WorldWideScience

Sample records for arabidopsis roots molecular

  1. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    Science.gov (United States)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  2. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions.

  3. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    Science.gov (United States)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  4. Molecular genetic investigations of root gravitropism and other complex growth behaviors using Arabidopsis and Brachypodium as models

    Science.gov (United States)

    Masson, Patrick; Barker, Richard; Miller, Nathan; Su, Shih-Hao; Su, Shih-Heng

    2016-07-01

    When growing on hard surfaces, Arabidopsis roots tend to grown downward, as dictated by positive gravitropism. At the same time, surface-derived stimuli promote a wavy pattern of growth that is superimposed to a rightward root-skewing trend. This behavior is believed to facilitate obstacle avoidance in soil. To better understand these complex behaviors, we have isolated and characterized mutations that affect them. Some of these mutations were shown to affect gravitropism whereas others did not. Within the latter group, most of the mutations affected mechanisms that control anisotropic cell expansion. We have also characterized mutations that affect early steps of gravity signal transduction within the gravity-sensing columella cells of the root cap. Upon reorientation within the gravity field, starch-filled plastids sediment to the bottom-side of these cells, triggering a pathway that leads to re-localization of auxin efflux facilitators to the bottom membrane. Lateral auxin transport toward the bottom flank ensues, leading to gravitropic curvature. Several of the mutations we characterized affect genes that encode proteins associated with the vesicle trafficking pathway needed for this cell polarization. Other mutations were shown to affect components of the plastid outer envelope protein import complex (TOC). Their functional analysis suggests an active role for plastids in gravity signal transduction, beyond a simple contribution as sedimenting gravity susceptors. Because most cultivated crops are monocots, not dicots like Arabidopsis, we have also initiated studies of root-growth behavior with Brachypodium distachyon. When responding to a gravistimulus, the roots of Brachypodium seedlings develop a strong downward curvature that proceeds until the tip reaches a ~50-degree curvature. At that time, an oscillatory tip movement occurs while the root continues its downward reorientation. These root-tip oscillations also occur if roots are allowed to simply grow

  5. Arabidopsis: an adequate model for dicot root systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to 8 different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of th...

  6. Arabidopsis: An Adequate Model for Dicot Root Systems?

    OpenAIRE

    Zobel, Richard W.

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of t...

  7. Defining the core Arabidopsis thaliana root microbiome

    Science.gov (United States)

    Gehring, Jase; Malfatti, Stephanie; Tremblay, Julien; Engelbrektson, Anna; Kunin, Victor; del Rio, Tijana Glavina; Edgar, Robert C.; Eickhorst, Thilo; Ley, Ruth E.; Hugenholtz, Philip; Tringe, Susannah Green; Dangl, Jeffery L.

    2014-01-01

    Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing therhizosphere(immediately surroundingthe root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation1-3. Colonization of the root occurs despite a sophisticated plant immune system4,5, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plantmicrobe interactions derived from complex soil communities. PMID:22859206

  8. Spiralizations and tropisms in Arabidopsis roots.

    Science.gov (United States)

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  9. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis.

    Science.gov (United States)

    Larroque, Mathieu; Belmas, Elodie; Martinez, Thomas; Vergnes, Sophie; Ladouce, Nathalie; Lafitte, Claude; Gaulin, Elodie; Dumas, Bernard

    2013-09-01

    The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regulator of basal immunity in Arabidopsis, and the production of a reactive oxygen burst mediated by respiratory burst oxidases homologues (RBOH). Screening of a core collection of 48 Arabidopsis ecotypes using CBEL uncovered a large variability in CBEL-induced necrotic responses. Analysis of non-responsive CBEL lines Ws-4, Oy-0, and Bla-1 revealed that Ws-4 and Oy-0 were also impaired in the production of the oxidative burst and expression of defence genes, whereas Bla-1 was partially affected in these responses. Infection tests using two Phytophthora parasitica strains, Pp310 and Ppn0, virulent and avirulent, respectively, on the Col-0 line showed that BAK1 and RBOH mutants were susceptible to Ppn0, suggesting that some immune responses controlled by these genes, but not CBEL-induced cell death, are required for Phytophthora parasitica resistance. However, Ws-4, Oy-0, and Bla-1 lines were not affected in Ppn0 resistance, showing that natural variability in CBEL responsiveness is not correlated to Phytophthora susceptibility. Overall, the results uncover a BAK1- and RBOH-dependent CBEL-triggered immunity essential for Phytophthora resistance and suggest that natural quantitative variation of basal immunity triggered by conserved general elicitors such as CBEL does not correlate to Phytophthora susceptibility.

  10. Lateral root development in Arabidopsis: fifty shades of auxin.

    Science.gov (United States)

    Lavenus, Julien; Goh, Tatsuaki; Roberts, Ianto; Guyomarc'h, Soazig; Lucas, Mikaël; De Smet, Ive; Fukaki, Hidehiro; Beeckman, Tom; Bennett, Malcolm; Laplaze, Laurent

    2013-08-01

    The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.

  11. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  12. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana

    OpenAIRE

    Aceves-García, Pamela; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12...

  13. Functional overlap of the Arabidopsis leaf and root microbiota.

    Science.gov (United States)

    Bai, Yang; Müller, Daniel B; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias; Dombrowski, Nina; Münch, Philipp C; Spaepen, Stijn; Remus-Emsermann, Mitja; Hüttel, Bruno; McHardy, Alice C; Vorholt, Julia A; Schulze-Lefert, Paul

    2015-12-17

    Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.

  14. Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.

    Science.gov (United States)

    Peng, Yuancheng; Ma, Wenying; Chen, Liangliang; Yang, Lei; Li, Shengjun; Zhao, Hongtao; Zhao, Yankun; Jin, Weihuan; Li, Na; Bevan, Michael W; Li, Xia; Tong, Yiping; Li, Yunhai

    2013-03-01

    The control of organ growth by coordinating cell proliferation and differentiation is a fundamental developmental process. In plants, postembryonic root growth is sustained by the root meristem. For maintenance of root meristem size, the rate of cell differentiation must equal the rate of cell division. Cytokinin and auxin interact to affect the cell proliferation and differentiation balance and thus control root meristem size. However, the genetic and molecular mechanisms that determine root meristem size still remain largely unknown. Here, we report that da1-related protein2 (dar2) mutants produce small root meristems due to decreased cell division and early cell differentiation in the root meristem of Arabidopsis (Arabidopsis thaliana). dar2 mutants also exhibit reduced stem cell niche activity in the root meristem. DAR2 encodes a Lin-11, Isl-1, and Mec-3 domain-containing protein and shows an expression peak in the border between the transition zone and the elongation zone. Genetic analyses show that DAR2 functions downstream of cytokinin and SHORT HYPOCOTYL2 to maintain normal auxin distribution by influencing auxin transport. Further results indicate that DAR2 acts through the PLETHORA pathway to influence root stem cell niche activity and therefore control root meristem size. Collectively, our findings identify the role of DAR2 in root meristem size control and provide a novel link between several key regulators influencing root meristem size.

  15. Phytochrome mediates red-light-based positive phototropism in Arabidopsis roots

    Science.gov (United States)

    Correll, M.; Mullen, J.; Hangarter, R.; Kiss, J.

    Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. The environmental cues of gravity and light are particularly important for plant growth and development. While gravitropism has been extensively studied in roots, there has been increased emphasis on understanding the cellular and molecular basis of root phototropism. In addition to the blue-light-based negative phototropism, roots also exhibit a recently discovered positive phototropism in response to red light. In this paper, we characterize this red-light-based phototropism in roots of Arabidopsis.

  16. Modulation of leaf conductance by root to shoot signaling under water stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fan Yi-juan; Liu Qing; Wei Kai-fa; Li Bing-bing; Ren Hui-bo; Gao Zhi-hui; Jia Wen-suo

    2006-01-01

    Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the establishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomatal movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD)experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance,which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf temperatures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further investigation into the molecular mechanisms of the root to shoot signaling under water stress.

  17. Phototropism and gravitropism in lateral roots of Arabidopsis.

    Science.gov (United States)

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  18. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    Science.gov (United States)

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked.

  19. Ubiquitin-related modifiers of Arabidopsis thaliana influence root development.

    Directory of Open Access Journals (Sweden)

    Florian John

    Full Text Available Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.

  20. Plasticity of the Arabidopsis root system under nutrient deficiencies.

    Science.gov (United States)

    Gruber, Benjamin D; Giehl, Ricardo F H; Friedel, Swetlana; von Wirén, Nicolaus

    2013-09-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.

  1. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    Science.gov (United States)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  2. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana

    Science.gov (United States)

    Aceves-García, Pamela; Álvarez-Buylla, Elena R.; Garay-Arroyo, Adriana; García-Ponce, Berenice; Muñoz, Rodrigo; Sánchez, María de la Paz

    2016-01-01

    Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions. PMID:27379140

  3. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  4. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis.

  5. Red-light-induced positive phototropism in Arabidopsis roots.

    Science.gov (United States)

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  6. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana.

    Science.gov (United States)

    Strehmel, Nadine; Mönchgesang, Susann; Herklotz, Siska; Krüger, Sylvia; Ziegler, Jörg; Scheel, Dierk

    2016-07-08

    Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana's roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes.

  7. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency.

    Science.gov (United States)

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.

  8. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives

    OpenAIRE

    Schlaeppi, K.; Dombrowski, N.; Oter, R. G.; Ver Loren van Themaat, E.; Schulze-Lefert, P

    2014-01-01

    All plants carry distinctive bacterial communities on and inside organs such as roots and leaves, collectively called the plant microbiota. How this microbiota diversifies in related plant species is unknown. We investigated the diversity of the bacterial root microbiota in the Brassicaceae family, including three Arabidopsis thaliana ecotypes, its sister species Arabidopsis halleri and Arabidopsis lyrata, and Cardamine hirsuta. We show that differences in root microbiota profiles between the...

  9. Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors.

    Science.gov (United States)

    Plancot, Barbara; Santaella, Catherine; Jaber, Rim; Kiefer-Meyer, Marie Christine; Follet-Gueye, Marie-Laure; Leprince, Jérôme; Gattin, Isabelle; Souc, Céline; Driouich, Azeddine; Vicré-Gibouin, Maïté

    2013-12-01

    Plant pathogens including fungi and bacteria cause many of the most serious crop diseases. The plant innate immune response is triggered upon recognition of microbe-associated molecular patterns (MAMPs) such as flagellin22 and peptidoglycan. To date, very little is known of MAMP-mediated responses in roots. Root border cells are cells that originate from root caps and are released individually into the rhizosphere. Root tips of Arabidopsis (Arabidopsis thaliana) and flax (Linum usitatissimum) release cells known as "border-like cells." Whereas root border cells of pea (Pisum sativum) are clearly involved in defense against fungal pathogens, the function of border-like cells remains to be established. In this study, we have investigated the responses of root border-like cells of Arabidopsis and flax to flagellin22 and peptidoglycan. We found that both MAMPs triggered a rapid oxidative burst in root border-like cells of both species. The production of reactive oxygen species was accompanied by modifications in the cell wall distribution of extensin epitopes. Extensins are hydroxyproline-rich glycoproteins that can be cross linked by hydrogen peroxide to enhance the mechanical strength of the cell wall. In addition, both MAMPs also caused deposition of callose, a well-known marker of MAMP-elicited defense. Furthermore, flagellin22 induced the overexpression of genes involved in the plant immune response in root border-like cells of Arabidopsis. Our findings demonstrate that root border-like cells of flax and Arabidopsis are able to perceive an elicitation and activate defense responses. We also show that cell wall extensin is involved in the innate immunity response of root border-like cells.

  10. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  11. In vivo localization in Arabidopsis protoplasts and root tissue.

    Science.gov (United States)

    Lee, Myoung Hui; Lee, Yongjik; Hwang, Inhwan

    2013-01-01

    In eukaryotic cells, a large number of proteins are transported to their final destination after translation by a process called intracellular trafficking. Transient gene expression, either in plant protoplasts or in specific plant tissues, is a fast, flexible, and reproducible approach to study the cellular function of proteins, protein subcellular localizations, and protein-protein interactions. Here we describe the general method of protoplast isolation, polyethylene glycol-mediated protoplast transformation and immunostaining of protoplast or intact root tissues for studying the localization of protein in Arabidopsis.

  12. AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

    KAUST Repository

    Li, Bo

    2017-01-05

    The accumulation of high concentrations of chloride (Cl) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl sensitive plant species those that exclude relatively more Cl from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl into the root xylem, which affects the accumulation of Cl in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl efflux from roots, and a greater Cl accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO- content in 3 the shoot remained unaffected. Accumulation of Cl in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl efflux from the root, contributing to exclusion of Cl from the shoot of Arabidopsis.

  13. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    Science.gov (United States)

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  14. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root.

    Science.gov (United States)

    Shani, Eilon; Weinstain, Roy; Zhang, Yi; Castillejo, Cristina; Kaiserli, Eirini; Chory, Joanne; Tsien, Roger Y; Estelle, Mark

    2013-03-19

    Plant hormones are small-molecule signaling compounds that are collectively involved in all aspects of plant growth and development. Unlike animals, plants actively regulate the spatial distribution of several of their hormones. For example, auxin transport results in the formation of auxin maxima that have a key role in developmental patterning. However, the spatial distribution of the other plant hormones, including gibberellic acid (GA), is largely unknown. To address this, we generated two bioactive fluorescent GA compounds and studied their distribution in Arabidopsis thaliana roots. The labeled GAs specifically accumulated in the endodermal cells of the root elongation zone. Pharmacological studies, along with examination of mutants affected in endodermal specification, indicate that GA accumulation is an active and highly regulated process. Our results strongly suggest the presence of an active GA transport mechanism that would represent an additional level of GA regulation.

  15. Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching

    Science.gov (United States)

    Moreno-Risueno, Miguel A.; Van Norman, Jaimie M.; Moreno, Antonio; Zhang, Jingyuan; Ahnert, Sebastian E.; Benfey, Philip N.

    2010-01-01

    Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock–driven activities in animal species. PMID:20829477

  16. ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis.

    Science.gov (United States)

    Chandrika, Nulu Naga Prafulla; Sundaravelpandian, Kalaipandian; Yu, Su-May; Schmidt, Wolfgang

    2013-05-01

    Phosphate (Pi) starvation in plants induces dense and elongated root hairs, which increase the absorptive surface area of the roots and play a critical role in Pi uptake. The molecular mechanism underlying these changes remains unclear. Forward and reverse genetic approaches were employed to identify novel genes involved in root hair formation on Pi starvation. The mutant per2, with defects in root hair elongation specifically under low Pi conditions, was identified in a large-scale genetic screen of T-DNA insertion lines. The phenotype was caused by a mutation in the homeodomain protein ALFIN-LIKE 6 (AL6). From a screen of mutants defective in genes that showed lower transcript abundance in per2 relative to wild-type roots on low Pi medium, we identified four putative downstream targets of AL6, namely ETC1, NPC4, SQD2 and PS2, all of which were critical in root hair elongation of Pi-deficient plants. The results further indicate that AL6 is involved in the control of growth and several key responses to Pi starvation. Our findings demonstrate that AL6 controls the transcription of a suite of genes critical for root hair elongation under low Pi conditions, suggesting a novel physiological function for an Alfin gene in Arabidopsis.

  17. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2007-02-01

    Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.

  18. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root

    Science.gov (United States)

    Romero-Arias, J. Roberto; Hernández-Hernández, Valeria; Benítez, Mariana; Alvarez-Buylla, Elena R.; Barrio, Rafael A.

    2017-03-01

    Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.

  19. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  20. [The mechanism of root hair development and molecular regulation in plants].

    Science.gov (United States)

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  1. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Angela Bruex

    2012-01-01

    Full Text Available The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 "core" root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network.

  2. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    Science.gov (United States)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  3. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  4. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    Science.gov (United States)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; de Almeida Engler, Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins during feeding site development in Arabidopsis thaliana roots. Data generated via promoter–reporter line and protein localization analyses evoke a model in which auxin is being imported at the basipetal side of the feeding site by the concerted action of the influx proteins AUX1 and LAX3, and the efflux protein PIN3. Mutants in auxin influx proteins AUX1 and LAX3 bear significantly fewer and smaller galls, revealing that auxin import into the feeding sites is needed for their development and expansion. The feeding site development in auxin export (PIN) mutants was only slightly hampered. Expression of some PINs appears to be suppressed in galls, probably to prevent auxin drainage. Nevertheless, a functional PIN4 gene seems to be a prerequisite for proper nematode development and gall expansion, most likely by removing excessive auxin to stabilize the hormone level in the feeding site. Our data also indicate a role of local auxin peaks in nematode attraction towards the root. PMID:27312670

  5. Proteomic Analysis of Different Mutant Genotypes of Arabidopsis Led to the Identification of 11 Proteins Correlating with Adventitious Root Development1[W

    Science.gov (United States)

    Sorin, Céline; Negroni, Luc; Balliau, Thierry; Corti, Hélène; Jacquemot, Marie-Pierre; Davanture, Marlène; Sandberg, Göran; Zivy, Michel; Bellini, Catherine

    2006-01-01

    A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities. PMID:16377752

  6. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives.

    Science.gov (United States)

    Schlaeppi, Klaus; Dombrowski, Nina; Oter, Ruben Garrido; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2014-01-14

    Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼ 35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales.

  7. AtGRIP protein locates to the secretory vesicles of trans Golgi-network in Arabidopsis root cap cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying; ZHANG Wei; ZHAO Lei; LI Yan

    2008-01-01

    GRIP domain proteins, locating to the trans-Golgi network, are thought to play an essential role in Golgi apparatus trafficking in yeast and animal cells. In the present study, AtGRIP cDNA was amplified by reverse transcriptase PCR from RNA isolated from Arabidopsis seedling. The GST fusion protein of AtGRIP was affinity-purified and its rabbit polyclonal antibody was obtained. Immuno-blotting with the purified anti-AtGRIP polyclonal antibody demonstrated that the molecular mass of AtGRIP protein is about 92 kD, and its expression is not tissue-specific in Arabidopsis. Immunoflourescent labeling and confocal microscopy revealed that the AtGRIP protein was co-localized with Golgi stacks in Arabidop-sis root cells. Immuno-gold labeling and electron microscopy observation showed that AtGRIP protein was mainly located to the membrane of the secretory vesicles of trans-Golgi network in Arabidopsis root cap cells. Taken together, these results indicate that the localization of GRIP domain proteins be-tween plants and animal cells are conserved. These results also suggest that the AtGRIP may be in-volved in regulating the formation or sorting of Golgi-associated vesicles in plant cells.

  8. Genetic analysis of the gravitropic set-point angle in lateral roots of arabidopsis

    Science.gov (United States)

    Mullen, J. L.; Hangarter, R. P.

    2003-05-01

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their characteristically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of new lateral roots appears to be determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation.

  9. SAGE ANALYSIS OF TRANSCRIPTOME RESPONSES IN ARABIDOPSIS ROOTS EXPOSED TO 2,4,6-TRINITROTOLUENE

    Science.gov (United States)

    Serial Analysis of Gene Expression (SAGE) was used to profile transcript levels in Arabidopsis thaliana roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and ea...

  10. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    Science.gov (United States)

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  11. A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells.

    Directory of Open Access Journals (Sweden)

    Robert J H Payne

    Full Text Available Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom(eb.We show how interactions between Rho GTPases (in this case ROPs and regulatory molecules (in this case auxin could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.

  12. Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia

    DEFF Research Database (Denmark)

    Lee, S.C.; Mustroph, A.; Sasidaharan, R.;

    2011-01-01

    A detailed description of the molecular response of Arabidopsis thaliana to submergence can aid the identification of genes that are critical to flooding survival. • Rosette-stage plants were fully submerged in complete darkness and shoot and root tissue was harvested separately after the O2...... partial pressure of the petiole and root had stabilized at c. 6 and 0.1 kPa, respectively. As controls, plants were untreated or exposed to darkness. Following quantitative profiling of cellular mRNAs with the Affymetrix ATH1 platform, changes in the transcriptome in response to submergence, early...

  13. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    Science.gov (United States)

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe(3+) in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe(3+) accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.

  14. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle.

    NARCIS (Netherlands)

    Dhondt, S.; Coppens, F.; Winter, F. de; Swarup, K.; Merks, R.M.H.; Inze, D.; Bennett, M.J.; Beemster, G.T.S.

    2010-01-01

    SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the ce

  15. Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system

    Science.gov (United States)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Evans, M. L.

    2000-01-01

    The study of gravitropism is hindered by the fact that as a root responds, the gravitational stimulus changes. Using a feedback system to connect a rotating stage platform to a video digitizer system, we were able to maintain a constant angle of gravistimulation to Arabidopsis roots for long time periods. The rate of curvature approximated the sine rule for angles of stimulation between 20 degrees and 120 degrees. For a given angle of stimulation, the rate of curvature also remained constant, with no observed diminishment of the response. Although previous reports of Arabidopsis root gravitropism suggest latent periods of approximately 30 min, using a smooth mechanical stage to reorient the root, we observed a mean time lag of approximately 10 min. This more rapid onset of curvature can, in part, be explained by reduced mechanical perturbation during the process of gravistimulation. This suggests that mechanical stimulation associated with rapid root re-orientation may confound investigations of early gravitropic events.

  16. Effects of lanthanum on abscisic acid regulation of root growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    王建荣; 王蕾; 胡婷; 李文超; 薛绍武

    2014-01-01

    Rare earth elements (REEs) were reported to have adverse biology effects on plant growth and production. However, whether REEs are involved in plant hormone abscisic acid signal is not clear. Here we reported that REE lanthanum (La) interacted with abscisic acid (ABA) in the regulation of seed germination and root growth in model plant Arabidopsis. La3+at a concentration of 10 µmol/L alleviated ABA depression of seed germination and reversed ABA inhibition of root elongation growth in Arabidopsis. Previous studies showed that ABA could promote root hair development. In the present study, La3+inhibited root hair development promoted by ABA. Moreover, La3+inhibited H2O2 generation induced by ABA in root cells. Therefore we inferred that La3+might interact with ABA upstream of H2O2 generation.

  17. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  18. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Science.gov (United States)

    Benz, Martin

    2017-01-01

    Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi) differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi. PMID:28149680

  19. Automatic Quantification of the Number of Intracellular Compartments in Arabidopsis thaliana Root Cells

    Science.gov (United States)

    Bayle, Vincent; Platre, Matthieu Pierre; Jaillais, Yvon

    2017-01-01

    In the era of quantitative biology, it is increasingly required to quantify confocal microscopy images. If possible, quantification should be performed in an automatic way, in order to avoid bias from the experimenter, to allow the quantification of a large number of samples, and to increase reproducibility between laboratories. In this protocol, we describe procedures for automatic counting of the number of intracellular compartments in Arabidopsis root cells, which can be used for example to study endocytosis or secretory trafficking pathways and to compare membrane organization between different genotypes or treatments. While developed for Arabidopsis roots, this method can be used on other tissues, cell types and plant species. PMID:28255574

  20. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  1. Oryzalin-modified disruption of microtubular cytoskeleton in Arabidopsis thaliana root cells under clinorotation

    Science.gov (United States)

    Kalinina, Ia.; Shevchenko, G.; Kordyum, E.

    There are data on gravisensitivity of cells not specialized to perceive a gravity vector but the molecular processes by which gravity affects not graviperceptive cells are still unclear Spaceflight experiments show that the microtubule self-organization in vitro is gravity-dependent Confocal microscopic analysis of the microtubule spatial organization under altered gravity with combination of approach drugs that disrupt normal microtubule behavior should give us a better understanding of the possible role of microtubule cytoskeleton in gravisensing on cellular level With this aim we examined influence of horizontal clinorotation 2 rpm on the spatial organization of microtubules in the root cortical and epidermal cells by means of LSM 5 PASCAL Zeiss Germany Microtubules were visualized by using stably transformed line of transgenic Arabidopsis thaliana expressing a green fluorescent protein-MAP4 fusion protein We inhibited microtubule function applying 5 956 M L oryzalin microtubule inhibitor in control and clinorotated seedlings Preliminary investigations show that cortical microtubule arrays were dense and predominantly transverse to the root long axis in the meristem and distal elongation zone in control and they got oblique direction when rapid cell elongation is finishing In the differentiation zone microtubules reorient with respect to the longitudinal growth axis of cell Under clinorotation cortical microtubules have the same configuration in the meristem central elongation zone and differentiation zone but it is observed appearances of several

  2. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Takao Araya; Takuya Kubo; Nicolaus von Wiren; Hideki Takahashi

    2016-01-01

    Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition, statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study, we developed a statistical modeling approach to investigate modulations of root system archi-tecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical configuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were gener-ated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(i ) rapid progression of lateral root emergence in response to ammonium; and (i i) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture, supported by meta-analysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.

  3. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Qian eZhao

    2015-01-01

    Full Text Available Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called quorum sensing (QS. N-acyl-homoserine lactones (AHLs are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM antagonists N-(6-aminohexyl-5-chloro-1-naphthalene sulfonamide (W-7 and trifluoperazine (TFP. Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9 were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals.

  4. Role of Ascorbate in the Regulation of the Arabidopsis thaliana Root Growth by Phosphate Availability

    Directory of Open Access Journals (Sweden)

    Jarosław Tyburski

    2012-01-01

    Full Text Available Arabidopsis root system responds to phosphorus (P deficiency by decreasing primary root elongation and developing abundant lateral roots. Feeding plants with ascorbic acid (ASC stimulated primary root elongation in seedlings grown under limiting P concentration. However, at high P, ASC inhibited root growth. Seedlings of ascorbate-deficient mutant (vtc1 formed short roots irrespective of P availability. P-starved plants accumulated less ascorbate in primary root tips than those grown under high P. ASC-treatment stimulated cell divisions in root tips of seedlings grown at low P. At high P concentrations ASC decreased the number of mitotic cells in the root tips. The lateral root density in seedlings grown under P deficiency was decreased by ASC treatments. At high P, this parameter was not affected by ASC-supplementation. vtc1 mutant exhibited increased lateral root formation on either, P-deficient or P-sufficient medium. Irrespective of P availability, high ASC concentrations reduced density and growth of root hairs. These results suggest that ascorbate may participate in the regulation of primary root elongation at different phosphate availability via its effect on mitotic activity in the root tips.

  5. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.

    Science.gov (United States)

    Song, Sang-Kee; Ryu, Kook Hui; Kang, Yeon Hee; Song, Jae Hyo; Cho, Young-Hee; Yoo, Sang-Dong; Schiefelbein, John; Lee, Myeong Min

    2011-11-01

    The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.

  6. Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis.

    Science.gov (United States)

    del Campillo, Elena; Abdel-Aziz, Amal; Crawford, Damian; Patterson, Sara E

    2004-09-01

    The sloughing of root cap cells from the root tip is important because it assists the growing root in penetrating the soil. Using a promoter-reporter (GUS) and RT-PCR analysis, we identified an endo-beta-1,4-glucanase (AtCel5) of Arabidopsis thaliana that is expressed exclusively in root cap cells of both primary and secondary roots. Expression is inhibited by high concentrations of IAA, both exogenous and internal, as well as by ABA. AtCel5 expression begins once the mature tissue pattern is established and continues for 3 weeks. GUS staining is observed in both root cap cells that are still attached and cells that have already been shed. Using AtCel5-GUS as a marker, we observed that the root cap cells begin to separate at the sides of the tip while the cells of the central region of the tip separate last. Separation involves sequential tiers of intact cells that separate from the periphery of the root tip. A homozygous T-DNA insertion mutant that does not express AtCel5 forms the root cap and sheds root cap cells but sloughing is less efficient compared to wild type. The reduction in sloughing in the mutant does not affect the overall growth performance of the plant in loose media. The modest effect of abolishing AtCel5 expression suggests that there are multiple redundant genes regulating the process of sloughing of the root cap, including AtCel3/At1g71380, the paralog of the AtCel5 gene that is also expressed in the root cap cells. Thus, these two endo-1,4-beta-D-glucanases may have a role in the sloughing of border cells from the root tip. We propose that AtCel5, provides a new molecular marker to further analyze the process of root cap cell separation and a root cap specific promoter for targeting to the environment genes with beneficial properties for plant growth.

  7. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators.

    Science.gov (United States)

    Rahman, Abidur; Hosokawa, Satoko; Oono, Yutaka; Amakawa, Taisaku; Goto, Nobuharu; Tsurumi, Seiji

    2002-12-01

    The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.

  8. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  9. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  10. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.

  11. Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42.

    Science.gov (United States)

    Dietel, Kristin; Beator, Barbara; Budiharjo, Anto; Fan, Ben; Borriss, Rainer

    2013-03-01

    Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

  12. In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    Khonsari Roman H

    2009-11-01

    Full Text Available Abstract Background Tonoplast intrinsic proteins (TIPs are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. Results We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1 and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures. Conclusion We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs.

  13. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  14. Capturing Arabidopsis Root Architecture Dynamics with root-fit Reveals Diversity in Responses to Salinity

    NARCIS (Netherlands)

    Julkowska, M.M.; Hoefsloot, H.C.J.; Mol, S.; Feron, R.; de Boer, G.J.; Haring, M.A.; Testerink, C.

    2014-01-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles i

  15. An auxin-responsive endogenous peptide regulates root development in Arabidopsis.

    Science.gov (United States)

    Yang, Fengxi; Song, Yu; Yang, Hao; Liu, Zhibin; Zhu, Genfa; Yang, Yi

    2014-07-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.

  16. Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress

    Directory of Open Access Journals (Sweden)

    Sultana eRasheed

    2016-02-01

    Full Text Available Drought stress has a negative impact on crop yield. Thus, understanding the molecular mechanisms responsible for plant drought stress tolerance is essential for improving this beneficial trait in crops. In the current study, a transcriptional analysis was conducted of gene regulatory networks in roots of soil-grown Arabidopsis plants in response to a drought stress treatment. A microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7 and 9 days. Results indicated that the expression of many drought stress-responsive genes and abscisic acid biosynthesis-related genes was differentially regulated in roots and shoots from days 3 to 9. The expression of cellular and metabolic process-related genes was up-regulated at an earlier time-point in roots than in shoots. In this regard, the expression of genes involved in oxidative signaling, chromatin structure, and cell wall modification also increased significantly in roots compared to shoots. Moreover, the increased expression of genes involved in the transport of amino acids and other solutes; including malate, iron, and sulfur, was observed in roots during the early time points following the initiation of the drought stress. These data suggest that plants may utilize these signaling channels and metabolic adjustments as adaptive responses in the early stages of a drought stress. Collectively, the results of the present study increases our understanding of the differences pertaining to the molecular mechanisms occurring in roots versus shoots in response to a drought stress. Furthermore, these findings also aid in the selection of novel genes and promoters that can be used to potentially produce crop plants with increased drought tolerance.

  17. TORNADO1 regulates root epidermal patterning through the WEREWOLF pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-01-01

    Cell fate in the root epidermis of Arabidopsis thaliana is determined in a position-dependent manner. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase, mediates this positional regulation via its effect on WEREWOLF (WER) expression, and subsequently, its downstream transcription factor, GLABRA2 (GL2), which are required for nonhair cell development. Previously, TORNADO1 (TRN1), a plant-specific protein with a leucine-rich repeat ribonuclease inhibitor-like domain, was shown to be required for proper epidermal patterning in Arabidopsis roots. In this work, we analyzed the possible involvement of TRN1 in the known root epidermal gene network. We discovered that the trn1 mutant caused the ectopic expression of WER and the randomized expression of GL2 and EGL3. This suggests that TRN1 regulates the position-dependent cell fate determination by affecting WER expression in Arabidopsis root epidermis. Additionally, the distinct phenotypes of the aerial parts of the trn1-t and scm-2 mutant suggest that TRN1 and SCM might have different functions in the development of aerial parts.

  18. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Indian Academy of Sciences (India)

    Virupapuram Vijaybhaskar; Veeraputhiran Subbiah; Jagreet Kaur; Pagadala Vijayakumari; Imran Siddiqi

    2008-06-01

    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding -glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes.

  19. Cell Wall Heterogeneity in Root Development of Arabidopsis

    Science.gov (United States)

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  20. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis.

