominance of the resistance cost, a parameter rarely described. Morphological characters appear more sensitive than fitness (seed production) because 6 vs. 4 differences between resistant and sensitive homozygous plants were detected, respectively. Dominance levels for the fitness cost ranged from recessivity (csr1-1, ixr1-2, and axr1-3) to dominance (axr2-1) to underdominance (aux1-7). Furthermore, the dominance level of the herbicide resistance trait did not predict the dominance level of the cost of resistance. The relationship of our results to theoretical predictions of dominance and the consequences of fitness cost and its dominance in resistance management are discussed. PMID:15020435

  12. Multigenerational versus single generation studies to estimate herbicide resistance fitness cost in Arabidopsis thaliana.

    Science.gov (United States)

    Roux, Fabrice; Camilleri, Christine; Bérard, Aurélie; Reboud, Xavier

    2005-10-01

    The evolution of resistance in response to pesticide selection is expected to be delayed if fitness costs are associated with resistance genes. The estimate of fitness costs usually involves comparing major growth traits of resistant versus susceptible individuals in the absence of pesticide. Ideally, a measure of changes in resistance allele frequency over several generations would allow the best estimate of the overall fitness cost of a resistance gene. In greenhouse conditions, we monitored the dynamics of the evolution of the frequencies of six herbicide-resistant mutations (acetolactate synthase, cellulose synthase, and auxin-induced target genes) in the model species Arabidopsis thaliana in a multigenerational study covering five to seven nonoverlapping generations. The microevolutionary dynamics in experimental populations indicated a mean fitness cost of 38%, 73%, and 94% for the ixr1-2, axr1-3, and axr2-1 resistances, respectively; no fitness cost for the csr1-1, and ixr2-1 resistances; and a transient advantage for the aux1-7 resistance. The result for the csr1-1 resistance contrasts with a cost of 37% based on total seed number in a previous study, demonstrating that single generation studies could have limitation for detecting cost. A positive frequency dependence for the fitness cost was also detected for the ixr1-2 resistance. The results are discussed in relation to the maintenance of polymorphism at resistance loci. PMID:16405169

  13. Evolution and function of phytochelatin synthases.

    Science.gov (United States)

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  14. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  15. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    Science.gov (United States)

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  16. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  17. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  18. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants

    Directory of Open Access Journals (Sweden)

    Mie eShimojima

    2015-08-01

    Full Text Available Inorganic phosphate (Pi depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3. Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency–responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency–responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions.

  19. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3–67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. -- Highlights: ► Iron nanoparticles were synthesized and assessed for bioavailability to Arabidopsis. ► Arabidopsis grew better in the presence of EDTA-bound iron than nanoparticulate iron. ► Arabidopsis grew the same in the presence of nanoparticulate iron compared to no iron. -- Synthesized iron nanoparticles were not bioavailable to Arabidopsis thaliana in agar nutrient media

  20. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  1. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  2. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  3. Modulation of biosynthesis of photosynthetic pigments and light-harvesting complex in wild-type and gun5 mutant of Arabidopsis thaliana during impaired chloroplast development.

    Science.gov (United States)

    Pattanayak, Gopal K; Tripathy, Baishnab C

    2016-05-01

    Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and β-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development. PMID:27001427

  4. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  5. Pseudouridines and pseudouridine synthases of the ribosome.

    Science.gov (United States)

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  6. Recent Progress in Arabidopsis Research in China: A Preface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xu

    2006-01-01

    @@ In 2002, a workshop on Arabidopsis research in China was held in Shanghai, when a small group of Chinese plant scientists was working on this model species. Since then, we have witnessed the rapid growth of Arabidopsis research in China. This special issue of Journal of Integrative Plant Biology is dedicated exclusively to the Fourth Workshop on Arabidopsis Research in China, scheduled on November 30, 2005, in Beijing. In addition to reports collected in this special issue, the Chinese Arabidopsis community has been able to make significant contributions to many research fields. Here, I briefly summarize recent advances in Arabidopsis research in China.

