WorldWideScience

Sample records for arabidopsis roots molecular

  1. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis.

    Science.gov (United States)

    Bouain, Nadia; Doumas, Patrick; Rouached, Hatem

    2016-08-01

    Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture. PMID:27499680

  2. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions.

  3. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    Science.gov (United States)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  4. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    Science.gov (United States)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow

  5. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  6. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  7. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  8. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  9. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  10. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    Science.gov (United States)

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  11. Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.

    Science.gov (United States)

    Peng, Yuancheng; Ma, Wenying; Chen, Liangliang; Yang, Lei; Li, Shengjun; Zhao, Hongtao; Zhao, Yankun; Jin, Weihuan; Li, Na; Bevan, Michael W; Li, Xia; Tong, Yiping; Li, Yunhai

    2013-03-01

    The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance and thus control root meristem size. However, the genetic and molecular mechanisms that determine root meristem size still remain largely unknown. Here, we report that da1-related protein2 (dar2) mutants produce small root meristems due to decreased cell division and early cell differentiation in the root meristem of Arabidopsis (Arabidopsis thaliana). dar2 mutants also exhibit reduced stem cell niche activity in the root meristem. DAR2 encodes a Lin-11, Isl-1, and Mec-3 domain-containing protein and shows an expression peak in the border between the transition zone and the elongation zone. Genetic analyses show that DAR2 functions downstream of cytokinin and SHORT HYPOCOTYL2 to maintain normal auxin distribution by influencing auxin transport. Further results indicate that DAR2 acts through the PLETHORA pathway to influence root stem cell niche activity and therefore control root meristem size. Collectively, our findings identify the role of DAR2 in root meristem size control and provide a novel link between several key regulators influencing root meristem size.

  12. Phytochrome mediates red-light-based positive phototropism in Arabidopsis roots

    Science.gov (United States)

    Correll, M.; Mullen, J.; Hangarter, R.; Kiss, J.

    Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. The environmental cues of gravity and light are particularly important for plant growth and development. While gravitropism has been extensively studied in roots, there has been increased emphasis on understanding the cellular and molecular basis of root phototropism. In addition to the blue-light-based negative phototropism, roots also exhibit a recently discovered positive phototropism in response to red light. In this paper, we characterize this red-light-based phototropism in roots of Arabidopsis.

  13. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.

    OpenAIRE

    Taniguchi, Yukimi Y; Taniguchi, Masatoshi; Tsuge, Tomohiko; Oka, Atsuhiro; Aoyama, Takashi

    2010-01-01

    Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dzeta2 gene (PLDzeta2) wa...

  14. Modulation of leaf conductance by root to shoot signaling under water stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fan Yi-juan; Liu Qing; Wei Kai-fa; Li Bing-bing; Ren Hui-bo; Gao Zhi-hui; Jia Wen-suo

    2006-01-01

    Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the establishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomatal movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD)experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance,which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf temperatures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further investigation into the molecular mechanisms of the root to shoot signaling under water stress.

  15. Phototropism and gravitropism in lateral roots of Arabidopsis.

    Science.gov (United States)

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  16. Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis.

    Science.gov (United States)

    Lonhienne, Thierry G A; Trusov, Yuri; Young, Anthony; Rentsch, Doris; Näsholm, Torgny; Schmidt, Susanne; Paungfoo-Lonhienne, Chanyarat

    2014-01-01

    Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses. PMID:24852366

  17. Regulation of Arabidopsis root development by small signaling peptides

    Directory of Open Access Journals (Sweden)

    Christina eDelay

    2013-09-01

    Full Text Available Plant root systems arise de novo from a single embryonic root. Complex and highly coordinated developmental networks are required to ensure the formation of lateral organs maximises plant fitness. The Arabidopsis root is well suited to dissection of regulatory and developmental networks due to its highly ordered, predictable structure. A myriad of regulatory signalling networks control the development of plant roots, from the classical hormones such as auxin and cytokinin to short-range positional signalling molecules that relay information between neighbouring cells. Small signaling peptides are a growing class of regulatory molecules involved in many aspects of root development including meristem maintenance, the gravitropic response, lateral root development and vascular formation. Here, recent findings on the roles of regulatory peptides in these aspects of root development are discussed.

  18. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana.

    Science.gov (United States)

    Aceves-García, Pamela; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions. PMID:27379140

  19. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  20. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  1. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    Science.gov (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  2. Red-light-induced positive phototropism in Arabidopsis roots.

    Science.gov (United States)

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  3. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-01-01

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes. PMID:27399695

  4. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    Science.gov (United States)

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.

  5. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors.

    Science.gov (United States)

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-12-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.

  6. Integrating roots into a whole plant network of flowering time genes in Arabidopsis thaliana.

    Science.gov (United States)

    Bouché, Frédéric; D'Aloia, Maria; Tocquin, Pierre; Lobet, Guillaume; Detry, Nathalie; Périlleux, Claire

    2016-01-01

    Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot. PMID:27352932

  7. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    OpenAIRE

    Sultana eRasheed; Khurram eBashir; Akihiro eMatsui; Maho eTanaka; Motoaki eSeki

    2016-01-01

    Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicat...

  8. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    NARCIS (Netherlands)

    Xuan, Wei; Band, Leah R.; Kumpf, Robert P.; Rybel, De Bert

    2016-01-01

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that t

  9. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    Science.gov (United States)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  10. In vivo localization in Arabidopsis protoplasts and root tissue.

    Science.gov (United States)

    Lee, Myoung Hui; Lee, Yongjik; Hwang, Inhwan

    2013-01-01

    In eukaryotic cells, a large number of proteins are transported to their final destination after translation by a process called intracellular trafficking. Transient gene expression, either in plant protoplasts or in specific plant tissues, is a fast, flexible, and reproducible approach to study the cellular function of proteins, protein subcellular localizations, and protein-protein interactions. Here we describe the general method of protoplast isolation, polyethylene glycol-mediated protoplast transformation and immunostaining of protoplast or intact root tissues for studying the localization of protein in Arabidopsis.

  11. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching

    Science.gov (United States)

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Moreno, Antonio; Zhang, Jingyuan; Ahnert, Sebastian E.; Benfey, Philip N.

    2010-01-01

    Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock–driven activities in animal species. PMID:20829477

  12. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2007-02-01

    Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.

  13. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  14. [The mechanism of root hair development and molecular regulation in plants].

    Science.gov (United States)

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  15. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity1[W][OPEN

    Science.gov (United States)

    Julkowska, Magdalena M.; Hoefsloot, Huub C.J.; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A.; Testerink, Christa

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na+/K+ ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  16. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  17. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  18. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes.

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-08-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter-reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  19. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  20. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-05-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability. PMID:12011355

  1. AtGRIP protein locates to the secretory vesicles of trans Golgi-network in Arabidopsis root cap cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; ZHANG Wei; ZHAO Lei; LI Yan

    2008-01-01

    GRIP domain proteins, locating to the trans-Golgi network, are thought to play an essential role in Golgi apparatus trafficking in yeast and animal cells. In the present study, AtGRIP cDNA was amplified by reverse transcriptase PCR from RNA isolated from Arabidopsis seedling. The GST fusion protein of AtGRIP was affinity-purified and its rabbit polyclonal antibody was obtained. Immuno-blotting with the purified anti-AtGRIP polyclonal antibody demonstrated that the molecular mass of AtGRIP protein is about 92 kD, and its expression is not tissue-specific in Arabidopsis. Immunoflourescent labeling and confocal microscopy revealed that the AtGRIP protein was co-localized with Golgi stacks in Arabidop-sis root cells. Immuno-gold labeling and electron microscopy observation showed that AtGRIP protein was mainly located to the membrane of the secretory vesicles of trans-Golgi network in Arabidopsis root cap cells. Taken together, these results indicate that the localization of GRIP domain proteins be-tween plants and animal cells are conserved. These results also suggest that the AtGRIP may be in-volved in regulating the formation or sorting of Golgi-associated vesicles in plant cells.

  2. Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network

    Directory of Open Access Journals (Sweden)

    Eugenio eAzpeitia

    2013-04-01

    Full Text Available AbstractOver the last few decades, the Arabidopsis thaliana root stem cell niche has become a model system for the study of plant development and the stem cell niche. Currently, many of the molecular mechanisms involved in root stem cell niche maintenance and development have been described. A few years ago, we published a gene regulatory network model integrating this information. This model suggested that there were missing components or interactions. Upon updating the model, the observed stable gene configurations of the root stem cell niche could not be recovered, indicating that there are additional missing components or interactions in the model. In fact, due to the lack of experimental data, gene regulatory networks inferred from published data are usually incomplete. However, predicting the location and nature of the missing data is a not trivial task. Here, we propose a set of procedures for detecting and predicting missing interactions in Boolean networks. We used these procedures to predict putative missing interactions in the A. thaliana root stem cell niche network model. Using our approach, we identified three necessary interactions to recover the reported gene activation configurations that have been experimentally uncovered for the different cell types within the root stem cell niche: 1 a regulation of PHABULOSA to restrict its expression domain to the vascular cells, 2 a self-regulation of WOX5, possibly by an indirect mechanism through the auxin signalling pathway and 3 a positive regulation of JACKDAW by MAGPIE. The procedures proposed here greatly reduce the number of possible Boolean functions that are biologically meaningful and experimentally testable and that do not contradict previous data. We believe that these procedures can be used on any Boolean network. However, because the procedures were designed for the specific case of the root stem cell niche, formal demonstrations of the procedures should be shown in future

  3. Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots.

    Science.gov (United States)

    di Pietro, Magali; Vialaret, Jérôme; Li, Guo-Wei; Hem, Sonia; Prado, Karine; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2013-12-01

    In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post

  4. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    Science.gov (United States)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  5. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    Science.gov (United States)

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  6. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  7. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis.

    NARCIS (Netherlands)

    Sergeeva, L.I.; Keurentjes, J.J.B.; Bentsink, L.; Vonk, J.; Plas, van der L.H.W.; Koornneef, M.; Vreugdenhil, D.

    2006-01-01

    The possible role of the sucrose-splitting enzymes sucrose synthase and invertase in elongating roots and hypocotyls of Arabidopsis was tested by using a combination of histochemical methods and quantitative trait locus (QTL) analysis. Lengths of roots and hypocotyls correlated better with invertase

  8. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.;

    2011-01-01

    A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O2...... partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...

  9. A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells.

    Directory of Open Access Journals (Sweden)

    Robert J H Payne

    Full Text Available Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom(eb.We show how interactions between Rho GTPases (in this case ROPs and regulatory molecules (in this case auxin could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.

  10. Genetic ablation of root cap cells in Arabidopsis

    OpenAIRE

    Tsugeki, Ryuji; Fedoroff, Nina V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of...

  11. “Rhizoponics”: a novel hydroponic rhizotron for root system analyses on mature Arabidopsis thaliana plants

    OpenAIRE

    Mathieu, Laura; Lobet, Guillaume; Tocquin, Pierre; Périlleux, Claire

    2015-01-01

    Background Well-developed and functional roots are critical to support plant life and reach high crop yields. Their study however, is hampered by their underground growth and characterizing complex root system architecture (RSA) therefore remains a challenge. In the last few years, several phenotyping methods, including rhizotrons and x-ray computed tomography, have been developed for relatively thick roots. But in the model plant Arabidopsis thaliana, in vitro culture remains the easiest and...

  12. Glycerol Affects Root Development through Regulation of Multiple Pathways in Arabidopsis

    OpenAIRE

    Jun Hu; Yonghong Zhang; Jinfang Wang; Yongming Zhou

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in se...

  13. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis

    OpenAIRE

    Sergeeva, L.I.; Keurentjes, J. J. B.; Bentsink, L.; Vonk, J.; Plas, van der, M..; Koornneef, M; Vreugdenhil, D.

    2006-01-01

    The possible role of the sucrose-splitting enzymes sucrose synthase and invertase in elongating roots and hypocotyls of Arabidopsis was tested by using a combination of histochemical methods and quantitative trait locus (QTL) analysis. Lengths of roots and hypocotyls correlated better with invertase activities than with sucrose synthase activities. The highest correlations were observed with activities in the elongating zones of roots. The genetic basis of these correlations was studied by us...

  14. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  15. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana

    Science.gov (United States)

    Kiss, J. Z.; Hertel, R.; Sack, F. D.

    1989-01-01

    The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185-197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.

  16. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi

    2016-01-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.

  17. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qian eZhao

    2015-01-01

    Full Text Available Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM antagonists N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 and trifluoperazine (TFP. Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9 were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals.

  18. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.

    Science.gov (United States)

    Song, Sang-Kee; Ryu, Kook Hui; Kang, Yeon Hee; Song, Jae Hyo; Cho, Young-Hee; Yoo, Sang-Dong; Schiefelbein, John; Lee, Myeong Min

    2011-11-01

    The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.

  19. Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis.

    Science.gov (United States)

    del Campillo, Elena; Abdel-Aziz, Amal; Crawford, Damian; Patterson, Sara E

    2004-09-01

    The sloughing of root cap cells from the root tip is important because it assists the growing root in penetrating the soil. Using a promoter-reporter (GUS) and RT-PCR analysis, we identified an endo-beta-1,4-glucanase (AtCel5) of Arabidopsis thaliana that is expressed exclusively in root cap cells of both primary and secondary roots. Expression is inhibited by high concentrations of IAA, both exogenous and internal, as well as by ABA. AtCel5 expression begins once the mature tissue pattern is established and continues for 3 weeks. GUS staining is observed in both root cap cells that are still attached and cells that have already been shed. Using AtCel5-GUS as a marker, we observed that the root cap cells begin to separate at the sides of the tip while the cells of the central region of the tip separate last. Separation involves sequential tiers of intact cells that separate from the periphery of the root tip. A homozygous T-DNA insertion mutant that does not express AtCel5 forms the root cap and sheds root cap cells but sloughing is less efficient compared to wild type. The reduction in sloughing in the mutant does not affect the overall growth performance of the plant in loose media. The modest effect of abolishing AtCel5 expression suggests that there are multiple redundant genes regulating the process of sloughing of the root cap, including AtCel3/At1g71380, the paralog of the AtCel5 gene that is also expressed in the root cap cells. Thus, these two endo-1,4-beta-D-glucanases may have a role in the sloughing of border cells from the root tip. We propose that AtCel5, provides a new molecular marker to further analyze the process of root cap cell separation and a root cap specific promoter for targeting to the environment genes with beneficial properties for plant growth.

  20. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression.

    Directory of Open Access Journals (Sweden)

    Jie-Li Mao

    2016-01-01

    Full Text Available The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1, encoding a rate-limiting enzyme in tryptophan (Trp biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1, plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots.

  1. Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression

    Science.gov (United States)

    Wang, Zhen; Yu, Lin-Hui; Cai, Xiao-Teng; Xiang, Cheng-Bin

    2016-01-01

    The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots. PMID:26745809

  2. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.

    Science.gov (United States)

    Valenzuela, Camilo E; Acevedo-Acevedo, Orlando; Miranda, Giovanna S; Vergara-Barros, Pablo; Holuigue, Loreto; Figueroa, Carlos R; Figueroa, Pablo M

    2016-07-01

    Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis. PMID:27217545

  3. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  4. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  5. A root chicory MADS box sequence and the Arabidopsis flowering repressor FLC share common features that suggest conserved function in vernalization and de-vernalization responses.

    Science.gov (United States)

    Périlleux, Claire; Pieltain, Alexandra; Jacquemin, Guillaume; Bouché, Frédéric; Detry, Nathalie; D'Aloia, Maria; Thiry, Laura; Aljochim, Pierre; Delansnay, Martin; Mathieu, Anne-Sophie; Lutts, Stanley; Tocquin, Pierre

    2013-08-01

    Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over-expression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post-vernalization temperature was favorable to flowering and when it de-vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re-activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold-induced down-regulation of a MADS box floral repressor and its re-activation by high temperature thus appear to be conserved features of the vernalization and de-vernalization responses in distant species. PMID:23581257

  6. Root system architecture: insights from Arabidopsis and cereal crops

    OpenAIRE

    Smith, Stephanie; De Smet, Ive

    2012-01-01

    Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the...

  7. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.

  8. Somatic Embryogenesis Receptor Kinases Control Root Development Mainly via Brassinosteroid Independent Actions in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Junbo Du; Hongju Yin; Shasha Zhang; ZhuoyunWei; Baolin Zhao; Jinghua Zhang; Xiaoping Gou; Honghui Lin; Jia Li

    2012-01-01

    Brassinosteroids (BRs),a group of plant steroidal hormones,play critical roles in many aspects of plant growth and development.Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones.Arabidopsis somatic embryogenesis receptor-like kinases (SERKs),as co-receptors of BRI1,were found to play a fundamental role in an early activation step of BR signaling pathway.Here we report a novel function of SERKs in regulating Arabidopsis root development.Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway.Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant,the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants.More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport,cell cycle,endodermis development and root meristem differentiation,which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.

  9. Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42.

    Science.gov (United States)

    Dietel, Kristin; Beator, Barbara; Budiharjo, Anto; Fan, Ben; Borriss, Rainer

    2013-03-01

    Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

  10. In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Khonsari Roman H

    2009-11-01

    Full Text Available Abstract Background Tonoplast intrinsic proteins (TIPs are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. Results We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1 and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures. Conclusion We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs.

  11. Signaling in Arabidopsis roots in response to beneficial rhizobacteria

    NARCIS (Netherlands)

    Zamioudis, C

    2012-01-01

    Root colonization by selected strains of beneficial soil-resident bacteria is known to improve plant growth, influence root system architecture and trigger a systemic immune response that is effective against a broad range of pathogens, known as induced systemic resistance (ISR). In this thesis we e

  12. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  13. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity

    NARCIS (Netherlands)

    M.M. Julkowska; H.C.J. Hoefsloot; S. Mol; R. Feron; G.J. de Boer; M.A. Haring; C. Testerink

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles i

  14. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

    Science.gov (United States)

    Goh, Tatsuaki; Toyokura, Koichi; Wells, Darren M; Swarup, Kamal; Yamamoto, Mayuko; Mimura, Tetsuro; Weijers, Dolf; Fukaki, Hidehiro; Laplaze, Laurent; Bennett, Malcolm J; Guyomarc'h, Soazig

    2016-09-15

    Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition. PMID:27510971

  15. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  16. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  17. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  18. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  19. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Indian Academy of Sciences (India)

    Virupapuram Vijaybhaskar; Veeraputhiran Subbiah; Jagreet Kaur; Pagadala Vijayakumari; Imran Siddiqi

    2008-06-01

    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding -glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes.

  20. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis.

    Science.gov (United States)

    Eapen, Delfeena; Barroso, María Luisa; Campos, María Eugenia; Ponce, Georgina; Corkidi, Gabriel; Dubrovsky, Joseph G; Cassab, Gladys I

    2003-02-01

    For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.

  1. An auxin-responsive endogenous peptide regulates root development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fengxi Yang; Yu Song; Hao Yang; Zhibin Liu; Genfa Zhu; Yi Yang

    2014-01-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development.

  2. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    Science.gov (United States)

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  3. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis.

    Science.gov (United States)

    Chen, Alice; Komives, Elizabeth A; Schroeder, Julian I

    2006-05-01

    Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.

  4. Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots

    OpenAIRE

    Daneshkhah, R.; Cabello, S.; Rozanska, E.; Sobczak, M.; Grundler, F. M. W.; Wieczorek, K.; Hofmann, J.

    2013-01-01

    The beneficial endophytic fungus Piriformospora indica colonizes the roots of many plant species, including the model plant Arabidopsis thaliana. Its colonization promotes plant growth, development, and seed production as well as resistance to various biotic and abiotic stresses. In the present work, P. indica was tested as potential antagonist of the sedentary plant-parasitic nematode Heterodera schachtii. This biotrophic cyst-forming nematode induces severe host plant damage by changing the...

  5. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  6. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria.

    Science.gov (United States)

    Vicré, Maïté; Santaella, Catherine; Blanchet, Sandrine; Gateau, Aurélien; Driouich, Azeddine

    2005-06-01

    Plant roots of many species produce thousands of cells that are released daily into the rhizosphere. These cells are commonly termed border cells because of their major role in constituting a biotic boundary layer between the root surface and the soil. In this study, we investigated the occurrence and ultrastructure of such cells in Arabidopsis (Arabidopsis thaliana) using light and electron microscopy coupled to high-pressure freezing. The secretion of cell wall molecules including pectic polysaccharides and arabinogalactan-proteins (AGPs) was examined also using immunofluorescence microscopy and a set of anticarbohydrate antibodies. We show that root tips of Arabidopsis seedlings released cell layers in an organized pattern that differs from the rather randomly dispersed release observed in other plant species studied to date. Therefore, we termed such cells border-like cells (BLC). Electron microscopical results revealed that BLC are rich in mitochondria, Golgi stacks, and Golgi-derived vesicles, suggesting that these cells are actively engaged in secretion of materials to their cell walls. Immunocytochemical data demonstrated that pectins as well as AGPs are among secreted material as revealed by the high level of expression of AGP-epitopes. In particular, the JIM13-AGP epitope was found exclusively associated with BLC and peripheral cells in the root cap region. In addition, we investigated the function of BLC and root cap cell AGPs in the interaction with rhizobacteria using AGP-disrupting agents and a strain of Rhizobium sp. expressing a green fluorescent protein. Our findings demonstrate that alteration of AGPs significantly inhibits the attachment of the bacteria to the surface of BLC and root tip.

  7. Transcription factor movement and tissue patterning in Arabidopsis root meristem

    NARCIS (Netherlands)

    Long, Y.

    2015-01-01

    Cell-cell communication is key to coordinated cellular functions in multicellular organisms. In addition to the signaling molecules found in animals, plants also frequently recruit mobile transcription factors to deliver positional information. The best studied example is SHORT-ROOT (SHR), a transcr

  8. Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals

    Directory of Open Access Journals (Sweden)

    Antonella Vitti

    2014-05-01

    Full Text Available In this work, specific concentrations of cadmium, copper and zinc in double combination, were supplied for 12 days to growing seedlings of the model species Arabidopsis thaliana. Metal accumulation was measured in roots and shoots. Microscopic analyses revealed that root morphology was affected by metals, and that the root and shoot levels of indole-3-acetic acid, trans-zeatin riboside and dihydrozeatin riboside varied accordingly. Minor modifications in gibberellic acid levels occurred in the Zinc treatments, whereas abscisic acid level did not change after the exposition to metals. Reverse transcription polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (AtAAO, AtNIT and AtIPT revealed that their expression were not affected by metal treatments. The root morphological alterations that resulted in an increased surface area, due to the formation of root hairs and lateral roots, could be signs of the response to metal stress in terms of a functionally-addressed reorientation of root growth. The root system plasticity observed could be important for better understanding the manner in which the root architecture is shaped by environmental and hormonal stimuli.

  9. Hydrogen peroxide is involved in cGMP modulating the lateral root development of Arabidopsis thaliana

    OpenAIRE

    Li, Jisjeng; Jia, Honglei

    2013-01-01

    3′,5′-cyclic guanosine monophosphate (cGMP) and hydrogen peroxide (H2O2) function as the important signaling molecule which promote the lateral root development of Arabidopsis thaliana. In this study, interestingly, application of 8-Br-cGMP (the membrane permeable cGMP analog) promoted the endogenous H2O2 production. In addition, the decrease of endogenous H2O2 also inhibited the effect of cGMP on the lateral root development. Thus, H2O2 maybe act as a downstream signaling of cGMP molecule wh...

  10. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  11. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis.

    Science.gov (United States)

    Liu, Wen-Ju; Wood, B Alan; Raab, Andrea; McGrath, Steve P; Zhao, Fang-Jie; Feldmann, Jörg

    2010-04-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops.

  12. Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis

    OpenAIRE

    Thierry G. A. Lonhienne; Yuri Trusov; Anthony Young; Doris Rentsch; Torgny Näsholm; Susanne Schmidt; Chanyarat Paungfoo-Lonhienne

    2014-01-01

    Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown A...

  13. Chiral and non-chiral nutations in Arabidopsis roots grown on the random positioning machine.

    Science.gov (United States)

    Piconese, S; Tronelli, G; Pippia, P; Migliaccio, F

    2003-08-01

    Arabidopsis thaliana roots grown on a vertically set plate do not elongate straight down the gravitational vector, but by making waves and coils, and by conspicuously slanting towards the right-hand. This behaviour, in a previous paper, was ascribed to the simultaneous effect of three processes: circumnutation, positive gravitropism and negative thigmotropism. However, when the plants are grown on the Random Positioning Machine (RPM), in conditions that are believed to simulate space microgravitational conditions closely, the roots do not show the usual pattern. In the wild type, the roots make large loops to the right-hand side, whereas in the gravitropic and auxinic mutants aux1, eir1, rha1, they just move randomly around the initial direction. Therefore, if the movements made on the RPM are those produced by the exclusion of gravitropism and negative thigmotropism, as is apparent, the conclusion is that Arabidopsis roots are animated by a form of chiral circumnutation, that is lacking in the auxinic and gravitropic mutants aux1, eir1 and rha1. In addition, the 1 g condition appears to reduce the scatter among the circumnutating tracks produced by the roots of the wild types, but not among those of the mutants. Because there is a scarcity of literature regarding circumnutation in roots, it is not known how widely root chiral circumnutation is spread, but it is known that, in some previously studied species, just random nutations are observed. Two kinds of nutating movements seem to exist in plant roots and, whereas the random process does not seem to be connected with auxin physiology and transport, the chiral process appears to be connected in the same way as gravitropism is.