    Science.gov (United States)

    Eapen, Delfeena; Barroso, María Luisa; Campos, María Eugenia; Ponce, Georgina; Corkidi, Gabriel; Dubrovsky, Joseph G; Cassab, Gladys I

    2003-02-01

    For most plants survival depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Because land plants cannot escape environmental stress they use developmental solutions to remodel themselves in order to better adapt to the new conditions. The primary site for perception of underground signals is the root cap (RC). Plant roots have positive hydrotropic response and modify their growth direction in search of water. Using a screening system with a water potential gradient, we isolated a no hydrotropic response (nhr) semi-dominant mutant of Arabidopsis that continued to grow downwardly into the medium with the lowest water potential contrary to the positive hydrotropic and negative gravitropic response seen in wild type-roots. The lack of hydrotropic response of nhr1 roots was confirmed in a system with a gradient in air moisture. The root gravitropic response of nhr1 seedlings was significantly faster in comparison with those of wild type. The frequency of the waving pattern in nhr1 roots was increased compared to those of wild type. nhr1 seedlings had abnormal root cap morphogenesis and reduced root growth sensitivity to abscisic acid (ABA) and the polar auxin transport inhibitor N-(1-naphtyl)phtalamic acid (NPA). These results showed that hydrotropism is amenable to genetic analysis and that an ABA signaling pathway participates in sensing water potential gradients through the root cap.

  1. An auxin-responsive endogenous peptide regulates root development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Fengxi Yang; Yu Song; Hao Yang; Zhibin Liu; Genfa Zhu; Yi Yang

    2014-01-01

    Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, rootmorphology, including lateral root number and adventitious roots, differed greatly between transgenic and wildtype plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wildtype plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxinmediated root development.

  2. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    Science.gov (United States)

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  3. An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis.

    Science.gov (United States)

    Chen, Alice; Komives, Elizabeth A; Schroeder, Julian I

    2006-05-01

    Phytochelatins (PCs) are peptides that function in heavy-metal chelation and detoxification in plants and fungi. A recent study showed that PCs have the ability to undergo long-distance transport in a root-to-shoot direction in transgenic Arabidopsis (Arabidopsis thaliana). To determine whether long-distance transport of PCs can occur in the opposite direction, from shoots to roots, the wheat (Triticum aestivum) PC synthase (TaPCS1) gene was expressed under the control of a shoot-specific promoter (CAB2) in an Arabidopsis PC-deficient mutant, cad1-3 (CAB2TaPCS1/cad1-3). Analyses demonstrated that TaPCS1 is expressed only in shoots and that CAB2TaPCS1/cad1-3 lines complement the cadmium (Cd) and arsenic metal sensitivity of cad1-3 shoots. CAB2TaPCS1/cad1-3 plants exhibited higher Cd accumulation in roots and lower Cd accumulation in shoots compared to wild type. Fluorescence HPLC coupled to mass spectrometry analyses directly detected PC2 in the roots of CAB2:TaPCS1/cad1-3 but not in cad1-3 controls, suggesting that PC2 is transported over long distances in the shoot-to-root direction. In addition, wild-type shoot tissues were grafted onto PC synthase cad1-3 atpcs2-1 double loss-of-function mutant root tissues. An Arabidopsis grafting technique for mature plants was modified to obtain an 84% success rate, significantly greater than a previous rate of approximately 11%. Fluorescence HPLC-mass spectrometry showed the presence of PC2, PC3, and PC4 in the root tissue of grafts between wild-type shoots and cad1-3 atpcs2-1 double-mutant roots, demonstrating that PCs are transported over long distances from shoots to roots in Arabidopsis.

  4. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots.

    Science.gov (United States)

    Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki; Kojima, Soichi

    2016-12-21

    Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.

  5. Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors.

    Science.gov (United States)

    Kobayashi, Koichi; Sasaki, Daichi; Noguchi, Ko; Fujinuma, Daiki; Komatsu, Hirohisa; Kobayashi, Masami; Sato, Mayuko; Toyooka, Kiminori; Sugimoto, Keiko; Niyogi, Krishna K; Wada, Hajime; Masuda, Tatsuru

    2013-08-01

    In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO₂ fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.

  6. Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria.

    Science.gov (United States)

    Vicré, Maïté; Santaella, Catherine; Blanchet, Sandrine; Gateau, Aurélien; Driouich, Azeddine

    2005-06-01

    Plant roots of many species produce thousands of cells that are released daily into the rhizosphere. These cells are commonly termed border cells because of their major role in constituting a biotic boundary layer between the root surface and the soil. In this study, we investigated the occurrence and ultrastructure of such cells in Arabidopsis (Arabidopsis thaliana) using light and electron microscopy coupled to high-pressure freezing. The secretion of cell wall molecules including pectic polysaccharides and arabinogalactan-proteins (AGPs) was examined also using immunofluorescence microscopy and a set of anticarbohydrate antibodies. We show that root tips of Arabidopsis seedlings released cell layers in an organized pattern that differs from the rather randomly dispersed release observed in other plant species studied to date. Therefore, we termed such cells border-like cells (BLC). Electron microscopical results revealed that BLC are rich in mitochondria, Golgi stacks, and Golgi-derived vesicles, suggesting that these cells are actively engaged in secretion of materials to their cell walls. Immunocytochemical data demonstrated that pectins as well as AGPs are among secreted material as revealed by the high level of expression of AGP-epitopes. In particular, the JIM13-AGP epitope was found exclusively associated with BLC and peripheral cells in the root cap region. In addition, we investigated the function of BLC and root cap cell AGPs in the interaction with rhizobacteria using AGP-disrupting agents and a strain of Rhizobium sp. expressing a green fluorescent protein. Our findings demonstrate that alteration of AGPs significantly inhibits the attachment of the bacteria to the surface of BLC and root tip.

  7. Transcription factor movement and tissue patterning in Arabidopsis root meristem

    NARCIS (Netherlands)

    Long, Y.

    2015-01-01

    Cell-cell communication is key to coordinated cellular functions in multicellular organisms. In addition to the signaling molecules found in animals, plants also frequently recruit mobile transcription factors to deliver positional information. The best studied example is SHORT-ROOT (SHR), a transcr

  8. A quantitative analysis of stem cell homeostasis in the Arabidopsis columella root cap.

    Science.gov (United States)

    Hong, Jing Han; Chu, Huangwei; Zhang, Chen; Ghosh, Dipanjana; Gong, Ximing; Xu, Jian

    2015-01-01

    The Lugol's staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late 1990s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells. Here we report that, by labeling dividing stem cells with 5-ethynyl-2'-deoxyuridine (EdU), the number and distribution of their labeled progeny can be studied so that the division rate of stem cells can be measured quantitatively and in addition, that the progression of stem cell progeny differentiation can be assessed in combination with Lugol's staining. EdU staining takes few hours and visualization of the stain characteristics of columella root cap can be performed easily under confocal microscopes. This simple technology, when used together with Lugol's staining, provides a novel quantitative method to study the dynamics of stem cell behavior that govern homeostasis in the Arabidopsis columella root cap.

  9. Functional implications of K63-linked ubiqitination in the iron deficiency response of Arabidopsis roots

    Directory of Open Access Journals (Sweden)

    I-Chun ePan

    2014-01-01

    Full Text Available Iron is an essential micronutrient that plays important roles as a redox cofactor in a variety of processes, many of which are related to DNA metabolism. The E2 ubiquitin conjugase UBC13, the only E2 protein that is capable of catalyzing the formation of noncanonical K63-linked ubiquitin chains, has been associated with the DNA damage tolerance pathway in eukaryotes, critical for maintenance of genome stability and integrity. We previously showed that UBC13 and an interacting E3 ubiquitin ligase, RGLG, affect the differentiation of root epidermal cells in Arabidopsis. When grown on iron-free media, Arabidopsis plants develops root hairs that are branched at their base, a response that has been interpreted as an adaption to reduced iron availability. Mutations in UBC13A abolished the branched root hair phenotype. Unexpectedly, mutations in RGLG genes caused constitutive root hair branching. Based on recent results that link endocytotic turnover of plasma membrane-bound PIN transporters to K63-linked ubiquitination, we reinterpreted our results in a context that classifies the root hair phenotype of iron-deficient plants as a consequence of altered auxin distribution. We show here that UBC13A/B and RGLG1/2 are involved in DNA damage repair and hypothesize that UBC13 protein becomes limited under iron-deficient conditions to prioritize DNA metabolism. The data suggest that genes involved in combating detrimental effects on genome stability may represent essential components in the plant’s stress response.

  10. A Quantitative Analysis of Stem Cell Homeostasis in the Arabidopsis Columella Root Cap

    Directory of Open Access Journals (Sweden)

    Jing Han eHong

    2015-03-01

    Full Text Available The Lugol’s staining method has been widely used to detect changes in the maintenance of stem cell fate in the columella root cap of Arabidopsis roots since the late ‘90s. However, various limitations of this method demand for additional or complementary new approaches. For instance, it is unable to reveal the division rate of columella root cap stem cells. Here we report that, by labelling dividing stem cells with 5-ethynyl-2´-deoxyuridine (EdU, the number and distribution of their labeled progeny can be studied so that the division rate of stem cells can be measured quantitatively and in addition, that the progression of stem cell progeny differentiation can be assessed in combination with Lugol’s staining. EdU staining takes few hours and visualization of the stain characteristics of columella root cap can be performed easily under confocal microscopes. This simple technology, when used together with Lugol’s staining, provides a novel quantitative method to study the dynamics of stem cell behaviour that govern homeostasis in the Arabidopsis columella root cap.

  11. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  12. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density.

    Science.gov (United States)

    Yu, Hong; Chen, Xi; Hong, Yuan-Yuan; Wang, Yao; Xu, Ping; Ke, Sheng-Dong; Liu, Hai-Yan; Zhu, Jian-Kang; Oliver, David J; Xiang, Cheng-Bin

    2008-04-01

    Drought is one of the most important environmental constraints limiting plant growth and agricultural productivity. To understand the underlying mechanism of drought tolerance and to identify genes for improving this important trait, we conducted a gain-of-function genetic screen for improved drought tolerance in Arabidopsis thaliana. One mutant with improved drought tolerance was isolated and designated as enhanced drought tolerance1. The mutant has a more extensive root system than the wild type, with deeper roots and more lateral roots, and shows a reduced leaf stomatal density. The mutant had higher levels of abscisic acid and Pro than the wild type and demonstrated an increased resistance to oxidative stress and high levels of superoxide dismutase. Molecular genetic analysis and recapitulation experiments showed that the enhanced drought tolerance is caused by the activated expression of a T-DNA tagged gene that encodes a putative homeodomain-START transcription factor. Moreover, overexpressing the cDNA of the transcription factor in transgenic tobacco also conferred drought tolerance associated with improved root architecture and reduced leaf stomatal density. Therefore, we have revealed functions of the homeodomain-START factor that were gained upon altering its expression pattern by activation tagging and provide a key regulator that may be used to improve drought tolerance in plants.

  13. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis.

    Science.gov (United States)

    Liu, Wen-Ju; Wood, B Alan; Raab, Andrea; McGrath, Steve P; Zhao, Fang-Jie; Feldmann, Jörg

    2010-04-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops.

  14. Chiral and non-chiral nutations in Arabidopsis roots grown on the random positioning machine.

    Science.gov (United States)

    Piconese, S; Tronelli, G; Pippia, P; Migliaccio, F

    2003-08-01

    Arabidopsis thaliana roots grown on a vertically set plate do not elongate straight down the gravitational vector, but by making waves and coils, and by conspicuously slanting towards the right-hand. This behaviour, in a previous paper, was ascribed to the simultaneous effect of three processes: circumnutation, positive gravitropism and negative thigmotropism. However, when the plants are grown on the Random Positioning Machine (RPM), in conditions that are believed to simulate space microgravitational conditions closely, the roots do not show the usual pattern. In the wild type, the roots make large loops to the right-hand side, whereas in the gravitropic and auxinic mutants aux1, eir1, rha1, they just move randomly around the initial direction. Therefore, if the movements made on the RPM are those produced by the exclusion of gravitropism and negative thigmotropism, as is apparent, the conclusion is that Arabidopsis roots are animated by a form of chiral circumnutation, that is lacking in the auxinic and gravitropic mutants aux1, eir1 and rha1. In addition, the 1 g condition appears to reduce the scatter among the circumnutating tracks produced by the roots of the wild types, but not among those of the mutants. Because there is a scarcity of literature regarding circumnutation in roots, it is not known how widely root chiral circumnutation is spread, but it is known that, in some previously studied species, just random nutations are observed. Two kinds of nutating movements seem to exist in plant roots and, whereas the random process does not seem to be connected with auxin physiology and transport, the chiral process appears to be connected in the same way as gravitropism is.

  15. Regulation of length and density of Arabidopsis root hairs by ammonium and nitrate.

    Science.gov (United States)

    Vatter, Thomas; Neuhäuser, Benjamin; Stetter, Markus; Ludewig, Uwe

    2015-09-01

    Root hairs expand the effective root surface to increase the uptake of nutrients and water from the soil. Here the local effects of the two major nitrogen sources, ammonium and nitrate, on root hairs were investigated using split plates. In three contrasting accessions of A. thaliana, namely Col-0, Tsu-0 and Sha, root hairs were differentially affected by the nitrogen forms and their concentration. Root hairs in Sha were short in the absence of nitrate. In Col-0, hair length was moderately decreased with increasing nitrate or ammonium. In all accessions, the root hair density was insensitive to 1,000-fold changes in the ammonium concentrations, when supplied locally as the exclusive nitrogen form. In contrast, the root hair density generally increased with nitrate as the exclusive local nitrogen source. The nitrate sensitivity was reduced at mM concentrations in a loss-of-function mutant of the nitrate transporter and sensor gene NRT1;1 (NPF6.3). Little differences with respect to ammonium were found in a mutant lacking four high affinity AMT-type ammonium transporters, but interestingly, the response to high nitrate was reduced and may indicate a general defect in nitrogen signaling in that mutant. Genetic diversity and the presence of the nitrogen transceptor NRT1;1 explain heterogeneity in the responses of root hairs to different nitrogen forms in Arabidopsis accessions.

  16. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Science.gov (United States)

    Bouteillé, Marie; Rolland, Gaëlle; Balsera, Crispulo; Loudet, Olivier; Muller, Bertrand

    2012-01-01

    Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i) that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii) that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs) colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines), we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  17. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Marie Bouteillé

    Full Text Available Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines, we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  18. Genetic identification of a second site modifier of ctr1-1 that controls ethylene-responsive and gravitropic root growth in Arabidopsis thaliana.

    Science.gov (United States)

    Shin, Kihye; Lee, Rin-A; Lee, Inhye; Lee, Sumin; Park, Soon Ki; Soh, Moon-Soo

    2013-07-01

    Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.

  19. Belowground neighbor perception in Arabidopsis thaliana studied by transcriptome analysis: roots of Hieracium pilosella cause biotic stress

    Directory of Open Access Journals (Sweden)

    Christoph eSchmid

    2013-08-01

    Full Text Available Root-root interactions are much more sophisticated than previously thought, yet the mechanisms of belowground neighbor perception remain largely obscure. Genome-wide transcriptome analyses allow detailed insight into plant reactions to environmental cues.A root interaction trial was set up to explore both morphological and whole genome transcriptional responses in roots of Arabidopsis thaliana in the presence or absence of an inferior competitor, Hieracium pilosella.Neighbor perception was indicated by Arabidopsis roots predominantly growing away from the neighbor (segregation, while solitary plants placed more roots towards the middle of the pot. Total biomass remained unaffected. Database comparisons in transcriptome analysis revealed considerable similarity between Arabidopsis root reactions to neighbors and reactions to pathogens. Detailed analyses of the functional category ‘biotic stress’ using MapMan tools found the sub-category ‘pathogenesis-related proteins’ highly significantly induced. A comparison to a study on intraspecific competition brought forward a core of genes consistently involved in reactions to neighbor roots.We conclude that beyond resource depletion roots perceive neighboring roots or their associated microorganisms by a relatively uniform mechanism that involves the strong induction of pathogenesis-related proteins. In an ecological context the findings reveal that belowground neighbor detection may occur independently of resource depletion, allowing for a time advantage for the root to prepare for potential interactions.

  20. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    Science.gov (United States)

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis.

  1. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments

    Directory of Open Access Journals (Sweden)

    Javier eCanales

    2014-02-01

    Full Text Available Nitrogen (N is an essential macronutrient for plant growth and development. Plants adapt to changes in N availability partly by changes in global gene expression. We integrated publicly available root microarray data under contrasting nitrate conditions to identify new genes and functions important for adaptive nitrate responses in Arabidopsis thaliana roots. Overall, more than two thousand genes exhibited changes in expression in response to nitrate treatments in Arabidopsis thaliana root organs. Global regulation of gene expression by nitrate depends largely on the experimental context. However, despite significant differences from experiment to experiment in the identity of regulated genes, there is a robust nitrate response of specific biological functions. Integrative gene network analysis uncovered relationships between nitrate-responsive genes and eleven highly co-expressed gene clusters (modules. Four of these gene network modules have robust nitrate responsive functions such as transport, signaling and metabolism. Network analysis hypothesized G2-like transcription factors are key regulatory factors controlling transport and signaling functions. Our meta-analysis highlights the role of biological processes not studied before in the context of the nitrate response such as root hair development and provides testable hypothesis to advance our understanding of nitrate responses in plants.

  2. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    Science.gov (United States)

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning.

  3. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    Science.gov (United States)

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  4. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA.

  5. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    Directory of Open Access Journals (Sweden)

    Stefanie De Smet

    2015-08-01

    Full Text Available Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  6. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress.

    Science.gov (United States)

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.

  7. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Amanda Mangeon

    Full Text Available AtGRP3 is a glycine-rich protein (GRP from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.

  8. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  10. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin

    Science.gov (United States)

    Saucedo, Manuel; Ponce, Georgina; Campos, María Eugenia; Eapen, Delfeena; García, Edith; Luján, Rosario; Sánchez, Yoloxóchitl; Cassab, Gladys I.

    2012-01-01

    Roots are highly plastic and can acclimate to heterogeneous and stressful conditions. However, there is little knowledge of the effect of moisture gradients on the mechanisms controlling root growth orientation and branching, and how this mechanism may help plants to avoid drought responses. The aim of this study was to isolate mutants of Arabidopsis thaliana with altered hydrotropic responses. Here, altered hydrotropic response 1 (ahr1), a semi-dominant allele segregating as a single gene mutation, was characterized. ahr1 directed the growth of its primary root towards the source of higher water availability and developed an extensive root system over time. This phenotype was intensified in the presence of abscisic acid and was not observed if ahr1 seedlings were grown in a water stress medium without a water potential gradient. In normal growth conditions, primary root growth and root branching of ahr1 were indistinguishable from those of the wild type (wt). The altered hydrotropic growth of ahr1 roots was confirmed when the water-rich source was placed at an angle of 45° from the gravity vector. In this system, roots of ahr1 seedlings grew downward and did not display hydrotropism; however, in the presence of cytokinins, they exhibited hydrotropism like those of the wt, indicating that cytokinins play a critical role in root hydrotropism. The ahr1 mutant represents a valuable genetic resource for the study of the effects of cytokinins in the differential growth of hydrotropism and control of lateral root formation during the hydrotropic response. PMID:22442413

  11. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  12. Redirection of auxin flow in Arabidopsis thaliana roots after infection by root-knot nematodes

    NARCIS (Netherlands)

    Kyndt, Tina; Goverse, Aska; Haegeman, Annelies; Warmerdam, Sonja; Wanjau, Cecilia; Jahani, Mona; Engler, Gilbert; Almeida Engler, De Janice; Gheysen, Godelieve

    2016-01-01

    Plant-parasitic root-knot nematodes induce the formation of giant cells within the plant root, and it has been recognized that auxin accumulates in these feeding sites. Here, we studied the role of the auxin transport system governed by AUX1/LAX3 influx proteins and different PIN efflux proteins dur

  13. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis.

    Science.gov (United States)

    Gong, Ji-Ming; Lee, David A; Schroeder, Julian I

    2003-08-19

    Phytochelatin synthases (PCS) mediate cellular heavy-metal resistance in plants, fungi, and worms. However, phytochelatins (PCs) are generally considered to function as intracellular heavy-metal detoxification mechanisms, and whether long-distance transport of PCs occurs during heavy-metal detoxification remains unknown. Here, wheat TaPCS1 cDNA expression was either targeted to Arabidopsis roots with the Arabidopsis alcohol dehydrogenase (Adh) promoter (Adh::TaPCS1/cad1-3) or ectopically expressed with the cauliflower mosaic virus 35S promoter (35S::TaPCS1/cad1-3) in the PC-deficient mutant cad1-3. Adh::TaPCS1/cad1-3 and 35S::TaPCS1/cad1-3 complemented the cadmium, mercury, and arsenic sensitivities of the cad1-3 mutant. Northern blot, RT-PCR, and Western blot analyses showed Adh promoter-driven TaPCS1 expression only in roots and thus demonstrated lack of long-distance TaPCS1 mRNA and protein transport in plants. Fluorescence HPLC analyses showed that under Cd2+ stress, no PCs were detectable in cad1-3. However, in Adh::TaPCS1/cad1-3 plants, PCs were detected in roots and in rosette leaves and stems. Inductively coupled plasma atomic emission spectrometer analyses showed that either root-specific or ectopic expression of TaPCS1 significantly enhanced long-distance Cd2+ transport into stems and rosette leaves. Unexpectedly, transgenic expression of TaPCS1 reduced Cd2+ accumulation in roots compared with cad1-3. The reduced Cd2+ accumulation in roots and enhanced root-to-shoot Cd2+ transport in transgenic plants were abrogated by l-buthionine sulfoximine. The presented findings show that (i) transgenic expression of TaPCS1 suppresses the heavy-metal sensitivity of cad1-3, (ii) PCs can be transported from roots to shoots, and (iii) transgenic expression of the TaPCS1 gene increases long-distance root-to-shoot Cd2+ transport and reduces Cd2+ accumulation in roots.

  14. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    Science.gov (United States)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  15. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ivan Baxter

    2009-05-01

    Full Text Available Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1 mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast.

  16. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  17. NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuanting Li; Xinhua Dai; Youfa Cheng; Yunde Zhao

    2011-01-01

    Plants can sense the direction of gravity and orient their growth to ensure that roots are anchored in soil and that shoots grow upward. Gravitropism has been studied extensively using Arabidopsis genetics, but the exact mechanisms for gravitropism are not fully understood. Here, we demonstrate that five NPY genes play a key role in Arabidopsis root gravitropism. NPY genes were previously identified as regulators of auxin-mediated organogenesis in way with the AGC kinases PID, PID2, WAG1, and WAG2. We show that all five NPY genes are highly expressdd in primary root tips. The single npy mutants do not display obvious gravitropism defects, but the npyl npy2 npy3 npy5 quinntuple mutants show dramatic gravitropic phenotypes. Systematic analysis of all the npy double, triple, and qudruple combinations demonstrates that the five NPY genes all contribute to gravitropism. Our work indicates that gravitropism,phototropism, and organogenesis use analogous mechanisms in which at least one AGC kinase, one NPH3/NPY gene, and one ARF are required.

  18. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana

    KAUST Repository

    Muraro, Daniele

    2013-01-01

    Auxin and cytokinin are key hormonal signals that control the cellular architecture of the primary root and the initiation of new lateral root organs in the plant Arabidopsis thaliana. Both developmental processes are regulated by cross-talk between these hormones and their signalling pathways. In this paper, sub-cellular and multi-cellular mathematical models are developed to investigate how interactions between auxin and cytokinin influence the size and location of regions of division and differentiation within the primary root, and describe how their cross-regulation may cause periodic branching of lateral roots. We show how their joint activity may influence tissue-specific oscillations in gene expression, as shown in Moreno-Risueno et al. (2010) and commented upon in Traas and Vernoux (2010), and we propose mechanisms that may generate synchronisation of such periodic behaviours inside a cell and with its neighbours. Using a multi-cellular model, we also analyse the roles of cytokinin and auxin in specifying the three main regions of the primary root (elongation, transition and division zones), our simulation results being in good agreement with independent experimental observations. We then use our model to generate testable predictions concerning the effect of varying the concentrations of the auxin efflux transporters on the sizes of the different root regions. In particular, we predict that over-expression of the transporters will generate a longer root with a longer elongation zone and a smaller division zone than that of a wild type root. This root will contain fewer cells than its wild type counterpart. We conclude that our model can provide a useful tool for investigating the response of cell division and elongation to perturbations in hormonal signalling. © 2012 Elsevier Ltd.

  19. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  20. PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana

    Science.gov (United States)

    Humphrey, Tania V.; Haasen, Katrina E.; Aldea-Brydges, May Grace; Sun, He; Zayed, Yara; Indriolo, Emily; Goring, Daphne R.

    2015-01-01

    The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered. PMID:25262228

  1. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Directory of Open Access Journals (Sweden)

    Yu Song

    Full Text Available In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL proteins in two Arabidopsis species (A. lyrata and A. thaliana and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  2. Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila.

    Science.gov (United States)

    Song, Yu; Gao, Jie; Yang, Fengxi; Kua, Chai-Shian; Liu, Jingxin; Cannon, Charles H

    2013-01-01

    In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL) proteins in two Arabidopsis species (A. lyrata and A. thaliana) and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into four groups and the two known DUF3594 and PHD-finger domains had co-evolved within each group of genes, irrespective of species, due to gene duplication events in the common ancestor of all three species while gene loss was observed only in T. halophila. To detect whether natural selection acted in the evolution of AL genes, we calculated synonymous substitution ratios (dn/ds) and codon usage statistics, finding positive selection operated on four branches and significant differences in biased codon usage in the AL family between T. halophila and A. lyrata or A. thaliana. Distinctively, only the AL7 branch was under positive selection on the PHD-finger domain and the three members on the branch showed the smallest difference when codon bias was evaluated among the seven clusters. Functional analysis based on transgenic overexpression lines and T-DNA insertion mutants indicated that salt-stress-induced AtAL7 could play a negative role in salt tolerance of A. thaliana, suggesting that adaptive evolution occurred in the members of AL gene family.

  3. APC/C-CCS52A complexes control meristem maintenance in the Arabidopsis root.

    Science.gov (United States)

    Vanstraelen, Marleen; Baloban, Mikhail; Da Ines, Olivier; Cultrone, Antonietta; Lammens, Tim; Boudolf, Véronique; Brown, Spencer C; De Veylder, Lieven; Mergaert, Peter; Kondorosi, Eva

    2009-07-14

    Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.

  4. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots.

    Science.gov (United States)

    Besnard, Julien; Pratelli, Réjane; Zhao, Chengsong; Sonawala, Unnati; Collakova, Eva; Pilot, Guillaume; Okumoto, Sakiko

    2016-12-01

    Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.

  5. TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kwak, Su-Hwan; Schiefelbein, John

    2014-01-01

    The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.

  6. Identification and characterization of inward K ~+-channels in plasma membranes of Arabidopsis root cortex cells

    Institute of Scientific and Technical Information of China (English)

    于川江; 武维华

    1999-01-01

    Patch clamping whole-cell reeording techniques were apphed to study the inward K+ channels in Arabidopsis root cortex cells. The inward K+-channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective tor K+ ions over Na+ ions. The channel activity was significantly inbibited by the external TEA(?) or Ba(?) The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+-currents. The possible asso(?)ation betw(?)en the channel selectivity to K+ and Na(?) ions and plant salt-tolerance was also discussed.

  7. Starch-related carbon fluxes in roots and leaves of Arabidopsis thaliana.

    Science.gov (United States)

    Malinova, Irina; Steup, Martin; Fettke, Joerg

    2011-07-01

    Both photoautotrophic and heterotrophic tissues from plants are capable of synthesizing and degrading starch. To analyse starch metabolism in the two types of tissue from the same plant, several starch-related mutants from Arabidopsis thaliana were grown hydroponically together with the respective wild type control. Starch contents, patterns of starch-related enzymes, and the monomer patterns of the cytosolic starch-related heteroglycans were determined. Based on the phenotypical data obtained, three comparisons were made: First, data from leaves and roots of the mutants were compared with the respective wild type controls. Secondly, data from leaves and roots from the same plant were compared. Third, we included data obtained from soil-grown plants and compared them with those from hydroponically grown plants. Thus, phenotypical features reflecting altered gene expression can be distinguished from those that are due to the specific growth conditions. Implications on the carbon fluxes in photoautotrophic and heterotrophic cells are discussed.

  8. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2006-10-01

    Full Text Available Abstract Background Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. Results We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like; signalling molecules (e.g. PERK kinases, MLO-like receptors, carbohydrate active enzymes (e.g. XTH18, transcription factors (e.g. members of ZIM, WRKY, NAC, and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1. We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. Conclusion Micorarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent

  9. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes.

    Science.gov (United States)

    Bidzinski, Przemyslaw; Noir, Sandra; Shahi, Shermineh; Reinstädler, Anja; Gratkowska, Dominika Marta; Panstruga, Ralph

    2014-12-01

    Root architecture and growth patterns are plant features that are still poorly understood. When grown under in vitro conditions, seedlings with mutations in Arabidopsis thaliana genes MLO4 or MLO11 exhibit aberrant root growth patterns upon contact with hard surfaces, exemplified as tight root spirals. We used a set of physiological assays and genetic tools to characterize this thigmomorphogenic defect in detail. We observed that the mlo4/mlo11-associated root curling phenotype is not recapitulated in a set of mutants with altered root growth patterns or architecture. We further found that mlo4/mlo11-conditioned root curling is not dependent upon light and endogenous flavonoids, but is pH-sensitive and affected by exogenous calcium levels. Based upon the latter two characteristics, mlo4-associated root coiling appears to be mechanistically different from the natural strong root curvature of the Arabidopsis ecotype Landsberg erecta. Gravistimulation reversibly overrides the aberrant thigmomorphogenesis of mlo4 seedlings. Mutants with dominant negative defects in α-tubulin modulate the extent and directionality of mlo4/mlo11-conditioned root coils, whereas mutants defective in polar auxin transport (axr4, aux1) or gravitropism (pgm1) completely suppress the mlo4 root curling phenotype. Our data implicate a joint contribution of calcium signalling, pH regulation, microtubular function, polar auxin transport and gravitropism in root thigmomorphogenesis.

  10. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.

    Science.gov (United States)

    Lin, Y; Schiefelbein, J

    2001-10-01

    A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.

  11. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  12. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  13. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.

    Science.gov (United States)

    Miyashima, Shunsuke; Hashimoto, Takashi; Nakajima, Keiji

    2009-03-01

    The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.

  14. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Directory of Open Access Journals (Sweden)

    Enrico Baldan

    Full Text Available We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%, release ammonium (39%, secrete siderophores (38% and a limited part of them synthetized IAA and IAA-like molecules (5%. Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  15. Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

    Science.gov (United States)

    Baldan, Enrico; Nigris, Sebastiano; Romualdi, Chiara; D'Alessandro, Stefano; Clocchiatti, Anna; Zottini, Michela; Stevanato, Piergiorgio; Squartini, Andrea; Baldan, Barbara

    2015-01-01

    We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.

  16. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    OpenAIRE

    Muraro, Daniele; Mellor, Nathan; Pound, Michael P.; Help, Hanna; Lucas, Mikael; Chopard, Jerome; Byrne, Helen M.; GODIN, CHRISTOPHE; Hodgman, T. Charlie; King, John R.; Pridmore, Tony P.; Helariutta, Ykä; Bennett, Malcolm J; Bishopp, Anthony

    2014-01-01

    International audience; As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile micr...

  17. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    Science.gov (United States)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin

  18. The RHG gene is involved in root and hypocotyl gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Fukaki, H; Fujisawa, H; Tasaka, M

    1997-07-01

    In higher plants, shoots show negative gravitropism and roots show positive gravitropism. To elucidate the molecular mechanisms of root and hypocotyl gravitropism, we segregated the second mutation from the original phyB-1 mutant line which impaired both root and hypocotyl gravitropism and characterized this novel mutation named rhg (for root and hypocotyl gravitropism). The rhg is a single recessive nuclear mutation and it is mapped on the lower part of the chromosome 1. Analyses on the gravitropic responses of the rhg mutant indicate that root and hypocotyl gravitropism are severely impaired but inflorescence stem gravitropism is not affected by the rhg mutation. In the rhg mutant seedlings, amyloplasts (statoliths for gravity-perception) were present in the presumptive statocytes of roots and hypocotyls. Phototropism by roots and hypocotyls was not impaired in the rhg mutant. These results suggest that the RHG gene product probably acts on the gravity-perception and/or the gravity-signal transduction in root and hypocotyl gravitropism. This is the first report about the genetic locus specifically involved in both root and hypocotyl gravitropism but not inflorescence stem gravitropism, supporting our hypothesis that the mechanisms of gravitropism are genetically different between hypocotyls and inflorescence stems.

  19. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  20. Steroids are required for epidermal cell fate establishment in Arabidopsis roots.

    Science.gov (United States)

    Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L

    2009-05-12

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.