  7. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  8. Mutant acetolactate synthase (ALS) gene as a selectable marker for Agrobacterium-mediated transformation of soybean

    Institute of Scientific and Technical Information of China (English)

    Chen Shiyun; Zhang Yong

    2006-01-01

    Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean transformation systems with different selectable marker genes have been reported, e.g. antibiotic (kanamycin or hygromycin) resistant genes and herbicide ( glufosinate, glyphosate) resistant selectable marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from plant origin for soybean transformation, a mutant acetolactate synthase (ALS) gene from Arabidopsis thaliana was tested for Agrobacterium-mediated soybean embryo axis transformation with the herbicide Arsenal as the selective agent. Transgenic soybean plants were obtained after the herbicide selection and the To transgenic lines showed resistance to the herbicide at a concentration of 100 g/ha. ALS enzyme assay of To transgenic line also showed higher activity compared to the wild type control plant.PCR analysis of the T1 transgenic lines confirmed the integration and segregation of the transgene. Taken together, our results showed that the mutant ALS gene is a suitable selectable marker for soybean transformation.

  9. Orange protein has a role in phytoene synthase stabilization in sweetpotato.

    Science.gov (United States)

    Park, Seyeon; Kim, Ho Soo; Jung, Young Jun; Kim, Sun Ha; Ji, Chang Yoon; Wang, Zhi; Jeong, Jae Cheol; Lee, Haeng-Soon; Lee, Sang Yeol; Kwak, Sang-Soo

    2016-01-01

    Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants. PMID:27633588

  10. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs involved in glucosinolates biosynthesis

    Directory of Open Access Journals (Sweden)

    Jifang eZhang

    2015-02-01

    Full Text Available Methylthioalkylmalate synthases (MAMs encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species.

  11. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa.

    Science.gov (United States)

    Huang, B L; Cheng, C; Zhang, G Y; Su, J J; Zhi, Y; Xu, S S; Cai, D T; Zhang, X K; Huang, B Q

    2015-12-22

    Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots.

  12. Gibberellins control fruit patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Arnaud, Nicolas; Girin, Thomas; Sorefan, Karim; Fuentes, Sara; Wood, Thomas A; Lawrenson, Tom; Sablowski, Robert; Østergaard, Lars

    2010-10-01

    The Arabidopsis basic helix-loop-helix (bHLH) proteins INDEHISCENT (IND) and ALCATRAZ (ALC) specify tissues required for fruit opening that have major roles in seed dispersal and plant domestication. Here, we show that synthesis of the phytohormone gibberellin is a direct and necessary target of IND, and that ALC interacts directly with DELLA repressors, which antagonize ALC function but are destabilized by gibberellin. Thus, the gibberellin/DELLA pathway has a key role in patterning the Arabidopsis fruit, and the interaction between DELLA and bHLH proteins, previously shown to connect gibberellin and light responses, is a versatile regulatory module also used in tissue patterning. PMID:20889713

  13. All members in the sphingomyelin synthase gene family have ceramide phosphoethanolamine synthase activity[S

    OpenAIRE

    Ding, Tingbo; Kabir, Inamul; Li, Yue; Lou, Caixia; Yazdanyar, Amirfarbod; Xu, Jiachen; Dong, Jibin; Zhou, Hongwen; Park, Taesik; Boutjdir, Mohamed; Li, Zhiqiang; Jiang, Xian-Cheng

    2015-01-01

    Sphingomyelin synthase-related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To further examine SMSr function in vivo, we generated Smsr KO mice that were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide a...