  14. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis.

    Science.gov (United States)

    Buer, Charles S; Sukumar, Poornima; Muday, Gloria K

    2006-04-01

    Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis. PMID:16489132

  15. Distribution and regulation of auxin in Arabidopsis root cells

    OpenAIRE

    Petersson, Sara

    2011-01-01

    The plant hormone auxin (IAA) coordinates many of the important processes in plant development. For example, IAA is critical for normal embryogenesis, root development, cell elongation, and the tropic responses such as gravitropism and phototropism. IAA gradients are established and maintained in many tissues and it is thought that these gradients act as developmental cues, determining the fate of cells and tissues. Descriptions of auxin distribution patterns with cellular resolution h...

  16. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Science.gov (United States)

    Bouteillé, Marie; Rolland, Gaëlle; Balsera, Crispulo; Loudet, Olivier; Muller, Bertrand

    2012-01-01

    Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i) that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii) that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs) colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines), we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  17. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Marie Bouteillé

    Full Text Available Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines, we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  18. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots.

    Science.gov (United States)

    Durand, Mickaël; Porcheron, Benoît; Hennion, Nils; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2016-03-01

    Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots. PMID:26802041

  19. Genetic identification of a second site modifier of ctr1-1 that controls ethylene-responsive and gravitropic root growth in Arabidopsis thaliana.

    Science.gov (United States)

    Shin, Kihye; Lee, Rin-A; Lee, Inhye; Lee, Sumin; Park, Soon Ki; Soh, Moon-Soo

    2013-07-01

    Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.

  20. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    Science.gov (United States)

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis.

  1. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  2. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    Science.gov (United States)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  3. Plastid sedimentation kinetics in roots of wild-type and starch-deficient mutants of Arabidopsis

    Science.gov (United States)

    MacCleery, S. A.; Kiss, J. Z.

    1999-01-01

    Sedimentation and movement of plastids in columella cells of the root cap were measured in seedlings of wild-type, a reduced starch mutant, and a starchless mutant of Arabidopsis. To assay for sedimentation, we used both linear measurements and the change of angle from the cell center as indices in vertical and reoriented plants with the aid of computer-assisted image analysis. Seedlings were fixed at short periods after reorientation, and plastid sedimentation correlated with starch content in the three strains of Arabidopsis. Amyloplasts of wild-type seedlings showed the greatest sedimentation, whereas plastids of the starchless mutant showed no significant sedimentation in the vertically grown and reoriented seedlings. Because previous research has shown that a full complement of starch is needed for full gravitropic sensitivity, this study correlates increased sensitivity with plastid sedimentation. However, although plastid sedimentation contributed to gravisensitivity, it was not required, because the gravitropic starchless mutant had plastids that did not sediment. This is the first study, to our knowledge, to measure plastid sedimentation in Arabidopsis roots after reorientation of seedlings. Taken together, the results of this study are consistent with the classic plastid-based and protoplast-based models of graviperception and suggest that multiple systems of perception exist in plant cells.

  4. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natacha Bodenhausen

    Full Text Available Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root and habitat (epiphytes vs endophytes structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024, while the reverse is true for the leaves (P = 0.032. Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001. The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.

  5. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning.

  6. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    Science.gov (United States)

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  7. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Amanda Mangeon

    Full Text Available AtGRP3 is a glycine-rich protein (GRP from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.

  8. Changes in cell ultrastructure and morphology of Arabidopsis thaliana roots after coumarins treatment

    Directory of Open Access Journals (Sweden)

    Ewa Kupidłowska

    2014-02-01

    Full Text Available The ultrastructure and morphology of roots treated with coumarin and umbelliferone as well as the reversibility of the coumarins effects caused by exogenous GA, were studied in Arabidopsis thaliana. Both coumarins suppressed root elongation and appreciably stimulated radial expansion of epidermal and cortical cells in the upper part of the meristem and in the elongation zone. The gibberellic acid applied simultaneously with coumarins decreased their inhibitory effect on root elongation and reduced cells swelling.Microscopic observation showed intensive vacuolization of cells and abnormalities in the structure of the Golgi stacks and the nuclear envelope. The detection of active acid phosphatase in the cytosol of swollen cells indicated increased membrane permeability. Significant abnormalities of newly formed cell walls, e.g. the discontinuity of cellulose layer, uncorrect position of walls and the lack of their bonds with the mother cell wall suggest that coumarins affected the cytoskeleton.

  9. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress.

    Science.gov (United States)

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  10. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  12. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  13. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; Alfaro-Cuevas, Ruth; López-Bucio, José

    2014-06-01

    Salt stress is an important constraint to world agriculture. Here, we report on the potential of Trichoderma virens and T. atroviride to induce tolerance to salt in Arabidopsis seedlings. We first characterized the effect of several salt concentrations on shoot biomass production and root architecture of Arabidopsis seedlings. We found that salt repressed plant growth and root development in a dose-dependent manner by blocking auxin signaling. Analysis of the wild type and eir1, aux1-7, arf7arf19, and tir1abf2abf19 auxin-related mutants revealed a key role for indole-3-acetic acid (IAA) signaling in mediating salt tolerance. We also found that T. virens (Tv29.8) and T. atroviride (IMI 206040) promoted plant growth in both normal and saline conditions, which was related to the induction of lateral roots and root hairs through auxin signaling. Arabidopsis seedlings grown under saline conditions inoculated with Trichoderma spp. showed increased levels of abscissic acid, L-proline, and ascorbic acid, and enhanced elimination of Na⁺ through root exudates. Our data show the critical role of auxin signaling and root architecture to salt tolerance in Arabidopsis and suggest that these fungi may enhance the plant IAA level as well as the antioxidant and osmoprotective status of plants under salt stress. PMID:24502519

  14. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  15. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.

    Science.gov (United States)

    Gong, Ji-Ming; Lee, David A; Schroeder, Julian I

    2003-08-19

    Phytochelatin synthases (PCS) mediate cellular heavy-metal resistance in plants, fungi, and worms. However, phytochelatins (PCs) are generally considered to function as intracellular heavy-metal detoxification mechanisms, and whether long-distance transport of PCs occurs during heavy-metal detoxification remains unknown. Here, wheat TaPCS1 cDNA expression was either targeted to Arabidopsis roots with the Arabidopsis alcohol dehydrogenase (Adh) promoter (Adh::TaPCS1/cad1-3) or ectopically expressed with the cauliflower mosaic virus 35S promoter (35S::TaPCS1/cad1-3) in the PC-deficient mutant cad1-3. Adh::TaPCS1/cad1-3 and 35S::TaPCS1/cad1-3 complemented the cadmium, mercury, and arsenic sensitivities of the cad1-3 mutant. Northern blot, RT-PCR, and Western blot analyses showed Adh promoter-driven TaPCS1 expression only in roots and thus demonstrated lack of long-distance TaPCS1 mRNA and protein transport in plants. Fluorescence HPLC analyses showed that under Cd2+ stress, no PCs were detectable in cad1-3. However, in Adh::TaPCS1/cad1-3 plants, PCs were detected in roots and in rosette leaves and stems. Inductively coupled plasma atomic emission spectrometer analyses showed that either root-specific or ectopic expression of TaPCS1 significantly enhanced long-distance Cd2+ transport into stems and rosette leaves. Unexpectedly, transgenic expression of TaPCS1 reduced Cd2+ accumulation in roots compared with cad1-3. The reduced Cd2+ accumulation in roots and enhanced root-to-shoot Cd2+ transport in transgenic plants were abrogated by l-buthionine sulfoximine. The presented findings show that (i) transgenic expression of TaPCS1 suppresses the heavy-metal sensitivity of cad1-3, (ii) PCs can be transported from roots to shoots, and (iii) transgenic expression of the TaPCS1 gene increases long-distance root-to-shoot Cd2+ transport and reduces Cd2+ accumulation in roots.

  16. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    Science.gov (United States)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  17. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ivan Baxter

    2009-05-01

    Full Text Available Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1 mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.

  18. NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuanting Li; Xinhua Dai; Youfa Cheng; Yunde Zhao

    2011-01-01

    Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism has been studied extensively using Arabidopsis genetics, but the exact mechanisms for gravitropism are not fully understood. Here, we demonstrate that five NPY genes play a key role in Arabidopsis root gravitropism. NPY genes were previously identified as regulators of auxin-mediated organogenesis in way with the AGC kinases PID, PID2, WAG1, and WAG2. We show that all five NPY genes are highly expressdd in primary root tips. The single npy mutants do not display obvious gravitropism defects, but the npyl npy2 npy3 npy5 quinntuple mutants show dramatic gravitropic phenotypes. Systematic analysis of all the npy double, triple, and qudruple combinations demonstrates that the five NPY genes all contribute to gravitropism. Our work indicates that gravitropism,phototropism, and organogenesis use analogous mechanisms in which at least one AGC kinase, one NPH3/NPY gene, and one ARF are required.

  19. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  20. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  1. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  2. Overexpressing HRS1 Confers Hypersensitivity to Low Phosphate-Elicited Inhibition of Primary Root Growth in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Hong Liu; Huixia Yang; Chongming Wu; Juanjuan Feng; Xin Liu; Huanju Qin; Daowen Wang

    2009-01-01

    Phosphate (Pi) deficiency causes dramatic root system architecture (RSA) changes in higher plants.Here we report that overexpression of HRS1 leads to enhanced sensitivity to low Pi-elicited inhibition of primary root growth in Arabidopsis thaliana seedlings.Bioinformatic investigations uncovered that HRS1 and its six homologs encode putative G2-1ike transcription factors in Arabidopsis.Analysis of promoter::GUS reporter lines revealed that HRS1 transcripts were present mainly in the root hair region and root hair cells under Pi-sufficient conditions.Pi deprivation Increased HRS1 expression level and expanded its expression domain.Although HRS1 knockout mutant did not differ from wild type (WT) control irrespective of Pi status,its overexpreesion lines were significantly more susceptible to low Pi-elicited primary root shortening.In both WT and HRS1 overexpression seedlings,low Pi-induced primary root shortening was accompanied by enhanced root hair cell differentiation,but this enhancement occurred to a greater extent in the latter genotype.Collectively,our data suggest that HRS1 may be involved in the modulation of primary root and root hair growth in Pi-deprived Arabidopsis seedlings,and provide useful clues for further research into the function of HRS1 and its homologs and the mechanisms behind RSA changes under Pi-deficient conditions.

  3. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  4. Apoplastic Alkalinization Is Instrumental for the Inhibition of Cell Elongation in the Arabidopsis Root by the Ethylene Precursor 1-Aminocyclopropane-1-Carboxylic Acid

    NARCIS (Netherlands)

    Staal, Marten; De Cnodder, Tinne; Simon, Damien; Vandenbussche, Filip; Van Der Straeten, Dominique; Verbelen, Jean-Pierre; Elzenga, Theo; Vissenberg, Kris

    2011-01-01

    In Arabidopsis (Arabidopsis thaliana; Columbia-0) roots, the so-called zone of cell elongation comprises two clearly different domains: the transition zone, a postmeristematic region (approximately 200-450 mu m proximal of the root tip) with a low rate of elongation, and a fast elongation zone, the

  5. APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root.

    Science.gov (United States)

    Vanstraelen, Marleen; Baloban, Mikhail; Da Ines, Olivier; Cultrone, Antonietta; Lammens, Tim; Boudolf, Véronique; Brown, Spencer C; De Veylder, Lieven; Mergaert, Peter; Kondorosi, Eva

    2009-07-14

    Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.

  6. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  7. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  8. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jun Hu

    Full Text Available Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data

  9. Glycerol affects root development through regulation of multiple pathways in Arabidopsis.

    Science.gov (United States)

    Hu, Jun; Zhang, Yonghong; Wang, Jinfang; Zhou, Yongming

    2014-01-01

    Glycerol metabolism has been well studied biochemically. However, the means by which glycerol functions in plant development is not well understood. This study aimed to investigate the mechanism underlying the effects of glycerol on root development in Arabidopsis thaliana. Exogenous glycerol inhibited primary root growth and altered lateral root development in wild-type plants. These phenotypes appeared concurrently with increased endogenous glycerol-3-phosphate (G3P) and H2O2 contents in seedlings, and decreased phosphate levels in roots. Upon glycerol treatment, G3P level and root development did not change in glycerol kinase mutant gli1, but G3P level increased in gpdhc1 and fad-gpdh mutants, which resulted in more severely impaired root development. Overexpression of the FAD-GPDH gene attenuated the alterations in G3P, phosphate and H2O2 levels, leading to increased tolerance to exogenous glycerol, which suggested that FAD-GPDH plays an important role in modulating this response. Free indole-3-acetic acid (IAA) content increased by 46%, and DR5pro::GUS staining increased in the stele cells of the root meristem under glycerol treatment, suggesting that glycerol likely alters normal auxin distribution. Decreases in PIN1 and PIN7 expression, β-glucuronidase (GUS) staining in plants expressing PIN7pro::GUS and green fluorescent protein (GFP) fluorescence in plants expressing PIN7pro::PIN7-GFP were observed, indicating that polar auxin transport in the root was downregulated under glycerol treatment. Analyses with auxin-related mutants showed that TIR1 and ARF7 were involved in regulating root growth under glycerol treatment. Glycerol-treated plants showed significant reductions in root meristem size and cell number as revealed by CYCB1;1pro::GUS staining. Furthermore, the expression of CDKA and CYCB1 decreased significantly in treated plants compared with control plants, implying possible alterations in cell cycle progression. Our data demonstrated that glycerol

  10. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

    Science.gov (United States)

    Bidzinski, Przemyslaw; Noir, Sandra; Shahi, Shermineh; Reinstädler, Anja; Gratkowska, Dominika Marta; Panstruga, Ralph

    2014-12-01

    Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.

  11. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.

    Science.gov (United States)

    Lin, Y; Schiefelbein, J

    2001-10-01

    A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.

  12. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data.

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Schmidt, Stephan; Westphal, Lore; Taruttis, Franziska; Müller, Erik; Herklotz, Siska; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Many metabolomics studies focus on aboveground parts of the plant, while metabolism within roots and the chemical composition of the rhizosphere, as influenced by exudation, are not deeply investigated. In this study, we analysed exudate metabolic patterns of Arabidopsis thaliana and their variation in genetically diverse accessions. For this project, we used the 19 parental accessions of the Arabidopsis MAGIC collection. Plants were grown in a hydroponic system, their exudates were harvested before bolting and subjected to UPLC/ESI-QTOF-MS analysis. Metabolite profiles were analysed together with the genome sequence information. Our study uncovered distinct metabolite profiles for root exudates of the 19 accessions. Hierarchical clustering revealed similarities in the exudate metabolite profiles, which were partly reflected by the genetic distances. An association of metabolite absence with nonsense mutations was detected for the biosynthetic pathways of an indolic glucosinolate hydrolysis product, a hydroxycinnamic acid amine and a flavonoid triglycoside. Consequently, a direct link between metabolic phenotype and genotype was detected without using segregating populations. Moreover, genomics can help to identify biosynthetic enzymes in metabolomics experiments. Our study elucidates the chemical composition of the rhizosphere and its natural variation in A. thaliana, which is important for the attraction and shaping of microbial communities. PMID:27363486

  13. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots.

    Science.gov (United States)

    Richards, Siân L; Laohavisit, Anuphon; Mortimer, Jennifer C; Shabala, Lana; Swarbreck, Stéphanie M; Shabala, Sergey; Davies, Julia M

    2014-01-01

    Hydrogen peroxide is the most stable of the reactive oxygen species (ROS) and is a regulator of development, immunity and adaptation to stress. It frequently acts by elevating cytosolic free Ca(2+) ([Ca(2+) ]cyt ) as a second messenger, with activation of plasma membrane Ca(2+) -permeable influx channels as a fundamental part of this process. At the genetic level, to date only the Ca(2) (+) -permeable Stelar K(+) Outward Rectifier (SKOR) channel has been identified as being responsive to hydrogen peroxide. We show here that the ROS-regulated Ca(2+) transport protein Annexin 1 in Arabidopsis thaliana (AtANN1) is involved in regulating the root epidermal [Ca(2+) ]cyt response to stress levels of extracellular hydrogen peroxide. Peroxide-stimulated [Ca(2+) ]cyt elevation (determined using aequorin luminometry) was aberrant in roots and root epidermal protoplasts of the Atann1 knockout mutant. Similarly, peroxide-stimulated net Ca(2+) influx and K(+) efflux were aberrant in Atann1 root mature epidermis, determined using extracellular vibrating ion-selective microelectrodes. Peroxide induction of GSTU1 (Glutathione-S-Transferase1 Tau 1), which is known to be [Ca(2+) ]cyt -dependent was impaired in mutant roots, consistent with a lesion in signalling. Expression of AtANN1 in roots was suppressed by peroxide, consistent with the need to restrict further Ca(2+) influx. Differential regulation of annexin expression was evident, with AtANN2 down-regulation but up-regulation of AtANN3 and AtANN4. Overall the results point to involvement of AtANN1 in shaping the root peroxide-induced [Ca(2+) ]cyt signature and downstream signalling.

  14. Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root developmentHormonal crosstalk in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Junli eLiu

    2013-04-01

    Full Text Available Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS and the auxin efflux carrier PIN proteins in the crosstalk of three hormones (auxin, ethylene and cytokinin in Arabidopsis root development. In ethylene hypersignalling mutants such as polaris (pls, we show experimentally that expression of both PIN1 and PIN2 significantly increases. This relationship is analysed in the context of the crosstalk between auxin, ethylene and cytokinin: in pls, endogenous auxin, ethylene and cytokinin concentration decreases, approximately remains unchanged and increases, respectively. Experimental data are integrated into a hormonal crosstalk network through combination with information in literature. Network construction reveals that the regulation of both PIN1 and PIN2 is predominantly via ethylene signalling. In addition, it is deduced that the relationship between cytokinin and PIN1 and PIN2 levels implies a regulatory role of cytokinin in addition to its regulation to auxin, ethylene and PLS levels. We discuss how the network of hormones and genes coordinates plant growth by simultaneously regulating the activities of auxin, ethylene and cytokinin signalling pathways.

  15. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  16. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  17. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Chaparro

    Full Text Available Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05 between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.

  18. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards. PMID:26473358

  19. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  20. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.

    Science.gov (United States)

    Miyashima, Shunsuke; Hashimoto, Takashi; Nakajima, Keiji

    2009-03-01

    The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.

  1. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots.

    Science.gov (United States)

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity

  2. Comparison between Arabidopsis and Rice for Main Pathways of K+ and Na+ Uptake by Roots

    Science.gov (United States)

    Nieves-Cordones, Manuel; Martínez, Vicente; Benito, Begoña; Rubio, Francisco

    2016-01-01

    K+ is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K+ in the soil solution are widely variable, K+ nutrition is secured by uptake systems that exhibit different affinities for K+. Two main systems have been described for root K+ uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K+ uptake, although they only seem to operate when K+ is not limiting. The use of knock-out lines has allowed demonstrating their role in root K+ uptake in Arabidopsis and rice. Plant adaptation to the different K+ supplies relies on the finely tuned regulation of these systems. Low K+-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant’s adaptation to low K+. Na+ is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na+ improves growth, especially under K+ deficiency. Thus, high-affinity Na+ uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na+ accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K+ deficiency. Data concerning pathways for Na+ uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na+ uptake in rice grown under salinity conditions, but in other plant species

  3. The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Fukaki, H; Fujisawa, H; Tasaka, M

    1997-07-01

    In higher plants, shoots show negative gravitropism and roots show positive gravitropism. To elucidate the molecular mechanisms of root and hypocotyl gravitropism, we segregated the second mutation from the original phyB-1 mutant line which impaired both root and hypocotyl gravitropism and characterized this novel mutation named rhg (for root and hypocotyl gravitropism). The rhg is a single recessive nuclear mutation and it is mapped on the lower part of the chromosome 1. Analyses on the gravitropic responses of the rhg mutant indicate that root and hypocotyl gravitropism are severely impaired but inflorescence stem gravitropism is not affected by the rhg mutation. In the rhg mutant seedlings, amyloplasts (statoliths for gravity-perception) were present in the presumptive statocytes of roots and hypocotyls. Phototropism by roots and hypocotyls was not impaired in the rhg mutant. These results suggest that the RHG gene product probably acts on the gravity-perception and/or the gravity-signal transduction in root and hypocotyl gravitropism. This is the first report about the genetic locus specifically involved in both root and hypocotyl gravitropism but not inflorescence stem gravitropism, supporting our hypothesis that the mechanisms of gravitropism are genetically different between hypocotyls and inflorescence stems.

  4. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  5. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  6. Genetic variability and molecular responses of root penetration in cotton.

    Science.gov (United States)

    Klueva; Joshi; Joshi; Wester; Zartman; Cantrell; Nguyen

    2000-06-12

    Compacted soils restrict root penetration hindering productivity. In this paper, genetic variability of cotton (Gossipium spp.) root capacity to penetrate hard soil layers and the patterns of gene expression during penetration event were investigated. To mimic hard soil layers, wax-petrolatum mixtures were used. Genetic variability among 27 cotton genotypes for the root capacity to penetrate wax-petrolatum disks of 500-700 g wax/kg of mixture was high indicating that breeding efforts targeted to improve this trait can be successful. In the root tips of a cotton strain with high root penetrating ability (G. hirsutum HS 200) which penetrated through wax-petrolatum disks (P), quantity of four polypeptides with molecular weights 35-66 kDa increased compared to those root tips which grew in the absence of mechanical impedance (NP). Differential display showed significant differences in the sets of mRNA expressed in P and NP roots. Out of a total of 917 cDNAs scored in the differential display experiment, 118 cDNAs, or 13%, were specific to P roots and hence could be associated with the root penetration event. Further detailed study of gene expression in penetrated roots will pinpoint molecular factors involved in root penetration ability in cotton. PMID:10773338

  7. Arabidopsis root growth movements and their symmetry: progress and problems arising from recent work.

    Science.gov (United States)

    Migliaccio, Fernando; Fortunati, Alessio; Tassone, Paola

    2009-03-01

    Over the last fifteen years, an increasing number of plant scientists have become interested in the Arabidopsis root growth pattern, that is produced on the surface of an agar plate, inclined from the vertical. In this situation, the roots wave intensely and slant preferentially towards one side, showing torsions in the epidermal cell files alternately right-and left handed. In addition, the pattern switches to the formation of large or strict coils when the plate is set horizontally. After this finding, different hypotheses were advanced attempting to explain the forces that shape these patterns. These basically appear to be gravitropism, circumnutation and negative thigmotropism. With regard to the symmetry, the coils and the slanting in the wild-type are essentially right-handed, but mutants were also reported which show a left-handed symmetry, while some do not show a regular growth pattern at all. This review article discusses the earlier as well as the most recent findings on the topic, and investigates the possibility of describing the different mechanisms shaping the root growth patterns via unifying hypothesis.

  8. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition.

    Directory of Open Access Journals (Sweden)

    Holger Schmidt

    Full Text Available Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III and as ligands of Fe(II.

  9. Steroids are required for epidermal cell fate establishment in Arabidopsis roots.

    Science.gov (United States)

    Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L

    2009-05-12

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.

  10. PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2.

    Directory of Open Access Journals (Sweden)

    Ján Jásik

    Full Text Available The steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover. Dendra2 was fused to the PIN2 protein, an auxin transporter in the root tip, and by time-lapse imaging and assessment of red and green signal intensities in the membrane after photoconversion we quantified directly and simultaneously the rate of PIN2 delivery of the newly synthesized protein into the plasma membrane as well as the disappearance of the protein from the plasma membrane due to degradation. Additionally we have verified several factors which are expected to affect PIN2 protein turnover and therefore potentially regulate root growth.

  11. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  12. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  13. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    Science.gov (United States)

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  14. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  15. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Directory of Open Access Journals (Sweden)

    Tan Chao

    2011-11-01

    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  16. Proteomics in deciphering the auxin commitment in the Arabidopsis thaliana root growth.

    Science.gov (United States)

    Mattei, Benedetta; Sabatini, Sabrina; Schininà, M Eugenia

    2013-11-01

    The development of plant root systems is characterized by a high plasticity, made possible by the continual propagation of new meristems. Root architecture is fundamental for overall plant growth, abiotic stress resistance, nutrient uptake, and response to environmental changes. Understanding the function of genes and proteins that control root architecture and stress resistance will contribute to the development of more sustainable systems of intensified crop production. To meet these challenges, proteomics provide the genome-wide scale characterization of protein expression pattern, subcellular localization, post-translational modifications, activity regulation, and molecular interactions. In this review, we describe a variety of proteomic strategies that have been applied to study the proteome of the whole organ and of specific cell types during root development. Each has advantages and limitations, but collectively they are providing important insights into the mechanisms by which auxin structures and patterns the root system and into the interplay between signaling networks, auxin transport and growth. The acquisition of proteomic, transcriptomic, and metabolomic data sets of the root apex on the cell scale has revealed the high spatial complexity of regulatory networks and fosters the use of new powerful proteomic tools for a full understanding of the control of root developmental processes and environmental responses.