  1. Arabidopsis root growth movements and their symmetry: progress and problems arising from recent work.

    Science.gov (United States)

    Migliaccio, Fernando; Fortunati, Alessio; Tassone, Paola

    2009-03-01

    Over the last fifteen years, an increasing number of plant scientists have become interested in the Arabidopsis root growth pattern, that is produced on the surface of an agar plate, inclined from the vertical. In this situation, the roots wave intensely and slant preferentially towards one side, showing torsions in the epidermal cell files alternately right-and left handed. In addition, the pattern switches to the formation of large or strict coils when the plate is set horizontally. After this finding, different hypotheses were advanced attempting to explain the forces that shape these patterns. These basically appear to be gravitropism, circumnutation and negative thigmotropism. With regard to the symmetry, the coils and the slanting in the wild-type are essentially right-handed, but mutants were also reported which show a left-handed symmetry, while some do not show a regular growth pattern at all. This review article discusses the earlier as well as the most recent findings on the topic, and investigates the possibility of describing the different mechanisms shaping the root growth patterns via unifying hypothesis.

  2. PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2.

    Directory of Open Access Journals (Sweden)

    Ján Jásik

    Full Text Available The steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover. Dendra2 was fused to the PIN2 protein, an auxin transporter in the root tip, and by time-lapse imaging and assessment of red and green signal intensities in the membrane after photoconversion we quantified directly and simultaneously the rate of PIN2 delivery of the newly synthesized protein into the plasma membrane as well as the disappearance of the protein from the plasma membrane due to degradation. Additionally we have verified several factors which are expected to affect PIN2 protein turnover and therefore potentially regulate root growth.

  3. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition.

    Directory of Open Access Journals (Sweden)

    Holger Schmidt

    Full Text Available Fe deficiency compromises both human health and plant productivity. Thus, it is important to understand plant Fe acquisition strategies for the development of crop plants which are more Fe-efficient under Fe-limited conditions, such as alkaline soils, and have higher Fe density in their edible tissues. Root secretion of phenolic compounds has long been hypothesized to be a component of the reduction strategy of Fe acquisition in non-graminaceous plants. We therefore subjected roots of Arabidopsis thaliana plants grown under Fe-replete and Fe-deplete conditions to comprehensive metabolome analysis by gas chromatography-mass spectrometry and ultra-pressure liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Scopoletin and other coumarins were found among the metabolites showing the strongest response to two different Fe-limited conditions, the cultivation in Fe-free medium and in medium with an alkaline pH. A coumarin biosynthesis mutant defective in ortho-hydroxylation of cinnamic acids was unable to grow on alkaline soil in the absence of Fe fertilization. Co-cultivation with wild-type plants partially rescued the Fe deficiency phenotype indicating a contribution of extracellular coumarins to Fe solubilization. Indeed, coumarins were detected in root exudates of wild-type plants. Direct infusion mass spectrometry as well as UV/vis spectroscopy indicated that coumarins are acting both as reductants of Fe(III and as ligands of Fe(II.

  4. Uranium perturbs signaling and iron uptake response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Doustaly, Fany; Combes, Florence; Fiévet, Julie B; Berthet, Serge; Hugouvieux, Véronique; Bastien, Olivier; Aranjuelo, Iker; Leonhardt, Nathalie; Rivasseau, Corinne; Carrière, Marie; Vavasseur, Alain; Renou, Jean-Pierre; Vandenbrouck, Yves; Bourguignon, Jacques

    2014-04-01

    Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.

  5. Reference: 567 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ith findings that noxy2 and mutants with defective 9-LOX activity showed increased numbers of lateral roots,...or of lateral root formation. Histochemical and molecular analyses revealed that 9-HOT activated events comm...in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade.

  6. The circular F-actin bundles provide a track for turnaround and bidirectional movement of mitochondria in Arabidopsis root hair.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available The movement of organelles in root hairs primarily occurs along the actin cytoskeleton. Circulation and "reverse fountain" cytoplasmic streaming constitute the typical forms by which most organelles (such as mitochondria and the Golgi apparatus in plant root hair cells engage in bidirectional movement. However, there remains a lack of in-depth research regarding the relationship between the distribution of the actin cytoskeleton and turnaround organelle movement in plant root hair cells.In this paper, Arabidopsis seedlings that had been stably transformed with a GFP-ABD2-GFP (green fluorescent protein-actin-binding domain 2-green fluorescent protein construct were utilized to study the distribution of bundles of filamentous (F-actin and the directed motion of mitochondria along these bundles in root hairs. Observations with a confocal laser scanning microscope revealed that there were widespread circular F-actin bundles in the epidermal cells and root hairs of Arabidopsis roots. In root hairs, these circular bundles primarily start at the sub-apical region, which is the location where the turnaround movement of organelles occurs. MitoTracker probes were used to label mitochondria, and the dynamic observation of root hair cells with a confocal laser scanning microscope indicated that turnaround mitochondrial movement occurred along circular F-actin bundles.Relevant experimental results demonstrated that the circular F-actin bundles provide a track for the turnaround and bidirectional movement of mitochondria.

  7. Cell identity regulators link development and stress responses in the Arabidopsis root.

    Science.gov (United States)

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.

  8. Basic Pentacysteine Proteins Repress Abscisic Acid Insensitive4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development.

    Science.gov (United States)

    Mu, Ying; Zou, Meijuan; Sun, Xuwu; He, Baoye; Xu, Xiumei; Liu, Yini; Zhang, Lixin; Chi, Wei

    2017-01-30

    Plant transcription factors generally act in complex regulatory networks that function at multiple levels to govern plant developmental programs. Dissection of the interconnections among different classes of transcription factors can elucidate these regulatory networks and thus improve our understanding of plant development. Here, we investigated the molecular and functional relationships of the transcription factors ABSCISIC ACID INSENSITIVE 4 (ABI4) and members of the BASIC PENTACYSTEINE (BPC) family in lateral root (LR) development of Arabidopsis thaliana Genetic analysis showed that BPCs promote LR development by repressing ABI4 expression. Molecular analysis showed that BPCs bind to the ABI4 promoter and repress ABI4 transcription in roots. BPCs directly recruit the Polycomb Repressive Complex 2 (PRC2) to the ABI4 locus and epigenetically repress ABI4 expression by catalyzing the trimethylation of histone H3 at lysine 27. In addition, BPCs and ABI4 coordinate their activities to fine-tune the levels of PIN-FORMED1, a component of the auxin signaling pathway, and thus modulate LR formation. These results establish a functional relationship between two universal and multiple-role transcription factors and provide insight into the mechanisms of the transcriptional regulatory networks that affect Arabidopsis organogenesis.

  9. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type

    Directory of Open Access Journals (Sweden)

    Tan Chao

    2011-11-01

    Full Text Available Abstract Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT roots subjected to different gravitational conditions. These conditions included horizontal (H and vertical (V clinorotation, hypergravity (G and the stationary control (S. Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G compared to control roots (V and S. Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant

  10. Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis.

    Science.gov (United States)

    Li, Guangjie; Xu, Weifeng; Kronzucker, Herbert J; Shi, Weiming

    2015-04-01

    Iron (Fe) is an essential microelement but is highly toxic when in excess. The response of plant roots to Fe toxicity and the nature of the regulatory pathways engaged are poorly understood. Here, we examined the response to excess Fe exposure in Arabidopsis wild type and ethylene mutants with a focus on primary root growth and the role of ethylene. We showed that excess Fe arrested primary root growth by decreasing both cell elongation and division, and principally resulteds from direct external Fe contact at the root tip. Pronounced ethylene, but not abscisic acid, evolution was associated with excess Fe exposure. Ethylene antagonists intensified root growth inhibition in the wild type, while the inhibition was significantly reduced in ethylene-overproduction mutants. We showed that ethylene plays a positive role in tissue Fe homeostasis, even in the absence of iron-plaque formation. Ethylene reduced Fe concentrations in the stele, xylem, and shoot. Furthermore, ethylene increased the expression of genes encoding Fe-sequestering ferritins. Additionally, ethylene significantly enhanced root K(+) status and upregulated K(+)-transporter (HAK5) expression. Our findings highlight the important role of ethylene in tissue Fe and K homeostasis and primary root growth under Fe stress in Arabidopsis.

  11. Morphological, physiological and molecular genetic characterization ofArabidopsis himalaica, with reference toA. thaliana.

    Science.gov (United States)

    Tsukaya, H; Yokoyama, J; Ikeda, H; Kuroiwa, H; Kuroiwa, T; Iwatsuki, K

    1997-03-01

    Arabidopsis himalaica (Edgeworth) O.E. Schulz, a poorly characterized species typical of HimalayanArabidopsis, was analyzed in terms of its morphology, physiology, chromosome number and molecular genetics, in comparison withA. thaliana which is the standard species in the genusArabidopsis. From view point of developmental genetics, several features which are specific toA. himalaica seem not to be derived by single-gene mutations inA. thaliana. Phylogenetic analyses based onrbcL sequences suggested that genusArabidopsis is not monophyletic. The detailed characterization ofA. himalaica should provide clues to understand the trait of evolution of particular features of Himalayan species ofArabidopsis and their genetic basis.

  12. The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking

    Institute of Scientific and Technical Information of China (English)

    Yuan Wang; Wen-Hui Lin; Xu Chen; Hong-Wei Xue

    2009-01-01

    Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositoi metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTasel3 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTasel3 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTasel3 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PINI and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTasel3 deficiency. These results suggest that 5PTasel3 may modulate auxin trans-port by regulating vesicle trafficking and thereby play a role in root gravitropism.

  13. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity.

    Science.gov (United States)

    Stanislas, Thomas; Hüser, Anke; Barbosa, Inês C R; Kiefer, Christian S; Brackmann, Klaus; Pietra, Stefano; Gustavsson, Anna; Zourelidou, Melina; Schwechheimer, Claus; Grebe, Markus

    2015-11-02

    Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.

  14. Potassium Transporter KUP7 Is Involved in K(+) Acquisition and Translocation in Arabidopsis Root under K(+)-Limited Conditions.

    Science.gov (United States)

    Han, Min; Wu, Wei; Wu, Wei-Hua; Wang, Yi

    2016-03-07

    Potassium (K(+)) is one of the essential macronutrients for plant growth and development. K(+) uptake from environment and K(+) translocation in plants are conducted by K(+) channels and transporters. In this study, we demonstrated that KT/HAK/KUP transporter KUP7 plays crucial roles in K(+) uptake and translocation in Arabidopsis root. The kup7 mutant exhibited a sensitive phenotype on low-K(+) medium, whose leaves showed chlorosis symptoms compared with wild-type plants. Loss of function of KUP7 led to a reduction of K(+) uptake rate and K(+) content in xylem sap under K(+)-deficient conditions. Thus, the K(+) content in kup7 shoot was significantly reduced under low-K(+) conditions. Localization analysis revealed that KUP7 was predominantly targeted to the plasma membrane. The complementation assay in yeast suggested that KUP7 could mediate K(+) transport. In addition, phosphorylation on S80, S719, and S721 was important for KUP7 activity. KUP7 was ubiquitously expressed in many organs/tissues, and showed a higher expression level in Arabidopsis root. Together, our data demonstrated that KUP7 is crucial for K(+) uptake in Arabidopsis root and might be also involved in K(+) transport into xylem sap, affecting K(+) translocation from root toward shoot, especially under K(+)-limited conditions.

  15. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  16. Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Xiaodong; Cheng, Jingfei; Chen, Lyuqin; Zhang, Guifang; Huang, Hai; Zhang, Yijing; Xu, Lin

    2016-04-01

    Plants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first event that provides signals to trigger the whole regenerative process. However, our knowledge of the role of wounding in regeneration remains limited. In this study, we show that wounding not only triggers the auxin-mediated fate transition of regeneration-competent cells, but also induces the NAC pathway for root tip emergence. The NAC1 transcription factor gene was specifically expressed in response to wounding in the leaf explant, but not in the wounded leaf residue of the source plant. Inhibition of the NAC1 pathway severely affected the emergence of adventitious root tips. However, the NAC1 pathway functioned independently of auxin-mediated cell fate transition and regulates expression of CEP genes, which encode proteins that might have a role in degradation of extensin proteins in the cell wall. Overall, our results suggest that wounding has multiple roles in de novo root organogenesis and that NAC1 acts as one downstream branch in regulating the cellular environment for organ emergence.

  17. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.

  18. Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress.

    Science.gov (United States)

    Li, Guangjie; Song, Haiyan; Li, Baohai; Kronzucker, Herbert J; Shi, Weiming

    2015-12-01

    A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.

  19. Root–Root Interactions:Towards A Rhizosphere Framework

    NARCIS (Netherlands)

    Mommer, L.; Ruijven, van J.; Kirkegaard, John

    2016-01-01

    Plant scientists have made great progress in understanding molecular mecha-
    nisms controlling root responses to nutrients of arabidopsis (Arabidopsis thali-
    ana) plants under controlled conditions. Simultaneously, ecologists and
    agronomists have demonstrated that root–root interactions i

  20. Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis.

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhang, Rui-Fen; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Zhao, Yu-Jin

    2013-06-01

    Cryptochromes are blue-light photoreceptors involved in regulating many aspects of plant growth and development. Investigations of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), rice (Oryza sativa) and pea (Pisum sativum). Here, we isolated the cryptochrome 1 gene from apple (Malus domestica) (MdCRY1) and analyzed its function in transgenic Arabidopsis. The predicted MdCRY1 protein was most closely homologous to strawberry CRY1. In terms of transcript levels, MdCRY1 expression was up-regulated by light. The function of MdCRY1 was analyzed through heterologous expression in Arabidopsis. Overexpression of MdCRY1 in Arabidopsis is able to rescue the cry1 mutant phenotype, inhibit hypocotyl elongation, promote root growth, and enhance anthocyanin accumulation in wild-type seedlings under blue light. These data provide functional evidence for a role of MdCRY1 in controlling photomorphogenesis under blue light and indicate that CRY1 function is conserved between Arabidopsis and apple. Furthermore, we found that MdCRY1 interacts with AtCOP1 in both yeast and onion cells. This interaction may represent an important regulatory mechanism in blue-light signaling pathway in apple.

  1. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    Science.gov (United States)

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  2. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  3. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yan Wang; Ju Yang; Chunli Ma; Ying Zhang; Ting Ge; Zhi Qi; Yan Kang

    2015-01-01

    Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starva-tion-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpress-ing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initial y identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. Correction added on 6 August 2015, after first online publica-tion:“RND3”corrected to“RHD3”.

  4. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    Science.gov (United States)

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  5. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    Science.gov (United States)

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  6. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  7. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes

    Science.gov (United States)

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-01-01

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. PMID:28223530

  8. Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis.

    Science.gov (United States)

    Luo, Sha; Li, Qianqian; Liu, Shanda; Pinas, Nicholaas M; Tian, Hainan; Wang, Shucai

    2015-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic

  9. Constitutive expression of OsIAA9 affects starch granules accumulation and root gravitropic response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sha eLuo

    2015-12-01

    Full Text Available Auxin/Indole-3-Acetic Acid (Aux/IAA genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs. Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates

  10. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    Science.gov (United States)

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  11. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Kang, Yeon Hee; Kirik, Victor; Hulskamp, Martin; Nam, Kyoung Hee; Hagely, Katherine; Lee, Myeong Min; Schiefelbein, John

    2009-04-01

    The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.

  12. Responses to Iron-Deficiency in Arabidopsis-Thaliana - The Turbo Iron Reductase does not depend on the Formation of Root Hairs and Transfer Cells.

    NARCIS (Netherlands)

    Moog, P.R.; Van der Kooij, T.A.W.; Bruggemann, W.; Schiefelbein, J.W.; Kuiper, P.J.C.

    1995-01-01

    Arabidopsis thaliana (L.) Heynh. Columbia wild type and a root hair-less mutant RM57 were grown on iron-containing and iron-deficient nutrient solutions. In both genotypes, ferric chelate reductase (FCR) of intact roots was induced upon iron deficiency and followed a Michaelis-Menten kinetic with a

  13. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  14. SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.

    Science.gov (United States)

    Waszczak, Cezary; Kerchev, Pavel I; Mühlenbock, Per; Hoeberichts, Frank A; Van Der Kelen, Katrien; Mhamdi, Amna; Willems, Patrick; Denecker, Jordi; Kumpf, Robert P; Noctor, Graham; Messens, Joris; Van Breusegem, Frank

    2016-08-01

    Hydrogen peroxide (H2O2) can act as a signaling molecule that influences various aspects of plant growth and development, including stress signaling and cell death. To analyze molecular mechanisms that regulate the response to increased H2O2 levels in plant cells, we focused on the photorespiration-dependent peroxisomal H2O2 production in Arabidopsis thaliana mutants lacking CATALASE2 (CAT2) activity (cat2-2). By screening for second-site mutations that attenuate the PSII maximum efficiency (Fv'/Fm') decrease and lesion formation linked to the cat2-2 phenotype, we discovered that a mutation in SHORT-ROOT (SHR) rescued the cell death phenotype of cat2-2 plants under photorespiration-promoting conditions. SHR deficiency attenuated H2O2-dependent gene expression, oxidation of the glutathione pool, and ascorbate depletion in a cat2-2 genetic background upon exposure to photorespiratory stress. Decreased glycolate oxidase and catalase activities together with accumulation of glycolate further implied that SHR deficiency impacts the cellular redox homeostasis by limiting peroxisomal H2O2 production. The photorespiratory phenotype of cat2-2 mutants did not depend on the SHR functional interactor SCARECROW and the sugar signaling component ABSCISIC ACID INSENSITIVE4, despite the requirement for exogenous sucrose for cell death attenuation in cat2-2 shr-6 double mutants. Our findings reveal a link between SHR and photorespiratory H2O2 production that has implications for the integration of developmental and stress responses.

  15. SCARECROW, SCR-LIKE 23 and SHORT-ROOT control bundle sheath cell fate and function in Arabidopsis thaliana.

    Science.gov (United States)

    Cui, Hongchang; Kong, Danyu; Liu, Xiuwen; Hao, Yueling

    2014-04-01

    Bundle sheath (BS) cells form a single cell layer surrounding the vascular tissue in leaves. In C3 plants, photosynthesis occurs in both the BS and mesophyll cells, but the BS cells are the major sites of photosynthesis in C4 plants, whereas the mesophyll cells are only involved in CO2 fixation. Because C4 plants are more efficient photosynthetically, introduction of the C4 mechanism into C3 plants is considered a key strategy to improve crop yield. One prerequisite for such C3-to-C4 engineering is the ability to manipulate the number and physiology of the BS cells, but the molecular basis of BS cell-fate specification remains unclear. Here we report that mutations in three GRAS family transcription factors, SHORT-ROOT (SHR), SCARECROW (SCR) and SCARECROW-LIKE 23 (SCL23), affect BS cell fate in Arabidopsis thaliana. SCR and SCL23 are expressed specifically in the BS cells and act redundantly in BS cell-fate specification, but their expression pattern and function diverge at later stages of leaf development. Using ChIP-chip experiments and sugar assays, we show that SCR is primarily involved in sugar transport whereas SCL23 functions in mineral transport. SHR is also essential for BS cell-fate specification, but it is expressed in the central vascular tissue. However, the SHR protein moves into the BS cells, where it directly regulates SCR and SCL23 expression. SHR, SCR and SCL23 homologs are present in many plant species, suggesting that this developmental pathway for BS cell-fate specification is likely to be evolutionarily conserved.

  16. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Zhen Wang; Jie-Li Mao; Ying-Jun Zhao; Chuan-You Li; Cheng-Bin Xiang

    2015-01-01

    L‐Cysteine plays a prominent role in sulfur metabo-lism of plants. However, its role in root development is largely unknown. Here, we report that L‐cysteine reduces primary root growth in a dosage‐dependent manner. Elevating cel ular L‐cysteine level by exposing Arabidopsis thaliana seedlings to high L‐cysteine, buthionine sulphoximine, or O‐acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cel marker as wel as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L‐cysteine significantly reduces the protein level of two sets of stem cel specific transcription factors PLETHORA1/2 and SCR/SHR. However, L‐cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post‐transcriptional mech-anism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L‐cysteine level acts to maintain root stem cel niche by regulating basal‐and auxin‐induced expression of PLT1/2 and SCR/SHR. L‐Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  17. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth.

  18. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana.

    Science.gov (United States)

    Ichikawa, Mie; Hirano, Tomoko; Enami, Kazuhiko; Fuselier, Taylor; Kato, Naohiro; Kwon, Chian; Voigt, Boris; Schulze-Lefert, Paul; Baluška, František; Sato, Masa H

    2014-04-01

    Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), SYP123 and SYP132, in the growth of root hair in Arabidopsis. We found that SYP123, but not SYP132, localizes in the tip region of root hairs by recycling between the brefeldin A (BFA)-sensitive endosomes and the PM of the expanding tip in an F-actin-dependent manner. The vesicle-associated membrane proteins VAMP721/722/724 also exhibited tip-focused localization in root hairs and formed ternary SNARE complexes with both SYP123 and SYP132. These results demonstrate that SYP123 and SYP132 act in a coordinated fashion to mediate tip-focused membrane trafficking for root hair tip growth.

  19. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling.

    Science.gov (United States)

    Juntawong, Piyada; Sirikhachornkit, Anchalee; Pimjan, Rachaneeporn; Sonthirod, Chutima; Sangsrakru, Duangjai; Yoocha, Thippawan; Tangphatsornruang, Sithichoke; Srinives, Peerasak

    2014-01-01

    Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.

  20. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling

    Directory of Open Access Journals (Sweden)

    Piyada eJuntawong

    2014-12-01

    Full Text Available Jatropha (Jatropha curcas is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq. The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1,968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.

  1. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica.

    Science.gov (United States)

    Nongbri, Pyniarlang L; Johnson, Joy Michal; Sherameti, Irena; Glawischnig, Erich; Halkier, Barbara Ann; Oelmüller, Ralf

    2012-09-01

    The growth-promoting and root-colonizing endophyte Piriformospora indica induces camalexin and the expression of CYP79B2, CYP79B3, CYP71A13, PAD3, and WRKY33 required for the synthesis of indole-3-acetaldoxime (IAOx)-derived compounds in the roots of Arabidopsis seedlings. Upregulation of the mRNA levels by P. indica requires cytoplasmic calcium elevation and mitogen-activated protein kinase 3 but not root-hair-deficient 2, radical oxygen production, or the 3-phosphoinositide-dependent kinase 1/oxidative signal-inducible 1 pathway. Because P. indica-mediated growth promotion is impaired in cyp79B2 cyp79B3 seedlings, while pad3 seedlings-which do not accumulate camalexin-still respond to the fungus, IAOx-derived compounds other than camalexin (e.g., indole glucosinolates) are required during early phases of the beneficial interaction. The roots of cyp79B2 cyp79B3 seedlings are more colonized than wild-type roots, and upregulation of the defense genes pathogenesis-related (PR)-1, PR-3, PDF1.2, phenylalanine ammonia lyase, and germin indicates that the mutant responds to the lack of IAOx-derived compounds by activating other defense processes. After 6 weeks on soil, defense genes are no longer upregulated in wild-type, cyp79B2 cyp79B3, and pad3 roots. This results in uncontrolled fungal growth in the mutant roots and reduced performance of the mutants. We propose that a long-term harmony between the two symbionts requires restriction of root colonization by IAOx-derived compounds.

  2. Putrescine Alleviates Iron Deficiency via NO-Dependent Reutilization of Root Cell-Wall Fe in Arabidopsis.

    Science.gov (United States)

    Zhu, Xiao Fang; Wang, Bin; Song, Wen Feng; Zheng, Shao Jian; Shen, Ren Fang

    2016-01-01

    Plants challenged with abiotic stress show enhanced polyamines levels. Here, we show that the polyamine putrescine (Put) plays an important role to alleviate Fe deficiency. The adc2-1 mutant, which is defective in Put biosynthesis, was hypersensitive to Fe deficiency compared with wild type (Col-1 of Arabidopsis [Arabidopsis thaliana]). Exogenous Put decreased the Fe bound to root cell wall, especially to hemicellulose, and increased root and shoot soluble Fe content, thus alleviating the Fe deficiency-induced chlorosis. Intriguingly, exogenous Put induced the accumulation of nitric oxide (NO) under both Fe-sufficient (+Fe) and Fe-deficient (-Fe) conditions, although the ferric-chelate reductase (FCR) activity and the expression of genes related to Fe uptake were induced only under -Fe treatment. The alleviation of Fe deficiency by Put was diminished in the hemicellulose-level decreased mutant-xth31 and in the noa1 and nia1nia2 mutants, in which the endogenous NO levels are reduced, indicating that both NO and hemicellulose are involved in Put-mediated alleviation of Fe deficiency. However, the FCR activity and the expression of genes related to Fe uptake were still up-regulated under -Fe+Put treatment compared with -Fe treatment in xth31, and Put-induced cell wall Fe remobilization was abolished in noa1 and nia1nia2, indicating that Put-regulated cell wall Fe reutilization is dependent on NO. From our results, we conclude that Put is involved in the remobilization of Fe from root cell wall hemicellulose in a process dependent on NO accumulation under Fe-deficient condition in Arabidopsis.

  3. Molecular cell biology of male meiotic chromosomes and isolation of male meiocytes in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Yingxiang; Cheng, Zhihao; Lu, Pingli; Timofejeva, Ljudmilla; Ma, Hong

    2014-01-01

    Plants typically produce numerous flowers whose meiotic chromosomes are relatively easy to observe, making them excellent structures for studying the cellular processes underlying meiosis. In recent years, breakthroughs in light and electron microscopic technologies for small chromosomes, combined with molecular genetic methods, have resulted in major advances in the understanding of meiosis in the model plant Arabidopsis thaliana. In this chapter, we summarize protocols for basic cytology, fluorescence in situ hybridization, immunofluorescence, electron microscopy, and isolation of male meiocytes for the analysis of Arabidopsis meiosis.

  4. Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning.

    Directory of Open Access Journals (Sweden)

    Irina Malinova

    Full Text Available Phosphoglucomutase (PGM catalyses the interconversion of glucose 1-phosphate (G1P and glucose 6-phosphate (G6P and exists as plastidial (pPGM and cytosolic (cPGM isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3 exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.

  5. Mutations in Arabidopsis thaliana genes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces

    Science.gov (United States)

    Rutherford, R.; Gallois, P.; Masson, P. H.

    1998-01-01

    Arabidopsis thaliana roots grow in a wavy pattern upon a slanted surface. A novel mutation in the anthranilate synthase alpha 1 (ASA1) gene, named trp5-2wvc1, and mutations in the tryptophan synthase alpha and beta 1 genes (trp3-1 and trp2-1, respectively) confer a compressed root wave phenotype on tilted agar surfaces. When trp5-2wvc1 seedlings are grown on media supplemented with anthranilate metabolites, their roots wave like wild type. Genetic and pharmacological experiments argue that the compressed root wave phenotypes of trp5-2wvc1, trp2-1 and trp3-1 seedlings are not due to reduced IAA biosynthetic potential, but rather to a deficiency in L-tryptophan (L-Trp), or in a L-Trp derivative. Although the roots of 7-day-old seedlings possess higher concentrations of free L-Trp than the shoot as a whole, trp5-2wvc1 mutants show no detectable alteration in L-Trp levels in either tissue type, suggesting that a very localized shortage of L-Trp, or of a L-Trp-derived compound, is responsible for the observed phenotype.

  6. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  7. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Science.gov (United States)

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  8. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    Directory of Open Access Journals (Sweden)

    Natasha Saint Savage

    2008-09-01

    Full Text Available The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  9. Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yoichiro Fukao

    2016-01-01

    Full Text Available The proteome profiles of specific cell types have recently been investigated using techniques such as fluorescence activated cell sorting and laser capture microdissection. However, quantitative proteomic analysis of specific cell types has not yet been performed. In this study, to investigate the response of the proteome to zinc, magnesium, and calcium deficiency in specific cell types of Arabidopsis thaliana roots, we performed isobaric tags for relative and absolute quantification (iTRAQ-based quantitative proteomics using GFP-expressing protoplasts collected by fluorescence-activated cell sorting. Protoplasts were collected from the pGL2-GFPer and pMGP-GFPer marker lines for epidermis or inner cell lines (pericycle, endodermis, and cortex, respectively. To increase the number of proteins identified, iTRAQ-labeled peptides were separated into 24 fractions by OFFGFEL electrophoresis prior to high-performance liquid chromatography coupled with mass spectrometry analysis. Overall, 1039 and 737 proteins were identified and quantified in the epidermal and inner cell lines, respectively. Interestingly, the expression of many proteins was decreased in the epidermis by mineral deficiency, although a weaker effect was observed in inner cell lines such as the pericycle, endodermis, and cortex. Here, we report for the first time the quantitative proteomics of specific cell types in Arabidopsis roots.

  10. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  11. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    Directory of Open Access Journals (Sweden)

    Michael H Wilson

    2015-02-01

    Full Text Available Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS, through the rapid and late elongation zones (REZ, LEZ to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (subcellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species needed for cell expansion, and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18 and XTH19. The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root

  12. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  13. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings.

    Science.gov (United States)

    Lehmann, Thomas; Janowitz, Tim; Sánchez-Parra, Beatriz; Alonso, Marta-Marina Pérez; Trompetter, Inga; Piotrowski, Markus; Pollmann, Stephan

    2017-01-01

    Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.

  14. Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

    NARCIS (Netherlands)

    Léon-Kloosterziel, K.M.; Verhagen, B.W.M.; Keurentjes, J.J.B.; Pelt, J.A. van; Rep, M.; Loon, L.C. van; Pieterse, C.M.J.

    2005-01-01

    Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of sa

  15. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots

    NARCIS (Netherlands)

    Zamioudis, Christos; Hanson, Johannes; Pieterse, Corné M J

    2014-01-01

    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditi

  16. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 in Arabidopsis roots during onset of induced systemic resistance and iron deficiency responses

    NARCIS (Netherlands)

    Zamioudis, C.; Korteland, J.; Van Pelt, J.A.; Van Hamersveld, M.; Dombrowski, N.; Bai, Y.; Hanson, J.; Van Verk, M.C.; Ling, H.-Q.; Schulze-Lefert, P.; Pieterse, C.M.J.

    2015-01-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synth

  17. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    Science.gov (United States)

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  18. UV-B induced generation of reactive oxygen species promotes formation of BFA-induced compartments in cells of Arabidopsis root apices

    Directory of Open Access Journals (Sweden)

    Ken eYokawa

    2016-01-01

    Full Text Available UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiationon the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  19. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    Science.gov (United States)

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  20. Tracking transcription factor mobility and interaction in arabidopsis roots with fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Clark, Natalie M.; Hinde, Elizabeth; Hinde, Elizabeth; Fisher, Adam P.; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N.; Sozzani, Rosangela

    2016-01-01

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction

  1. Physiological and Molecular Features of the Pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert

    Institute of Scientific and Technical Information of China (English)

    Fu-Ming Dai; Tong Xu; Gerhard A. Wolf; Zu-Hua He

    2006-01-01

    The fungal pathogen Sclerotinia sclerotiorum Libert causes rot diseases on many crops worldwide and large economic losses occur frequently because of a lack of resistant varieties. The pathogenesis of S. sclerotiorum and the molecular basis of plant responses to the pathogen are poorly understood. In the present investigation,the process of S. sclerotiorum infection in Arabidopsis thaliana L., a plant that is highly susceptible to this fungus, was analysed. In addition, the defense activation in the host was investigated. A convenient inoculation method using millet grain was developed for S. sclerotiorum in Arabidopsis. The fungus rapidly infected the plants, probably through ball- or cushion-like infection structures. Visible symptoms developed within 24h and plants were killed 72 h after inoculation. Cellulase, the main enzyme that caused host tissues to rot,was secreted by S. sclerotiorum in a pH-dependent manner. Oxalic acid, another pathogenic factor secreted by the fungus, induced necrotic lesions on the leaves. Infection with S. sclerotiorum strongly induced the production of the pathogenesis-related (PR) proteins β-1,3-glucanase and chitinase in Arabidopsis.Furthermore, the PR gene PDF. 1 was induced, but not PR1, indicating that the pathogen activated basal defense of jasmonic acid/ethylene dependence, which is consistent with its necrotrophic characteristics.This pathosystem for Arabidopsis-S. sclerotiorum could provide an approach for the analysis of the interactions between S. sclerotiorum and other crops, thereby facilitating genetic manipulation techniques for controlling this pathogen.

  2. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells.

    Directory of Open Access Journals (Sweden)

    Shaowu Xue

    Full Text Available The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺ transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na⁺ and K⁺ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K⁺ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na⁺ over K⁺ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na⁺ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na⁺ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na⁺ channel transport properties.

  3. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  4. Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Guénin, Stéphanie; Mareck, Alain; Rayon, Catherine; Lamour, Romain; Assoumou Ndong, Yves; Domon, Jean-Marc; Sénéchal, Fabien; Fournet, Françoise; Jamet, Elisabeth; Canut, Hervé; Percoco, Giuseppe; Mouille, Grégory; Rolland, Aurélia; Rustérucci, Christine; Guerineau, François; Van Wuytswinkel, Olivier; Gillet, Françoise; Driouich, Azeddine; Lerouge, Patrice; Gutierrez, Laurent; Pelloux, Jérôme

    2011-10-01

    • Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.