  14. Transfer RNA pseudouridine synthases in Saccharomyces cerevisiae.

    Science.gov (United States)

    Samuelsson, T; Olsson, M

    1990-05-25

    A transfer RNA lacking modified nucleosides was produced by transcription in vitro of a cloned gene that encodes a Saccharomyces cerevisiae glycine tRNA. At least three different uridines (in nucleotide positions 13, 32, and 55) of this transcript tRNA are modified to pseudouridine by an extract of S. cerevisiae. Variants of the RNA substrate were also constructed that each had only one of these sites, thus allowing specific monitoring of pseudouridylation at different nucleotide positions. Using such RNAs to assay pseudouridine synthesis, enzymes producing this nucleoside were purified from an extract of S. cerevisiae. The activities corresponding to positions 13, 32, and 55 in the tRNA substrate could all be separated chromatographically, indicating that there is a separate enzyme for each of these sites. The enzyme specific for position 55 (denoted pseudouridine synthase 55) was purified approximately 4000-fold using a combination of DEAE-Sepharose, heparin-Sepharose, and hydroxylapatite.

  15. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  16. The nitric oxide synthase of mouse spermatozoa.

    Science.gov (United States)

    Herrero, M B; Goin, J C; Boquet, M; Canteros, M G; Franchi, A M; Perez Martinez, S; Polak, J M; Viggiano, J M; Gimeno, M A

    1997-07-01

    Nitric oxide synthase (NOS) was evidenced in mature mouse spermatozoa by means of biochemical techniques and Western blot. During 120 min of incubation, 10(7) spermatozoa synthesized 7 +/- 2 pmol of L-[14C]citrulline. Besides, L-citrulline formation depended on the incubation time and on the concentration of L-arginine present in the incubation medium. Different concentrations of N(G)-nitro-L-arginine methyl ester (L-NAME) but not aminoguanidine, inhibited L-[14C]citrulline formation. Western-blot analysis of solubilized sperm proteins revealed a unique band of M(r)=140 kDa with the neural, endothelial and inducible NOS antisera tested. These results provide evidence that mature mouse sperm contains a NOS isoform and that spermatozoa have the potential ability to synthesize NO, suggesting a role for endogenous NO on mammalian sperm function.

  17. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  18. Structure and Function of Fusicoccadiene Synthase, a Hexameric Bifunctional Diterpene Synthase.

    Science.gov (United States)

    Chen, Mengbin; Chou, Wayne K W; Toyomasu, Tomonobu; Cane, David E; Christianson, David W

    2016-04-15

    Fusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase. Here, we report X-ray crystal structures of the individual catalytic domains of fusicoccadiene synthase: the C-terminal domain is a chain elongation enzyme that generates geranylgeranyl diphosphate, and the N-terminal domain catalyzes the cyclization of geranylgeranyl diphosphate to form fusicoccadiene. Crystal structures of each domain complexed with bisphosphonate substrate analogues suggest that three metal ions and three positively charged amino acid side chains trigger substrate ionization in each active site. While in vitro incubations reveal that the cyclase domain can utilize farnesyl diphosphate and geranyl diphosphate as surrogate substrates, these shorter isoprenoid diphosphates are mainly converted into acyclic alcohol or hydrocarbon products. Gel filtration chromatography and analytical ultracentrifugation experiments indicate that full-length fusicoccadiene synthase adopts hexameric quaternary structure, and small-angle X-ray scattering data yield a well-defined molecular envelope illustrating a plausible model for hexamer assembly.

  19. Role of cysteine residues in pseudouridine synthases of different families.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Spedaliere, C J; Mueller, E G

    1999-10-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine in RNA molecules. An attractive mechanism was proposed based on that of thymidylate synthase, in which the thiol(ate) group of a cysteine side chain serves as the nucleophile in a Michael addition to C6 of the isomerized uridine. Such a role for cysteine in the pseudouridine synthase TruA (also named Psi synthase I) has been discredited by site-directed mutagenesis, but sequence alignments have led to the conclusion that there are four distinct "families" of pseudouridine synthases that share no statistically significant global sequence similarity. It was, therefore, necessary to probe the role of cysteine residues in pseudouridine synthases of the families that do not include TruA. We examined the enzymes RluA and TruB, which are members of different families than TruA and each other. Substitution of cysteine for amino acids with nonnucleophilic side chains did not significantly alter the catalytic activity of either pseudouridine synthase. We conclude, therefore, that neither TruB nor RluA require thiol(ate) groups to effect catalysis, excluding their participation in a Michael addition to C6 of uridine, although not eliminating that mechanism (with an alternate nucleophile) from future consideration.