  17. Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis.

    Science.gov (United States)

    Li, Guangjie; Xu, Weifeng; Kronzucker, Herbert J; Shi, Weiming

    2015-04-01

    Iron (Fe) is an essential microelement but is highly toxic when in excess. The response of plant roots to Fe toxicity and the nature of the regulatory pathways engaged are poorly understood. Here, we examined the response to excess Fe exposure in Arabidopsis wild type and ethylene mutants with a focus on primary root growth and the role of ethylene. We showed that excess Fe arrested primary root growth by decreasing both cell elongation and division, and principally resulteds from direct external Fe contact at the root tip. Pronounced ethylene, but not abscisic acid, evolution was associated with excess Fe exposure. Ethylene antagonists intensified root growth inhibition in the wild type, while the inhibition was significantly reduced in ethylene-overproduction mutants. We showed that ethylene plays a positive role in tissue Fe homeostasis, even in the absence of iron-plaque formation. Ethylene reduced Fe concentrations in the stele, xylem, and shoot. Furthermore, ethylene increased the expression of genes encoding Fe-sequestering ferritins. Additionally, ethylene significantly enhanced root K(+) status and upregulated K(+)-transporter (HAK5) expression. Our findings highlight the important role of ethylene in tissue Fe and K homeostasis and primary root growth under Fe stress in Arabidopsis.

  18. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana.

    Science.gov (United States)

    Kobayashi, Yuriko; Sadhukhan, Ayan; Tazib, Tanveer; Nakano, Yuki; Kusunoki, Kazutaka; Kamara, Mohamed; Chaffai, Radhouane; Iuchi, Satoshi; Sahoo, Lingaraj; Kobayashi, Masatomo; Hoekenga, Owen A; Koyama, Hiroyuki

    2016-04-01

    Plants have evolved a series of tolerance mechanisms to saline stress, which perturbs physiological processes throughout the plant. To identify genetic mechanisms associated with salinity tolerance, we performed linkage analysis and genome-wide association study (GWAS) on maintenance of root growth of Arabidopsis thaliana in hydroponic culture with weak and severe NaCl toxicity. The top 200 single-nucleotide polymorphisms (SNPs) determined by GWAS could cumulatively explain approximately 70% of the variation observed at each stress level. The most significant SNPs were linked to the genes of ATP-binding cassette B10 and vacuolar proton ATPase A2. Several known salinity tolerance genes such as potassium channel KAT1 and calcium sensor SOS3 were also linked to SNPs in the top 200. In parallel, we constructed a gene co-expression network to independently verify that particular groups of genes work together to a common purpose. We identify molecular mechanisms to confer salt tolerance from both predictable and novel physiological sources and validate the utility of combined genetic and network analysis. Additionally, our study indicates that the genetic architecture of salt tolerance is responsive to the severity of stress. These gene datasets are a significant information resource for a following exploration of gene function. PMID:26667381

  19. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue

    2009-01-01

    Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositoi metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTasel3 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PINI and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin trans-port by regulating vesicle trafficking and thereby play a role in root gravitropism.

  20. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.

    Science.gov (United States)

    Wang, Yi; Dindas, Julian; Rienmüller, Florian; Krebs, Melanie; Waadt, Rainer; Schumacher, Karin; Wu, Wei-Hua; Hedrich, Rainer; Roelfsema, M Rob G

    2015-11-01

    Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces. PMID:26232520

  1. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  2. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.

    Science.gov (United States)

    Han, Min; Wu, Wei; Wu, Wei-Hua; Wang, Yi

    2016-03-01

    Potassium (K(+)) is one of the essential macronutrients for plant growth and development. K(+) uptake from environment and K(+) translocation in plants are conducted by K(+) channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K(+) uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on low-K(+) medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K(+) uptake rate and K(+) content in xylem sap under K(+)-deficient conditions. Thus, the K(+) content in kup7 shoot was significantly reduced under low-K(+) conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K(+) transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level in Arabidopsis root. Together, our data demonstrated that KUP7 is crucial for K(+) uptake in Arabidopsis root and might be also involved in K(+) transport into xylem sap, affecting K(+) translocation from root toward shoot, especially under K(+)-limited conditions. PMID:26851373

  3. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wencai [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Zhang, Liang [College of Life Science, Henan Normal University, Xinxiang 453007 (China); Xu, Hangbo; Wang, Lin [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China); Jiao, Zhen, E-mail: jiaozhen@zzu.edu.cn [Henan Provincial Key Laboratory of Ion Beam Bio-engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  4. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium

    OpenAIRE

    Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2015-01-01

    Highlight AtNUDX9, a GDP-d-Man pyrophosphohydrolase in Arabidopsis, is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.

  5. Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Xiaodong; Cheng, Jingfei; Chen, Lyuqin; Zhang, Guifang; Huang, Hai; Zhang, Yijing; Xu, Lin

    2016-04-01

    Plants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first event that provides signals to trigger the whole regenerative process. However, our knowledge of the role of wounding in regeneration remains limited. In this study, we show that wounding not only triggers the auxin-mediated fate transition of regeneration-competent cells, but also induces the NAC pathway for root tip emergence. The NAC1 transcription factor gene was specifically expressed in response to wounding in the leaf explant, but not in the wounded leaf residue of the source plant. Inhibition of the NAC1 pathway severely affected the emergence of adventitious root tips. However, the NAC1 pathway functioned independently of auxin-mediated cell fate transition and regulates expression of CEP genes, which encode proteins that might have a role in degradation of extensin proteins in the cell wall. Overall, our results suggest that wounding has multiple roles in de novo root organogenesis and that NAC1 acts as one downstream branch in regulating the cellular environment for organ emergence.

  6. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.

  7. Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings

    Science.gov (United States)

    Ishikawa, H.; Evans, M. L.

    1997-01-01

    In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.

  8. An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Guo, Zhengfei; Qian, Meng; Gan, Lijun

    2016-08-01

    Root hairs are plastic in response to nutrient supply, but relatively little is known about their development under low ammonium (NH4(+)) conditions. This study showed that reducing NH4(+) for 3 days in wild-type Arabidopsis seedlings resulted in drastic elongation of root hairs. To investigate the possible mediation of ethylene and auxin in this process, seedlings were treated with 2,3,5-triiodobenzoic acid (TIBA, auxin transport inhibitor), 1-naphthylphthalamic acid (NPA, auxin transport inhibitor), p-chlorophenoxy isobutyric acid (PCIB, auxin action inhibitor), aminoethoxyvinylglycine (AVG, chemical inhibitor of ethylene biosynthesis), or silver ions (Ag(+), ethylene perception antagonist) under low NH4(+) conditions. Our results showed that TIBA, NPA and PCIB did not inhibit root hair elongation under low NH4(+) conditions, while AVG and Ag(+) completely inhibited low NH4(+)-induced root hair elongation. This suggested that low NH4(+)-induced root hair elongation was dependent on the ethylene pathway, but not the auxin pathway. Further genetic studies revealed that root hair elongation in auxin-insensitive mutants was sensitive to low NH4(+) treatment, but elongation was less sensitive in ethylene-insensitive mutants than wild-type plants. In addition, low NH4(+)-induced root hair elongation was accompanied by reactive oxygen species (ROS) accumulation. Diphenylene iodonium (DPI, NADPH oxidase inhibitor) and dimethylthiourea (DMTU, ROS scavenger) inhibited low NH4(+)-induced root hair elongation, suggesting that ROS were involved in this process. Moreover, ethylene acted together with ROS to modulate root hair elongation under low NH4(+) conditions. These results demonstrate that a signaling pathway involving ethylene and ROS participates in regulation of root hair elongation when Arabidopsis seedlings are subjected to low NH4(+) conditions. PMID:27074220

  9. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Fatsiou, Maria

    2015-01-01

    Chromium (Cr) is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI)], the most toxic form provided as 100 μM potassium dichromate (K2Cr2O7), in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2) production and peroxidase activity were found in Cr(VI)-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER) was less affected under Cr(VI) stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS)-correlated and the malformations observed are organelle specific. PMID:26204828

  10. Chromium-Induced Ultrastructural Changes and Oxidative Stress in Roots of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Eleftherios P. Eleftheriou

    2015-07-01

    Full Text Available Chromium (Cr is an abundant heavy metal in nature, toxic to living organisms. As it is widely used in industry and leather tanning, it may accumulate locally at high concentrations, raising concerns for human health hazards. Though Cr effects have extensively been investigated in animals and mammals, in plants they are poorly understood. The present study was then undertaken to determine the ultrastructural malformations induced by hexavalent chromium [Cr(VI], the most toxic form provided as 100 μM potassium dichromate (K2Cr2O7, in the root tip cells of the model plant Arabidopsis thaliana. A concentration-dependent decrease of root growth and a time-dependent increase of dead cells, callose deposition, hydrogen peroxide (H2O2 production and peroxidase activity were found in Cr(VI-treated seedlings, mostly at the transition root zone. In the same zone, nuclei remained ultrastructurally unaffected, but in the meristematic zone some nuclei displayed bulbous outgrowths or contained tubular structures. Endoplasmic reticulum (ER was less affected under Cr(VI stress, but Golgi bodies appeared severely disintegrated. Moreover, mitochondria and plastids became spherical and displayed translucent stroma with diminished internal membranes, but noteworthy is that their double-membrane envelopes remained structurally intact. Starch grains and electron dense deposits occurred in the plastids. Amorphous material was also deposited in the cell walls, the middle lamella and the vacuoles. Some vacuoles were collapsed, but the tonoplast appeared integral. The plasma membrane was structurally unaffected and the cytoplasm contained opaque lipid droplets and dense electron deposits. All electron dense deposits presumably consisted of Cr that is sequestered from sensitive sites, thus contributing to metal tolerance. It is concluded that the ultrastructural changes are reactive oxygen species (ROS-correlated and the malformations observed are organelle specific.

  11. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    Science.gov (United States)

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root.

  12. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    Science.gov (United States)

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root. PMID:27457987

  13. Cytological and molecular characterization of non-host resistance in Arabidopsis thaliana against wheat stripe rust.

    Science.gov (United States)

    Cheng, Yulin; Zhang, Hongchang; Yao, Juanni; Han, Qingmei; Wang, Xiaojie; Huang, Lili; Kang, Zhensheng

    2013-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. We report the use of the non-host plant Arabidopsis thaliana to identify the basis of resistance to Pst at the cytological and molecular levels. No visible symptoms were observed on Arabidopsis leaves inoculated with Pst. Microscopic observations showed that significantly reduced numbers of Pst urediospores had successfully achieved penetration in Arabidopsis compared with those in wheat. There were significant differences in the frequency of stomatal penetration but not in fungal growth among different Pst races in Arabidopsis. The fungus failed to successfully form haustoria in Arabidopsis and attempted infection induced an active response including accumulation of phenolic compounds and callose deposition in plant cells. A set of defence-related genes were also up regulated during the Pst infection. Compared with wild type plants, increased fungal growth was observed in an npr1-1 mutant and in NahG transformed plants, which both are insensitive to salicylic acid. However, treatment of Arabidopsis plants with cytochalasin B, an inhibitor of actin microfilament polymerization, did not increase susceptibility to Pst. Our results demonstrate that Arabidopsis can be used to study mechanisms of non-host resistance to wheat stripe rust, and highlight the significance of participation of salicylic acid in non-host resistance to rust fungi.

  14. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

    OpenAIRE

    Blanch Roure, Josep-Salvador; Peñuelas, Josep; Llusià Benet, Joan; Sardans i Galobart, Jordi; Owen, Susan M.

    2015-01-01

    We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wildtype (WT) and transgenic line (CoxIVFaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found coeluti...

  15. RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation

    OpenAIRE

    Crane, Yan Ma; Gelvin, Stanton B

    2007-01-01

    We investigated the effect of RNAi-mediated gene silencing of 109 Arabidopsis thaliana chromatin-related genes (termed “chromatin genes” hereafter) on Agrobacterium-mediated root transformation. Each of the RNAi lines contains a single- or low-copy-number insertion of a hairpin construction that silences the endogenous copy of the target gene. We used three standard transient and stable transformation assays to screen 340 independent RNAi lines, representing 109 target genes, for the rat (res...

  16. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress

    OpenAIRE

    Sabine Jülke; Jutta Ludwig-Müller

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana cl...

  17. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress.

    Science.gov (United States)

    Li, Guangjie; Song, Haiyan; Li, Baohai; Kronzucker, Herbert J; Shi, Weiming

    2015-12-01

    A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.

  18. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    Science.gov (United States)

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  19. Establishment of embryonic shoot–root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Ying Hua eSu

    2015-01-01

    Full Text Available Auxin and cytokinin signaling participates in regulating a large spectrum of developmental and physiological processes in plants. The shoots and roots of plants have specific and sometimes even contrary responses to these hormones. Recent studies have clearly shown that establishing the spatiotemporal distribution of auxin and cytokinin response signals is central for the control of shoot apical meristem (SAM induction in cultured tissues. However, little is known about the role of these hormones in root apical meristem (RAM initiation. Here, we found that the expression patterns of several regulatory genes critical for RAM formation were correlated with the establishment of the embryonic root meristem during somatic embryogenesis in Arabidopsis. Interestingly, the early expression of the WUS-RELATED HOMEOBOX 5 (WOX5 and WUSCHEL (WUS genes was induced and was nearly overlapped within the embryonic callus when somatic embryos (SEs could not be identified morphologically. Their correct expression was essential for RAM and SAM initiation and embryonic shoot–root axis establishment. Furthermore, we analyzed the auxin and cytokinin response during SE initiation. Notably, cytokinin response signals were detected in specific regions that were correlated with induced WOX5 expression and subsequent SE formation. Overexpression of the ARABIDOPSIS RESPONSE REGULATOR genes ARR7 and ARR15 (feedback repressors of cytokinin signaling, disturbed RAM initiation and SE induction. These results provide new information on auxin and cytokinin-regulated apical–basal polarity formation of shoot–root axis during somatic embryogenesis.

  20. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    Science.gov (United States)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  1. Root–Root Interactions:Towards A Rhizosphere Framework

    NARCIS (Netherlands)

    Mommer, L.; Ruijven, van J.; Kirkegaard, John

    2016-01-01

    Plant scientists have made great progress in understanding molecular mecha-
    nisms controlling root responses to nutrients of arabidopsis (Arabidopsis thali-
    ana) plants under controlled conditions. Simultaneously, ecologists and
    agronomists have demonstrated that root–root interactions i

  2. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  3. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yan Wang; Ju Yang; Chunli Ma; Ying Zhang; Ting Ge; Zhi Qi; Yan Kang

    2015-01-01

    Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starva-tion-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpress-ing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initial y identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. Correction added on 6 August 2015, after first online publica-tion:“RND3”corrected to“RHD3”.

  4. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  5. Comparative pathobiology of Heterobasidion annosum during challenge on Pinus sylvestris and Arabidopsis roots: an analysis of defensin gene expression in two pathosystems.

    Science.gov (United States)

    Jaber, Emad; Xiao, Chaowen; Asiegbu, Fred O

    2014-03-01

    Heterobasidion annosum is widely known as a major root and butt rot pathogen of conifer trees, but little information is available on its interaction with the roots of herbaceous angiosperm plants. We investigated the infection biology of H. annosum during challenge with the angiosperm model Arabidopsis and monitored the host response after exposure to different hormone elicitors, chemicals (chitin, glucan and chitosan) and fungal species that represent diverse basidiomycete life strategies [e.g., pathogen (H. annosum), saprotroph (Stereum sanguinolentum) and mutualist (Lactarius rufus)]. The results revealed that the tree pathogen (H. annosum) and the saprotroph (S. sanguinolentum) could infect the Col-8 (Columbia) ecotype of Arabidopsis in laboratory inoculation experiments. Germinated H. annosum spores had appressorium-like penetration structures attached to the surface of the Arabidopsis roots. Subsequent invasive fungal growth led to the disintegration of the vascular region of the root tissues. Progression of root rot symptoms in Arabidopsis was similar to the infection development that was previously documented in Scots pine seedlings. Scots pine PsDef1 and Arabidopsis DEFLs (AT5G44973.1) and PDF1.2 were induced at the initial stage of the infection. However, differences in the expression patterns of the defensin gene homologs from the two plant groups were observed under various conditions, suggesting functional differences in their regulation. The potential use of the H. annosum-Arabidopsis pathosystem as a model for studying forest tree diseases is discussed. PMID:24366684

  6. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  7. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    Science.gov (United States)

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  8. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    Science.gov (United States)

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  9. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development. PMID:27288545

  10. Osmotic Effects on the Electrical Properties of Arabidopsis Root Hair Vacuoles in Situ1

    Science.gov (United States)

    Lew, Roger R.

    2004-01-01

    To assess the role of the vacuole in responses to hyperosmotic and hypo-osmotic stress, the electrical properties of the vacuole were measured in situ. A double-barrel micropipette was inserted into the vacuole for voltage clamping. A second double-barrel micropipette was inserted into the cytoplasm to provide a virtual ground that separated the electrical properties of the vacuole from those of the plasma membrane. Osmotic stress causes immediate electrical responses at the plasma membrane (Lew RR [1996] Plant Physiol 97: 2002-2005) and ion flux changes and turgor recovery (Shabala SN, Lew RR [2002] 129: 290-299) in Arabidopsis root cells. In situ, the vacuole also responds rapidly to changes in extracellular osmotic potential. Hyperosmotic treatment caused a very large increase in the ionic conductance of the vacuole. Hypo-osmotic treatment did not affect the vacuolar conductance. In either case, the vacuolar electrical potential was unchanged. Taken in concert with previous studies of changes at the plasma membrane, these results demonstrate a highly coordinated system in which the vacuole and plasma membrane are primed to respond immediately to hyperosmotic stress before changes in gene expression. PMID:14730070

  11. Tissue organization and cell ultrastructure in the roots of three Arabidopsis species grown at different zinc concentrations

    Directory of Open Access Journals (Sweden)

    M. Čiamporová

    2015-05-01

    Full Text Available The model plant Arabidopsis thaliana is known to be heavy metal-sensitive in contrast to its relative species A. arenosa and A. halleri classified as pseudometallophytes. Quantitative differences in primary root anatomy previously found between A. thaliana and the non-metallicolous (NM and metallicolous (M populations of the non-model Arabidopsis species necessitated further research at cellular and ultrastructural levels. Seedlings of A. thaliana, ecotype Columbia and a natural population Ratkovo, the NM and M populations of A. arenosa and A. halleri were grown on agar medium containing 10 μM (control and 1000 μM Zn2+ for 5 days. Light microscopy confirmed the higher number of cells in the endodermal, cortical and epidermal layers and a higher incidence of additional cell tiers, the so-called middle cortex (MC in the tolerant genotypes. Such differences were present in untreated plants and even more pronounced in plants exposed to excess of zinc (Zn. Electron microscopy of the root tissues at comparable distances from the root tip showed Casparian bands only in the radial cell walls of endodermis of A. halleri M population originating from severely (Cu, Cd and Pb contaminated site. Casparian bands were not differentiated yet in the roots of the other species and populations, and they were not formed in the cell walls between endodermis and MC cells. In the apical cytoplasm of trichoblast bulges, autophagic vacuoles were found only in the sensitive A. thaliana and small vacuoles in the other genotypes. The enhanced concentration of Zn confirmed the higher metal sensitivity of the model species and did not substantially disturb the root cell ultrastructure of the tolerant Arabidopsis species.

  12. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sha eLuo

    2015-12-01

    Full Text Available Auxin/Indole-3-Acetic Acid (Aux/IAA genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs. Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates

  13. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John

    2009-04-01

    The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.

  14. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    1995-01-01

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  15. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.

    Science.gov (United States)

    Cui, Hongchang; Kong, Danyu; Liu, Xiuwen; Hao, Yueling

    2014-04-01

    Bundle sheath (BS) cells form a single cell layer surrounding the vascular tissue in leaves. In C3 plants, photosynthesis occurs in both the BS and mesophyll cells, but the BS cells are the major sites of photosynthesis in C4 plants, whereas the mesophyll cells are only involved in CO2 fixation. Because C4 plants are more efficient photosynthetically, introduction of the C4 mechanism into C3 plants is considered a key strategy to improve crop yield. One prerequisite for such C3-to-C4 engineering is the ability to manipulate the number and physiology of the BS cells, but the molecular basis of BS cell-fate specification remains unclear. Here we report that mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana. SCR and SCL23 are expressed specifically in the BS cells and act redundantly in BS cell-fate specification, but their expression pattern and function diverge at later stages of leaf development. Using ChIP-chip experiments and sugar assays, we show that SCR is primarily involved in sugar transport whereas SCL23 functions in mineral transport. SHR is also essential for BS cell-fate specification, but it is expressed in the central vascular tissue. However, the SHR protein moves into the BS cells, where it directly regulates SCR and SCL23 expression. SHR, SCR and SCL23 homologs are present in many plant species, suggesting that this developmental pathway for BS cell-fate specification is likely to be evolutionarily conserved.

  16. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  17. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Jie-Li Mao; Ying-Jun Zhao; Chuan-You Li; Cheng-Bin Xiang

    2015-01-01

    L‐Cysteine plays a prominent role in sulfur metabo-lism of plants. However, its role in root development is largely unknown. Here, we report that L‐cysteine reduces primary root growth in a dosage‐dependent manner. Elevating cel ular L‐cysteine level by exposing Arabidopsis thaliana seedlings to high L‐cysteine, buthionine sulphoximine, or O‐acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cel marker as wel as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L‐cysteine significantly reduces the protein level of two sets of stem cel specific transcription factors PLETHORA1/2 and SCR/SHR. However, L‐cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post‐transcriptional mech-anism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L‐cysteine level acts to maintain root stem cel niche by regulating basal‐and auxin‐induced expression of PLT1/2 and SCR/SHR. L‐Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  18. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  19. cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis thaliana roots.

    Science.gov (United States)

    Li, Jisheng; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-10-01

    3',5'-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na(+)/K(+) ratio and a decrease in gene expression of the plasma membrane (PM) H(+)-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H(2)O(2) or CaCl(2) alleviated the NaCl-induced injury by maintaining a lower Na(+)/K(+) ratio and increasing the PM H(+)-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H(2)O(2) by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H(2)O(2) on ionic homeostasis was abolished when Ca(2+) was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA, a Ca(2+) chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H(2)O(2) accumulation in salt stress, and Ca(2+) was necessary in the cGMP-mediated signaling pathway. H(2)O(2), as the downstream component of cGMP signaling pathway, stimulated PM H(+)-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.

  20. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling.

    Science.gov (United States)

    Juntawong, Piyada; Sirikhachornkit, Anchalee; Pimjan, Rachaneeporn; Sonthirod, Chutima; Sangsrakru, Duangjai; Yoocha, Thippawan; Tangphatsornruang, Sithichoke; Srinives, Peerasak

    2014-01-01

    Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.

  1. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling

    Directory of Open Access Journals (Sweden)

    Piyada eJuntawong

    2014-12-01

    Full Text Available Jatropha (Jatropha curcas is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq. The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1,968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.

  2. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation

    OpenAIRE

    Lili Fu; Meng Wang; Bingying Han; Deguan Tan; Xuepiao Sun; Jiaming Zhang

    2016-01-01

    Plant myrosinases (β-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both gene...

  3. Molecular screening tools to study Arabidopsis transcription factors

    Directory of Open Access Journals (Sweden)

    Nora eWehner

    2011-11-01

    Full Text Available In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs, which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF Open Reading Frame (ORF collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publi-cally available GATEWAY® compatible ORF collections. (1 The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2 A high-throughput microtiter plate based Protoplast Trans Activation (PTA system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.

  4. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica.

    Science.gov (United States)

    Nongbri, Pyniarlang L; Johnson, Joy Michal; Sherameti, Irena; Glawischnig, Erich; Halkier, Barbara Ann; Oelmüller, Ralf

    2012-09-01

    The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.

  5. Complex physiological and molecular processes underlying root gravitropism

    Science.gov (United States)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  6. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development

    OpenAIRE

    Mishra, Bhuwaneshwar S.; Manjul Singh; Priyanka Aggrawal; Ashverya Laxmi

    2009-01-01

    BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root ...