  5. The Arabidopsis nitrate transporter AtNRT2.1 is targeted to the root plasma membrane.

    Science.gov (United States)

    Chopin, Franck; Wirth, Judith; Dorbe, Marie-France; Lejay, Laurence; Krapp, Anne; Gojon, Alain; Daniel-Vedele, Françoise

    2007-08-01

    Arabidopsis AtNRT2.1 protein is the best characterized high affinity nitrate transporter in higher plants. However, nothing is known about its sub-cellular localization. In this work, we used GFP imaging to follow the targeting of the AtNRT2.1 protein to the different cell membranes. A polyclonal antibody was also raised against a peptide derived from the AtNRT2.1 sequence. Comparison of wild type and mutant plant extracts showed that this antibody recognized specifically the AtNRT2.1 protein. Microsomal membranes were fractionated on sucrose gradients and immunological detections were performed on the different fractions. Altogether, our results demonstrate that the AtNRT2.1 protein is located in the plasma membrane of the root cells.

  6. The organization pattern of root border-like cells of Arabidopsis is dependent on cell wall homogalacturonan.

    Science.gov (United States)

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-07-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

  7. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  8. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie, E-mail: nvanhoud@sckcen.be [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Vandenhove, Hildegarde; Horemans, Nele [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Remans, Tony; Opdenakker, Kelly; Smeets, Karen [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium); Bello, Daniel Martinez [Hasselt University, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Agoralaan Building D, 3590 Diepenbeek (Belgium); Wannijn, Jean; Van Hees, May [Belgian Nuclear Research Center (SCK-CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Vangronsveld, Jaco; Cuypers, Ann [Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590 Diepenbeek (Belgium)

    2011-06-15

    When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 {mu}M for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 {mu}M. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H{sub 2}O{sub 2}, an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. - Highlights: > Unravel response mechanisms to uranium stress

  9. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  10. Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation?

    Directory of Open Access Journals (Sweden)

    Camille Roux

    Full Text Available Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri is one of the few species able to colonize soils highly enriched in zinc and cadmium. Recent advances in the molecular genetics of adaptation show that the physiology of this derived ecological trait involves copy number expansions of the AhHMA4 gene, for which orthologs are found in single copy in the closely related A. lyrata and the outgroup A. thaliana. To gain insight into the speciation process, we ask whether adaptive molecular changes at this candidate gene were contemporary with important stages of the speciation process. We first inferred the scenario and timescale of speciation by comparing patterns of variation across the genomic backgrounds of A. halleri and A. lyrata. Then, we estimated the timing of the first duplication of AhHMA4 in A. halleri. Our analysis suggests that the historical split between the two species closely coincides with major changes in this molecular target of adaptation in the A. halleri lineage. These results clearly indicate that these changes evolved in A. halleri well before industrial activities fostered the spread of Zn- and Cd-polluted areas, and suggest that adaptive processes related to heavy-metal homeostasis played a major role in the speciation process.

  11. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

    Science.gov (United States)

    Xie, Q; Frugis, G; Colgan, D; Chua, N H

    2000-12-01

    Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.

  12. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis.

    Science.gov (United States)

    Zhang, Min; Wang, Cuiping; Lin, Qingfang; Liu, Aihua; Wang, Ting; Feng, Xuanjun; Liu, Jie; Han, Huiling; Ma, Yan; Bonea, Diana; Zhao, Rongmin; Hua, Xuejun

    2015-08-01

    Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.

  13. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Science.gov (United States)

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  14. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Natasha Savage

    Full Text Available Phosphate (Pi deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana, we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC, ENHANCER OF TRY AND CPC 1 (ETC1, WEREWOLF (WER and SCRAMBLED (SCM. From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias' in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts. Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  15. Multi-element bioimaging of Arabidopsis thaliana roots

    DEFF Research Database (Denmark)

    Persson, Daniel Olof; Chen, Anle; Aarts, Mark G.M.

    2016-01-01

    . Samples are finally analyzed by laser ablation-inductively coupled plasma-mass spectrometry, utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA, and DNA, making it attractive in combination with other...... omics techniques. To demonstrate the potential of the method, we analyzed a mutant of Arabidopsis unable to synthesize the metal chelator nicotianamine. The mutant accumulated substantially more zinc and manganese than the wild type in the tissues surrounding the vascular cylinder. For iron, the images...

  16. OPDA has key role in regulating plant susceptibility to the root-knot nematode Meloidogyne hapla in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    2016-10-01

    Full Text Available Jasmonic acid (JA is a plant hormone that plays important roles in regulating plant defenses against necrotrophic pathogens and herbivorous insects, but the role of JA in mediating the plant responses to root-knot nematodes has been unclear. Here we show that an application of either methyl jasmonate (MeJA or the JA-mimic coronatine (COR on Arabidopsis significantly reduced the number of galls caused by the root-knot nematode Meloidogyne hapla. Interestingly, the MeJA-induced resistance was independent of the JA-receptor COI1 (CORONATINE INSENSITIVE 1. The MeJA-treated plants accumulated the JA precursor cis-(+-12-oxo-phytodienoic acid (OPDA in addition to JA/JA-Isoleucine, indicating a positive feedback loop in JA biosynthesis. Using mutants in the JA-biosynthetic pathway, we found that plants deficient in the biosynthesis of JA and OPDA were hyper-susceptible to M. hapla. However, the opr3 mutant, which cannot convert OPDA to JA, exhibited wild-type levels of nematode galling. In addition, mutants in the JA-biosynthesis and perception which lie downstream of opr3 also displayed wild-type levels of galling. The data puts OPR3 (OPDA reductase 3 as the branch point between hyper-susceptibility and wild-type like levels of disease. Overall, the data suggests that the JA precursor, OPDA, plays a role in regulating plant defense against nematodes.

  17. Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth.

    Science.gov (United States)

    Leitner, Johannes; Petrášek, Jan; Tomanov, Konstantin; Retzer, Katarzyna; Pařezová, Markéta; Korbei, Barbara; Bachmair, Andreas; Zažímalová, Eva; Luschnig, Christian

    2012-05-22

    Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.

  18. Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent

    Science.gov (United States)

    Mönchgesang, Susann; Strehmel, Nadine; Trutschel, Diana; Westphal, Lore; Neumann, Steffen; Scheel, Dierk

    2016-01-01

    Natural variation of secondary metabolism between different accessions of Arabidopsis thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation approach by including biological variability (plant-to-plant variability) and analysed root metabolic patterns as well as their variability between plants and naturally occurring accessions. To screen 19 accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts was performed using ultra performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant variability than natural variation between accessions and variance of experimental batches. Ratios of plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the investigated accessions displayed a specifically high or low biological variability for these substance classes. This study provides recommendations for future natural variation analyses of glucosinolates, flavonoids, and phenylpropanoids and also reference data for additional substance classes. PMID:27649165

  19. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  20. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markakis Marios

    2012-11-01

    Full Text Available Abstract Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone. Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream

  1. Measuring whole plant CO2 exchange with the environment reveals opposing effects of the gin2-1 mutation in shoots and roots of Arabidopsis thaliana.

    Science.gov (United States)

    Brauner, Katrin; Stutz, Simon; Paul, Martin; Heyer, Arnd G

    2015-01-01

    Using a cuvette for simultaneous measurement of net photosynthesis in above ground plant organs and root respiration we investigated the effect of reduced leaf glucokinase activity on plant carbon balance. The gin2-1 mutant of Arabidopsis thaliana is characterized by a 50% reduction of glucokinase activity in the shoot, while activity in roots is about fivefold higher and similar to wild type plants. High levels of sucrose accumulating in leaves during the light period correlated with elevated root respiration in gin2-1. Despite substantial respiratory losses in roots, growth retardation was moderate, probably because photosynthetic carbon fixation was simultaneously elevated in gin2-1. Our data indicate that futile cycling of sucrose in shoots exerts a reduction on net CO2 gain, but this is over-compensated by the prevention of exaggerated root respiration resulting from high sucrose concentration in leaf tissue.

  2. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis.

    Science.gov (United States)

    Lee, Seong Hee; Chung, Gap Chae; Jang, Ji Young; Ahn, Sung Ju; Zwiazek, Janusz J

    2012-05-01

    The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis.

  3. Reference: 356 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 006 Mar Plant molecular biology Deng Xingwang|Dong Li|Wang Lei|Xue Yongbiao|Zhang Yansheng|Zhang Yu'e ...ein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. 4 599-615 16525894 2

  4. Identification of Putative Molecular Markers Associated with Root Traits in Coffea canephora Pierre ex Froehner

    Directory of Open Access Journals (Sweden)

    Devaraja Achar

    2015-01-01

    Full Text Available Coffea canephora exhibit poor root system and are very sensitive to drought stress that affects growth and production. Deeper root system has been largely empirical as better avoidance to soil water limitation in drought condition. The present study aimed to identify molecular markers linked to high root types in Coffea canephora using molecular markers. Contrasting parents, L1 valley with low root and S.3334 with high root type, were crossed, and 134 F1 individuals were phenotyped for root and associated physiological traits (29 traits and genotyped with 41 of the 320 RAPD and 9 of the 55 SSR polymorphic primers. Single marker analysis was deployed for detecting the association of markers linked to root associated traits by SAS software. There were 13 putative RAPD markers associated with root traits such as root length, secondary roots, root dry weight, and root to shoot ratio, in which root length associated marker OPS1850 showed high phenotypic variance of 6.86%. Two microsatellite markers linked to root length (CPCM13400 and root to shoot ratio (CM211300. Besides, 25 markers were associated with more than one trait and few of the markers were associated with positively related physiological traits and can be used in marker assisted trait selection.

  5. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.

    Science.gov (United States)

    Matsuo, Mitsuhiro; Johnson, Joy Michal; Hieno, Ayaka; Tokizawa, Mutsutomo; Nomoto, Mika; Tada, Yasuomi; Godfrey, Rinesh; Obokata, Junichi; Sherameti, Irena; Yamamoto, Yoshiharu Y; Böhmer, Frank-D; Oelmüller, Ralf

    2015-08-01

    Redox Responsive Transcription Factor1 (RRTF1) in Arabidopsis is rapidly and transiently upregulated by H2O2, as well as biotic- and abiotic-induced redox signals. RRTF1 is highly conserved in angiosperms, but its physiological role remains elusive. Here we show that inactivation of RRTF1 restricts and overexpression promotes reactive oxygen species (ROS) accumulation in response to stress. Transgenic lines overexpressing RRTF1 are impaired in root and shoot development, light sensitive, and susceptible to Alternaria brassicae infection. These symptoms are diminished by the beneficial root endophyte Piriformospora indica, which reduces ROS accumulation locally in roots and systemically in shoots, and by antioxidants and ROS inhibitors that scavenge ROS. More than 800 genes were detected in mature leaves and seedlings of transgenic lines overexpressing RRTF1; ∼ 40% of them have stress-, redox-, ROS-regulated-, ROS-scavenging-, defense-, cell death- and senescence-related functions. Bioinformatic analyses and in vitro DNA binding assays demonstrate that RRTF1 binds to GCC-box-like sequences in the promoter of RRTF1-responsive genes. Upregulation of RRTF1 by stress stimuli and H2O2 requires WRKY18/40/60. RRTF1 is co-regulated with the phylogenetically related RAP2.6, which contains a GCC-box-like sequence in its promoter, but transgenic lines overexpressing RAP2.6 do not accumulate higher ROS levels. RRTF1 also stimulates systemic ROS accumulation in distal non-stressed leaves. We conclude that the elevated levels of the highly conserved RRTF1 induce ROS accumulation in response to ROS and ROS-producing abiotic and biotic stress signals.

  6. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Science.gov (United States)

    Maldonado-González, M. Mercedes; Bakker, Peter A. H. M.; Prieto, Pilar; Mercado-Blanco, Jesús

    2015-01-01

    The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7. PMID:25904904

  7. SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis.

    Science.gov (United States)

    Bennett, Tom; van den Toorn, Albert; Sanchez-Perez, Gabino F; Campilho, Ana; Willemsen, Viola; Snel, Berend; Scheres, Ben

    2010-03-01

    The root cap has a central role in root growth, determining the growth trajectory and facilitating penetration into the soil. Root cap cells have specialized functions and morphologies, and border cells are released into the rhizosphere by specific cell wall modifications. Here, we demonstrate that the cellular maturation of root cap is redundantly regulated by three genes, SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2, which are members of the Class IIB NAC transcription factor family, together with the VASCULAR NAC DOMAIN (VND) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR (NST) genes that regulate secondary cell wall synthesis in specialized cell types. Lateral cap cells in smb-3 mutants continue to divide and fail to detach from the root, phenotypes that are independent of FEZ upregulation in smb-3. In brn1-1 brn2-1 double mutants, columella cells fail to detach, while in triple mutants, cells fail to mature in all parts of the cap. This complex genetic redundancy involves differences in expression, protein activity, and target specificity. All three genes have very similar overexpression phenotypes to the VND/NST genes, indicating that members of this family are largely functionally equivalent. Our results suggest that Class IIB NAC proteins regulate cell maturation in cells that undergo terminal differentiation with strong cell wall modifications.

  8. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  9. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.

    Science.gov (United States)

    Buer, Charles S; Muday, Gloria K

    2004-05-01

    We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

  10. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Xiang; Wang, Jin; Yuan, Jing; Wang, Xi-Li; Zhao, Qing-Ping; Kong, Pei-Tao; Zhang, Xiao

    2015-07-01

    Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.

  11. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis.

    Science.gov (United States)

    Gunapati, Samatha; Naresh, Ram; Ranjan, Sanjay; Nigam, Deepti; Hans, Aradhana; Verma, Praveen C; Gadre, Rekha; Pathre, Uday V; Sane, Aniruddha P; Sane, Vidhu A

    2016-04-26

    NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.

  12. SEUSS Integrates Gibberellin Signaling with Transcriptional Inputs from the SHR-SCR-SCL3 Module to Regulate Middle Cortex Formation in the Arabidopsis Root.

    Science.gov (United States)

    Gong, Xue; Flores-Vergara, Miguel A; Hong, Jing Han; Chu, Huangwei; Lim, Jun; Franks, Robert G; Liu, Zhongchi; Xu, Jian

    2016-03-01

    A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.

  13. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems.

    Science.gov (United States)

    Kang, Yeon Hee; Breda, Alice; Hardtke, Christian S

    2017-01-15

    Brassinosteroids (BRs) trigger an intracellular signaling cascade through its receptors BR INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1) and BRL3. Recent studies suggest that BR-independent inputs related to vascular differentiation, for instance root protophloem development, modulate downstream BR signaling components. Here, we report that protophloem sieve element differentiation is indeed impaired in bri1 brl1 brl3 mutants, although this effect might not be mediated by canonical downstream BR signaling components. We also found that their small meristem size is entirely explained by reduced cell elongation, which is, however, accompanied by supernumerary formative cell divisions in the radial dimension. Thus, reduced cell expansion in conjunction with growth retardation, because of the need to accommodate supernumerary formative divisions, can account for the overall short root phenotype of BR signaling mutants. Tissue-specific re-addition of BRI1 activity partially rescued subsets of these defects through partly cell-autonomous, partly non-cell-autonomous effects. However, protophloem-specific BRI1 expression essentially rescued all major bri1 brl1 brl3 root meristem phenotypes. Our data suggest that BR perception in the protophloem is sufficient to systemically convey BR action in the root meristem context.

  14. Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yue Zhou; Zijun Yang; Guangqin Guo; Yan Guo

    2010-01-01

    The microfilament (MF) cytoskeleton has crucial functions in plant development. Recent studies have revealed the function of MFs in diverse stress response. Alkaline stress is harmful to plant growth;however, it remains unclear whether the MFs play a role in alkaline stress. In the present study, we find that blocking MF assembly with latrunculin B (Lat B) leads to inhibition of plant root growth, and stabilization of MFs with phalloidin does not significantly affect plant root growth under normal conditions. In high external pH conditions, MF de-polymerization is induced and that associates with the reduction of root growth; phalloidin treatment partially rescues this reduction. Moreover, Lat B treatment further decreases the survival rate of seedlings growing in high external pH conditions. However, a high external pH (8.0) does not affect MF stability in vitro. Taken together, our results suggest that alkaline stress may trigger a signal that leads the dynamics of MFs and in turn regulates root growth.

  15. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben;

    2015-01-01

    Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals...... the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans...... and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other...

  16. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  17. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  18. Arabidopsis thaliana AtUTr7 Encodes a Golgi-Localized UDP-Glucose/UDP-Galactose Transporter that Affects Lateral Root Emergence

    Institute of Scientific and Technical Information of China (English)

    Michael Handford; Cecilia Rodríguez-Furlán; Lorena Marchant; Marcelo Segura; Daniela Gómez; Elena Alvarez-Buyll; Guang-Yan Xiong; Markus Pauly; Ariel Orellana

    2012-01-01

    Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants.However,due to the limited number of related mutants that have observable phenotypes,the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive.Here,we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.),which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster,humans,and Caenorhabditis elegans.We show that AtUTr7 possesses the common structural characteristics conserved among NSTs.Using a green fluorescent protein (GFP) tagged version,we demonstrate that AtUTr7 is localized in the Golgi apparatus.We also show that AtUTr7 is widely expressed,especially in the roots and in specific floral organs.Additionally,the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-GIc,but not a range of other UDP-and GDP-sugars,into the Golgi lumen.Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations.Furthermore,the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants,although additional analytical procedures revealed no further differences in the composition of the root cell walls.This evidence suggests that the transport of UDP-Gal and UDP-GIc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.

  19. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7

    Directory of Open Access Journals (Sweden)

    M. Mercedes eMaldonado-González

    2015-04-01

    Full Text Available The effective management of Verticillium wilts, diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control Verticillium wilt of olive caused by the highly-virulent, defoliating (D pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V.dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i olive D and non-defoliating (ND V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii strain PICF7 controls Verticillium wilt (VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. Arabidopsis thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

  20. Oxidative stress response in Arabidopsis thaliana roots and leaves exposed to cadmium, uranium or a combination of both stressors

    Energy Technology Data Exchange (ETDEWEB)

    Horemans, N.; Saenen, E.; Vandenhove, H. [Belgian Nuclear Research Centre, SCK.CEN, Boeretang 200, 2400 Mol (Belgium); Hendrix, S.; Keunen, E.; Cuypers, A. [Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, 3590 Diepenbeek (Belgium)

    2014-07-01

    Nuclear energy production or NORM industry released low amounts of radioactive substances together with non-radioactive substances (e.g., heavy metals, organic chemicals) to the environment. As sessile organisms, plants are commonly exposed to a number of adverse conditions and therefore it is interesting to study the stress responses of plants induced by the single stressors as well as in a in a multi-pollution set-up. The aim of this study was to understand and predict fast induced oxidative stress responses in plants exposed to Cd and U or a combination of both stressors. Arabidopsis thaliana plants grown hydroponically for 18 days were exposed to a Cd (5 μM) or {sup 238}U (25 μM) or an equi-toxic mixture of Cd and {sup 238}U (2.5 μM + 12.5 μM) for 24 h. As expected both metals were taken up into the plants with Cd being more readily transported to the leaves than U. The root-to-shoot ratio was approximately 1,3 for Cd whereas it was above 3500 for U. For both U and Cd the root-to-shoot ratio was not affected under multiple exposure conditions used here. Notwithstanding the limited exposure time, leave and root fresh weight was already decreasing in U-treated plants. For Cd or Cd+U a decreasing but at this point not significant trend was visible. As U concentrations in the leaves were very low the decrease in leaf fresh weight is possibly due to signaling from the roots rather than a direct toxicity of U. The oxidative stress response was investigated by measuring the transcription of selected pro- and anti-oxidative genes, anti-oxidative enzyme capacities and concentration and redox status of major anti-oxidative metabolites. Cd strongly up-regulated lipoxygenase (LOX1) and NADPH-oxidases (RBOHD or C in roots and leaves, respectively) whereas this was not found in the U-treated plants. For the anti-oxidative response related enzymes both Cd and U induced a decrease in Cu/Zn superoxide dismutases (CSD1,2) and a concomitant increase in Fe-SOD (FSD1). However

  1. Control of patterns of symmetric cell division in the epidermal and cortical tissues of the Arabidopsis root.

    Science.gov (United States)

    Zhang, Yanwen; Iakovidis, Michail; Costa, Silvia

    2016-03-15

    Controlled cell division is central to the growth and development of all multicellular organisms. Within the proliferating zone of the Arabidopsis root, regular symmetric divisions give rise to patterns of parallel files of cells, the genetic basis of which remains unclear. We found that genotypes impaired in the TONNEAU1a (TON1a) gene display misoriented symmetric divisions in the epidermis and have no division defects in the underlying cortical tissue. The TON1a gene encodes a microtubule-associated protein. We show that in the ton1a mutant, epidermal and cortical cells do not form narrow, ring-like preprophase bands (PPBs), which are plant-specific, cytoskeletal structures that predict the position of the division plane before mitosis. The results indicate that in the cortex but not in the epidermis, division plane positioning and patterning can proceed correctly in the absence of both a functional TON1a and PPB formation. Differences between tissues in how they respond to the signals that guide symmetric division orientation during patterning might provide the basis for organised organ growth in the absence of cell movements.

  2. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    Science.gov (United States)

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  3. Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization.

    Science.gov (United States)

    Mandyam, Keerthi G; Roe, Judith; Jumpponen, Ari

    2013-04-01

    We surveyed the non-mycorrhizal model plant Arabidopsis thaliana microscopically for its ability to form dark septate endophyte (DSE) symbioses in field, greenhouse, and laboratory studies. The laboratory studies were also used to estimate host growth responses to 34 Periconia macrospinosa and four Microdochium sp. isolates. Consistent with broad host range observed in previous experiments, field-, greenhouse-, and laboratory-grown A. thaliana were colonized by melanized inter- and intracellular hyphae and microsclerotia or chlamydospores indicative of DSE symbiosis. Host responses to colonization were variable and depended on the host ecotype. On average, two A. thaliana accessions (Col-0 and Cvi-0) responded negatively, whereas one (Kin-1) was unresponsive, a conclusion consistent with our previous analyses with forbs native to the field site where the fungi originate. Despite the average negative responses, examples of positive responses were also observed, a conclusion also congruent with earlier studies. Our results suggest that A. thaliana has potential as a model for more detailed dissection of the DSE symbiosis. Furthermore, our data suggest that host responses are controlled by variability in the host and endophyte genotypes.

  4. The Physiological and Molecular Responses of Arabidopsis thaliana to the Stress of Oxalic Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-ting; LIN Jie; SHAO Xue-feng; OU Xiao-ming; WANG Zong-hua; LU Guo-dong

    2009-01-01

    Many fungal phytopathogens can secrete oxalic acid (OA), which is the crucial pathogenic determinant and plays important roles in pathogenicity and virulence of pathogen during infection process. However, how plants respond to OA stress still needs further characterization. In this study, we observed the physiological and molecular responses of Arabidopsis thaliana to OA stress. The leaves of 6-wk-old A. thaliana were sprayed with OA and distilled water respectively, and 0, 2, 4, 8, 12, and 24 h later, the leaves were collected and the contents of MDA, H2O2, and GSH, and the activities of CAT, SOD, and POD were determined and the expressions of PR1 and PDF1.2 were also studied. Under the stress of 30 mmol L-1 OA, SOD activity was first enhanced to reduce the accumulation of O2-. But immediately, POD, CAT, and GSH all decreased extremely resulting in the accumulation of H2O2, and the MDA content increased 24 h later. GSH activity was enhanced significantly at 24 h after OA used. However, H2O2 wasn't eliminated at the same time, suggesting that the activity inhibitions of POD and CAT might be the reasons that caused Arabidopsis cells' impairment under OA stress. RT-PCR results indicated that PDF1.2, a marker gene of the JA/ET signaling was significantly induced; PR1, an indicator gene in SA signaling, was slighlty induced from 8 to 12 h after OA stress. In conclusion, Arabidopsis may recruit metabolism of reactive oxygen, both JA/ET and SA signaling pathways to respond to OA stress. These results will facilitate our further understanding the mechanisms of plant response to OA and OA-dependent fungal infection.

  5. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    Science.gov (United States)

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  6. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Science.gov (United States)

    Ali, Muhammad Amjad; Wieczorek, Krzysztof; Kreil, David P; Bohlmann, Holger

    2014-01-01

    Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  7. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  8. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots.

    Science.gov (United States)

    Siddique, Shahid; Endres, Stefanie; Sobczak, Miroslaw; Radakovic, Zoran S; Fragner, Lena; Grundler, Florian M W; Weckwerth, Wolfram; Tenhaken, Raimund; Bohlmann, Holger

    2014-01-01

    The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.

  9. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    Science.gov (United States)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  10. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-01-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs. PMID:27583367

  11. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides

    NARCIS (Netherlands)

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-01-01

    Background: Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A s

  12. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    Science.gov (United States)

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest.

  13. Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling,and polar auxin transport

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; HOU NingYan; Markus SCHLICHT; WAN YingLang; Stefano MANCUSO; Frantisek BALUSKA

    2008-01-01

    The most obvious symptom of AI toxicity is the inhibition of root growth.However,the mechanism of AI-inhibiting root growth remains to be elucidated.In this study,auxin transport and vesicle movement of an auxin-efflux carrier (PIN2) were investigated in Arabidopsis roots in response to AI stress.Results indicated that AI inhibited the apical transport of auxin in root tips of Arabidopsis significantly.The severe inhibition was localized in the cells of transition zone,where the concentration of auxin was only 34% that of the control.Brefeldin A (BFA),an inhibitor of vesicle transport,induced the dot-like structure of PIN2 vesicle significantly.Al decreased the size of dot-like structure of PIN2 vesicles.Re-sults of real-time RT-PCR and Western-blotting analysis showed that Al increased the transcript level of PIN2 and the accumulation of PIN2 protein in horizontal direction of plasma membrane,but decreased its distribution in endosomes,suggesting that AI inhibited the transport of PIN2 vesicles from plasma membrane to endosomes.Results of cytoskeleton-depolymering drugs indicated that it was via the pathway of disruption of actin microfilaments that AI inhibited the transport of PIN2 vesicles.Exposed to AI stress,the cells of elongation zone had less AI uptake and less transport frequency of vesicles than cells of transition zone.Taken together,our results suggested that AI inhibited root growth mainly by modulating the transport of PIN2 vesicles between plasma membrane and endosomes,thus block-ing auxin transport and root growth.

  14. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  15. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    Science.gov (United States)

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots.

  16. Enhancement of Chlorogenic Acid Production in Hairy Roots of Platycodon grandiflorum by Over-Expression of An Arabidopsis thaliana Transcription Factor AtPAP1

    Directory of Open Access Journals (Sweden)

    Pham Anh Tuan

    2014-08-01

    Full Text Available To improve the production of chlorogenic acid (CGA in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1 using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  17. Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1.

    Science.gov (United States)

    Tuan, Pham Anh; Kwon, Do Yeon; Lee, Sanghyun; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Nam Il; Park, Sang Un

    2014-08-22

    To improve the production of chlorogenic acid (CGA) in hairy roots of Platycodon grandiflorum, we induced over-expression of Arabidopsis thaliana transcription factor production of anthocyanin pigment (AtPAP1) using an Agrobacterium rhizogenes-mediated transformation system. Twelve hairy root lines showing over-expression of AtPAP1 were generated. In order to investigate the regulation of AtPAP1 on the activities of CGA biosynthetic genes, the expression levels of seven P. grandiflorum CGA biosynthetic genes were analyzed in the hairy root line that had the greatest accumulation of AtPAP1 transcript, OxPAP1-1. The introduction of AtPAP1 increased the mRNA levels of all examined CGA biosynthetic genes and resulted in a 900% up-regulation of CGA accumulation in OxPAP1-1 hairy roots relative to controls. This suggests that P. grandiflorum hairy roots that over-express the AtPAP1 gene are a potential alternative source of roots for the production of CGA.

  18. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  19. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station.

    Science.gov (United States)

    Scherer, G F E; Pietrzyk, P

    2014-01-01

    Arabidopsis roots on 45° tilted agar in 1-g grow in wave-like figures. In addition to waves, formation of root coils is observed in several mutants compromised in gravitropism and/or auxin transport. The knockdown mutant ppla-I-1 of patatin-related phospholipase-A-I is delayed in root gravitropism and forms increased numbers of root coils. Three known factors contribute to waving: circumnutation, gravisensing and negative thigmotropism. In microgravity, deprivation of wild type (WT) and mutant roots of gravisensing and thigmotropism and circumnutation (known to slow down in microgravity, and could potentially lead to fewer waves or increased coiling in both WT and mutant). To resolve this, mutant ppla-I-1 and WT were grown in the BIOLAB facility in the International Space Station. In 1-g, roots of both types only showed waving. In the first experiment in microgravity, the mutant after 9 days formed far more coils than in 1-g but the WT also formed several coils. After 24 days in microgravity, in both types the coils were numerous with slightly more in the mutant. In the second experiment, after 9 days in microgravity only the mutant formed coils and the WT grew arcuated roots. Cell file rotation (CFR) on the mutant root surface in microgravity decreased in comparison to WT, and thus was not important for coiling. Several additional developmental responses (hypocotyl elongation, lateral root formation, cotyledon expansion) were found to be gravity-influenced. We tentatively discuss these in the context of disturbances in auxin transport, which are known to decrease through lack of gravity.

  20. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.

    Science.gov (United States)

    Zamioudis, Christos; Korteland, Jolanda; Van Pelt, Johan A; van Hamersveld, Muriël; Dombrowski, Nina; Bai, Yang; Hanson, Johannes; Van Verk, Marcel C; Ling, Hong-Qing; Schulze-Lefert, Paul; Pieterse, Corné M J

    2015-10-01

    In Arabidopsis roots, the transcription factor MYB72 plays a dual role in the onset of rhizobacteria-induced systemic resistance (ISR) and plant survival under conditions of limited iron availability. Previously, it was shown that MYB72 coordinates the expression of a gene module that promotes synthesis and excretion of iron-mobilizing phenolic compounds in the rhizosphere, a process that is involved in both iron acquisition and ISR signaling. Here, we show that volatile organic compounds (VOCs) from ISR-inducing Pseudomonas bacteria are important elicitors of MYB72. In response to VOC treatment, MYB72 is co-expressed with the iron uptake-related genes FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER 1 (IRT1) in a manner that is dependent on FER-LIKE IRON DEFICIENCY TRANSCRIPTION FACTOR (FIT), indicating that MYB72 is an intrinsic part of the plant's iron-acquisition response that is typically activated upon iron starvation. However, VOC-induced MYB72 expression is activated independently of iron availability in the root vicinity. Moreover, rhizobacterial VOC-mediated induction of MYB72 requires photosynthesis-related signals, while iron deficiency in the rhizosphere activates MYB72 in the absence of shoot-derived signals. Together, these results show that the ISR- and iron acquisition-related transcription factor MYB72 in Arabidopsis roots is activated by rhizobacterial volatiles and photosynthesis-related signals, and enhances the iron-acquisition capacity of roots independently of the iron availability in the rhizosphere. This work highlights the role of MYB72 in plant processes by which root microbiota simultaneously stimulate systemic immunity and activate the iron-uptake machinery in their host plants.

  1. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    Science.gov (United States)

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  2. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  3. Allelism and Molecular Mapping of Soybean Necrotic Root Mutants

    Science.gov (United States)

    Mutability of the w4 flower color locus in soybean [Glycine max (L.) Merr.] is conditioned by an allele designated w4-m. Germinal revertants recovered among self-pollinated progeny of mutable plants have been associated with the generation of necrotic root mutations, chlorophyll-deficiency mutation...

  4. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora

    NARCIS (Netherlands)

    Marek, S.M.; Hansen, K.; Romanish, M.; Thorn, R.G.

    2009-01-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia res

  5. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    Science.gov (United States)

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  6. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions.

    Science.gov (United States)

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S

    2014-07-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (Ptomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

  7. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Wen-Jing Jia; Yu-Jia Chu; Hong-Wei Xue

    2012-01-01

    Phosphatidylinositol monophosphate 5-kinase(PIP5K)catalyzes the synthesis of PI-4,5-bisphosphate(PtdIns(4,5)P2)by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring,and is involved in regulating multiple developmental processes and stress responses.We here report on the functional characterization of Arabidopsis PIP5K2,which is expressed during lateral root initiation and elongation,and whose expression is enhanced by exogenous auxin.The knockout mutant pip5k2 shows reduced lateral root formation,which could be recovered with exogenous auxin,and interestingly,delayed root gravity response that could not be recovered with exogenous auxin.Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2.In addition,analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P2 reduction,which hence results in suppressed cycling of PIN proteins(PIN2 and 3),and delayed redistribution of PIN2 and auxin under gravistimulation in pipSk2 roots.On the contrary,PtdIns(4,5)P2 significantly enhanced the vesicle trafficking and cycling of PIN proteins.These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response,and reveal a critical role of PIP5K2/Ptdlns(4,5)P2 in root development through regulation of PIN proteins,providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response,and new insights into the control of polar auxin transport.