  20. The Pseudouridine Synthases Proceed through a Glycal Intermediate.

    Science.gov (United States)

    Veerareddygari, Govardhan Reddy; Singh, Sanjay K; Mueller, Eugene G

    2016-06-29

    The pseudouridine synthases isomerize (U) in RNA to pseudouridine (Ψ), and the mechanism that they follow has long been a question of interest. The recent elucidation of a product of the mechanistic probe 5-fluorouridine that had been epimerized to the arabino isomer suggested that the Ψ synthases might operate through a glycal intermediate formed by deprotonation of C2'. When that position in substrate U is deuterated, a primary kinetic isotope effect is observed, which indisputably indicates that the proposed deprotonation occurs during the isomerization of U to Ψ and establishes the mechanism followed by the Ψ synthases.

  1. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B;

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal...... and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i...

  2. Arabidopsis CDS blastp result: AK073532 [KOME

    Lifescience Database Archive (English)

    Full Text Available ical to ARL2 G-protein (Halimasch; HAL; TITAN5) GI:20514265 from [Arabidopsis thaliana]; identical to cDNA A...AK073532 J033046D12 At2g18390.1 ADP-ribosylation factor-like protein 2 (ARL2) ident

  3. Arabidopsis CDS blastp result: AK061294 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061294 006-301-D01 At3g08900.1 reversibly glycosylated polypeptide-3 (RGP3) nearl...y identical to reversibly glycosylated polypeptide-3 [Arabidopsis thaliana] GI:11863238; contains non-consensus GA-donor splice site at intron 2 0.0 ...

  4. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  5. Arabidopsis CDS blastp result: AK066153 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  6. Arabidopsis CDS blastp result: AK287906 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit / ClpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF028...61: Clp amino terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  7. Arabidopsis CDS blastp result: AK100126 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  8. Arabidopsis CDS blastp result: AK058510 [KOME

    Lifescience Database Archive (English)

    Full Text Available lpC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amin...o terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  9. Arabidopsis CDS blastp result: AK069552 [KOME

    Lifescience Database Archive (English)

    Full Text Available pC almost identical to ClpC GI:2921158 from [Arabidopsis thaliana]; contains Pfam profile PF02861: Clp amino... terminal domain; contains Pfam profile PF00004: ATPase, AAA family; contains Pfam profile PF02151: UvrB/uvrC motif 0.0 ...

  10. Arabidopsis CDS blastp result: AK062711 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062711 001-106-C02 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-34 ...

  11. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 9e-19 ...

  12. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-44 ...

  13. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-11 ...

  14. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 1e-19 ...

  15. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-18 ...

  16. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-17 ...

  17. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-15 ...

  18. Arabidopsis CDS blastp result: AK108506 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108506 002-143-H11 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 7e-14 ...

  19. Arabidopsis CDS blastp result: AK241786 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241786 J065207F05 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 1e-19 ...

  20. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 8e-44 ...

  1. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  2. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-26 ...

  3. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 3e-16 ...

  4. Arabidopsis CDS blastp result: AK071661 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK071661 J023105D07 At5g37770.1 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 3e-33 ...

  5. Arabidopsis CDS blastp result: AK242428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242428 J080089P09 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-14 ...

  6. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At5g37770.1 68418.m04547 touch-responsive protein / calmodulin-related protein 2, touch...-induced (TCH2) identical to calmodulin-related protein 2,touch-induced SP:P25070 from [Arabidopsis thaliana] 2e-25 ...

  7. Arabidopsis CDS blastp result: AK242346 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242346 J080012M07 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 4e-41 ...

  8. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At2g41100.1 68415.m05076 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 2e-16 ...