  7. Gravitropism in Arabidopsis thaliana: Root-specific action of the EHB gene and violation of the resultant law.

    Science.gov (United States)

    Dümmer, Michaela; Forreiter, Christoph; Galland, Paul

    2015-09-15

    Gravitropic bending of seedlings of Arabidopsis thaliana in response to centrifugal accelerations was determined in a range between 0.0025 and 4×g to revisit and validate the so-called resultant law, which claims that centrifugation causes gravitropic organs to orient parallel to the resultant stimulus vector. We show here for seedlings of A. thaliana that this empirical law holds for hypocotyls but surprisingly fails for roots. While the behavior of hypocotyls could be modeled by an arc tangent function predicted by the resultant law, roots displayed a sharp maximum at 1.8×g that substantially overshoots the predicted value and that represents a novel phenomenon, diagravitropism elicited by centrifugal acceleration. The gravitropic bending critically depended on the orientation of the seedling relative to the centrifugal acceleration. If the centrifugal vector pointed toward the cotyledons, gravitropic bending of hypocotyls and roots was substantially enhanced. The complex behavior of Arabidopsis seedlings provides strong evidence that gravitropic bending entails a cosine component (longitudinal stimulus) to which the seedlings were more sensitive than to the classical sine component. The absolute gravitropic thresholds of hypocotyls and roots were determined in a clinostat-centrifuge and found to be below 0.015×g. A tropism mutant lacking the EHB1 protein, which interacts with ARF-GAP (ARF GTPase-activating protein) and thus indirectly with a small ARF-type G protein, displayed a lower gravitropic threshold for roots and also enhanced bending, while the responses of the hypocotyls remained nearly unaffected. PMID:26496692

  8. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation

    Directory of Open Access Journals (Sweden)

    Lili Fu

    2016-06-01

    Full Text Available Plant myrosinases (β-thioglucoside glucohydrolases are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed

  9. Arabidopsis Myrosinase Genes AtTGG4 and AtTGG5 Are Root-Tip Specific and Contribute to Auxin Biosynthesis and Root-Growth Regulation.

    Science.gov (United States)

    Fu, Lili; Wang, Meng; Han, Bingying; Tan, Deguan; Sun, Xuepiao; Zhang, Jiaming

    2016-01-01

    Plant myrosinases (β-thioglucoside glucohydrolases) are classified into two subclasses, Myr I and Myr II. The biological function of Myr I has been characterized as a major biochemical defense against insect pests and pathogens in cruciferous plants. However, the biological function of Myr II remains obscure. We studied the function of two Myr II member genes AtTGG4 and AtTGG5 in Arabidopsis. RT-PCR showed that both genes were specifically expressed in roots. GUS-assay revealed that both genes were expressed in the root-tip but with difference: AtTGG4 was expressed in the elongation zone of the root-tip, while AtTGG5 was expressed in the whole root-tip. Moreover, myrosin cells that produce and store the Myr I myrosinases in aboveground organs were not observed in roots, and AtTGG4 and AtTGG5 were expressed in all cells of the specific region. A homozygous double mutant line tgg4tgg5 was obtained through cross-pollination between two T-DNA insertion lines, tgg4E8 and tgg5E12, by PCR-screening in the F2 and F3 generations. Analysis of myrosinase activity in roots of mutants revealed that AtTGG4 and AtTGG5 had additive effects and contributed 35% and 65% myrosinase activity in roots of the wild type Col-0, respectively, and myrosinase activity in tgg4tgg5 was severely repressed. When grown in Murashiege & Skoog (MS) medium or in soil with sufficient water, Col-0 had the shortest roots, and tgg4tgg5 had the longest roots, while tgg4E8 and tgg5E12 had intermediate root lengths. In contrast, when grown in soil with excessive water, Col-0 had the longest roots, and tgg4tgg5 had the shortest roots. These results suggested that AtTGG4 and AtTGG5 regulated root growth and had a role in flood tolerance. The auxin-indicator gene DR5::GUS was then introduced into tgg4tgg5 by cross-pollination. DR5::GUS expression patterns in seedlings of F1, F2, and F3 generations indicated that AtTGG4 and AtTGG5 contributed to auxin biosynthesis in roots. The proposed mechanism is that

  10. Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex.

    Directory of Open Access Journals (Sweden)

    Emmanuel Panteris

    Full Text Available Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.

  11. Differential responsiveness of cortical microtubule orientation to suppression of cell expansion among the developmental zones of Arabidopsis thaliana root apex.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Hatzopoulos, Polydefkis; Rigas, Stamatis

    2013-01-01

    Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone. PMID:24324790

  12. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  13. BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of the Arabidopsis primary root.

    Science.gov (United States)

    Salazar-Henao, Jorge E; Lehner, Reinhard; Betegón-Putze, Isabel; Vilarrasa-Blasi, Josep; Caño-Delgado, Ana I

    2016-09-01

    Brassinosteroid (BR) hormones are important regulators of plant growth and development. Recent studies revealed the cell-specific role of BRs in vascular and stem cell development by the action of cell-specific BR receptor complexes and downstream signaling components in Arabidopsis thaliana Despite the importance of spatiotemporal regulation of hormone signaling in the control of plant vascular development, the mechanisms that confer cellular specificity to BR receptors within the vascular cells are not yet understood. The present work shows that BRI1-like receptor genes 1 and 3 (BRL1 and BRL3) are differently regulated by BRs. By using promoter deletion constructs of BRL1 and BRL3 fused to GFP/GUS (green fluorescent protein/β-glucuronidase) reporters in Arabidopsis, analysis of their cell-specific expression and regulation by BRs in the root apex has been carried out. We found that BRL3 expression is finely modulated by BRs in different root cell types, whereas the location of BRL1 appears to be independent of this hormone. Physiological and genetic analysis show a BR-dependent expression of BRL3 in the root meristem. In particular, BRL3 expression requires active BES1, a central transcriptional effector within the BRI1 pathway. ChIP analysis showed that BES1 directly binds to the BRRE present in the BRL3 promoter region, modulating its transcription in different subsets of cells of the root apex. Overall our study reveals the existence of a cell-specific negative feedback loop from BRI1-mediated BES1 transcription factor to BRL3 in phloem cells, while contributing to a general understanding of the spatial control of steroid signaling in plant development. PMID:27511026

  14. The acquisition of cell fate in the Arabidopsis thaliana root meristem

    NARCIS (Netherlands)

    Scheres, B.J.G.; Berg, C. van den; Hage, W.; Willemsen, V.; Werff, N. van der; Wolkenfelt, H.; McKhann, H.; Weisbeek, P.

    1997-01-01

    During plant embryogenesis an embryo with cotyledons, a shoot apical meristem, a hypocotyl and a root apical meristem, is formed. The primary root and shoot meristems initiate post-embryonic growth generating all plant organs. The root meristem forms the primary root, and the shoot meristem forms th

  15. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  16. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Science.gov (United States)

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  17. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Directory of Open Access Journals (Sweden)

    Natasha Saint Savage

    2008-09-01

    Full Text Available The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  18. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  19. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis.

    Science.gov (United States)

    Jeon, Jin; Cho, Chuloh; Lee, Mi Rha; Van Binh, Nguyen; Kim, Jungmook

    2016-08-01

    Lateral roots (LRs) are a major determinant of the root system architecture in plants, and developmental plasticity of LR formation is critical for the survival of plants in changing environmental conditions. In Arabidopsis thaliana, genetic pathways have been identified that regulate LR branching in response to numerous environmental cues, including some nutrients, salt, and gravity. However, it is not known how genetic components are involved in the LR adaptation response to cold. Here, we demonstrate that CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3, encoding APETALA2 transcription factors, play an important role in regulating Arabidopsis LR initiation under cold stress. Analysis of LR developmental kinetics demonstrated that both CRF2 and CRF3 regulate LR initiation. crf2 and crf3 single mutants exhibited decreased LR initiation under cold stress compared with the wild type, and the crf2 crf3 double mutants showed additively decreased LR densities compared with the single mutants. Conversely, CRF2 or CRF3 overexpression caused increased LR densities. CRF2 was induced by cold via a subset of the cytokinin two-component signaling (TCS) pathway, whereas CRF3 was upregulated by cold via TCS-independent pathways. Our results suggest that CRF2 and CRF3 respond to cold via TCS-dependent and TCS-independent pathways and control LR initiation and development, contributing to LR adaptation to cold stress. PMID:27432872

  20. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN

    Directory of Open Access Journals (Sweden)

    María Josefina Poupin

    2016-04-01

    Full Text Available Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR. However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1 or auxin (axr1-5 signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2, indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control.

  1. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN.

    Science.gov (United States)

    Poupin, María J; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1-5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  2. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Truyen N Quach

    Full Text Available In Arabidopsis, NAC (NAM, ATAF and CUC transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA. They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D. The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT, while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA, lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.

  3. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  4. Physiological and Molecular Features of the Pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert

    Institute of Scientific and Technical Information of China (English)

    Fu-Ming Dai; Tong Xu; Gerhard A. Wolf; Zu-Hua He

    2006-01-01

    The fungal pathogen Sclerotinia sclerotiorum Libert causes rot diseases on many crops worldwide and large economic losses occur frequently because of a lack of resistant varieties. The pathogenesis of S. sclerotiorum and the molecular basis of plant responses to the pathogen are poorly understood. In the present investigation,the process of S. sclerotiorum infection in Arabidopsis thaliana L., a plant that is highly susceptible to this fungus, was analysed. In addition, the defense activation in the host was investigated. A convenient inoculation method using millet grain was developed for S. sclerotiorum in Arabidopsis. The fungus rapidly infected the plants, probably through ball- or cushion-like infection structures. Visible symptoms developed within 24h and plants were killed 72 h after inoculation. Cellulase, the main enzyme that caused host tissues to rot,was secreted by S. sclerotiorum in a pH-dependent manner. Oxalic acid, another pathogenic factor secreted by the fungus, induced necrotic lesions on the leaves. Infection with S. sclerotiorum strongly induced the production of the pathogenesis-related (PR) proteins β-1,3-glucanase and chitinase in Arabidopsis.Furthermore, the PR gene PDF. 1 was induced, but not PR1, indicating that the pathogen activated basal defense of jasmonic acid/ethylene dependence, which is consistent with its necrotrophic characteristics.This pathosystem for Arabidopsis-S. sclerotiorum could provide an approach for the analysis of the interactions between S. sclerotiorum and other crops, thereby facilitating genetic manipulation techniques for controlling this pathogen.

  5. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis.

    Science.gov (United States)

    Roberts, Ianto; Smith, Stephanie; Stes, Elisabeth; De Rybel, Bert; Staes, An; van de Cotte, Brigitte; Njo, Maria Fransiska; Dedeyne, Lise; Demol, Hans; Lavenus, Julien; Audenaert, Dominique; Gevaert, Kris; Beeckman, Tom; De Smet, Ive

    2016-08-01

    Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand-receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation. PMID:27296247

  6. Tracking transcription factor mobility and interaction in arabidopsis roots with fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Clark, Natalie M.; Hinde, Elizabeth; Hinde, Elizabeth; Fisher, Adam P.; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N.; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction

  7. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 in Arabidopsis roots during onset of induced systemic resistance and iron deficiency responses

    NARCIS (Netherlands)

    Zamioudis, C.; Korteland, J.; Van Pelt, J.A.; Van Hamersveld, M.; Dombrowski, N.; Bai, Y.; Hanson, J.; Van Verk, M.C.; Ling, H.-Q.; Schulze-Lefert, P.; Pieterse, C.M.J.

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synth

  8. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Pelt, J.A. van; Rep, M.; Loon, L.C. van; Pieterse, C.M.J.

    2005-01-01

    Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of sa

  9. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    Science.gov (United States)

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  10. UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices

    Directory of Open Access Journals (Sweden)

    Ken eYokawa

    2016-01-01

    Full Text Available UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiationon the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  11. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    Science.gov (United States)

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  12. AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots

    OpenAIRE

    Peyronnet, Rémi; Haswell, Elizabeth S.; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2008-01-01

    Plant cells, like those of animals and bacteria, are able to sense physical deformation of the plasma membrane. Mechanosensitive (MS) channels are proteins that transduce mechanical force into ion flux, providing a mechanism for the perception of mechanical stimuli such as sound, touch and osmotic pressure. We recently identified AtMSL9 and AtMSL10, two mechanosensitive channels in Arabidopsis thaliana, as molecular candidates for mechanosensing in higher plants.1 AtMSL9 and AtMSL10 are membe...

  13. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells.

    Directory of Open Access Journals (Sweden)

    Shaowu Xue

    Full Text Available The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺ transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na⁺ and K⁺ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K⁺ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na⁺ over K⁺ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na⁺ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na⁺ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na⁺ channel transport properties.

  14. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  15. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress.

    Science.gov (United States)

    Jülke, Sabine; Ludwig-Müller, Jutta

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana. PMID:27135222

  16. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP Gene Expression to the Clubroot Disease and Salt Stress

    Directory of Open Access Journals (Sweden)

    Sabine Jülke

    2015-12-01

    Full Text Available The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.

  17. Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation?

    Directory of Open Access Journals (Sweden)

    Camille Roux

    Full Text Available Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri is one of the few species able to colonize soils highly enriched in zinc and cadmium. Recent advances in the molecular genetics of adaptation show that the physiology of this derived ecological trait involves copy number expansions of the AhHMA4 gene, for which orthologs are found in single copy in the closely related A. lyrata and the outgroup A. thaliana. To gain insight into the speciation process, we ask whether adaptive molecular changes at this candidate gene were contemporary with important stages of the speciation process. We first inferred the scenario and timescale of speciation by comparing patterns of variation across the genomic backgrounds of A. halleri and A. lyrata. Then, we estimated the timing of the first duplication of AhHMA4 in A. halleri. Our analysis suggests that the historical split between the two species closely coincides with major changes in this molecular target of adaptation in the A. halleri lineage. These results clearly indicate that these changes evolved in A. halleri well before industrial activities fostered the spread of Zn- and Cd-polluted areas, and suggest that adaptive processes related to heavy-metal homeostasis played a major role in the speciation process.

  18. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  19. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells.

    Science.gov (United States)

    Rigal, Adeline; Doyle, Siamsa M; Robert, Stéphanie

    2015-01-01

    Confocal live imaging of the amphiphilic styryl dye FM4-64 is a valuable technique to monitor organelle dynamics and in particular endocytic pathways. After application in plants, FM4-64 immediately stains the plasma membrane and is then integrated on vesicles following endomembrane system-dependent internalization processes. Over time, FM4-64 becomes distributed throughout the full vesicular network from the plasma membrane to the vacuole, including the components of the secretory pathways. Here we provide succinct examples of the many important developmental processes in plants that rely on endocytosis and describe two suitable methods to trace the endocytic pathways in Arabidopsis thaliana root cells based on the uptake of FM4-64. PMID:25408447

  20. An improved, simple, inexpensive and highly flexible hydroponic setup for root mitochondria isolation from arabidopsis and nicotiana pants

    International Nuclear Information System (INIS)

    Hydroponic setups are frequently developed and improved as they are convenient platforms for studying whole plant physiology. Mostly, the available systems produce small amounts of plant material and are therefore, unsuitable for studies requiring large quantities of plant material like isolation of mitochondria. To address this issue, we have modified a hydroponic setup that can sustain hundreds of Arabidopsis and tobacco plants until adult plants are established. The setup is very flexible and easy to construct. It is based on the use of recyclable and sterilizable plastic-net-pots and media containers, which are easily available from the local suppliers. The modified seed-pots and styrofoam sheets facilitate the transfer and harvesting of seedlings. We have used the Percoll based two-step density gradient centrifugation method for the isolation of root mitochondria from the hydroponically grown plants. (author)

  1. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer.

    OpenAIRE

    Alfredo Cruz-Ramírez; Sara Díaz-Triviño; Guy Wachsman; Yujuan Du; Mario Arteága-Vázquez; Hongtao Zhang; Rene Benjamins; Ikram Blilou; Neef, Anne B.; Vicki Chandler; Ben Scheres

    2013-01-01

    Author Summary In the plant Arabidposis thaliana, root meristems (in the growing tip of the root) contain slowly dividing cells that act as an organizing center for the root stem cells that surround them. This centre is called the quiescent centre (QC). In this study, we show that the slow rate of division in the QC is regulated by the interaction between two proteins: Retinoblastoma homolog (RBR) and SCARECROW (SCR), a transcription factor that controls stem cell maintenance. RBR and SCR reg...

  2. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan.

    Science.gov (United States)

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-07-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

  3. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  4. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2011-06-15

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 {mu}M for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 {mu}M. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H{sub 2}O{sub 2}, an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. - Highlights: > Unravel response mechanisms to uranium stress

  5. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation

    Science.gov (United States)

    Zheng, Kaijie; Tian, Hainan; Hu, Qingnan; Guo, Hongyan; Yang, Li; Cai, Ling; Wang, Xutong; Liu, Bao; Wang, Shucai

    2016-01-01

    In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation. PMID:26758286

  6. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  7. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    Science.gov (United States)

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  8. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    Science.gov (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  9. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  10. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natasha Savage

    Full Text Available Phosphate (Pi deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana, we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC, ENHANCER OF TRY AND CPC 1 (ETC1, WEREWOLF (WER and SCRAMBLED (SCM. From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias' in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts. Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  11. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  12. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    Science.gov (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  13. Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Trutschel, Diana; Westphal, Lore; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Natural variation of secondary metabolism between different accessions of Arabidopsis thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation approach by including biological variability (plant-to-plant variability) and analysed root metabolic patterns as well as their variability between plants and naturally occurring accessions. To screen 19 accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts was performed using ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant variability than natural variation between accessions and variance of experimental batches. Ratios of plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the investigated accessions displayed a specifically high or low biological variability for these substance classes. This study provides recommendations for future natural variation analyses of glucosinolates, flavonoids, and phenylpropanoids and also reference data for additional substance classes. PMID:27649165

  14. Measuring whole plant CO2 exchange with the environment reveals opposing effects of the gin2-1 mutation in shoots and roots of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Stutz, Simon; Paul, Martin; Heyer, Arnd G

    2015-01-01

    Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2-1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2-1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2-1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.

  15. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis.

    Science.gov (United States)

    Lee, Seong Hee; Chung, Gap Chae; Jang, Ji Young; Ahn, Sung Ju; Zwiazek, Janusz J

    2012-05-01

    The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis.

  16. Identification of Putative Molecular Markers Associated with Root Traits in Coffea canephora Pierre ex Froehner

    Directory of Open Access Journals (Sweden)

    Devaraja Achar

    2015-01-01

    Full Text Available Coffea canephora exhibit poor root system and are very sensitive to drought stress that affects growth and production. Deeper root system has been largely empirical as better avoidance to soil water limitation in drought condition. The present study aimed to identify molecular markers linked to high root types in Coffea canephora using molecular markers. Contrasting parents, L1 valley with low root and S.3334 with high root type, were crossed, and 134 F1 individuals were phenotyped for root and associated physiological traits (29 traits and genotyped with 41 of the 320 RAPD and 9 of the 55 SSR polymorphic primers. Single marker analysis was deployed for detecting the association of markers linked to root associated traits by SAS software. There were 13 putative RAPD markers associated with root traits such as root length, secondary roots, root dry weight, and root to shoot ratio, in which root length associated marker OPS1850 showed high phenotypic variance of 6.86%. Two microsatellite markers linked to root length (CPCM13400 and root to shoot ratio (CM211300. Besides, 25 markers were associated with more than one trait and few of the markers were associated with positively related physiological traits and can be used in marker assisted trait selection.

  17. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    Science.gov (United States)

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.

  18. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Science.gov (United States)

    Maldonado-González, M. Mercedes; Bakker, Peter A. H. M.; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  19. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7.

    Science.gov (United States)

    Maldonado-González, M Mercedes; Bakker, Peter A H M; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  20. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis.

    Science.gov (United States)

    Bennett, Tom; van den Toorn, Albert; Sanchez-Perez, Gabino F; Campilho, Ana; Willemsen, Viola; Snel, Berend; Scheres, Ben

    2010-03-01

    The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly regulated by three genes, SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2, which are members of the Class IIB NAC transcription factor family, together with the VASCULAR NAC DOMAIN (VND) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR (NST) genes that regulate secondary cell wall synthesis in specialized cell types. Lateral cap cells in smb-3 mutants continue to divide and fail to detach from the root, phenotypes that are independent of FEZ upregulation in smb-3. In brn1-1 brn2-1 double mutants, columella cells fail to detach, while in triple mutants, cells fail to mature in all parts of the cap. This complex genetic redundancy involves differences in expression, protein activity, and target specificity. All three genes have very similar overexpression phenotypes to the VND/NST genes, indicating that members of this family are largely functionally equivalent. Our results suggest that Class IIB NAC proteins regulate cell maturation in cells that undergo terminal differentiation with strong cell wall modifications.

  1. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  2. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  3. Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yue Zhou; Zijun Yang; Guangqin Guo; Yan Guo

    2010-01-01

    The microfilament (MF) cytoskeleton has crucial functions in plant development. Recent studies have revealed the function of MFs in diverse stress response. Alkaline stress is harmful to plant growth;however, it remains unclear whether the MFs play a role in alkaline stress. In the present study, we find that blocking MF assembly with latrunculin B (Lat B) leads to inhibition of plant root growth, and stabilization of MFs with phalloidin does not significantly affect plant root growth under normal conditions. In high external pH conditions, MF de-polymerization is induced and that associates with the reduction of root growth; phalloidin treatment partially rescues this reduction. Moreover, Lat B treatment further decreases the survival rate of seedlings growing in high external pH conditions. However, a high external pH (8.0) does not affect MF stability in vitro. Taken together, our results suggest that alkaline stress may trigger a signal that leads the dynamics of MFs and in turn regulates root growth.

  4. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.

    Science.gov (United States)

    Buer, Charles S; Muday, Gloria K

    2004-05-01

    We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

  5. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Xiang; Wang, Jin; Yuan, Jing; Wang, Xi-Li; Zhao, Qing-Ping; Kong, Pei-Tao; Zhang, Xiao

    2015-07-01

    Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.

  6. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-01-01

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors. PMID:27113714

  7. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-04-26

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.

  8. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.

    Science.gov (United States)

    Gong, Xue; Flores-Vergara, Miguel A; Hong, Jing Han; Chu, Huangwei; Lim, Jun; Franks, Robert G; Liu, Zhongchi; Xu, Jian

    2016-03-01

    A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.

  9. Detecting autophagy in Arabidopsis roots by membrane-permeable cysteine protease inhibitor E-64d and endocytosis tracer FM4–64

    OpenAIRE

    Oh-ye, Yuumi; Inoue, Yuko; Moriyasu, Yuji

    2011-01-01

    Autophagy is the process by which cells degrade their own components in lysosomes or vacuoles. Autophagy in tobacco BY-2 cells cultured in sucrose-free medium takes place in formed, autolysosomes in the presence of a cysteine protease inhibitor. The autolysosomes in BY-2 cells are located in the endocytotic pathway and thus can be stained with fluorescent endocytosis marker FM4–64. In the present study, in order to detect autophagy in the root cells of Arabidopsis, we incubated root tips from...

  10. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    OpenAIRE

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Verônica A Grieneisen; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the ro...

  11. The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ting; LIN Jie; SHAO Xue-feng; OU Xiao-ming; WANG Zong-hua; LU Guo-dong

    2009-01-01

    Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection.

  12. Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul; Lein, Wolfgang;

    2004-01-01

    , microorganisms and Arabidopsis, the first plant species with a completely sequenced genome, shows that plants principally use the same biochemical steps to synthesize purine nucleotides and possess all the essential genes and enzymes. Here we report on the cloning and molecular analysis of the complete purine...

  13. Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP-Glucose/UDP-Galactose Transporter that Affects Lateral Root Emergence

    Institute of Scientific and Technical Information of China (English)

    Michael Handford; Cecilia Rodríguez-Furlán; Lorena Marchant; Marcelo Segura; Daniela Gómez; Elena Alvarez-Buyll; Guang-Yan Xiong; Markus Pauly; Ariel Orellana

    2012-01-01

    Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants.However,due to the limited number of related mutants that have observable phenotypes,the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive.Here,we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.),which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster,humans,and Caenorhabditis elegans.We show that AtUTr7 possesses the common structural characteristics conserved among NSTs.Using a green fluorescent protein (GFP) tagged version,we demonstrate that AtUTr7 is localized in the Golgi apparatus.We also show that AtUTr7 is widely expressed,especially in the roots and in specific floral organs.Additionally,the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-GIc,but not a range of other UDP-and GDP-sugars,into the Golgi lumen.Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations.Furthermore,the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants,although additional analytical procedures revealed no further differences in the composition of the root cell walls.This evidence suggests that the transport of UDP-Gal and UDP-GIc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.

  14. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Directory of Open Access Journals (Sweden)

    M. Mercedes eMaldonado-González

    2015-04-01

    Full Text Available The effective management of Verticillium wilts, diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control Verticillium wilt of olive caused by the highly-virulent, defoliating (D pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i olive D and non-defoliating (ND V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii strain PICF7 controls Verticillium wilt (VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

  15. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  16. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  17. Control of patterns of symmetric cell division in the epidermal and cortical tissues of the Arabidopsis root.