  8. A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Science.gov (United States)

    Hirsch, Judith; Estavillo, Gonzalo M.; Javot, Hélène; Chiarenza, Serge; Mallory, Allison C.; Maizel, Alexis; Declerck, Marie; Pogson, Barry J.; Vaucheret, Hervé; Crespi, Martin; Desnos, Thierry; Thibaud, Marie-Christine; Nussaume, Laurent; Marin, Elena

    2011-01-01

    Background Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. Principal Findings A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. Conclusions/Significance Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi

  9. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN activities in Arabidopsis thaliana roots.

    Directory of Open Access Journals (Sweden)

    Judith Hirsch

    Full Text Available BACKGROUND: Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2',5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS: A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4. Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the 3',(2',5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of

  10. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism.

    Science.gov (United States)

    Fontaine, Jean-Xavier; Tercé-Laforgue, Thérèse; Armengaud, Patrick; Clément, Gilles; Renou, Jean-Pierre; Pelletier, Sandra; Catterou, Manuella; Azzopardi, Marianne; Gibon, Yves; Lea, Peter J; Hirel, Bertrand; Dubois, Frédéric

    2012-10-01

    The role of NADH-dependent glutamate dehydrogenase (GDH) was investigated by studying the physiological impact of a complete lack of enzyme activity in an Arabidopsis thaliana plant deficient in three genes encoding the enzyme. This study was conducted following the discovery that a third GDH gene is expressed in the mitochondria of the root companion cells, where all three active GDH enzyme proteins were shown to be present. A gdh1-2-3 triple mutant was constructed and exhibited major differences from the wild type in gene transcription and metabolite concentrations, and these differences appeared to originate in the roots. By placing the gdh triple mutant under continuous darkness for several days and comparing it to the wild type, the evidence strongly suggested that the main physiological function of NADH-GDH is to provide 2-oxoglutarate for the tricarboxylic acid cycle. The differences in key metabolites of the tricarboxylic acid cycle in the triple mutant versus the wild type indicated that, through metabolic processes operating mainly in roots, there was a strong impact on amino acid accumulation, in particular alanine, γ-aminobutyrate, and aspartate in both roots and leaves. These results are discussed in relation to the possible signaling and physiological functions of the enzyme at the interface of carbon and nitrogen metabolism.

  11. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis.

    Science.gov (United States)

    Baskin, Tobias I; Beemster, Gerrit T S; Judy-March, Jan E; Marga, Françoise

    2004-08-01

    To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure.

  12. Disorganization of Cortical Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment among Cells in the Root of Arabidopsis1

    Science.gov (United States)

    Baskin, Tobias I.; Beemster, Gerrit T.S.; Judy-March, Jan E.; Marga, Françoise

    2004-01-01

    To test the role of cortical microtubules in aligning cellulose microfibrils and controlling anisotropic expansion, we exposed Arabidopsis thaliana roots to moderate levels of the microtubule inhibitor, oryzalin. After 2 d of treatment, roots grow at approximately steady state. At that time, the spatial profiles of relative expansion rate in length and diameter were quantified, and roots were cryofixed, freeze-substituted, embedded in plastic, and sectioned. The angular distribution of microtubules as a function of distance from the tip was quantified from antitubulin immunofluorescence images. In alternate sections, the overall amount of alignment among microfibrils and their mean orientation as a function of position was quantified with polarized-light microscopy. The spatial profiles of relative expansion show that the drug affects relative elongation and tangential expansion rates independently. The microtubule distributions averaged to transverse in the growth zone for all treatments, but on oryzalin the distributions became broad, indicating poorly organized arrays. At a subcellular scale, cellulose microfibrils in oryzalin-treated roots were as well aligned as in controls; however, the mean alignment direction, while consistently transverse in the controls, was increasingly variable with oryzalin concentration, meaning that microfibril orientation in one location tended to differ from that of a neighboring location. This conclusion was confirmed by direct observations of microfibrils with field-emission scanning electron microscopy. Taken together, these results suggest that cortical microtubules ensure microfibrils are aligned consistently across the organ, thereby endowing the organ with a uniform mechanical structure. PMID:15299138

  13. Change of soil organic matter quality and quantity by deep-rooting plants - a molecular approach

    Science.gov (United States)

    Gocke, Martina; Derenne, Sylvie; Anquetil, Christelle; Huguet, Arnaud; Dignac, Marie-France; Rumpel, Cornelia; Wiesenberg, Guido L. B.

    2015-04-01

    Under predicted rising atmospheric CO2 concentration, soils are discussed to potentially act as C sinks. Stability and long-term storage of soil OM are affected by both molecular structure of incorporated organic remains and environmental factors. It is increasingly accepted that roots contribute to significant portions of topsoil OM, whereas their role for C cycling is less known for depths >> 1 m, i.e. the deep subsoil and underlying soil parent material like terrestrial sediments. To trace root-related features and organic remains, transects were sampled from ancient (3-10 ky) and recent calcified roots (rhizoliths) via surrounding sediment towards sediment free of visible root remains, at two sites. At the Nussloch loess-paleosol sequence (SW Germany), transects were collected as intact cores and scanned by X-ray microtomography for visualization of rhizoliths and rhizosphere. Afterwards, cores were cut into concentric slices and, similar to rhizolith and sediment samples from the sandy deep subsoil at Sopron (NW Hungary), analyzed for suberin molecular markers. Suberin biomarkers were found in both recent and ancient root systems, demonstrating their suitability to identify root-derived OM in terrestrial sediments with ages of several tens of ky. Varying relative portions of the respective suberin markers enabled the attribution of Sopron rhizoliths to oak origin, and assessment of the rhizosphere, which extended up to several cm. This confirms recent studies which demonstrated the possible postsedimentary incorporation of considerable amounts of root and rhizomicrobial remains in loess, based on biomarkers deriving either from plants and microorganisms (alkanes, fatty acids) or solely from microorganisms (GDGTs). 3D scanning of Nussloch rhizoliths and surrounding loess showed large channels of former root growth, whereas the root tissue was commonly degraded. Additionally, microtomography enabled assessment of abundant fine calcified roots as well as biopores

  14. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Silkstone, Gary; Mason, Maria; van Thor, Jasper J; Wilson, Michael T

    2015-01-01

    Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence (see P. Müller and M. Ahmad (2011) J. Biol. Chem. 286, 21033-21040 [1]). In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADH(•). Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH(-)). Reaction of this with dioxygen leads to transient radical (FADH(•)) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer.

  15. Enzymatic and molecular characterization of Arabidopsis ppGpp pyrophosphohydrolase, AtNUDX26.

    Science.gov (United States)

    Ito, Daisuke; Kato, Takahiro; Maruta, Takanori; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2012-01-01

    Not only in bacteria but also in plant cells, guanosine-3',5'-tetraphosphate (ppGpp) is an important signaling molecule, that affects various cellular processes. In this study, we identified nucleoside diphosphates linked to some moiety X (Nudix) hydrolases, AtNUDX11, 15, 25, and 26, having ppGpp pyrophosphohydrolase activity from Arabidopsis plants. Among these, AtNUDX26 localized in chloroplasts had the highest Vmax and kcat values, leading to high catalytic efficiency, kcat/Km. The activity of AtNUDX26 required Mg2+ or Mn2+ ions as cofactor and was optimal at pH 9.0 and 50 °C. The expression of AtNUDX26 and of ppGpp metabolism-associated genes was regulated by various types of stress, suggesting that AtNUDX26 regulates cellular ppGpp levels in response to stress and impacts gene expression in chloroplasts. This is the first report on the molecular properties of ppGpp pyrophosphohydrolases in plants.

  16. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.

    Science.gov (United States)

    Guo, Hui-Shan; Xie, Qi; Fei, Ji-Feng; Chua, Nam-Hai

    2005-05-01

    Although several plant microRNAs (miRNAs) have been shown to play a role in plant development, no phenotype has yet been associated with a reduction or loss of expression of any plant miRNA. Arabidopsis thaliana miR164 was predicted to target five NAM/ATAF/CUC (NAC) domain-encoding mRNAs, including NAC1, which transduces auxin signals for lateral root emergence. Here, we show that miR164 guides the cleavage of endogenous and transgenic NAC1 mRNA, producing 3'-specific fragments. Cleavage was blocked by NAC1 mutations that disrupt base pairing with miR164. Compared with wild-type plants, Arabidopsis mir164a and mir164b mutant plants expressed less miR164 and more NAC1 mRNA and produced more lateral roots. These mutant phenotypes can be complemented by expression of the appropriate MIR164a and MIR164b genomic sequences. By contrast, inducible expression of miR164 in wild-type plants led to decreased NAC1 mRNA levels and reduced lateral root emergence. Auxin induction of miR164 was mirrored by an increase in the NAC1 mRNA 3' fragment, which was not observed in the auxin-insensitive mutants auxin resistant1 (axr1-12), axr2-1, and transport inhibitor response1. Moreover, the cleavage-resistant form of NAC1 mRNA was unaffected by auxin treatment. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.

  17. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  18. Formation of the Unusual Semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the Root Stele Is Involved in Defense against Belowground Herbivory[W

    Science.gov (United States)

    Vaughan, Martha M.; Wang, Qiang; Webster, Francis X.; Kiemle, Dave; Hong, Young J.; Tantillo, Dean J.; Coates, Robert M.; Wray, Austin T.; Askew, Whitnee; O’Donnell, Christopher; Tokuhisa, James G.; Tholl, Dorothea

    2013-01-01

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type–specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects. PMID:23512856

  19. Germination of arabidopsis seed in space and in simulated microgravity: alterations in root cell growth and proliferation

    NARCIS (Netherlands)

    Manzano, A.I.; Matia, I.; Gonzalez-Camacho, F.; Carnero-Diaz, E.; van Loon, J.J.W.A.; Dijkstra, C.; Larkin, O.; Anthony, P.; Davey, M.R.; Marco, R.; Medina, F.J.

    2009-01-01

    Changes have been reported in the pattern of gene expression in Arabidopsis on exposure to microgravity. Plant cell growth and proliferation are functions that are potentially affected by such changes in gene expression. In the present investigation, the cell proliferation rate, the regulation of ce

  20. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  1. Identification and characterization of Arabidopsis AtNUDX9 as a GDP-d-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium.

    Science.gov (United States)

    Tanaka, Hiroyuki; Maruta, Takanori; Ogawa, Takahisa; Tanabe, Noriaki; Tamoi, Masahiro; Yoshimura, Kazuya; Shigeoka, Shigeru

    2015-09-01

    GDP-d-mannose (GDP-d-Man) is an important intermediate in ascorbic acid (AsA) synthesis, cell wall synthesis, protein N-glycosylation, and glycosylphosphatidylinositol-anchoring in plants. Thus, the modulation of intracellular levels of GDP-d-Man could be important for maintaining various cellular processes. Here an Arabidopsis GDP-d-Man pyrophosphohydrolase, AtNUDX9 (AtNUDT9; At3g46200), which hydrolysed GDP-d-Man to GMP and mannose 1-phosphate, was identified. The K m and V max values for GDP-d-Man of AtNUDX9 were 376±24 μM and 1.61±0.15 μmol min(-1) mg(-1) protein, respectively. Among various tissues, the expression levels of AtNUDX9 and the total activity of GDP-d-Man pyrophosphohydrolase were the highest in the roots. The GDP-d-Man pyrophosphohydrolase activity was increased in the root of plants grown in the presence of ammonium. No difference was observed in the levels of AsA in the leaf and root tissues of the wild-type and knockout-nudx9 (KO-nudx9) plants, whereas a marked increase in N-glycoprotein levels and enhanced growth were detected in the roots of KO-nudx9 plants in the presence of ammonium. These results suggest that AtNUDX9 is involved in the regulation of GDP-d-Man levels affecting ammonium sensitivity via modulation of protein N-glycosylation in the roots.

  2. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots.

    Science.gov (United States)

    Zamioudis, Christos; Hanson, Johannes; Pieterse, Corné M J

    2014-10-01

    Selected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here, we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72 and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered β-glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas the bglu42 mutant was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.

  3. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana roots.

    Science.gov (United States)

    Mai, Hans-Jörg; Lindermayr, Christian; von Toerne, Christine; Fink-Straube, Claudia; Durner, Jörg; Bauer, Petra

    2015-09-01

    Iron is an essential micronutrient for plants, and iron deficiency requires a variety of physiological adaptations. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is essential for the regulation of iron uptake in Arabidopsis thaliana roots. FIT is transcriptionally as well as posttranscriptionally regulated in response to iron supply. To investigate to which extent posttranscriptional regulation upon iron deficiency applies to proteins and to determine the dependency on FIT, we performed a parallel proteomic and transcriptomic study with wild-type, a fit knock-out mutant, and a FIT overexpressing Arabidopsis line. Among 92 proteins differentially regulated by iron and/or FIT, we identified 30 proteins, which displayed differential regulation at the transcriptional level. Eleven protein spots were regulated in at least one of the data points even contrary to the respective genes dependent on FIT. We found ten proteins in at least two forms. The analysis of functional classification showed enriched GO terms among the posttranscriptionally regulated genes and of proteins, that were downregulated or absent in the fit knock-out mutant. Taken together, we provide evidence for iron and FIT-dependent posttranscriptional regulation in iron homeostasis in A. thaliana.

  4. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca2þ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots

    Institute of Scientific and Technical Information of China (English)

    Chunli Ma; Jie Guo; Yan Kang; Kohei Doman; Anthony C.Bryan; Frans E.Tax; Yube Yamaguchi; Zhi Qi

    2014-01-01

    AtPEPTIDE RECEPTOR2 (AtPEPR2) is a member of leucine-rich repeat receptor-like kinase family and binds to a group of AtPROPEP gene-encoded endogenous peptides, AtPeps. Previously, we found that AtPEPR2 plays a moderate role in the AtPep1-mediated innate immunity responses in Arabidopsis leaf. In this study, we found that AtPEPR2 promoter has strong activity in the vascular tissues of the roots and the atpepr2 mutants showed a moderate but significantly shorter root phenotype. AtPEPR2 partial y mediated AtPep1-induced root elongation inhibition. AtPep1-triggered cytosolic Ca2þ transient rise in roots showed partial dependence on AtPEPR2 and ful y on extracellular Ca2þ ([Ca2þ]ext). Transcriptional profiling analysis found that expression of 75% of AtPep1-modulated genes in roots was ful y dependent on AtPEPR2, of which two dramatical y induced genes showed partial dependence on the [Ca2þ]ext. Arabidopsis genome contains seven Glutamine Dumpers genes (AtGDUs), encoding amino acid exporters. Three of them (AtGDU2, 3, 5) were among the top 10 genes that were downregulated by AtPep1 through AtPEPR2 ful y dependent pathway. Treatment with AtPep1 strongly suppressed pro-moter activity of AtGDU3 in roots, which was relieved by chelating [Ca2þ]ext. Arabidopsis overexpressing AtGDU3 showed a shorter root phenotype and decreased sensitivity to the AtPep1-mediated inhibition of root elongation. Taken together, this study demonstrated a significant role of AtPEPR2 in the AtPep1-mediated signaling in the roots.

  5. The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan12[C][W

    Science.gov (United States)

    Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine

    2009-01-01

    Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip. PMID:19448034

  6. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves.

    Science.gov (United States)

    Sherameti, Irena; Tripathi, Swati; Varma, Ajit; Oelmüller, Ralf

    2008-06-01

    Piriformospora indica is an endophytic fungus that colonizes the roots of many plant species, including Arabidopsis. We exposed 18-day-old Arabidopsis seedlings, which were either cocultivated with the fungus or mock-treated for the last 9 days, to mild drought stress for 84 h. During the first 36 to 48 h, seedlings cocultivated with the fungus continued to grow, while the uncolonized controls did not. This results in a threefold difference in the fresh weight and a more than twofold difference in the chlorophyll content. The photosynthetic efficiency was only slightly reduced in the colonized (F variable/F maximum [Fv/Fm] at t(0 h) = 0.82 and t(36 h) = 0.79) and was severely impaired in the uncolonized (Fv/Fm at t(0 h) = 0.81 and (t)(36 h) = 0.49) seedlings, which also showed symptoms of withering. When seedlings exposed to drought stress for 72 or 84 h were transferred to soil, 10% (72 h) and none (84 h) of uncolonized seedlings reached the flowering stage and produced seeds, while 59% (72 h) and 47% (84 h) of the colonized seedlings flowered and produced seeds. After exposure to drought stress for 3 h, the message levels for RESPONSE TO DEHYDRATION 29A, EARLY RESPONSE TO DEHYDRATION1, ANAC072, DEHYDRATION-RESPONSE ELEMENT BINDING PROTEIN2A, SALT-, AND DROUGHT-INDUCED RING FINGER1, phospholipase Ddelta, CALCINEURIN B-LIKE PROTEIN (CBL)1, CBL-INTERACTING PROTEIN KINASE3, and the histone acetyltransferase (HAT) were upregulated in the leaves of P. indica-colonized seedlings. Uncolonized seedlings responded 3 to 6 h later, and the message levels increased much less. We identified an Arabidopsis ethylmethane-sulfonate mutant that is less resistant to drought stress and in which the stress-related genes were not upregulated in the presence of P. indica. Thus, P. indica confers drought-stress tolerance to Arabidopsis, and this is associated with the priming of the expression of a quite diverse set of stress-related genes in the leaves. Transfer to soil was again

  7. Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed.

    Science.gov (United States)

    Baud, Sébastien; Kelemen, Zsolt; Thévenin, Johanne; Boulard, Céline; Blanchet, Sandrine; To, Alexandra; Payre, Manon; Berger, Nathalie; Effroy-Cuzzi, Delphine; Franco-Zorrilla, Jose Manuel; Godoy, Marta; Solano, Roberto; Thevenon, Emmanuel; Parcy, François; Lepiniec, Loïc; Dubreucq, Bertrand

    2016-06-01

    In Arabidopsis (Arabidopsis thaliana), transcriptional control of seed maturation involves three related regulators with a B3 domain, namely LEAFY COTYLEDON2 (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (ABI3/FUS3/LEC2 [AFLs]). Although genetic analyses have demonstrated partially overlapping functions of these regulators, the underlying molecular mechanisms remained elusive. The results presented here confirmed that the three proteins bind RY DNA elements (with a 5'-CATG-3' core sequence) but with different specificities for flanking nucleotides. In planta as in the moss Physcomitrella patens protoplasts, the presence of RY-like (RYL) elements is necessary but not sufficient for the regulation of the OLEOSIN1 (OLE1) promoter by the B3 AFLs. G box-like domains, located in the vicinity of the RYL elements, also are required for proper activation of the promoter, suggesting that several proteins are involved. Consistent with this idea, LEC2 and ABI3 showed synergistic effects on the activation of the OLE1 promoter. What is more, LEC1 (a homolog of the NF-YB subunit of the CCAAT-binding complex) further enhanced the activation of this target promoter in the presence of LEC2 and ABI3. Finally, recombinant LEC1 and LEC2 proteins produced in Arabidopsis protoplasts could form a ternary complex with NF-YC2 in vitro, providing a molecular explanation for their functional interactions. Taken together, these results allow us to propose a molecular model for the transcriptional regulation of seed genes by the L-AFL proteins, based on the formation of regulatory multiprotein complexes between NF-YBs, which carry a specific aspartate-55 residue, and B3 transcription factors.

  8. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    Science.gov (United States)

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.

  9. Involvement of ethylene and gibberellin signalings in chromosaponin I-induced cell division and cell elongation in the roots of Arabidopsis seedlings.

    Science.gov (United States)

    Rahman, A; Tsurumi, S; Amakawa, T; Soga, K; Hoson, T; Goto, N; Kamisaka, S

    2000-01-01

    Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division.

  10. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    Science.gov (United States)

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  11. A role for katanin in plant cell division: microtubule organization in dividing root cells of fra2 and lue1Arabidopsis thaliana mutants.

    Science.gov (United States)

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Voulgari, Georgia; Papadopoulou, Galini

    2011-07-01

    Severing of microtubules by katanin has proven to be crucial for cortical microtubule organization in elongating and differentiating plant cells. On the contrary, katanin is currently not considered essential during cell division in plants as it is in animals. However, defects in cell patterning have been observed in katanin mutants, implying a role for it in dividing plant cells. Therefore, microtubule organization was studied in detail by immunofluorescence in dividing root cells of fra2 and lue1 katanin mutants of Arabidopsis thaliana. In both, early preprophase bands consisted of poorly aligned microtubules, prophase spindles were multipolar, and the microtubules of expanding phragmoplasts were elongated, bended toward and connected to the surface of daughter nuclei. Accordingly, severing by katanin seems to be necessary for the proper organization of these microtubule arrays. In both fra2 and lue1, metaphase/anaphase spindles and initiating phragmoplasts exhibited typical organization. However, they were obliquely oriented more frequently than in the wild type. It is proposed that this oblique orientation may be due to prophase spindle multipolarity and results in a failure of the cell plate to follow the predetermined division plane, during cytokinesis, producing oblique cell walls in the roots of both mutants. It is therefore concluded that, like in animal cells, katanin is important for plant cell division, influencing the organization of several microtubule arrays. Moreover, failure in microtubule severing indirectly affects the orientation of the division plane.

  12. Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular Molecular weight distribution of humic acids and root growth promotion

    Directory of Open Access Journals (Sweden)

    Natália de Oliveira Aguiar

    2009-12-01

    mais relacionada com a estrutura química das substâncias húmicas do que com a distribuição de massa molecular dos agregados húmicos.Humic acids (HA directly stimulate several physiological processes that promote plant growth, particularly of the root system. Knowledge about the chemical nature and the role of HA in the effects observed under biofertilization and biostimulation is essential to develop HA-based biological resources. The aim of this study was to evaluate a possible relationship between the distribution of the apparent molecular weight of HA isolated from vermicompost and the response in root growth promotion. HA sub-fractions were obtained through preparative chromatography by size exclusion using Sephadex gel G-50 gel (CGE. The preparative process was validated by high-performance size-exclusion chromatography (HPSEC. The five sub-fractions were tested at different concentrations (0; 0.0001; 0.001; 0.003; 0.005; and 0.001 mol L-1 C for their capacity to stimulate root growth of Arabidopisis thaliana (ecotype col 4 seedlings. For maize seedlings (Zea mays hybrid UENF 506-6 a rate of 0.002 mol L-1 C was used. The quadratic model described the relationship between root growth induction and HA dose in Arabidopsis; 0.00511 mol L-1 C was the average inflection point. At the optimum concentration, a significant negative correlation between molecular weight distribution and the number of lateral roots induced in A. thaliana was observed. However, other root traits, e.g., area and length, were not influenced by the apparent molecular weight of fractions. An increase in the number of mitotic and lateral root emission was observed for maize seedlings, both for the treatment with HA as well as with the sub-fractions. The H+-ATPase activity of plasma membrane was significantly affected by HA, although differently in the sub-fractions. The stimulating activity of root growth seems to be more related to the chemical structure of humic substances than to the

  13. Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation.

    Science.gov (United States)

    Higo, Masao; Isobe, Katsunori; Miyazawa, Yusuke; Matsuda, Yukiya; Drijber, Rhae A; Torigoe, Yoichi

    2016-02-01

    A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.

  14. Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kaufmann, K.; Nagasaki, M.; Jáuregui., R.

    2010-01-01

    We present a dynamical model of the gene network controlling flower development in Arabidopsis thaliana. The network is centered at the regulation of the floral organ identity genes (AP1, AP2, AP3, PI and AG) and ends with the transcription factor complexes responsible for differentiation of floral

  15. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.

    Science.gov (United States)

    Liu, Hua; Wang, Qiuqing; Yu, Mengmeng; Zhang, Yanyan; Wu, Yingbao; Zhang, Hongxia

    2008-09-01

    In Arabidopsis thaliana, six vacuolar Na(+)/H(+) antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na(+)/H(+) antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K(+)/H(+) exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants.

  16. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress

    KAUST Repository

    Kinoshita, Natsuko

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. © 2012 American Society of Plant Biologists. All rights reserved.

  17. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  18. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis.

    Science.gov (United States)

    Oome, Stan; Raaymakers, Tom M; Cabral, Adriana; Samwel, Simon; Böhm, Hannah; Albert, Isabell; Nürnberger, Thorsten; Van den Ackerveken, Guido

    2014-11-25

    Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.

  19. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root.

    Science.gov (United States)

    Kawamura, Eiko; Himmelspach, Regina; Rashbrooke, Madeleine C; Whittington, Angela T; Gale, Kevin R; Collings, David A; Wasteneys, Geoffrey O

    2006-01-01

    MICROTUBULE ORGANIZATION 1 (MOR1) is a plant member of the highly conserved MAP215/Dis1 family of microtubule-associated proteins. Prior studies with the temperature-sensitive mor1 mutants of Arabidopsis (Arabidopsis thaliana), which harbor single amino acid substitutions in an N-terminal HEAT repeat, proved that MOR1 regulates cortical microtubule organization and function. Here we demonstrate by use of live cell imaging and immunolabeling that the mor1-1 mutation generates specific defects in the microtubule arrays of dividing vegetative cells. Unlike the universal cortical microtubule disorganization in elongating mor1-1 cells, disruption of mitotic and cytokinetic microtubule arrays was not detected in all dividing cells. Nevertheless, quantitative analysis identified distinct defects in preprophase bands (PPBs), spindles, and phragmoplasts. In nearly one-half of dividing cells at the restrictive temperature of 30 degrees C, PPBs were not detected prior to spindle formation, and those that did form were often disrupted. mor1-1 spindles and phragmoplasts were short and abnormally organized and persisted for longer times than in wild-type cells. The reduced length of these arrays predicts that the component microtubule lengths are also reduced, suggesting that microtubule length is a critical determinant of spindle and phragmoplast structure, orientation, and function. Microtubule organizational defects led to aberrant chromosomal arrangements, misaligned or incomplete cell plates, and multinucleate cells. Antiserum raised against an N-terminal MOR1 sequence labeled the full length of microtubules in interphase arrays, PPBs, spindles, and phragmoplasts. Continued immunolabeling of the disorganized and short microtubules of mor1-1 at the restrictive temperature demonstrated that the mutant mor1-1(L174F) protein loses function without dissociating from microtubules, providing important insight into the mechanism by which MOR1 may regulate microtubule length.

  20. The COW1 locus of arabidopsis acts after RHD2, and in parallel with RHD3 and TIP1, to determine the shape, rate of elongation, and number of root hairs produced from each site of hair formation.

    Science.gov (United States)

    Grierson, C S; Roberts, K; Feldmann, K A; Dolan, L

    1997-11-01

    Two recessive mutant alleles at CAN OF WORMS1 (COW1), a new locus involved in root hair morphogenesis, have been identified in Arabidopsis thaliana L. Heynh. Root hairs on Cow1- mutants are short and wide and occasionally formed as pairs at a single site of hair formation. The COW1 locus maps to chromosome 4. Root hairs on Cow1- plants form in the usual positions, suggesting that the phenotype is not the result of abnormal positional signals. Root hairs on Cow1- roots begin hair formation normally, forming a small bulge, or root hair initiation site, of normal size and shape and in the usual position on the hair-forming cell. However, when Cow1- root hairs start to elongate by tip growth, abnormalities in the shape and elongation rate of the hairs become apparent. Genetic evidence from double-mutant analysis of cow1-1 and other loci involved in root hair development supports our conclusion that COW1 is required during root hair elongation.

  1. Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

    DEFF Research Database (Denmark)

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta

    2013-01-01

    . In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root...

  2. Pinoid kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis thaliana

    Science.gov (United States)

    Muday, Gloria; Sukumar, Poornima; Edwards, Karin; Delong, Alison; Rahman, Abidur

    Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We tested the hypothesis that PINOID (PID)-mediated phosphorylation and RCN1- regulated dephosphorylation might antagonistically regulate auxin transport and gravity response in seedling roots. Here we show that basipetal IAA transport and gravitropism are reduced in pid mutant seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor, staurosporine, phenocopied the reduced auxin transport and gravity response of pid-9 and reduced formation of asymmetric DR5-revGFP expression at the root tip after reorientation relative to gravity. Gravitropism and auxin transport in pid are resistant to further inhibition by staurosporine. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine or the phosphatase inhibitor, cantharidin, respectively, and in the pid-9 rcn1 double mutant. Furthermore, the effect of staurosporine is lost in pin2, and a PIN2::GFP fusion protein accumulates in endomembrane compartments after staurosporine treatment. In the pid-9 mutant, immunological techniques find a similar PIN2 localization. These data suggest that staurosporine inhibits gravitropism and basipetal IAA transport by blocking PID action and altering PIN2 localization and support the model that PID and RCN1 reciprocally regulate root gravitropic curvature.

  3. Towards Systems Biology of Heterosis: A Hypothesis about Molecular Network Structure Applied for the Arabidopsis Metabolome

    Directory of Open Access Journals (Sweden)

    Gärtner Tanja

    2009-01-01

    Full Text Available We propose a network structure-based model for heterosis, and investigate it relying on metabolite profiles from Arabidopsis. A simple feed-forward two-layer network model (the Steinbuch matrix is used in our conceptual approach. It allows for directly relating structural network properties with biological function. Interpreting heterosis as increased adaptability, our model predicts that the biological networks involved show increasing connectivity of regulatory interactions. A detailed analysis of metabolite profile data reveals that the increasing-connectivity prediction is true for graphical Gaussian models in our data from early development. This mirrors properties of observed heterotic Arabidopsis phenotypes. Furthermore, the model predicts a limit for increasing hybrid vigor with increasing heterozygosity—a known phenomenon in the literature.

  4. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis.

    Science.gov (United States)

    Frenette Charron, Jean Benoit; Breton, Ghislain; Badawi, Mohamed; Sarhan, Fathey

    2002-04-24

    Two cDNAs corresponding to a novel lipocalin were identified from wheat and Arabidopsis. The two cDNAs designated Tatil for Triticum aestivum L. temperature-induced lipocalin and Attil for Arabidopsis thaliana temperature-induced lipocalin encode polypeptides of 190 and 186 amino acids respectively. Structure analyses indicated the presence of the three structurally conserved regions that characterize lipocalins. Sequence analyses revealed that this novel class of plant lipocalin shares homology with three evolutionarily related lipocalins: the mammalian apolipoprotein D (ApoD), the bacterial lipocalin and the insect Lazarillo. The comparison of the putative tertiary structures of both the human ApoD and the wheat TaTIL suggest that the two proteins differ in membrane attachment and ligand interaction. Northern analyses demonstrated that Tatil and Attil transcripts are upregulated during cold acclimation and heat-shock treatment. The putative functions of this novel class of plant lipocalins during temperature stresses are discussed.

  5. Phenolic profile within the fine-root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental- and molecular-level carbon composition.

    Science.gov (United States)

    Wang, Jun-Jian; Tharayil, Nishanth; Chow, Alex T; Suseela, Vidya; Zeng, Hui

    2015-06-01

    Fine roots constitute a significant source of plant productivity and litter turnover across terrestrial ecosystems, but less is known about the quantitative and qualitative profile of phenolic compounds within the fine-root architecture, which could regulate the potential contribution of plant roots to the soil organic matter pool. To understand the linkage between traditional macro-elemental and morphological traits of roots and their molecular-level carbon chemistry, we analyzed seasonal variations in monomeric yields of the free, bound, and lignin phenols in fine roots (distal five orders) and leaves of Ardisia quinquegona. Fine roots contained two-fold higher concentrations of bound phenols and three-fold higher concentrations of lignin phenols than leaves. Within fine roots, the concentrations of free and bound phenols decreased with increasing root order, and seasonal variation in the phenolic profile was more evident in lower order than in higher order roots. The morphological and macro-elemental root traits were decoupled from the quantity, composition and tissue association of phenolic compounds, revealing the potential inability of these traditional parameters to capture the molecular identity of phenolic carbon within the fine-root architecture and between fine roots and leaves. Our results highlight the molecular-level heterogeneity in phenolic carbon composition within the fine-root architecture, and imply that traits that capture the molecular identity of the root construct might better predict the decomposition dynamics within fine-root orders.