  9. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At2g41100.2 68415.m05077 touch-responsive protein / calmodulin-related protein 3, touch...-induced (TCH3) identical to calmodulin-related protein 3, touch-induced SP:P25071 from [Arabidopsis thaliana] 5e-20 ...

  10. Arabidopsis CDS blastp result: AK243230 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243230 J100044L04 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-65 ...

  11. Arabidopsis CDS blastp result: AK103452 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103452 J033129I11 At1g19850.1 transcription factor MONOPTEROS (MP) / auxin-respon...sive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 1e-166 ...

  12. Arabidopsis CDS blastp result: AK318617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318617 J100090H20 At1g19850.1 68414.m02490 transcription factor MONOPTEROS (MP) /... auxin-responsive protein (IAA24) / auxin response factor 5 (ARF5) identical to transcription factor MONOPTEROS (MP/IAA24/ARF5) SP:P93024 from [Arabidopsis thaliana] 2e-63 ...

  13. Arabidopsis CDS blastp result: AK289177 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK289177 J100024E07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  14. Arabidopsis CDS blastp result: AK241312 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241312 J065141L09 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 3e-40 ...

  15. Arabidopsis CDS blastp result: AK243352 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243352 J100060L07 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 1e-28 ...

  16. Arabidopsis CDS blastp result: AK241438 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241438 J065162G03 At1g62360.1 68414.m07036 homeobox protein SHOOT MERISTEMLESS (S...TM) identical to homeobox protein SHOOT MERISTEMLESS (STM) SP:Q38874 from [Arabidopsis thaliana] 7e-29 ...

  17. Arabidopsis CDS blastp result: AK058585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058585 001-017-G01 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 6e-55 ...

  18. Arabidopsis CDS blastp result: AK101721 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101721 J033061A20 At3g57040.1 two-component responsive regulator / response reactor... 4 (RR4) identical to responce reactor4 GI:3273202 from [Arabidopsis thaliana]; contains Pfam profile: PF00072 response regulator receiver domain 9e-49 ...

  19. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 1e-26 ...

  20. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 3e-37 ...

  1. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 2e-19 ...

  2. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 6e-14 ...

  3. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At3g58780.1 68416.m06551 agamous-like MADS box protein AGL1 / shatterproof... 1 (AGL1) (SHP1) identical to SP|P29381 Agamous-like MADS box protein AGL1 (Protein Shatterproof 1) {Arabidopsis thaliana} 5e-21 ...

  4. Arabidopsis CDS blastp result: AK121261 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121261 J023104H13 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 0.0 ...

  5. Shotgun Proteomic Analysis of Arabidopsis thaliana Leaves

    Science.gov (United States)

    Two shotgun tandem mass spectrometry proteomics approaches, Multidimensional Protein Identification Technology (MudPIT) and 1D-Gel-LC-MS/MS, were used to identify Arabidopsis thaliana leaf proteins. These methods utilize different protein/peptide separation strategies. Detergents not compatible wit...

  6. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  7. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  8. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  9. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  10. Arabidopsis CDS blastp result: AK242807 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242807 J090060H17 At5g37500.1 68418.m04516 guard cell outward rectifying K+ chann...el (GORK) identical to guard cell outward rectifying K+ channel [Arabidopsis thaliana] gi|11414742|emb|CAC17

  11. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 1e-151 ...

  12. Arabidopsis CDS blastp result: AK242797 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-23 ...

  13. Arabidopsis CDS blastp result: AK243408 [KOME

    Lifescience Database Archive (English)

    Full Text Available subunit ClpX, putative similar to CLP protease regulatory subunit CLPX GI:2674203 from [Arabidopsis thaliana]; non-consensus... splice donor GC at exon 4; non-consensus splice donor AA at exon 7 2e-12 ...

  14. Arabidopsis CDS blastp result: AK243428 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243428 J100067L15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  15. Arabidopsis CDS blastp result: AK288699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288699 J090061C22 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-36 ...