    Science.gov (United States)

    Zhang, Yanwen; Iakovidis, Michail; Costa, Silvia

    2016-03-15

    Controlled cell division is central to the growth and development of all multicellular organisms. Within the proliferating zone of the Arabidopsis root, regular symmetric divisions give rise to patterns of parallel files of cells, the genetic basis of which remains unclear. We found that genotypes impaired in the TONNEAU1a (TON1a) gene display misoriented symmetric divisions in the epidermis and have no division defects in the underlying cortical tissue. The TON1a gene encodes a microtubule-associated protein. We show that in the ton1a mutant, epidermal and cortical cells do not form narrow, ring-like preprophase bands (PPBs), which are plant-specific, cytoskeletal structures that predict the position of the division plane before mitosis. The results indicate that in the cortex but not in the epidermis, division plane positioning and patterning can proceed correctly in the absence of both a functional TON1a and PPB formation. Differences between tissues in how they respond to the signals that guide symmetric division orientation during patterning might provide the basis for organised organ growth in the absence of cell movements.

  18. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Science.gov (United States)

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  19. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  20. Lateral Root Development of Related Genes in Arabidopsis thaliana%拟南芥侧根生长发育相关的基因

    Institute of Scientific and Technical Information of China (English)

    张方亮; 高亚梅; 王占斌; 韩毅强; 郑殿峰; 何俊华

    2015-01-01

    侧根是植物吸收水分和养分的重要器官,随着人们对植物侧根研究的不断深入,在植物中发现了大量与侧根发育相关的基因.不完全统计了从2000至2014年发表的与拟南芥侧根生长发育相关的69个基因,按照突变体表型分为三类,结果显示,在69个基因中有57个基因与侧根数目相关,7个基因与侧根长度有关,5个基因影响侧根形态.这些基因中有48个基因与激素相关,其中生长素相关基因36个,说明生长素对侧根发育具有重要作用.从侧根数目、侧根长度、侧根形态3个方面论述了基因对侧根生长发育的作用,为系统揭示拟南芥侧根形成的调控网络提供参考.%Lateral roots are important organs of plant to absorb water and nutrients,a lot of genes associated with lateral root development were found in the plant with more and more researches. 69 lateral root development of related genes in Arabidopsis thaliana were incompletely got from 2000 to 2014,and classified into three categories according to the mutant phenotype. The results showed that 56 genes of 69 genes were associated with the number of lateral roots,7 genes were associated with the lateral root length,and 6 genes affected lateral root morphology. There were 48 hormone-related genes,including 36 auxin-related genes,which indicated that auxin played an important role in lateral root development. This article summarized lateral root growth and development genes from lateral roots number,lateral root length,lateral root morphology,which provided the basis for further study of regulatory network of Arabidopsis lateral root development.

  1. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  2. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    Science.gov (United States)

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes. PMID:24117492

  3. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.

    Science.gov (United States)

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-02-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  4. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Yue, Kun; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-09-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  5. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-01-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  6. The S-Domain Receptor Kinase Arabidopsis Receptor Kinase2 and the U Box/Armadillo Repeat-Containing E3 Ubiquitin Ligase9 Module Mediates Lateral Root Development under Phosphate Starvation in Arabidopsis.

    Science.gov (United States)

    Deb, Srijani; Sankaranarayanan, Subramanian; Wewala, Gayathri; Widdup, Ellen; Samuel, Marcus A

    2014-06-25

    When plants encounter nutrient-limiting conditions in the soil, the root architecture is redesigned to generate numerous lateral roots (LRs) that increase the surface area of roots, promoting efficient uptake of these deficient nutrients. Of the many essential nutrients, reduced availability of inorganic phosphate has a major impact on plant growth because of the requirement of inorganic phosphate for synthesis of organic molecules, such as nucleic acids, ATP, and phospholipids, that function in various crucial metabolic activities. In our screens to identify a potential role for the S-domain receptor kinase1-6 and its interacting downstream signaling partner, the Arabidopsis (Arabidopsis thaliana) plant U box/armadillo repeat-containing E3 ligase9 (AtPUB9), we identified a role for this module in regulating LR development under phosphate-starved conditions. Our results show that Arabidopsis double mutant plants lacking AtPUB9 and Arabidopsis Receptor Kinase2 (AtARK2; ark2-1/pub9-1) display severely reduced LRs when grown under phosphate-starved conditions. Under these starvation conditions, these plants accumulated very low to no auxin in their primary root and LR tips as observed through expression of the auxin reporter DR5::uidA transgene. Exogenous auxin was sufficient to rescue the LR developmental defects in the ark2-1/pub9-1 lines, indicating a requirement of auxin accumulation for this process. Our subcellular localization studies with tobacco (Nicotiana tabacum) suspension-cultured cells indicate that interaction between ARK2 and AtPUB9 results in accumulation of AtPUB9 in the autophagosomes. Inhibition of autophagy in wild-type plants resulted in reduction of LR development and auxin accumulation under phosphate-starved conditions, suggesting a role for autophagy in regulating LR development. Thus, our study has uncovered a previously unknown signaling module (ARK2-PUB9) that is required for auxin-mediated LR development under phosphate-starved conditions

  7. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25

    Directory of Open Access Journals (Sweden)

    Spadafora Natasha D

    2012-03-01

    Full Text Available Abstract Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over

  8. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  9. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  10. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  11. Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling,and polar auxin transport

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; HOU NingYan; Markus SCHLICHT; WAN YingLang; Stefano MANCUSO; Frantisek BALUSKA

    2008-01-01

    The most obvious symptom of AI toxicity is the inhibition of root growth.However,the mechanism of AI-inhibiting root growth remains to be elucidated.In this study,auxin transport and vesicle movement of an auxin-efflux carrier (PIN2) were investigated in Arabidopsis roots in response to AI stress.Results indicated that AI inhibited the apical transport of auxin in root tips of Arabidopsis significantly.The severe inhibition was localized in the cells of transition zone,where the concentration of auxin was only 34% that of the control.Brefeldin A (BFA),an inhibitor of vesicle transport,induced the dot-like structure of PIN2 vesicle significantly.Al decreased the size of dot-like structure of PIN2 vesicles.Re-sults of real-time RT-PCR and Western-blotting analysis showed that Al increased the transcript level of PIN2 and the accumulation of PIN2 protein in horizontal direction of plasma membrane,but decreased its distribution in endosomes,suggesting that AI inhibited the transport of PIN2 vesicles from plasma membrane to endosomes.Results of cytoskeleton-depolymering drugs indicated that it was via the pathway of disruption of actin microfilaments that AI inhibited the transport of PIN2 vesicles.Exposed to AI stress,the cells of elongation zone had less AI uptake and less transport frequency of vesicles than cells of transition zone.Taken together,our results suggested that AI inhibited root growth mainly by modulating the transport of PIN2 vesicles between plasma membrane and endosomes,thus block-ing auxin transport and root growth.

  12. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae).

    Science.gov (United States)

    Jelínková, Hana; Tremblay, Francine; Desrochers, Annie

    2009-08-01

    Trembling aspen (Populus tremuloides) is a clonal tree species, which regenerates mostly through root suckering. In spite of vegetative propagation, aspen maintains high levels of clonal diversity. We hypothesized that the maintenance of clonal diversity in this species can be facilitated by integrating different clones through natural root grafts into aspen's communal root system. To verify this hypothesis, we analyzed root systems of three pure aspen stands where clones had been delineated with the help of molecular markers. Grafting between roots was frequent regardless of their genotypes. Root system excavations revealed that many roots were still living below trees that had been dead for several years. Some of these roots had no root connections other than grafts to living ramets of different clones. The uncovered root systems did not include any unique genotypes that would not occur among stems. Nevertheless, acquiring roots of dead trees helps to maintain extensive root systems, which increases the chances of clone survival. Substantial interconnectivity within clones as well as between clones via interclonal grafts results in formation of large genetically diverse physiological units. Such a clonal structure can significantly affect interpretations of diverse ecophysiological processes in forests of trembling aspen. PMID:21628295

  13. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis

    Science.gov (United States)

    Tian, Hainan; Guo, Hongyan; Dai, Xuemei; Cheng, Yuxin; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai

    2015-01-01

    Plant hormone abscisic acid (ABA) plays a crucial role in modulating plant responses to environmental stresses. Basic helix-loop-helix (bHLH) transcription factors are one of the largest transcription factor families that regulate multiple aspects of plant growth and development, as well as of plant metabolism in Arabidopsis. Several bHLH transcription factors have been shown to be involved in the regulation of ABA signaling. We report here the characterization of bHLH129, a bHLH transcription factor in Arabidopsis. We found that the expression level of bHLH129 was reduced in response to exogenously applied ABA, and elevated in the ABA biosynthesis mutant aba1-5. Florescence observation of transgenic plants expressing bHLH129-GFP showed that bHLH129 was localized in the nucleus, and transient expression of bHLH129 in protoplasts inhibited reporter gene expression. When expressed in Arabidopsis under the control of the 35S promoter, bHLH129 promoted root elongation, and the transgenic plants were less sensitivity to ABA in root elongation assays. Quantitative RT-PCR results showed that ABA response of several genes involved in ABA signaling, including ABI1, SnRK2.2, SnRK2.3 and SnRK2.6 were altered in the transgenic plants overexpressing bHLH129. Taken together, our study suggests that bHLH129 is a transcription repressor that negatively regulates ABA response in Arabidopsis. PMID:26625868

  14. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    Science.gov (United States)

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  15. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    Science.gov (United States)

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity.

  16. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation.

    Science.gov (United States)

    Ziegler, Jörg; Schmidt, Stephan; Chutia, Ranju; Müller, Jens; Böttcher, Christoph; Strehmel, Nadine; Scheel, Dierk; Abel, Steffen

    2016-03-01

    Plants have evolved two major strategies to cope with phosphate (Pi) limitation. The systemic response, mainly comprising increased Pi uptake and metabolic adjustments for more efficient Pi use, and the local response, enabling plants to explore Pi-rich soil patches by reorganization of the root system architecture. Unlike previous reports, this study focused on root exudation controlled by the local response to Pi deficiency. To approach this, a hydroponic system separating the local and systemic responses was developed. Arabidopsis thaliana genotypes exhibiting distinct sensitivities to Pi deficiency could be clearly distinguished by their root exudate composition as determined by non-targeted reversed-phase ultraperformance liquid chromatography electrospray ionization quadrupole-time-of-flight mass spectrometry metabolite profiling. Compared with wild-type plants or insensitive low phosphate root 1 and 2 (lpr1 lpr2) double mutant plants, the hypersensitive phosphate deficiency response 2 (pdr2) mutant exhibited a reduced number of differential features in root exudates after Pi starvation, suggesting the involvement of PDR2-encoded P5-type ATPase in root exudation. Identification and analysis of coumarins revealed common and antagonistic regulatory pathways between Pi and Fe deficiency-induced coumarin secretion. The accumulation of oligolignols in root exudates after Pi deficiency was inversely correlated with Pi starvation-induced lignification at the root tips. The strongest oligolignol accumulation in root exudates was observed for the insensitive lpr1 lpr2 double mutant, which was accompanied by the absence of Pi deficiency-induced lignin deposition, suggesting a role of LPR ferroxidases in lignin polymerization during Pi starvation. PMID:26685189

  17. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    OpenAIRE

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2011-01-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P2) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k...

  18. MiRNA398b and miRNA398c are involved in the regulation of the SOD response in uranium-exposed Arabidopsis thaliana roots

    OpenAIRE

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, H.; Biermans, Geert; Hees, M. van; WANNIJN, J.; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    The chemical speciation of uranium (U), and hence its toxicity, is strongly dependent on pH. However, oxidative stress responses after U exposure have mainly been investigated in Arabidopsis thaliana plants at pH 5.5, the ideal pH for growing plants in a hydroponic setup. As the pH of pore water can vary strongly, the aim of this study is to investigate oxidative stress responses induced in roots of A. thaliana plants exposed to different U concentrations at pH 4.5 and hence at a high free...

  19. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora

    NARCIS (Netherlands)

    Marek, S.M.; Hansen, K.; Romanish, M.; Thorn, R.G.

    2009-01-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia res

  20. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  1. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications. PMID:20602166

  2. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  3. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  4. Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26.

    Science.gov (United States)

    Ito, Daisuke; Kato, Takahiro; Maruta, Takanori; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2012-01-01

    Not only in bacteria but also in plant cells, guanosine-3',5'-tetraphosphate (ppGpp) is an important signaling molecule, that affects various cellular processes. In this study, we identified nucleoside diphosphates linked to some moiety X (Nudix) hydrolases, AtNUDX11, 15, 25, and 26, having ppGpp pyrophosphohydrolase activity from Arabidopsis plants. Among these, AtNUDX26 localized in chloroplasts had the highest Vmax and kcat values, leading to high catalytic efficiency, kcat/Km. The activity of AtNUDX26 required Mg2+ or Mn2+ ions as cofactor and was optimal at pH 9.0 and 50 °C. The expression of AtNUDX26 and of ppGpp metabolism-associated genes was regulated by various types of stress, suggesting that AtNUDX26 regulates cellular ppGpp levels in response to stress and impacts gene expression in chloroplasts. This is the first report on the molecular properties of ppGpp pyrophosphohydrolases in plants.

  5. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins.

    Science.gov (United States)

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2012-03-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport. PMID:21894193

  6. Transcriptional Activation and Production of Tryptophan-Derived Secondary Metabolites in Arabidopsis Roots Contributes to the Defense against the Fungal Vascular Pathogen Verticillium Iongisporum

    Institute of Scientific and Technical Information of China (English)

    Tim Iven; Wolfgang Dr(o)ge-Laser; Stefanie K(o)nig; Seema Singh; Susanna A.Braus-Stromeyer; Matthias Bischoff; Lutz F.Tietze; Gerhard H.Braus; Volker Lipka; Ivo Feussner

    2012-01-01

    The soil-borne fungal pathogen Verticillium Iongisporum causes vascular disease on Brassicaceae host plants such as oilseed rape.The fungus colonizes the root xylem and moves upwards to the foliage where disease symptoms become visible.Using Arabidopsis as a model for early gene induction,we performed root transcriptome analyses in response to hyphal growth immediately after spore germination and during penetration of the root cortex,respectively.Infected roots showed a rapid reprogramming of gene expression such as activation of transcription factors,stress-,and defense-related genes.Here,we focused on the highly coordinated gene induction resulting in the production of tryptophan-derived secondary metabolites.Previous studies in leaves showed that enzymes encoded by CYP81F2 and PEN2 (PENETRATION2) execute the formation of antifungal indole glucosinolate (IGS) metabolites.In Verticillium-infected roots.we found transcriptional activation of CYP81F2 and the PEN2 homolog PEL1 (PEN2-LIKE1),but no increase in antifungal IGS breakdown products.In contrast,indole-3-carboxylic acid (I3CA) and the phytoalexin camalexin accumulated in infected roots but only camalexin inhibited Verticillium growth in vitro.Whereas genetic disruption of the individual metabolic pathways leading to either camalexin or CYP81F2-dependent IGS metabolites did not alter Verticillium-induced disease symptoms,a cyp79b2 cyp79b3 mutant impaired in both branches resulted in significantly enhanced susceptibility.Hence,our data provide an insight into root-specific early defenses and suggest tryptophan-derived metabolites as active antifungal compounds against a vascular pathogen.

  7. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue

    2012-01-01

    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  8. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  9. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.

    Science.gov (United States)

    Guo, Hui-Shan; Xie, Qi; Fei, Ji-Feng; Chua, Nam-Hai

    2005-05-01

    Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain-encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3'-specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wild-type plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 3' fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

  10. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  11. Formation of the Unusual Semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory[W

    Science.gov (United States)

    Vaughan, Martha M.; Wang, Qiang; Webster, Francis X.; Kiemle, Dave; Hong, Young J.; Tantillo, Dean J.; Coates, Robert M.; Wray, Austin T.; Askew, Whitnee; O’Donnell, Christopher; Tokuhisa, James G.; Tholl, Dorothea

    2013-01-01

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type–specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects. PMID:23512856

  12. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  13. Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed.

    Science.gov (United States)

    Baud, Sébastien; Kelemen, Zsolt; Thévenin, Johanne; Boulard, Céline; Blanchet, Sandrine; To, Alexandra; Payre, Manon; Berger, Nathalie; Effroy-Cuzzi, Delphine; Franco-Zorrilla, Jose Manuel; Godoy, Marta; Solano, Roberto; Thevenon, Emmanuel; Parcy, François; Lepiniec, Loïc; Dubreucq, Bertrand

    2016-06-01

    In Arabidopsis (Arabidopsis thaliana), transcriptional control of seed maturation involves three related regulators with a B3 domain, namely LEAFY COTYLEDON2 (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (ABI3/FUS3/LEC2 [AFLs]). Although genetic analyses have demonstrated partially overlapping functions of these regulators, the underlying molecular mechanisms remained elusive. The results presented here confirmed that the three proteins bind RY DNA elements (with a 5'-CATG-3' core sequence) but with different specificities for flanking nucleotides. In planta as in the moss Physcomitrella patens protoplasts, the presence of RY-like (RYL) elements is necessary but not sufficient for the regulation of the OLEOSIN1 (OLE1) promoter by the B3 AFLs. G box-like domains, located in the vicinity of the RYL elements, also are required for proper activation of the promoter, suggesting that several proteins are involved. Consistent with this idea, LEC2 and ABI3 showed synergistic effects on the activation of the OLE1 promoter. What is more, LEC1 (a homolog of the NF-YB subunit of the CCAAT-binding complex) further enhanced the activation of this target promoter in the presence of LEC2 and ABI3. Finally, recombinant LEC1 and LEC2 proteins produced in Arabidopsis protoplasts could form a ternary complex with NF-YC2 in vitro, providing a molecular explanation for their functional interactions. Taken together, these results allow us to propose a molecular model for the transcriptional regulation of seed genes by the L-AFL proteins, based on the formation of regulatory multiprotein complexes between NF-YBs, which carry a specific aspartate-55 residue, and B3 transcription factors. PMID:27208266

  14. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium.

    Science.gov (United States)

    Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2015-09-01

    GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min(-1) mg(-1) protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.

  15. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yuya Yoshimitsu

    Full Text Available The expression of DWARF4 (DWF4, which encodes a C-22 hydroxylase, is crucial for brassinosteroid (BR biosynthesis and for the feedback control of endogenous BR levels. To advance our knowledge of BRs, we examined the effects of different plant hormones on DWF4 transcription in Arabidopsis thaliana. Semi-quantitative reverse-transcriptase PCR showed that the amount of the DWF4 mRNA precursor either decreased or increased, similarly with its mature form, in response to an exogenously applied bioactive BR, brassinolide (BL, and a BR biosynthesis inhibitor, brassinazole (Brz, respectively. The response to these chemicals in the levels of β-glucuronidase (GUS mRNA and its enzymatic activity is similar to the response of native DWF4 mRNA in DWF4::GUS plants. Contrary to the effects of BL, exogenous auxin induced GUS activity, but this enhancement was suppressed by anti-auxins, such as α-(phenylethyl-2-one-IAA and α-tert-butoxycarbonylaminohexyl-IAA, suggesting the involvement of SCF(TIR1-mediated auxin signaling in auxin-induced DWF4 transcription. Auxin-enhanced GUS activity was observed exclusively in roots; it was the most prominent in the elongation zones of both primary and lateral roots. Furthermore, auxin-induced lateral root elongation was suppressed by both Brz application and the dwf4 mutation, and this suppression was rescued by BL, suggesting that BRs act positively on root elongation under the control of auxin. Altogether, our results indicate that DWF4 transcription plays a novel role in the BR-auxin crosstalk associated with root elongation, in addition to its role in BR homeostasis.

  16. Identification of MicroRNA 395a in 24-Epibrassinolide-Regulated Root Growth of Arabidopsis thaliana Using MicroRNA Arrays

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2013-07-01

    Full Text Available Brassinosteroids (BRs are endogenous plant hormones and are essential for normal plant growth and development. MicroRNAs (miRNAs of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BR mechanisms involving miRNAs are unknown. Using customized miRNA array analysis, we identified miRNAs from A. thaliana ecotype Columbia (Col-0 regulated by 24-epibrassinolide (EBR, a highly active BR. We found that miR395a was significantly up-regulated by EBR treatment and validated its expression under these conditions. miR395a was over expressed in leaf veins and root tissues in EBR-treated miR395a promoter::GUS plants. We integrated bioinformatics methods and publicly available DNA microarray data to predict potential targets of miR395a. GUN5—a multifunctional protein involved in plant metabolic functions such as chlorophyll synthesis and the abscisic acid (ABA pathway—was identified as a possible target. ABI4 and ABI5, both genes positively regulated by ABA, were down-regulated by EBR treatment. In summary, our results suggest that EBR regulates seedling development and root growth of A. thaliana through miR395a by suppressing GUN5 expression and its downstream signal transduction.

  17. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana roots.

    Science.gov (United States)

    Mai, Hans-Jörg; Lindermayr, Christian; von Toerne, Christine; Fink-Straube, Claudia; Durner, Jörg; Bauer, Petra

    2015-09-01

    Iron is an essential micronutrient for plants, and iron deficiency requires a variety of physiological adaptations. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is essential for the regulation of iron uptake in Arabidopsis thaliana roots. FIT is transcriptionally as well as posttranscriptionally regulated in response to iron supply. To investigate to which extent posttranscriptional regulation upon iron deficiency applies to proteins and to determine the dependency on FIT, we performed a parallel proteomic and transcriptomic study with wild-type, a fit knock-out mutant, and a FIT overexpressing Arabidopsis line. Among 92 proteins differentially regulated by iron and/or FIT, we identified 30 proteins, which displayed differential regulation at the transcriptional level. Eleven protein spots were regulated in at least one of the data points even contrary to the respective genes dependent on FIT. We found ten proteins in at least two forms. The analysis of functional classification showed enriched GO terms among the posttranscriptionally regulated genes and of proteins, that were downregulated or absent in the fit knock-out mutant. Taken together, we provide evidence for iron and FIT-dependent posttranscriptional regulation in iron homeostasis in A. thaliana.

  18. A rapid method for isolation of low-molecular-weight RNA from Arabidopsis using low salt concentration buffer

    Directory of Open Access Journals (Sweden)

    Han Cheng

    2010-08-01

    Full Text Available Normal 0 7.8 pt 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4 We have developed a rapid extraction method using low salt concentration buffer for the isolation of low-molecular-weight RNA from Arabidopsis tissues. The method was quick and efficient, and the small scale extraction process took no more than 1 hour, while yield and RNA quality were comparable with those of previously reported. The LMW RNA isolated using this method was high quality, abundant in small RNA and free of high molecular weight RNA. This method can be used to extract low-molecular-weight RNA for the purpose of small RNA cloning and detection, and library construction.

  19. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca2þ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots

    Institute of Scientific and Technical Information of China (English)

    Chunli Ma; Jie Guo; Yan Kang; Kohei Doman; Anthony C.Bryan; Frans E.Tax; Yube Yamaguchi; Zhi Qi

    2014-01-01

    AtPEPTIDE RECEPTOR2 (AtPEPR2) is a member of leucine-rich repeat receptor-like kinase family and binds to a group of AtPROPEP gene-encoded endogenous peptides, AtPeps. Previously, we found that AtPEPR2 plays a moderate role in the AtPep1-mediated innate immunity responses in Arabidopsis leaf. In this study, we found that AtPEPR2 promoter has strong activity in the vascular tissues of the roots and the atpepr2 mutants showed a moderate but significantly shorter root phenotype. AtPEPR2 partial y mediated AtPep1-induced root elongation inhibition. AtPep1-triggered cytosolic Ca2þ transient rise in roots showed partial dependence on AtPEPR2 and ful y on extracellular Ca2þ ([Ca2þ]ext). Transcriptional profiling analysis found that expression of 75% of AtPep1-modulated genes in roots was ful y dependent on AtPEPR2, of which two dramatical y induced genes showed partial dependence on the [Ca2þ]ext. Arabidopsis genome contains seven Glutamine Dumpers genes (AtGDUs), encoding amino acid exporters. Three of them (AtGDU2, 3, 5) were among the top 10 genes that were downregulated by AtPep1 through AtPEPR2 ful y dependent pathway. Treatment with AtPep1 strongly suppressed pro-moter activity of AtGDU3 in roots, which was relieved by chelating [Ca2þ]ext. Arabidopsis overexpressing AtGDU3 showed a shorter root phenotype and decreased sensitivity to the AtPep1-mediated inhibition of root elongation. Taken together, this study demonstrated a significant role of AtPEPR2 in the AtPep1-mediated signaling in the roots.

  20. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    OpenAIRE

    Xiaozhen Yao; Haiyang Feng; Yu Yu; Aiwu Dong; Wen-Hui Shen

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell ...

  1. Turgor Regulation in Osmotically Stressed Arabidopsis Epidermal Root Cells. Direct Support for the Role of Inorganic Ion Uptake as Revealed by Concurrent Flux and Cell Turgor Measurements1

    Science.gov (United States)

    Shabala, Sergey N.; Lew, Roger R.