  6. Molecular characteristics of continuously released DOM during one year of root and leaf litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Kalbitz, Karsten; Filley, Timothy

    2013-04-01

    Dissolved organic matter (DOM) is one of the most dynamic carbon pools linking the terrestrial with the aquatic carbon cycle. Besides the insecure contribution of terrestrial DOM to the greenhouse effect, DOM also plays an important role for the mobility and availability of heavy metals and organic pollutants in soils. These processes depend very much on the molecular characteristics of the DOM. Surprisingly the processes that determine the molecular composition of DOM are only poorly understood. DOM can originate from various sources, which influence its molecular composition. It has been recognized that DOM formation is not a static process and DOM characteristics vary not only between different carbon sources. However, molecular characteristics of DOM extracts have scarcely been studied continuously over a longer period of time. Due to constant molecular changes of the parent litter material or soil organic matter during microbial degradation, we assumed that also the molecular characteristics of litter derived DOM varies at different stages during root and needle decomposition. For this study we analyzed the chemical composition of root and leaf samples of 6 temperate tree species during one year of litter decomposition in a laboratory incubation. During this long-term experiment we measured continuously carbon and nitrogen contents of the water extracts and the remaining residues, C mineralization rates, and the chemical composition of water extracts and residues by Curie-point pyrolysis mass spectrometry with TMAH We focused on the following questions: (I) How mobile are molecules derived from plant polymers like tannin, lignin, suberin and cutin? (II) How does the composition of root and leaf derived DOM change over time in dependence on the stage of decomposition and species? Litter derived DOM was generally dominated by aromatic compounds. Substituded fatty acids as typically cutin or suberin derived were not detected in the water extracts. Fresh leaf and

  7. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth.

    Science.gov (United States)

    Sašek, Vladimír; Janda, Martin; Delage, Elise; Puyaubert, Juliette; Guivarc'h, Anne; López Maseda, Encarnación; Dobrev, Petre I; Caius, José; Bóka, Károly; Valentová, Olga; Burketová, Lenka; Zachowski, Alain; Ruelland, Eric

    2014-08-01

    Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.

  8. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  9. Molecular analysis of "de novo" purine biosynthesis in solanaceous species and in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul; Lein, Wolfgang

    2004-01-01

    , microorganisms and Arabidopsis, the first plant species with a completely sequenced genome, shows that plants principally use the same biochemical steps to synthesize purine nucleotides and possess all the essential genes and enzymes. Here we report on the cloning and molecular analysis of the complete purine...... biosynthesis pathway in plants, and the in planta functional analysis of PRPP (5-phosphoribosyl-1-pyrophoshate) amidotransferase (ATase), catalyzing the first committed step of the "de novo" purine biosynthesis. The cloning of the genes involved in the purine biosynthesis pathway was attained by a screening...... strategy with heterologous cDNA probes and by using S. cerevisiae mutants for complementation. Southern hybridization showed a complex genomic organization for these genes in solanaceous species and their organ- and developmental specific expression was analyzed by Northern hybridization. The specific role...

  10. OsCAND1 Is Required for Crown Root Emergence in Rice

    Institute of Scientific and Technical Information of China (English)

    Xiao-Fei Wang; Fen-Fang He; Xiao-Xia Ma; Chuan-Zao Mao; Charlie Hodgman; Chun-Gui Lu; Ping Wu

    2011-01-01

    Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation,we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development,the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together,these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and,consequently,the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.

  11. Patterning molecular scale paramagnets at Au Surface: A root to Magneto-Molecular-Electronics

    CERN Document Server

    Messina, Paul C; Sorace, L; Rovai, D; Caneschi, A; Gatteschi, Dante; Messina, Paolo; Mannini, Matteo; Sorace, Lorenzo; Rovai, Donella; Caneschi, Andrea; Gatteschi, Dante

    2004-01-01

    Few examples of the exploitation of molecular magnetic properties in molecular electronics are known to date. Here we propose the realization of Self assembled monolayers (SAM) of a particular stable organic radical. This radical is meant to be used as a standard molecule on which to prove the validity of a single spin reading procedure known as ESR-STM. We demonstrate here that the radical is chemically anchored at the surface, preserves its magnetic functionality and can be imaged by STM. STM and ESR investigations of the molecular film is reported. We also discuss a range of possible applications, further than ESR-STM, of magnetic monolayers of simple purely organic magnetic molecule.

  12. A common molecular signature in ASD gene expression: following Root 66 to autism.

    Science.gov (United States)

    Diaz-Beltran, L; Esteban, F J; Wall, D P

    2016-01-05

    Several gene expression experiments on autism spectrum disorders have been conducted using both blood and brain tissue. Individually, these studies have advanced our understanding of the molecular systems involved in the molecular pathology of autism and have formed the bases of ongoing work to build autism biomarkers. In this study, we conducted an integrated systems biology analysis of 9 independent gene expression experiments covering 657 autism, 9 mental retardation and developmental delay and 566 control samples to determine if a common signature exists and to test whether regulatory patterns in the brain relevant to autism can also be detected in blood. We constructed a matrix of differentially expressed genes from these experiments and used a Jaccard coefficient to create a gene-based phylogeny, validated by bootstrap. As expected, experiments and tissue types clustered together with high statistical confidence. However, we discovered a statistically significant subgrouping of 3 blood and 2 brain data sets from 3 different experiments rooted by a highly correlated regulatory pattern of 66 genes. This Root 66 appeared to be non-random and of potential etiologic relevance to autism, given their enriched roles in neurological processes key for normal brain growth and function, learning and memory, neurodegeneration, social behavior and cognition. Our results suggest that there is a detectable autism signature in the blood that may be a molecular echo of autism-related dysregulation in the brain.

  13. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots.

    Science.gov (United States)

    Panikashvili, David; Shi, Jian Xin; Bocobza, Samuel; Franke, Rochus Benni; Schreiber, Lukas; Aharoni, Asaph

    2010-05-01

    Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes. Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predominantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development.

  14. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots.

    Science.gov (United States)

    Vahabi, Khabat; Camehl, Iris; Sherameti, Irena; Oelmüller, Ralf

    2013-11-01

    The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+ -dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.

  15. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  16. Molecular target size of the vanilloid (capsaicin) receptor in pig dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Szallasi, A.; Blumberg, P.M. (National Cancer Institute, Bethesda, MD (USA))

    1991-01-01

    The size of the vanilloid receptor was examined by high-energy radiation inactivation analysis of the binding of ({sup 3}H)resiniferatoxin to pig dorsal root ganglion membranes; it was found to be 270 {plus minus} 25 kDa. This value most likely represents the size of a receptor complex rather than of an individual subunit. Other ligand-gated cation channel complexes have reported molecular weights in this range, e.g. 300 kDa for the acetylcholine receptor.

  17. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  18. Identification and molecular properties of SUMO-binding proteins in arabidopsis

    KAUST Repository

    Park, Hyeongcheol

    2011-05-20

    Reversible conjugation of the small ubiquitin modifier (SUMO) peptide to proteins (SUMOylation) plays important roles in cellular processes in animals and yeasts. However, little is known about plant SUMO targets. To identify SUMO substrates in Arabidopsis and to probe for biological functions of SUMO proteins, we constructed 6xHis-3xFLAG fused AtSUMO1 (HFAtSUMO1) controlled by the CaMV35S promoter for transformation into Arabidopsis Col-0. After heat treatment, an increased sumoylation pattern was detected in the transgenic plants. SUMO1-modified proteins were selected after two-dimensional gel electrophoresis (2-DE) image analysis and identified using matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We identified 27 proteins involved in a variety of processes such as nucleic acid metabolism, signaling, metabolism, and including proteins of unknown functions. Binding and sumoylation patterns were confirmed independently. Surprisingly, MCM3 (At5G46280), a DNA replication licensing factor, only interacted with and became sumoylated by AtSUMO1, but not by SUMO1ΔGG or AtSUMO3. The results suggest specific interactions between sumoylation targets and particular sumoylation enzymes. ©2011 KSMCB.

  19. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition.

    Science.gov (United States)

    Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki

    2006-11-01

    Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.

  20. Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root.

    Science.gov (United States)

    Li, Jisheng; Jia, Honglei; Wang, Jue; Cao, Qianhua; Wen, Zichao

    2014-07-01

    Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl treatment, which displayed a great increase in electrolyte leakage (EL) and Na(+)/K(+) ratio under salt stress. The treatment of H2S donors sodium hydrosulfide (NaHS) enhanced the salt tolerance by maintaining a lower Na(+)/K(+) ratio. In addition, the inhibition of root growth under salt stress was removed by H2S. Further studies indicated that H2O2 was involved in H2S-induced salt tolerance pathway. H2S induced the production of the endogenous H2O2 via regulating the activities of glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) NADPH oxidase, with the treatment with dimethylthiourea (DMTU, an ROS scavenger), diphenylene iodonium (DPI, a PM NADPH oxidase inhibitor), or glycerol (G6PDH inhibitor) removing the effect of H2S. Treatment with amiloride (an inhibitor of PM Na(+)/H(+) antiporter) and vanadate (an inhibitor of PM H(+)-ATPase) also inhibited the activity of H2S on Na(+)/K(+) ratio. Through an analysis of quantitative real-time polymerase chain reaction and Western blot, we found that H2S promoted the genes expression and the phosphorylation level of PM H(+)-ATPase and Na(+)/H(+) antiporter protein level. However, when the endogenous H2O2 level was inhibited by DPI or DMTU, the effect of H2S on the PM Na(+)/H(+) antiporter system was removed. Taken together, H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root.

  1. Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection.

    Directory of Open Access Journals (Sweden)

    Yunping Shen

    2013-05-01

    Full Text Available In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs, including RFO2, account for the strong resistance of accession Columbia-0 (Col-0 and relative susceptibility of Taynuilt-0 (Ty-0 to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.

  2. Molecular markers indicate different dynamics of leaves and roots during litter decomposition

    Science.gov (United States)

    Altmann, Jens; Jansen, Boris; Palviainen, Marjo; Kalbitz, Karsten

    2010-05-01

    Up to now there is only a poor understanding of the sources contributing to organic carbon in forest soils, especially the contribution of leaves and roots. Studies of the last 2 decades have shown that methods like pyrolysis and CuO oxidation are suitable tools to trace back the main contributors of organic matter in water, sediments and soils. Lignin derived monomers, extractable lipids, cutin and suberin derived compounds have been used frequently for identification of plant material. However, for the selection of suitable biomarker the decomposition patterns and stability of these compounds are of high importance but they are only poorly understood. In this study we focused on following questions: (I) Which compounds are characteristic to identify certain plant parts and plant species? (II) How stable are these compounds during the first 3 years of litter decomposition? We studied the chemical composition of samples from a 3-year litterbag decomposition experiment with roots and leaves of spruce, pine and birch which was done in Finland. Additionally to mass loss, carbon and nitrogen contents, free lipids were extracted; by alkaline hydrolysis non extractable lipids were gained. The extracts were analyzed afterwards by GC-MS, the insoluble residues were analyzed by curie-point Pyrolysis GC-MS. In addition to the identification and quantification of a variety of different compounds and compound ratios we used statistical classification methods to get deeper insights into the patterns of leaf and root-derived biomarkers during litter decomposition. The mass loss was largely different between the litter species and we always observed larger mass loss for leaf-derived litter in comparison to root derived litter. This trend was also observed by molecular analysis. The increase of the ratio of vanillic acid to vanillin was correlated to the mass loss of the samples over time. This shows that the degree of decomposition of plant material was linked with the degree of

  3. Genetics of the gravitropic set-point angle in lateral organs of Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Research on gravity responses in plants has mostly focused on primary roots and shoots, which typically orient to a vertical orientation. However, the distribution of lateral organs and their typically non-vertical growth orientation are critical for the determination of plant form. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). This developmental control of the GSA of lateral roots in Arabidopsis provides a useful system for investigating the components involved in regulating gravitropic responses. Using this system, we have identified several Arabidopsis mutants that have altered lateral root orientations but maintain normal primary root orientation. Two of these mutants also have altered orientation of their rosette leaves, indicating some common mechanisms in the positioning of root and shoot lateral organs. Rosette leaves and lateral roots also have in common a regulation of orientation by red light that may be due to red-light-dependent changes in the GSA. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was supported by the National Aeronautics and Space Administration through grant no. NCC 2-1200.

  4. Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples

    Science.gov (United States)

    Staehelin, L. A.; Giddings, T. H. Jr; Kiss, J. Z.; Sack, F. D.

    1990-01-01

    The plant root tip represents a fascinating model system for studying changes in Golgi stack architecture associated with the developmental progression of meristematic cells to gravity sensing columella cells, and finally to "young" and "old", polysaccharide-slime secreting peripheral cells. To this end we have used high pressure freezing in conjunction with freeze-substitution techniques to follow developmental changes in the macromolecular organization of Golgi stacks in root tips of Arabidopsis and Nicotiana. Due to the much improved structural preservation of all cells under investigation, our electron micrographs reveal both several novel structural features common to all Golgi stacks, as well as characteristic differences in morphology between Golgi stacks of different cell types. Common to all Golgi stacks are clear and discrete differences in staining patterns and width of cis, medial and trans cisternae. Cis cisternae have the widest lumina (approximately 30 nm) and are the least stained. Medial cisternae are narrower (approximately 20 nm) and filled with more darkly staining products. Most trans cisternae possess a completely collapsed lumen in their central domain, giving rise to a 4-6 nm wide dark line in cross-sectional views. Numerous vesicles associated with the cisternal margins carry a non-clathrin type of coat. A trans Golgi network with clathrin coated vesicles is associated with all Golgi stacks except those of old peripheral cells. It is easily distinguished from trans cisternae by its blebbing morphology and staining pattern. The zone of ribosome exclusion includes both the Golgi stack and the trans Golgi network. Intercisternal elements are located exclusively between trans cisternae of columella and peripheral cells, but not meristematic cells. In older peripheral cells only trans cisternae exhibit slime-related staining. Golgi stacks possessing intercisternal elements also contain parallel rows of freeze-fracture particles in their trans

  5. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Qian, W; Yu, C; Qin, H

    2007-01-01

    -vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM......Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana......, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces...

  6. Effect of Soil Moisture on Release of Low-MolecularWeight Organic Acids in Root Exudates and the Accumulation of Iron in Root Apoplasm of Peanut

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A three-compartments rhizobox was designed and used to study the low-molecular-weight organic acids in root exudates and the root apoplastic iron of "lime-induced chlorosis" peanut grown on a calcareous soil in relation to different soil moisture conditions. Results showed that chlorosis of peanuts developed under condition of high soil moisture level (250 g kg-1), while peanuts grew well and chlorosis did not develop when soil moisture was managed to a normal level (150 g kg-1). The malic acid, maleic acid and succinic acid contents of chlorotic peanut increased by 108.723, 0.029 and 22.446μg cm-2, respectively,compared with healthy peanuts. The content of citric acid and fumaric acid also increased in root exudates of chlorotic peanuts. On Days 28 and 42 of peanut growth, the accumulation of root apoplastic iron in chlorotic peanuts was higher than that of healthy peanuts. From Day 28 to Day 42, the mobilization percentages of chlorotic peanuts and healthy peanuts to root apoplastic iron were almost the same, being 52.4% and 52.8%,respectively, indicating that the chlorosis might be caused by the inactivation of iron within peanut plant grown on a calcareous soil under high soil moisture conditions.

  7. Phosphate uptake and allocation – a closer look at Arabidopsis thaliana L. and Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Ewa Młodzińska

    2016-08-01

    Full Text Available This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi transporters have been described, and the molecular basis of Pi acquisition by plants has been well characterized. These genes are involved in Pi acquisition, allocation and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: Arabidopsis thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1, SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.

  8. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings.

    Science.gov (United States)

    Hu, Yan Feng; Zhou, Guoying; Na, Xiao Fan; Yang, Lijing; Nan, Wen Bin; Liu, Xu; Zhang, Yong Qiang; Li, Jiao Long; Bi, Yu Rong

    2013-07-15

    Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.

  9. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis.

    Science.gov (United States)

    Ding, Zhong Jie; Yan, Jing Ying; Li, Chun Xiao; Li, Gui Xin; Wu, Yun Rong; Zheng, Shao Jian

    2015-10-01

    The development of lateral roots (LR) is known to be severely inhibited by salt or osmotic stress. However, the molecular mechanisms underlying LR development in osmotic/salt stress conditions are poorly understood. Here we show that the gene encoding the WRKY transcription factor WRKY46 (WRKY46) is expressed throughout lateral root primordia (LRP) during early LR development and that expression is subsequently restricted to the stele of the mature LR. In osmotic/salt stress conditions, lack of WRKY46 (in loss-of-function wrky46 mutants) significantly reduces, while overexpression of WRKY46 enhances, LR development. We also show that exogenous auxin largely restores LR development in wrky46 mutants, and that the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibits LR development in both wild-type (WT; Col-0) and in a line overexpressing WRKY46 (OV46). Subsequent analysis of abscisic acid (ABA)-related mutants indicated that WRKY46 expression is down-regulated by ABA signaling, and up-regulated by an ABA-independent signal induced by osmotic/salt stress. Next, we show that expression of the DR5:GUS auxin response reporter is reduced in roots of wrky46 mutants, and that both wrky46 mutants and OV46 display altered root levels of free indole-3-acetic acid (IAA) and IAA conjugates. Subsequent RT-qPCR and ChIP-qPCR experiments indicated that WRKY46 directly regulates the expression of ABI4 and of genes regulating auxin conjugation. Finally, analysis of wrky46 abi4 double mutant plants confirms that ABI4 acts downstream of WRKY46. In summary, our results demonstrate that WRKY46 contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.

  10. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin.

    Science.gov (United States)

    Franke, Rochus; Briesen, Isabel; Wojciechowski, Tobias; Faust, Andrea; Yephremov, Alexander; Nawrath, Christiane; Schreiber, Lukas

    2005-11-01

    Cutinized and suberized cell walls form physiological important plant-environment interfaces as they act as barriers limiting water and nutrient loss and protect from radiation and invasion by pathogens. Due to the lack of protocols for the isolation and analysis of cutin and suberin in Arabidopsis, the model plant for molecular biology, mutants and transgenic plants with a defined altered cutin or suberin composition are unavailable, causing that structure and function of these apoplastic barriers are still poorly understood. Transmission electron microscopy (TEM) revealed that Arabidopsis leaf cuticle thickness ranges from only 22 nm in leaf blades to 45 nm on petioles, causing the difficulty in cuticular membrane isolation. We report the use of polysaccharide hydrolases to isolate Arabidopsis cuticular membranes, suitable for depolymerization and subsequent compositional analysis. Although cutin characteristic omega-hydroxy acids (7%) and mid-chain hydroxylated fatty acids (8%) were detected, the discovery of alpha,omega-diacids (40%) and 2-hydroxy acids (14%) as major depolymerization products reveals a so far novel monomer composition in Arabidopsis cutin, but with chemical analogy to root suberin. Histochemical and TEM analysis revealed that suberin depositions were localized to the cell walls in the endodermis of primary roots and the periderm of mature roots of Arabidopsis. Enzyme digested and solvent extracted root cell walls when subjected to suberin depolymerization conditions released omega-hydroxy acids (43%) and alpha,omega-diacids (24%) as major components together with carboxylic acids (9%), alcohols (6%) and 2-hydroxyacids (0.1%). This similarity to suberin of other species indicates that Arabidopsis roots can serve as a model for suberized tissue in general.

  11. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    Science.gov (United States)

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  12. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  13. The Metabolic Response of Arabidopsis Roots to Oxidative Stress is Distinct from that of Heterotrophic Cells in Culture and Highlights a Complex Relationship between the Levels of Transcripts,Metabolites,and Flux

    Institute of Scientific and Technical Information of China (English)

    Martin Lehmann; Markus Schwarzl(a)inder; Toshihiro Obata; Supaart Sirikantaramas; Meike Burow; Carl Erik Olsen; Takayuki Tohge; Mark D.Fricker; Birger Lindberg Mφller; Alisdair R.Fernie; Lee J.Sweetloveb; Miriam Laxa

    2009-01-01

    Metabolic adjustments are a significant,but poorly understood,part of the response of plants to oxidative stress.In a previous study (Baxter et al.,2007),the metabolic response of Arabidopsis cells in culture to induction of ox-idative stress by menadione was characterized.An emergency survival strategy was uncovered in which anabolic primary metabolism was largely down-regulated in favour of catabolic and antioxidant metabolism.The response in whole plant tissues may be different and we have therefore investigated the response of Arabidopsis roots to menadione treatment,analyzing the transcriptome,metabolome and key metabolic fluxes with focus on primary as well as secondary metab-olism.Using a redox-sensitive GFP,it was also shown that menadione causes redox perturbation,not just in the mitochon-drion,but also in the cytosol and plastids of roots.In the first 30 min of treatment,the response was similar to the cell culture:there was a decrease in metabolites of the TCA cycle and amino acid biosynthesis and the transcriptomic response was dominated by up-regulation of DNA regulatory proteins.After 2 and 6 h of treatment,the response of the roots was different to the cell culture.Metabolite levels did not remain depressed,but instead recovered and,in the case of pyruvate,some amino acids and aliphatic glucosinolates showed a steady increase above control levels.However,no major changes in fluxes of central carbon metabolism were observed and metabolic transcripts changed largely independently of the corresponding metabolites.Together,the results suggest that root tissues can recover metabolic activity after oxidative inhibition and highlight potentially important roles for glycolysis and the oxidative pentose phosphate pathway.

  14. Gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana

    Science.gov (United States)

    Fukaki, H.; Tasaka, M.

    1999-01-01

    Shoots of higher plants exhibit negative gravitropism. However, little is known about the site of gravity perception in shoots and the molecular mechanisms of shoot gravitropic responses. Our recent analysis using shoot gravitropism1(sgr1)/scarecrow(scr) and sgr7/short-root (shr) mutants in Arabidopsis thaliana indicated that the endodermis is essential for shoot gravitropism and strongly suggested that the endodermis functions as the gravity-sensing cell layer in dicotyledonous plant shoots. In this paper, we present our recent analysis and model of gravity perception and gravitropic response of inflorescence stems in Arabidopsis thaliana.

  15. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters.

    Science.gov (United States)

    Sherameti, Irena; Shahollari, Bationa; Venus, Yvonne; Altschmied, Lothar; Varma, Ajit; Oelmüller, Ralf

    2005-07-15

    Piriformospora indica, an endophytic fungus of the Sebacinaceae family, promotes growth of Arabidopsis and tobacco seedlings and stimulates nitrogen accumulation and the expression of the genes for nitrate reductase and the starch-degrading enzyme glucan-water dikinase (SEX1) in roots. Neither growth promotion nor stimulation of the two enzymes requires heterotrimeric G proteins. P. indica also stimulates the expression of the uidA gene under the control of the Arabidopsis nitrate reductase (Nia2) promoter in transgenic tobacco seedlings. At least two regions (-470/-439 and -103/-89) are important for Nia2 promoter activity in tobacco roots. One of the regions contains an element, ATGATAGATAAT, that binds to a homeodomain transcription factor in vitro. The message for this transcription factor is up-regulated by P. indica. The transcription factor also binds to a CTGATAGATCT segment in the SEX1 promoter in vitro. We propose that the growth-promoting effect initiated by P. indica is accompanied by a co-regulated stimulation of enzymes involved in nitrate and starch metabolisms.

  16. Phenotypic and molecular evaluation of cotton hairy roots as a model system for studying nematode resistance

    Science.gov (United States)

    The cellular mechanisms that mediate resistance of allotetraploid cotton (Gossypium spp.) to root-knot nematode (Meloidogyne incognita) and reniform nematode (Rotylenchulus reniformis) are poorly understood. Here, Agrobacterium rhizogenes-induced hairy roots were investigated as a possible research...

  17. Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    An Yan; Minjie Wu; Yongqin Zhao; Aidong Zhang; Bohan Liu; John Schiefelbein; Yinbo Gan

    2014-01-01

    Cell fate determination is a basic developmental process during the growth of multicellular organisms. Trichomes and root hairs of Arabidopsis are both readily accessible structures originating from the epidermal cells of the aerial tissues and roots respectively, and they serve as excellent models for understanding the molecular mecha-nisms controlling cell fate determination and cell morphogen-esis. The regulation of trichome and root hair formation is a complex program that consists of the integration of hormonal signals with a large number of transcriptional factors, including MYB and bHLH transcriptional factors. Studies during recent years have uncovered an important role of C2H2 type zinc finger proteins in the regulation of epidermal cell fate determination. Here in this minireview we briefly summarize the involvement of C2H2 zinc finger proteins in the control of trichome and root hair formation in Arabidopsis.

  18. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba.

    Directory of Open Access Journals (Sweden)

    Cynthia Gleason

    Full Text Available Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D. The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5, only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA, with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.

  19. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Science.gov (United States)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  20. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Stamm Petra

    2012-10-01

    Full Text Available Abstract Background Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. Results Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP, we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. Conclusions Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that

  1. Reference: 564 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 39-44 17360695 2007 Feb Proceedings of the National Academy of Sciences of the Un...tion in plants. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. 9 36

  2. Reference: 797 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available that the level of GMPase activity regulates Arabidopsis sensitivity to NH(4)(+). Further analysis showed that defective N-glycosylati...on of proteins, unfolded protein response, and cell death in the roots are likely i

  3. Reference: 459 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available plants. These results suggest an additive contribution of AMT1;1 and AMT1;3 to the overall ammonium uptake ...capacity in Arabidopsis roots under nitrogen-deficiency conditions. Additive contribution

  4. Reference: 724 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available is required in the roots during early signaling steps of rhizobacteria-mediated ...ISR. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis.

  5. Reference: 798 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available iption factors, control the delicately tuned reorientation and timing of cell div...EZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. 6 913-22 1908

  6. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants

    Science.gov (United States)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  7. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing

    2017-01-01

    Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs.

  8. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis.

    Science.gov (United States)

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-04-20

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.

  9. Overexpression of a Foreign Bt Gene in Cotton Affects the Low-Molecular-Weight Components in Root Exudates

    Institute of Scientific and Technical Information of China (English)

    YAN Wei-Dong; SHI Wei-Ming; LI Bao-Hai; ZHANG Min

    2007-01-01

    Most research in the past using genetically modified crops (GM crops) has focused on the ecological safety of foreign gene (i.e., the gene flow), gene products (for example, Bt (Bacillus thuringiensis) protein), and the safety of transgenic food for humans. In this study, changes in both the species and amounts of low-molecular-weight components in cotton (Gossypium hirsutum L.) root exudates after foreign Bt gene overexpression were investigated under different nutritional conditions. Transgenic cotton containing Bt (Bt-cotton), supplemented with all the mineral nutrients, secreted more organic acids than the wild-type cotton (WT). When nitrogen was removed from the full-nutrient solution, the amount of organic acids secretion of Bt-cotton was lesser than that of WT. The roots of the transgenic cotton secreted lesser amounts of amino acids and soluble sugars than the WT roots in the full-nutrient solution. Deficiencies of P and K caused a large increase in the total amino acid and soluble sugar secretions of both Bt-cotton and WT, with larger increases observed in Bt-cotton. Because transferring the foreign Bt gene into cotton can result in alterations in the components of the root exudates, with the effect varying depending on the nutritional status, the cultivation of genetically modified crops, such as Bt-cotton, in soil environments should be more carefully assessed, and the possible effects as a result of the alterations in the root exudate components should be considered.

  10. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots.

    Directory of Open Access Journals (Sweden)

    Yingzhen Yang

    Full Text Available Root-knot nematodes (RKNs infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42 or 271 bp (pART27-271 of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi

  11. Root nodule organogenesis. Molecular characterization of the zonation of the central tissue.

    NARCIS (Netherlands)

    Yang, W.C.

    1994-01-01

    Legume plants form root nodules by interacting with the soil bacterium, Rhizobium. In these nodules bacteria are able to convert atmospheric nitrogen into ammonia which is used by the host plants as nitrogen source. Therefore symbiotic nitrogen fixation in root nodules is of great importance for agr

  12. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible?

    Science.gov (United States)

    Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P

    2011-08-01

    Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.

  13. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots.

    Science.gov (United States)

    Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll

    2010-03-01

    The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.

  14. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tomonari; Kazama, Yusuke [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko, E-mail: tomoabe@riken.jp [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124 keV {mu}m{sup -1}. In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV {mu}m{sup -1}. We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M{sub 2} pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV {mu}m{sup -1} radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0 keV {mu}m{sup -1} and 27% for 101-124 keV {mu}m{sup -1}). Therefore, the 290 keV {mu}m{sup -1} heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  15. Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust.

    Science.gov (United States)

    Quan, Jine; Zhang, Sheng; Zhang, Chunxia; Meng, Sen; Zhao, Zhong; Xu, Xuexuan

    2014-01-01

    S-Adenosylmethionine synthetase (SAMS) catalyzes the synthesis of S-adenosylmethionine (SAM), a precursor for ethylene and polyamine biosynthesis. Here, we report the isolation of the 1498 bp full-length cDNA sequence encoding tetraploid black locust (Robinia pseudoacacia L.) SAMS (TrbSAMS), which contains an open reading frame of 1179 bp encoding 392 amino acids. The amino acid sequence of TrbSAMS has more than 94% sequence identity to SAMSs from other plants, with a closer phylogenetic relationship to SAMSs from legumes than to SAMS from other plants. The TrbSAMS monomer consists of N-terminal, central, and C-terminal domains. Subcellular localization analysis revealed that the TrbSAMS protein localizes mainly to in the cell membrane and cytoplasm of onion epidermal cells and Arabidopsis mesophyll cell protoplasts. Indole-3-butyric acid (IBA)-treated cuttings showed higher levels of TrbSAMS transcript than untreated control cuttings during root primordium and adventitious root formation. TrbSAMS and its downstream genes showed differential expression in shoots, leaves, bark, and roots, with the highest expression observed in bark. IBA-treated cuttings also showed higher SAMS activity than control cuttings during root primordium and adventitious root formation. These results indicate that TrbSAMS might play an important role in the regulation of IBA-induced adventitious root development in tetraploid black locust cuttings.

  16. Formation of the unusual semivolatile Diterpene Rhizathalene by the Arabidopsis Class I Terpene Synthase TPS08 in the root stele is involved in defense against belowground herbivory

    Science.gov (United States)

    Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and anti-herbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. ...

  17. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone

    DEFF Research Database (Denmark)

    Wilson, Michael H; Holman, Tara J; Sørensen, Iben;

    2015-01-01

    and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other...

  18. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  19. Biotransformation of low-molecular-weight alcohols by Coleus forskohlii hairy root cultures.

    Science.gov (United States)

    Li, Wei; Koike, Kazuo; Asada, Yoshihisa; Yoshikawa, Takafumi; Nikaido, Tamotsu

    2003-04-04

    Coleus forskohlii hairy root cultures were shown to biotransform methanol and ethanol to the corresponding beta-D-glucopyranosides and beta-D-ribo-hex-3-ulopyranosides, and 2-propanol to its beta-D-glucopyranoside.

  20. Genetic Analysis and Molecular Mapping of Light-Sensitive Red-Root Mutant in Rice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-zhi; LIU Xiao; LI Chao; XIAO Ke; DONG Yan-jun

    2009-01-01

    The light-sensitive red-root mutant, designated as HG1, was newly observed from an indica rice variety, Nankinkodo, when seedlings were grown with roots exposed to natural light. The root color of the mutant began to turn slight-red when the roots were exposed to the light at the intensity of 29 μmol/(m2·s), then turned dark-red at the light intensity of 180 μmol/(m2·s), suggesting that the root color of the mutant was evidently sensitive to light. Furthermore, genetic analysis showed that the character of light-sensitive red-root of the HG1 mutant was controlled by a single dominant gene, tentatively designated as Lsr. With simple sequence repeat markers, Lsr gene was located between the markers RM252 and RM303 on chromosome 4 with the genetic distances of 9.8 cM and 6.4 cM, respectively. These results could be useful for fine mapping and cloning of Lsr gene in rice.

  1. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions.

    Science.gov (United States)

    Martin, Belinda C; George, Suman J; Price, Charles A; Ryan, Megan H; Tibbett, Mark

    2014-02-15

    Rhizoremediation is a bioremediation technique whereby enhanced microbial degradation of organic contaminants occurs within the plant root zone (rhizosphere). It is considered an effective and affordable 'green technology' for remediating soils contaminated with petroleum hydrocarbons (PHCs). This paper critically reviews the potential role of root exuded compounds in rhizoremediation, with emphasis on commonly exuded low molecular weight aliphatic organic acid anions (carboxylates). The extent to which remediation is achieved shows wide disparity among plant species. Therefore, plant selection is crucial for the advancement and widespread adoption of this technology. Root exudation is speculated to be one of the predominant factors leading to microbial changes in the rhizosphere and thus the potential driver behind enhanced petroleum biodegradation. Carboxylates can form a significant component of the root exudate mixture and are hypothesised to enhance petroleum biodegradation by: i) providing an easily degradable energy source; ii) increasing phosphorus supply; and/or iii) enhancing the contaminant bioavailability. These differing hypotheses, which are not mutually exclusive, require further investigation to progress our understanding of plant-microbe interactions with the aim to improve plant species selection and the efficacy of rhizoremediation.