  16. Arabidopsis CDS blastp result: AK243271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243271 J100049K04 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 4e-35 ...

  17. Arabidopsis CDS blastp result: AK241812 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241812 J065210K15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 1e-22 ...

  18. Arabidopsis CDS blastp result: AK241549 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241549 J065176M15 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-32 ...

  19. Arabidopsis CDS blastp result: AK241615 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241615 J065186D02 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 8e-35 ...

  20. Arabidopsis CDS blastp result: AK288487 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288487 J090040H24 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 5e-37 ...

  1. Arabidopsis CDS blastp result: AK287469 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287469 J043021L20 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-36 ...

  2. Arabidopsis CDS blastp result: AK241370 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241370 J065154C10 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 2e-31 ...

  3. Arabidopsis CDS blastp result: AK288415 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288415 J090031E07 At5g14750.1 68418.m01731 myb family transcription factor (MYB66) / werewolf...iption factor (MYB66) mRNA, partial cds GI:3941491; identical to GP:9755743 myb transcription factor werewolf (WER)/ MYB66 {Arabidopsis thaliana} 3e-37 ...

  4. Arabidopsis CDS blastp result: AK240830 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240830 J065014C16 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  5. Arabidopsis CDS blastp result: AK121431 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121431 J023138G19 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  6. Arabidopsis CDS blastp result: AK064987 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064987 J013001D03 At3g12280.1 retinoblastoma-related protein (RBR1) nearly identical to retinoblastoma...-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  7. Arabidopsis CDS blastp result: AK241627 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241627 J065187G05 At3g12280.1 68416.m01533 retinoblastoma-related protein (RBR1) nearly identical to retin...oblastoma-related protein [Arabidopsis thaliana] GI:8777927; contains Pfam profiles: PF01858 retinoblastoma...-associated protein A domain, PF01857 retinoblastoma-associated protein B domain 0.0 ...

  8. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  9. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  10. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  11. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  12. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.2 68417.m02149 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  13. Arabidopsis CDS blastp result: AK063585 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063585 001-118-A04 At4g13870.2 Werner Syndrome-like exonuclease (WEX) contains Pf...am profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 6e-16 ...

  14. Arabidopsis CDS blastp result: AK242290 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242290 J075191E07 At4g13870.1 68417.m02148 Werner Syndrome-like exonuclease (WEX)... contains Pfam profile PF01612: 3'-5' exonuclease; identical to Werner Syndrome-like exonuclease [Arabidopsis thaliana] GP:28195109 gb:AAO33765 1e-20 ...

  15. Arabidopsis CDS blastp result: AK072218 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072218 J013167O21 At1g55350.4 calpain-type cysteine protease family identical to calpain...-like protein GI:20268660 from [Arabidopsis thaliana]; contains Pfam profiles: PF00648 Calpain family... cysteine protease, PF01067 Calpain large subunit,domain III; identical to cDNA calpain-like protein GI:20268659 1e-150 ...

  16. Arabidopsis CDS blastp result: AK287576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287576 J065037D19 At1g28300.1 68414.m03473 transcriptional factor B3 family protein / leaf...y cotyledon 2 (LEC2) nearly identical to LEAFY COTYLEDON 2 [Arabidopsis thaliana] GI:15987516; contains Pfam profile PF02362: B3 DNA binding domain 5e-13 ...

  17. Arabidopsis CDS blastp result: AK243493 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243493 J100074A10 At2g23380.1 68415.m02792 curly leaf protein (CURLY LEAF) / poly...comb-group protein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 0.0 ...

  18. Arabidopsis CDS blastp result: AK111743 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111743 J023052J10 At2g23380.1 curly leaf protein (CURLY LEAF) / polycomb-group pr...otein identical to polycomb group [Arabidopsis thaliana] GI:1903019 (curly leaf); contains Pfam profile PF00856: SET domain 3e-22 ...