    2002-01-01

    Hyperosmotic stress is known to significantly enhance net uptake of inorganic ions into plant cells. Direct evidence for cell turgor recovery via such a mechanism, however, is still lacking. In the present study, we performed concurrent measurements of net ion fluxes (with the noninvasive microelectrode ion flux estimation technique) and cell turgor changes (with the pressure-probe technique) to provide direct evidence that inorganic ion uptake regulates turgor in osmotically stressed Arabidopsis epidermal root cells. Immediately after onset of hyperosmotic stress (100/100 mm mannitol/sorbitol treatment), the cell turgor dropped from 0.65 to about 0.25 MPa. Turgor recovery started within 2 to 10 min after the treatment and was accompanied by a significant (30–80 nmol m−2 s−1) increase in uptake of K+, Cl−, and Na+ by root cells. In most cells, almost complete (>90% of initial values) recovery of the cell turgor was observed within 40 to 50 min after stress onset. In another set of experiments, we combined the voltage-clamp and the microelectrode ion flux estimation techniques to show that this process is, in part, mediated by voltage-gated K+ transporters at the cell plasma membrane. The possible physiological significance of these findings is discussed. PMID:12011359

  2. Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular Molecular weight distribution of humic acids and root growth promotion

    Directory of Open Access Journals (Sweden)

    Natália de Oliveira Aguiar

    2009-12-01

    mais relacionada com a estrutura química das substâncias húmicas do que com a distribuição de massa molecular dos agregados húmicos.Humic acids (HA directly stimulate several physiological processes that promote plant growth, particularly of the root system. Knowledge about the chemical nature and the role of HA in the effects observed under biofertilization and biostimulation is essential to develop HA-based biological resources. The aim of this study was to evaluate a possible relationship between the distribution of the apparent molecular weight of HA isolated from vermicompost and the response in root growth promotion. HA sub-fractions were obtained through preparative chromatography by size exclusion using Sephadex gel G-50 gel (CGE. The preparative process was validated by high-performance size-exclusion chromatography (HPSEC. The five sub-fractions were tested at different concentrations (0; 0.0001; 0.001; 0.003; 0.005; and 0.001 mol L-1 C for their capacity to stimulate root growth of Arabidopisis thaliana (ecotype col 4 seedlings. For maize seedlings (Zea mays hybrid UENF 506-6 a rate of 0.002 mol L-1 C was used. The quadratic model described the relationship between root growth induction and HA dose in Arabidopsis; 0.00511 mol L-1 C was the average inflection point. At the optimum concentration, a significant negative correlation between molecular weight distribution and the number of lateral roots induced in A. thaliana was observed. However, other root traits, e.g., area and length, were not influenced by the apparent molecular weight of fractions. An increase in the number of mitotic and lateral root emission was observed for maize seedlings, both for the treatment with HA as well as with the sub-fractions. The H+-ATPase activity of plasma membrane was significantly affected by HA, although differently in the sub-fractions. The stimulating activity of root growth seems to be more related to the chemical structure of humic substances than to the

  3. Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation.

    Science.gov (United States)

    Higo, Masao; Isobe, Katsunori; Miyazawa, Yusuke; Matsuda, Yukiya; Drijber, Rhae A; Torigoe, Yoichi

    2016-02-01

    A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.

  4. Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation.

    Science.gov (United States)

    Higo, Masao; Isobe, Katsunori; Miyazawa, Yusuke; Matsuda, Yukiya; Drijber, Rhae A; Torigoe, Yoichi

    2016-02-01

    A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities. PMID:26832664

  5. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  6. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  7. Molecular and Morphological Characterization of Endophytic Heterobasidion araucariae from Roots of Capsicum annuum L. in Korea.

    Science.gov (United States)

    Paul, Narayan Chandra; Deng, Jian Xin; Shin, Kyu Seop; Yu, Seung Hun

    2012-06-01

    A species of Heterobasidion was encountered during a diversity study of endophytic fungi from healthy root tissues of chili pepper (Capsicum annuum L.) in Korea. The fungal species (CNU081069) was identified as Heterobasidion araucariae based on phylogenetic analyses of the internal transcribed spacer and translation elongation factor gene sequences. Morphological descriptions of the endophytic isolate matched well with the previous references and supported the molecular identification. The fungus Heterobasidion araucariae CNU081069 is new to Korea. PMID:22870048

  8. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis.

    Science.gov (United States)

    Frenette Charron, Jean Benoit; Breton, Ghislain; Badawi, Mohamed; Sarhan, Fathey

    2002-04-24

    Two cDNAs corresponding to a novel lipocalin were identified from wheat and Arabidopsis. The two cDNAs designated Tatil for Triticum aestivum L. temperature-induced lipocalin and Attil for Arabidopsis thaliana temperature-induced lipocalin encode polypeptides of 190 and 186 amino acids respectively. Structure analyses indicated the presence of the three structurally conserved regions that characterize lipocalins. Sequence analyses revealed that this novel class of plant lipocalin shares homology with three evolutionarily related lipocalins: the mammalian apolipoprotein D (ApoD), the bacterial lipocalin and the insect Lazarillo. The comparison of the putative tertiary structures of both the human ApoD and the wheat TaTIL suggest that the two proteins differ in membrane attachment and ligand interaction. Northern analyses demonstrated that Tatil and Attil transcripts are upregulated during cold acclimation and heat-shock treatment. The putative functions of this novel class of plant lipocalins during temperature stresses are discussed.

  9. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    OpenAIRE

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling sys...

  10. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    Directory of Open Access Journals (Sweden)

    Pankaj Barah

    Full Text Available BACKGROUND: Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth during insect Brevicoryne brassicae (B. brassicae henceforth and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. RESULTS: The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA, jasmonic acid (JA, ethylene (ET and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. CONCLUSIONS: Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between

  11. MICROTUBULE ORGANIZATION 1 Regulates Structure and Function of Microtubule Arrays during Mitosis and Cytokinesis in the Arabidopsis Root1[W

    Science.gov (United States)

    Kawamura, Eiko; Himmelspach, Regina; Rashbrooke, Madeleine C.; Whittington, Angela T.; Gale, Kevin R.; Collings, David A.; Wasteneys, Geoffrey O.

    2006-01-01

    MICROTUBULE ORGANIZATION 1 (MOR1) is a plant member of the highly conserved MAP215/Dis1 family of microtubule-associated proteins. Prior studies with the temperature-sensitive mor1 mutants of Arabidopsis (Arabidopsis thaliana), which harbor single amino acid substitutions in an N-terminal HEAT repeat, proved that MOR1 regulates cortical microtubule organization and function. Here we demonstrate by use of live cell imaging and immunolabeling that the mor1-1 mutation generates specific defects in the microtubule arrays of dividing vegetative cells. Unlike the universal cortical microtubule disorganization in elongating mor1-1 cells, disruption of mitotic and cytokinetic microtubule arrays was not detected in all dividing cells. Nevertheless, quantitative analysis identified distinct defects in preprophase bands (PPBs), spindles, and phragmoplasts. In nearly one-half of dividing cells at the restrictive temperature of 30°C, PPBs were not detected prior to spindle formation, and those that did form were often disrupted. mor1-1 spindles and phragmoplasts were short and abnormally organized and persisted for longer times than in wild-type cells. The reduced length of these arrays predicts that the component microtubule lengths are also reduced, suggesting that microtubule length is a critical determinant of spindle and phragmoplast structure, orientation, and function. Microtubule organizational defects led to aberrant chromosomal arrangements, misaligned or incomplete cell plates, and multinucleate cells. Antiserum raised against an N-terminal MOR1 sequence labeled the full length of microtubules in interphase arrays, PPBs, spindles, and phragmoplasts. Continued immunolabeling of the disorganized and short microtubules of mor1-1 at the restrictive temperature demonstrated that the mutant mor1-1L174F protein loses function without dissociating from microtubules, providing important insight into the mechanism by which MOR1 may regulate microtubule length. PMID:16377747

  12. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta;

    2013-01-01

    . In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  13. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

    Science.gov (United States)

    Porco, Silvana; Larrieu, Antoine; Du, Yujuan; Gaudinier, Allison; Goh, Tatsuaki; Swarup, Kamal; Swarup, Ranjan; Kuempers, Britta; Bishopp, Anthony; Lavenus, Julien; Casimiro, Ilda; Hill, Kristine; Benkova, Eva; Fukaki, Hidehiro; Brady, Siobhan M; Scheres, Ben; Péret, Benjamin; Bennett, Malcolm J

    2016-09-15

    Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence. PMID:27578783

  14. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots

    NARCIS (Netherlands)

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-01-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic appr

  15. The COW1 locus of arabidopsis acts after RHD2, and in parallel with RHD3 and TIP1, to determine the shape, rate of elongation, and number of root hairs produced from each site of hair formation.

    Science.gov (United States)

    Grierson, C S; Roberts, K; Feldmann, K A; Dolan, L

    1997-11-01

    Two recessive mutant alleles at CAN OF WORMS1 (COW1), a new locus involved in root hair morphogenesis, have been identified in Arabidopsis thaliana L. Heynh. Root hairs on Cow1- mutants are short and wide and occasionally formed as pairs at a single site of hair formation. The COW1 locus maps to chromosome 4. Root hairs on Cow1- plants form in the usual positions, suggesting that the phenotype is not the result of abnormal positional signals. Root hairs on Cow1- roots begin hair formation normally, forming a small bulge, or root hair initiation site, of normal size and shape and in the usual position on the hair-forming cell. However, when Cow1- root hairs start to elongate by tip growth, abnormalities in the shape and elongation rate of the hairs become apparent. Genetic evidence from double-mutant analysis of cow1-1 and other loci involved in root hair development supports our conclusion that COW1 is required during root hair elongation.

  16. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  17. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  18. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  19. Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses

    Directory of Open Access Journals (Sweden)

    Brenner Wolfram G

    2012-07-01

    Full Text Available Abstract Background The plant hormone cytokinin regulates growth and development of roots and shoots in opposite ways. In shoots it is a positive growth regulator whereas it inhibits growth in roots. It may be assumed that organ-specific regulation of gene expression is involved in these differential activities, but little is known about it. To get more insight into the transcriptional events triggered by cytokinin in roots and shoots, we studied genome-wide gene expression in cytokinin-treated and cytokinin-deficient roots and shoots. Results It was found by principal component analysis of the transcriptomic data that the immediate-early response to a cytokinin stimulus differs from the later response, and that the transcriptome of cytokinin-deficient plants is different from both the early and the late cytokinin induction response. A higher cytokinin status in the roots activated the expression of numerous genes normally expressed predominantly in the shoot, while a lower cytokinin status in the shoot reduced the expression of genes normally more active in the shoot to a more root-like level. This shift predominantly affected nuclear genes encoding plastid proteins. An organ-specific regulation was assigned to a number of genes previously known to react to a cytokinin signal, including root-specificity for the cytokinin hydroxylase gene CYP735A2 and shoot specificity for the cell cycle regulator gene CDKA;1. Numerous cytokinin-regulated genes were newly discovered or confirmed, including the meristem regulator genes SHEPHERD and CLAVATA1, auxin-related genes (IAA7, IAA13, AXR1, PIN2, PID, several genes involved in brassinosteroid (CYP710A1, CYP710A2, DIM/DWF and flavonol (MYB12, CHS, FLS1 synthesis, various transporter genes (e.g. HKT1, numerous members of the AP2/ERF transcription factor gene family, genes involved in light signalling (PhyA, COP1, SPA1, and more than 80 ribosomal genes. However, contrasting with the fundamental difference of

  20. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  1. Patterning molecular scale paramagnets at Au Surface: A root to Magneto-Molecular-Electronics

    OpenAIRE

    Messina, Paolo

    2004-01-01

    Few examples of the exploitation of molecular magnetic properties in molecular electronics are known to date. Here we propose the realization of Self assembled monolayers (SAM) of a particular stable organic radical. This radical is meant to be used as a standard molecule on which to prove the validity of a single spin reading procedure known as ESR-STM. We also discuss a range of possible applications, further than ESR-STM, of magnetic monolayers of simple purely organic magnetic molecule.

  2. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  3. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth.

    Science.gov (United States)

    Sašek, Vladimír; Janda, Martin; Delage, Elise; Puyaubert, Juliette; Guivarc'h, Anne; López Maseda, Encarnación; Dobrev, Petre I; Caius, José; Bóka, Károly; Valentová, Olga; Burketová, Lenka; Zachowski, Alain; Ruelland, Eric

    2014-08-01

    Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.

  4. NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity

    Science.gov (United States)

    Leterrier, Marina; Barroso, Juan B.; Valderrama, Raquel; Palma, José M.; Corpas, Francisco J.

    2012-01-01

    NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2  ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity. PMID:22649311

  5. Patterning molecular scale paramagnets at Au Surface: A root to Magneto-Molecular-Electronics

    CERN Document Server

    Messina, Paul C; Sorace, L; Rovai, D; Caneschi, A; Gatteschi, Dante; Messina, Paolo; Mannini, Matteo; Sorace, Lorenzo; Rovai, Donella; Caneschi, Andrea; Gatteschi, Dante

    2004-01-01

    Few examples of the exploitation of molecular magnetic properties in molecular electronics are known to date. Here we propose the realization of Self assembled monolayers (SAM) of a particular stable organic radical. This radical is meant to be used as a standard molecule on which to prove the validity of a single spin reading procedure known as ESR-STM. We demonstrate here that the radical is chemically anchored at the surface, preserves its magnetic functionality and can be imaged by STM. STM and ESR investigations of the molecular film is reported. We also discuss a range of possible applications, further than ESR-STM, of magnetic monolayers of simple purely organic magnetic molecule.

  6. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana.

    Science.gov (United States)

    Villand, P; Olsen, O A; Kleczkowski, L A

    1993-12-01

    PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis. PMID:8292792

  7. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    Science.gov (United States)

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism. PMID:22303278

  8. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol

    2011-05-20

    Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes. ©2011 KSMCB.

  9. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  10. OsCAND1 Is Required for Crown Root Emergence in Rice

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fei Wang; Fen-Fang He; Xiao-Xia Ma; Chuan-Zao Mao; Charlie Hodgman; Chun-Gui Lu; Ping Wu

    2011-01-01

    Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation,we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development,the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together,these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and,consequently,the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.

  11. Molecular target size of the vanilloid (capsaicin) receptor in pig dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Szallasi, A.; Blumberg, P.M. (National Cancer Institute, Bethesda, MD (USA))

    1991-01-01

    The size of the vanilloid receptor was examined by high-energy radiation inactivation analysis of the binding of ({sup 3}H)resiniferatoxin to pig dorsal root ganglion membranes; it was found to be 270 {plus minus} 25 kDa. This value most likely represents the size of a receptor complex rather than of an individual subunit. Other ligand-gated cation channel complexes have reported molecular weights in this range, e.g. 300 kDa for the acetylcholine receptor.

  12. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  13. Molecular-Genetic Analysis of Osmoregulation, Osmotic Adjustment and Growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Bray

    2009-05-04

    The molecular mechanism by which plants control cellular solute and water content, called osmoregulation, is critical for cell expansion and survival, particularly in response to cellular water deficit or low water potential. Two loci, lwr1 and lwr2 (low water potential response), that affect osmoregulation were isolated as part of a larger screen to identify mutants with alterations in low water potential-induced proline accumulation. When seedlings of lwr2 were exposed to a steady low water potential stress over a period of several days using PEG-infused agar plates, the mutants had lesser proline accumulation and osmotic adjustment than the wild type, Ben. A mapping population was raised but it was not possible to reliably identify the mutants in the population and thus could not be used for mapping. The mutant lwr1 was mapped and the gene identified. The mutant lwr1 had greater accumulation of proline, higher total solute content, greater osmotic adjustment at low water potential, altered abscisic acid content, and increased sensitivity to applied abscisic acid with respect to Pro content than the wild type, Ben, when the water potential was decreased over a period of several days using PEG-infused agar plates. lwr1 also had altered growth and morphology, including defects in trichome branching with the majority of the trichomes having a single point, shortened siliques which were crooked, and significantly lengthened time to flowering. Using bulk segregant analysis, the lwr1 loci was mapped to the lower arm of chromosome II, near the marker nga168. Further detailed fine mapping located the mutation to the gene PKL, At2g25170, which was previously identified as a gene involved in altered root development. PKL encodes a chromatin remodeling factor. The mutation in lwr1 introduced a stop codon in the 14th exon of At2g25170. The mutant was not complemented by 4 other known mutants having a disrupted PKL gene confirming the placement of this mutation in lwr1. In

  14. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  15. Molecular markers indicate different dynamics of leaves and roots during litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Palviainen, Marjo; Kalbitz, Karsten

    2010-05-01

    Up to now there is only a poor understanding of the sources contributing to organic carbon in forest soils, especially the contribution of leaves and roots. Studies of the last 2 decades have shown that methods like pyrolysis and CuO oxidation are suitable tools to trace back the main contributors of organic matter in water, sediments and soils. Lignin derived monomers, extractable lipids, cutin and suberin derived compounds have been used frequently for identification of plant material. However, for the selection of suitable biomarker the decomposition patterns and stability of these compounds are of high importance but they are only poorly understood. In this study we focused on following questions: (I) Which compounds are characteristic to identify certain plant parts and plant species? (II) How stable are these compounds during the first 3 years of litter decomposition? We studied the chemical composition of samples from a 3-year litterbag decomposition experiment with roots and leaves of spruce, pine and birch which was done in Finland. Additionally to mass loss, carbon and nitrogen contents, free lipids were extracted; by alkaline hydrolysis non extractable lipids were gained. The extracts were analyzed afterwards by GC-MS, the insoluble residues were analyzed by curie-point Pyrolysis GC-MS. In addition to the identification and quantification of a variety of different compounds and compound ratios we used statistical classification methods to get deeper insights into the patterns of leaf and root-derived biomarkers during litter decomposition. The mass loss was largely different between the litter species and we always observed larger mass loss for leaf-derived litter in comparison to root derived litter. This trend was also observed by molecular analysis. The increase of the ratio of vanillic acid to vanillin was correlated to the mass loss of the samples over time. This shows that the degree of decomposition of plant material was linked with the degree of

  16. Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root.

    Science.gov (United States)

    Li, Jisheng; Jia, Honglei; Wang, Jue; Cao, Qianhua; Wen, Zichao

    2014-07-01

    Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl treatment, which displayed a great increase in electrolyte leakage (EL) and Na(+)/K(+) ratio under salt stress. The treatment of H2S donors sodium hydrosulfide (NaHS) enhanced the salt tolerance by maintaining a lower Na(+)/K(+) ratio. In addition, the inhibition of root growth under salt stress was removed by H2S. Further studies indicated that H2O2 was involved in H2S-induced salt tolerance pathway. H2S induced the production of the endogenous H2O2 via regulating the activities of glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) NADPH oxidase, with the treatment with dimethylthiourea (DMTU, an ROS scavenger), diphenylene iodonium (DPI, a PM NADPH oxidase inhibitor), or glycerol (G6PDH inhibitor) removing the effect of H2S. Treatment with amiloride (an inhibitor of PM Na(+)/H(+) antiporter) and vanadate (an inhibitor of PM H(+)-ATPase) also inhibited the activity of H2S on Na(+)/K(+) ratio. Through an analysis of quantitative real-time polymerase chain reaction and Western blot, we found that H2S promoted the genes expression and the phosphorylation level of PM H(+)-ATPase and Na(+)/H(+) antiporter protein level. However, when the endogenous H2O2 level was inhibited by DPI or DMTU, the effect of H2S on the PM Na(+)/H(+) antiporter system was removed. Taken together, H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root.

  17. Genetics of the gravitropic set-point angle in lateral organs of Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their typically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. Two of these mutants also have altered orientation of their rosette leaves, indicating some common mechanisms in the positioning of root and shoot lateral organs. Rosette leaves and lateral roots also have in common a regulation of orientation by red light that may be due to red-light-dependent changes in the GSA. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.

  18. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    Science.gov (United States)

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  19. Effect of Soil Moisture on Release of Low-MolecularWeight Organic Acids in Root Exudates and the Accumulation of Iron in Root Apoplasm of Peanut

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of "lime-induced chlorosis" peanut grown on a calcareous soil in relation to different soil moisture conditions. Results showed that chlorosis of peanuts developed under condition of high soil moisture level (250 g kg-1), while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level (150 g kg-1). The malic acid, maleic acid and succinic acid contents of chlorotic peanut increased by 108.723, 0.029 and 22.446μg cm-2, respectively,compared with healthy peanuts. The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts. On Days 28 and 42 of peanut growth, the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts. From Day 28 to Day 42, the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the same, being 52.4% and 52.8%,respectively, indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under high soil moisture conditions.

  20. Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants.

    Science.gov (United States)

    Liu, Jun-Jun; Ekramoddoullah, Abul K M; Piggott, Nina; Zamani, Arezoo

    2005-05-01

    In Pinus monticola (Dougl. ex D. Don), the class ten pathogenesis-related (PR10) proteins comprise a family of multiple members differentially expressed upon pathogen infection and other environmental stresses. One of them, PmPR10-1.13, is studied here by investigating its transcriptional regulation in transgenic Arabidopsis plants. For functional analyses of the PmPR10-1.13 promoter, a 1,316-bp promoter fragment and three 5' deletions were translationally fused to the ss-glucuronidase (GUS) reporter gene. The 1,316-bp promoter-driven GUS activity first appeared in hypocotyls and cotyledons in 2- to 3-day-old seedlings. As transgenic plants grew, GUS activity was detected strongly in apical meristems, next in stems and leaves. No GUS activity was detected in roots and in reproductive tissues of flower organs. In adult plants, the PmPR10-1.13 promoter-directed GUS expression was upregulated following pathogen infection and by wounding treatment, which generally mimic the endogenous expression pattern in western white pine. Promoter analysis of 5' deletions demonstrated that two regions between -1,316 and -930, and between -309 and -100 were responsible for the wound responsiveness. By structural and functional comparisons with PmPR10-1.14 promoter, putative wound-responsive elements were potentially identified in the PmPR10-1.13 promoter. In conclusion, PmPR10-1.13 showed properties of a defence-responsive gene, being transcriptionally upregulated upon biotic and abiotic stresses. PMID:15609047

  1. Concerning the cube-root dependence of the molecular yield on scavenger concentration in the radiolysis of water

    International Nuclear Information System (INIS)

    It has been shown rigorously that, within the diffusion model, the reduction of the molecular yield by competitive scavenger reaction always follows a square-root law in the limit of small scavenger concentration, and not a cube-root law. The error of earlier demonstration of the cube-root dependence using diffusion kinetics by Byakov has been traced to several reasons. The most important reason is the neglect of competition between scavenging and recombination reaction within the characteristic time t1 which, in the limit of small concentration of the scavenger, proceeds to infinity

  2. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    Science.gov (United States)

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  3. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    Science.gov (United States)

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  4. Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril and its molecular characterization in leaves and roots during dehydration

    Directory of Open Access Journals (Sweden)

    Cibelle Engels

    2013-01-01

    Full Text Available The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA-independent Dehydration Responsive Element Binding (DREB gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM soybean lines containing 2-17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193 were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.

  5. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    Science.gov (United States)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  6. The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts,Metabolites,and Flux

    Institute of Scientific and Technical Information of China (English)

    Martin Lehmann; Markus Schwarzl(a)inder; Toshihiro Obata; Supaart Sirikantaramas; Meike Burow; Carl Erik Olsen; Takayuki Tohge; Mark D.Fricker; Birger Lindberg Mφller; Alisdair R.Fernie; Lee J.Sweetloveb; Miriam Laxa

    2009-01-01

    Metabolic adjustments are a significant,but poorly understood,part of the response of plants to oxidative stress.In a previous study (Baxter et al.,2007),the metabolic response of Arabidopsis cells in culture to induction of ox-idative stress by menadione was characterized.An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism.The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment,analyzing the transcriptome,metabolome and key metabolic fluxes with focus on primary as well as secondary metab-olism.Using a redox-sensitive GFP,it was also shown that menadione causes redox perturbation,not just in the mitochon-drion,but also in the cytosol and plastids of roots.In the first 30 min of treatment,the response was similar to the cell culture:there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins.After 2 and 6 h of treatment,the response of the roots was different to the cell culture.Metabolite levels did not remain depressed,but instead recovered and,in the case of pyruvate,some amino acids and aliphatic glucosinolates showed a steady increase above control levels.However,no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites.Together,the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.

  7. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  8. Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    An Yan; Minjie Wu; Yongqin Zhao; Aidong Zhang; Bohan Liu; John Schiefelbein; Yinbo Gan

    2014-01-01

    Cell fate determination is a basic developmental process during the growth of multicellular organisms. Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mecha-nisms controlling cell fate determination and cell morphogen-esis. The regulation of trichome and root hair formation is a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and bHLH transcriptional factors. Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.

  9. Activation of NADPH-recycling systems in leaves and roots of Arabidopsis thaliana under arsenic-induced stress conditions is accelerated by knock-out of Nudix hydrolase 19 (AtNUDX19) gene.