  2. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Science.gov (United States)

    Ariani, Andrea; Di Baccio, Daniela; Romeo, Stefania; Lombardi, Lara; Andreucci, Andrea; Lux, Alexander; Horner, David Stephen; Sebastiani, Luca

    2015-01-01

    Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE) genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated) and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO) terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1) probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS) that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  3. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  4. 禾本科植物根系发育的分子机制研究进展%Research Advances on the Molecular Mechanisms of Root Development in Gramineous Plants

    Institute of Scientific and Technical Information of China (English)

    任永哲; 徐艳花; 张庆琛; 梁峰

    2011-01-01

    植物根系的主要功能是从土壤中吸收养分和水分,并起到固定植株的功能.因此根系对于植物完成生命周期是至关重要的.以往的研究多集中在对模式植物拟南芥的根系上,近年来,人们开始对禾本科植物根系发育的分子机制开展研究并取得了一定的进展,一些科学家开始利用QTL定位的方法对调控植物根系性状的基因进行定位,对根系表型鉴定的方法也进行了很多改良.现有的研究结果表明,禾本科植物根系发育的分子机制与拟南芥既有相似之处,又存在一定的差异.对近几年来禾本科植物根系发育的分子机制方面取得的研究结果进行了综述,并对根系育种的重要性及其困难进行了探讨.%Plant roots are required for the acquisition of water and nutrients, and fixition of plant. The proper establishment of root system architecture is of vital importance to fulfill its functional requirements, particularly in agronomically important crops such as cereals, which account for 70% of food production worldwide. In recent years, studies on the molecular mechanisms regulating root development have also been initiated in monocot cereals which have been well studied in Arabidopsis in the past ten years. The achievements of root development in cereals were reviewed in this paper. The application of quantitative trait locus mapping in studying root development and the application of root trait information in breeding were also discussed.

  5. Interaction between hydrotropism and gravitropism in seedling roots

    Science.gov (United States)

    Kobayashi, A.; Takahashi, A.; Yamazaki, Y.; Kakimoto, Y.; Higashitani, A.; Fujii, N.; Takahashi, H.

    Roots display positive hydrotropism in response to a moisture gradient, which could play a role in avoiding drought stress. Because roots also respond to other stimuli such as gravity, touch and light and exhibit gravitropism, thigmotropism and phototropism, respectively, their growth orientation is determined by interaction among those tropisms. We have demonstrated the interaction between hydrotropism and gravitropism. For example, 1) agravitropic roots of pea mutant strongly respond to a moisture gradient and show positive hydrotropism by overcoming gravitropism, 2) in wild type pea roots hydrotropism is weak but pronounced when rotated on clinostat, 3) cucumber roots are positively gravitropic on the ground but become hydrotropic in microgravity, and 4) maize roots change their growth direction depending on the intensities of both gravistimulation and hydrostimulation. Here we found that Arabidopsis roots could display strong hydrotropism by overcoming gravitropism. It was discovered that amyloplasts in the columella cells are rapidly degraded upon exposure to a moisture gradient. Thus, degradation of amyloplasts could reduce the responsiveness to gravity, which could pronounce the hydrotropic response. In hydrotropically stimulated roots of pea seedlings, however, we could not observe a rapid degradation of amyloplasts in the columella cells. These results suggest that mechanism underlying the interaction between hydrotropism and gravitropism differs among plant species. To further study the molecular mechanism of hydrotropism and its interaction with gravitropism, we isolated unique mutants of Arabidopsis of which roots showed either ahydrotropism, reduced hydrotropism or negative hydrotropic response and examined their gravitropism, phototropism, waving response, amyloplast degradation and elongation growth. Based on the characterization of hydrotropic mutants, we will attempt to compare the mechanisms of the two tropisms and to clarify their cross talk for

  6. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.

    Science.gov (United States)

    Tatematsu, Kiyoshi; Kumagai, Satoshi; Muto, Hideki; Sato, Atsuko; Watahiki, Masaaki K; Harper, Reneé M; Liscum, Emmanuel; Yamamoto, Kotaro T

    2004-02-01

    We have isolated a dominant, auxin-insensitive mutant of Arabidopsis thaliana, massugu2 (msg2), that displays neither hypocotyl gravitropism nor phototropism, fails to maintain an apical hook as an etiolated seedling, and is defective in lateral root formation. Yet other aspects of growth and development of msg2 plants are almost normal. These characteristics of msg2 are similar to those of another auxin-insensitive mutant, non-phototropic hypocotyl4 (nph4), which is a loss-of-function mutant of AUXIN RESPONSE FACTOR7 (ARF7) (Harper et al., 2000). Map-based cloning of the MSG2 locus reveals that all four mutant alleles result in amino acid substitutions in the conserved domain II of an Auxin/Indole-3-Acetic Acid protein, IAA19. Interestingly, auxin inducibility of MSG2/IAA19 gene expression is reduced by 65% in nph4/arf7. Moreover, MSG2/IAA19 protein binds to the C-terminal domain of NPH4/ARF7 in a Saccharomyces cerevisiae (yeast) two-hybrid assay and to the whole latter protein in vitro by pull-down assay. These results suggest that MSG2/IAA19 and NPH4/ARF7 may constitute a negative feedback loop to regulate differential growth responses of hypocotyls and lateral root formation.

  7. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody.

    Science.gov (United States)

    Häkkinen, Suvi T; Raven, Nicole; Henquet, Maurice; Laukkanen, Marja-Leena; Anderlei, Tibor; Pitkänen, Juha-Pekka; Twyman, Richard M; Bosch, Dirk; Oksman-Caldentey, Kirsi-Marja; Schillberg, Stefan; Ritala, Anneli

    2014-02-01

    Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To address these challenges, we used a design of experiments approach to develop an optimized induction protocol for the cultivation of tobacco hairy roots secreting the full-size monoclonal antibody M12. The antibody yield was enhanced 30-fold by the addition of 14 g/L KNO3 , 19 mg/L 1-naphthaleneacetic acid and 1.5 g/L of the stabilizing agent polyvinylpyrrolidone. Analysis of hairy root cross sections revealed that the optimized medium induced lateral root formation and morphological changes in the inner cortex and pericycle cells, indicating that the improved productivity was at least partially based on the enhanced efficiency of antibody secretion. We found that 57% of the antibody was secreted, yielding 5.9 mg of product per liter of induction medium. Both the secreted and intracellular forms of the antibody could be isolated by protein A affinity chromatography and their functionality was confirmed using vitronectin-binding assays. Glycan analysis revealed three major plant complex-type glycans on both forms of the antibody, although the secreted form was more homogeneous due to the predominance of a specific glycoform. Tobacco hairy root cultures therefore offer a practical solution for the production of homogeneous pharmaceutical antibodies in containment.

  8. The pharmaceutics from the foreign empire: the molecular pharming of the prokaryotic staphylokinase in Arabidopsis thaliana plants.

    Science.gov (United States)

    Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Wiktorek-Smagur, Aneta; Gerszberg, Aneta; Kowalczyk, Tomasz; Gatkowska, Justyna; Kononowicz, Andrzej K

    2016-07-01

    Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor-staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter.

  9. Overlapping and divergent signaling pathways for ARK1 and AGD1 in the control of root hair polarity in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Cheol-Min eYoo

    2013-12-01

    Full Text Available We previously showed that seedlings harboring mutations in genes encoding ARK1, an armadillo repeat-containing kinesin, or AGD1, a class 1 ARF-GAP, have root hairs that exhibit wavy/spiral growth and two tips originating from one initiation site. These root hair defects were accompanied by bundling of endoplasmic microtubules and filamentous actin (F-actin that extended to the extreme root hair apex. The similar phenotypes of ark1 and agd1 mutants suggest a tight coordination between the cytoskeleton and membrane trafficking in the control of root hair polarity. Indeed, cell biological and genetic studies of the agd1 mutant provided evidence that AGD1’s involvement in root hair development involves cross-talk among phosphoinositides (PIs, the actin cytoskeleton and other small GTPases such as ROP2 and RABA4b. Here we show that ark1 root hairs mirror those of agd1 with regard to altered targeting of ROP2 and RABA4b, as well as abnormal tonoplast organization. Furthermore, like agd1, enhanced root hair defects in double mutants in ARK1 and genes encoding a type B phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3, a phosphatidylinositol-4-phosphate (PI-4P phosphatase (RHD4, a phosphatidylinositol transfer protein (COW1, and a vegetative actin isoform (ACT2, were observed. However, root hair shape of some ark1 double mutant combinations, particularly those with act2, pip5k3 and rhd4 (ark1 act2, ark1 pip5k3, ark1 rhd4, differed in some respects from agd1 act2, agd1 pip5k3 and agd1 rhd4. Taken together our results continue to point to commonalities between ARK1 and AGD1 in specifying root hair polarity, but that these two modulators of tip-growth can also regulate root hair development through divergent signaling routes with AGD1 acting predominantly during root hair initiation and ARK1 functioning primarily in sustained tip growth.

  10. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  11. Arabidopsis CDS blastp result: AK241519 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241519 J065170E12 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 3e-23 ...

  12. Arabidopsis CDS blastp result: AK242651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242651 J090026B08 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-16 ...

  13. Arabidopsis CDS blastp result: AK243050 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243050 J100011E04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  14. Arabidopsis CDS blastp result: AK242271 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242271 J075187A19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-17 ...

  15. Arabidopsis CDS blastp result: AK240655 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240655 J023135E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-40 ...

  16. Arabidopsis CDS blastp result: AK242638 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242638 J090023J02 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-29 ...

  17. Arabidopsis CDS blastp result: AK242681 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242681 J090032N04 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 8e-38 ...

  18. Arabidopsis CDS blastp result: AK288923 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288923 J090081P06 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  19. Arabidopsis CDS blastp result: AK243187 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243187 J100039E11 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 4e-24 ...

  20. Arabidopsis CDS blastp result: AK111785 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK111785 J023089N11 At5g62310.1 incomplete root hair elongation (IRE) / protein kin...ase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 0.0 ...

  1. Arabidopsis CDS blastp result: AK288095 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288095 J075191E21 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 9e-31 ...

  2. Arabidopsis CDS blastp result: AK242859 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242859 J090073L24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-21 ...

  3. Arabidopsis CDS blastp result: AK242717 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242717 J090043H19 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-23 ...

  4. Arabidopsis CDS blastp result: AK287631 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287631 J065073J24 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-35 ...

  5. Arabidopsis CDS blastp result: AK242733 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242733 J090047O22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 2e-24 ...

  6. Arabidopsis CDS blastp result: AK242758 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242758 J090051H03 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 1e-59 ...

  7. Arabidopsis CDS blastp result: AK243656 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK243656 J100088L22 At5g62310.1 68418.m07822 incomplete root hair elongation (IRE) .../ protein kinase, putative nearly identical to IRE (incomplete root hair elongation) [Arabidopsis thaliana] gi|6729346|dbj|BAA89783 6e-29 ...

  8. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots

    NARCIS (Netherlands)

    Huang, J.; Bachem, C.W.B.; Jacobsen, E.; Visser, R.

    2001-01-01

    One of the major problems for cassava is the rapid deterioration after harvesting cassava tuberous roots, which limits the possibilities for production and distribution of cassava in the world. Postharvest deterioration is an inherent problem for cassava since wounding and mechanical damage of the t

  9. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody

    NARCIS (Netherlands)

    Häkkinen, S.T.; Raven, N.; Henquet, M.G.L.; Laukkanen, M.L.; Anderlei, T.; Pitkänen, J.P.; Twyman, R.M.; Bosch, H.J.; Oksman-Caldentey, K.M.; Schillberg, S.; Ritala, A.

    2014-01-01

    Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To a

  10. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thaliana. Final report, April 1, 1995--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S.I.

    1998-11-01

    The ultimate goal of this research is to elucidate the molecular mechanisms by which the complex interactions between sources and sinks of fixed carbon are controlled in plants. As soluble sugar levels have been shown to play a vital role in a variety of source-sink interactions, a key aspect of the authors research is to determine the role of sugar-regulated gene expression in mediating source-sink interactions. In addition, as a critical aspect of source-sink interactions is the channeling of fixed carbon into different storage forms, they have pursued the findings that fumaric acid represents a significant form of storage carbon in Arabidopsis thaliana and other plant species. In the future, a better understanding of the mechanisms by which interactions between sources and sinks of fixed carbon are coordinated will be a pre-requisite to developing more rationale approaches to improving harvest indices in crop species.

  11. Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana.

    Science.gov (United States)

    Yoshida, S; Ito, M; Nishida, I; Watanabe, A

    2001-02-01

    Nine cDNAs, representing genes in which the transcripts accumulated in senescent leaves of Arabidopsis thaliana, were isolated by differential display reverse transcription polymerase chain reaction (DDRT-PCR) and the genes were designated yellow-leaf-specific gene 1 to 9 (YLS1-YLS9). Sequence analysis revealed that none of the YLS genes, except YLS6, had been reported as senescence-up-regulated genes. RNA gel blot analysis revealed that the transcripts of YLS3 accumulated at the highest level at an early senescence stage, whereas the transcripts from the other YLS genes reached their maximum levels in late senescence stages. Transcripts of YLS genes showed various accumulation patterns under natural senescence, and under artificial senescence induced by darkness, ethylene or ABA. These expression characteristics of YLS genes will be useful as potential molecular markers, which will enhance our understanding of natural and artificial senescence processes.

  12. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin

    Science.gov (United States)

    DAINEZI, Vanessa Benetello; IWAMOTO, Alexsandra Shizue; MARTIN, Airton Abrahão; SOARES, Luís Eduardo Silva; HOSOYA, Yumiko; PASCON, Fernanda Miori; PUPPIN-RONTANI, Regina Maria

    2017-01-01

    Abstract The quality of the dentin root is the most important factor for restoration resin sealing and drives the outcome of endodontic treatment. Objective This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman), micro energy-dispersive X-ray fluorescence (µ-EDXRF) and scanning electron microscopic (SEM) analysis. Material and Methods Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP), Calen®+zinc oxide (CZ), Calcipex II® (CII), Vitapex® (V). After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5): Control-no cleaning (C), Ethanol (E), Tergenform® (T), 35% Phosphoric acid (PA). Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05). Results Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P), and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. Conclusion The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules. PMID:28198982

  13. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: Molecular cloning and functional expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-Ling; Li, Li; Wu, Keqiang [Michigan State Univ., East Lansing, MI (United States)] [and others

    1995-07-03

    The biosynthesis of gibberellins (GAs) after GA{sub 12}-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA{sub 53} to GA{sub 44} and GA{sub 19} to GA{sub 20}. The Arabidopsis GA 20-oxidase shares 55% identity and >80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA locus of Arabidopsis. The ga5 semidwarf mutant contains a G {yields} A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Arabidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA{sub 4} treatment, suggesting end-product repression in the GA biosynthetic pathway. 28 refs., 6 figs.

  14. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  15. A simple method suitable to study de novo root organogenesis

    Directory of Open Access Journals (Sweden)

    Xiaodong eChen

    2014-05-01

    Full Text Available De novo root organogenesis is the process in which adventitious roots regenerate from detached or wounded plant tissues or organs. In tissue culture, appropriate types and concentrations of plant hormones in the medium are critical for inducing adventitious roots. However, in natural conditions, regeneration from detached organs is likely to rely on endogenous hormones. To investigate the actions of endogenous hormones and the molecular mechanisms guiding de novo root organogenesis, we developed a simple method to imitate natural conditions for adventitious root formation by culturing Arabidopsis thaliana leaf explants on B5 medium without additive hormones. Here we show that the ability of the leaf explants to regenerate roots depends on the age of the leaf and on certain nutrients in the medium. Based on these observations, we provide examples of how this method can be used in different situations, and how it can be optimized. This simple method could be used to investigate the effects of various physiological and molecular changes on the regeneration of adventitious roots. It is also useful for tracing cell lineage during the regeneration process by differential interference contrast observation of -glucuronidase staining, and by live imaging of proteins labeled with fluorescent tags.

  16. High-throughput sequencing of black pepper root transcriptome

    Directory of Open Access Journals (Sweden)

    Gordo Sheila MC

    2012-09-01

    Full Text Available Abstract Background Black pepper (Piper nigrum L. is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  17. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA).

    Science.gov (United States)

    Appoloni, Susann; Lekberg, Ylva; Tercek, Michael T; Zabinski, Catherine A; Redecker, Dirk

    2008-11-01

    To better understand adaptation of plants and their mycorrhizae to extreme environmental conditions, we analyzed the composition of communities of arbuscular mycorrhizal fungi (AMF) in roots from geothermal sites in Yellowstone National Park (YNP), USA. Arbuscular mycorrhizal fungi were identified using molecular methods including seven specific primer pairs for regions of the ribosomal DNA that amplify different subgroups of AMF. Roots of Dichanthelium lanuginosum, a grass only occurring in geothermal areas, were sampled along with thermal and nonthermal Agrostis scabra and control plants growing outside the thermally influenced sites. In addition, root samples of Agrostis stolonifera from geothermal areas of Iceland were analyzed to identify possible common mycosymbionts between these geographically isolated locations. In YNP, 16 ribosomal DNA phylotypes belonging to the genera Archaeospora, Glomus, Paraglomus, Scutellospora, and Acaulospora were detected. Eight of these phylotypes could be assigned to known morphospecies, two others have been reported previously in molecular studies from different environments, and six were new to science. The most diverse and abundant lineage was Glomus group A, with the most frequent phylotype corresponding to Glomus intraradices. Five of the seven phylotypes detected in a preliminary sampling in a geothermal area in Iceland were also found in YNP. Nonthermal vegetation was dominated by a high diversity of Glomus group A phylotypes while nonthermal plants were not. Using multivariate analyses, a subset of three phylotypes were determined to be associated with geothermal conditions in the field sites analyzed. In conclusion, AMF communities in geothermal soils are distinct in their composition, including both unique phylotypes and generalist fungi that occur across a broad range of environmental conditions.

  18. Molecular cloning,expression and biochemical property analysis of AtKP1,a kinesin gene from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    LI XuYan; WANG HaiQing; XU Tao; CAO QinHong; REN DongTao; LIU GuoQin

    2007-01-01

    Kinesins are common in a variety of eukaryotic cells with diverse functions.A cDNA encoding a member of the Kinesin-14B subfamily is obtained using 3'-RACE technology and named AtKP1 (for Arabidopsis kinesin protein 1).This cDNA has a maximum open reading frame of 3.3 kb encoding a polypeptide of 1087 aa.Protein domain analysis shows that AtKP1 contains the motor domain and the calponin homology domain in the central and amino-terminal regions,respectively.The carboxyl-terminal region with 202 aa residues is diverse from other known kinesins.Northern blot analysis shows that AtKP1 is widely expressed at a higher level in seedlings than in mature plants.2808 bp of the AtKP1 promoter region is cloned and fused to GUS.GUS expression driven by the AtKP1 promoter region shows that AtKP1 is mainly expressed in vasculature of young organs and young leaf trichomes,indicating that AtKP1 may participate in the differentiation or development of Arabidopsis thaliana vascular bundles and trichomes.A truncated AtKP1 protein containing the putative motor domain is expressed in E.coll and affinity-purified.In vitro characterizations indicate that the polypeptide has nucleotide-dependent microtubule-binding ability and microtubule-stimulated ATPase activity.

  19. Molecular and Functional Characterization of a Polygalacturonase-Inhibiting Protein from Cynanchum komarovii That Confers Fungal Resistance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Nana Liu

    Full Text Available Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.

  20. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.

    Science.gov (United States)

    Alvarez-Gerding, Ximena; Espinoza, Carmen; Inostroza-Blancheteau, Claudio; Arce-Johnson, Patricio

    2015-07-01

    Plant stress induced by high salinity has leading to an important reduction in crop yields. Due to their tropical origin, citrus fruits are highly sensitive to salts. Rootstocks are the root system of fruit trees, regulating ion uptake and transport to the canopy. Therefore, increasing their salt tolerance could improve the salt tolerance of the fruit tree. For this, we genetically-transformed an important rootstock for lemon, Citrus macrophylla W, to constitutively express the CBF3/DREB1A gene from Arabidopsis, a well-studied salinity tolerance transcription factor. Transgenic lines showed normal size, with no dwarfism. Under salt stress, some transgenic lines showed greater growth, similar accumulation of chloride and sodium in the leaves and better stomatal conductance, in comparison to wild-type plants. Quantitative real-time analyses showed a similar expression of several CBF3/DREB1A target genes, such as COR15A, LEA 4/5, INV, SIP1, P5CS, GOLS, ADC2 and LKR/SDH, in transgenic lines and wild type plants, with the exception of INV that shows increased expression in line 4C15. Under salt stress, all measured transcript increased in both wild type and transgenics lines, with the exception of INV. Altogether, these results suggest a higher salt tolerance of transgenic C. macrophylla plants induced by the overexpression of AtCBF3/DREB1A.

  1. Arabidopsis CDS blastp result: AK241580 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241580 J065181H03 At4g23640.1 68417.m03404 potassium transporter / tiny root hair... 1 protein (TRH1) identical to tiny root hair 1 protein [Arabidopsis thaliana] gi|11181958|emb|CAC16137; KUP.../HAK/KT Transporter family member, PMID:11500563; identical to cDNA mRNA for tiny root hair 1 protein (trh1) GI:11181957 1e-139 ...

  2. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells

    Directory of Open Access Journals (Sweden)

    Andres Marilou A

    2007-09-01

    Full Text Available Abstract Background The cyclic nucleotide-gated ion channels (CNGCs maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. Results AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50–150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. Conclusion AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported

  3. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Fengtao; Lin, Ruiming; Feng, Jing; Chen, Wanquan; Qiu, Dewen; Xu, Shichang

    2015-01-01

    Plant-specific NAC transcription factors (TFs) constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS) is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a TF localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid (SA), methyl jasmonate, and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis thaliana plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  4. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fengtao eWang

    2015-02-01

    Full Text Available Plant-specific NAC transcription factors constitute a large family and play important roles in regulating plant developmental processes and responses to environmental stresses, but only some of them have been investigated for effects on disease reaction in cereal crops. Virus-induced gene silencing (VIGS is an effective strategy for rapid functional analysis of genes in plant tissues. In this study, TaNAC1, encoding a new member of the NAC1 subgroup, was cloned from bread wheat and characterized. It is a transcription factor localized in the cell nucleus, and contains an activation domain in its C-terminal. TaNAC1 was strongly expressed in wheat roots and was involved in responses to infection by the obligate pathogen Puccinia striiformis f. sp. tritici and defense-related hormone treatments such as salicylic acid, methyl jasmonate and ethylene. Knockdown of TaNAC1 with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS enhanced stripe rust resistance. TaNAC1-overexpression in Arabidopsis plants gave enhanced susceptibility, attenuated systemic-acquired resistance to Pseudomonas syringae DC3000, and promoted lateral root development. Jasmonic acid-signaling pathway genes PDF1.2 and ORA59 were constitutively expressed in transgenic plants. TaNAC1 overexpression suppressed the expression levels of resistance-related genes PR1 and PR2 involved in SA signaling and AtWRKY70, which functions as a connection node between the JA- and SA-signaling pathways. Collectively, TaNAC1 is a novel NAC member of the NAC1 subgroup, negatively regulates plant disease resistance, and may modulate plant JA- and SA-signaling defense cascades.

  5. Peering into the separate roles of root and shoot cytosolic glutamine synthetase 1;2 by use of grafting experiments in Arabidopsis.

    Science.gov (United States)

    Guan, Miao; Schjoerring, Jan K

    2016-11-01

    Cytosolic glutamine synthetase 1;2 plays an important role in the primary nitrogen assimilation in roots. Based on characterization of the knockout mutant gln1;2 we have recently demonstrated that Gln1;2 is also essential for ammonium handling in shoots. Here we built reciprocally grafted plants between wild type (Wt) and gln1;2 in order to separate the root and shoot roles of Gln1;2. Significant reduction in silique number and seed yield were observed in the grafted plants 1;2shoot/Wtroot relative to Wtshoot/1;2root and Wtshoot/Wtroot. Shoot Gln1;2 thus played a crucial role for seed production. Tracing experiments with (15)N showed that the relative nitrogen remobilization from vegetative organs to seeds in gln1;2 was just as efficient as in the Wt plants. This was the case although the total quantity of nitrogen in gln1;2 was significantly lower compared to that in the Wt. We conclude that the functions of shoot Gln1;2 are primarily associated with internal N signaling for establishment of seed yield capacity rather than with nitrogen remobilization.

  6. The impact of PEPC phosphorylation on growth and development of Arabidopsis thaliana: molecular and physiological characterization of PEPC kinase mutants.

    Science.gov (United States)

    Meimoun, Patrice; Gousset-Dupont, Aurélie; Lebouteiller, Bénédicte; Ambard-Bretteville, Françoise; Besin, Evelyne; Lelarge, Caroline; Mauve, Caroline; Hodges, Michael; Vidal, Jean

    2009-05-19

    Two phosphoenolpyruvate carboxylase (PEPC) kinase genes (PPCk1 and PPCk2) are present in the Arabidopsis genome; only PPCk1 is expressed in rosette leaves. Homozygous lines of two independent PPCk1 T-DNA-insertional mutants showed very little (dln1), or no (csi8) light-induced PEPC phosphorylation and a clear retard in growth under our greenhouse conditions. A mass-spectrometry-based analysis revealed significant changes in metabolite profiles. However, the anaplerotic pathway initiated by PEPC was only moderately altered. These data establish the PPCk1 gene product as responsible for leaf PEPC phosphorylation in planta and show that the absence of PEPC phosphorylation has pleiotropic consequences on plant metabolism.

  7. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  8. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis.

    Science.gov (United States)

    Mazurek, Sylwester; Garroum, Imène; Daraspe, Jean; De Bellis, Damien; Olsson, Vilde; Mucciolo, Antonio; Butenko, Melinka A; Humbel, Bruno M; Nawrath, Christiane

    2017-02-01

    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development.

  9. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis1[OPEN

    Science.gov (United States)

    Mazurek, Sylwester; Garroum, Imène; Daraspe, Jean; De Bellis, Damien; Olsson, Vilde; Butenko, Melinka A.; Humbel, Bruno M.

    2017-01-01

    The plant cuticle is laid down at the cell wall surface of epidermal cells in a wide variety of structures, but the functional significance of this architectural diversity is not yet understood. Here, the structure-function relationship of the petal cuticle of Arabidopsis (Arabidopsis thaliana) was investigated. Applying Fourier transform infrared microspectroscopy, the cutin mutants long-chain acyl-coenzyme A synthetase2 (lacs2), permeable cuticle1 (pec1), cyp77a6, glycerol-3-phosphate acyltransferase6 (gpat6), and defective in cuticular ridges (dcr) were grouped in three separate classes based on quantitative differences in the ν(C=O) and ν(C-H) band vibrations. These were associated mainly with the quantity of 10,16-dihydroxy hexadecanoic acid, a monomer of the cuticle polyester, cutin. These spectral features were linked to three different types of cuticle organization: a normal cuticle with nanoridges (lacs2 and pec1 mutants); a broad translucent cuticle (cyp77a6 and dcr mutants); and an electron-opaque multilayered cuticle (gpat6 mutant). The latter two types did not have typical nanoridges. Transmission electron microscopy revealed considerable variations in cuticle thickness in the dcr mutant. Different double mutant combinations showed that a low amount of C16 monomers in cutin leads to the appearance of an electron-translucent layer adjacent to the cuticle proper, which is independent of DCR action. We concluded that DCR is not only essential for incorporating 10,16-dihydroxy C16:0 into cutin but also plays a crucial role in the organization of the cuticle, independent of cutin composition. Further characterization of the mutant petals suggested that nanoridge formation and conical cell shape may contribute to the reduction of physical adhesion forces between petals and other floral organs during floral development. PMID:27994007

  10. Longitudinal zonation pattern in plant roots: conflicts and solutions.

    Science.gov (United States)

    Ivanov, Victor B; Dubrovsky, Joseph G

    2013-05-01

    Despite the relative simplicity of Arabidopsis root organization, there is no general agreement regarding the terminology used to describe the longitudinal zonation pattern (LZP) of this model system. In this opinion article, we examine inconsistencies in the terminology and provide a conceptual framework for the LZP that may be applied to all angiosperms. We propose that the root apical meristem (RAM) consists of the cell-proliferation domain where cells maintain a high probability to divide and the transition domain with a low probability of cell division; in both domains cells grow at the same, relatively low, rate. Owing to stochastic termination of cell proliferation in the RAM, the border between the domains is 'fuzzy'. Molecular markers analyzed together with quantitative growth and cell analyses could help to identify developmental zones along the root and lead to a better understanding of the LZP in angiosperms.

  11. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana; Caracterisation moleculaire et Fonctionnelle d'un Homologue du gene humain ATM chez Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, V.

    2001-12-15

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  12. Reference: 212 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available identified in pea (Pisum sativum) using biochemical approaches. The Arabidopsis (...C75-IV, which we studied using a range of molecular, genetic, and biochemical techniques. Expression of atTO

  13. Reference: 147 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available the region-specific control of trichome development of Arabidopsis. 3 389-98 15604688 2004 May Plant molecular biology Hulskamp Mart...in|Kirik Victor|Schiefelbein John|Simon Marissa|Wester Katja

  14. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Glazebrook, J.; Zhu, T.; Chang, H.-S.; Loon, L.C. van; Pieterse, C.M.J.

    2004-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicy

  15. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    Science.gov (United States)

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.

  16. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.

    Science.gov (United States)

    Lee, Dong-Keun; Chung, Pil Joong; Jeong, Jin Seo; Jang, Geupil; Bang, Seung Woon; Jung, Harin; Kim, Youn Shic; Ha, Sun-Hwa; Choi, Yang Do; Kim, Ju-Kon

    2016-11-28

    Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering. Here, we identified OsNAC6-mediated root structural adaptations, including increased root number and root diameter, which enhanced drought tolerance. Multiyear drought field tests demonstrated that the grain yield of OsNAC6 root-specific overexpressing transgenic rice lines was less affected by drought stress than were nontransgenic controls. Genome-wide analyses of loss- and gain-of-function mutants revealed that OsNAC6 up-regulates the expression of direct target genes involved in membrane modification, nicotianamine (NA) biosynthesis, glutathione relocation, 3'-phophoadenosine 5'-phosphosulphate accumulation and glycosylation, which represent multiple drought tolerance pathways. Moreover, overexpression of NICOTIANAMINE SYNTHASE genes, direct targets of OsNAC6, promoted the accumulation of the metal chelator NA and, consequently, drought tolerance. Collectively, OsNAC6 orchestrates novel molecular drought tolerance mechanisms and has potential for the biotechnological development of high-yielding crops under water-limiting conditions.

  17. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    Science.gov (United States)

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  18. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis.

    Science.gov (United States)

    Rashid, Md Harun-Or-; Khan, Ajmal; Hossain, Mohammad T; Chung, Young R

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 10(7) CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis.

  19. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

    DEFF Research Database (Denmark)

    Egelund, Jack; Obel, Nicolai; Ulvskov, Peter

    2007-01-01

    Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas...... identified and characterized at the molecular and biochemical level. Monosaccharide compositional analyses of cell wall material isolated from the meristematic region showed a ca. 20% reduction in the arabinose content in the insoluble/undigested cell wall residue after enzymatic removal of xyloglucan...... and pectic polysaccharides. These data indicate that both RRA-1 and -2 play a role in the arabinosylation of cell wall component(s)....

  20. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations.

  1. Gene expression in response to cryoprotectant and liquid nitrogen exposure in Arabidopsis shoot tips

    Science.gov (United States)

    Arabidopsis thaliana serves as an ideal model system to study cryopreservation at the molecular level. We have developed reliable cryopreservation methods for Arabidopsis shoot tips using Plant Vitrification Solution 2, Plant Vitrification Solution 3 and polyethylene glycol-glucose-dimethylsulfoxid...

  2. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    Directory of Open Access Journals (Sweden)

    Pengkai Wang

    2016-09-01

    Full Text Available The APETALA2 (AP2 genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group.

  3. Molecular Characterization of Duplicate Cytosolic Phosphoglucose Isomerase Genes in Clarkia and Comparison to the Single Gene in Arabidopsis

    Science.gov (United States)

    Thomas, B. R.; Ford, V. S.; Pichersky, E.; Gottlieb, L. D.