  19. Arabidopsis CDS blastp result: AK119521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119521 001-202-D09 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 1e-173 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  20. Arabidopsis CDS blastp result: AK108403 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108403 002-142-G06 At3g57050.2 cystathionine beta-lyase, chloroplast / beta-cystathionase...thionase) (Cysteine lyase) {Arabidopsis thaliana} 5e-36 ... ... / cysteine lyase (CBL) identical to SP|P53780 Cystathionine beta-lyase, chloroplast precursor (EC 4.4.1.8) (CBL) (Beta-cysta

  1. Arabidopsis CDS blastp result: AK105299 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105299 001-116-H10 At1g72660.1 developmentally regulated GTP-binding protein, put...ative very strong similarity to developmentally regulated GTP binding protein (DRG1) [Arabidopsis thaliana] GI:2345150 0.0 ...

  2. Arabidopsis CDS blastp result: AK111540 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111540 J013037H01 At1g72660.1 developmentally regulated GTP-binding protein, puta...tive very strong similarity to developmentally regulated GTP binding protein (DRG1) [Arabidopsis thaliana] GI:2345150 0.0 ...

  3. Arabidopsis CDS blastp result: AK240892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240892 J065030K10 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  4. Arabidopsis CDS blastp result: AK287726 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287726 J065138E17 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 1e-41 ...

  5. Arabidopsis CDS blastp result: AK242211 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242211 J075171C16 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 8e-22 ...

  6. Arabidopsis CDS blastp result: AK242387 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242387 J080051E14 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-27 ...

  7. Arabidopsis CDS blastp result: AK121171 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121171 J023081C04 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-37 ...

  8. Arabidopsis CDS blastp result: AK242957 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242957 J090089I15 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 3e-56 ...

  9. Arabidopsis CDS blastp result: AK241644 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241644 J065189M04 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-32 ...

  10. Arabidopsis CDS blastp result: AK241055 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241055 J065063N18 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-28 ...

  11. Arabidopsis CDS blastp result: AK069331 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069331 J023019N01 At1g69120.1 floral homeotic protein APETALA1 (AP1) / agamous-li...ke MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-58 ...

  12. Arabidopsis CDS blastp result: AK241272 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241272 J065132I19 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 2e-41 ...

  13. Arabidopsis CDS blastp result: AK242980 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242980 J090094F15 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 2e-18 ...

  14. Arabidopsis CDS blastp result: AK243669 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243669 J100089N11 At1g69120.1 68414.m07909 floral homeotic protein APETALA1 (AP1)... / agamous-like MADS box protein (AGL7) identical to SP|P35631 Floral homeotic protein APETALA1 (AGL7 protein) {Arabidopsis thaliana} 3e-15 ...

  15. Arabidopsis CDS blastp result: AK287621 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287621 J065066I09 At4g36920.1 68417.m05233 floral homeotic protein APETALA2 (AP2)... Identical to (SP:P47927) Floral homeotic protein APETALA2. [Mouse-ear cress] {Arabidopsis thaliana} 6e-43 ...

  16. Arabidopsis CDS blastp result: AK105724 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105724 001-201-G07 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bisph...osphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  17. Arabidopsis CDS blastp result: AK072243 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072243 J023003N10 At1g07110.1 fructose-6-phosphate 2-kinase / fructose-2,6-bispho...sphatase (F2KP) identical to fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F2KP) [Arabidopsis thaliana] GI:13096098 0.0 ...

  18. Arabidopsis CDS blastp result: AK287911 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287911 J065213B08 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 3e-85 ...

  19. Arabidopsis CDS blastp result: AK318551 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK318551 J075138M12 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 4e-27 ...

  20. Arabidopsis CDS blastp result: AK241823 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241823 J065212G21 At1g12110.1 68414.m01402 nitrate/chlorate transporter (NRT1.1) ...(CHL1) identical to nitrate/chlorate transporter SP:Q05085 from [Arabidopsis thaliana]; contains Pfam profile: PF00854 POT family 1e-150 ...