    Science.gov (United States)

    Corpas, Francisco J; Aguayo-Trinidad, Simeón; Ogawa, Takahisa; Yoshimura, Kazuya; Shigeoka, Shigeru

    2016-03-15

    NADPH is an important cofactor in cell growth, proliferation and detoxification. Arabidopsis thaliana Nudix hydrolase 19 (AtNUDX19) belongs to a family of proteins defined by the conserved amino-acid sequence GX5-EX7REUXEEXGU which has the capacity to hydrolyze NADPH as a physiological substrate in vivo. Given the importance of NADPH in the cellular redox homeostasis of plants, the present study compares the responses of the main NADPH-recycling systems including NADP-isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-malic enzyme (ME) in the leaves and roots of Arabidopsis wild-type (Wt) and knock-out (KO) AtNUDX19 mutant (Atnudx19) plants under physiological and arsenic-induced stress conditions. Two major features were observed in the behavior of the main NADPH-recycling systems: (i) under optimal conditions in both organs, the levels of these activities were higher in nudx19 mutants than in Wt plants; and, (ii) under 500μM AsV conditions, these activities increase, especially in nudx19 mutant plants. Moreover, G6PDH activity in roots was the most affected enzyme in both Wt and nudx19 mutant plants, with a 4.6-fold and 5.0-fold increase, respectively. In summary, the data reveals a connection between the absence of chloroplastic AtNUDX19 and the rise in all NADP-dehydrogenase activities under physiological and arsenic-induced stress conditions, particularly in roots. This suggests that AtNUDX19 could be a key factor in modulating the NADPH pool in plants and consequently in redox homeostasis. PMID:26878367

  10. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    OpenAIRE

    Stefanie De Smet; Ann Cuypers; Jaco Vangronsveld; Tony Remans

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations...

  11. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana

    OpenAIRE

    Smeets, Karen; RUYTINX, Joske; Van Belleghem, Frank; Semane, Brahim; Lin, Dan; Vangronsveld, Jaco; Cuypers, Ann

    2008-01-01

    Arabidopsis thaliana is one of the most widely used model organisms in plant sciences. Because of the increasing knowledge in the understanding of its molecular pathways, a reproducible and stable growth set-up for obtaining uniform plants becomes more important. In order to be able to easily harvest and study both roots and shoots, and to allow simple exposure to water-soluble toxic substances, a hydroponic system is the desired cultivation method for controlled plant growth. Based o...

  12. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tomonari; Kazama, Yusuke [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko, E-mail: tomoabe@riken.jp [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124 keV {mu}m{sup -1}. In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV {mu}m{sup -1}. We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M{sub 2} pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV {mu}m{sup -1} radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0 keV {mu}m{sup -1} and 27% for 101-124 keV {mu}m{sup -1}). Therefore, the 290 keV {mu}m{sup -1} heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  13. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants

    Science.gov (United States)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  14. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Dong; SHI Wei-Ming; LI Bao-Hai; ZHANG Min

    2007-01-01

    Most research in the past using genetically modified crops (GM crops) has focused on the ecological safety of foreign gene (i.e., the gene flow), gene products (for example, Bt (Bacillus thuringiensis) protein), and the safety of transgenic food for humans. In this study, changes in both the species and amounts of low-molecular-weight components in cotton (Gossypium hirsutum L.) root exudates after foreign Bt gene overexpression were investigated under different nutritional conditions. Transgenic cotton containing Bt (Bt-cotton), supplemented with all the mineral nutrients, secreted more organic acids than the wild-type cotton (WT). When nitrogen was removed from the full-nutrient solution, the amount of organic acids secretion of Bt-cotton was lesser than that of WT. The roots of the transgenic cotton secreted lesser amounts of amino acids and soluble sugars than the WT roots in the full-nutrient solution. Deficiencies of P and K caused a large increase in the total amino acid and soluble sugar secretions of both Bt-cotton and WT, with larger increases observed in Bt-cotton. Because transferring the foreign Bt gene into cotton can result in alterations in the components of the root exudates, with the effect varying depending on the nutritional status, the cultivation of genetically modified crops, such as Bt-cotton, in soil environments should be more carefully assessed, and the possible effects as a result of the alterations in the root exudate components should be considered.

  15. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids

    Science.gov (United States)

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  16. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids.

    Science.gov (United States)

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  17. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis.

    Science.gov (United States)

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-04-20

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.

  18. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible?

    Science.gov (United States)

    Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P

    2011-08-01

    Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.

  19. Root nodule organogenesis. Molecular characterization of the zonation of the central tissue.

    NARCIS (Netherlands)

    Yang, W.C.

    1994-01-01

    Legume plants form root nodules by interacting with the soil bacterium, Rhizobium. In these nodules bacteria are able to convert atmospheric nitrogen into ammonia which is used by the host plants as nitrogen source. Therefore symbiotic nitrogen fixation in root nodules is of great importance for agr

  20. 高铵胁迫对拟南芥根系向重性的影响及机制初探%Effect and Mechanism of High Ammonium on Root Gravitropic Response in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    邹娜; 李保海; 强晓敏; 施卫明

    2013-01-01

    Gravitropism is an important factor in determining root architecture and directs roots to grow downward in soil and thus may have a great affect on the uptake of water and mineral ions required for plant growth and development. Ammonium profoundly affects root architecture of Arabidopsis thaliana. Despite the inhibitory effects of high ammonium on root length and the number of lateral roots, however, very little is known concerning the influence of ammonium on root growth direction. Experiments were performed with Arabidopsis thaliana using indoor agar media for a simulation to study the effects of high ammonium on root growth direction. It was found that NH4+ stress not only inhibited plant growth, but also affected root growth direction. Kinetics results for a 30-h assay window showed that 10 mmol/L (NH4)2SO4 delayed root gravitropism, while 30 mmol/L (NH4)2SO4 significantly reduced root gravitropic curvature. Reduction the nutrients in basic medium, root agravitropic response induced by NH4+ occurred at a lower concentration. Adding Ca(NO3)2 partially restored the inhibition of NH4+ on root elongation, but had no effects on NH4+ induced root gravitropic angle. When NH4+ was supplied separately to different parts of the plants, the effect of NH4+ on root gravitropism was mainly from the root-supplied NH4+. These results preliminarily indicate that the influence of ammonium on root growth direction is partially independent of its effect on root elongation and is not due to the deficiency of cations such as Ca2+, but may be related with the alteration of root physiological processes when root exposed to high NH4+.%向重性是决定植物根系构型的主要因素之一,对根系锚定及水分养分吸收具有重要影响.铵显著影响拟南芥根构型,尽管高铵抑制主根伸长和侧根数,然而铵对主根生长方向的研究却少有报道.本文以拟南芥为材料,利用室内培养基模拟试验,研究了高铵胁迫对根系向重性生长的

  1. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots.

    Science.gov (United States)

    Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll

    2010-03-01

    The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.

  2. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    Science.gov (United States)

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  3. Root productivity of deciduous and evergreen species identified using a molecular approach

    Science.gov (United States)

    Ellsworth, P.; Sternberg, L. O.

    2012-12-01

    The linkage between leaf traits and root structure may explain how plants integrate above and belowground traits into whole plant adaptations to environmental stresses. In dry seasonal forests, the lack of dry season precipitation dries out the relatively nutrient-rich shallow soil, leaving shallow soil water and nutrients inaccessible to uptake until the wet season. In tropical or subtropical seasonal dry forests, deciduousness may allow for the survival of shallow fine roots during the dry season. Losing leaves during the dry season reduces aboveground plant water demand, and a greater proportion of water extracted from deep soil can be used to maintain shallow roots until the wet season. Higher shallow root survival through the dry season than evergreen species means that deciduous species can take advantage of the nutrient pulse associated with the onset of the wet season. To test the above hypothesis, fine roots were collected from soil cores in a seasonally dry forest during the dry season, onset of the wet season, and the wet season and were identified to selected evergreen and deciduous study species. The fine roots of two of the selected species (Lyonia ferruginea and Carya floridana) could be identified from visual characteristics. The other three study species, which were all from the genus Quercus (Q. geminata, Q. myrtifolia, and Q. laevis), were impossible to separate visually. We developed a PCR-based restriction fragment length polymorphism (PCR-RFLP) technique, which provided a quick, simple, low-cost way to identify the species of all fine roots of our study species. We extracted DNA from all roots that were not visually identified, amplified the internal transcribed spacer region (ITS), digested the ITS region with the restriction enzyme TaqαI, and used gel electrophoresis to separate DNA fragments. Using a PCR-RFLP based root identification key that we developed for the species at Archbold Biological Station, all species that could not be

  4. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning.

    Science.gov (United States)

    Garnica-Vergara, Amira; Barrera-Ortiz, Salvador; Muñoz-Parra, Edith; Raya-González, Javier; Méndez-Bravo, Alejandro; Macías-Rodríguez, Lourdes; Ruiz-Herrera, León Francisco; López-Bucio, José

    2016-03-01

    Plants interact with root microbes via chemical signaling, which modulates competence or symbiosis. Although several volatile organic compounds (VOCs) from fungi may affect plant growth and development, the signal transduction pathways mediating VOC sensing are not fully understood. 6-pentyl-2H-pyran-2-one (6-PP) is a major VOC biosynthesized by Trichoderma spp. which is probably involved in plant-fungus cross-kingdom signaling. Using microscopy and confocal imaging, the effects of 6-PP on root morphogenesis were found to be correlated with DR5:GFP, DR5:VENUS, H2B::GFP, PIN1::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP gene expression. A genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and auxin- and ethylene-related mutants allowed identification of genes controlling root architectural responses to this metabolite. Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated root architecture, inhibiting primary root growth and inducing lateral root formation. 6-PP modulated expression of PIN auxin-transport proteins in a specific and dose-dependent manner in primary roots. TIR1, AFB2 and AFB3 auxin receptors and ARF7 and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas EIN2 modulated 6-PP sensing in primary roots. These results indicate that root responses to 6-PP involve components of auxin transport and signaling and the ethylene-response modulator EIN2. PMID:26568541

  5. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

    DEFF Research Database (Denmark)

    Egelund, Jack; Obel, Nicolai; Ulvskov, Peter;

    2007-01-01

    Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas...

  6. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben;

    2015-01-01

    and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other...

  7. Formation of the unusual semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the root stele is involved in defense against belowground herbivory

    Science.gov (United States)

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and anti-herbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. ...

  8. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter. PMID:27263008

  9. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter.

  10. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.

    Science.gov (United States)

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  11. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    Science.gov (United States)

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  12. Inflorescence stem grafting made easy in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nisar Nazia

    2012-12-01

    Full Text Available Abstract Background Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. Results Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87% grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of

  13. ABA modulates root growth through regulating auxin in Arabidopsis thaliana%脱落酸通过影响生长素合成及分布抑制拟南芥主根伸长

    Institute of Scientific and Technical Information of China (English)

    袁冰剑; 张森磊; 曹萌萌; 王志娟; 李霞

    2014-01-01

    脱落酸(ABA)在介导植物生长发育及逆境响应中发挥重要功能,但ABA抑制根伸长的机制尚不清楚。本文以拟南芥为材料,通过研究 ABA 对拟南芥根伸长的影响以及 ABA 受体突变体根发育表型的鉴定,探讨ABA抑制植物主根的机制。研究发现:ABA能够抑制主根生长及伸长,并且经典受体PYR1/PRL介导了ABA抑制根伸长的过程;ABA能够改变细胞周期蛋白CycB1;1:GUS表达模式,并影响根中生长素分布和响应。结果表明, ABA可能通过影响生长素在根部的分布和剂量,进而影响根尖分生区细胞分裂,从而抑制根伸长。%As sessile organism, plants exhibit an amazing developmental plasticity in adapting to changing growth conditions in response to environmental stimuli. As an important organ of plants, roots variously make active changes in the face of different stimuli. It is well known that ABA (abscisic acid) is an important molecule that inhibits root growth. ABA receptor PYR1/PYL mediates ABA signaling transduction by binding with PP2C proteins and activating kinases SnRK2s. However, little is known about how ABA regulates root growth and plastic development. In order to understand the mechanism underlying root growth inhibition by ABA, the effects of ABA on the size and activity of root meristem, meristematic cell cycle, and auxin amount and distribution patterns were analyzed with Arabidopsis thaliana as materials. The results showed that ABA inhibited the growth of primary roots and reduced the size of meristems of primary roots. The inhibition effect of ABA on pyr1/pyl1/pyl2 root growth reduced, which showed that ABA receptor PYR1/PYL was involved in the inhibition of root growth. Further analysis showed that ABA treatment blocked G2/M-phase transition during cell division with the accumulation of cyclin protein CYCB1;1::GUS expression. In addition, we noted that the amounts and distribution patterns of auxin in the roots

  14. Genetic Analysis and Molecular Mapping of Light-Sensitive Red-Root Mutant in Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-zhi; LIU Xiao; LI Chao; XIAO Ke; DONG Yan-jun

    2009-01-01

    The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 μmol/(m2·s), then turned dark-red at the light intensity of 180 μmol/(m2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsr gene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsr gene in rice.

  15. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  16. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  17. Altered life cycle in Arabidopsis plants expressing PsUGT1, a UDP-glucuronosyltransferase-encoding gene from pea.

    Science.gov (United States)

    Woo, Ho-Hyung; Faull, Kym F; Hirsch, Ann M; Hawes, Martha C

    2003-10-01

    Alfalfa (Medicago sativa) and Arabidopsis were used as model systems to examine molecular mechanisms underlying developmental effects of a microsomal UDP-glucuronosyltransferase-encoding gene from pea (Pisum sativum; PsUGT1). Alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited delayed root emergence, reduced root growth, and increased lateral root development. The timing of root emergence in wild-type and antisense plants was correlated with the transient accumulation of auxin at the site of root emergence. Cell suspension cultures derived from the antisense alfalfa plants exhibited a delay in cell cycle from 24-h in the wild-type plants to 48-h in the antisense plants. PsUGT1::uidA was introduced into Arabidopsis to demonstrate that, as in alfalfa and pea, PsUGT1 expression occurs in regions of active cell division. This includes the root cap and root apical meristems, leaf primordia, tips of older leaves, and the transition zone between the hypocotyl and the root. Expression of PsUGT1::uidA colocalized with the expression of the auxin-responding reporter DR5::uidA. Co-expression of DR5::uidA in transgenic Arabidopsis lines expressing CaMV35S::PsUGT1 revealed that ectopic expression of CaMV35S::PsUGT1 is correlated with a change in endogenous auxin gradients in roots. Roots of ecotype Columbia expressing CaMV35S::PsUGT1 exhibited distinctive responses to exogenous naphthalene acetic acid. Completion of the life cycle occurred in 4 to 6 weeks compared with 6 to 7 weeks for wild-type Columbia. Inhibition of endogenous ethylene did not correct this early senescence phenotype. PMID:12972656

  18. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.

    Science.gov (United States)

    Tatematsu, Kiyoshi; Kumagai, Satoshi; Muto, Hideki; Sato, Atsuko; Watahiki, Masaaki K; Harper, Reneé M; Liscum, Emmanuel; Yamamoto, Kotaro T

    2004-02-01

    We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.

  19. Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana.

    Science.gov (United States)

    Yoshida, S; Ito, M; Nishida, I; Watanabe, A

    2001-02-01

    Nine cDNAs, representing genes in which the transcripts accumulated in senescent leaves of Arabidopsis thaliana, were isolated by differential display reverse transcription polymerase chain reaction (DDRT-PCR) and the genes were designated yellow-leaf-specific gene 1 to 9 (YLS1-YLS9). Sequence analysis revealed that none of the YLS genes, except YLS6, had been reported as senescence-up-regulated genes. RNA gel blot analysis revealed that the transcripts of YLS3 accumulated at the highest level at an early senescence stage, whereas the transcripts from the other YLS genes reached their maximum levels in late senescence stages. Transcripts of YLS genes showed various accumulation patterns under natural senescence, and under artificial senescence induced by darkness, ethylene or ABA. These expression characteristics of YLS genes will be useful as potential molecular markers, which will enhance our understanding of natural and artificial senescence processes.

  20. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thaliana. Final report, April 1, 1995--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S.I.

    1998-11-01

    The ultimate goal of this research is to elucidate the molecular mechanisms by which the complex interactions between sources and sinks of fixed carbon are controlled in plants. As soluble sugar levels have been shown to play a vital role in a variety of source-sink interactions, a key aspect of the authors research is to determine the role of sugar-regulated gene expression in mediating source-sink interactions. In addition, as a critical aspect of source-sink interactions is the channeling of fixed carbon into different storage forms, they have pursued the findings that fumaric acid represents a significant form of storage carbon in Arabidopsis thaliana and other plant species. In the future, a better understanding of the mechanisms by which interactions between sources and sinks of fixed carbon are coordinated will be a pre-requisite to developing more rationale approaches to improving harvest indices in crop species.

  1. Overlapping and divergent signaling pathways for ARK1 and AGD1 in the control of root hair polarity in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cheol-Min eYoo

    2013-12-01

    Full Text Available We previously showed that seedlings harboring mutations in genes encoding ARK1, an armadillo repeat-containing kinesin, or AGD1, a class 1 ARF-GAP, have root hairs that exhibit wavy/spiral growth and two tips originating from one initiation site. These root hair defects were accompanied by bundling of endoplasmic microtubules and filamentous actin (F-actin that extended to the extreme root hair apex. The similar phenotypes of ark1 and agd1 mutants suggest a tight coordination between the cytoskeleton and membrane trafficking in the control of root hair polarity. Indeed, cell biological and genetic studies of the agd1 mutant provided evidence that AGD1’s involvement in root hair development involves cross-talk among phosphoinositides (PIs, the actin cytoskeleton and other small GTPases such as ROP2 and RABA4b. Here we show that ark1 root hairs mirror those of agd1 with regard to altered targeting of ROP2 and RABA4b, as well as abnormal tonoplast organization. Furthermore, like agd1, enhanced root hair defects in double mutants in ARK1 and genes encoding a type B phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3, a phosphatidylinositol-4-phosphate (PI-4P phosphatase (RHD4, a phosphatidylinositol transfer protein (COW1, and a vegetative actin isoform (ACT2, were observed. However, root hair shape of some ark1 double mutant combinations, particularly those with act2, pip5k3 and rhd4 (ark1 act2, ark1 pip5k3, ark1 rhd4, differed in some respects from agd1 act2, agd1 pip5k3 and agd1 rhd4. Taken together our results continue to point to commonalities between ARK1 and AGD1 in specifying root hair polarity, but that these two modulators of tip-growth can also regulate root hair development through divergent signaling routes with AGD1 acting predominantly during root hair initiation and ARK1 functioning primarily in sustained tip growth.

  2. Interaction between hydrotropism and gravitropism in seedling roots

    Science.gov (United States)

    Kobayashi, A.; Takahashi, A.; Yamazaki, Y.; Kakimoto, Y.; Higashitani, A.; Fujii, N.; Takahashi, H.

    Roots display positive hydrotropism in response to a moisture gradient, which could play a role in avoiding drought stress. Because roots also respond to other stimuli such as gravity, touch and light and exhibit gravitropism, thigmotropism and phototropism, respectively, their growth orientation is determined by interaction among those tropisms. We have demonstrated the interaction between hydrotropism and gravitropism. For example, 1) agravitropic roots of pea mutant strongly respond to a moisture gradient and show positive hydrotropism by overcoming gravitropism, 2) in wild type pea roots hydrotropism is weak but pronounced when rotated on clinostat, 3) cucumber roots are positively gravitropic on the ground but become hydrotropic in microgravity, and 4) maize roots change their growth direction depending on the intensities of both gravistimulation and hydrostimulation. Here we found that Arabidopsis roots could display strong hydrotropism by overcoming gravitropism. It was discovered that amyloplasts in the columella cells are rapidly degraded upon exposure to a moisture gradient. Thus, degradation of amyloplasts could reduce the responsiveness to gravity, which could pronounce the hydrotropic response. In hydrotropically stimulated roots of pea seedlings, however, we could not observe a rapid degradation of amyloplasts in the columella cells. These results suggest that mechanism underlying the interaction between hydrotropism and gravitropism differs among plant species. To further study the molecular mechanism of hydrotropism and its interaction with gravitropism, we isolated unique mutants of Arabidopsis of which roots showed either ahydrotropism, reduced hydrotropism or negative hydrotropic response and examined their gravitropism, phototropism, waving response, amyloplast degradation and elongation growth. Based on the characterization of hydrotropic mutants, we will attempt to compare the mechanisms of the two tropisms and to clarify their cross talk for

  3. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  4. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 3e-23 ...

  5. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-16 ...

  6. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  7. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-17 ...

  8. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-40 ...

  9. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-29 ...

  10. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 8e-38 ...

  11. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  12. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-24 ...

  13. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair elongation (IRE) / protein kin...ase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 0.0 ...

  14. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 9e-31 ...

  15. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-21 ...

  16. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-23 ...

  17. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-35 ...

  18. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  19. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  20. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 6e-29 ...

  1. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    OpenAIRE

    Bernier Georges; Kurtem Emile; Pieltain Alexandra; Havelange Andrée; Corbesier Laurent; Tocquin Pierre; Périlleux Claire

    2003-01-01

    Abstract Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and roset...

  2. Analysis of reporter proteins GUS and DsRed driven under the control of CaMV35S promoter in syncytia induced by beet cyst nematode Heterodera schachtii in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    2016-05-01

    Full Text Available Background: Cyst nematodes induce specialized feeding structures called syncytia in the plant roots. The expression of CaMV promoter in syncytia has remained topic of debate. The objective of this research was to study the activity of CaMV promoter by using reporter proteins like GUS and DsRed under the control of CaMV35S promoter in syncytia induced by H. schachtii in Arabidopsis roots. Methods: pMAA-Red and pPZP3425 plasmids were used to study expression of GUS and DsRed in syncytia. The plants were grown in 2% Knop medium under sterile conditions in growth chambers at 25°C in long day conditions. GUS activity in syncytia was studied through staining of syncytia using X-gluc solution. Ds-Red fluorescence in syncytia was detected by using an inverse microscope equipped with UV filter. Results: The expression analysis of DsRed protein driven by CaMV promoter demonstrated that this promoter is active in syncytia at all the time points. All the syncytia showed DsRed expression at 5 dpi. At 7 dpi, 10 dpi and 15 dpi over 90%, 80% and 50% of the syncytia showed DsRed fluorescence respectively. There was very high fluorescence in the syncytia as compared to the uninfected root segments due to high expression. CaMV::GUS lines showed GUS expression in 80% of 5dpi syncytia. However, unlike expression of DsRed, the number of GUS stained syncytia decreased quickly to around 50% at 7 dpi and to about 5% in the 15 dpi syncytia. Conclusions: The results conclude that CaMV promoter is more active in younger syncytia as compared to older syncytia but can be used for expression in syncytia. Moreover, DsRed protein could be used as better reporter for evaluation of gene expression in syncytia as compared to GUS.

  3. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody

    NARCIS (Netherlands)

    Häkkinen, S.T.; Raven, N.; Henquet, M.G.L.; Laukkanen, M.L.; Anderlei, T.; Pitkänen, J.P.; Twyman, R.M.; Bosch, H.J.; Oksman-Caldentey, K.M.; Schillberg, S.; Ritala, A.

    2014-01-01

    Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To a

  4. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    Science.gov (United States)

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  5. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots

    NARCIS (Netherlands)

    Huang, J.; Bachem, C.W.B.; Jacobsen, E.; Visser, R.

    2001-01-01

    One of the major problems for cassava is the rapid deterioration after harvesting cassava tuberous roots, which limits the possibilities for production and distribution of cassava in the world. Postharvest deterioration is an inherent problem for cassava since wounding and mechanical damage of the t

  6. Molecular cloning,expression and biochemical property analysis of AtKP1,a kinesin gene from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LI XuYan; WANG HaiQing; XU Tao; CAO QinHong; REN DongTao; LIU GuoQin

    2007-01-01

    Kinesins are common in a variety of eukaryotic cells with diverse functions.A cDNA encoding a member of the Kinesin-14B subfamily is obtained using 3'-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1).This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa.Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions,respectively.The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins.Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants.2808 bp of the AtKP1 promoter region is cloned and fused to GUS.GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes,indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes.A truncated AtKP1 protein containing the putative motor domain is expressed in E.coll and affinity-purified.In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.