    1993-01-01

    The nucleotide sequence of PgiC1-a which encodes a cytosolic isozyme of phosphoglucose isomerase (PGIC; EC 5.3.1.9) in Clarkia lewisii, a wildflower native to California, is described and compared to the previously published sequence of the duplicate PgiC2-a from the same genome. Both genes have the same structure of 23 exons and 22 introns located in identical positions, and they encode proteins of 569 amino acids. Exon and inferred protein sequences of the two genes are 96.4% and 97.2% identical, respectively. Intron sequences are 88.2% identical. The high nucleotide similarity of the two genes is consistent with previous genetic and biosystematic findings that suggest the duplication arose within Clarkia. A partial sequence of PgiC2-b was also obtained. It is 99.5% identical to PgiC2-a in exons and 99.7% in introns. The nucleotide sequence of the single PgiC from Arabidopsis thaliana was also determined for comparison to the Clarkia genes. The A. thaliana PgiC has 21 introns located at positions identical to those in Clarkia PgiC1 and PgiC2, but lacks the intron that divides Clarkia exons 21 and 22. The A. thaliana PGIC protein is shorter, with 560 amino acids, and differs by about 17% from the Clarkia PGICs. The PgiC in A. thaliana was mapped to a site 20 cM from restriction fragment length polymorphism marker 331 on chromosome 5. PMID:8293986

  4. Novel molecularly imprinted polymers based on multiwalled carbon nanotubes with bifunctional monomers for solid-phase extraction of rhein from the root of kiwi fruit.

    Science.gov (United States)

    Chen, Xing; Zhang, Zhaohui; Yang, Xiao; Liu, Yunan; Li, Jiaxing; Peng, Mijun; Yao, Shouzhuo

    2012-09-01

    A novel molecularly imprinted polymers based on multiwalled carbon nanotubes synthesized by precipitate polymerization was applied as a selective sorbent for separation and determination of rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) from the root of kiwi fruit samples coupled with high performance liquid chromatography (HPLC). The molecularly imprinted polymers were prepared with methacrylic acid and 4-vinylpyridine as bifunctional monomers. The chemical structure of the molecularly imprinted polymers was characterized by Fourier transform infrared spectrometer. The equilibrium rebinding experiment and competitive adsorption experiment showed that these imprinted polymers exhibited good adsorption ability toward rhein. The Langmuir adsorption equilibrium constant, K(m) , and theoretical maximum adsorption capacity, Q(m) , were estimated to be 0.43 and 6.77 mg g(-1) , respectively. Compared with molecularly imprinted polymers prepared with methacrylic acid or 4-vinylpyridine solely, the molecularly imprinted polymers synthesized with bifunctional monomers showed enhanced molecular imprinting effect and higher adsorption capacity for the template rhein. The performances of the molecularly imprinted polymers utilized as solid phase extraction sorbent were investigated in detail. The molecularly imprinted polymers prepared by the method proposed in this work could successfully apply to extraction and determination of rhein from the root of kiwi fruit samples coupled with HPLC.

  5. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots

    Science.gov (United States)

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector ge...

  6. Reference: 234 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 234 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15980261i Stepanova ...ion of two root-specific ethylene-insensitive mutants in Arabidopsis. 8 2230-42 15980261 2005 Aug The Plant cell Alonso Jose M|Hamilton Alexandra A|Hoyt Joyce M|Stepanova Anna N

  7. Reference: 616 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available Disruption of AtOCT1 in an Arabidopsis oct1-1 knockout mutant affected both the expression of carnitine-rela... exhibited a higher degree of root branching than the wild-type, showing that the disruption of AtOCT1 affected

  8. Reference: 135 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 135 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u15546354i Wubben Martin...Arabidopsis roots. 5 712-24 15546354 2004 Dec The Plant journal Baum Thomas J|Rodermel Steven R|Wubben Martin J E 2nd

  9. Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Maolin Zhang

    Full Text Available Soil salinity is a major constraint to crop growth and yield. The primary and lateral roots of Arabidopsis thaliana are known to respond differentially to a number of environmental stresses, including salinity. Although the maize root system as a whole is known to be sensitive to salinity, whether or not different structural root systems show differential growth responses to salinity stress has not yet been investigated. The maize primary root (PR was more tolerant of salinity stress than either the crown root (CR or the seminal root (SR. To understand the molecular mechanism of these differential growth responses, RNA-Seq analysis was conducted on cDNA prepared from the PR, CR and SR of plants either non-stressed or exposed to 100 mM NaCl for 24 h. A set of 444 genes were shown to be regulated by salinity stress, and the transcription pattern of a number of genes associated with the plant salinity stress response differed markedly between the various types of root. The pattern of transcription of the salinity-regulated genes was shown to be very diverse in the various root types. The differential transcription of these genes such as transcription factors, and the accumulation of compatible solutes such as soluble sugars probably underlie the differential growth responses to salinity stress of the three types of roots in maize.

  10. Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress.

    Science.gov (United States)

    Zhang, Maolin; Kong, Xiangpei; Xu, Xiangbo; Li, Cuiling; Tian, Huiyu; Ding, Zhaojun

    2015-01-01

    Soil salinity is a major constraint to crop growth and yield. The primary and lateral roots of Arabidopsis thaliana are known to respond differentially to a number of environmental stresses, including salinity. Although the maize root system as a whole is known to be sensitive to salinity, whether or not different structural root systems show differential growth responses to salinity stress has not yet been investigated. The maize primary root (PR) was more tolerant of salinity stress than either the crown root (CR) or the seminal root (SR). To understand the molecular mechanism of these differential growth responses, RNA-Seq analysis was conducted on cDNA prepared from the PR, CR and SR of plants either non-stressed or exposed to 100 mM NaCl for 24 h. A set of 444 genes were shown to be regulated by salinity stress, and the transcription pattern of a number of genes associated with the plant salinity stress response differed markedly between the various types of root. The pattern of transcription of the salinity-regulated genes was shown to be very diverse in the various root types. The differential transcription of these genes such as transcription factors, and the accumulation of compatible solutes such as soluble sugars probably underlie the differential growth responses to salinity stress of the three types of roots in maize.

  11. Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile.

    Science.gov (United States)

    González-Teuber, M; Vilo, C; Bascuñán-Godoy, L

    2017-03-01

    Plant roots can be highly colonized by fungal endophytes. This seems to be of particular importance for the survival of plants inhabiting stressful habitats. This study focused on the Identification of the fungal endophytic community associated with the roots of quinoa plants (Chenopodium quinoa) growing near the salt lakes of the Atacama Desert, Chile. One hundred endophytic fungi were isolated from healthy quinoa roots, and the internal transcribed spacer (ITS) region was sequenced for phylogenetic and taxonomic analysis. The isolates were classified into eleven genera and 21 distinct operational taxonomic units (OTUs). Despite a relatively high diversity of root endophytic fungi associated with quinoa plants, the fungal community was dominated by only the Ascomycota phyla. In addition, the most abundant genera were Penicillium, Phoma and Fusarium, which are common endophytes reported in plant roots. This study shows that roots of C. quinoa harbor a diverse group of endophytic fungi. Potential roles of these fungi in plant host tolerance to stressful conditions are discussed.

  12. Insight into herbicide resistance of W574L mutant Arabidopsis thaliana acetohydroxyacid synthase:molecular dynamics simulations and binding free energy calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of herbicides,therefore it is imperative to understand the detailed interaction mechanism and resistance mechanism so as to develop new potent inhibitors for wild-type or resistant AHAS.With the aid of available crystal structures of the Arabidopsis thaliana(At) AHAS-inhibitor complex,molecular dynamics(MD) simulations were used to investigate the interaction and resistance mechanism directly and dynamically at the atomic level.Nanosecond-level MD simulations were performed on six systems consisting of wild-type or W574L mutant AtAHAS in the complex with three sulfonylurea inhibitors,separately,and binding free energy was calculated for each system using the MM-GBSA method.Comprehensive analyses from structural and energetic aspects confirmed the importance of residue W574,and also indicated that W574L mutation might alert the structural charactersistic of the substrate access channel and decrease the binding affinity of inhibitors,which cooperatively weaken the effective channel-blocked effect and finally result in weaker inhibitory effect of inhibitor and corresponding herbicide resistance of W574L mutant.To our knowledge,it is the first report about MD simulations study on the AHAS-related system,which will pave the way to study the interactions between herbicides and wild-type or mutant AHAS dynamically,and decipher the resistance mechanism at the atomic level for better designing new potent anti-resistance herbicides.

  13. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA).

    Science.gov (United States)

    Meng, Lai-Sheng; Yao, Shun-Qiao

    2015-09-01

    One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE.

  14. AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Kinesins and kinesin-like proteins (KLPs) constitute a large family of microtubule-based motors that play important roles in many fundamental cellular and developmental processes. To date, a number of kinesins or KLPs have been identified in plants including Arabidopsis thaliana. Here, a polyclonal antibody against AtKP1 (kinesin-like protein 1 in A.thaliana) was raised by injection the expressed AtKP1 specific C-terminal polypeptides in rabbits, and immunoblot analysis was conducted with the affinity-purified anti-AtKP1 antibody. The results indicated that this antibody recognized the AtKP1 fusion proteins expressed in E. coli and proteins of ~125 kDa in the soluble fractions of Arabidopsis extracts. The molecular weight was consistent with the calculated molecular weight based on deduced amino acids sequence of AtKP1. To acquire the subcellular localization of the protein, AtKP1 in Arabidopsis root cells was observed by indirect immunofluorescence microscopy. AtKP1 was localized to particle-like organelles in interphase or dividing cells, but not to mitotic microtubule arrays. Relatively more AtKP1 was found in isolated mitochondria fraction on immunoblot of the subcellular fractions. The AtKP1 protein could not be released following a 0.6 M KI washing,indicating that AtKP1 is tightly bind to mitochondria and might function associated with this kind of organelles.

  15. Chromosomal proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Moehs, C P; McElwain, E F; Spiker, S

    1988-07-01

    In plants with large genomes, each of the classes of the histones (H1, H2A, H2B, H3 and H4) are not unique polypeptides, but rather families of closely related proteins that are called histone variants. The small genome and preponderance of single-copy DNA in Arabidopsis thaliana has led us to ask if this plant has such families of histone variants. We have thus isolated histones from Arabidopsis and analyzed them on four polyacrylamide gel electrophoretic systems: an SDS system; an acetic acid-urea system; a Triton transverse gradient system; and a two-dimensional system combining SDS and Triton-acetic acid-urea systems. This approach has allowed us to identify all four of the nucleosomal core histones in Arabidopsis and to establish the existence of a set of H2A and H2B variants. Arabidopsis has at least four H2A variants and three H2B variants of distinct molecular weights as assessed by electrophoretic mobility on SDS-polyacrylamide gels. Thus, Arabidopsis displays a diversity in these histones similar to the diversity displayed by plants with larger genomes such as wheat.The high mobility group (HMG) non-histone chromatin proteins have attracted considerable attention because of the evidence implicating them as structural proteins of transcriptionally active chromatin. We have isolated a group of non-histone chromatin proteins from Arabidopsis that meet the operational criteria to be classed as HMG proteins and that cross-react with antisera to HMG proteins of wheat.

  16. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK cascades and enhanced expression of pathogenesis related (PR genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.

  17. Phosphate-dependent root system architecture responses to salt stress

    NARCIS (Netherlands)

    Kawa, D.; Julkowska, M.M.; Montero Sommerfeld, H.; ter Horst, A.; Haring, M.A.; Testerink, C.

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced ma

  18. Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phosphorus (P) deficiency in the soil is one of the major abiotic stresses that limit plant growth and crop productivity throughout the world. Development of cultivars with improved P-deficiency tolerance is an efficient strategy for sustainable agriculture.Plant roots play an important role in crop growth and development, especially in nutrient uptake and improvement of P-efficiency. Mapping quantitative trait loci (QTLs) for root traits and their response to low P stress at seedling stage will facilitate the development of P-efficient wheat cultivars. In this study, 30 QTLs (LOD>2.0) were mapped for the three root traits, such as root length, root number and root dry matter under different P supply conditions and their response to P-stress. These QTLs were distributed on 14 chromosomes, with each of the 5 QTLs explaining more than 10% phenotype variance. Analyses showed that root traits and their response to P-deficiency were controlled by different QTLs. In addition, alleles with positive effects were separated on both parents, and wheat cultivars with improved P-efficiency could be developed by accumulating these positive effect alleles together.

  19. Reference: 756 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available elle et al. 2008 Jun. Plant Physiol. 147(2):595-610. Treatment of Arabidopsis (Arabidopsis thaliana) alterna...tive oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compare...d with ecotype Columbia (Col-0), as evidenced by a 10-fold incre...ase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and re...duced root growth at the early stages of seedling growth. Analysis of metabolite profiles re

  20. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    NARCIS (Netherlands)

    Rodriguez-Villalon, A.; Gujas, B.; van Wijk, R.; Munnik, T.; Hardtke, C.S.

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second s

  1. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tapsi eShukla

    2015-10-01

    Full Text Available Abiotic stress including nutrient deficiency and heavy metal toxicity severely affects plant growth, development, and productivity. Genetic variations within and in between species are one of the important factors in establishing interactions and responses of plants with the environment. In the recent past, natural variations in Arabidopsis thaliana have been used to understand plant development and response towards different stresses at genetic level. Phosphorus (Pi deficiency negatively affects plant growth and metabolism and modulates expression of the genes involved in Pi homeostasis. Arsenate, As(V, a chemical analogue of Pi, is taken up by the plants via phosphate transport system. Studies suggest that during Pi deficiency, enhanced As(V uptake leads to increased toxicity in plants. Here, the natural variations in Arabidopsis have been utilized to study the As(V stress response under limiting Pi condition. The primary root length was compared to identify differential response of three Arabidopsis accessions (Col-0, Sij-1 and Slavi-1 under limiting Pi and As(V stress. To study the molecular mechanisms responsible for the differential response, comprehensive expression profiling of the genes involved in uptake, detoxification and regulatory mechanisms was carried out. Analysis suggests genetic variation-dependent regulatory mechanisms may affect differential response of Arabidopsis natural variants towards As(V stress under limiting Pi condition. Therefore, it is hypothesized that detailed analysis of the natural variations under multiple stress conditions might help in the better understanding of the biological processes involved in stress tolerance and adaptation.

  2. Molecular and structural changes induced by essential oil treatments in Vicia faba roots detected by FTIR and FTNIR spectroscopy.

    Science.gov (United States)

    Mecozzi, Mauro; Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Peleggi, Francesco

    2016-12-24

    Essential oils have recognized antimicrobial and antifungal properties which allow their utilization in agriculture like an alternative to pesticides, but their utilization requires the knowledge of all the potential structural changes and damages produced by the interaction with the vegetal organisms. In this paper, we investigated the effects of two essential oils, the tea tree oil (TTO) and the mixture of clove and rosemary oils (C + R), on the molecular structure of Vicia faba roots by Fourier transform infrared (FTIR) and Fourier near infrared transform (FTNIR) spectroscopy. FTIR spectroscopy showed structural modifications of the absorption bands related to DNA (1100 and 1050 cm(-1), carbohydrate backbones, and nucleotide bands within 900 and 850 cm(-1)), proteins (1700 and 1600 cm(-1) amide I band, 1580 and 1520 cm(-1) amide II band), and lipids (methylene group of aliphatic chains between 2950 and 2800 cm(-1)). The changes in the secondary structures of proteins consisted of a denaturation depending on increased presence of random coil structures. In addition, in the samples treated with TTO oils, we observed the presence of protein oxidation, an effect negligible instead for the C + R-treated samples. The modified shapes of the infrared methyl bands of aliphatic chains suggested an increased lipid disorder which could also determine lipid peroxidation. The changes observed for the DNA structures at the highest concentration of the above essential oils can be related to the genotoxic effect of eugenol, an important constituent of both TTO and C + R mixture oils. FTNIR spectroscopy showed the modified shape of the second overtone bands belonging to methyl and methylene groups, between 8500 and 8000 cm(-1). This confirmed the increased lipid disorders already observed by FTIR spectroscopy. The results obtained on the probe organism V. faba show that FTIR and FTNIR spectroscopy can become a useful support to the conventional cytogenetic tests used

  3. Strigolactone-Regulated Proteins Revealed by iTRAQ-Based Quantitative Proteomics in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhou [ORNL; Czarnecki, Olaf [ORNL; Chourey, Karuna [ORNL; Yang, Jun [ORNL; Tuskan, Gerald A [ORNL; Hurst, Gregory {Greg} B [ORNL; Pan, Chongle [ORNL; Chen, Jay [ORNL

    2014-01-01

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. Here, a quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found SLs regulate the expression of about three dozens of proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  4. Regulation of iron acquisition responses in plant roots by a transcription factor.

    Science.gov (United States)

    Bauer, Petra

    2016-09-10

    The presented research hypothesis-driven laboratory exercise teaches advanced undergraduate students state of the art methods and thinking in an integrated molecular physiology context. Students understand the theoretical background of iron acquisition in the model plant Arabidopsis thaliana. They design a flowchart summarizing the key steps of the experimental approach. Students are made familiar with current techniques such as qPCR. Following their experimental outline, students grow Arabidopsis seedlings up to the age of six days under sufficient and deficient iron supply. The Arabidopsis plants are of two different genotypes, namely wild type and fit loss of function mutants. fit mutants lack the essential transcription factor FIT, required for iron acquisition and plant growth. Students monitor growth phenotypes and root iron reductase activity in a quantitative and qualitative manner. Then, students determine gene expression regulation of FIT, FRO2, and a reference gene by reverse transcription-quantitative PCR (RT-qPCR). Finally, students interpet their results and build a model summarizing the connections between morphological, physiological and molecular iron deficiency responses. Learning outcomes and suggestions for integrating the course concept are explained. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):438-449, 2016.

  5. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root.

    Science.gov (United States)

    Yang, Xiao; Zhang, Zhaohui; Li, Jiaxing; Chen, Xing; Zhang, Minlei; Luo, Lijuan; Yao, Shouzhuo

    2014-02-15

    In this paper, we present a novel surface imprinting technique for the preparation of molecularly imprinted polymers/multi-walled carbon nanotubes (MIPs/MWNTs) for extraction of emodin from kiwi fruit root. The MIPs/MWNTs were characterised by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The properties involving adsorption dynamics, static adsorption, and selective recognition capacity were evaluated. The MIPs/MWNTs exhibited good site accessibility in which it only took 60 min to achieve adsorption equilibrium and highly selective recognition for the template emodin. Furthermore, the performance of the MIPs/MWNTs as solid phase extraction (SPE) material was investigated in detail. The proposed MIPs/MWNTs-SPE procedure for emodin exhibited satisfactory recoveries ranging from 89.2% to 93.8% for real samples. It was used for the purification and enrichment of emodin from kiwi fruit root successfully.

  6. Arabidopsis HY1 Confers Cadmium Toleranceby Decreasing Nitric Oxide Production andImproving Iron Homeostasis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cad-mium (Cd2+) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1(AtHO1) in Cd2+ tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 over-expression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivityof by1 to Cd2+ stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe,especially), rescued the Cd2+-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, whichexhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction,Cd2+ accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4.Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts,and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation amelio-rates Fe deficiency, and might increase Cd2+ exclusion. Taken together, these results showed that HY1 plays a commonlink in Cd2+ tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.

  7. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots

    Science.gov (United States)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2015-01-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere. This phenomenon occurs for several purposes, for instance, the detoxification of pollutants. Nevertheless, knowledge about the exudation of such substances from marsh plants roots is still scarce. This work aimed at studying: 1) the ability of marsh plants, freshly collected in estuarine marshes, to liberate ALMWOAs into the surrounding medium and 2) the influence of the physiological cycle of these plants on the exudation of those substances. In vitro experiments were carried out, in different seasons, with Phragmites australis and Halimione portulacoides (two marsh plants widely distributed in Europe). Root exudates were collected in freshwater to which plant specimens, in different physiological stages, were exposed. Both marsh plants were capable of liberating oxalic and citric acids into the surrounding medium. Formic acid was also released by P. australis roots and acetic acid by H. portulacoides. There was a seasonal effect on the liberation of ALMWOAs by both plant roots. Marked changes were registered in the nature and levels of the ALMWOAs liberated and such changes depended upon the season in which the specimens were collected. In growing season, a significantly higher liberation of oxalic and citric acids (and acetic acid but only in H. portulacoides case) was observed. For P. australis, formic acid was only found in the decaying stage (autumn and winter). The nature of the medium (in particular, salinity) was a feature conditioning the exudation of ALMWOAs. Both plants were shown to contribute for the presence of ALMWOAs in marsh rhizosediments (some ALMWOAs were found in pore waters extracted). The nature and extent of this contribution will be however dependent upon plants' physiological stage, in addition to plant species. Therefore, these features should be taken into consideration in the event of

  8. Functional analysis of the theobroma cacao NPR1 gene in arabidopsis

    Directory of Open Access Journals (Sweden)

    Verica Joseph

    2010-11-01

    Full Text Available Abstract Background The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1 that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. Results A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS. To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. Conclusion Our data indicate that the TcNPR1 is a functional

  9. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium

  10. Tonoplast aquaporins facilitate lateral root emergence

    DEFF Research Database (Denmark)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée

    2016-01-01

    that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip...... could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence....

  11. Acid phosphatase-1 1, a molecular marker tightly linked to root-knot nematode resistance in tomato.

    NARCIS (Netherlands)

    Aarts, J.M.M.J.G.

    1993-01-01

    Root knot nematode resistance in tomato is a genetic trait which is determined by a single dominant gene ( Mi ) on chromosome 6 of tomato. Information about the mRNA or protein product is completely lacking, which precludes the cloning of Mi by conventional strategies based on gene expression. Howev

  12. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger.

    Science.gov (United States)

    Matsuda, J; Okabe, S; Hashimoto, T; Yamada, Y

    1991-05-25

    Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger.

  13. 3-羰基辛酰基高丝氨酸内酯诱导拟南芥根细胞Ca2+内流%N-3-oxo-Octanoyl-Homoserine Lactone Induces Intracellular Ca2+ Elevation in Arabidopsis Root Cells

    Institute of Scientific and Technical Information of China (English)

    张哲; 张霞; 边子睿; 宋水山

    2011-01-01

    Af-acyl-L-homoserine lactones (AHLs) are the signal molecules which mediate the quorum-sensing (QS) in Gram-negative bacteria. In recent years, the accumulating evidence indicates that AHLs are able to regulate the growth, development and defense response of plants. However, the mechanisms by which plant responses to bacterial QS signal molecule is little known. In this study, the change of cytosolic free Ca2+ concentration ([Ca2+]cyt) and the activities of calcium channel in Arabidopsis thaliana root cells induced by N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) were monitored by both microplate luminometer and the whole-cell patch clamping. A transient elevation in [Ca2+]cyt was observed upon the treatment with 3OQ-HSL in the root cells of Arabidopsis expressing the Ca2+ bioluminescent indicator aequorin. The elevation in [Ca2+]cyt induced by 3OC8-HSL treatment was completely blocked by pretreatment with EGTA, verapamil and LaCl3, but was unaffected by LiCl pretreatment. Furthermore, a hyperpolarization-activated calcium permeable channel was recorded in plasma membrane of Arabidopsis root tip protoplast. The Ca2+ current intensity increased remarkably after 3OC8-HSL treatment. The results reveal that 3OC8-HSL can induce the generation of Ca2+ signal in Arabidopsis root cells and the cytosolic free Ca2+ increase induced by 3OC8-HSL comes mainly from the extracellular space, illuminating that Ca2+ signaling participates in the plant cells sensing to bacterial QS signals.%N-酰基高丝氨酸内酯(AHLs)是革兰氏阴性细菌群体感应系统(QS)中的胞间通讯信号分子.近年的研究表明AHLs可以调控植物生长发育及防卫反应,但其调控机制尚不清楚.本研究以拟南芥为材料,采用3-羰基辛酰基高丝氨酸内酯(3OC8-HSL)处理转水母发光蛋白基因的拟南芥幼根细胞,利用冷光仪检测3OC8-HSL对拟南芥根细胞中胞质游离Ca2+浓度([Ca2+]cyt)变化的影响,同时采用Ca2+专一性螯合剂EGTA和Ca2+

  14. The rhizosphere revisited: root microbiomics

    Directory of Open Access Journals (Sweden)

    Peter A.H.M. Bakker

    2013-05-01

    Full Text Available The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge

  15. Reference: 319 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 319 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u16377756i Dai Ya et al. 2006 Fe...th the wild type, the bud1 plants develop significantly fewer lateral roots, simpler venation patterns, and ...yls at high temperature (29 degrees C) under light, which is a characteristic feature of defe...itectural abnormality in Arabidopsis. 2 308-20 16377756 2006 Feb The Plant cell D

  16. Reference: 584 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ing in Arabidopsis thaliana shoot and root stem cell organizers. 7137 811-4 17429400 2007 Apr Nature Hashimo...nda K et al. 2007 Apr. Nature 446(7137):811-4. Throughout the lifespan of a plant, which in some cases can l... 584 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u4ria224u17429400i Sarkar Ana

  17. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center.

    Science.gov (United States)

    Ponce, G; Luján, R; Campos, M E; Reyes, A; Nieto-Sotelo, J; Feldman, L J; Cassab, G I

    2000-06-01

    The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the development of the maize (Zeca mays L.) root cap has been further explored. Three maize root-specific genes were identified. Two of these were exclusively expressed in the root cap and one of them encoded a GDP-mannose-4,6-dehydratase. Most likely these two genes are structural, tissue-specific markers of the cap. The third gene, a putative glycine-rich cell wall protein, was expressed in the cap and in the root epidermis and, conceivably is a positional marker of the cap. Microsurgical and molecular data indicate that the quiescent center and cap initials may regulate the positional and structural expression of these genes in the cap and thereby control root cap development.

  18. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots

    Science.gov (United States)

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-01-01

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment. PMID:28165059

  19. 氮素吸收调控中铵转运蛋白与锚蛋白的互作研究%Interaction between AMT and AnkTm in regulation of ammonium uptake in Arabidopsis roots

    Institute of Scientific and Technical Information of China (English)

    刘婷; 张永建; 安霞; 陈范骏; 王章奎; 袁力行

    2011-01-01

    铵转运蛋白(AMT)介导的高亲和力铵跨膜运输是植物根系吸收铵态氮的主要途径。AMT蛋白水平上的调控能够快速有效地控制根系铵吸收能力,但参与调控的互作蛋白尚未见报道。本研究通过生物信息学手段预测得到铵转运蛋白AtAMT1;3可能和锚蛋白AtAnkTm8存在互作。基因表达分析实验发现AtAMT1;3和AtAnkTm8的根中组织特异性表达模式一致,并同时受到缺氮胁迫的上调表达,结果支持了它们互作的可能性。筛选鉴定出AtAnkTm8缺失突变体,分析在供铵条件下及对甲基铵敏感性的生长表型,结果发现AtAnkTm8的缺失没有影响拟南芥根的铵吸收能力,推测可能存在其他家族成员的功能冗余。AMT与AnkTm的互作为理解植物铵吸收调控过程提供了可能的新颖机制。%In plant roots AMT-type ammonium transporters have been demonstrated to mediate high-affinity ammonium uptake across the plasma membrane.To tightly control ammonium uptake process,the regulation of AMTs at protein levels is essential.However,the underlying molecular mechanism remains unclear.Here,based on the available bioinformatics database,we predicted the putative interaction between AtAMT1;3 with AtAnkTm8 which encodes an ankyrin repeat protein.Gene expression analyses further supported this interaction because both genes were mainly expressed in the similar root tissues,and also expressed up-regulatedly under nitrogen deficiency.Two independent T-DNA insertion lines were isolated and characterized,in which the expression of AtAnkTm8 was defective.The growth of AtAnkTm8 insertion lines in the medium supplied with either ammonium as a sole nitrogen source or ammonium toxic analog methylammonium(MeA) did not differ from that of their corresponding wild type plants.No effect on ammonium uptake capacity in AtAnkTm8 insertion lines was observed,which could be explained by the possible genetic redundancy of other AnkTm homologs

  20. Long-term in vitro system for maintenance and amplification of root-knot nematodes in Cucumis sativus roots

    Directory of Open Access Journals (Sweden)

    Fernando E. eDíaz-Manzano

    2016-02-01

    Full Text Available Root-knot nematodes (RKN are polyphagous plant-parasitic roundworms that produce large crop losses, representing a relevant agricultural pest worldwide. After infection, they induce swollen root structures called galls containing giant cells (GCs indispensable for nematode development. Among efficient control methods are biotechnology-based strategies that require a deep knowledge of underlying molecular processes during the plant-nematode interaction. Methods of achieving this knowledge include the application of molecular biology techniques such as transcriptomics (massive sequencing or microarray hybridization, proteomics or metabolomics. These require aseptic experimental conditions, as undetected contamination with other microorganisms could compromise the interpretation of the results. Herein, we present a simple, efficient and long-term method for nematode amplification on cucumber roots grown in vitro. Amplification of juveniles (J2 from the starting inoculum is around 40-fold. The method was validated for three Meloidogyne species (M. javanica, M. incognita and M. arenaria, producing viable and robust freshly hatched J2s. These can be used for further in vitro infection of different plant species such as Arabidopsis, tobacco and tomato, as well as enough J2s to maintain the population. The method allowed maintenance of around 90 Meloidogyne spp. generations (one every two months from a single initial female over 15 years.

  1. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration

    Institute of Scientific and Technical Information of China (English)

    Mingzhu Fan; Chongyi Xu; Ke Xu; Yuxin Hu

    2012-01-01

    The remarkable regeneration capability of plant tissues or organs under culture conditions has underlain an extensive practice for decades.The initial step in plant in vitro regeneration often involves the induction of a pluripotent cell mass termed callus,which is driven by the phytohormone auxin and occurs via a root development pathway.However,the key molecules governing callus formation remain unknown.Here we demonstrate that Arabidopsis LATERAL ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE (ASL) transcription factors are involved in the control of callus formation program.The four LBD genes downstream of AUXIN RESPONSE FACTORs (ARFs),LBD16,LBD17,LBD18 and LBD29,are rapidly and dramatically induced by callus-inducing medium (CIM) in multiple organs.Ectopic expression of each of the four LBD genes in Arabidopsis is sufficient to trigger spontaneous callus formation without exogenous phytohormones,whereas suppression of LBD function inhibits the callus formation induced by CIM.Moreover,the callus triggered by LBD resembles that induced by CIM by characteristics of ectopically activated root meristem genes and efficient regeneration capacity.These findings define LBD transcription factors as key regulators in the callus induction process,thereby establishing a molecular link between auxin signaling and the plant regeneration program.

  2. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis.

    Science.gov (United States)

    Castaings, Loren; Camargo, Antonio; Pocholle, Delphine; Gaudon, Virginie; Texier, Yves; Boutet-Mercey, Stéphanie; Taconnat, Ludivine; Renou, Jean-Pierre; Daniel-Vedele, Françoise; Fernandez, Emilio; Meyer, Christian; Krapp, Anne

    2009-02-01

    Nitrate is an essential nutrient, and is involved in many adaptive responses of plants, such as localized proliferation of roots, flowering or stomatal movements. How such nitrate-specific mechanisms are regulated at the molecular level is poorly understood. Although the Arabidopsis ANR1 transcription factor appears to control stimulation of lateral root elongation in response to nitrate, no regulators of nitrate assimilation have so far been identified in higher plants. Legume-specific symbiotic nitrogen fixation is under the control of the putative transcription factor, NIN, in Lotus japonicus. Recently, the algal homologue NIT2 was found to regulate nitrate assimilation. Here we report that Arabidopsis thaliana NIN-like protein 7 (NLP7) knockout mutants constitutively show several features of nitrogen-starved plants, and that they are tolerant to drought stress. We show that nlp7 mutants are impaired in transduction of the nitrate signal, and that the NLP7 expression pattern is consistent with a function of NLP7 in the sensing of nitrogen. Translational fusions with GFP showed a nuclear localization for the NLP7 putative transcription factor. We propose NLP7 as an important element of the nitrate signal transduction pathway and as a new regulatory protein specific for nitrogen assimilation in non-nodulating plants.

  3. Reference: 288 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available ly of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More re...cently, members of the multidrug resistance P-glycoprotein (...n in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redire...ction of auxin from the root tip. Reporter gene studies showed tha...l as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited re

  4. Manipulation of two α-endo-β-1,4-glucanase genes, AtCel6 and GmCel7, reduces susceptibility to Heterodera glycines in soybean roots.

    Science.gov (United States)

    Woo, Mi-Ok; Beard, Hunter; MacDonald, Margaret H; Brewer, Eric P; Youssef, Reham M; Kim, Hyunsoon; Matthews, Benjamin F

    2014-12-01

    Plant endo-β-1,4-glucanases (EGases) include cell wall-modifying enzymes that are involved in nematode-induced growth of syncytia (feeding structures) in nematode-infected roots. EGases in the α- and β-subfamilies contain signal peptides and are secreted, whereas those in the γ-subfamily have a membrane-anchoring domain and are not secreted. The Arabidopsis α-EGase At1g48930, designated as AtCel6, is known to be down-regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α-EGase, AtCel2, is up-regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots redu