  7. The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth.

    Science.gov (United States)

    Belgaroui, Nibras; Berthomieu, Pierre; Rouached, Hatem; Hanin, Moez

    2016-09-01

    Phytic acid (PA) is a major source of inorganic phosphate (Pi) in the soil; however, the plant lacks the capacity to utilize it for Pi nutrition and growth. Microbial phytases constitute a group of enzymes that are able to remobilize Pi from PA. Thus, the use of these phytases to increase the capacity of higher plants to remobilize Pi from PA is of agronomical interest. In the current study, we generate transgenic Arabidopsis lines (ePHY) overexpressing an extracellular form of the phytase PHY-US417 of Bacillus subtilis, which are characterized by high levels of secreted phytase activity. In the presence of PA as sole source of Pi, while the wild-type plants show hallmark of Pi deficiency phenotypes, including the induction of the expression of Pi starvation-induced genes (PSI, e.g. PHT1;4) and the inhibition of growth capacity, the ePHY overexpressing lines show a higher biomass production and no PSI induction. Interestingly, when co-cultured with ePHY overexpressors, wild-type Arabidopsis plants (or tobacco) show repression of the PSI genes, improvement of Pi content and increases in biomass production. In line with these results, mutants in the high-affinity Pi transporters, namely pht1;1 and pht1;1-1;4, both fail to accumulate Pi and to grow when co-cultured with ePHY overexpressors. Taken together, these data demonstrate the potential of secreted phytases in improving the Pi content and enhancing growth of not only the transgenic lines but also the neighbouring plants. PMID:26914451

  8. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  9. Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis%茉莉酸诱导侧根形成缺陷突变体asa1-1抑制子(soa)的鉴定与遗传分析

    Institute of Scientific and Technical Information of China (English)

    李延安; 祁林林; 孙加强; 刘宏宇; 李传友

    2011-01-01

    外源茉莉酸处理野生型拟南芥能够促进侧根的形成,而在asa1-1突变体中茉莉酸抑制侧根的形成,这与在该突变体背景下茉莉酸显著降低PIN2蛋白水平密切相关.为了进一步研究茉莉酸诱导PIN2蛋白水平下调的分子机制,文章采用正向遗传学的方法筛选asa1-1抑制子soa,期望获得茉莉酸处理后侧根发育恢复的突变体.通过筛选鉴定获得2个突变体:soa563和soa856.这2个突变体在10 μmol/L茉莉酸甲酯处理条件下都能够恢复侧根发育,而且茉莉酸处理后PIN2蛋白水平降低的现象在soa563中被完全抑制,在soa856中被部分抑制.这些结果表明这两个突变基因可能影响了茉莉酸调控的PIN2蛋白水平下调途径,并且参于了茉莉酸对侧根发生的调控.对这两个基因的分离和功能研究将为阐明茉莉酸与生长素互作调控侧根发生的分子机制提供新的知识积累.%It has been shown that jasmonate modulates the lateral root development through crosstalk with auxin in Arabidopsis thaliana. Exogenous application of jasmonate stimulates lateral root formation in wild type but inhibits lateral root formation in asal-1. Our previous work has demonstrated that the lateral root formation defect of asal-1 is co-related with jasmonte effect on PIN2 protein levels. To further elucidate the molecular mechanisms underlying jasmonate-mediated reduction of plasma membrane (PM)-resident PIN2 abundance, we have conducted a genetic screen to identify suppressors of asal-1 (soa), which showed lateral root formation in the presence of jasmonate. Here, we described the basic characteri-zation of soa563 and soa856. We showed that both soa563 and soa856 displayed restored lateral root formation in response to exogenous jasmonate. In addition, jasmonate-induced PIN2:GFP reduction was blocked in these two mutants. Our on-going effort to identify genes defined by these mutants promise to shed new light on the understanding of

  10. A simple method suitable to study de novo root organogenesis

    Directory of Open Access Journals (Sweden)

    Xiaodong eChen

    2014-05-01

    Full Text Available De novo root organogenesis is the process in which adventitious roots regenerate from detached or wounded plant tissues or organs. In tissue culture, appropriate types and concentrations of plant hormones in the medium are critical for inducing adventitious roots. However, in natural conditions, regeneration from detached organs is likely to rely on endogenous hormones. To investigate the actions of endogenous hormones and the molecular mechanisms guiding de novo root organogenesis, we developed a simple method to imitate natural conditions for adventitious root formation by culturing Arabidopsis thaliana leaf explants on B5 medium without additive hormones. Here we show that the ability of the leaf explants to regenerate roots depends on the age of the leaf and on certain nutrients in the medium. Based on these observations, we provide examples of how this method can be used in different situations, and how it can be optimized. This simple method could be used to investigate the effects of various physiological and molecular changes on the regeneration of adventitious roots. It is also useful for tracing cell lineage during the regeneration process by differential interference contrast observation of -glucuronidase staining, and by live imaging of proteins labeled with fluorescent tags.

  11. High-throughput sequencing of black pepper root transcriptome

    Directory of Open Access Journals (Sweden)

    Gordo Sheila MC

    2012-09-01

    Full Text Available Abstract Background Black pepper (Piper nigrum L. is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  12. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells

    Directory of Open Access Journals (Sweden)

    Andres Marilou A

    2007-09-01

    Full Text Available Abstract Background The cyclic nucleotide-gated ion channels (CNGCs maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. Results AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50–150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. Conclusion AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported

  13. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Fengtao; Lin, Ruiming; Feng, Jing; Chen, Wanquan; Qiu, Dewen; Xu, Shichang

    2015-01-01

    Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  14. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fengtao eWang

    2015-02-01

    Full Text Available Plant-specific NAC transcription factors constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a transcription factor localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid, methyl jasmonate and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  15. Longitudinal zonation pattern in plant roots: conflicts and solutions.

    Science.gov (United States)

    Ivanov, Victor B; Dubrovsky, Joseph G

    2013-05-01

    Despite the relative simplicity of Arabidopsis root organization, there is no general agreement regarding the terminology used to describe the longitudinal zonation pattern (LZP) of this model system. In this opinion article, we examine inconsistencies in the terminology and provide a conceptual framework for the LZP that may be applied to all angiosperms. We propose that the root apical meristem (RAM) consists of the cell-proliferation domain where cells maintain a high probability to divide and the transition domain with a low probability of cell division; in both domains cells grow at the same, relatively low, rate. Owing to stochastic termination of cell proliferation in the RAM, the border between the domains is 'fuzzy'. Molecular markers analyzed together with quantitative growth and cell analyses could help to identify developmental zones along the root and lead to a better understanding of the LZP in angiosperms.

  16. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots.

    OpenAIRE

    Korhonen, T K; Tarkka, E; Ranta, H; Haahtela, K

    1983-01-01

    Type 3 fimbriae of Klebsiella were purified and characterized. The fimbriae were 4 to 5 nm in diameter and 0.5 to 2 microns long. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the fimbrillin had an apparent molecular weight of 23,500, and it differed from enterobacterial type 1 fimbrillins in its amino acid composition. Hydrophobic amino acids comprised 33.6% of all amino acids in the fimbrillin, which lacked cystine, phenylalanine, and arginine. Serologically, the type 3 fimb...

  17. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations.

  18. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Science.gov (United States)

    Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui

    2016-01-01

    The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  19. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    Science.gov (United States)

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios. PMID:27641502

  20. Levels of Arabidopsis thaliana leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle

    Directory of Open Access Journals (Sweden)

    Sara eMaatta

    2012-03-01

    Full Text Available Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole mass spectrometry indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD is a family of enzymes that hydrolyzes phospholipids to produce phosphatidic acid. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of phosphatidic acid. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.

  1. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri.

    Science.gov (United States)

    Sarret, Géraldine; Saumitou-Laprade, Pierre; Bert, Valérie; Proux, Olivier; Hazemann, Jean-Louis; Traverse, Agnès; Marcus, Matthew A; Manceau, Alain

    2002-12-01

    The chemical forms of zinc (Zn) in the Zn-tolerant and hyperaccumulator Arabidopsis halleri and in the non-tolerant and nonaccumulator Arabidopsis lyrata subsp. petraea were determined at the molecular level by combining chemical analyses, extended x-ray absorption spectroscopy (EXAFS), synchrotron-based x-ray microfluorescence, and muEXAFS. Plants were grown in hydroponics with various Zn concentrations, and A. halleri specimens growing naturally in a contaminated site were also collected. Zn speciation in A. halleri was independent of the origin of the plants (contaminated or non-contaminated) and Zn exposure. In aerial parts, Zn was predominantly octahedrally coordinated and complexed to malate. A secondary organic species was identified in the bases of the trichomes, which contained elevated Zn concentrations, and in which Zn was tetrahedrally coordinated and complexed to carboxyl and/or hydroxyl functional groups. This species was detected thanks to the good resolution and sensitivity of synchrotron-based x-ray microfluorescence and muEXAFS. In the roots of A. halleri grown in hydroponics, Zn phosphate was the only species detected, and is believed to result from chemical precipitation on the root surface. In the roots of A. halleri grown on the contaminated soil, Zn was distributed in Zn malate, Zn citrate, and Zn phosphate. Zn phosphate was present in both the roots and aerial part of A. lyrata subsp. petraea. This study illustrates the complementarity of bulk and spatially resolved techniques, allowing the identification of: (a) the predominant chemical forms of the metal, and (b) the minor forms present in particular cells, both types of information being essential for a better understanding of the bioaccumulation processes. PMID:12481065

  2. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability.

    Science.gov (United States)

    Yu, Peng; White, Philip J; Hochholdinger, Frank; Li, Chunjian

    2014-10-01

    Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution. PMID:25143250

  3. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots

    Science.gov (United States)

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector ge...

  4. Inhibition of strigolactones promotes adventitious root formation

    OpenAIRE

    Rasmussen, Amanda; Beveridge, Christine A.; Geelen, Danny

    2012-01-01

    Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate her...

  5. Bases moleculares de la síntesis de termoespermina y sus implicaciones en el desarrollo vascular de Arabidopsis thaliana

    OpenAIRE

    Vera Sirera, Francisco

    2011-01-01

    Interés del estudio: el desarrollo vascular de las plantas, y más concretamente del xilema es un proceso determinante en el correcto desarrollo de las plantas, y vital para la formación de los recursos madereros de los mismos. Objetivos: los dos objetivos principales de esta tesis son: a) establecer los mecanismos moleculares por los cuales la termoespermina controla la correcta formación del xilema. b) encontrar las diferencias estructurales entre las diversas aminopropil transfera...

  6. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  7. Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Maolin Zhang

    Full Text Available Soil salinity is a major constraint to crop growth and yield. The primary and lateral roots of Arabidopsis thaliana are known to respond differentially to a number of environmental stresses, including salinity. Although the maize root system as a whole is known to be sensitive to salinity, whether or not different structural root systems show differential growth responses to salinity stress has not yet been investigated. The maize primary root (PR was more tolerant of salinity stress than either the crown root (CR or the seminal root (SR. To understand the molecular mechanism of these differential growth responses, RNA-Seq analysis was conducted on cDNA prepared from the PR, CR and SR of plants either non-stressed or exposed to 100 mM NaCl for 24 h. A set of 444 genes were shown to be regulated by salinity stress, and the transcription pattern of a number of genes associated with the plant salinity stress response differed markedly between the various types of root. The pattern of transcription of the salinity-regulated genes was shown to be very diverse in the various root types. The differential transcription of these genes such as transcription factors, and the accumulation of compatible solutes such as soluble sugars probably underlie the differential growth responses to salinity stress of the three types of roots in maize.

  8. AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Kinesins and kinesin-like proteins (KLPs) constitute a large family of microtubule-based motors that play important roles in many fundamental cellular and developmental processes. To date, a number of kinesins or KLPs have been identified in plants including Arabidopsis thaliana. Here, a polyclonal antibody against AtKP1 (kinesin-like protein 1 in A.thaliana) was raised by injection the expressed AtKP1 specific C-terminal polypeptides in rabbits, and immunoblot analysis was conducted with the affinity-purified anti-AtKP1 antibody. The results indicated that this antibody recognized the AtKP1 fusion proteins expressed in E. coli and proteins of ~125 kDa in the soluble fractions of Arabidopsis extracts. The molecular weight was consistent with the calculated molecular weight based on deduced amino acids sequence of AtKP1. To acquire the subcellular localization of the protein, AtKP1 in Arabidopsis root cells was observed by indirect immunofluorescence microscopy. AtKP1 was localized to particle-like organelles in interphase or dividing cells, but not to mitotic microtubule arrays. Relatively more AtKP1 was found in isolated mitochondria fraction on immunoblot of the subcellular fractions. The AtKP1 protein could not be released following a 0.6 M KI washing,indicating that AtKP1 is tightly bind to mitochondria and might function associated with this kind of organelles.

  9. Molecular mechanisms of tooth root development%牙根发育启动相关信号通路的研究进展

    Institute of Scientific and Technical Information of China (English)

    张陶涛

    2011-01-01

    在牙齿发育过程中,当牙冠发育完成后,上皮根鞘的形成启动了牙根发育,然而关于牙根发育启动的分子调控机制目前尚未明了.该文就近年来关于牙根发育启动的信号通路,主要包括Shh信号通路、TGF-β信号通路、Nfic家族、成纤维细胞生长因子家族以及Notch信号通路等的研究进展作一综述.%The tooth root begins its development once the basic architecture of the crown has been estab-lished. Root development is characterized by cellular proliferation of the external and internal enamel epithelia known ' as Hertwig's epithelial root sheath (HERS). It has been shown that Hertwigs epithelial root sheath is very important for tooth root development, but the molecular mechanisms are still unclear. Recent progresses, including Shh signal pathway, TGF-p signal pathway, Nfic signal pathway, the fibroblast growth factor family and Notch signal pathway, are reviewed in the article.

  10. MOLECULAR TAGGING AND SELECTION FOR SUGAR-TYPE IN CARROT ROOTS USING CO-DOMINANT, PCR-BASED MARKERS

    Science.gov (United States)

    Carrots storage roots accumulate free sugars. The type of sugar accumulated is conditioned by the Rs locus so that typical carrot roots (Rs/-) accumulate predominantly glucose and fructose while rs/rs plants accumulate predominantly sucrose. We recently have found rs/rs plants in one inbred line har...

  11. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    Science.gov (United States)

    Tomar, Ram Sewak Singh; Tiwari, Sushma; Vinod; Naik, Bhojaraja K; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S M S

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  12. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK cascades and enhanced expression of pathogenesis related (PR genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.

  13. Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phosphorus (P) deficiency in the soil is one of the major abiotic stresses that limit plant growth and crop productivity throughout the world. Development of cultivars with improved P-deficiency tolerance is an efficient strategy for sustainable agriculture.Plant roots play an important role in crop growth and development, especially in nutrient uptake and improvement of P-efficiency. Mapping quantitative trait loci (QTLs) for root traits and their response to low P stress at seedling stage will facilitate the development of P-efficient wheat cultivars. In this study, 30 QTLs (LOD>2.0) were mapped for the three root traits, such as root length, root number and root dry matter under different P supply conditions and their response to P-stress. These QTLs were distributed on 14 chromosomes, with each of the 5 QTLs explaining more than 10% phenotype variance. Analyses showed that root traits and their response to P-deficiency were controlled by different QTLs. In addition, alleles with positive effects were separated on both parents, and wheat cultivars with improved P-efficiency could be developed by accumulating these positive effect alleles together.

  14. Modulation of root branching by a coumarin derivative

    OpenAIRE

    Li, Xiang; Gao, Ming-Jun

    2011-01-01

    A healthy root system is crucial to plant growth and survival. To maintain efficiency of root function, plants have to dynamically modulate root system architecture through various adaptive mechanisms such as lateral root formation to respond to a changing and diversified soil environment. Exogenous application of a coumarin derivative, 4-methylumbelliferone (4-MU), in Arabidopsis thaliana inhibits seed germination by mainly reducing primary root growth. UDP-glycosyltransferases play an integ...

  15. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tapsi eShukla

    2015-10-01

    Full Text Available Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant growth, development, and productivity. Genetic variations within and in between species are one of the important factors in establishing interactions and responses of plants with the environment. In the recent past, natural variations in Arabidopsis thaliana have been used to understand plant development and response towards different stresses at genetic level. Phosphorus (Pi deficiency negatively affects plant growth and metabolism and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V, a chemical analogue of Pi, is taken up by the plants via phosphate transport system. Studies suggest that during Pi deficiency, enhanced As(V uptake leads to increased toxicity in plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V stress response under limiting Pi condition. The primary root length was compared to identify differential response of three Arabidopsis accessions (Col-0, Sij-1 and Slavi-1 under limiting Pi and As(V stress. To study the molecular mechanisms responsible for the differential response, comprehensive expression profiling of the genes involved in uptake, detoxification and regulatory mechanisms was carried out. Analysis suggests genetic variation-dependent regulatory mechanisms may affect differential response of Arabidopsis natural variants towards As(V stress under limiting Pi condition. Therefore, it is hypothesized that detailed analysis of the natural variations under multiple stress conditions might help in the better understanding of the biological processes involved in stress tolerance and adaptation.

  16. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhou [ORNL; Czarnecki, Olaf [ORNL; Chourey, Karuna [ORNL; Yang, Jun [ORNL; Tuskan, Gerald A [ORNL; Hurst, Gregory {Greg} B [ORNL; Pan, Chongle [ORNL; Chen, Jay [ORNL

    2014-01-01

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  17. 生长素类化合物及6-苯甲基腺嘌呤对拟南芥主根生长的抑制效应比较%Comparison of the Inhibit Effects of Auxins and 6-Benzyladenine on Arabidopsis Main Root Growth

    Institute of Scientific and Technical Information of China (English)

    李晓峰; 孟广目; 梁城磊; 李丹; 张瑞婷; 牟长军; 陈倪; 刘恒

    2012-01-01

    To study the effect of auxins and 6-BA on cell divison and cell elongation, we compared the inhibit effects of 1AA, NAA, 2,4-D and 6-BA on Arabidopsis main root development. We found that IAA and NAA has similar effects on root development that can increases the length of root meristem zone through promotes cell division and decreases the length of root elongation zone, but 2,4-D and 6-BA decreases both the length of root meristem zone through inhibit cell division and root elongation zone.%为更好的研究生长素类化合物及6-苯甲基腺嘌呤(6-BA)对细胞分裂和细胞伸长的影响,以拟南芥主根为材料,从组织学水平比较了IAA、NAA、2,4-D和6-BA对拟南芥主根分生区和伸长区的抑制效应,发现IAA和NAA效果是相似的,可以通过促进细胞分裂显著增加根分生区长度,但也显著缩短主根伸长区长度,而2,4-D和6-BA则通过抑制细胞分裂来显著缩短根分生区长度,同时也显著缩短根伸长区的长度.

  18. 3D gel map of Arabidopsis complex I

    OpenAIRE

    Katrin ePeters; Katharina eBelt; Hans-Peter eBraun

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves and roots. Subunits of complex I were resolved by 3D blue native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, 7 of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of su...

  19. Spaceflight Induces Specific Alterations in the Proteomes of Arabidopsis

    OpenAIRE

    Ferl, Robert J.; Koh, Jin; Denison, Fiona; Paul, Anna-Lisa

    2015-01-01

    Life in spaceflight demonstrates remarkable acclimation processes within the specialized habitats of vehicles subjected to the myriad of unique environmental issues associated with orbital trajectories. To examine the response processes that occur in plants in space, leaves and roots from Arabidopsis (Arabidopsis thaliana) seedlings from three GFP reporter lines that were grown from seed for 12 days on the International Space Station and preserved on orbit in RNAlater were returned to Earth a...

  20. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  1. Trichoderma volatiles effecting Arabidopsis

    DEFF Research Database (Denmark)

    Ramadan, Metwaly; Gigolashvili, Tamara; Grosskinsky, Dominik Kilian;

    2015-01-01

    Trichoderma species are present in many ecosystems and some strains have the ability to reduce the severity of plant diseases by activating various defense pathways via specific biologically active signaling molecules. Hence we investigated the effects of low molecular weight volatile compounds...... of Trichoderma asperellum IsmT5 on Arabidopsis thaliana. During co-cultivation of T. asperellum IsmT5 without physical contact to A. thaliana we observed smaller but vital and robust plants. The exposed plants exhibit increased trichome numbers, accumulation of defense-related compounds such as H2O2, anthocyanin......, camalexin, and increased expression of defense-related genes. We conclude that A. thaliana perceives the Trichoderma volatiles as stress compounds and subsequently initiates multilayered adaptations including activation of signaling cascades to withstand this environmental influence. The prominent headspace...

  2. Arabidopsis HY1 Confers Cadmium Toleranceby Decreasing Nitric Oxide Production andImproving Iron Homeostasis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cad-mium (Cd2+) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1(AtHO1) in Cd2+ tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 over-expression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivityof by1 to Cd2+ stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe,especially), rescued the Cd2+-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, whichexhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction,Cd2+ accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4.Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts,and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation amelio-rates Fe deficiency, and might increase Cd2+ exclusion. Taken together, these results showed that HY1 plays a commonlink in Cd2+ tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.

  3. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    OpenAIRE

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Here, we performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis for the ability to profit from rhizobacteria-mediated plant growth-promotion. To this end, 302 Arab...

  4. Functional analysis of the theobroma cacao NPR1 gene in arabidopsis

    Directory of Open Access Journals (Sweden)

    Verica Joseph

    2010-11-01

    Full Text Available Abstract Background The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1 that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. Results A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS. To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. Conclusion Our data indicate that the TcNPR1 is a functional

  5. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2015-01-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere. This phenomenon occurs for several purposes, for instance, the detoxification of pollutants. Nevertheless, knowledge about the exudation of such substances from marsh plants roots is still scarce. This work aimed at studying: 1) the ability of marsh plants, freshly collected in estuarine marshes, to liberate ALMWOAs into the surrounding medium and 2) the influence of the physiological cycle of these plants on the exudation of those substances. In vitro experiments were carried out, in different seasons, with Phragmites australis and Halimione portulacoides (two marsh plants widely distributed in Europe). Root exudates were collected in freshwater to which plant specimens, in different physiological stages, were exposed. Both marsh plants were capable of liberating oxalic and citric acids into the surrounding medium. Formic acid was also released by P. australis roots and acetic acid by H. portulacoides. There was a seasonal effect on the liberation of ALMWOAs by both plant roots. Marked changes were registered in the nature and levels of the ALMWOAs liberated and such changes depended upon the season in which the specimens were collected. In growing season, a significantly higher liberation of oxalic and citric acids (and acetic acid but only in H. portulacoides case) was observed. For P. australis, formic acid was only found in the decaying stage (autumn and winter). The nature of the medium (in particular, salinity) was a feature conditioning the exudation of ALMWOAs. Both plants were shown to contribute for the presence of ALMWOAs in marsh rhizosediments (some ALMWOAs were found in pore waters extracted). The nature and extent of this contribution will be however dependent upon plants' physiological stage, in addition to plant species. Therefore, these features should be taken into consideration in the event of

  6. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  7. Regulation of iron acquisition responses in plant roots by a transcription factor.

    Science.gov (United States)

    Bauer, Petra

    2016-09-10

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016.

  8. Regulation of iron acquisition responses in plant roots by a transcription factor.

    Science.gov (United States)

    Bauer, Petra

    2016-09-10

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016. PMID:27027408

  9. Molecular Genetic Analysis of Glucan Branching Enzymes from Plants and Bacteria in Arabidopsis Reveals Marked Differences in Their Functions and Capacity to Mediate Starch Granule Formation.

    Science.gov (United States)

    Lu, Kuan-Jen; Streb, Sebastian; Meier, Florence; Pfister, Barbara; Zeeman, Samuel C

    2015-11-01

    The major component of starch is the branched glucan amylopectin, the branching pattern of which is one of the key factors determining its ability to form semicrystalline starch granules. Here, we investigated the functions of different branching enzyme (BE) types by expressing proteins from maize (Zea mays BE2a), potato (Solanum tuberosum BE1), and Escherichia coli (glycogen BE [EcGLGB]) in Arabidopsis (Arabidopsis thaliana) mutant plants that are deficient in their endogenous BEs and therefore, cannot make starch. The expression of each of these three BE types restored starch biosynthesis to differing degrees. Full complementation was achieved using the class II BE ZmBE2a, which is most similar to the two endogenous Arabidopsis isoforms. Expression of the class I BE from potato, StBE1, resulted in partial complementation and high amylose starch. Expression of the glycogen BE EcGLGB restored only minimal amounts of starch production, which had unusual chain length distribution, branch point distribution, and granule morphology. Nevertheless, each type of BE together with the starch synthases and debranching enyzmes were able to create crystallization-competent amylopectin polymers. These data add to the knowledge of how the properties of the BE influence the final composition of starch and fine structure of amylopectin. PMID:26358415

  10. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    Science.gov (United States)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  11. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101

    NARCIS (Netherlands)

    Mortel, van de J.E.; Vos, de R.C.H.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; Loon, van J.J.A.; Dicke, M.; Raaijmakers, J.M.

    2012-01-01

    Systemic resistance induced in plants by nonpathogenic rhizobacteria is typically effective against multiple pathogens. Here, we show that root-colonizing Pseudomonas fluorescens strain SS101 (Pf.SS101) enhanced resistance in Arabidopsis (Arabidopsis thaliana) against several bacterial pathogens, in

  12. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium. Her

  13. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi

    Science.gov (United States)

    While many studies have characterized the transcriptome of plants attacked by herbivorous insect pests, few have undertaken an examination of the genes affected by root pests. We have subjected maize seedlings to infestation by southern corn rootworm (SCR) Diabrotica undecimpunctata howardi and usin...

  14. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger.

    Science.gov (United States)

    Matsuda, J; Okabe, S; Hashimoto, T; Yamada, Y

    1991-05-25

    Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hy